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Network coding for distributed quantum
computation over cluster and butterfly networks

Seiseki Akibue and Mio Murao

Abstract—To apply network coding for quantum computatione i)
study the distributed implementation of unitary operations over
all separated input and output nodes of quantum networks. We
consider networks where quantum communication between naebs
is restricted to sending a qubit, but classical communicatn is
unrestricted. We analyze which N-qubit unitary operations are
implementable overcluster networkdy investigating transforma-
tions of a given cluster network into quantum circuits. We stow
that any two-qubit unitary operation is implementable over the
butterfly networkand the grail network which are fundamental
primitive networks for classical network coding. We also aralyze
probabilistic implementations of unitary operations over cluster
networks.

Index Terms—Quantum computing, Network Coding, Quan-

tum entanglement Fig. 1. Network coding for a classical communication taskrdythe butterfly
network and ii) the grail network. Two bits of information y € {0, 1} are
given at the input nodes andis, respectively.x @ y denotes addition of

|. INTRODUCTION andy modulus2.
ISTRIBUTED quantum computation is computation over
a network consisting of spatially separated quantum sys-

tems represented by nodes connected by mediating quanfukrqubit state given at distinct input nodgs, , iz, - - - ,ix}

systems represented by edges. A serious problem for any kifiddistinct output nodeg{o;, 0z, -+ , 05} through a given

of distributed computation is thbottleneckproblem caused network. Two examples of-pair quantum communication

by the collision of communication pathways between thever a butterfly network and a grail network are shown in

nodes. The bottleneck problem worsens as the network grofil- 2.

Thus it is important to consider how to optimize transmigsio In quantum mechanics, the no-cloning theorem forbids

protocols so that the amount of quantum communicationstise creation of a perfect copy of an unknown state. Thus

reduced. perfect multicast communication of an unknown input state

In classical network information theoryietwork coding is impossible. As copying states is a key element of claksica

which incorporates processing at each node in addition network coding, classical network coding cannot be simply

routing, provides efficient transmission protocols thanh ceextended tok-pair quantum communication over the net-

resolve the bottleneck probleml[1]. As an example, consideorks. Indeed, in the setting where each edge can be used

a communication task over thritterfly networlkand thegrail ~ for either 1-bit classical communication or 1-qubit quantu

network presented in Fig.l1 that aims to transmit single bitsommunication, perfect quantum 2-pair communication over

x andy from i, to o, andi, to 0, simultaneously via nodes the butterfly network has been shown to be impossible [2],

n1, ne, nz and ny. The directed edges denote transmissidB]. However, it has been shown that if each edge can be used

channels with1-bit capacity. One of the channels in eaclfor either 2-bit classical communication or 1-qubit quantu

network (the channel from; to ns for the butterfly network communication, perfect quantum 2-pair communication over

and either the channel fromy to n, or the channel frorms the butterfly network is possible, if and only if input nodes

to ny for the grail network) exhibits the bottleneck withoutshare two Bell pairs[4].

network coding shown in Fig. 1. _ Further, if each edge has 1-qubit channel capacity and
Quantumcommunication witlquantum network codingas  classical communication is freely allowed between any spde
been studied by analogy to classical network coding [3} has been shown that there exists a quantum network cod-
[Bl, [, [8], [6], [[]. k-pair quantum communication over ajng protocol to achieve the 2-pair guantum communication
network is a unicast communication task to faithfully tnauits over the butterfly and grail networks perfectlyl [S]J [6]. [7]
L _ _ This setting is justified in practical situations, wheressiaal
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guantum communication resources between nodes specified
by the cluster network. The transformation method of cluste
networks is also applicable to the butterfly network. It pdes
constructions of quantum network coding for implementing
any two-qubit unitary operations over the grail and butyerfl
networks, which are the fundamental primitive networks for
classical network coding. We also analyze probabilistic im
plementation of N-qubit unitary operations over the cluster
network to understand the properties of quantum network
coding for quantum computation when the requirement of
Fio. 2. 1 The butterflv network and ih th | network withe inout nod deterministic implementations are relaxed but that of exac
(z'llg .ar‘.ldIZQ), ?)utl;)u?rn)(;dneesd? rar‘i:ino;;) an?:i gtLag P:peffl)trerV\:mdelg?(,u n;on:s implementations are kept.

andny). The directed edge&, Es, - - - , Eo represent quantum or classical The rest of this paper is organized as follows. In Section
O et anne oy T e ot et e s we review necessary background information. In Section
t?/vo-qubit State|input>i122 fr)(;m i1 10 02 angd 'fromig to 01 simultanegusly I, W.e define the_ cluster network and the |mplementablllrty 0
by using the channels and local quantum operations at eatésnander the @ unitary operation over a quantum network. In Section 1V,
setting where classical communication is freely allowetivieen edges. we present a method to convert a given cluster network into
guantum circuits describing unitary operations that anelém

rEentabIe over the network. In Section V, we show that any

k-pair classical communication is possible over the Iqetwo[wo-qubit unitary operations is implementable over biitger
32::9 l:‘fg:ﬂggfséﬁleﬁévéor? CT'Zgns:er‘g?oﬁgsb%ug?ﬁgan grail networks. In Section VI, we investigate the caodit

9 . [71. r unitary operations to be implementable over a giventelus
classical network coding schemes and measurement-baﬁ

i tation has b ) tigated in [8]. H &fvork and show that our conversion method presented in
quantum computation has been investigated.Jn [8]. OWEVSaction IV gives all implementable unitary operations over
it has been an open problem to determine the possibil

f kopai i icati works wh thk e cluster networks with 2 and 3 input nodes. Since the
of k-pair quantum communication over networks Whereé &, yiiion for unitary operations presented in Section VI is
correspondingq-pair classical communication is impossible.

N k-oai i icati th out st tnot based on classical network coding schemes but based
| ? t;palr quantum -communication, the output stat, properties of quantum operations, it can be used for an-
output), ..,

. can be_ regarded as a state obt_amed by Ioedrl'yzing k-pair quantum communication over networks where
forming a k-qubit unitary operation/’ on the input state
|input>i1_

correspondingc-pair classical communication is impossible.

ik In Section VII, we investigate probabilistic implementati

(1) of unitary operations over the cluster network and show that
it is impossible to achieve-pair quantum communication

whereU is a permutation operation. We do not need to restrieten probabilistically over a square shaped four-node tguan

the k-qubit unitary operatio/ in Eq.(1) to be a permutation network, where correspondirigpair classical communication

operation, it can be a general quantum operation. This leadgs impossible. A conclusion is given in Section VIII.

the idea ofnetwork coding for quantum computatjorhich

aims to perform a quantum operation on a state given at

distinct input nodes and to faithfully transmit the resuitstate

to the distinct output nodes efficiently over the networkhet t A. Notations

same time. By computing and communicating simultaneously,The following notation will be used throughout this paper
guantum computation over the network may reduce commu- '

loutput), ., = U linput); .,

Il. PRELIMINARIES

nication resources in the distributed quantum computatiog The complex conjugate af.
scenario. The study of network coding for computation i sti o” The transpose of.
in its infancy for classical and quantum cases. Networkmgdi af The conjugate transpose of
for classical tation is considered in][10] and network! ") The set of linear operators
or f:assma computatl ! ’ I ) acting on the Hilbert spac®(.
coding for quantum computation over the butterfly network ist, The identity operator ofH 4.
considered in[[9], both in 2011. U(H) The set of unitary operators.
hi . . a hich i U, The set of unitary operators
In t is paper, we investigate eluster network which is locally unitarily equivalent to
a special class of network with input nodes and: output a two-qubit controlled unitary operation.
nodes, as a first step to apply network coding for morg~® The trace of a linear operator.
. . L(Ha:HpB) The set of linear operators.
general quantum computation. The cluster network contains L:Ha— Hp.

the grail network as its special case. We focus on the setting(#4 : Hz) The set of isometry operators.

considered in[[5],[[6],[[7], where classical communication ~SCH# (%))  The Schmidt rank ofy) € Ha ® Hp.
; : é)P#A(M) The operator Schmidt rank of

freely allowed between any two nodes. We identify the class™ "B M € L(Ha ® Hp)

of unitary operations that can be implemented over clustekc#@) The Kraus-Cirac number of

networks in this setting by investigating transformatiafs a two qubit unitary operator.

cluster networks into quantum circuits implementable bypais



B. The Schmidt decomposition and rank whereu, u’, w andw’ are single-qubit unitary operations and

For any vectorly) 45 in a Hilbert spacei{4 ® Hp, there X, Y f_;de are the Pau_li operators a? andz,y,z € R.
exist a set of orthonormal vectof$i) 4 € H.}; and a set of 1N particular, the two-qubit global unitary paiioa (. y, )
orthonormal vectorg|i)s € Hp}; such that of U is defined by

[W)ag =D Ailiali)s, @ Ugtoba (¢, 9, 2) = ¢ ("X @XTyY @Y H2007), (6)

where {);}; are non-negative real numbers referred to 3g Eq. (8), the parameters,y,z in 0 < z < /2 (or 0 <
Schmidt coefficientsThe decomposition of a vectdt))ap . < /4 if,z =0),0<y< 1}11;1{:5 7r/2_— z} and0 < z <_y
given in the form of Eq.[(2) is referred to asSehmidt de- ¢oyer 4l two-qubit global unitary operations up to the loca
compositiorof ) 4g. Each Schmidt coefficient is equivalenyitarily equivalence (the Weyl chambér [13]).

to the square root of an eigenvalue of the reduced densnyl_h Ci b f bi . .
operatorps onH.a of [) s given by 'he Kraus- irac number of a two-qubit unitary operation
U is defined as the number of non-zero parameieng, =
pa =trg (JV){¥]aB), (3) in Ugobar(7,y,2) and is denoted by KO#) in this paper.
KC#(U) characterizes nonlocal properties (globalnessyof

wheretrp(X) = >, (b X[bi) 5 is a partial trace ofX' €  [12]. The following is the list of classifications of two-gjtib
L(Ha ® Hp) and{|b;)s € Hp} is an orthonormal basis. ypjtary operations:

The Schmidt decomposition is uniquely determined up to . _ _
arbitrary choices of the orthonormal vectors in the subspac * U Wwith KC#({U) = 0 is a product of local unitary

corresponding to degenerate Schmidt coefficients. operations and SatiSf_ieSP@g(U) =1 _

The number of non-zero coefficier{s\; > 0}|is called as ~ * U With KC#(U) = 1 is locally unitarily equivalent to a
the Schmidt rankof [¢) 45 . The Schmidt rank ofy) 4 is controlled unitary operation and satisfies#g}(U) = 2.
denoted by SH#A(|¥) 45) = [{\ > 0}] in this paper. Fora * U Wlth.KC#(U) =2is Ioc_aIIy _unltarlly eql_uvalent to
vector 1) apc in a multiple Hilbert spacé{s @ Hp @ He, a special class of two-qubit unitary operations called a

the Schmidt decomposition df)) 45 in terms of a bipartite matchgate[[15],[16][17] and satisfiesP@; (U) = 4
devision between the Hilbert spacks, @ H 5 andH¢ can be e« The rest of two-qubit unitary operations inclu_dir_ag
similarly defined by introducing a set of orthonormal vestior SWAP operationhave KC#U) = 3 and satisfies
each devision and the corresponding Schmidt rank)dfi s Op#g(U) =4.

is denoted by 8H#AZ (|¢) apc).

C. The operator Schmidt decomposition and rank I1l. CLUSTER NETWORKS

The operator Schmidt decompositi@an be applied to any
linear operators acting on a Hilbert spae, ® . The set ~ We denote the Hilbert space of a set of qubits specified by
of linear operatord.(Hx) forms a Hilbert space with respecta setQ by Hg and the Hilbert space corresponding to a qubit
to the inner productM, N) = g=t—tr(MTN). Thus we Q specified by an index by #q, = C*. In our setting
can apply the Schmidt decomposition to operators, such thgiere quantum communications are restricted but classical
for any linear operatod € L(H 4 ®H ), there exists a set of Communications are unrestricted, quantum communication o
orthonormal operator§P; € L(H4)}; and {Q; € L(Hp)}; @ qubit state between two nodes is replaced by quantum
satisfying teleportation[[18] between two nodes. Since any directibn o
M= Z NP @ Q;, (4) classical communications is allowed, quantum commurgaati
p of a single qubit state can be achieved by sharing a maximally

. entangled two-qubit state between the nodes and the directi
where {\;} are non-negative real numbers referred to & 9 d

) o o Of quantum communication is not limited. Thus quantum
operator Schmidt coefficienfig6] of M. The decomposition of d 9

. ) ) . network coding is equivalent to perforlacal operations(at
a linear operatof/ given in the form of Eq.[(4) is referred to ' o .
as theoperator Schmidt decompositiaf M. The number of each nodesand classical communicaticft OCC) assisted by

" : theresource stat¢hat consists of a set of maximally entangled
non-zero coefficient§{A\; > 0}| is referred to as theperator y g

. A
Schmidt rankof M. In this paper, we denote the operatohvé?_qublttitateséthe Bell pa|tr$3> b> _d7§(|00>+|11>) shared
Schmidt rank ofM by Op#4(M). wegn g nodes (?onne(? ed by e g.es. i
We investigate which unitary operations are implementable
) N by LOCC assisted by the resource state for a given network
D. The Kraus-Cirac decomposition and rank where nodes are represented by a two-dimensional lattiee. W
A general two-qubit unitary operatioli € U(H4 ® Hp) consider that a node represented«y is on the coordinate
whereH 4, = Hp = C? can be decomposed into a canonicalf the two-dimensional latticé, j) and edges connect nearest
form called the Kraus-Cirac decomposition introduced if[1 neighbor nodes. We call these netwodksster networksWe
[12], [13] given by first give a formal definition of a cluster network.

U= (u@u)e@XX+yYOY+2202) (1, '), (5) Definition 1. A networkG = {V,&,Z, 0} is a (k, N)-cluster



network if and only fif, i) V11 Vs (O

V = {Ui,j;lgigk,lngN}
T = {vi;1<i<k} V.1 Vs Vo3
O = {un;1<i<k}
& SUK @) Us.1 Us. Us.s
where .
... 1nput output
S={(vijivis1,); 1<i<k=1,1<j <N}, W qubit qubit
K={(ijvijs1); 1<i<k1<j<N-1)}, (8) Hne o Hrl Hiele, o iy 7{1{53-,:- Ho,
k> 1and N > 1. V represents the set of all nodes,and Hs!, Hsl, Hsl,
O representk input nodes and: output nodes, respectively.
£ represents the set of all edges afSdand K represent the ‘ 2
. . . 2 9 2
sets of vertical and horizontal edges, respectively. HSZ.I Hss, 5‘2‘,3
) ) H ... 1 2@ .Q + _ C.

Next we define the resource state corresponding to the B8t M K g Hris HK;*_{ ’l‘. Ho,
(k, N)-cluster network. We introduce qubi ; at nodev; Hsi Hsi, Sz
andSz%rLj at nodev;; ; to represent a Bell pair correspond- §
ing to an edge(v; ;,vi+1,;) € S. Similarly, we introduce 2 ‘ o
qubits specified byK}, at nodewv;; and K7?;,, at node -5 7;[532 ij
v; j+1 to represent a Bell pair corresponding to an edge Hue sHi, Hre e Hi, Hrz® = Ho,
(vij,vij+1) € K. We denote the set of all qubits in the b

— 1 2 - :
resource state bR = {S;;, 57,1 <i<k-1,1<j< ‘ o < - Bell pair

NYU{K}; K?;,,]1 <i<k,1<j<N-—1}. The resource

state|®)x corresponding to a cluster network is defined by
the following. Fig. 3. i) The (3,3)-cluster network with the input node¥ =
{v1,1,v2,1,v3,1}, output node®) = {v1 3,v2,3,v3,3} and3 repeater nodes

Definition 2. For a given(k, N)-cluster network, the resource {v1,2,v2,2,v3,2}, and ii) the corresponding resource state. Note that the
state|<I>>R € Hr is defined by resource states of the cluster networks are different frioenduster states

used in measurement-based quantum computdtion [19].

k—
P)r = @i ®)L 2% )51 s

R, N O ) g g2 (9) qubitsZo = {1 < i < k} and a set of output qubits
d_(’)Q = {0;]1 < i < k} for a (k, N)-cluster network. Note
that each input and output node has only one input or output
ggi)it since we concentrate on the implementability of aangit
e

For example, thé3, 3)-cluster network and the correspon
ing resource state are shown in Higj. 3. Note that the resou
state fo'f a cluster network represented by ﬂ (9) is relat ration, and the state of output qubits is initially seb&
to but different from the cluster states used in measureme 0) € H
based quantum computation [19]. While we can convert the O
resource state for a cluster network into a cluster state Bgfinition 3. For a (k, N)-cluster network specified by =
applying a projective measurement on all qubits at ea¢l’,£,Z, O}, a unitary operationU € U(Hz, : Ho,) is
node, a cluster state cannot be converted to the resoudeterministically implementable over the network if andyon
state for the corresponding cluster network by LOCC. Thethere exists a LOCC map such that for any pure state
resource states for a cluster network is also closely mlate |¢) € Hz,,

a valence bond solid stale [20] introduced in condensecematt

physics through the projected entangled pair states (P2RB) L([9) (0] @ |@)(@[R) = Ule)([UT, (10)

representation for the valence bond solid states. The resou here LOCC ists of local fi h nod

states for cluster networks are equivalent to a special prew ere LY map consists ot focal operafions on each node
o . . and classical communications atd(#z, : Ho,,) is the set

resource states consisting of Bell pairs used for reprmgantof unitary operations frontz, to Ho ¢ ¢

2D (square lattice) PEPS. PEPS can be represented as states Q e

probabilistically obtainable by independently performia Note that the main difference between this network com-

linear transformation on each node on a resource state.pltation model for implementing a unitary operation over

contrast, conditional operations at each node depending amrluster network and standard measurement-based quantum

the outcomes of measurements in other nodes are performethputation is that any operations inside each node are

in our network coding scheme for quantum computation. allowed including adding arbitrary ancilla states in thiedeal

Finally we define the implementability of a unitary operwhereas only projective measurements on the cluster state i
ation over ak-pair network. In addition to resource qubiteach node are allowed in measurement-based quantum com-
R, we introduce input qubitd; at the input nodey; ; € Z, putation. Thus the full set of implementable unitary opierat
output qubitsO; at the output node; y € O, a set of input over a ¢, N)-cluster network is larger than or equal to a set



of operations implementable by measurement-based quantum target qubit we denote a two-qubit controlled unitary
computation using the corresponding cluster states ctater operation simply byC;.,,. In particular, ifu'”) =1, and

from the resource state for the:,(V)-cluster network by ud = X, Cln({u'”}aeo.1) is called as a controlled-
LOCC. NOT operation.
o A three-qubit fully controlled unitary operation: In addi-
IV. CONVERSION OF A CLUSTER NETWORK INTO tion to the two-qubit control unitary operations, we can
QUANTUM CIRCUITS perform three-qubit fully controlled unitary operations
We propose a method to convert(&, N)-cluster network defined by

into quantum circuits representing a class of unitary djmra L
implementable by LOCC assisted by the resource state corre-
spgnding to a gizen cluster networlz By using the converted Camin ({4 Ya,p=0,1) = ZZ |ab) (ablim @ ui™), (12)
circuit, it is easier to construct a network coding protcasiote a=0b=0
a set of implementable unitary operations are represented b
a set of parameters of the converted circuit instead of a com-
plicated LOCC protocol. The class of implementable unitary
operations represented by the converted circuit is a sulfset
that over the cluster network in general since this paricul
conversion method does not guarantee to give all possible
constructions. However, in some cases, the constructioaen g
by the conversion methods cover all possible implementable
unitary operations as will be shown in Section V.

We define a set of vertically aligned nodgg := {v; ;}F_,
and a set of vertically aligned edg8s := {(v; j, vit1,;)}=)!
wherel < j < N. We also define a set of horizontally aligned  hecify the target single qubit operations. On the other
nodesV" := {v;;};, and a set of horizontally aligned edges  pang ‘any four-qubit fully controlled unitary, where three
Ki:= {(vi,j,vi,j+1)} =, wherel < i < k. We consider that of the four qubits are control qubits and the rest of the
the Bell pairs given for a set of vertically aligned edg®s qubit is a target qubit, is not implementable on qubits
are used for implementing global unitary operations betwee  that are all in different nodes o in a (k, N)-cluster

nodes whereas each Bell pair given for a set of horizontal network, if a single Bell pair is given for each edge in
aligned edges(; is used for teleporting a qubit state from S

nodew; ; to nodevi ;1. _ _ _« A single qubit unitary operation: Obviously any single
We show that three types of unitary operations, a two-qubit it unitary operations can be implemented on any qubit.
controlled unitary operation, a three-qubit fully conteol

unitary operation and a single qubit unitary operation, areNOt€ that a general three-qubit fully controlied unitary
implementable between the noded/ihif only one Bell pair is operation is not implementable by using a sequence of two
given for each edge and LOCC between the nodes is allow&40-qubit controlled unitary operations that is implenzie
Details of a LOCC protocol implementing three-qubit fully?Y using vertically aligned Bell pairs in general. This icaties
controlled unitary operations are given in the next subsect that the use of three-qubit fully controlled unitary opeyas
A LOCC protocol implementing two-qubit controlled unitaryeMhances the implementability of converted circuits. Aeéar
operations has been proposed byl [22] and also obtained_cﬂip't fully controlleq unitary operation plays an essdriide
simply applying the protocol implementing three-qubithjul N Our qetwork coding !orotocol over the butterfly network as
controlled unitary operations, as the two-qubit contrdtany ~ SNOWN in the next section.
operations are special cases of three-qubit fully corgdoll
unitary operations.

« A two-qubit controlled unitary operation: A two-qubitA- A LOCC protocol for implementing three-qubit fully con-

controlled unitary operation is defined by trolled unitary operations

wherel and m represent the vertical coordinates of the
nodesy; ; andw,, ; of two control qubits, respectively,
andn represents the vertical coordinates of the nogle

of a target qubit, and%‘lb)(a, b=0,1) represents single
qubit operations on the target qubit. (See the next subsec-
tion for details of the LOCC protocol implementing three-
qubit fully controlled unitary operations.) Note that the
indicesl, n andm should be taken such thak n < m

or m < n < [. Similarly to the case of a two-qubit
controlled unitary operation, we denote a three-qubiyfull
controlled unitary operation b¢; ..., when we do not

1 We show a construction of a protocol to implement a
Cron({u{? }az0,1) 1= Z |a)(al; @ u{®, (11) three-qubit fully controlled unitary operatiaf .., on qubits
a=0 located at a set of vertically aligned nodég over the(k, N)-
wherel represents the vertical coordinate of the node cluster networks, whereandm represent two control qubits
of a control qubit and: represents the vertical coordinateat nodesy; ; andv,, ; respectively, anch represents a target
of the nodev,, ; of a target qubit, andﬁ{l)(a = 0,1) qubitat nodev, ;. We present a LOCC protocol to implement
are single qubit unitary operations on the target qubiti .., assisted by the resource states consisting of the Bell
If n # [ 4 1, all Bell pairs represented by edgegairs corresponding to the vertical edg€s of the (k, N)-
between! andn are consumed to implement the two<luster networks.
qubit controlled unitary operation. When we do not We consider to implemend; ,,., on a state of three qubits
specify the single qubit unitary operatio{reﬁf’)} on the indexed by@;, @, and @, at nodev;;, v, ; and v, ;,



respectively, and its explicit form is given by
Z

Cromen({ue}) 1= 35 [ab(ablim @ ul®  (13) S o

fany
A\

a=0 b=0 T

where{|ab)}, 10,1} is the two-qubit computational basis of Clomn

Haq,

To show how our LOCC protocol works, we consider an Lrl

arbitrary state of the control qubits By, Auy|ab), € Heo, ® @_D
He,. where{\.;} is a set of arbitrary complex coefficients T
satisfying the normalization conditioEa,b |Aap|? = 1 and we

represent an arbitrary state of the target qubifdyec #o, . 0) —p

(ad)

Ho, ® Hq,, of the two controlled qubits and,, ™ acts on ’J_‘ @’D """

of the target qubit. Un,j

In the following, we show that our protocol transforms the @7
joint state of controlled qubits and a target qubit to '

Cl,m;n Z )\ablab>lm|¢>n = Z )\ab|ab>lmu£7,ab) |¢>n

Fig. 4. A quantum circuit representation of the LOCC protasgplementing

a,b a,b a three-qubit fully unitary operatio; ,,.,, where the qubits in the first

The protocol for implementing three qubit fully controlledshaded region are at the nodg;, those in the second shaded region are at

: : : : s . the nodev,,,; and those in the third shaded region are at the negdg. The
unitary operatlons _(Se_e FI 4) IS speC|f|ed ag follows: protocol consists of entangling ancillary qubigs: and@,,,, at the nodes; ;
1) Ancillary qubits indexed by);/, @,,, are introduced at andv,, ;, respectively, by performing controlled-NOT operationea; and

2)

3)

4)

nodesy; j andv,, j respectively. Set both of the anci”aryvm,j, teleporting ancillary qub_lt states from the nodg,si andv,, ; to th_e

. - L0 nodew,, ; represented by qubit®;, andQ,, by applying a teleportation
qub!ts to be 'n|0>-. Each of the two states of Pontmlprotocol denoted by, applyingC; .., on controlled qubit€);» andQ,,,
qubits Q; and Q,,, is transformed to a two-qubit Stateand a target qubi@,, at the nodey,, ;, performing Hadamard operations and
by applying a controlled-NOT operation on the contrgneasurements in the computational basis@m and @y, at nodevy, ;

. . . nd finally applying conditional operations depending on the measurement
qu|t .and the anC|IIary qu|t at .the same node, nam tcome on two control qubit®;, Q.. at nodesv; ; andwvy, ;, respectively.
applying controlled-NOT operations @p; and @, and

also@,, and@,, . Then the joint state of five qubitg;,

Qv, Qm, Qm: andQ,, is given by ),
> Xa|ab) im|ab)rm |$)n. (14) - A.
a,b >

By consuming the Bell pairs corresponding to the ver- s ulh) H—

tical edgesS; betweeny; ; andv, ; and also between
Um,; andu,, ;, perform quantum teleportation to transmit_

; ) Fig. 5. A quantum circuit representation of the quantunpiettation protocol
the states of quthl, and Qm- from nOdeSw’J and T, where U(F) represents the measurement projected in the Bell basis

Upm,; 10 vy ;. A circuit representation of the protocol(he Bell measurement]|[¥ ()} = {(u® @ D)|®+)} and {u®)} =
of quantum teleportation represented Byin Fig.[4 is {I,Z,X,ZX} is a set of operations to be applied conditional on the

; ; o ; easurement outcome specifiedyNote that in case of # [+ 1, we have
given by FIg]}. We denote indices of two quItS at nooié; repeat the teleportation protocol to transmit a quanttate sbetween the
vp,; representing the teleported states fr@mandQ,.x  nodes via the neighboring nodes. Thus all the Bell pairsesponding to the

by Q- and Qs respectively_ vertical edges betweehandn are consumed for performing teleportation.

At nodev, ;, performC; ..., ONHq,, ®Hqg, , @Hq, -
Then we obtain the state given by ) )
Therefore,C; .., is successfully applied on the control
> Xavlab)im |ab)i ol | G)n. (15) qubits at nodes; ; andwv,,; and the target qubit at node
a,b vn,; by LOCC assisted by the Bell pairs corresponding to the

At nodew, ;, we apply the Hadamard operations andertical edgesS; between nodes; ; andw, ;.

perform projective measurements in the computational

basis on bothH_Ql,, and Hq, ,. The measurement g A ~onversion protocol

outcomes of qubits);» andQ,,,» are sent to nodeg ; ]

andv,, ;, respectively, by classical communication. At We present a protocol to convert a givéh, N)-cluster
each of nodes, ; andu,, ;, if the measurement outcomen€twork into quantum circuits. First (step 1 to step 3), we
is 0, do nothing, and if the outcome i performz Construct quantum circuits of unitary operations that ane i
for a correction on qubi@; or Q,,. By straightforward plementable on qubits in a set of vertically aligned nou¢s
calculation, we obtain the state of three quisits Q. by LOCC assisted by the Bell pairs given for a set of verticall

andQ,, at nodesy ;,v,,; anduv, ;, respectively, given aligned edgesS; for a certainj. Then (step 4), we repeat the
by - i i procedure given by the first part (step 1 to step 3) for difiere

3 Naslab) i | 9),- (1) JOfl=j=N. .
T The conversion protocol is specified as follows:



segments corresponds to a set of qubits at vertically 3 1 1
aligned nodes’;.

2) Symbols representing two-qubit controlled unitary eper
ationsC;.,, or three-qubit fully controlled unitary opera- ﬂ} {‘}F—G o
tions Cy. ., are added on the horizontal wire segments ‘ il s !

according to the following rules.

1) Drawk horizontal wire segments where each of the wirei) { |- i) iif) ’J_‘ iv) T+
1
L]

3 1 1 1 3

. _Fig. 6. i) A symbol representing’s;: . i) A symbol representing’y 4;3. iii)
« To representC;,,, draw a black dot representingan example of circuits generated in step 2 of the conversimtopol. The
a control qubit on thel-th wire, draw a vertical index in the upper region is 1, that of index in the middle cegis 1 and

; that of index in the lower region is 4. iv) This conversion @slfidden since
segment from the dot to the-th wire segment and there is a target unitary operation inserted between tweklilats representing

draw a box representing a target unitary operatiifantrolled qubits.
on then-th wire segment at the end of the vertical

segment. Write index at the side of the vertical i) Cq Cis
segment between the horizontal wire segments. An -
example is shown in Fid] 6 i). 2 |
« To representC; ,,,.,, draw two black dots repre- {
senting control qubits on théth and m-th wire WV W 7

segments, draw vertical segments from each dot
to the n-th wire and draw a box representing an
arbitrary target unitary operation on theth wire
segment at the end of the vertical segment. Write
indices! andm at the sides of the vertical segment
between the horizontal wire segments. An example
is shown in Fig[®b ii)

« Multiple gates ofC}.,, or Cj,,.,, can be added as
long as there are only one type of index appearing
between the horizontal wire segments and no target
unitary operation represented by a box is inserted
between two black dots on a horizontal wire seg-
ment. An example of possible circuits generated in
this protocol is shown in Fid.16 iii). We also give
an example of circuits that do not follow the rule in v vy
Fig.[d iv).

3) Arbitrary single qubit unitary operations representgd krig. 7. Arbitrary single qubit unitary operations are regamated by boxes. i)
boxes are inserted between before and after the Sequeﬁt@xample of converted quantum circuits from tfie 3)-cluster network.

. It is obtained by connecting three segments of circuits gaeé in step
of Cy,, and Cj ..., (but not during the sequence) Ob'l to step 3 of the protocol corresponding ¥, V¥ and V3. It consists

Lo E
%HDH%"

tained by step 2. of two-qubit controlled unitary operations defined i8},,, = [0)(0], ®
4) Repeat step 1 to step 3 for eacks j < N and connect «{” + [0)(0]; @ u'”, where denotes the wire segment of the control
all the i-th horizontal wire segments. qubit and u,(f) are arbitrary single qubit unitary operations on theh

qubit. ii) An example of converted quantum circuits from tf8 2)-cluster
) ] ) network. It consists of three-qubit fully controlled umiteoperations defined
In Appendix A, we shov_v th_at a unitary operation reprepy ¢, ,,.,, = 100) (0011 1m © 0?4 [01)(0L]1.m ® w®V + [10)(10]; e ®
sented by the quantum circuit obtained by step 1 to steff® + 1) (11, ® ult), wherel, m denotes the wire segments of the
3 of the conversion protocol is implementable in a set @bntrol qubits and.'?) are arbitrary single qubit unitary operations on the
vertically aligned noded’v name|y it is implementable by th qubit. iii) Another example of converted quantum cirsuitbtainable from
. J’ 2! . the (3, 2)-cluster network.
LOCC assisted byk — 1) Bell pairs corresponding to a set

of vertically aligned edges;. As examples, quantum circuits

converted from the2, 3)-cluster and(3, 2)-cluster networks v/ | MPLEMENTABILITY OF UNITARY OPERATIONS OVER
are shown in Figl17. THE BUTTERFLY AND GRAIL NETWORKS

Our conversion method generates infinitely many quantumFor classical network coding, it has been shown that there
circuits in general. However for special cluster netwogtan- exists a network coding protocol oveRgair network, which
dard forms of quantum circuits can be obtained. In Appendhas two input nodes and two output nodes, if and only if
B, we show that any converted circuit obtained frorfa3)- the network has at least one of the butterfly, grail or idgntit
cluster network can be simulated by the circuit presented imduced substructures [23], [24]. Thus any classical ngtwo
Fig.[@ i), and any converted circuit obtained from(&2)- coding protocol over &-pair network can be reduced into
cluster network can be simulated by the circuit presented ancombination of protocols over the butterfly, grail or iden-
Fig[4 ii). tity networks, and these networks are fundamental primitiv



input LOCC quiput  in the form of Eq.[(B) is deterministically implementablesov

Er . dubit o v s I qubit the (3, 2)-cluster network where input states are given at nodes
b B T 5 v11 andvs ; and output states are obtained at nodes and
B\ /EG g v3 2, since the topology of the butterfly network is the same
S 5 . ol as that of the(3, 2)-cluster network.
P ) P10 @ o : We construct a protocol implementing two-qubit unitary
5/ \\57 Ugiobai (%, y, 2) by setting a fixed input state at node; and
J/ arbitrary two-qubit input state at nodes; and vs;; as a
@/ Es ,f@ BT CF Ee three-qubit input state at input nod&s= {vy 1,v2,1,v31},

and implementing a three-qubit unitary operation denotged b
Fio 8 The nod s of the butterf . Us over the(3, 2)-cluster network followed by an LOCC map

1g. o. e nodesy, i2, 01, 02, n1 andnsy of the butterfly network corre- o
spond to the nodes: 1, v3,1, v1,2, v3,2, v2,1 andwa 2 of a (3,2)-cluster denoted by perfqrmed at OUtPUt Node® = {v1,5,v2,2,03,2}-
network each other. Thewo-qubit unitary operationUg.»qi(z,y,2) = Recall that a unitary operation represented by the quantum
clzX@X+yY@Y+2207) js implementable over 43,2)-cluster network circuit shown in Fig[¥ ii) is implementable over ti{8, 2)-

by fixing an input state at the node 1 at |0), performing an appropriate a ; _ ;
three-qubitunitary operationUz and performing an appropriate LOCC ma| cluster network. That is, two three-qubit fully controlled

I' consisting of a measurement on the qubit at the output nedeand the ~ UNitary operations’; ;.o are implementable, one at nodés
conditional operations on the other output nodes andvs,2 depending on and another at node®. The following protocol shows that

the measurement outcome. by choosing appropriate parameters for one of the threé-qub
fully controlled unitary operations and one of single-qubt

networks for classical network coding. As a first step 62l unitary operations ifVs, we canimplement/iopa (z,y, 2)
investigate the implementability of quantum computatiearo With arbitraryz, y, z. _

general2-pair quantum networks, we investigate the imple- The protocol for implementing/giosai (2, y, 2):

mentability of two-qubit unitary operations over the butie 1) An arbitrary two-qubit input statg is given for qubits
and grail networks in this section by using the method for  at input nodes; ; andwvs; and a fixed input staté)

converting a(k, N)-cluster network into quantum networks is prepared for the qubit at nods ;.
introduced in the previous section. 2) ImplementU; of which the quantum circuit representa-
We consider a two-qubit unitary operati@n given in the tion is given by the left shaded part of F[g. 9 over the
form of the Kraus-Cirac decomposition represented by [Hg. (5 (3,2)-cluster network.
Since it is trivial that the single-qubit unitary operatianand a) All single-qubit unitary operations appearing in the
v’ are implementable at the input nodes andand v’ are circuit representation df’; are trivially performed
implementable at the output nodes, we just need to analyze at each node.
the implementability of the two-qubit global unitary part b) The first fully controlled unitary operation im-
Ugiobat (7, y, z) given by Eq. [(B) over the butterfly and grail plemented at input nodes using the Bell pairs
networks. Owing to the implementability of a three-qubityfu represented by vertical edgeS; is given by
controlled unitary operation over the butterfly network, we Crao({ul™ }apeo1) where ul?® = o'V =1
have discovered a protocol for implementitig;opq:(x, v, 2) andu*Y = (19 — 7.
for arbitrary =, y, z as presented in the constructive proof of c) To transmit a qubit state from input nodes,
the following Theorem. to output nodewv;, for i = 1,2,3, quantum
Theorem 1. Any two-qubit unitary operation is deterministi- teleportation is performed for eachby using the
cally implementable over the butterfly network. Bell pair represented by a horizontal edgefin.
d) The second fully controlled unitary operation im-
Proof. For the implementability ofUiopai(,y,2) over the plemented at output nodéscontains parameteis
butterfly network represented by the left hand side of andz and is given by 3'2({%(;117)}@ »—0.1) Where
Fig. [8, we consider a(3,2)-cluster network represented o o
by the right hand side of Fig]8 by assigning the nodes w® = w = ' E=9|0)(0] — ie'ETV|1)(1],
{i1,m1,12,01,n2,02} of the butterfly network to the nodes w7(101) — w;m) - e—i(z—y>|o><0| — ie—i(Z+y)|1><1|_
{Ul,la V2,1, V3,1, ’U172,U2,2,U3,2} of the (3, 2)—C|uster network, . . (ab)
respectively. In this assignment, the correspondence ef th e) After implementing C7 55({wn " }ap=01), @
edges of the butterfly network and the horizontal and vdrtica single-qubit unitary operation parameterized by
sets of edge&;, Sy, Se of the (3,2)-cluster network is given given by
{E17E5,E3} < ICl, \/§ ¢ te
(B2, By} < Sy, is performed at nodey» € O.
(Ee,E:}, < o 17) 3) Perform an LO_CC_ map' at output r_lodgaﬁ of wh|ch_
the quantum circuit representation is given by the right
Thus any two-qubit unitary operation is deterministicatty- shaded part of Fig[19. The map consists of the

plementable over the butterfly network if abyopa(x, v, 2) following three steps.



By

I
@ 1 @—@ 1 @
|0>{}{]— u(x) The grail network ' : "B o,
—a e i H x o= x|

V1 V12 V13

The (2,3)-cluster
Fig. 9. A quantum circuit representation of a three-qubiitary operation network PO Voo YU
Us (the left shaded part) and an LOCC mEgthe right shaded part) used in
a protocol for implementing a two-qubit unitary operatifg;opq;(z, y, 2) =
el(@XO®X+yY®Y +22®7Z) on the first and third qubits. The input state of theFig. 10. The nodes, na, o1, 32, ns andny of the grail network correspond
second qubit is fixed if0). The single-qubit unitary operations representedo the nodes 1, v1,2, v1,3, v2,1, v2,2 andwvg 3 of a (2, 3)-cluster network,
by boxes labelled by and X are given byH = (|0)(0|+ |0)(1]|+]1)(0] —  respectively. The set of all unitary operations implemeletaover the(2, 3)-
[1)(1])/v2, u(z) = H(e**]0)(0] —ie~*[1)(1]) and X = [0)(1| + |1)(0|, cluster network is also implementable over the grail nekwsince we can use
respectively. The target single-qubit unitary operatimfsthe first three- the edgesE; and E- for just teleporting qubits and the rest of the network
qubit fully controlled unitary Opel‘atiOI'CLS;Q({u%ab)}a’b:()’l) are given for_ms the(2, 3)-cluster network, with which any two-qubit unitary opecati
by ul® = uf! = 1Tandul’? = u!” = z. The target single-qubit ' implementable.
unitary operations of the second three-qubit fully comélunitary operation
CY 0 ({wl™ Ya,p=0,1) are given byw” = wil) = eil==|0) (0] - _ _ . .
it 1)(1] and w® = Wi = e=i==W)|0)(0] — et =F|1)(1]. controlled unitary operations which are implementable by
The half circle symbol represents a projective measurenterthe com- UsSing a Bell pair for each. This is the reason why direct
putational basig{|k)(k|},—0,1. The single-qubit unitary operations (boxes)implementability of a three-qubit fully controlled unitaoper-

connected to the measurement symbol by dotted lines reyireseditional . . . . . .
unitary operations performed only if the measurement tésil = 1 and do ation by just consuming two vertical Bell pairs correspomgli
nothing (or perfornl) if k = 0. to Es and E7; is the key for proving implementability of
Ugiobai (%, y, z) over the butterfly network.
o For the implementability olUy;opa:(, y, 2) Over the grail
a) Perform a projective measurement on  thgetwork, we consider &2, 3)-cluster network by assigning
qubit at nodewy, in the computational basis e nodes{n,, ny, 01,42,m3,n4} of the grail network to the
{10) <0_|7 [1)(1[}. ) nodes{vy 1,v1,2,v1,3, V2.1, V22,02 3} Of the (2, 3)-cluster net-
b) Classically communicate the measurement Uk, respectively (FiglZ10). Thé2, 3)-cluster network can
comek € {0,1} from nodewv; 5 to v 2 and also e converted to a quantum circuit containing three coredbll
10 v3 2. N ] NOT operations and arbitrary single unitary operations éne
¢) If k = 1, perform a conditional operatioX’ on jnserted between the controlled-NOT operations. It is show
output qubits at nodes;,» andws,2, otherwise do hat any two-qubit unitary operatiori,;o (z, y, z) can be
nothing. decomposed by three controlled-NOT gates and single ynitar
This protocol maps any input stategiven at input nodes operations inserted between the controlled-NOT operstion
v1,1 andwvs; to [25]. Thus any two-qubit unitary operation is determirtiatly

implementable over the grail network.
Ugtobat (@, 4, 2)pU oo (2,9, 2) = T(Us(p @ [0) (O)UF) (19) "MP g

at output nodes, , and vz, where|0) represents the fixed VI. THE SET OF ALL IMPLEMENTABLE UNITARY
input state at nodes; ;. See Appendix D for details of OPERATIONS FORk = 2,3
calculations. It is straightforward to translate the pooio

over the (3,2)-cluster network to a protocol to implement In t?_'s setctlgn,_welderlvet tgle cond|t|0n_ fdarqulb|ttun|tarty K
Ugiobai (%, y, z) over the butterfly network by using the correOPEralions 1o be implementable over a given cluster networ

spondence of vertices and edges. THig b1 (2., z) is de- We show that our conversion method presented in Section Il

terministically implementable over the butterfly networkd gives all implementable unitary operations over (e.N)-
cluster network fork = 2, 3.

In the implementation protocol @f ;b4 (2, y, 2) presented
in the above proof, the first-three qubit fully controlled-op
eration C’Lg;z({u%‘lb)}a,b:Ql) whereu!’” = 44V = T and
u?V = u{l” = Z can be decomposed into a sequen
of two controlled-Z operationg’»({u)” = I,ul” = 2})
and Cs = ({ul?) = Lul" = Z}). This sequence of two- UM =vMvM v (20)
controlled Z operation can be implementable by consumin . . .
two Bell pairs Eorresponding to thg edgks and E:/. On the \A9r1ere eactl;" is a 2" by 2° unitary matrix such that
other hand, the second three-qubit full;/ controlled openat 1

() Yo pmo) wherew?” = !V = eievjo)0] - VM = 30 >0
ie!*t¥)|1)(1] and w? = WY = e~ ==v)10) (0] — @1=0a2=0
ie~"=*¥)|1)(1] cannotbe decomposed into two two-qubit ®- @B @ B, (21)

Theorem 2. If i) a k-qubit unitary operationU is deter-
ministically implementable over thé, N)-cluster network
k > 2,N > 1), then ii) the matrix representation df in
$&rms of the computational badis™ can be decomposed into

1 1
Y B e B o p

ar—1=0



WhereEf?’") and El(zn) are 2 by 2 complex matrices.

To prove Theorem 2, we first prove Lemina 1 about a class
of bipartite separable mapshat preserves entanglement. A
bipartite separable mdp.,, is a completely positive and trace
preserving (CPTP) map whose Kraus operators are product as

follows:

Taep(per) = _(Ex ® Fr)ppr(Er © Fr)',
k

(22)

where) ", (Ey ® Fu) (B @ Fy,) = Ig @ Ir. Since quantum
network coding is equivalent to perform LOCC assisted by

10
By using Eq.[[2b) and Eq[(27), we obtain

tr <Z B EY o FYTRY )
k

tr Z E%TE%(@F;HF% +e€

ke{klpi#0}
= Y. mtr (E{Q“E,y ® (E,Q“E,y)—l) +e=d?
ke {klpx£0}
SN (E,i”TE,iW ® (E,i\“E}CW)*l) =d? -,
ke{k|pr#0}

(28)

the resource state in our setting, we have to analyze multi- Mt s Mt s
partite LOCC. However, the analysis of multipartite LOCavhere e = tr (Zke{klmzo} B ES @ FF, ) > 0.

is extremely difficult. Thus, we analyze multipartite segide

maps, which are much easier to analyze than LOCC due{tjss);C > 0i =

We let P, = EYTEM be ad by d positive matrix and
0,1,---,d — 1} be the set of eigenvalues

their simple structure. Note that a set of separable mapsoilspk' Then the eigenvalues quliWTEéW)_l _ P];1 are

exactly larger than that of LOCC [27].

Let Vi) = J530[40B) and |Tou) =
2= 3200 lai)|bi), where {|A;) € Ha} and {|B;) € Hz}
are orthonormal sets anfla;) € H,} and {|b;) € H;} are
orthonormal bases. Note thatm(#,) = dim(H;) = d but
the dimensions ot 4 and# g can be higher thad, therefore
{]A4;)} and{|B;)} do not need to form bases.

Lemma 1. Let{Ey € L(Ha : Ho)}, {Fx € L(Hp : Hp)} be
sets of linear operators. fEy, ® F} satisfies

> ElEx® F[Fy =Iap
k

(23)

and for all k,

Ek ® Fk|\Ilzn> = \/p_k|\Ijout> (24)

is satisfied, then for alfk|py # 0},

Jay, > 0, UM e UCY), BM = aq UM, FM = @W,
(0%
(25)
where EM and FM are d by d matrices such thatE}); ; =
<CL1'|E]€|AJ‘>, (F]g{)i,j = <b1|Fk|Bj>, U(Cd) is the set ofd by

d unitary matrices and/™ is the complex conjugate &f .

Proof. By straightforward calculation, we obtain

vk, BY(RT =
= Vk € {klpx # 0}, FM =

VPila
VoR((BR)™HT, (26)
and

d_(ENTEY @ (RO)TFRY = L.
k

(27)

{1/X\i]i =0,1,--- ,d—1} and the condition Eq[(28) is given

by
d—1 ) d—1 1
> kaA;ZF:dQ—e (29)
ke{klpe#0} =0  j=0 "k
Using the Cauchy-Schwarz inequality, we obtain
d—1  d—1 d—1 d—1 2
i 1 [72 1
i=0  j=0 "k i=0 =0 k
d—1 \ 2
> ( 1) =d*. (30)
1=0

The equality holds if and only if\i = o2 > 0 for all 1.

By using Egs. [[29)E(30) and the fact thft,|pr # 0} is a
probability distribution, we obtain for alt € {k|py # 0},

Ja > 0; Py = EMTEM = 21y, (31)
O

Proof of Theorem 2Denote byHz, = ®% ,H; and
Ho, = ®k_ Ho, the Hilbert spaces of input qubits and
k output qubits, respectively. By introducing another dacjl
Hilbert spaceH; at the input nodes; ;, denote the Hilbert
space ofk qubits byHIb = ®f:17-[11;. A joint state ofk
copies of the Bell pairs ir{z, ® Hiy, is denoted by

1 . .
Iy := ﬁ Z |Z>IQ|Z>IQQ = ®f:1|q)+>li71{,

where D = dim(Hz,) = 2F. If U € U(Hz, : Ho,) is
deterministically implementable over(&, N)-cluster network
for k > 2 and N > 1, it is possible to applyy on |I) and to
transmit the resulting state to the output nodes. That e&gth
exists a LOCC map’ such that

S Tk, © 9)(@1) @ )l = W)U, @)
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where|®)x is the resource state of ttig, N)-cluster network Let
and|U) is defined by 1
Afy = Y falsy, @ B (43)

ai

U) = (U @D)[T) € Ho, @ Hay,. (34)

=l
o

By defining a map represented by the left hand side of

"o ol plaanm
Eq. [33) as (|0)(Blr) == & X, D) iz, @ [8)(Dlr) @ Al (alsy foalsz, @ By

I\)MH

i) (j|z,, whereT" is also a LOCC map if we assume two 41=0a2=0
qub|ts belonging tdH;, and#;, are in the same input node 2<i<k-1) (44)
for all 4. Since any LOCC maps are separable maps, there m ! plan)m 45
exists a separable mdj,,, satisfying k1l T ZO<“1|52,1 ® L (45)
a1 =
I, (12)(2|r) = |U)(U], ) where E™ € Lty + Hag), B € Litaer

if U is deterministically implementable over(a, N)-cluster 7-[[) and E,(Call)’m c L(’H,Kl 7—[,2). Thus, Vl{‘fn can be
network. Sincd™,,, is a map from a pure state to a pure Statfétecomposed into
the action ofF’Sep represented by E@.(B5) can be equivalently )
given by the existence of a set of linear operators (the Kraus .,

operators) {A}";},, for each nodev;; and a probability Lm Z

distribution {p,,} such that

vm; ®F, ®§'V:1 AL|®)r = /PwlU), (36)
Yook, e, (Arar) = 1, (37)

EeDm QBT g

ai, - ,ar—1=0

®E}(€¢Bc£i-,ak71)ym®E(ak 1),m ) (46)

Note that we identify a linear operation and its matrix repre
sentation in the computational basis, el@%‘,’f ™isa2by?2
complex matrix.
where Next, letting E,,, = ®F_, @2_, A7, F,, = @F_, @ 5 A",
and using LemmAl1, we obtam for aﬂ c{m|pm #0
A € LM, M) g {mlp 7& }

1<i<k), Jagm > 0,3V5, € UCP); BN = aomVi'h,  (47)
Al € L(Hy,,; :C) where EM is a D x D matrix such that

(1<i<k2<j<N-1),

mo € LM,y Ho,) (BN )ap = <(I|Ig9( @ AT D Ab)ss | s, k1K,
(1<i<k), (38) and
and ., , is the Hilbert space of qubits of the resource state |Ab>s* Sr o KL Kr, T |‘1>+>51 1S
at nodev; ; defined by |(1>+>S1 S ., |(I)+>K3,1=K3,2
Ho,; = Hs,; O i, (39) BIb) K} oo K],
Hsi (i=1) (40a) Let
= Hs: @H 2<i<k-—1) (40b ! .
HSi,j S},j S'L2,j ( — 1 — ) ( ) A71712 — Z <a/1|5% ) ® E§721)x (48)
Hsz (i=k) (40c) Ll
1 1
i, G=1) (41a) Ay = 30 Y als laslsz, @ BE
Hi,, = { Hrr, @MHgz (2<j<N-1)(41b) Pt
Hiz (j=N) (41c) 2<i<k-1) (49)
- 1
First, letting E,, = @, A", F,, = ®F, @, A™ and o=y (aa]sz, ® E;(fgl)’mv (50)
applying Lemmd1L, we obtain for alh ¢ {m|pm 7& o} ar=0

Son > 0,3V, € UCP), BY =y, VY, (42) Where B € LiMyy, © Hyp, : C), B e
L(Hgi, @ Hyez, : C) andEk“;>meL(HK1 ®Hz, : O).

Dy i i i M
whereU(C™) is the set ofD by D unitary matrices andi,, By stralghtforward calculatmnVM are shown to be decom-

is a D by D matrix satisfying

posed into
(BN o = alz, (91 AT An)s: 1, . v e
and Vaim Viim Z BT @ By, ®
ay, - ,ap_1=0
[A)s: e, = @@ s 52 @Bk, ekt QE 7 @ By, (51)



12

where E/'90)™ E/(G1%2)™ and /%)™ are2 x 2 complex VI, PROBABILISTIC IMPLEMENTATION OF UNITARY
matrices. OPERATIONS

Iterating this procedure, we obtain for ail € {m|p, # 0}, It is interesting to know whether there exists a task that

is not achievable by classical network coding but the cor-

Ja > 0,3IWM e U(CP); EM = aWM FM — @W, responding task is achievable in a quantum setting. We can
a (52) give a negative result in the case of @ 2)-cluster network.

There is no classical network coding protocol to send single

whereW™ and WM can be decomposed into ’
bits from vy 1 t0 v22 and fromuwy; to v 2 oOver a(2,2)-

WM = yMyM . yM (53) cluster network _since there is no butte_:rﬂy, grail or identit
: MitrM substructure. This task corresponds to implementing a SWAP
WA = UMV, (54) operation in quantum network coding. By using Theorem
u . (a1) (a1,a2) 3, we see that a SWAP operation is not deterministically
and V' = > L =0l ® By @ -+ ®  implementable over &2,2)-cluster network, which is a 2-

E,(c‘i"ljf’“"’l) ® Eé‘fi’cfl) € U(CP). UM can be decomposedbridge ladder network, since the Kraus-Cirac number of the
into the form of EqI{20) sinc&’ ™ and V;*' can be decom- SWAP operation iss. o o
posed into the form of EG(21). Umtary operations are de_termm_lstlc_maps by definitiort, bu
we consider the less restricted situation where the actfon o
O the unitary operations are implemented only when we can
) post-select the preferable probabilistic event. Thisesponds
In the case of thg2, V)-cluster networks, which we call {, roqyiring the implementing the action of a unitary opera-
N-bridge ladder networksV; is locally unitarily equivalent 4, only when certain measurement outcomes in a LOCC
to the two-qubit controlled unitary operation since itS @ier 4000 are probabilistically obtained. A formal definiti
Schmidt rank i< [26]. Thus, statements i) and ii) of Theoremy¢ e nronabilistic implementation of a unitary operation
2 are equivalent since a sequenceoftwo-qubit controlled g given by Definition 3 by changing LOCC to stochastic
unitary operations is implementable by the converted dircy 5cc (sLOCC). In this section, we first characterize all
presented in Fid.]7. Then we obtain the following theorem g, \;nitary operations that are probabilistically impleradle
the ladder networks. over cluster networks. Then, we show that a SWAP operation

Theorem 3. A unitary operationU/ is deterministically im- IS not implementable even probabilistically.

plementable over théV-bridge ladder network if and only if Theorem 4. A k-qubit unitary operatiori/ is probabilistically
KC#(U) < N. implementable over thé:, N)-cluster network £ > 2, N >
if and only if the matrix representation &f in terms of the

This theorem is proven by using the following lemma relat) _
/M can be decomposed into

ing the Kraus-Cirac number of a two-qubit unitary operatioﬁornIOL’t"J‘ti()nal basi
anq the decomposition of t.he unitary operation into cotgtbl UM = FMEM .. M (55)
unitary operations shown in_[114].

where eachFM is a 2¥ by 2% complex matrix that can be

Lemma 2. Consider a set of two-qubit unitary operatiobs decomposed in the same way as Eql (21)

that is locally unitarily equivalent to a controlled unitaiop-
eration. The decomposition of a unitary operatidne SU(4) Proof. Similar to the case of deterministic implementation,
into a shortest sequence of two-qubit unitary operationdin we consider applyingl < U(Hz, : Ho,) on a part

depends on the Kraus-Cirac numb&C#(U) of U as of k maximally entangled state) € #z, ® Hz,. Then
U is probabilistically implementable over thé, N)-cluster
{U € SUM)KCHU) <1} = {U|U e U.} network ¢ > 2, N > 1) if and only if there exist a stochastic
(U € SUMA)KCHU) <2} = {UV|U,V e U} LOCC (SLOCC) magd™” and non-zero probability > 0 such
- ’ ‘ that
{U e SUM4)|IKC#U) <3} = {UVW|U,V,W € U,.}.

(|2} (2[r) = plUNU], (56)

Proof of Theorem 3Since KC#U) is less than or equal where|®)x is the resource state of thig, V)-cluster network
to NV if and only if U can be decomposed int¥ two-qubit and [U) € Ho, ® Hz,, is defined by Eq.[(34). Eq[(b6)
controlled unitary operations as shown in Lemimha 2, aAd is equivalent to the statement that there exist a set of linea
two-qubit controlled unitary operations are determieily operators{ 4, ;} and non-zero probability > 0 such that

implementable oveV-bridge ladder network, Theorem 3 is X N
straightforwardly shown. ®i—1 ®j214ij|®)r = DIU). (57)

The conditions of{4; ;} given by Eq. [(5FF) is similar to

the conditions of Kraus operatofsty’; },, given by Eq. [(35)

We also show that statements i) and ii) of Theorem @esented in the proof of Theorem 2. The indes dropped
are equivalent in the case of ti{8, N)-cluster networks in in Eq. (57) since the map we consider is SLOCC instead of
Appendix C. LOCC considered in Theorem 2. By taking the correspondence



13

betweenA; ; and 47";, we obtain a decomposition of the formcircuit representations of unitary operations implembleta
presented in Eq[(55). over a given cluster network. For thi&, N)-cluster networks
O of £ = 2,3, we have shown that our method provides all

Lemma 3. A SWAP 0peratio,u.ap i |00 (00| +|01)(10]+ implementable unitary operations over the cluster network

[10)(01]|+[11)(11] is not probabilistically implementable overThe proof is based on thg existence of the _standard form of
the 2-bridge ladder network. the converted quantum circuit and the equivalence of a set

of unitary operations represented by the standard form and
Proof. By using Theorem 4, the SWAP operation is probabilisdecomposed into the form given by Ef.](21). The proof also
tically implementable over thg, 2)-cluster network{-bridge suggests that statements i) and ii) of Theorem 2 are equivale

ladder network) if and only if there exist linear operationfor k¥ = 2,3. For k¥ > 4, whether our method provides

P,Q € L(H, ® Hs) and Ef’j) € L(H;) satisfying all implementable unitary operations or not is still an open
U _ p 58 problem since the standard form is not known.
swap Q, ) ) (58) As a first step to finding the fundamental primitive networks
P = E%OI) ® Eéol) + E%l) ® Eél), (59) of network coding for quantum settings, we have shown that
0 = E§02) ® EZSOQ) I Eﬂj ® E§12)’ (60) both of the butterfly and grail networks are sufficient resesr

for implementing arbitrary two-qubit unitary operationsgan-
where #; = C2. Since P and @) can be decomposed intowhile the (2, 2)-cluster network is not sufficient to implement
Eq.[59) and Ed.(80), we can derive arbitrary two-qubit unitary operations even probabitiatiy.
ORH(P) < 2, 61) Tp. prove this, we .he_lve shlown necessary arjd suffic.ient con-
) ditions of probabilistically implementable unitary optéoas
Op#(Q) < 2 (62) presented in Theorem 4. There are two differences in Theorem
Since O# (Uswap) = 4, OPH(P) = OP#>(Q) = 2. In 2 and Theorem 4. First, we have shown thiatcan be
[28], it is shown that if ®#2(P) = 2 and P is invertible, _deco_mposed _m_to_a pa_rtlcular form re_presented by Ed. (20)
OP#2(P~1) = 2. Thus, the SWAP operation is probabilisti-'f U is deterministically w_nplementaple in Theorem 2 and that
cally implementable if and only if there exist linear opéas U can be decomposed into a particular form represented by

P,Q € L(H, ® H>) satisfying Eqg. (B3)if and only if U is probabilistically implementable
in Theorem 4. Second, each factét" in Eq. (55) can
Q = Uswap P, (63) be a non-unitary complex matrix while each factg® in
OP#(P) = 2, rank(P) = 4 (64) Eq. (20) must be a unitary matrix. The existence of unitary
OPH2(Q) = 2, rank(Q) = 4. (65) operations only probabilistically implementable (witls$ethan

unit probability) is also left as an open question.
In general, we can regarf? as a matrix representation of a
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where 8:H#?:3(|(I>>) is a Schmidt number in terms of a
partition between qubit, 2 and qubit3, 4. We show that there
is no four qubit state simultaneously satisfying EGs] (¢69),
and [69) in Appendix E. O

We can apply Theorem 2 and 4 to a slightly extended cluster
network, a cluster network with loops. We show the definition
in Appendix F.

VIII. CONCLUDING REMARKS

We have investigated the implementability fqubit uni-
tary operations ovefk, N)-cluster networks to apply the idea
of network coding for distributed quantum computation veher
the inputs and outputs of quantum computation are giver in al
separated nodes and quantum communication between nodes
is restricted. We have presented a method to obtain quantum
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Fig. 11. An example of a converted quantum circuit obtaingdstep 2 of
the conversion protocol.

APPENDIXA
LOCC IMPLEMENTATION OF CONVERTED QUANTUM
CIRCUITS
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For example, foiG defined by Eqs[{72]-(T8),

C1={9g1,93} (80)
Ca=1{92,93,94,95,97} (81)
Cs = {96} (82)
Co=C3=0Cs =0. (83)

Define therangeof C; # ) as
range(C;) = (min{z, min{(a,b;c) € C;}},
max{i,mgx{(a, byc) € Cit}). (84)
For example, foC; defined by Eqs[{80)-(83),

range(C;) = (1,2) (85)
range(C4) = (2,5) (86)
range(Cs) = (5,6). (87)

All the controlled unitary operations i are implementable

We have shown a protocol to implement a three-qubit fulljy using the following protocol.
controlled unitary operation in a set of vertically aligned The protocol for implementing a sequence of controlled
nodesV;. In some cases, we can implement more tha#hitary operation inG:

one three-qubit or two-qubit controlled unitary operasiom

1) For applying gates ii;, we create an ancillary qubit

parallel using the same resource. We show how a sequence of state entangled to theth qubit state by preparing an

controlled unitary operations represented by convertexlits

ancillary qubit in |0) and applying a controlled-NOT

can be implemented by LOCC assisted by the resource state operation where the ancillary qubit is the target qubit

given by a collection of k — 1) Bell pairs corresponding to a

set of vertically aligned edgeS; in this appendix.

of a controlled-NOT operation. Then the ancillary qubit
state is sent from théth nodev; ; € V! to the target

We introduce a new notation for controlled unitary opera- node by using teleportation. If several different target

tions for simplifying and unifying descriptions of two-gjtib
and three-qubit controlled unitary operations. We represe
two-qubit controlled unitary operation that is controllegthe
i-th qubit and targets thg¢-th qubit as

(4,4;5), (70)

and a three-qubit fully controlled unitary operation that i

controlled by thei-th andj-th qubit and targets the-th qubit
as

(4,5; k). (71)

Note that we representett,i;j) as C;;; and (i,5;k) as

Ci.;.1 In the previous sections. L&t = {g,} be a sequence

qubits are included i€;, create another ancillary qubit
by the same method at a target node, keep one of the
ancillary qubits at the target node and send the other
to the next target node. We consume Bell pairs to
teleport ancillary qubit states to the target nodes, where
n; = b — a andrange(C;) = (a,b). Since there is no
overlap between ranges @f; and there is no target
unitary operation inserted between control qubits, we
can teleport all the ancillary qubit states entangled to the
control states to all the target nodes by just consuming
(k — 1) Bell pairs.

2) We apply all the controlled unitary operations@hin
the target nodes by using the teleported ancillary qubit

of controlled unitary operations that is added in step 2 of states entangled to the control qubit states as the control
the conversion protocol. For example, the converted dircui qubits.

represented by Fig. 11 is described by a sequence

g = (1,1;2) (72)
g2 = (4,42) (73)
g3 = (1,4;2) (74)
g1 = (4,4;5) (75)
g5 = (4,4;3) (76)
g6 = (5,5;6) (77)
gr = (4,45). (78)

Let C; be a set of controlled unitary operations that i

controlled thei-th qubit:
Ci={(a,bjc) € Gsa=iVb=i}. (79)

3) We decouple the ancillary qubit states by performing
the projective measurements on the ancillary qubits in
the target nodes and apply correction unitary operations
in the control nodes depending on the measurement

outcomes.
APPENDIXB
CONVERTED CIRCUIT OF(2, N) AND (3, N)-CLUSTER
NETWORK

First, we prove that any converted circuits of(2 N)-
gluster network can be simulated by a circuit consisting of a
sequence ofV two-qubit unitary operations and local unitary
operations. In this case, only two-qubit unitary operation
(1,1;2) or (2,2;1) can be added in step 2 of the conversion
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) iii) i) In circuit ii), the two-qubit controlled unitary operian
e Ol (2,2;3) can be decomposed into
B 10)(0]2 ® ul” +[1) <1|2®u3

{

\_rl

_ P = (l )(0l2 T + [1){1]2 ® ( 9)) oy’
= (I ® vs3)
v Ve (5 o) e+ (5 ) mas)
% | (I ® viul), (92)
2 3 where v3 is a unitary operation that diagonalizes
— ug1>ug°”. Thus, this circuit is locally unitarily equivalent

to a three-qubit fully controlled unitary operation.
Fig. 12. The six classes of converted quantum circuits nbthaby step 2 of i) CII’S:UII i) COHSISIS of just a three-qubit fully corttied
the conversion protocol of €3, V)-cluster network. unitary operation.
iv) Circuit iv) can be simulated by a three-qubit fully con-
trolled unitary operation and local unitary operations

protocol. Since applying the gatel,1;2) sequentially for since we can diagonalize a unitary operation obtained by

k € N times can be simulated by just one use of gate; 2) the circuit in the same way as circuit i).

and gate(2, 2; 1) can be simulated by one use of gétel;2) ) |n the same way as circuit ii), circuit v) is locally uni-

and additional local unitary operations, any circuits getes tarily equivalent to a three-qubit fully controlled unigar

in step 2 of the conversion protocol can be simulated by one operation.

use of(1,1;2) and local unitary operations. vi) In the same way as circuit i), circuit vi) is locally uni-
Next, we prove that any converted circuits of(3 V)- tarily equivalent to a three-qubit fully controlled uniyar

cluster network can be simulated by the circuit of a sequence gperation.
of N three-qubit fully controlled unitary operations given in

the form of
APPENDIXC
100)(00]1.5 ® ul’” +01) (01 5 ® ul™ TWO CONDITIONS IN THEOREM 2 ARE EQUIVALENT IN THE
H0M(10]15 @ ull® 4 |11) (11]5 © D (88) CASE OF THE(3, N)-CLUSTER NETWORKS

For k = 3, the 2¥ by 2% unitary matrixV; in Theorem 2

and local unitary operations. In step 2 of the conversiqg written by
protocol, every converted circuits can be simulated by six © ) (0 0 ©
classes of circuits shown in Fig. 12. VM = E}®E,; ®Ey]

In the foIIowing,.we show that a}ll of.these SiX classe_s (from JrE(O) ® E(O D& Eéli)
class i) to class vi) represented in Fig. 12) can be simulated '
by a three-qubit fully controlled unitary operation anddbc
unitary operations by investigating each class. —|—E(1) ® E(l % Eél-). (93)

i) A unitary operation obtained by circuit i) is given by 7

1 1,0 0
+E") 0 B  EY)

N

By using the result on local unitary equivalence of unitary
|0){0]; ® u(o) (O) + (1] ® u21) @ ul operations with operator Schmidt rank 2 obtained by Cohen

3
LU 000 @ T, @ Ty + [1)(1]; @ uzl)uéo)T 2 ug)ugoﬁ (89) and Yu [29] (Theorem 1 of [29] ), we have
VM (00 @ Wil + 1)1 0 WEL (94)

2

Whereu§i) is a one-qubit unitary operation and rep-

_ (0) (1)
resents local unitary equivalence. Diagonalizg’u "’ = Wip ®[0){0lc + Wiz ®[1)(llc, (95)

D, Ot 5
andug "ug where WY, and W), are unitary matrices= represents a

1) (O i1 ; locally unltarlly equivalence and we identify a three-quli-
uyuy = U ( 0 ew2) Uy (90)  tary operation o4 © Hp @ He as its matrix representation
VM. Thus, it is shown that

103
W, O _ (e 0) t
Uy U = 3 0. | U3 (92)
s 0 )78 VMY 100y (00[ac @ WO 4 101)(01[ac @ WOV

Since the right-hand side of EG.{89) is locally unitarily +10)(10ac © WS + 11 (11 a0 @ WS,
equivalent to a diagonal unitary operation in the compu- (96)
tational basis, this circuit can be simulated by a three-

qubit fully controlled unitary operation and local unltarywhereW](gj) is a2 by 2 unitary matrix. Statements i) and ii)
operations. of Theorem 2 of the main text are equivalent in the case of
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(3, N)-cluster networks sinc& is a fully controlled three- (i) (1) (iii) (iv) (v) (vi) (vii)
qubit unitary operation andV fully controlled three-qubit : : : : : : :
unitary operations are implementable by a converted dircui E b Cuaal P Olaa o
of the (3, N)-cluster networks. . Pl s : : Ed:

APPENDIXD
A NETWORK CODING PROTOCOL FOR THE BUTTERFLY
NETWORK IMPLEMENTING ARBITRARY TWO-QUBIT
UNITARY OPERATIONS

We show that the quantum circuit presented in Hiy. 9
implements a two-qubit global unita/,;epa:(x, vy, z) given Fig. 13. A protocol to implement a two-qubit unitary opeoati

; Ugiobal (T, y,2) over the butterfly network. We consider 7 steps presented
by Eq.[6) for arbltrary_ parameters y, z € R. Ugiobar (2, Y, 2) in the quantum circuit and denote the steps by Roman numéiate (vii).
can be decomposed into

The symbols of gates of the circuit are same as the ones giveRid.[9.

Uqlobal (.I', Y, Z) = Z /\j |\IJ(J)><\IJ(J)| (97)
"' | TO)g0); (=02 (107a)
gzcﬁstlggt its eigenvalueg);}; and e|genvector5{|\IJ(J)>}j _|\I;(J')>173|1>2 G =1,3). (107b)
Ao = el@ T2\ — il-atyta) (98) After applying (1 ;., in step (v), we obtain

)\2 = el(w-l-y—z)7 )\3 = el(—w—y—z)7 (99) ei(_y+z)|\IJ(0)>173|O>2 (] _ O) (108a)
W) = (j00) + 1)), (100) iU M) 1), (=1)  (108b)
v2 U 5l0)  (=2)  (108¢)
v = 7(|00> 1)), (101) iAW) g1, (G=3).  (108d)
w@) = _(|01> +10)), (102) After applying a single qubit unitary operatiariz) given by
i =% % (109)

vy = 7(|o1> 10)). (103) W=7 e jeim

Thus, in order to show an arbitrary input state) is trans- in step (vi), we obtain

formed into Ugiobai (2, y, 2)|¥) through the quantum circuit, _

it is sufficient to show that the eigenvectof¥(?))}; are AN isl+) (=0,2) (110a)
transformed into{\;|¥("))}, and when a measurement is AT 5=)g (j =1,3). (110b)
performed, the probability of obtaining a measurement out-

come must be independent of the eigenvectors not to bredfiker applying the projective measurement in the computa-

coherence between the eigenvectors. tional basis and conditional unitary operations in stef),(vi
We divide the quantum circuit into seven steps from step @e obtain
to step (vii) as shown in Fig._13. We show the detail of how A W@y, g (111)
the eigenvectors are transformed after each step.
First, we prepare a three-qubit input state for any measurement outcome. We can verify that the prob-
I\If('7)>1 4|0) (104) ability of obtaining a measurement outcomesisrrespective

of eigenvectors.
in step (i), where we denote the index of the qubit corre-

sponding to the first horizontal wire as 1 and that of the ather

likewise. After applying Hadamard gates in step (ii), weadibt APPENDIXE
@ ANALYSIS OF A BIPARTITE PROPERTY OF FOUR QUBIT
HyH3| WY ) 3]4)9, (105) STATES
X . .
where|£) = 7(|O> +[1)). After applyingC s in step (iii), We prove that there is no pure state of four qublts; - 3 4
we obtain e S
satisfying
1 . ) 3,4 _
G (H1H3|\IJ(J)>173|0)2 n ZlH123H3|x1/<J>>1,3|1>2) . Sch#t5(|®)) = 4, (112)
(106) ScHity3(19)) = 2, (113)
After applying Hadamard gates and Pauli X operations in step SCH#§’§(|<I>>) — 9. (114)
(iv), we obtain ’

1 W) ) In [30Q], it is shown that any pure states of four qubits can, up
V2 (X1X3|‘I’ J13[+)2 + W >1-,3|—>2) = to permutations of the qubits, be transformed into one of the



following nine families of states by determinant 1 SLOCC:

d —d
1)) — “‘; (10000) + [1111) + “-(J0011) + [1100))
b b
+%(|0101> +]1010)) + TC(|0110> +1001))
b b
By) = a; (|0000>+|1111>)+GT(|0011>+|1100>)
+¢(|0101) + [1010)) + |0110)
B3) = a(|0000) + |1111)) + b(|0101) + [1010))
+/0110) + [0011)
b
1B,) = a(|0000>—|—|1111>)+%(|0101>+|1010>)
)
+a2 (|0110) + [1001))
i
+-2(]0001) + |0010) + |0111) + 1011
\/i(l ) 4 [0010) + [0111) + [1011))
|Bs) = a(|0000) +0101) + [1010) + [1111))
+40001) + |0110) — §|1011)
[Bg) = a(|0000) + |1111)) + |0011) + [0101) + |0110)
|®;) = [0000) + |0101) + [1000) + [1110)
|Bs) = [0000) + [1011) + [1101) + [1110)
[Bg) = [0000) + |0111),

wherea, b, ¢, d are complex parameters.
Since the Schmidt number of a state cannot be i
creased under SLOCC and determinant 1 SLOCC is i

vertible, the Schmidt number of a state is invariant under
q% satisfy Eq.[(IT5)n4 must be2, that isa = b = 0. Then

determinant 1 SLOCC. Thus, we show that no state of t
nine families simultaneously satisfies Eds. (112)-[114er€

are three ways to divide four qubits into a pair of twd"

qubits. We denote the set of Schmidt numbers of a fo
qubit state|®) for all bipartite devisions as G#(|®)) =
{Sch#}3(|@)), Sch#(|D)), ScHiy3 (@)}

Theorem 5. There is no four qubit statgd) € H; @ Ho ®
Hs ® H4 such that

ScH#(|D)) = {4,2,2}. (115)

Proof. By calculating the Schmidt rank for all bipartite devi-

sions, we can easily check that

ScH#(|®s)) = {ne.mne,n6} (116)
ScH#(|®7)) = {3,3,3) (117)
Sch#(|®s)) = {3,3,3) (118)
ScH#(|Bo)) = {2,2,2), (119)
where ng = #{\/5,% L+4fa?+ 3,3 /1T+4a? -1

and #S is the number of non-zero elements of getSince

ne = 2 or ng = 3, these four states do not satisfy Eg. (115).

An element of SH#(|®5)) is # {1,v/2,2a|}. To satisfy
Eg. (I15),a = 0 is required. Then

ScH#(|Ps)) = {2.3.3},

which does not satisfy EE.(I115).
An element of SH#(|D,)) is #{|b|} + #{z|2® — (3|al® +
2)x? + (3|al* + 2]a|* + 1)z — |al® = 0}. To satisfy Eq.[(TT5),

(120)
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the element must be 2 or 4. If the element is 2, sifder |23 —
(3lal* + 2)22 + (3|al* + 2|a|? + 1) — |a|® = 0} is larger than
1 and is 2 if and only ifa = 0, we have

a=b=0. (121)

Then SH#(|D4)) = {2,2,2}. Thus, the element must be 4.
Since#{z|z® — (3|a|*+2)z%+ (3|a|*+2|a|*+ 1)z —|a|® = 0}
is 3 if and only ifa # 0, we have

a#0, b0 (122)

Another element of 8H#(|®,)) is #{|a — b|} + #{z|642> +

(- )22+ (- )xz—|a—b[*3a+b> = 0}, where we abbreviate
coefficients ofz? and z. Since this element must be 2, it is
necessary that

a—b=0or3a+b=0. (123)

The other element of &H#(|®4)) is #{|a+b|} +#{x|642>+

(- )%+ (- )z —|a+b*|3a—b]* = 0}, where we abbreviate
coefficients ofz? and z. Since this element must be 2, it is
necessary that

a+b=0or3a—b=0. (124)

We can easily check that it is impossible to simultaneously

satisfy Eqs.[(I22):(124).

SCH#(|®3)) is {ng,nk,nk}, where

#{V2,]a + b, |a — b}, (125)
#{/1+4lal2+1,\/1 +4]p>+1}. (126)

n_
n-

ns

l
ng =

3 = 1, which does not satisfy Eq._(I15).

urSCH#(|(I>2)) is {na,nh, nl}, where

nz = #{|a|a|b|7 \% 1+4|C|2:|:1}7 (127)
ny = #{la+bx2c|,\/1+]a—b?+1}, (128)
ny #{la —bE2c[,\/1+]a+b?*E1}. (129)

In the following, we verify that{ns,n},nj} cannot be
{4,2,2}, {2,4,2} or {2,2,4}.

1) {nQa n/Za ng} 7é {4a 27 2}
If no =4, it is necessary that

a#0,b#0, c#0. (130)

If n}, =2, it is necessary that
a—b=a+b+2c=0, (131)
a—b=a+b—2c=0, (132)
ora+b—2c=a+b+2c=0. (133)

If ny =2, it is necessary that
a+b=a—b+2c=0, (134)
a+b=a—b—2c=0, (135)
ora—b—2c=a—-b+2c=0. (136)

We can easily check that it is impossible to simultane-
ously satisfy Eqs.[(130]-(1B6).
2) {no,nh,ni} # {2,4,2}:



If no =2, it is necessary that

a=>b=0, (137)
a=c=0, (138)
orb=c=0. (139)

With the necessary condition far; = 2, we obtain that

a=b=c=0. (140)
Then, it is impossible to satisfy/, = 4.
3) {na,nhH,ni} #{2,2,4}:
If no =2, it is necessary that
a=b=0, (141)
a=c=0, (142)
orb=c=0 (143)

With the necessary condition fex, = 2, we obtain that

a=b=c=0. (144)
Then, it is impossible to satisfy) = 4.
Finally, we analyze &H#(|®1)). ScH#(|®1)) is
{n1,n},nY}, where
m #{|a|a |b|7 |C|, |d/|}a (145)
ny, = #{la+b—c—d,la—b+c—d|,
| —a+b+c—d|,la+b+c+d}, (146)
nl = #{|—-a+b+c+d,ja—b+c+d,
la+b—c+d,|la+b+c—d}. (147)

Note thatn,, n} andn/ are invariant under permutation of
a, b, c andd. We verify that{n,,n},n{} cannot be{4, 2,2},
{2,4,2} or {2,2,4} in the following.

1) {nlv n/lv n/ll} 7é {4a 27 2}
If ny =4, it is necessary that

a#0,0#£0, ¢c#£0, d#0. (148)
If n} =2, it is necessary that in general
a+b—c—d=0,a—-b+c—d=0 (149)
Sa=d, b=c. (150)
Then
nY = #{|2b|,|2al, |2a|,|2b|} = 4. (151)

2) {n1,ny,ni} #{2,4,2} and{ny, n, nf} # {2,2,4}:
If ny =2, it is necessary that in general

a=0,b=0, c£0, d#0. (152)
Then

O
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APPENDIXF
A CLUSTER NETWORK WITH LOOPS

A cluster network with loops is defined as follows.

Definition 4. A networkG = {V,&,Z, O} is a generalized
cluster network if and only if for some>1and N > 1,

V = {u;l<i<kl1<j<N}
7 = {Uzyl,lglgk}
O = {vi7N;1§i§k}
£ = SapUK (154)
where
Ssub c Scomp7
Scomp {(Um,javn,j); 1§m<n§k71§]§N)}7
K = {(vij:vij+1); 1 <i<k1<j<N-1)}

(155)

For this network, if there exists a loop of vertical edges
L C Ssup such that for somg, L and {i,, } £

m=1
L

{61 = (vil-,jvviz-,j)7€2 = (vizijvia-,j)v

“HEeL = (vil,,j’ vi1,j)|em # en if m # n}(156)

it allows to perform a cyclic permutation that transmits a
qubit state fromw;, ; to v;, ;, from v;, ; to vy, ; and so on
(by consuming Bell pairs corresponding to the looped vatltic
edges for teleportation), in addition to performing colié
unitary operations presented in Section IV. Thus, quantum
computation over a cluster network with loops of vertical
edges may have more capability than that without a loop. Note
that a condition for the implementable unitary operationsro
this type of cluster networks with loops are still restrittey
Theorem 2 and 4. An extension of our results for more general
networks is an open problem.

REFERENCES

[1] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeunbletwork Information

Flow, IEEE Trans. Inf. Th46, pp.1204-1216, 2000.

M. Hayashi, K. Iwama, H. Nishimura, R. Raymond and S. Yahita.

Quantum network coding, in Proceedings of 24th Annual Sysiyo

on Theoretical Aspects of Computer Science (STACS2007)C8M393,

pp.610-621, 2007.

D. Leung, J. Oppenheim, and A. WinterQuantum Network

Communication— The Butterfly and BeyprBEE Trans. Inf. Th.56,

pp.3478-3490, 2010.

M. Hayashi, Prior entanglement between senders enables perfect quan-

tum network coding with modificatipPhys. Rev. A76, 040301(R), 2007.

H. Kobayashi, F. Le Gall, H. Nishimura and M. Rottel&eneral Scheme

for Perfect Quantum Network Coding with Free Classical Camita-

tion, LNCS 5555, pp.622-633, 2009.

H. Kobayashi, F. Le Gall, H. Nishimura, and M. RotteléPerfect

Quantum Network Communication Protocol Based on Clas$iedvork

Coding ISIT 2010, pp.2686-2690, 2010.

H. Kobayashi, F. Le Gall, H. Nishimura and M. Rottel€pnstructing

Quantum Network Coding Schemes from Classical NonlineatoPols

ISIT 2011, pp.109-113, 2011.

N. de Beaudrap and M. RoetteleQuantum linear network coding as

one-way quantum computatioarXiv: 1403.3533, 2014.

A. Soeda, Y. Kinjo, P. S. Turner and M. MuraQuantum computation

over the butterfly networkPhys. Rev. A84, 012333, 2011.

[10] R. Appuswamy, M. Franceschetti, N. Karamchandani, &ndZeger,
Network Coding for Computing: Cut-Set BoundlEEE Trans. Inf. Th.
57, no.2, pp.1015-1030, 2011.

(3]

(4]
(5]

(6]



[11] N. Khaneja, R. Brockett, and S. J. Glas@ime optimal control in spin
systemsPhys. Rev. A63, 032308, 2001.

[12] B. Kraus and J. I. Cirad)ptimal creation of entanglement using a two-
qubit gate Phys. Rev. A63, 062309, 2001.

[13] J. Zhang, J. Vala, S. Sastry, and K. B. Whal&gometric theory of
nonlocal two-qubit operationsPhys. Rev. A67, 042313, 2003.

[14] A. Soeda, S. Akibue, M. MuraoJwo-party LOCC convertibility of
quadripartite states and Kraus-Cirac number of two-quhiitaries, J.
Phys. A: Math. Th47 424036, 2014.

[15] L. Valiant, Quantum circuits that can be simulated classically in
polynomial time SIAM J. Computing31, pp.1229-1254, 2002.

[16] B. M. Terhal and D. P. DiVincenzo,Classical simulation of
noninteracting-fermion quantum circujt®hys. Rev. A65, 32325 2002.

[17] R. Jozsa and A. MiyakeMatchgates and classical simulation of
quantum circuits Proc. R. Soc. A464, pp.3089-3106, 2008.

[18] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A.sPé&ke K.
Wootters,Teleporting an Unknown Quantum State via Dual Classical and
Einstein-Podolsky-Rosen ChanneRhys. Rev. Lett.70, pp.1895-1899,
1993.

[19] R. Raussendorf and H. J. Brieg&l,One-Way Quantum Computéthys.
Rev. Lett.86, 5188, 2001.

[20] I. Affleck, T. Kennedy, E. H. Lieb and H. Tasakfalence bond ground
states in isotropic quantum antiferromagne@omm. Math. Phys. 115,
pp.477-528, 1988; Rigorous results @alence-bond ground states in
antiferromagnetsPhys. Rev. Lett59, pp.799-802, 1987.

[21] F. Verstraete, J.I. Cirac and V. Murjatrix product states, projected
entangled pair states, and variational renormalizatiorogp methods for
guantum spin systemAdv. Phys.57, pp.143-224, 2008.

[22] J. Eiserlt, K. Jakobs, P. Papadopoulos and M. B . Plédfjmal local
implementation of nonlocal quantum gatézhys. Rev. A62, 052317,
2000.

[23] C. C. Wang, N. B. ShroffBeyond the Butterfly — A Graph-Theoretic
Characterization of the Feasibility of Network Coding wittwo Simple
Unicast SessiondSIT2007, pp.121-125, Nice, France, 2007.

[24] C. C. Wang, N. B. ShroffPairwise Intersession Network Coding on
Directed NetworkslEEE Trans. Inf. Th56, pp.3879-3900, 2010.

[25] F. Vatan and C. WilliamsOptimal quantum circuits for general two-
qubit gatesPhys. Rev. A69, 032315, 2004.

[26] W. Dir, G. Vidal and J. I. CiracOptimal Conversion of Nonlocal
Unitary Operations Phys. Rev. Lett89 057901, 2002.

[27] C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E.ifg P.
W. Shor, J. A. Smolin, W. K. WoottersQuantum nonlocality without
entanglementPhys. Rev. A59, pp.1070-1091, 1999.

[28] E. Tyrtyshnikov,Tensor ranks for the inversion of tensor-product binomi-
als, Journal of Comp. and Applied Math. archi284 Issue 11, pp.3170-
3174, 2010.

[29] S. M. Cohen, L. YuAll unitaries having operator Schmidt rank 2 are
controlled unitaries Phys. Rev. A87, 022329, 2013.

[30] F. Verstraete, J. Dehaene, B. De Moor, H. Verschefdeir qubits can
be entangled in nine different wayBhys. Rev. A65, 052112, 2002.

Seiseki Akibue received B.S., M.S. and Ph.D. at the University of Tokyo,
Japan in 2011, 2013 and 2016, respectively. Since 2016, shedrked at NTT
Communication Science Laboratories, NTT Corporationadaplis research
interests include foundations of quantum mechanics, ibiiged gquantum
computation and quantum computational complexity.

Mio Murao received M.S. and Ph.D. at Ochanomizu University in Tokyo,
Japan in 1993 and 1996, respectively. She worked as a ptstalofellow at
Harvard University (US), Imperial College, London (UK) aREKEN (Japan).
She was appointed as Associate Professor in 2001 and Rywofas2015 in
the Department of Physics, the School of Science, the Usityeof Tokyo.
Her research interests cover a wide range of theoreticatsap quantum
information and quantum physics. She currently focuses nmestigating
entanglement and other non-local properties of quanturrharécs and their
applications for distributed quantum information prodegs

19



	I Introduction
	II Preliminaries
	II-A Notations
	II-B The Schmidt decomposition and rank
	II-C The operator Schmidt decomposition and rank
	II-D The Kraus-Cirac decomposition and rank

	III Cluster networks
	IV Conversion of a cluster network into quantum circuits
	IV-A A LOCC protocol for implementing three-qubit fully controlled unitary operations
	IV-B A conversion protocol

	V Implementability of unitary operations over the butterfly and grail networks
	VI The set of all implementable unitary operations for k=2,3
	VII Probabilistic implementation of unitary operations
	VIII Concluding remarks
	Appendix A: LOCC implementation of converted quantum circuits
	Appendix B: Converted circuit of (2,N) and (3,N)-cluster network
	Appendix C: Two conditions in Theorem 2 are equivalent in the case of the (3,N)-cluster networks
	Appendix D: A network coding protocol for the butterfly network implementing arbitrary two-qubit unitary operations
	Appendix E: Analysis of a bipartite property of four qubit states
	Appendix F: A cluster network with loops
	References
	Biographies
	Seiseki Akibue
	Mio Murao


