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Directed Information on Abstract Spaces: Properties
and Variational Equalities

Charalambos D. Charalambous and Photios A. Stavrou

Abstract

Directed information or its variants are utilized extensively in the characterization of the capacity of channels
with memory and feedback, nonanticipative lossy data compression, and their generalizations to networks.

In this paper, we derive several functional and topological properties of directed information for general
abstract alphabets (complete separable metric spaces) using the topology of weak convergence of probability
measures. These include convexity of the set of consistent distributions, which uniquely define causally conditioned
distributions, convexity and concavity of directed information with respect to the sets of consistent distributions,
weak compactness of these sets of distributions, their joint distributions and their marginals. Furthermore, we show
lower semicontinuity of directed information, and under certain conditions we also establish continuity of directed
information. Finally, we derive variational equalities for directed information, including sequential versions. These
may be viewed as the analogue of the variational equalities of mutual information (utilized in Blahut-Arimoto
algorithm).

In summary, we extend the basic functional and topological properties of mutual information to directed
information. These properties are discussed in the context of extremum problems of directed information.

Index Terms

Directed information, weak convergence, convexity, concavity, lower semicontinuity, continuity, variational
equalities.

I. INTRODUCTION

Directed information quantifies the directivity of information defined by a causal sequence of feedback
and feedforward channel conditional distributions [4], [5]. Specifically, given two sequences of Random
Variables (RV’s) Xn 4= {X0, X1, . . . , Xn} ∈ X0,n

4
= ×ni=0Xi, Y n 4= {Y0, Y1, . . . , Yn} ∈ Y0,n

4
= ×ni=0Yi,

where Xi and Yi are the input and output alphabets of a channel, respectively, and B(Xi), B(Yi), the
corresponding measurable spaces, directed information from Xn to Y n is often defined via conditional
mutual information [5], [6] as follows.

I(Xn → Y n)
4
=

n∑
i=0

I(X i;Yi|Y i−1) (I.1)

=
n∑
i=0

∫
X0,i×Y0,i

log

(
dPYi|Y i−1,Xi(·|yi−1, xi)

dPYi|Y i−1(·|yi−1)
(yi)

)
PXi,Y i(dx

i, dyi) (I.2)

≡ IXn→Y n(PXi|Xi−1,Y i−1 , PYi|Y i−1,Xi : i = 0, 1, . . . , n) (I.3)

where notion (I.3) indicates that directed information I(Xn → Y n) is a functional of two collections
of causally conditioned distributions, {PYi|Y i−1,Xi : i = 0, . . . , n}, and {PXi|Xi−1,Y i−1 : i = 0, 1, . . . , n},
called feedforward distribution, and feedback feedback distribution, respectively, which uniquely define
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the joint distribution {PXi,Y i : i = 0, 1, . . . , n} and the conditional distribution {PYi|Y i−1 : i = 0, 1, . . . , n}
of the RV’s {(X i, Y i) : i = 0, 1, . . . , n}.
By Bayes’ rule, for any Aj ∈ B(Xj), Bj ∈ B(Yj), j = 0, 1, . . . , i, the joint distribution decomposes into

PXi,Y i(A0, B0, . . . , Ai, Bi) =

∫
A0

PX0(dx0)

∫
B0

PY0|X0,Y −1(dy0|x0, y
−1) . . .

. . .

∫
Ai

PXi|Xi−1,Y i−1(dxi|xi−1, yi−1)

∫
Bi

PYi|Y i−1,Xi(dyi|yi−1, xi), i = 0, 1, . . . , n. (I.4)

Formally, we represent (I.4) by PXi,Y i(dx
i, dyi) = ⊗ij=0

(
PXj |Xj−1,Y j−1 ⊗ PYj |Y j−1,Xj

)
, and we call it an

(n+ 1)-fold compound probability distribution.
If the distributions {PXi|Xi−1,Y i−1 , PYi|Y i−1,Xi : i = 0, . . . , n} are defined with respect to the probability
density functions of continuous valued RV’s {(Xi, Yi) : i = 0, 1, . . . , n}, denoted by, {fXi|Xi−1,Y i−1 , fYi|Y i−1,Xi

: i = 0, . . . , n}, then (I.1) reduces to

I(Xn → Y n) =
n∑
i=0

∫
X0,i×Y0,i

log
(fYi|Y i−1,Xi(yi|yi−1, xi)

fYi|Y i−1(yi|yi−1)

)
fXi,Y i(x

i, yi)dxidyi.

If the distributions {PXi|Xi−1,Y i−1 , PYi|Y i−1,Xi : i = 0, . . . , n} are defined with respect to the probability
mass functions of countable or finite alphabet valued RV’s {(Xi, Yi) : i = 0, . . . , n}, denoted by,
{pXi|Xi−1,Y i−1 , pYi|Y i−1,Xi : i = 0, . . . , n}, then (I.1) reduces to

I(Xn → Y n) =
n∑
i=0

∑
(xi,yi)∈X0,i×Y0,i

log
(pYi|Y i−1,Xi(yi|yi−1, xi)

pYi|Y i−1(yi|yi−1)

)
pXi,Y i(x

i, yi).

In information theory, directed information (I.1) or its variants are used to characterize capacity of channels
with memory and feedback [7]–[14], lossy data compression of sequential codes [7], [15], lossy data
compression with feedforward information at the decoder [16], and capacity of networks, such as, the
two-way channel, the multiple access channel [6], [17], etc. Some of the above references derive coding
theorems for an anthology of problems of information theory, under any one of the assumptions: (a)
stationary ergodic processes {(Xi, Yi) : i = 0, 1, . . .}, (b) Dobrushin’s stability of the information density∑n

i=0 log
(
dPYi|Y i−1,Xi

dPYi|Y i−1

)
, (c) Verdú and Han’s information spectrum methods [18]. Moreover, directed

information is also utilized in a variety of problems subject to causality constraints, such as, gambling,
portfolio theory, data compression and hypothesis testing [19], in biology as an alternative to Granger’s
measure of causality [20]–[22], and in relating Bayesian filtering theory to sequential and nonanticipative
RDF [23], [24].

Directed information is initially introduced by Marko [4] by decomposing Shannon’s self-mutual informa-
tion into two directional parts, and then taking expectation. Although, directed information is defined via
a sequence of conditional mutual informations (i.e., (I.1)), for general abstract alphabets (i.e., continuous)
or distributions which are not necessarily continuous (i.e., induced by mixture of continuous and finite
alphabet RVs) its functional and topological properties are not well understood [6].
Further, for such alphabet spaces or distributions, specific functional properties of mutual information
expressed as a functional I(Xn;Y n) ≡ IXn;Y n(PXn , PY n|Xn), of the two distributions {PXn , PY n|Xn},
such as, convexity, concavity, and topological properties such as lower semicontinuity (with respect
to the topology of weak convergence of probability measures), at first glance, do not translate into
analogous properties for directed information. The reason is that directed information I(Xn → Y n) ≡
IXn→Y n(PXi|Xi−1,Y i−1 , PYi|Y i−1,Xi : i = 0, 1, . . . , n) is a functional of two sequences of distributions
{PXi|Xi−1,Y i−1 , PYi|Y i−1,Xi : i = 0, 1, . . . , n}, and the joint and marginal distributions are induced from these
sequences of distributions. Such properties are important in extremum problems of directed information.
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Similarly, it is not obvious whether the well-known variational equalities of mutual information, which
involve a single maximization or minimization of appropriate functionals over appropriate convex sets, have
counter parts, for directed information, which involve nested maximization and minimization operations of
appropriate functionals over appropriate convex sets, giving rise to sequential variational equalities. Such
sequential variational equalities, are important to develop computationally efficient sequential algorithms
to compute capacity of channels with memory and feedback, similar to the Blahut-Arimoto algorithm
[25], of memoryless channels.

These properties together with compactness of subsets of the sets of the conditional distributions
{PXi|Xi−1,Y i−1 : i = 0, 1, . . . , n} and {PYi|Y i−1,Xi : i = 0, 1, . . . , n}, are fundamental to analyze extremum
problems of directed information related to channel capacity, sequential and nonanticipative RDF, their
generalizations to networks, etc, for countable and abstract alphabets.
Recently, in [26] it is demonstrated via several examples that Shannon information measures, such
as, entropy, relative entropy, mutual information, and conditional mutual information, when defined on
countable alphabets, are discontinuous with respect to strong topologies (i.e., induced by total variational
distance metrics on the space of probability distributions). Since directed information in (I.1) involves a
sequence of conditional mutual informations, the observations in [26] also apply to directed information.
The lack of continuity is attributed to the fact that mutual information and directed information are defined
from relative entropy, and relative entropy is lower semicontinuous with respect to distributions [27]. For
such abstract alphabets problems, it was recognized many years ago (see [28], [29]) that the analysis of
capacity formulae based on single letter mutual information formulae requires tools from the topology
of weak convergence of probability measures (or equivalently the weak∗ topology), in order to identify
global and local analytical properties of channel input distributions which maximize mutual information.

The main objective of this paper is to derive functional properties, topological properties, and sequential
variational equalities, for directed information, when the distributions are defined on abstract alphabets, and
to provide appropriate conditions for these to hold. The methodology and the main results are summarized
below.
R1) Introduce an equivalent directed information definition expressed via information divergence D(·||·),

as a functional of two consistent families of conditional distributions P(·|y) on X N0
4
= ×∞i=0Xi

parametrized by y = (y0, y1, . . .) ∈ YN0
4
= ×∞i=0Yi, and Q(·|x) on YN0 parametrized by x ∈ X N0 ,

which uniquely define {PXi|Xi−1,Y i−1 : i ∈ N0} and {PYi|Y i−1,Xi : i ∈ N0}, respectively, and vice-
versa, and their (n+1)-fold compound probability distributions

←−
P 0,n(dxn|yn−1) , ⊗ni=0PXi|Xi−1,Y i−1

(dxi|xi−1, yi−1),
−→
Q 0,n(dyn|xn) , ⊗ni=0PYi|Y i−1,Xi(dyi|yi−1, xi).

R2) Show convexity of the consistent families of the conditional distributions P(·|y) for y ∈ YN0 , Q(·|x)
for x ∈ X N0 .

R3) Show convexity and concavity of directed information as a functional with respect to the consistent
families of conditional distributions Q(·|x) for x ∈ X N0 , and P(·|y) for y ∈ YN0 , respectively.

R4) Show under certain conditions, weak compactness of the consistent families of conditional distribu-
tions P(·|x) for x ∈ X N0 , and Q(·|y) for y ∈ YN0 , and of their marginals and joint distribution.

R5) Show lower semicontinuity of directed information as a functional of the consistent families of the
conditional distributions P(·|y) for y ∈ YN0 , and Q(·|x) for x ∈ X N0 , and under certain conditions,
continuity of directed information as a functional of the family P(·|y) for y ∈ YN0 .

R6) Express directed information in terms of variational equalities involving sequential minimization and
sequential maximization operations over conditional distributions.

R7) Illustrate that R1)–R6) extend naturally to three sequences of RV’s Xn ∈ X0,n, Y n ∈ Y0,n, Zn ∈ Z0,n,
or more, which cover directed information measures for networks, and possible problems with side
information.

R8) Discuss applications of R1)-R6).

The above functional and topological properties are shown by invoking the topology of weak convergence
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of probability measures on Polish spaces and Prohorov’s theorems [30], [31]. Some of the results described
above are obtained by utilizing analogies between communication channels with memory and feedback,
and stochastic optimal control problems in which the control element and the controlled element are the
sequences of conditional distributions, {PXi|Xi−1,Y i−1 : i = 0, 1, . . .} and {PYi|Y i−1,Xi : i = 0, 1, . . .},
respectively, [32], [33].

Items R1)-R7) extend various functional and topological properties of mutual information I(Xn;Y n) ≡
IXn;Y n(PXn , PY n|Xn) as a functional of {PXn , PY n|Xn} to directed information.
From the practical point of view, there are many potential applications of R1)-R7). Below, we briefly
discuss some of them.
The concavity and convexity properties are important in deriving tight bounds in applications of converse
coding theorems, in identifying properties of extremum problems involving feedback capacity [6], [34]
and sequential and nonanticipative lossy data compression via the nonanticipative RDF [35], in relating
Bayesian filtering theory and nonanticipative RDF [23], in network communication applications [36], [37],
etc. The semicontinuity and continuity of directed information, and the compactness of the consistent
families of distributions P(·|y) for y ∈ YN0 , and Q(·|x) for x ∈ X N0 , are crucial, when addressing
questions of existence of extremum solutions to problems involving feedback capacity, sequential and
nonanticipative lossy data compression, computations of extremum solutions and their properties, and in
extending existing coding theorems to abstract alphabets [38]. For example, the converse part of coding
theorem for feedback capacity presupposes existence of optimal channel input distribution maximizing
directed information, and existence of its per unit time limit. The variational equalities are important in
generalizing Blahut-Arimoto computation schemes of single letter mutual information expressions [39]
to sequential Blahut-Arimoto schemes, involving extremum problems of directed information, such as, in
problems of evaluating feedback capacity (see [40]).

Throughout the paper, we illustrate applications of the results to the following extremum problems.
Capacity of channels with memory and feedback. Consider the extremum problem of channel capacity
with memory and feedback. Under the assumption of stationary ergodic processes {(Xi, Yi) : i = 0, 1, . . .}
or Dobrushin’s directed information stability and transmission cost stability, the operational definition of
capacity is given by the following extremum problem [11].

Cfb(P )
4
= lim inf

n→∞
sup

{PXi|Xi−1,Y i−1 : i=0,1,...,n}∈P0,n(P )

1

n+ 1
I(Xn → Y n), (I.5)

where P0,n(P ) is the transmission cost constraint set defined by

P0,n(P )
4
=

{
PXi|Xi−1,Y i−1 , i = 0, 1, . . . , n :

1

n+ 1
E
{
c0,n(xn, yn−1)

}
≤ P

}
, P ≥ 0 (I.6)

and c0,n : X0,n × Y0,n−1 7−→ [0,∞), c0,n(xn, yn−1)
4
=
∑n

i=0 gi(x
i, yi−1) is a measurable function denoting

the cost of transmitting symbols over the channel.
The task of showing existence of a sequence of probability distributions {PXi|Xi−1,Y i−1 : i = 0, 1, . . . , n} ∈
P0,n(P ) which achieves the supremum in (I.5) for continuous or countable alphabet spaces is not easy. The
main difficulty arises from the fact that I(Xn → Y n) is a functional of the two sequences of distributions
{PXi|Xi−1,Y i−1 , PYi|Y i−1,Xi : i = 0, 1, . . . , n}, unlike mutual information I(Xn;Y n) ≡ IXn;Y n(PXn , PY n|Xn),
which inherits most of its properties from those of relative entropy between the joint distribution PY n,Xn

and the product of its marginals PXn×PY n . However, we show by utilizing some of the results described
under R1)–R6), existence of such conditional distribution and identify several properties of the optimal
conditional channel input distribution.

Generalized Information Nonanticipative or Sequential RDF. Consider the extremum problem of
general information nonanticipative RDF, or sequential RDF [7], which is a variant of classical RDF [41],
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defined by [23], [42]

Rna(D)
4
= lim sup

n→∞
inf{

PYi|Y i−1,Xi , i=0,1,...,n
}
∈Q0,n(D)

1

n+ 1
I(Xn → Y n), (I.7)

where Q0,n(D) is the fidelity constraint set defined by

Q0,n(D)
4
=

{
QYi|Y i−1,Xi , i = 0, 1, . . . , n :

1

n+ 1
E
{
d0,n(xn, yn)

}
≤ D

}
, D ≥ 0 (I.8)

and d0,n : X0,n × Y0,n 7−→ [0,∞], d0,n(xn, yn)
4
=
∑n

i=0 ρi(x
i, yi) is a measurable function denot-

ing the distortion function of reconstructing xi by yi, i = 0, 1, . . . , n. Note that if PXi|Xi−1,Y i−1 =

PXi|Xi−1 , a.a.(xi−1,yi−1
), i = 0, 1, . . . , n, then it can be shown that (I.7), (I.8) are degraded to Gorbunov

and Pinsker’s nonanticipatory ε-entropy [43].
For both extremum problems (I.5), (I.7), we illustrate applications of R1)–R6) in showing existence of
solutions, identifying properties of optimal solutions, and in constructing sequential versions of Blahut
Arimoto Algorithm (BAA) [39].

The rest of the paper is structured as follows. Section II introduces two equivalent definitions of nonantic-
ipative channels on abstract spaces

(
R1)
)
. Section III derives the functional and topological properties of

directed information
(
R2)–R5)

)
. Section IV derives sequential variational equalities of directed information(

R6)
)
.

II. EQUIVALENT NONANTICIPATIVE CHANNELS ON ABSTRACT SPACES

In this section, our aim is to establish two equivalent definitions of the sequence of conditional
distributions or basic processes, which define any probabilistic channel with nonanticipative (causal)
feedback, that relate causally the input-output behavior of the channel. This formulation is utilized
extensively to establish the results stated under R1)–R7). The first definition of conditional distributions is
the usual one found in many papers, e.g., [6], [7], [10]–[13], for finite alphabets spaces. The aforementioned
definition is described via a family of multi-fold compound conditional distributions (see Fig. II.1, (a)).
The second definition is described via a family of conditional distributions defined on product alphabets,
which satisfy a certain consistency condition (see Fig. II.1, (b)). The second definition is often utilized in

(a) Sequence of feedback and feedforward channels
{PXi|Xi−1,Y i−1 , PYi|Y i−1,Xi : i = 0, 1, . . . , n}.

(b) Consistent families of feedback and feedforward chan-
nels {

←−
P Xn|Y n−1 ,

−→
QY n|Xn : n ∈ N0}.

Fig. II.1. Equivalent Representations of Feedback/Feedforward Channels.

the stochastic control literature, in which there is a control process and a controlled process [32], [33].
Indeed, the analogy is that {Xi : i = 0, 1, . . .} is the control process, {Yi : i = 0, 1, . . .} is the controlled
process, {PXi|Xi−1,Y i−1 : i = 0, 1, . . .} is the control element, and {PYi|Y i−1,Xi : i = 0, 1, . . .} is the
controlled element. The second definition is more convenient, because the directed information density
i(Xn → Y n)

4
= log

(
⊗ni=0

dPYi|Y i−1,Xi

dPYi|Y i−1

)
=
∑n

i=0 log
(
dPYi|Y i−1,Xi

dPYi|Y i−1

)
corresponding to I(Xn → Y n), can be

equivalently expressed in terms of two consistent families of conditional distributions, namely, Q(·|x) on
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YN0 given x = (x0, x1, . . .) ∈ X N0 , and P(·|y) on X N0 given y = (y0, y1, . . .) ∈ YN0 , which uniquely
define {PYi|Y i−1,Xi : i = 0, 1, . . .} and {PXi|Xi−1,Y i−1 : i = 0, 1, . . .}, respectively, and vice-versa, such that
i(Xn → Y n) = log

(
dQ(·|xn)
dνP⊗Q(·)(y

n)
)
−a.s., where νP⊗Q(·) is the marginal distribution on ×ni=0Yi obtained

from P(·|y) and Q(·|x). Once the conditions on the abstract spaces {(Yi,Xi) : i = 0, 1, . . .} are identified,
and the consistency conditions are introduced, then it can be shown that i(Xn → Y n) has another version
given by i(Xn → Y n) = log

(
d(P(·|·)⊗Q(·|·))
d(P(·|·)⊗νP⊗Q(·))(x

n, yn)
)
−a.s., where ⊗ denotes the compound probability

distribution defined by P(·|·) and Q(·|·), and similarly for the rest of the measures. Consequently, directed
information can be expressed in terms of Kullback-Leibler distance D

(
P⊗Q||P⊗ νP⊗Q

)
1.

Notations and Preliminaries.
Denote the set of nonnegative integers by N0

4
= {0, 1, 2, . . .}, and the restriction of N0 to positive

integers by N1
4
= {1, 2, . . .}, and to a finite set by Nn

0

4
= {0, 1, 2, . . . , n}. Introduce two sequences of

spaces {(Xn,B(Xn)) : n ∈ N0} and {(Yn,B(Yn)) : n ∈ N0}, called basic measurable spaces, where
Xn,Yn, n ∈ N0 are topological spaces, and B(Xn) and B(Yn) are Borel σ−algebras of subsets of Xn
and Yn, respectively. The set of probability measures on any measurable space (Z,B(Z)) is denoted by
M1(Z).
For each n ∈ N0 define the product spaces

(X0,n,B(X0,n))
4
= (×ni=0Xi,⊗ni=0B(Xi)), (Y0,n,B(Y0,n))

4
= (×ni=0Yi,⊗ni=0B(Yi)).

For each n ∈ N0, let Xn and Yn be the spaces of all possible outcomes. Given the data up to and
including the nth time, specifically, (xi, yi) ∈ Xi×Yi, i = 0, 1, . . . , n, the probability distributions at time
(n+ 1) are pn+1(An+1|x0, . . . , xn, y0, . . . , yn) and qn+1(Bn+1|y0, . . . , yn, x0, . . . , xn+1), An+1 ∈ B(Xn+1),
Bn+1 ∈ B(Yn+1). Hence, each possible outcome of the experiment is a sequence ω = (x0, y0, x1, y1, . . .)
with xn ∈ Xn, yn ∈ Yn for each n ∈ N0 (here, no time ordering is required).
Consequently, define the sample space Ω and the algebra F of all experiments by

(Ω,F)
4
=
(
×n∈N0 (Xn × Yn),⊗n∈N0

(
B(Xn)⊗ B(Yn)

))
.

Associated with the basic measurable spaces there are two basic sequences of Random Variables (RV’s)
{Xn : n ∈ N0} and {Yn : n ∈ N0}, such that for each n ∈ N0, they take values Xn ∈ Xn and Yn ∈ Yn.
These are introduced as follows.
Let X0, Y0, X1, Y1, . . . be the coordinate RV’s. For each n ∈ N0

Xn(ω) = xn, Yn(ω) = yn if ω = (x0, y0, x1, y1, . . .).

Clearly, Xn : (Ω,F) 7−→ (Xn,B(Xn)), Yn : (Ω,F) 7−→ (Yn,B(Yn)), and for each outcome ω ∈ Ω

of the experiment, Xn(ω), Yn(ω) are the results of the nth time. Similarly, Xn 4= {X0, . . . , Xn} and
Y n 4= {Y0, . . . , Yn} denote the result of the trials up to and including the nth time; they are RV taking
values in (X0,n,B(X0,n)) and (Y0,n,B(Y0,n)), respectively. The objective is to construct a measure P on
(Ω,F) consistent with the data (e.g., measurable spaces and conditional distributions).
For every n ∈ N0, define the σ-algebras generated by {X0, X1, . . . , Xn} and {Y0, Y1, . . . , Yn} by

F(Xn)
4
= σ{X0, X1, . . . , Xn}, F(Y n)

4
= σ{Y0, Y1, . . . , Yn}.

Then every event H ∈ F(Xn) has the form

H =
{

(X0, X1, . . . , Xn) ∈ A
}

= A×Xn+1 ×Xn+2 . . . , A ∈ B(X0,n)

1In the rest of the paper we write ν instead of νP⊗Q omitting its explicit dependence on P(·|y) and Q(·|x).
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and H is called a cylinder set with base A ∈ B(X0,n). Similarly, for an event J ∈ F(Y n)

J =
{

(Y0, Y1, . . . , Yn) ∈ B
}

= B × Yn+1 × Yn+2 . . . , B ∈ B(Y0,n)

and J is a cylinder set with base B ∈ B(Y0,n).
Points in the Cartesian countable product spaces X N0

4
= ×n∈N0Xn, YN0

4
= ×n∈N0Yn are denoted by x

4
=

{x0, x1, . . .} ∈ X N0 , y
4
= {y0, y1, . . .} ∈ YN0 , respectively. Similarly, for n ∈ N0, points in X0,n

4
= ×ni=0Xi,

Y0,n
4
= ×ni=0Yi are denoted by xn 4= {x0, x1, . . . , xn} ∈ X0,n, y

n 4= {y0, y1, . . . , yn} ∈ Y0,n, respectively.
Let B(X N0) and B(YN0) denote the σ−algebras in X N0 and YN0 , respectively, generated by cylinder sets
(e.g., B(X N0) is the smallest Borel σ−algebra containing all cylinder sets {x = (x0, x1, . . .) ∈ X N0 : x0 ∈
A0, x1 ∈ A1, . . . , xn ∈ An}, Ai ∈ B(Xi), i ∈ Nn

0 ). The Borel σ-algebra B(X N0) is denoted by ⊗i∈N0B(Xi).
Hence, B(X0,n) and B(Y0,n) denote the σ−algebras of cylinder sets in X N0 and YN0 , respectively, with
bases over Ai ∈ B(Xi), i ∈ Nn

0 , and Bi ∈ B(Yi), i ∈ Nn
0 , respectively.

Backward or Feedback Channel.
Suppose for each n ∈ N0, the conditional distribution of the RV Xn ∈ Xn is determined provided the
values of the basic processes Xn−1 = xn−1 ∈ X0,n−1 and Y n−1 = yn−1 ∈ Y0,n−1 are known, and let
{pn(dxn|xn−1, yn−1) : n ∈ N0} denote the collection of these distributions. At n = 0, the distribution
is p0(dx0|x−1, y−1), where (x−1, y−1) are either fixed, or p0(dx0|x−1, y−1) = p(dx0), depending on the
convention used. Without loss of generality, we assume p0(dx0|x−1, y−1)

4
= p0(x0) (i.e., σ{X−1, Y −1} =

{∅,Ω}). For each n ∈ N0, the functions pn(·|·, ·) : Xn × X0,n−1 × Y0,n−1 7−→ [0, 1] are candidates of
distributions of the sequence of RV’s {Xn : n ∈ N0} on {(Xn,B(Xn)) : n ∈ N0} if and only if the
following conditions hold.

i) For every n ∈ N0, and xn−1 ∈ X0,n−1, yn−1 ∈ Y0,n−1, pn(·|xn−1, yn−1) is a probability measure on
B(Xn);
ii) For every n ∈ N0, and An ∈ B(Xn), pn(An|·, ·) is an ⊗n−1

i=0

(
B(Xi) ⊗ B(Yi)

)
-measurable function of

xn−1 ∈ X0,n−1, y
n−1 ∈ Y0,n−1.

For every n ∈ N0, the set of all functions that satisfy i), ii), are called stochastic kernels on Xn given
X0,n−1 × Y0,n−1, and these are denoted by

Q(Xn|X0,n−1 × Y0,n−1)
4
=
{
pn(·|xn−1, yn−1) ∈M1(Xn) : xn−1 ∈ X0,n−1, y

n−1 ∈ Y0,n−1 and ii) holds
}
.

Given the collection of functions {pn(·|·, ·) : n ∈ N0} satisfying conditions i), ii), one can construct a
family of measures on the product space (X N0 ,B(X N0))

4
=
(
×i∈N0 Xi,⊗i∈N0B(Xi)

)
as follows.

Let C ∈ B(X0,n) be a cylinder set of the form

C
4
=
{
x ∈ X N0 : x0 ∈ C0, x1 ∈ C1, . . . , xn ∈ Cn

}
, Ci ∈ B(Xi), i ∈ Nn

0 , C0,n = ×ni=0Ci.

Define a family of measures P(·|y) parametrized by y ∈ YN0 on B(X N0) by

P(C|y)
4
=

∫
C0

p0(dx0)

∫
C1

p1(dx1|x0, y0) . . .

∫
Cn

pn(dxn|xn−1, yn−1) (II.1)

≡
←−
P 0,n(C0,n|yn−1). (II.2)

The notation
←−
P 0,n(·|yn−1) is used to denote the causal conditioning dependence of the measure P(·|y)

defined on cylinder sets C ∈ B(X0,n), for any n ∈ N0. The right hand side (RHS) of (II.1) uniquely defines
a measure on (X N0 ,B(X N0)). Moreover, for each n ∈ N0 the family of measures P(·|y) parametrized
by y ∈ YN0 , satisfies the following property (inherited from condition ii)): for E ∈ B(X N0), P(E|·) is
B(YN0)−measurable, and for E ∈ B(X0,n), P(E|·) is B(Y0,n−1)−measurable.
Thus, if conditions i) and ii) hold then for each y ∈ YN0 , the RHS of (II.1) defines a consistent family
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of finite-dimensional distribution, and hence there exists a unique measure on (X N0 ,B(X N0)), for which
pn(dxn|xn−1, yn−1) is obtained. This leads to the first definition of a feedback channel, as a family of
functions {pn(·|·, ·) ∈ Q(Xn|X0,n−1 × Y0,n−1) : n ∈ N0}, i.e., satisfying conditions i) and ii). This
definition is used extensively by many authors [6], [7], [10]–[13], when the alphabet spaces have finite
cardinality.

An alternative, equivalent definition of a feedback channel is established as follows. Consider a family
of measures P(·|y) on (X N0 ,B(X N0)) parametrized by y ∈ YN0 satisfying the following consistency
condition.

C1: If E ∈ B(X0,n) then P(E0,n|·) is B(Y0,n−1)−measurable function of y ∈ YN0 .

Clearly, if conditions i) and ii) are satisfied, then the family of measures P(·|y) defined via the RHS
of (II.1) satisfies consistency condition C1. The question we address next is whether for any family of
measures P(·|y) on (X N0 ,B(X N0)) parametrized by y ∈ YN0 , satisfying consistency condition C1, one
can construct a collection of functions {pn(·|·, ·) ∈ Q(Xn|X0,n−1 × Y0,n−1) : n ∈ N0}, i.e., satisfying
conditions i) and ii), which are connected to P(·|y) via relation (II.1). To illustrate this point, let A(n) =
{x ∈ X N0 : xn∈A}, A ∈ B(Xn), and let P(A(n)|B(X0,n−1)|y) denote the conditional probability of A(n)

with respect to B(X0,n−1) calculated on the probability space
(
X N0 ,B(X N0),P(·|y)

)
. Then

P(A(n)|B(X0,n−1)|y) = pn(A|xn−1, yn−1), A(n) ∈ B(X0,n), (II.3)

for P(·|y)−almost all x ∈ X N0 . Clearly, the function on the RHS of (II.3), pn(A|xn−1, yn−1) is B(X0,n−1)-
measurable for a fixed A ∈ B(Xn) and yn−1 ∈ Y0,n−1, but it cannot be claimed that pn(·|xn−1, yn−1) is
a probability measure on Xn. However, under the general assumption that {(Xn,B(Xn)) : n ∈ N0} are
complete separable metric spaces (Polish spaces), with B(Xn) the σ−algebra of Borel sets, it is shown in
[32], that the RHS of (II.3) represents a version of conditional probability (a.s.), i.e., condition i) holds
as well. Therefore, to establish the second equivalent definition of a family of measures defined by (II.1)
with elements {pn(·|·, ·) ∈ Q(Xn|X0,n−1 × Y0,n−1) : n ∈ N0}, we introduce the following condition on
the alphabet spaces.

iii) {Xn : n ∈ N0} are complete separable metric spaces and {B(Xn) : n ∈ N0} are the σ−algebras of
Borel sets.

By [32], if condition iii) holds, then for any family of measures P(·|y) parametrized by y ∈ YN0 satisfying
C1 one can construct a collection of versions of conditional distributions {pn(dxn|xn−1, yn−1) : n ∈ N0}
satisfying conditions i) and ii) which are connected with P(·|y) via relation (II.1), and hence the following
conclusion.
When {Xn : n ∈ N0} are Polish Spaces with {B(Xn) : n ∈ N0} the σ−algebra of Borel sets, there are
two equivalent definitions of a feedback channel. The first definition is the usual one given by a collection
of functions {pn(·|·, ·) ∈ Q(Xn|X0,n−1 × Y0,n−1) : n ∈ N0}, i.e., satisfying conditions i) and ii). The
second definition is given by a family of measures P(·|y) on (X N0 ,B(X N0)) depending parametrically
on y ∈ YN0 and satisfying the consistency condition C1.
The second equivalent definition of a feedback channel, together with an analogous equivalent definition
for the forward channel will be used throughout the paper.

Feedforward Channel.
The above methodology is repeated to obtain two equivalent definitions for the forward channel as well.
Suppose for each n ∈ N0, the conditional distribution of the RV Yn ∈ Yn is determined provided the
values of the basic processes Y n−1 ∈ Y0,n−1 and Xn = xn ∈ X0,n are known, and let {qn(dyn|yn−1, xn) :
n ∈ N0} denotes this collection of distributions. At n = 0, q0(dy0|y−1, x0), where y−1 is either fixed
or its distribution is fixed (depending on the convection used). Without loss of generality, we assume
q0(dy0|y−1, x0)

4
= q0(dy0|x0). The functions {qn(·|·, ·) : n ∈ N0} satisfy the following conditions.

iv) For every n ∈ N0, and yn−1 ∈ Y0,n−1, x
n ∈ X0,n, qn(·|yn−1, xn) is a probability measure B(Yn);
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v) For every n ∈ N0, and Bn ∈ B(Yn), qn(Bn|·, ·) is an ⊗n−1
i=0

(
B(Yi) ⊗ B(Xi)

)
⊗ B(Xn)-measurable

function of xn ∈ X0,n, y
n−1 ∈ Y0,n−1.

For every n ∈ N0, the set of all functions that satisfy iv), v), are called stochastic kernels on Yn given
Y0,n−1 ×X0,n, and these are denoted by

Q(Yn|Y0,n−1 ×X0,n) = {qn(·|yn−1, xn) ∈M1(Yn) : yn−1 ∈ Y0,n−1, x
n ∈ X0,n and v) holds}.

Similarly as before, using the collection of functions {qn(·|·, ·) ∈ Q(Yn|Y0,n−1×X0,n) : n ∈ N0} one can
construct a family of measures Q(·|x) on (YN0 ,B(YN0)) which depend parametrically on x ∈ X N0 , as
follows.
Consider a cylinder set D ∈ B(Y0,n) of the form

D
4
=
{
y ∈ YN0 : y0∈D0, y1∈D1, . . . , yn∈Dn

}
, Di ∈ B(Yi), n ∈ Nn

0 , D0,n = ×ni=0Di.

Define a family of measures on B(YN0) parametrized by x ∈ X N0 by

Q(D|x)
4
=

∫
D0

q0(dy0|x0)

∫
D1

q1(dy1|y0, x
1) . . .

∫
Dn

qn(dyn|yn−1, xn) (II.4)

≡
−→
Q 0,n(D0,n|xn). (II.5)

Since, for each x ∈ X N0 the RHS of (II.4) defines a consistent family of finite dimensional distri-
bution, then there exist a unique measure on (YN0 ,B(YN0)) from which the family of distributions
{qn(dyn|yn−1, xn) : n ∈ N0} satisfying iv), v) can be obtained. Moreover, the family of measures Q(·|x)
parametrized by x ∈ X N0 satisfies the following consistency condition.

C2: If F ∈ B(Y0,n), then Q(F |·) is a B(X0,n)−measurable function of x ∈ X N0 .

By [32], to obtain another equivalent definition for the forward channel introduce the following condition
on the output alphabet.

vi) {Yn : n ∈ N0} are Polish Spaces and {B(Yn) : n ∈ N0} are the σ−algebra of Borel sets.

If condition vi) holds, then for any family of measures Q(·|x) on (YN0 ,B(YN0)) parametrized by x ∈ X N0

satisfying consistency condition C2, one can construct a collection of functions {qn(·|·, ·) ∈ Q(Yn|Y0,n−1×
X0,n) : n ∈ N0}, i.e., satisfying conditions iv) and v), which are connected with Q(·|x) via relation (II.4).
Therefore, we arrive at two equivalent definitions for the forward channel as well.
We conclude this section by constructing the probability space (Ω,F ,P), as stated earlier, and the sequence
of RV’s {(Xn, Yn) : n ∈ N0} defined on it. Given the basic measures P(·|y) on X N0 satisfying consistency
condition C1 and Q(·|x) on YN0 satisfying consistency condition C2, one can construct a sequence of
RV’s {Xn, Yn : n ∈ N0} or conditional distributions as follows.
Suppose iii), iv) hold. Let A(n) = {x : xn∈A}, A ∈ B(Xn) and B(n) = {y : yn∈B}, B ∈ B(Yn). In
addition, let P(A(n)|B(X0,n−1)|y) denote the conditional probability of A(n) with respect to B(X0,n−1) cal-
culated on the probability space

(
X N0 ,B(X N0),P(·|y)

)
, and Q(B(n)|B(Y0,n−1)|x) denote the conditional

probability of B(n) with respect to B(Y0,n−1) calculated on the probability space
(
YN0 ,B(YN0),Q(·|x)

)
.

Then for each n ∈ N0, by conditioning it follows that

P
{
Xn∈A|Xn−1 = xn−1, Y n−1 = yn−1

}
= P

(
{x : xn∈A}|B(X0,n−1)|y

)
, A∈B(Xn)

= pn(A|xn−1, yn−1) (II.6)
P
{
Yn∈B|Y n−1 = yn−1, Xn = xn

}
= Q

(
{y : yn∈B}|B(Y0,n−1)|x

)
, B∈B(Yn)

= qn(B|yn−1, xn) (II.7)

for almost all x ∈ X N0 in measure P(·|y), and for almost all y ∈ YN0 in measure Q(·|x). Note that for
each n ∈ N0, pn(·; ·, ·) ∈ Q(Xn|X0,n−1,Y0,n−1) and qn(·|·, ·) ∈ Q(Yn|Y0,n−1,Xn) are stochastic kernels
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determined from P(·|·) and Q(·|·), respectively, (e.g., they are related via (II.1) and (II.4), respectively).
Consequently, the finite dimensional distributions of the sequence of RV’s {(Xn, Yn) : n ∈ N0} is defined
by

P
{
X0∈A0, Y0 ∈ B0, . . . , Xn∈An, Yn∈Bn

}
=

∫
A0

p0(dx0)

∫
B0

q0(dy0|x0) . . .∫
An

pn(dxn|xn−1, yn−1)

∫
Bn

qn(dyn|yn−1, xn). (II.8)

Hence, given the two Polish spaces X N0 and YN0 , for any P(·|·) and Q(·|·) satisfying the consistency
conditions C1, C2, respectively, there exist a probability space and a sequence of RV’s {(Xn, Yn) : n ∈
N0} defined on it, whose joint probability distribution is uniquely defined by (II.8), via P(·|·) and Q(·|·).

The following remark summarizes the previous discussion on the two equivalent definitions of forward
and feedback channels.

Remark II.1.
Suppose {Xn : n ∈ N0}, {Yn : n ∈ N0}, are complete, separable metric spaces (Polish spaces) and
{B(Xn) : n ∈ N0}, {B(Yn) : n ∈ N0} are respectively, the σ−algebras of Borel sets.
Then

1) The collection of stochastic kernels {pn(·|·, ·) ∈ Q(Xn|X0,n−1 × Y0,n−1) : n ∈ N0} uniquely define a
family of probability measures on (X N0 ,B(X N0)) parametrized by y ∈ YN0 via (II.1).

2) For any family of probability measures P(·|y) on (X N0 ,B(X N0)) parametrized by y ∈ YN0 , satisfying
consistency condition C1 there exists a collection of stochastic kernels {pn(·|·, ·) ∈ Q(Xn|X0,n−1×Y0,n−1) :
n ∈ N0} connected to P(·|·) via (II.1).

3) The collection of stochastic kernels {qn(·|·, ·) ∈ Q(Yn|Y0,n−1×X0,n) : n ∈ N0} uniquely define a family
of probability measures on (YN0 ,B(YN0)) parametrized by x ∈ X N0 via (II.4).

4) For any family of probability measures Q(·|x) on (YN0 ,B(YN0)) parametrized by x ∈ X N0 satisfying
consistency condition C2 there exists a collection of stochastic kernels {qn(·|·, ·) ∈ Q(Yn|Y0,n−1×X0,n) :
n ∈ N0} connected to Q(·|·) via (II.4).

The point to be made here is that directed information as defined by (I.1)-(I.3) can be expressed via the
equivalent definitions of Remark II.1, 2) and 4) rather than 1) and 3). We use this equivalent definition
of directed information, to derive the functional and topological properties of directed information on
general abstract spaces. Throughout the rest of the paper it is assumed that the conditions of Remark II.1
are satisfied, i.e., all spaces are Polish spaces.

III. PROPERTIES OF DIRECTED INFORMATION

In this section, we define the feedforward information I(Xn → Y n) on abstract spaces (Polish spaces),
via the Kullback-Leibler distance (or relative entropy), using the basic family of measures P(·|y) on
(X N0 ,B(X N0)), and Q(·|x) on (YN0 ,B(YN0)), which satisfy consistency condition C1 and C2, re-
spectively. Once this is established, then following Pinsker [44], it will become obvious that directed
information permits a representation as a supremum of relative entropy between two distributions, where
the supremum is taken over all measurable partitions on a given σ− algebra of subsets of a set Z. Further,
in a subsequent subsection, we use the definition of directed information in terms of P(·|y) and Q(·|x), to
derive several of its properties, such as, convexity, concavity, lower semicontinuity, with respect to these
two families of measures.
To present the precise expression for the directed information, we first introduce the measures of interest
constructed from the basic consistent families of conditional distributions. Introduce the following notation.
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The set of stochastic kernels by

QC1(X N0 |YN0)
4
=
{
P(·|y) ∈M1(X N0) : y ∈ YN0 and consistency condition C1 holds

}
≡
{
P(·|·) ∈ Q(X N0 |YN0) : consistency condition C1 holds

}
. (III.1)

Note that for each y ∈ YN0 , elements of this set are probability distributions on X N0 denoted by

MC1
1 (X N0)

4
=
{
P(·|y) ∈M1(X N0) : consistency condition C1 holds

}
(III.2)

Similarly,

QC2(YN0 |X N0)
4
=
{
Q(·|x) ∈M1(YN0) : x ∈ X N0 and consistency condition C2 holds

}
≡
{
Q(·|·) ∈ Q(YN0|X N0) : consistency condition C2 holds

}
. (III.3)

and for each x ∈ X N0 , elemenets of this set are probability distributions on YN0 , denoted by

MC2
1 (YN0)

4
=
{
Q(·|x) ∈M1(YN0) : consistency condition C2 holds

}
(III.4)

The projection of MC1
1 (X N0), MC2

1 (YN0), QC1(X N0|YN0), and QC2(YN0|X N0) to finite number of
coordinates is denoted by MC1

1 (X0,n), MC2
1 (Y0,n), QC1(X0,n|Y0,n−1), and QC2(Y0,n|X0,n), respectively.

Since the spaces are complete separable metric spaces then P(·|y) ∈ M1(X N0), for fixed y ∈ YN0 , and
Q(·|x) ∈M1(YN0), for fixed x ∈ X N0 , are regular conditional probability distributions [30].
Next, we define the distributions of interest. Given any P(·|·) ∈ QC1(X N0|YN0) and Q(·|·) ∈ QC2(YN0 |X N0),
by utilizing the construction of Section II, we can define uniquely {pn(·|·, ·) : n ∈ N0} and {qn(·|·, ·) :
n ∈ N0},

(
see (II.6), (II.7)

)
and the following distributions.

P1: The joint distribution on X N0 × YN0 of the basic sequence {Xn, Yn : n ∈ N0} constructed from
P(·|·) ∈ QC1(X N0|YN0) and Q(·|·) ∈ QC2(YN0|X N0), defined uniquely for Ai ∈ B(Xi), Bi ∈ B(Yi),
∀i ∈ Nn

0 , by

(
←−
P 0,n ⊗

−→
Q 0,n)(×ni=0(Ai×Bi))

4
=P
{
X0∈A0, Y0 ∈ B0, . . . , Xn∈An, Yn∈Bn

}
=

∫
A0

p0(dx0)

∫
B0

q0(dy0|x0) . . .

∫
An

pn(dxn|xn−1, yn−1)

∫
Bn

qn(dyn|yn−1, xn). (III.5)

Formally, the (n+1) fold compound joint distribution defined by (III.5) is written as (
←−
P 0,n⊗

−→
Q 0,n)(dxn, dyn)

or
←−
P 0,n(dxn|yn−1)⊗

−→
Q 0,n(dyn|xn).

P2: The marginal distributions on X N0 of the sequence {Xn : n ∈ N0} constructed from P(·|·) ∈
QC1(X N0|YN0) and Q(·|·) ∈ QC2(YN0|X N0), defined uniquely by2

µ0,n(×ni=0Ai)
4
= P

{
X0 ∈ A0, Y0 ∈ Y0, . . . , Xn ∈ An, Yn ∈ Yn

}
, Ai ∈ B(Xi), ∀i ∈ Nn

0 (III.6)

= (
←−
P 0,n ⊗

−→
Q 0,n)(×ni=0(Ai × Yi))

=

∫
A0

p0(dx0)

∫
Y0

q0(dy0|x0) . . .

∫
An

pn(dxn|xn−1, yn−1)

∫
Yn
qn(dyn|yn−1, xn). (III.7)

2Actually µ ≡ µP⊗Q but we omit the superscript throughout the paper.
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Formally, (III.7) is written as µ0,n(dxn) = (
←−
P 0,n ⊗

−→
Q 0,n)(dxn,Y0,n), and by Bayes’ rule µ0,n(dxn) =

⊗ni=0µi(dxi|xi−1).

P3: The marginal distributions on YN0 of the sequence {Yn : n ∈ N0} constructed from P(·|·) ∈
QC1(X N0|YN0) and Q(·|·) ∈ QC2(YN0|X N0), defined uniquely by3

ν0,n(×ni=0Bi)
4
= P

{
X0 ∈ X0, Y0 ∈ B0, . . . , Xn ∈ Xn, Yn ∈ Bn

}
, Bi ∈ B(Yi), ∀i ∈ Nn

0 (III.8)

= (
←−
P 0,n ⊗

−→
Q 0,n)(×ni=0(Xi ×Bi))

=

∫
X0

p0(dx0)

∫
B0

q0(dy0|x0) . . .

∫
Xn
pn(dxn|xn−1, yn−1)

∫
Bn

qn(dyn|yn−1, xn). (III.9)

Formally, (III.9) is written as ν0,n(dyn) = (
←−
P 0,n ⊗

−→
Q 0,n)(X0,n, dy

n), and by Bayes’ rule ν0,n(dyn) =
⊗ni=0νi(dyi|yi−1).

P4: The distribution
−→
Π 0,n : B(X0,n) ⊗ B(Y0,n) 7→ [0, 1] constructed from

←−
P 0,n(·|·) ∈ QC1(X0,n|Y0,n−1)

and ν0,n(dyn) = (
←−
P 0,n ⊗

−→
Q 0,n)(X0,n, dy

n) ∈M1(Y0,n) of (III.8), defined uniquely by

−→
Π 0,n(×ni=0(Ai×Bi))

4
= (
←−
P 0,n ⊗ ν0,n)(×ni=0(Ai×Bi)), Ai ∈ B(Xi), Bi ∈ B(Yi), ∀i ∈ Nn

0

=

∫
A0

p0(dx0)

∫
B0

ν0(dy0)

∫
A1

p1(dx1|x0, y0)

∫
B1

ν1(dy1|y0) . . .

. . .

∫
An

pn(dxn|xn−1, yn−1)

∫
Bn

νn(dyn|yn−1). (III.10)

Formally, (III.10) is written as
−→
Π 0,n(dxn, dyn) =

←−
P 0,n(dxn|yn−1)⊗ ν0,n(dyn) ∈M1(X0,n × Y0,n).

P5: The distribution
←−
Π 0,n : B(Y0,n)⊗B(X0,n) 7→ [0, 1] constructed from

−→
Q 0,n(·|·) ∈ QC2(Y0,n|X0,n) and

µ0,n(dxn) = (
←−
P 0,n ⊗

−→
Q 0,n)(dxn,Y0,n) ∈M1(X0,n) of (III.7), defined uniquely by

←−
Π 0,n(×ni=0(Ai×Bi))

4
= (µ0,n ⊗

−→
Q 0,n)(×ni=0(Ai×Bi)), Ai ∈ B(Xi), Bi ∈ B(Yi), ∀i ∈ Nn

0

=

∫
A0

µ0(dx0)

∫
B0

q0(dy0|x0)

∫
A1

µ1(dx1|x0)

∫
B1

q1(dy1|y0, x0) . . .

. . .

∫
An

µn(dxn|xn−1)

∫
Bn

qn(dyn|yn−1, xn). (III.11)

Formally, (III.11) is written as
←−
Π 0,n(dxn, dyn) = µ0,n(dxn)⊗

−→
Q 0,n(dyn|xn) ∈M1(X0,n × Y0,n).

From the above definitions, for each n ∈ N0, an alternative way to construct the conditional distributions
of Yn given Y n−1 = yn−1, νn(·|yn−1) ∈ M1(Yn), and Xn given Xn−1 = xn−1, µn(·|xn−1) ∈ M1(Xn)
is as follows. Let A(n) = {x : xn ∈ A}, A ∈ B(Xn), B(n) = {y : yn ∈ B}, B ∈ B(Yn), and let−→
Π 0,n(A(n), B(n)|B(X0,n−1)⊗ B(Y0,n−1)) denote the joint conditional probability of A(n)×B(n) with respect
to B(X0,n−1)⊗ B(Y0,n−1) calculated on the probability space

(
X N0 ⊗ YN0 ,B(X N0)⊗ B(YN0),

−→
Π 0,n(·)

)
.

Then, for A ∈ B(Xn), B ∈ B(Yn) we obtain
−→
Π 0,n(A(n), B(n)|B(X0,n−1)⊗ B(Y0,n−1)) = pn(A|xn−1, yn−1)× νn(B|yn−1). (III.12)

Hence, νn(·|yn−1) ∈ M1(Yn) is given by νn(dyn|yn−1) =
∫
Xn
−→
Π 0,n(dxn, dyn|xn−1, yn−1), from which

ν0,n(dyn) ∈ M1(Y0,n) is also obtained. Similarly, let
←−
Π 0,n(A(n), B(n)|B(Y0,n−1) ⊗ B(X0,n−1)) denote

3Similarly, ν ≡ νP⊗Q.
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the joint conditional probability of A(n) × B(n) with respect to B(Y0,n−1)⊗ B(X0,n−1) calculated on the
probability space

(
YN0 ×X N0 ,B(YN0)⊗ B(X N0),

←−
Π 0,n(·)

)
. Then, for B ∈ B(Yn) we have

←−
Π 0,n(A(n), B(n)|B(X0,n−1)⊗ B(Y0,n−1)) =

∫
An

qn(B|yn−1, xn)⊗ µn(dxn|xn−1) (III.13)

from which µn(·|xn−1) ∈ M1(Xn) and µ0,n(dxn) ∈ M1(X0,n) are obtained. Similarly, from (III.10) and
(III.12) we can obtain any of the individual conditional distributions pn(·|xn−1, yn−1) ∈ M1(Xn) and
qn(·|yn−1, xn) ∈M1(Yn) appearing in their RHS by proper conditional expectations.

Using the first definition of basic processes, that is, given a collection of stochastic kernels {pn(·|·, ·) ∈
Q(Xn|X0,n−1 × Y0,n−1) : n ∈ N0} and {qn(·|·, ·) ∈ Q(Yn|Y0,n−1 × X0,n) : n ∈ N0}, the joint distribution,
as well as the conditional distributions are defined via P1−P5. Consequently, it is well-known that
directed information is defined via relative entropy as follows [11]

I(Xn → Y n)
4
=

n∑
i=0

I(X i;Yi|Y i−1)

=
n∑
i=0

∫
Y0,i−1

∫
X0,i×Yi

log

(
dP0,i(·, ·|yi−1)

d
(
P0,i(·|yi−1)× νi(·|yi−1)

)(xi, yi)

)
P0,i(dx

i, dyi|yi−1)P0,i−1(dyi−1) (III.14)

=
n∑
i=0

∫
X0,i×Y0,i−1

D
(
qi(·|yi−1, xi)||νi(·|yi−1)

)
pi(dxi|xi−1, yi−1)

⊗i−1
j=0

(
qj(dyj|yj−1, xj)⊗ pj(dxj|xj−1, yj−1)

)
(III.15)

≡ IXn→Y n(pi(·|·, ·), qi(·|·, ·) : i = 0, 1, . . . , n). (III.16)

The RHS in (III.14) follows from the definition of conditional mutual information. In (III.16), we use
the notation IXn→Y n(pi(·|·, ·), qi(·|·, ·) : i = 0, 1, . . . , n) to indicate that I(Xn → Y n) is a functional of
{pi(·|·, ·) ∈ Q(Xi|X0,i−1 × Y0,i−1), qi(·|·, ·) ∈ Q(Yi|Y0,i−1 ×X0,i) : i = 0, 1, . . . , n}.

A. Directed Information Functional of Consistent Conditional Distributions
Now we consider the second definition of basic process introduced in Section II. Given any P(·|·) ∈
QC1(X N0|YN0) and Q(·|·) ∈ QC2(X N0|YN0) the distributions under P1−P5 are constructed. Next, we
define directed information via relative entropy as often done for mutual information [28]. By Lemma A.9,←−
P 0,n⊗

−→
Q 0,n <<

←−
P 0,n⊗ν0,n if and only if

−→
Q 0,n(·|xn) << ν0,n(·) for

←−
P 0,n−almost all xn ∈ X0,n. Utilizing

the Radon-Nikodym derivative (RND) d(
←−
P 0,n⊗

−→
Q0,n)

d(
←−
P 0,n⊗ν0,n)

(xn, yn), define the relative entropy of
←−
P 0,n ⊗

−→
Q 0,n

with respect to
−→
Π 0,n as follows.

IXn→Y n(
←−
P 0,n,

−→
Q 0,n)

4
= D(

←−
P 0,n ⊗

−→
Q 0,n||

−→
Π 0,n)

=

∫
X0,n×Y0,n

log
(d(
←−
P 0,n ⊗

−→
Q 0,n)

d(
←−
P 0,n ⊗ ν0,n)

(xn, yn)
)

(
←−
P 0,n ⊗

−→
Q 0,n)(dxn, dyn) (III.17)

=

∫
X0,n×Y0,n

log
(d−→Q 0,n(·|xn)

dν0,n(·)
(yn)

)
(
←−
P 0,n ⊗

−→
Q 0,n)(dxn, dyn) (III.18)

≡ IXn→Y n(
←−
P 0,n,

−→
Q 0,n) (III.19)

Note that (III.18) is obtained by utilizing the fact that if
←−
P 0,n ⊗

−→
Q 0,n <<

←−
P 0,n ⊗ ν0,n then the RND

d(
←−
P 0,n⊗

−→
Q0,n)

d(
←−
P 0,n⊗ν0,n)

(xn, yn) represents a version of d
−→
Q0,n(·|xn)

dν0,n(·) (yn),
←−
P 0,n−a.s for all xn ∈ X0,n. On the other hand,
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using Lemma A.9,
−→
Q 0,n(·|xn)� ν0,n(·),

←−
P 0,n−almost xn ∈ X0,n, and by Radon-Nikodym theorem, there

exists a version of the RND ξ̄0,n(xn, yn)
4
=

d
−→
Q0,n(·|xn)

dν0,n(·) (yn) which is a non-negative measurable function of

(xn, yn) ∈ X0,n × Y0,n. Hence another version of ξ̄0,n(·, ·) is ξ̄0,n(xn, yn) =
d(
←−
P 0,n⊗

−→
Q0,n)

d(
←−
P 0,n⊗ν0,n)

(xn, yn). We use

notation IXn→Y n(
←−
P 0,n,

−→
Q 0,n) given in (III.19) to illustrate that D(

←−
P 0,n ⊗

−→
Q 0,n||

−→
Π 0,n) is a functional of{←−

P 0,n(·|·),
−→
Q 0,n(·|·)

}
∈ QC1(X0,n|Y0,n−1)×QC2(Y0,n|X0,n).

In the next Remark we summarize the equivalent definitions of directed information based on the two
equivalent definitions of channels, that is, the one based on (III.15), (III.16), and the one based on (III.17),
(III.18).

Remark III.1.
Let P(·|·) ∈ QC1(X N0 |YN0) and Q(·|·) ∈ QC2(YN0|X N0). By repeated application of Lemma A.9, and
the chain rule of relative entropy [30, Theorem B.2.1., p. 326], directed information admits the following
equivalent definitions.

I(Xn → Y n)
4
=

n∑
i=0

I(X i;Yi|Y i−1) = D(
←−
P 0,n ⊗

−→
Q 0,n||

−→
Π 0,n) (III.20)

=

∫
X0,n×Y0,n

log
(d−→Q 0,n(·|xn)

dν0,n(·)
(yn)

)
(
←−
P 0,n ⊗

−→
Q 0,n)(dxn, dyn) ≡ IXn→Y n(

←−
P 0,n,

−→
Q 0,n). (III.21)

Clearly, (III.21) is valid even when (
←−
P 0,n⊗

−→
Q 0,n)(dxn, dyn) is singular with respect to (

←−
P 0,n⊗ν0,n)(dxn, dyn),

in which case its value is +∞. The point to be made here is that we will show the convexity, con-
cavity, lower semicontinuity properties of directed information using the definition I(Xn → Y n) =

D(
←−
P 0,n ⊗

−→
Q 0,n||

−→
Π 0,n) ≡ IXn→Y n(

←−
P 0,n,

−→
Q 0,n), as a functional of

←−
P 0,n(·|yn−1) ∈ MC1

1 (X0,n) and
−→
Q 0,n(·|xn) ∈MC2

1 (Y0,n). We will also use the directed information definition D(
←−
P 0,n⊗

−→
Q 0,n||

−→
Π 0,n), as

a functional of {
←−
P 0,n,

−→
Q 0,n} to show lower semicontinuity, convexity and concavity properties. Then we

will use these functional and topological properties to demonstrate how to establish existence of optimal
solutions to the two extremum problems defined by (I.5) and (I.8), respectively.

B. Convexity and Concavity of Directed Information
First, we show that the set of conditional distributions P(·|y) ∈MC1

1 (X N0) and Q(·|x) ∈MC2
1 (YN0),

i.e., satisfying consistency conditions C1 and C2, are convex, and then we show convexity of directed
information with respect to Q(·|x) and concavity with respect to P(·|y).
Recall that the set of all distributions P(·|y) ∈M1(X N0) and Q(·|x) ∈M1(YN0) (i.e., without imposing
consistency conditions C1 and C2) are convex, that is, given {P1(·|y), P2(·|y)} ∈ M1(X N0)×M1(X N0),
and λ ∈ (0, 1), there exists a probability measure P̃ on (X N0 × YN0 ,B(X N0) ⊗ B(YN0)) whose regular
distribution P̃ (·|y) satisfies P̃ (·|y) = λP1(·|y) + (1− λ)P2(·|y) ∈M1(X N0).
Next, we show convexity of the sets MC1

1 (X N0) and MC2
1 (YN0).

Theorem III.2. (Convexity of sets MC1
1 (X N0), MC2

1 (YN0))
Let {Xn : n ∈ N0}, {Yn : n ∈ N0} be Polish spaces with B(Xn), B(Yn), respectively, the σ−algebras
of Borel sets. Then the sets of distributions P(·|y) ∈ MC1

1 (X N0) and Q(·|x) ∈ MC2
1 (YN0) are convex,

and similarly, their projection to finite number of coordinates, that is,
←−
P 0,n(·|yn−1) ∈ MC1

1 (X0,n) and−→
Q 0,n(·|xn) ∈MC2

1 (Y0,n), are also convex.

Proof: Since the methodology is similar for both sets, only the derivation forMC1
1 (X N0) is given. By

definition, the set of distributionsMC1
1 (X N0) is convex if for a given {P1(·|y),P2(·|y)} ∈ MC1

1 (X N0)×
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MC1
1 (X N0), and a given λ ∈ (0, 1), there exists a probability measure P̃ on (X N0 × YN0 ,B(X N0) ⊗

B(YN0), whose regular conditional measure P̃ (·|y) is a convex combination P̃ (·|y) = λP1(·|y) + (1 −
λ)P2(·|y), a.e. y ∈ YN0 , and consistency condition C1 holds, i.e., λP1(·|y) + (1 − λ)P2(·|y) ∈
MC1

1 (X N0). By [45], the set of distributionsM1(X N0) is convex, and since {P1(·|y),P2(·|y)} ∈ M1(X N0)
×M1(X N0), then there is a probability measure P̃ on M1

(
X N0 ×YN0 ,B(X N0 ⊗B(YN0)), whose regular

distribution P̃ (·|y), y ∈ YN0 , satisfies

P̃ (·|y) = λP1(·|y) + (1− λ)P2(·|y) ∈M1(X N0), ∀λ ∈ (0, 1).

Moreover, if P1(·|y), and P2(·|y) satisfy consistency condition C1, then their convex combination also
satisfies consistency condition C1, and consequently λP1(·|y) + (1 − λ)P2(·|y) ∈ MC1

1 (X N0), i.e., the
consistency condition C1 holds. The derivation for Q(·|x) ∈MC2

1 (YN0) is similar. The derivation for the
projection to finite number of coordinates is done as follows. Let A(n) = {x : xn∈A}, A ∈ B(Xn), and let
P(A(n)|B(X0,n−1)|y) denote the conditional probability of A(n) with respect to B(X0,n−1) calculated on the
probability space

(
X N,B(X N),P(·|y)

)
. From the definition of regular conditional probability measures,

it follows that

P̃ (A(n)|B(X0,n−1)|y) = λP1(A(n)|B(X0,n−1)|y) + (1− λ)P2(A(n)|B(X0,n−1)|y)− a.s.
= λp1

n(A|xn−1, yn−1) + (1− λ)p2
n(A|xn−1, yn−1)− a.s.

where p1
n(·|xn−1, yn−1), p2

n(·|xn−1, yn−1) are regular conditional distributions. Since convex combination
of regular conditional distributions is also a regular conditional distribution, by Remark II.1 the set←−
P 0,n(·|yn−1) ∈MC1

1 (X0,n) is convex, and the derivation is complete.

Since MC1
1 (X0,n) and MC2

1 (Y0,n) are convex, then we proceed further to show that directed information
IXn→Y n(

←−
P 0,n,

−→
Q 0,n), as a functional of

←−
P 0,n(·|yn−1) ∈MC1

1 (X0,n), for a fixed
−→
Q 0,n(·|xn) ∈MC2

1 (Y0,n),
is concave, and as a functional of

−→
Q 0,n(·|xn) ∈ MC2

1 (Y0,n), for a fixed
←−
P 0,n(·|yn−1) ∈ MC1

1 (X0,n), is
convex. These results are shown in the next theorem.

Theorem III.3. (Convexity of conditional distributions)
Let {Xn : n ∈ N0}, {Yn : n ∈ N0} be Polish spaces with B(Xn), B(Yn), respectively, the σ−algebras of
Borel sets. Consider the directed information functional I(Xn → Y n) = IXn→Y n (

←−
P 0,n,

−→
Q 0,n), IXn→Y n :

MC1
1 (X0,n)×MC2

1 (Y0,n) 7→ [0,∞] defined by (III.21).
Then the following hold.

1) IXn→Y n(
←−
P 0,n,

−→
Q 0,n) is a convex functional of

−→
Q 0,n(·|xn) ∈ MC2

1 (Y0,n) for a fixed
←−
P 0,n(·|yn−1) ∈

MC1
1 (X0,n).

2) IXn→Y n(
←−
P 0,n,

−→
Q 0,n) is a concave functional of

←−
P 0,n(·|yn−1) ∈ MC1

1 (X0,n) for a fixed
−→
Q 0,n(·|xn) ∈

MC2
1 (Y0,n).

3) IXn→Y n(
←−
P 0,n, ·) is a strictly convex functional on the set

{−→
Q 0,n(·|xn) ∈MC2

1 (Y0,n) : IXn→Y n(
←−
P 0,n,

−→
Q 0,n)

<∞
}

for a fixed
←−
P 0,n(·|yn−1) ∈MC1

1 (X0,n).

Proof: By Theorem III.2, the sets MC1
1 (X0,n) and MC2

1 (Y0,n) are convex. Therefore, to show parts
1), 2), 3) we utilize the consistency of the two families of conditional distributions and we apply the log-
sum formulae, and the existence of certain Radon-Nikodym Derivatives (RNDs). The complete derivation
is given in Appendix B.

Theorem III.3 is analogous to mutual information I(Xn;Y n) ≡ IXn;Y n(PXn , PY n|Xn), expressed as a func-
tional of input distribution PXn(·) ∈M1(X0,n) and the channel PY n|Xn(·|xn) ∈M1(Y0,n), which is known
to be a convex (respectively concave) functional of PY n|Xn(·|xn) ∈ M1(Y0,n)

(
respectively PXn(·) ∈

M1(X0,n)
)
, for a fixed PXn(·) ∈ M1(X0,n)

(
respectively PY n|Xn(·|xn) ∈ M1(Y0,n)

)
. It is important to

point out that if one considers the alternative definition of directed information (III.14), (III.16), as a
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functional of the sequence of input channel distributions, I(Xn → Y n) ≡ IXn→Y n(pi(·|·, ·), qi(·|·, ·) : i =
0, 1, . . . , n), then it is not clear to us whether it is possible to establish convexity and concavity with
respect to qi and pi.
For finite alphabet spaces, the convexity of the set of causally conditioned probability mass functions
P (xn||yn−1)

4
=
∏n

i=0 p(xi|xi−1, yi−1) and Q(yn||xn)
4
=
∏n

i=0 q(yi|yi−1, xi) is shown in [46, Lemma 1],
under the assumption that for each n ∈ N0, the ratios P (xn||yn−1)

P (xn−1||yn−1)
and Q(yn||xn)

Q(yn−1||xn−1)
exist, and they are given

by p(xn|xn−1, yn−1) and q(yn|yn−1, xn), respectively. The derivation in [46] is based on showing that the set
of all causally conditioned distributions P (xn||yn−1) is a polyhedron. The method described in [46] does
not apply to conditional distributions defined on continuous alphabets. Theorem III.2 and Theorem III.3,
hold for general conditional distributions defined on abstract alphabet spaces, and they do not require
existence of probability density functions (corresponding to the causally conditioned distributions for
each n ∈ N0), hence they compliment the work in [46].

C. Weak Convergence and Compactness of Conditional Distributions
In this section we give general sufficient conditions for weak compactness of the set of probabil-

ity distributions
←−
P 0,n(·|yn−1) ∈ MC1

1 (X0,n) and
−→
Q 0,n(·|xn) ∈ MC2

1 (Y0,n), and compactness of the
set of joint and marginal measures with respect to the topology of weak convergence of probabil-
ity measures. These conditions are sufficient to show lower semicontinuity of IXn→Y n(

←−
P 0,n,

−→
Q 0,n) for

fixed
←−
P 0,n(·|yn−1) ∈ MC1

1 (X0,n)
(
respectively

−→
Q 0,n(·|xn) ∈ MC2

1 (Y0,n)
)

with respect to
−→
Q 0,n(·|xn) ∈

MC2
1 (Y0,n)

(
respectively

←−
P 0,n(·|yn−1) ∈MC1

1 (X0,n)
)
. The lower semicontinuity of directed information

is the analogue of the lower semicontinuity of mutual information, extensively utilized in information
theory and statistics (see [28], [47]).

Before we state the main theorem, we introduce the following notation. Let BC(X ) denote the set of
bounded, continuous real-valued function f defined on a metric space (X , d) endowed with the supremum
norm ||f || = supx∈X |f(x)|. A sequence of probability measures {Pα : α = 1, 2, . . .} ⊂ M1(X ) is said
to converge weakly to a probability measure P ∈M1(X ) if [31]

lim
α→∞

∫
X
f(x)dPα(x) =

∫
X
f(x)dP (x), ∀f ∈ BC(X ).

Weak convergence of {Pα : α = 1, 2, . . .} to P is denoted by Pα
w−→ P . A family of probability measures

M ⊂M1(X ) is called relatively compact or weakly compact if every sequence in M contains a weakly
convergent subsequence that converges to M1(X ) but not necessarily to M . Appendix A summarizes
well-known theorems of weak convergence, compactness, tightness, and Prohorov’s theorem, which we
invoke to derive the results of this section.
Throughout sequences of points in X N0 and YN0 are denoted by x(α) 4= {x(α)

0 , x
(α)
1 , . . .} ∈ X N0 , y(α) 4=

{y(α)
0 , y

(α)
1 , . . .} ∈ YN0 , α = 1, 2, . . . Moreover, a sequence of points x(α) ∈ X N0 , α = 1, 2, . . . is

said to converge to x(o) ∈ X N0 as α −→ ∞, if limα−→∞ x
(α)
n = x

(o)
n for every n ∈ N0. Sequences of

such points in X0,n
4
= ×ni=0Xi and Y0,n

4
= ×ni=0Yi are denoted by xn,(α) 4= {x(α)

0 , x
(α)
1 , . . . , x

(α)
n } and

yn,(α) 4= {y(α)
0 , y

(α)
1 , . . . , y

(α)
n }, α = 1, 2, . . ..

The next remark, is introduced to illustrate that in applications of weak convergence of probability distri-
butions, weak continuity of probability distributions is natural, when analyzing conditional distributions
with discontinuities, such as, distributions induced by mixture of discrete and continuous RVs.

Remark III.4. (Weak continuity vs. Strong continuity)
Let q(·|·) ∈ Q(Y|X ) be a conditional distribution, and suppose there is a distribution µ(dx) ∈ M1(X )
such that for every x ∈ X , q(·|x) has a density q̄(·|x) with respect to µ(·), i.e.,

q(B|x) =

∫
B

q̄(y|x)µ(dx), ∀B ∈ B(Y), ∀x ∈ X .
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For example, if X ∈ R then µ(dx) = dx is the Lebesgue measure on R. If q̄(y|·) is continuous on X
for every y ∈ Y , then q(·|·) ∈ Q(Y|X ) is strongly continuous

(
i.e., q(B|·) is continuous on X for every

B ∈ B(Y)
)
. Strong continuity of channel models is rather restrictive, because it rules out conditional

distributions which have discontinuities, such as, additive noise channels, in which noise is a mixture of
a continuous RV (i.e., Gaussian distributed RV) and a finite alphabet valued RV.
Consider a channel model with feedback described by the nonlinear recursive equation

Yn = hn(Y n−1, Xn, Vn), Y −1 = y−1, n = 0, 1, . . .

where {hn : Y0,n−1 × Xn × Vn 7−→ Yn : n = 0, 1, . . . , }, is a sequence of measurable functions and
{Vn : n = 0, 1, . . .} is a sequence of {Vn : n = 0, 1, . . .}-valued RV’s, representing the channel noise.
Suppose the following condition holds.

PVn|V n−1,Xn,Y n−1(dvn|vn−1, xn, yn−1) = PVn(vn), n = 0, 1, . . . .

Then the channel distribution induced by the above model is

qn(B|yn−1, xn) = P{Yn ∈ B|Y n−1 = yn−1, Xn = xn}, B ∈ B(Y)

= P{hn(Y n−1, Xn, Vn) ∈ B|Y n−1 = yn−1, Xn = xn},

= P({vn ∈ Vn : hn(yn−1, xn, vn) ∈ B}) =

∫
Vn
IB
(
hn(yn−1, xn, vn)

)
PVn(dvn)

≡ qn(B|yn−1, xn)

where IB(·) is the indicator function. If for each n, the function hn(·, ·, vn) is continuous on Y0,n−1×Xn for
every vn ∈ Vn, n = 0, 1, . . ., then by bounded convergence theorem {qn(·|·, ·) ∈ Q(Yn|Y0,n−1×Xn) : n =

0, 1, . . .} is weakly continuous (see Definition A.4), i.e., for each sequence {(yn−1,(α), x
(α)
n ) : α = 1, . . .} ⊂

Y0,n−1 ×Xn such that (yn−1,(α), x
(α)
n ) −→ (yn−1,(o), x

(o)
n ), then limα−→∞

∫
Yn g(yn)qn(dyn|yn−1,(α), x

(α)
n ) =∫

Yn g(yn)qn(dyn|yn−1,(o), x
(o)
n ), for all bounded continuous functions g(·) ∈ BC(Yn). Hence, no require-

ment is imposed on the distribution of {PVn(·) ∈M1(Vn) : n = 0, 1, . . .}.
On the other hand, consider the special case of an additive channel, of the form

Yn = h̄n(Y n−1, Xn) + Vn, n = 0, 1, . . .

where PVn(dvn) is assumed to have a density, p̄(vn), i.e., PVn(dvn) = p̄(vn)dvn, n = 0, 1, . . .. Then
{qn(·|·, ·) ∈ Q(Yn|Y0,n−1 ×Xn) : n = 0, 1, . . .} is strongly continuous if for each n, h̄(·, ·) is continuous
on Y0,n−1 ×Xn and p̄(·) is continuous on Vn, for n = 0, 1, . . ..
Clearly, when proving properties of mutual information or directed information, weak continuity is more
general (less restrictive), compared to strong continuity, which by definition rules out many interesting
application examples.

Next, we state the main theorem which is also used to show lower semicontinuity of directed information.
The theorem consists of two parts depending on whether, A) Y0,n is compact and pn(dxn|·, ·) as a function
of (xn−1, yn−1) ∈ X0,n−1 × Y0,n−1 is weakly continuous, and B) X0,n is compact and qn(dyn|·, ·) as a
function of (yn−1, xn) ∈ Y0,n−1 ×X0,n is weakly continuous. In applications of information theory either
one of them or both maybe required, depending on the context of the application considered.

Theorem III.5.
Part A. For each n ∈ N0, let Y0,n be a compact Polish space, X0,n a Polish space, and assume the
collection of conditional distributions {pn(·|·, ·) ∈ Q(Xn|X0,n−1×Y0,n−1) : n ∈ N0} satisfy the following
condition.

CA: For all g(·)∈BC(X0,n), the function

(xn−1, yn−1) ∈ X0,n−1 × Y0,n−1 7−→
∫
Xn
g(x)pn(dx|xn−1, yn−1) ∈ R (III.22)
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is continuous jointly in the variables (xn−1, yn−1) ∈ X0,n−1 × Y0,n−1.
Then the following hold.

A1) Let
←−
P 0,n(·|yn−1) ∈ MC1

1 (X0,n) and consider a sequence of forward channels
{−→
Q
α

0,n(·|xn) : α =

1, 2, . . .
}
⊂MC2

1 (Y0,n). Then the sequence of joint measures {(
←−
P 0,n ⊗

−→
Qα

0,n) : α = 1, 2, . . .} converges
weakly to a joint measure P o(dxn, dyn), that is,

(
←−
P 0,n ⊗

−→
Qα

0,n)(dxn, dyn)
w−→ P o(dxn, dyn) = (

←−
P 0,n ⊗ Q̄o

0,n)(dxn, dyn) ∈M1(X0,n × Y0,n) (III.23)

where the joint measure P o(dxn, dyn) corresponds to the same backward channel
←−
P 0,n(·|yn−1) ∈MC1

1 (X0,n)

and a forward channel Q̄o
0,n(·|xn) ∈M1(Y0,n) (i.e., not necessarily inMC2

1 (Y0,n)). Equivalently, {(
←−
P 0,n⊗−→

Qα
0,n) : α = 1, 2, . . .} is relatively or weakly compact.

Moreover, the corresponding sequence of marginal measures {να0,n(·) ∈M1(Y0,n) : α = 1, 2, . . .} on Y0,n

and {µα0,n(·) ∈M1(X0,n) : α = 1, 2, . . .} on X0,n, converges weakly, that is,

να0,n(dyn)
w−→ νo0,n(dyn) and µα0,n(dxn)

w−→ µo0,n(dxn)

where νo0,n(·) ∈M1(Y0,n) and µo0,n(·) ∈M1(X0,n) are the marginals of the joint measure in (III.23).
A2) The set of measures

←−
P 0,n(·|yn−1) ∈MC1

1 (X0,n) is uniformly tight.
A3) The set of measures

−→
Q 0,n(·|xn) ∈MC2

1 (Y0,n) is relatively compact.
A4) Let

←−
P 0,n(·|yn−1) ∈ MC1

1 (X0,n),
{−→
Q
α

0,n(·|xn) : α = 1, 2, . . .
}
⊂ MC2

1 (Y0,n), where {να0,n(·) ∈
M1(Y0,n) : α = 1, 2, . . .} are the marginals of

{
(
←−
P 0,n ⊗

−→
Q
α

0,n)(dxn, dyn) ∈ M1(X0,n × Y0,n) : α =
1, 2, . . .

}
. Then

−→
Πα

0,n(dxn, dyn) ≡
←−
P 0,n(dxn|dyn−1)⊗ να0,n(dyn)

w−→
←−
P 0,n(dxn|dyn−1)⊗ νo0,n(dyn) ≡

−→
Π o

0,n(dxn, dyn)

where νo0,n(·) ∈M1(Y0,n) is the weak limit of the marginal in (III.23).

Part B. For each n ∈ N0, let X0,n be a compact Polish space, Y0,n a Polish space, and assume the
collection of conditional distributions {qn(·|·, ·) ∈ Q(Yn|Y0,n−1 × X0,n) : n ∈ N0} satisfy the following
condition.

CB: For all h(·)∈BC(Y0,n), the function

(xn, yn−1) ∈ X0,n × Y0,n−1 7−→
∫
Yn
h(y)qn(dy|yn−1, xn) ∈ R (III.24)

is continuous jointly in the variables (xn, yn−1) ∈ X0,n × Y0,n−1.
Then the following hold.

B1) Let
−→
Q 0,n(·|xn) ∈ MC2

1 (Y0,n) and consider a sequence of backward channels
{←−
P
α

0,n(·|yn−1) : α =

1, 2, . . .
}
⊂ MC1

1 (X0,n). Then, the joint measures {(
←−
P α

0,n ⊗
−→
Q 0,n) : α = 1, 2, . . .} converges weakly to

a joint measure P o(dxn, dyn), that is,

(
←−
P α

0,n ⊗
−→
Q 0,n)(dxn, dyn)

w−→ P o(dxn, dyn) = (P̄ o
0,n ⊗

−→
Q 0,n)(dxn, dyn) ∈M1(X0,n × Y0,n) (III.25)

where the joint measure P o(dxn, dyn) corresponds to the same forward channel
−→
Q 0,n(·|xn) ∈MC2

1 (Y0,n)
and a backward channel P̄ o

0,n(·|yn−1) ∈ M1(X0,n) (i.e., not necessarily in MC1
1 (X0,n)). Equivalently,

{(
←−
P α

0,n ⊗
−→
Q 0,n) : α = 1, 2, . . .} is relatively or weakly compact.

Moreover, the corresponding sequence of marginal measures {να0,n(·) ∈M1(Y0,n) : α = 1, 2, . . .} on Y0,n

and {µα0,n(·) ∈M1(X0,n) : α = 1, 2, . . .} on X0,n, converges weakly, that is,

να0,n(dyn)
w−→ νo0,n(dyn) and µα0,n(dxn)

w−→ µo0,n(dxn)



19

where νo0,n(·) ∈M1(Y0,n) and µo0,n(·) ∈M1(X0,n) are the marginals of (III.25).
B2) The set of measures

−→
Q 0,n(·|xn) ∈MC2

1 (Y0,n) in uniformly tight.
B3) The set of measures

←−
P 0,n(·|yn−1) ∈MC1

1 (X0,n) is relatively compact.
B4) Let

−→
Q 0,n(·|xn) ∈ MC2

1 (Y0,n),
{←−
P
α

0,n(·|yn−1) : α = 1, 2, . . .
}
⊂ MC1

1 (X0,n), where {µα0,n(·) ∈
M1(X0,n) : α = 1, 2, . . .} are the marginals of

{
(
←−
P
α

0,n ⊗
−→
Q 0,n)(dxn, dyn) ∈ M1(X0,n × Y0,n) : α =

1, 2, . . .
}

. Then
←−
Πα(dxn, dyn) ≡

−→
Q 0,n(dyn|dxn)⊗ µα0,n(dxn)

w−→
−→
Q 0,n(dyn|dxn)⊗ µo0,n(dxn) ≡

←−
Π o(dxn, dyn)

where µo0,n(·) ∈M1(X0,n) is the weak limit of the marginal in (III.25).

Proof: See Appendix C.

Note that additional conditions are required to show that the limiting joint distribution (III.23) (respectively,
(III.25)) corresponds to a Q̄o(·|xn) ∈MC2

1 (Y0,n) (respectively, P̄ o(·|yn−1) ∈MC1
1 (X0,n)). Conditions for

this to hold are given in Section III-D.
Below, we illustrate analogies and differences between Theorem III.5 and currently known results regarding
mutual information found in [28], [47]. To this end, consider Part B., B1). If we use mutual information
[28, Lemma 2], then the sequence of joint measures is defined by Pα

Xn,Y n(dxn, dyn)
4
= PY n|Xn(dyn|xn)⊗

Pα
Xn(dxn), and showing weak convergence of this family is much simpler compared to the sequence of

joint distributions (
←−
P α

0,n ⊗
−→
Q 0,n)(dxn, dyn), because PXn(dxn) is not conditioned on yn ∈ Y0,n. Clearly,

if the mapping xn −→ PY n|Xn(·|xn) is weakly continuous (i.e., special case of III.24), and Pα
Xn(dxn)

converges weakly to P o
Xn(xn), then Pα

Xn,Y n(dxn, dyn) converges weakly to PY n|Xn(dyn|xn)⊗P o
Xn(dxn) =

P o
Xn,Y n(dxn, dyn), and so does its marginal on Y0,n. On the other hand, if we use directed information,

then the joint measure PXn,Y n(dxn, dyn)
4
= ⊗ni=0PYi|Y i−1,Xi(dyi|yi−1, xi) ⊗ PXi|Xi−1,Y i−1(dxi|xi−1, yi−1)

involves an (n + 1)-fold compound probability distribution defined by (I.4), and PXi|Xi−1,Y i−1(·|·, ·) is a
function of yn−1 ∈ Y0,n−1, hence a significant level of additional complexity incurs, compared to mutual
information. Nevertheless, condition CB is the natural generalization to causally conditioned (n+ 1)-fold
compound probability distributions of the weak continuity of the mapping xn −→ PY n|Xn(·|xn), assumed
for the mutual information by Csiszár in [28].

Theorem III.5 is important for several extremum problems involving directed information. Such applica-
tions are discussed in the next section.

D. Applications of Theorem III.5
In this section, we discuss applications of Theorem III.5 to the extremum problems of feedback capacity

and nonanticipative RDF, defined by (I.5) and (I.7), respectively.

Existence of optimal channel input distribution for channels with memory and feedback. Consider
extremum problems of capacity of channels with memory and feedback defined by (I.5), without any
transmission cost constraint. The aim is to show existence of a channel input conditional distribution←−
P (·|yn−1) ∈MC1

1 (X0,n), yn−1 ∈ Y0,n−1, which achieves the supremum of directed information. To show
that such a conditional distribution exists, it is sufficient to show compactness of the set of channel input
conditional distributions (i.e., this set is closed and uniformly tight) and upper semicontinuity (or conti-
nuity) of IXn→Y n(

←−
P 0,n,

−→
Q 0,n), with respect to

←−
P (·|yn−1) ∈MC1

1 (X0,n) for a fixed channel
−→
Q 0,n(·|xn) ∈

MC2
1 (Y0,n). Since Theorem III.13, Part A. A2) uniform tightness of

←−
P (·|yn−1) ∈MC1

1 (X0,n), it remains
to show this set is closed. This is shown in the next lemma, by introducing additional assumptions.

Lemma III.6. (Compactness of
←−
P (·|yn−1) ∈MC1

1 (X0,n))
Suppose the conditions of Theorem III.5, Part A. hold, and for each compact subset K0,i−1 ⊂ X0,i−1, and
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each hi(·) ∈ BC(Xi),

lim
α−→∞

sup
xi−1∈K0,i−1

∣∣∣∣∣
∫
Xi
hi(x)pαi (dx|xi−1, yi−1)−

∫
Xi
hi(x)pi(dx|xi−1, yi−1)

∣∣∣∣∣ = 0, i = 0, 1, . . . , n (III.26)

Then,
←−
P α

0,n(dxn|yn−1)
w−→
←−
P o

0,n(dxn|yn−1) for each yn−1 ∈ Y0,n−1 (III.27)

i.e., the set
←−
P (·|yn−1) ∈ MC1

1 (X0,n) is closed with respect to the topology of weak convergence, and
moreover, it is also is compact (i.e., closed and tight).

Proof: See Appendix D.

Remark III.7. (Compactness of channel input distributions with transmission cost)
In the presence of power constraints

←−
P (·|yn−1) ∈ P0,n(P ) ⊂ QC1(X0,n|Y0,n−1), by Prohorov’s theorem

(Appendix A, Theorem A.3), to show compactness of P0,n(P ), it is sufficient to show that this set is closed
and uniformly tight. By invoking Lemma III.6, it suffices to show P0,n(P ) is a closed subset of the weakly
compact set MC1(X0,n) (as a closed subset of a weakly compact set is weakly compact).

Existence of optimal reproduction distribution of nonanticipative RDF. Consider a special case of ex-
tremum problems of nonanticipative RDF defined by (I.7), with distortion constraint defined by (I.8), when
the source distribution is causally independent of past reproduction symbols, that is, pi(dxi|xi−1, yi−1) =
µi(dxi|xi−1),−a.a.(xi−1, yi−1), i = 0, 1, . . . , n. Then, the finite time version of (I.7) is given by

Rna
0,n(D) = inf−→

Q0,n(dyn|xn)∈Q0,n(D)

∫
X0,n×Y0,n

log
(d−→Q 0,n(·|xn)

dν0,n(·)
(yn)

)−→
Q 0,n(dyn|xn)⊗ µ0,n(dxn) (III.28)

≡ inf−→
Q0,n(dyn|xn)∈Q0,n(D)

IXn→Y n(µ0,n,
−→
Q 0,n) (III.29)

where µ0,n(dxn) = ⊗ni=0µi(dxi|xi−1), ν0,n(dyn) =
∫
X0,n

−→
Q 0,n(dyn|xn) ⊗ µ0,n(dxn), and the fidelity con-

straint is defined by

Q0,n(D)
4
=

{
−→
Q 0,n(dyn|xn) ∈MC2

1 (Y0,n) :

1

n+ 1

∫
X0,n×Y0,n

d0,n(xn, yn)
−→
Q 0,n(dyn|xn)⊗ µ0,n(dxn) ≤ D

}
, D ≥ 0 (III.30)

and d0,n : X0,n × Y0,n 7→ [0,∞], d0,n(xn, yn)
4
=
∑n

i=0 ρi(x
i, yi) is a measurable function denoting the

distortion function of reconstructing xi by yi, i = 0, 1, . . . , n.
The information nonanticipative RDF defined by (III.28), (III.30), is an equivalent notion to the nonan-
ticipative epsilon entropy investigated by Gorbunov and Pinsker [43] (see Charalambous et al. in [23] for
relations to filtering theory).
The aim is to show existence of a conditional distribution

−→
Q 0,n(·|xn) ∈ MC2

1 (Y0,n), which achieves
infimum in (III.28). Since Q0,n(D) ⊂MC2

1 (Y0,n), to show such a conditional distribution exists, it is suf-
ficient to show compactness ofMC2

1 (Y0,n) (closed and uniformly tight), the set Q0,n(D) is a closed subset
of MC2

1 (Y0,n), and IXn→Y n(
←−
P 0,n,

−→
Q 0,n) is lower semicontinuous with respect to

−→
Q(·|xn) ∈MC2

1 (Y0,n),
for a fixed µ0,n(dxn) ∈ M1(X0,n). This can be done by invoking a combination of the assumptions of
Theorem III.5 Part A. or Part B., depending on whether Y0,n is compact and X0,n is arbitrary or X0,n is
compact and Y0,n is arbitrary, respectively. Since in general, Y0,n ⊆ X0,n, it is more appropriate to assume
Y0,n is compact.
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Lemma III.8. (Compactness of
−→
Q(·|xn) ∈ Q0,n(D))

(1) Suppose X0,n are Polish spaces, and Y0,n is compact, the sequence {qn(·|·, ·) ∈ Q(Yn|Y0,n−1 ×
X0,n) : n ∈ N0} is weakly continuous, i.e., it satisfies (III.24), and for each compact subset Φ0,i−1 ⊂ Y0,i−1,
and each hi(·) ∈ BC(Yi),

lim
α−→∞

sup
yi−1∈Φ0,i−1

∣∣∣∣∣
∫
Yi
hi(x)qαi (dy|yi−1, xi)−

∫
Yi
hi(y)qi(dy|yi−1, xi)

∣∣∣∣∣ = 0, ∀xi ∈ X0,i, i = 0, 1, . . . , n.

(III.31)

Then,
−→
Qα

0,n(dyn|xn)
w−→
−→
Q o

0,n(dyn|xn) for each xn ∈ X0,n

i.e., the setMC2
1 (Y0,n) is closed with respect to the topology of weak convergence. Moreover,MC2

1 (Y0,n)
is compact (closed and tight).
(2) In addition, suppose the distortion function d0,n(xn, ·) : X0,n × Y0,n 7−→ [0,∞] is Borel measurable
relative to B(X0,n)⊗ B(Y0,n) and continuous on yn ∈ Y0,n.
Then, the fidelity set Q0,n(D) is compact (it is a closed subset of the compact set MC2

1 (Y0,n)).

Proof: See Appendix E.
Theorem III.5 gives the flexibility of choosing either X0,n or Y0,n to be compact; it has several

applications in other extremum problems of directed information. In the following remark, we discuss
such applications.

Remark III.9. (Additional Applications)
(1) Consider extremum problems of capacity for a class of channels with memory and feedback, such as,

arbitrary varying channels [28]. Such problems are defined by the max-min operations of directed
information, where the minimizer is over the class of channels [48]. To investigate such capacity
problems one has to establish coding theorems, and showing compactness over the class of channel
conditional distributions, in addition to channel input distributions is very helpful. Theorem III.5,
Part B., B3) gives conditions of weak compactness of channels

−→
Q 0,n(·|xn) ∈MC2

1 (Y0,n).
(2) Consider extremum problems of sequential or nonanticipative lossy data compression for a class

of sources. Then such problems are defined by mini-max operations of directed information, where
the maximizer is over the class of source distributions [49]. To investigate such data compression
problems, one has to establish coding theorems, and to show compactness over the class of source
distributions, in addition to the reproduction distributions, Theorem III.5, Part A., A3) is crucial.

E. Lower Semicontinuity of Directed Information
We are now ready to utilize the results of Theorem III.5, to show lower semicontinuity of directed

information I(Xn → Y n) ≡ IXn→Y n(
←−
P 0,n,

−→
Q 0,n). This may be viewed as a generalization of lower

semicontinuity of mutual information I(Xn;Y n) ≡ IXn;Y n(PXn , QY n|Xn), with respect to PXn for fixed
QY n|Xn , and with respect to QY n|Xn for fixed PXn .

Theorem III.10. (Lower semicontinuity)
1) Suppose the conditions in Theorem III.5, Part A., hold.
For fixed

←−
P 0,n(·|yn−1) ∈ MC1

1 (X0,n), if the family MC2
1 (Y0,n) is closed

(
i.e., {

−→
Qα

0,n(·|xn) : α =

1, 2, . . .} ∈ MC2
1 (Y0,n) converges weakly to

−→
Q o

0,n(·|xn) ∈MC2
1 (Y0,n)

)
then

IXn→Y n(
←−
P 0,n,

−→
Q o

0,n) ≤ lim inf
α−→∞

IXn→Y n(
←−
P 0,n,

−→
Qα

0,n)

i.e., IXn→Y n(·,
−→
Q 0,n) is lower semicontinuous on

−→
Q 0,n(·|xn) ∈MC2

1 (Y0,n).
2) Suppose the conditions in Theorem III.5, Part B., hold.
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For fixed
−→
Q 0,n(·|xn) ∈ MC2

1 (Y0,n), if the family MC1
1 (X0,n) is closed

(
i.e.,{
←−
P α

0,n(·|yn−1) : α =

1, 2, . . .} ∈ MC1
1 (X0,n) converges weakly to

←−
P o

0,n(·|yn−1) ∈MC1
1 (X0,n)

)
then

IXn→Y n(
←−
P o

0,n,
−→
Q 0,n) ≤ lim inf

α−→∞
IXn→Y n(

←−
P α

0,n,
−→
Q 0,n)

i.e., IXn→Y n(
←−
P 0,n, ·) is lower semicontinuous on

←−
P 0,n(·|yn−1) ∈MC1

1 (X0,n).

Proof: See Appendix F.

Recall that conditions for the sets MC1
1 (X0,n), MC2

1 (Y0,n) to be closed are given in Lemma III.6 and
Lemma III.8, respectively.
Comparing Theorem III.10, 1), with the lower semicontinuity of mutual information I(Xn;Y n) ≡ IXn;Y n

(PXn , QY n|Xn), it is clear that directed information requires additional assumptions for its derivation (e.g.,
those given in Theorem III.5).
Theorem III.5 together with Theorem III.10 are important to establish existence of the optimal reproduction
distribution for the nonanticipative rate distortion functions defined by (I.7) [23], [42] (by utilizing
Weierstrass’ Theorem) and in general extremum problems of directed information involving minimization
over

−→
Q 0,n(·|xn) in some subset of MC2

1 (Y0,n). This is formally stated in the next theorem.

Theorem III.11. (Existence of information nonanticipative RDF)
Under the conditions of Lemma III.8 and Theorem III.10, the infimum over

−→
Q 0,n(·|xn) ∈ Q0,n(D) in

Rna
0,n(D), defined by (III.28), is achieved by some

−→
Q ∗0,n(·|xn) ∈ Q0,n(D).

F. Continuity of Directed Information
Many problems in information theory involve extremum problems defined as maximizations of directed
information, with respect to the feedback channels {pi(dxi|xi−1, yi−1) ∈ M1(Xi) : i = 0, 1, . . . , n},
such as, extremum problems of feedback capacity of channels with memory with transmission cost
constraint defined by (I.5). For such problems it is desirable to have upper semicontinuity of directed
information with respect to

←−
P 0,n(·|yn−1) ∈ MC1

1 (X0,n). Since by Theorem III.10, directed information
is lower semicontinuous with respect to

←−
P 0,n(·|yn−1) ∈ MC1

1 (X0,n), to investigate extremum problems
involving feedback capacity (maximization problems), it is sufficient to show continuity of the functional
IXn→Y n(

←−
P 0,n,

−→
Q 0,n) with respect to

←−
P 0,n(·|yn−1) ∈ MC1

1 (X0,n) for a fixed
−→
Q 0,n(·|xn) ∈ MC2

1 (Y0,n).
Continuity of mutual information based on single letter expression is shown in [28, Lemma 7], and under
weaker conditions in [29, Theorem 3.2]. Here, we show continuity of directed information by following
the procedure in [29], generalized to the directed information functional IXn→Y n(

←−
P 0,n,

−→
Q 0,n). First, we

shall need the following Lemma.

Lemma III.12.
For a given

←−
P 0,n(·|·) ∈ QC1(X0,n|Y0,n−1) and

−→
Q 0,n(·|·) ∈ QC2(Y0,n|X0,n) define

∣∣IXn→Y n
∣∣(←−P 0,n,

−→
Q 0,n)

4
=

∫
X0,n×Y0,n

∣∣∣∣∣ log
(d(
←−
P 0,n ⊗

−→
Q 0,n)

d(
←−
P 0,n ⊗ ν0,n)

)∣∣∣∣∣d(
←−
P 0,n ⊗

−→
Q 0,n).

Then the following inequalities hold.

IXn→Y n(
←−
P 0,n,

−→
Q 0,n) ≤ |IXn→Y n|(

←−
P 0,n,

−→
Q 0,n) ≤ IXn→Y n(

←−
P 0,n,

−→
Q 0,n) +

2

e ln 2
. (III.32)
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Proof: Recall directed information defined in Remark III.1. Then

IXn→Y n(
←−
P 0,n,

−→
Q 0,n) =

∫
X0,n×Y0,n

log

(
d(
←−
P 0,n ⊗

−→
Q 0,n)

d(
←−
P 0,n ⊗ ν0,n)

)
d(
←−
P 0,n ⊗

−→
Q 0,n)

=

∫
X0,n×Y0,n

log

(
d(
←−
P 0,n ⊗

−→
Q 0,n)

d(
←−
P 0,n ⊗ ν0,n)

)(
d(
←−
P 0,n ⊗

−→
Q 0,n)

d(
←−
P 0,n ⊗ ν0,n)

)
d(
←−
P 0,n ⊗ ν0,n). (III.33)

The first inequality in (III.32) is obvious. To show the second inequality in (III.32), recall the inequality
[44, Section 2.3, p. 13] − 1

e ln 2
≤ x log2 x, x ∈ [0,∞) (0 log 0 is assumed to be 0). Then,

|x log2 x| ≤ x log2 x+
2

e ln 2
. (III.34)

Using (III.34) in (III.33), with x =
(
d(
←−
P 0,n⊗

−→
Q0,n)

d(
←−
P 0,n⊗ν0,n)

)
, establishes the second inequality in (III.32).

Now, we are ready to state the Theorem, which establishes continuity with respect to weak convergence of
IXn→Y n(

←−
P 0,n,

−→
Q 0,n) for a fixed

−→
Q 0,n(·|xn) ∈MC2

1 (Y0,n), as a functional of
←−
P 0,n(·|yn−1) ∈MC1

1 (X0,n).

Theorem III.13. (Continuity)
Consider a forward channel

−→
Q 0,n(·|xn) ∈MC2

1 (Y0,n), and a closed family of feedback channels
←−
P 0,n(·|yn−1) ∈

MC1,cl
1 (X0,n) ⊆MC1

1 (X0,n). Suppose the following conditions hold.
A) There exists a measure ν̄0,n(dyn) on Y0,n such that

−→
Q 0,n(·|xn) � ν̄0,n(dyn) with RND or density

ξν̄0,n(xn, yn)
4
=

d
−→
Q0,n(·|xn)

dν̄0,n(·) (yn).
B) The RND ξν̄0,n(xn, yn) is continuous on X0,n × Y0,n, and ξν̄0,n(xn, yn) log ξν̄0,n(xn, yn) is uniformly
integrable over

{(
ν̄0,n ⊗

←−
P 0,n

)
(dxn, dyn) :

←−
P 0,n(·|yn−1) ∈MC1,cl

1 (X0,n)
}
.

C) For a fixed yn ∈ Y0,n, the RND ξν̄0,n(xn, yn) is uniformly integrable over MC1,cl
1 (X0,n).

Then, IXn→Y n(
←−
P 0,n,

−→
Q 0,n) as a functional of

←−
P 0,n(·|·) ∈MC1,cl

1 (X0,n) is bounded and weakly continuous
over MC1,cl

1 (X0,n), for fixed
−→
Q 0,n(·|xn) ∈MC2

1 (Y0,n).

Proof: The derivation is shown in Appendix G.

Note that Theorem III.5 gives conditions for weak compactness of
←−
P 0,n(·|yn−1) ∈ MC1

1 (X0,n), and
Lemma III.6 gives conditions for compactness of

←−
P 0,n(·|yn−1) ∈MC1

1 (X0,n). In addition, Theorem III.13
gives conditions of weak continuity of IXn→Y n(

←−
P 0,n,

−→
Q 0,n) with respect to

←−
P 0,n(·|yn−1) ∈ MC1

1 (X0,n),
for fixed

−→
Q 0,n(·|xn) ∈ MC2

1 (Y0,n). Hence, sufficient conditions are identified to address existence of
solution to the extremum problem of feedback capacity. This is stated in the next theorem.

Theorem III.14. (Existence of information feedback capacity without transmission cost constraint)
Under the conditions of Lemma III.6 and Theorem III.13, the supremum over

←−
P 0,n(·|yn−1) ∈MC1

1 (X0,n)
in the extremum problem of information feedback capacity

Cfb
0,n

4
= sup
{PXi|Xi−1,Y i−1 : i=0,1,...,n}∈MC1

1 (X0,n)

1

n+ 1
I(Xn → Y n) (III.35)

is achieved by some
←−
P ∗0,n(·|yn−1) ∈MC1

1 (X0,n).

G. Extension of Directed Information to Arbitrary Number of Sequences of RV’s
In this section, we demonstrate how the previous results are easily generalized to three, or more, sequences
of RV’s. These extensions have implications in communication networks, and in communication with side
information at either the transmitter or the receiver [36], [37].
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To facilitate the demonstration, first consider the following case.

Case 1: The sequence of RV’s Xn ∈ X0,n is defined by Xn = (X1,n, X2,n) ∈ X 1
0,n ×X 2

0,n ≡ X0,n, where
X1,n = {X1

i : i = 0, 1, . . . , n} and X2,n = {X2
i : i = 0, 1, . . . , n}.

Then, the two sequences of conditional distributions are {pi(dx1
i , dx

2
i |x1,i−1, x2,i−1, yi−1) : i = 0, 1, . . . , n}

and {qi(dy1
i |y1,i−1, x1,i, x2,i) : i = 0, 1, . . . , n}, respectively. Consequently, the constructions of consistent

families of conditional distributions, and the results obtained so far, extend naturally to directed information
I(X1,n,X2,n)→Y n(

←−
P 0,n,

−→
Q 0,n), where

←−
P 0,n(dx1,n, dx2,n|yn−1) = ⊗ni=0pi(dx

1
i , dx

2
i |x1,i−1, x2,i−i, yi−1), and

−→
Q 0,n(dyn|x1,n, x2,n) = ⊗ni=0qi(dyi|yi−1, x1,i, x2,i).
Next, we consider the following case.

Case 2: The sequence of RV’s Y n ∈ Y0,n is defined by Y n 4= (Y 1,n, Y 2,n) ∈ Y1
0,n × Y2

0,n ≡ Y0,n, where
Y 1,n = {Y 1

i : i = 0, 1, . . . , n} and Y 2,n = {Y 2
i : i = 0, 1, . . . , n}.

Then, the two sequences of conditional distributions are {pi(dxi|xi−1, y1,i−1, y2,i−1) : i = 0, 1, . . . , n}
and {qi(dy1

i , dy
2
i |y1,i−1, y2,i−1, xi) : i = 0, 1, . . . , n}, respectively. Consequently, the constructions of

consistent families of conditional distributions, and the results obtained so far, extend naturally to directed
information IXn→(Y 1,n,Y 2,n)(

←−
P 0,n,

−→
Q 0,n), where

←−
P 0,n(dxn|y1,n−1, y2,n−1) = ⊗ni=0pi(dxi|xi−1, y1,i−i, y2,i−1),

and
−→
Q 0,n(dy1,n, dy2,n|xn) = ⊗ni=0qi(dy

1
i , dy

2
i |y1,i−1, y2,i−1, xi).

Clearly, Case 1 and Case 2 can be generalized to an arbitrary number of sequences of RV’s.

IV. SEQUENTIAL VARIATIONAL EQUALITIES OF DIRECTED INFORMATION

In this section we derive variational equalities including their sequential versions for directed informa-
tion. Moreover, we illustrate an application of these variational equalities in feedback capacity computation,
by developing the main ingredient of a sequential algorithm using dynamic programming.
The variational equalities of directed information may be viewed as generalizations of the well-known
variational equalities of mutual information I(Xn;Y n) ≡ IXn;Y n(PXn , PY n|Xn), expressed as minimiza-
tions or maximizations of relative entropy functionals, as follows [25].

Min: Given a channel distribution PY n|Xn(dyn|xn), a source distribution PXn , and any arbitrary distribution
VY n(dyn) on Y0,n then

IXn;Y n(PXn , PY n|Xn) = inf
VY n (dyn)∈M1(Y0,n)

∫
X0,n×Y0,n

log

(
dPY n|Xn(·|xn)

dVY n(·)
(yn)

)
PY n|Xn(dyn|xn)⊗ PXn(dxn)

(IV.1)

and the infimum is achieved at VY n(dyn) ≡ PY n(dyn) given by

PY n(dyn) =

∫
X0,n

PY n|Xn(dyn|xn)⊗ PXn(dxn). (IV.2)

Max: Given a channel distribution PY n|Xn(dyn|xn), a source distribution PXn(dxn), and any arbitrary
conditional distribution VXn|Y n(dxn|yn) on X0,n parametrized by yn ∈ Y0,n then

IXn;Y n(PXn , PY n|Xn) = sup
VXn|Y n (dxn|yn)

∈M1(X0,n)

∫
X0,n×Y0,n

log

(
dVXn|Y n(·|yn)

dPXn(·)
(xn)

)
PY n|Xn(dyn|xn)⊗ PXn(dxn)

(IV.3)

and the supremum is achieved at VXn|Y n(dxn|yn) ≡ PXn|Y n(dxn|yn) given by

PXn|Y n(dxn|yn) =
PY n|Xn(dyn|xn)⊗ PXn(dxn)∫
X0,n

PY n|Xn(dyn|xn)⊗ PXn(dxn)
. (IV.4)
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That is, in (IV.1) and (IV.3) the optimal distribution is generated by the joint distribution induced by
{PY n|Xn , PXn}. Both variational equalities are used in the Blahut-Arimoto algorithm (BAA) [25], [39]
to derive iterative computational schemes for channel capacity of memoryless channels, via max-max
operations, and for RDF of memoryless sources via mini-min operations.
Recently, a version of (IV.3) is applied in [50, eq. (9)] to develop a BAA for capacity of channels
with memory and feedback, defined on finite alphabet spaces. Specifically, the authors in [50] con-
sider causally conditioned probability mass functions, P (xn||yn−1)

4
= Πn

i=0p(xi|xi−1, yi−1), Q(yn||xn)
4
=

Πn
i=0q(yi|yi−1, xi), where P (yn) = Πn

i=0p(yi|yi−1) is generated by P (xn, yn)
4
= P (xn||yn−1)⊗Q(yn||xn) =

Πn
i=0p(xi|xi−1, yi−1) ⊗ q(yi|yi−1, xi), and utilize the identity P (xn|yn) = Πn

i=0p(xi|xi−1, yn), to rewrite
Q(yn||xn)
P (yn)

= P (xn|yn)
P (xn||yn−1)

, and to express (IV.3) as follows.

I(Xn → Y n) = sup
P (xn|yn)

∑
(xn,yn)∈X0,n×Y0,n

log

(
P (xn|yn)

P (xn||yn−1)

)
P (xn||yn−1)⊗Q(yn||xn). (IV.5)

Based on (IV.5), the authors in [50] developed an algorithm, which computes the causally conditioned
product P ∗(xn||yn−1) that maximizes (IV.5), similar to the BAA [25], [39], over the product space X0,n =
×ni=0Xi. The variational equalities introduced in this paper and the envisioned applications compliment
[50], in the sense that our emphasis is on generalizing classical variational equalities, by developing
sequential variational equalities, which can be used to develop sequential computational algorithms.

A. Variational Equalities of Directed Information
In this section, our emphasis is to develop variational equalities of directed information, and equivalent

sequential variational equalities.
The variational equalities of directed information are based on two families of distributions, similar to
P(·|·) ∈ QC1(X N0|YN0) and Q(·|·) ∈ QC2(YN0|X N0), which are introduced below.
Let P0,n(dxn, dyn) =

←−
P 0,n(dxn|yn−1)⊗

−→
Q 0,n(dyn|xn) be the given distribution constructed from the basic

feedback channel P(·|y) ∈ MC1
1 (X N0) and forward channel Q(·|x) ∈ MC2

1 (YN0) (by projection onto
finite number of coordinates).
Let S(·|x) be any probability measure on (YN0 ,B(YN0)) depending parametrically on x ∈ X N0 satisfying
the following consistency condition.

C3: If F ∈ B(Y0,n), then S(F |x) is a B(X0,n−1)−measurable.

For fixed x ∈ X N0 , the set of measures on (YN0 ,B(YN0)) satisfying consistency condition C3 is denoted
by MC3

1 (YN0) and the corresponding family by QC3(YN0|X N0). By Remark II.1, for any family of
probability measures S(·|x) on (YN0 ,B(YN0)) parametrized by x ∈ X N0 , satisfying consistency condition
C3, there exists a collection of stochastic kernels {sn(·|·, ·) ∈ Q(Yn|Y0,n−1×X0,n−1) : n ∈ N0} connected
to S(·|x) as follows.

S(D|x) =

∫
D0

s0(dy0)

∫
D1

s1(dy1|y0, x0) . . .

∫
Dn

sn(dyn|yn−1, xn−1) ≡
←−
S 0,n(×ni=0Di|xn−1) (IV.6)

where

D
4
= {y ∈ YN0 : y0 ∈ D0, y1 ∈ D1, . . . , yn ∈ Dn}, Di ∈ B(Yi), ∀i ∈ Nn

0 .

Note that
←−
S 0,n(·|xn−1) ∈ MC3

1 (Y0,n) is conditioned on xn−1 ∈ X0,n−1, unlike
−→
Q 0,n(·|xn) ∈ MC2

1 (Y0,n),
which is conditioned on xn ∈ X0,n.
Let R(·|y) be any family of probability measures on (X N0 ,B(X N0)) depending parametrically on y ∈ YN0
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satisfying the following consistency condition.

C4: If E ∈ B(X0,n), then R(E|y) is a B(Y0,n)−measurable.

For fixed y ∈ YN0 , the set of measures on (YN0 ,B(YN0)) satisfying consistency condition C4 is denoted
by MC4

1 (X N0) and the corresponding family by QC4(X N0|YN0). Similarly as before, by Remark II.1,
for any family of measures R(·|y) on (X N0 ,B(X N0)) parametrized by y ∈ YN0 satisfying consistency
condition C4, there exists a collection of stochastic kernels {rn(·|·, ·) ∈ Q(Xn|X0,n−1 × Y0,n) : n ∈ N0}
connected to R(·|y) as follows.

R(E|y) =

∫
E0

r0(dx0|y0)

∫
E1

r1(dx1|x0, y
1) . . .

∫
En

rn(dxn|xn−1, yn) ≡
−→
R 0,n(×ni=0Ei|yn) (IV.7)

where

E
4
= {x ∈ X N0 : x0 ∈ E0, x1 ∈ E1, . . . , xn ∈ En}, Ei ∈ B(Xi), ∀i ∈ Nn

0 .

The joint distribution on
(
X N0 × YN0 ,⊗n∈N0B(Xn) ⊗ B(Yn)

)
constructed from S(·|·) ∈ QC3(YN0|X N0)

and R(·|·) ∈ QC4(X N0|YN0), is defined uniquely for Di ∈ B(Yi), Ei ∈ B(Xi), ∀i ∈ Nn
0 , by

(
←−
S 0,n ⊗

−→
R 0,n)(×ni=0(Di × Ei)) =

∫
D0

s0(dy0)

∫
E0

r0(dx0|y0) . . .

. . .

∫
Dn

sn(dyn|yn−1, xn−1)

∫
En

rn(dxn|xn−1, yn). (IV.8)

Formally, the (n+1) fold compound joint distribution defined by (IV.8) is written as (
←−
S 0,n⊗

−→
R 0,n)(dxn, dyn).

Note the difference between the stochastic kernels {pi(dxi|xi−1, yi−1) : i ∈ N0}, {qi(dyi|yi−1, xi) : i ∈
N0}, which define

←−
P 0,n(dxn|yn−1),

−→
Q 0,n(dyn|xn), respectively, as well as the joint measure (

←−
P 0,n ⊗−→

Q 0,n)(dxn, dyn), and the stochastic kernels {ri(dxi|xi−1, yi) : i ∈ Nn
0}, {si(dyi|yi−1, yi−1) : i ∈ Nn

0}
which define

−→
R 0,n(dxn|yn),

←−
S 0,n(dyn|xn−1), respectively, and the joint measure (

←−
S ⊗

−→
R )(dxn, dyn).

The following theorem gives two variational equalities of directed information, including their sequential
versions, which are analogous to (IV.1), (IV.3).

Theorem IV.1. (Variational equalities)
Let {Xn : n ∈ N0} and {Yn : n ∈ N0} be Polish spaces. Let P(·|·) ∈ QC1(X N0|YN0) and Q(·|·) ∈
QC2(YN0|X N0), and for any n ∈ N0, construct from them the joint distribution P0,n(dxn, dyn) = (

←−
P 0,n⊗−→

Q 0,n)(dxn, dyn), and the distributions ν0,n(dyn) = P0,n(X0,n, dy
n) = ⊗ni=0νi(dyi|yi−1), {νi(dyi|yi−1) ∈

M1(Yi) : i = 0, 1, . . . , n},
−→
Π(dxn, dyn) =

←−
P 0,n(dxn|yn−1) ⊗ ν0,n(dyn), (defined by (III.5), (III.9),

(III.10)).
Then the following variational equalities hold.
Part A. (i) For any arbitrary distribution V0,n(dyn) ∈M1(Y0,n) we have

I(Xn → Y n) = IXn→Y n(
←−
P 0,n,

−→
Q 0,n)

4
= D(P0,n||

−→
Π 0,n)

= inf
V0,n(dyn)∈M1(Y0,n)

D(
←−
P 0,n ⊗

−→
Q 0,n||

←−
P 0,n ⊗ V0,n) (IV.9)

= inf
V0,n(dyn)∈M1(Y0,n)

{∫
X0,n×Y0,n

log
(d−→Q 0,n(·|xn)

dV0,n(·)
(yn)

)
(
←−
P 0,n ⊗

−→
Q 0,n)(dxn, dyn)

}
(IV.10)

and the infimum is achieved at V0,n(dyn) ≡ ν0,n(dyn) ∈M1(Y0,n) given by

ν0,n(dyn) =

∫
X0,n

(
←−
P 0,n ⊗

−→
Q 0,n)(dxn, dyn). (IV.11)
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(ii) For any arbitrary conditional distribution Vi(dyi|yi−1) ∈M1(Yi), i = 0, 1, . . . , n, we have

I(Xn → Y n) ≡ IXn→Y n(pi, qi : i = 0, 1, . . . , n)

= inf{
Vi(dyi|yi−1)∈M1(Yi):i=0,1,...,n

} n∑
i=0

∫
X0,i×Y0,i−1

log
(dqi(·|yi−1, xi)

dVi(·|yi−1)
(yi)
)

pi(dxi|xi−1, yi−1)⊗(
←−
P 0,i−1 ⊗

−→
Q 0,n−1)(dyi−1, dxi−1) (IV.12)

and the infimum is achieved at Vi(dyi|yi−1) = νi(dyi|yi−1) given by

νi(dyi|yi−1) =

∫
X0,i

qi(dyi|yi−1, xi)⊗ pi(dxi|xi−1, yi−1)⊗ (
←−
P 0,i−1 ⊗

−→
Q 0,i−1)(dxi−1, dyi−1), i = 0, 1, . . . , n.

(IV.13)

Part B. (i) For any S(·|·) ∈ QC3(YN0|X N0) and R(·|·) ∈ QC4(X N0|YN0) then

IXn→Y n(
←−
P 0,n,

−→
Q 0,n) = D(P0,n||

−→
Π 0,n)

= sup
(
←−
S 0,n⊗

−→
R0,n)(dxn,dyn)∈M1(X0,n×Y0,n):

←−
S 0,n(dyn|xn−1)∈MC3

1 (Y0,n),
−→
R0,n(dxn|yn)∈MC4

1 (X0,n)

∫
X0,n×Y0,n

log
(d(
←−
S 0,n ⊗

−→
R 0,n)

d
−→
Π 0,n

(xn, yn)
)

(
←−
P 0,n ⊗

−→
Q 0,n)(dxn, dyn) (IV.14)

and the supremum is achieved at (
←−
S 0,n⊗

−→
R 0,n)(dxn, dyn) = (

←−
P 0,n⊗

−→
Q 0,n)(dxn, dyn), given by the RND

Λ0,n(xn, yn)
4
=
d(
←−
P 0,n ⊗

−→
Q 0,n)

d(
←−
S 0,n ⊗

−→
R 0,n)

(xn, yn) = 1− a.s., n ∈ N0. (IV.15)

Equivalently,

λi(x
i, yi)

4
=
dpi(·|xi−1, yi−1)

dri(·|xi−1, yi)
(xi).

dqi(·|yi−1, xi)

dsi(·|yi−1, xi−1)
(yi) = 1− a.s., i = 0, 1, . . . , n. (IV.16)

Moreover, if qi(·|yi−1, xi)� si(·|yi−1, xi−1)-a.a. (yi−1, xi) and pi(·|xi−1, yi−1)� ri(·|xi−1, yi)-a.a. (xi−1, yi),
i = 0, 1, . . . , n, then

Πn
i=0

dqi(·|yi−1, xi)

dsi(·|yi−1, xi−1)
(yi) = Πn

i=0

(
dpi(·|xi−1, yi−1)

dri(·|xi−1, yi)
(xi)

)−1

− a.s., n ∈ N0 (IV.17)

or equivalently,

dqi(·|yi−1, xi)

dsi(·|yi−1, xi−1)
(yi) =

(
dpi(·|xi−1, yi−1)

dri(·|xi−1, yi)
(xi)

)−1

− a.s., i = 0, 1, . . . , n. (IV.18)

(ii) For any arbitrary collection of stochastic kernels {ri(·|·, ·) ∈ Q(Xi|X0,i−1 ×Y0,i−1), i = 0, 1, . . . , n},
and {si(·|·, ·) ∈ Q(Yi|Y0,i−1 ×X0,i−1), i = 0, 1, . . . , n}, define

I(pi, qi, si, ri : i = 0, 1, . . . , n)
4
=

n∑
i=0

∫
X0,i×Y0,i

log

(
dri(·|xi−1, yi)

dpi(·|xi−1, yi−1)
(xi).

dsi(·|yi−1, xi−1)

dνi(·|yi−1)
(yi)

)
⊗ik=0

(
pk(dxk|xk−1, yk−1)⊗qk(dyk|yk−1, xk)

)
.
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Then

I(Xn → Y n) ≡ IXn→Y n(pi(·|·, ·), qi(·|·, ·) : i = 0, 1, . . . , n)

= sup{
si(dyi|yi−1,xi−1)⊗ri(dxi|xi−1,yi)∈M(Xi×Yi)

}
, i=0,1,...,n{

si(dyi|yi−1,xi−1)∈M1(Yi), ri(dxi|xi−1,yi)∈M1(Xi)
} I(pi, qi, si, ri : i = 0, 1, . . . , n) (IV.19)

and the supremum is achieved when (IV.16) or (IV.18) hold.

Proof: Part A. (i) From Theorem III.1, then

D(
←−
P 0,n ⊗

−→
Q 0,n||

←−
P 0,n ⊗ V0,n) =

∫
X0,n×Y0,n

log
(d−→Q 0,n(·|xn)

dV0,n(·)
(yn)

)
(
←−
P 0,n ⊗

−→
Q 0,n)(dxn, dyn) (IV.20)

=

∫
X0,n×Y0,n

log
(d−→Q 0,n(·|xn)

dν0,n(·)
(yn)

)
(
←−
P 0,n ⊗

−→
Q 0,n)(dxn, dyn) + D(ν0,n||V0,n) (IV.21)

≥ D(
←−
P 0,n ⊗

−→
Q 0,n||

←−
P 0,n ⊗ ν0,n). (IV.22)

Moreover, equality holds in (IV.22) when V0,n = ν0,n given by (IV.11). Hence, D(P0,n||
−→
Π 0,n) in (III.20)

can be expressed via variational equality (IV.10).
(ii) The derivation of (IV.12) is similar to (IV.9), (IV.10), but it is done with respect to each component
Vi(dyi|yi−1) ∈M1(Yi), starting at i = n and moving sequentially backward to i = 0.
Part B. (i) Consider the difference between I(Xn → Y n) = D(

←−
P 0,n⊗

−→
Q 0,n||

−→
Π 0,n) given by (III.20) and

the LHS of (IV.14) (without the supremum). Then

IXn→Y n(
←−
P 0,n,

−→
Q 0,n)−

∫
X0,n×Y0,n

log
(d(
←−
S 0,n ⊗

−→
R 0,n)

d(
←−
P 0,n ⊗ ν0,n)

(xn, yn)
)

(
←−
P 0,n ⊗

−→
Q 0,n)(dxn, dyn)

=

∫
X0,n×Y0,n

log
(d(
←−
P 0,n ⊗

−→
Q 0,n)

d(
←−
S 0,n ⊗

−→
R 0,n)

(xn, yn)
)

(
←−
P 0,n ⊗

−→
Q 0,n)(dxn, dyn)

≥
∫
X0,n×Y0,n

(
1− d(

←−
S 0,n ⊗

−→
R 0,n)

d(
←−
P 0,n ⊗

−→
Q 0,n)

(xn, yn)
)

(
←−
P 0,n ⊗

−→
Q 0,n)(dxn, dyn) = 0 (IV.23)

where (IV.23) follows from the inequality log x ≥ 1− 1
x
, x > 0, which holds with equality if and only

if x = 1. Furthermore, equality holds in (IV.23), when the RND Λ0,n(xn, yn)
4
=

d(
←−
P 0,n⊗

−→
Q0,n)

d(
←−
S 0,n⊗

−→
R0,n)

(xn, yn) = 1,
←−
S 0,n ⊗

−→
R 0,n − a.s. in (xn, yn). Since (

←−
P 0,n ⊗

−→
Q 0,n)(X0,n × Y0,n) = (

←−
S 0,n ⊗

−→
R 0,n)(X0,n × Y0,n) = 1,

this condition is equivalent to
←−
P 0,n ⊗

−→
Q 0,n =

←−
S 0,n ⊗

−→
R 0,n. By conditioning (IV.15) on B(X0,n−1) ⊗

B(Y0,n−1) one obtains (IV.16). Furthermore, (IV.17) is obtained from (IV.15), while (IV.18) is obtained
by conditioning.
(ii) The derivation of (IV.19) is similar to (IV.14) but it is done with respect to each component si ⊗
ri, starting at i = n and moving backward sequentially to i = 0.

Note that Theorem IV.1, Part A. (ii), Part B. (ii) are sequential versions of Part A. (i), Part B. (i),
respectively.
Next, we discuss the relation between the variational equality of directed information (IV.14) and the
variational equality of mutual information (IV.3). Clearly, (IV.3) is also equivalent to

sup
VXn|Y n⊗PY n

∫
X0,n×Y0,n

log

(
d
(
VXn|Y n(·|yn)⊗ PY n(·)

)
d
(
PXn(·)× PY n(·)

) (xn, yn)

)
PY n|Xn(dyn|xn)⊗ PXn(dxn) (IV.24)
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since the RND in (IV.24) is another version of the one in (IV.3). Hence, (IV.14) is the analogue of
(IV.24). Further, to obtain the analogue of the maximizing measure in (IV.3), given by (IV.4), suppose
qi(·|yi−1, xi)� si(·|yi−1, xi−1)− a.a.(xi, yi−1), i = 0, 1, . . . , n, and {si(·|yi−1, xi−1) : i = 0, 1, . . . , n} is
fixed, and generated by

←−
P 0,n(·|yn−1) ∈MC1(X0,n) and

−→
Q 0,n(·|xn) ∈MC2(Y0,n). Then from (IV.16) we

obtain

ri(dxi|xi−1, yi) =

(
dqi(·|yi−1, xi)

dsi(·|yi−1, xi−1)
(yi)

)
pi(dxi|xi−1, yi−1), i = 0, 1, . . . , n (IV.25)

=
qi(dyi|yi−1, xi)∫

Xi qi(dyi|y
i−1, xi)⊗ pi(dxi|xi−1, yi−1)

pi(dxi|xi−1, yi−1), i = 0, 1, . . . , n. (IV.26)

Obviously, for a fixed {si(·|yi−1, xi−1) : i = 0, 1, . . . , n}, (IV.25), (IV.26) are the sequential versions of
maximizing distribution satisfying (IV.15), given by

−→
R 0,n(dxn|yn) = ⊗ni=0

qi(dyi|yi−1, xi)∫
Xi qi(dyi|y

i−1, xi)⊗ pi(dxi|xi−1, yi−1)
pi(dxi|xi−1, yi−1), n ∈ N0. (IV.27)

Clearly, (IV.27) is the analogue of the maximizing distribution PXn|Y n in (IV.3).
Note that the optimization in (IV.14) can be done by keeping

←−
S 0,n(·|xn−1) fixed, generated by P(·|·) ∈

QC1(X N0|YN0) and Q(·|·) ∈ QC2(YN0 |X N0), and maximizing only over
−→
R 0,n(·|yn) ∈ M1(X0,n) as

demonstrated above.

For extremum problems of directed information, such as, the channel capacity with memory with and
without feedback, it is desirable to invoke a sequential version of variational equalities, in order to derive
sequential algorithms. This point is illustrated in the next section.

B. Applications of Sequential Variational Equalities to Feedback Capacity Computations
Consider the extremum problem of feedback capacity given by (I.5), without transmission cost con-

straint. Expressed in terms of channel distributions {qi(dyi|yi−1, xi) ∈ M1(Yi) : i = 0, 1, . . . , n}
and the channel input distributions {pi(dxi|xi−1, yi−1) ∈ M1(Xi) : i = 0, 1, . . . , n}, then Cfb 4

=
lim infn−→∞

1
n+1

Cfb
0,n where

Cfb
0,n

4
= sup{

pi(dxi|xi−1,yi−1)∈M1(Xi): i=0,1,...,n
} n∑
i=0

I(X i;Yi|Y i−1). (IV.28)

Given a specific channel, Theorem IV.1, Part B. (ii) can be used to develop a sequential alternating double

maximization algorithm over appropriate sets of distributions, which computes Cfb via (IV.28) (i.e.,
Cfb0,n

n+1
),

for large enough n, starting at n and moving sequentially in time to n− 1, n− 2, . . . , 0. This is illustrated
next, by considering a simple example.

Unit Memory Channel. Consider a channel defined by {qi(dyi|yi−1, xi) ∈ M1(Yi) : i = 0, 1, . . . , n},
called Unit Memory Channel Output (UMCO). Then, (IV.28) reduces to

Cfb,UMCO
0,n

4
= sup{

pi(dxi|xi−1,yi−1)∈M1(Xi): i=0,1,...,n
} n∑
i=0

E
{

log
(dqi(·|Yi−1, Xi)

dνi(·|Y i−1)
(Yi)

)}
. (IV.29)

It is conjectured by Chen and Berger [8] (see also [51], [52]) that the optimal channel input distribution
in (IV.29) satisfies the conditional independence pi(dxi|xi−1, yi−1) = πi(dxi|yi−1) − a.a. (xi−1, yi−1) ∈
X0,n−1 × Y0,n−1, which then implies the corresponding joint process {(Xi, Yi) : i = 0, 1, . . . , n} is first
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order Markov, the output process {Yi : i = 0, 1, . . . , n} is first order Markov, and consequently, (IV.29)
reduces to the following expression4.

Cfb,UMCO
0,n

4
= sup{

πi(dxi|yi−1)∈M1(Xi): i=0,1,...,n
} n∑
i=0

∫
Yi−1,i×Xi

log
(dqi(·|yi−1, xi)

dνπi (·|yi−1)
(yi)
)

qi(dyi|yi−1, xi)⊗ πi(dxi|yi−1)⊗ νπi (dyi−1) (IV.30)

= sup{
πi(dxi|yi−1)∈M1(Xi): i=0,1,...,n

} n∑
i=0

I(Xi;Yi|Yi−1) (IV.31)

where

νπi (·|yi−1) =

∫
Xi
qi(dyi|yi−1, xi)⊗ πi(dxi|yi−1), i = 0, 1, . . . , n. (IV.32)

The conjecture by Chen and Berger [8] (i.e., (IV.30)-(IV.32)) is recently shown in [53], by invoking the
variational equality (IV.12) in extremum problems of feedback capacity, to identify information structures
of the optimal channel input distribution for general channels with finite memory.
By Theorem IV.1, Part B. (ii), for a fixed {πi(dxi|yi−1) ∈ M1(Xi) : i = 0, 1, . . . , n}, the expression
inside the maximization in (IV.30) or (IV.31) is expressed as

n∑
i=0

I(Xi;Yi|Yi−1) = sup{
ri(dxi|yi−1,yi)∈M1(Xi): i=0,1,...,n

} n∑
i=0

∫
Yi−1,i×Xi

log
(dri(·|yi−1, yi)

dπi(·|yi−1)
(xi)

)
qi(dyi|yi−1, xi)⊗ πi(dxi|yi−1)⊗ νπi (dyi−1) (IV.33)

where the supremum in (IV.33) is achieved at

rπi (dxi|yi−1, yi) =
(dqi(·|yi−1, xi)

dνπi (·|yi−1)
(yi)
)
πi(dxi|yi−1), i = 0, 1, . . . , n. (IV.34)

Next, we convert Cfb,UMCO
0,n into a sequential alternating maximization problem over appropriate sets of

distributions, by using dynamic programming.
Let Ct : Yt−1 7−→ [0,∞) represent the maximum expected total pay-off in (IV.30) on the future time
horizon {t, t+ 1, . . . , n}, given Yt−1 = yt−1 at time t− 1, defined by

Ct(yt−1) = sup{
πi(dxi|yi−1)∈M1(Xi): i=t,t+1,...,n

}Eπ{ n∑
i=t

log
(dqi(·|yi−1, xi)

dνπi (·|yi−1)
(yi)
)
qi(dyi|yi−1, xi)

⊗ πi(dxi|yi−1)
∣∣∣Yt−1 = yt−1

}
. (IV.35)

By standard arguments (see [33]), and in view of the Markov property of {Yi : i = 0, 1, . . . , n}, it follows
that (IV.35) satisfies the following dynamic programming recursions.

Cn(yn−1) = sup
πn(dxn|yn−1)∈M1(Xn)

∫
Xn×Yn

log
(dqn(·|yn−1, xn)

dνπn(·|yn−1)
(yn)

)
qn(dyn|yn−1, xn)⊗ πn(dxn|yn−1)

(IV.36)

Ct(yt−1) = sup
πt(dxt|yt−1)∈M1(Xt)

{∫
Xt×Yt

log
(dqt(·|yt−1, xt)

dνπt (·|yt−1)
(yt)
)
qt(dyt|yt−1, xt)⊗ πt(dxt|yt−1)

+

∫
Xt×Yt

Ct+1(yt)qt(dyt|yt−1, xt)⊗ πt(dxt|yt−1)
}
, t = 0, 1, . . . , n− 1. (IV.37)

4superscript π on various distributions indicates their dependence on {πi(dxi|yi−1) : i = 0, 1, . . . , n}.
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It is well-known that the computation of the optimal channel input distribution in (IV.36), (IV.37) suffers
from the so-called, curse of dimensionality (i.e., it is often computationally prohibitive, even for finite
alphabet spaces). However, by applying Theorem IV.1, Part B. (ii), to the dynamic programming recursions
(IV.36), (IV.37), we can show that these can be converted to equivalent alternating maximizations over
convex sets. Consequently, (IV.30) can be expressed via sequential alternating maximizations, of concave
functionals over convex sets, as stated in the next theorem.

Theorem IV.2. (Sequential double maximization of feedback capacity of UMCO)
Consider the UMCO defined by {qi(dyi|yi−1, xi) ∈M1(Yi) : i = 0, 1, . . . , n}, and Cfb,UMCO

0,n defined by

(IV.30), for a fixed Prob{Y−1 ∈ dy−1}
4
= ν−1(dyi−1).

Part A. The dynamic programming recursions (IV.36), (IV.37) are equivalent to the following sequential
double maximization dynamic programming recursions.

Cn(yn−1) = sup
πn(dxn|yn−1)∈M1(Xn)

sup
rn(dxn|yn−1,yn)∈M1(Xn)

{∫
Xn×Yn

log
(drn(·|yn−1, yn)

dπn(·|yn−1)
(xn)

)
qn(dyn|yn−1, xn)⊗ πn(dxn|yn−1)

}
(IV.38)

Ct(yt−1) = sup
πt(dxt|yt−1)∈M1(Xt)

sup
rt(dxt|yt−1,yt)∈M1(Xt)

{∫
Xt×Yt

log
(drt(·|yt−1, yt)

dπt(·|yt−1)
(xt)

)
qt(dyt|yt−1, xt)

⊗ πt(dxt|yt−1) +

∫
Xt×Yt

Ct+1(yt)qt(dyt|yt−1, xt)⊗ πt(dxt|yt−1)
}
, t = 0, 1, . . . , n− 1. (IV.39)

and Cfb,UMCO
0,n is given by

Cfb,UMCO
0,n =

∫
Y−1

C0(y−1)ν−1(dy−1).

Moreover, the following hold.
Maximizations in (IV.38).
(i) For a fixed πn(dxn|yn−1) ∈M1(Xn), the maximum in (IV.38) over rn(dxn|yn−1, yn) ∈M1(Xn) occurs
at rn(·|·, ·) = r∗,πn (·|·, ·) given by

r∗,πn (dxn|yn−1, yn) =
(dqn(·|yn−1, xn)

dνπn(·|yn−1)
(yn)

)
πn(dxn|yn−1). (IV.40)

(ii) For a fixed rn(dxn|yn−1, yn) ∈M1(Xn), the maximum in (IV.38) over πn(dxn|yn−1) ∈M1(Xn) occurs
at πn(·|·) = π∗,rn (·|·)5 given by

π∗,rn (dxn|yn−1) =
exp

{∫
Yn log

(
drn(·|yn−1,yn)
dπn(·|yn−1)

(xn)
)
qn(dyn|yn−1, xn)

}
πn(dxn|yn−1)∫

Xn exp
{∫
Yn log

(
rπn(·|yn−1,yn)
πn(·|yn−1)

(xn)
)
qn(dyn|yn−1, xn)

}
πn(dxn|yn−1)

(IV.41)

Moreover, when (IV.41) is evaluated at rn(·|·, ·) = r∗,πn (·|·, ·) given by (IV.40) then

π∗,r
∗

n (dxn|yn−1) =
exp

{∫
Yn log

(
dqn(·|yn−1,xn)
dνπn(·|yn−1)

(yn)
)
qn(dyn|yn−1, xn)

}
πn(dxn|yn−1)∫

Xn exp
{∫
Yn log

(
dqn(·|yn−1,xn)
dνπn(·|yn−1)

(yn)
)
qn(dyn|yn−1, xn)

}
πn(dxn|yn−1)

. (IV.42)

Maximizations in (IV.39).
(iii) For a fixed πt(dxt|yt−1) ∈ M1(Xt), the maximum in (IV.39) over rt(dxt|yt−1, yt) ∈ M1(Xt) occurs
at rt(·|·, ·) = r∗,πt (·|·, ·) given by

r∗,πt (dxt|yt−1, yt) =
(dqt(·|yt−1, xt)

dνπt (·|yt−1)
(yt)
)
πt(dxt|yt−1), t = n− 1, n− 2, . . . , 0. (IV.43)

5superscript r indicates the dependence on the distribution {ri(dxi|yi−1, yi) : i = 0, 1, . . . , n}.
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(iv) For a fixed rt(dxt|yn−1, yt) ∈ M1(Xt), the maximum in (IV.39) over πt(dxt|yt−1) ∈ M1(Xt), occurs
at πt(·|·) = π∗,rt (·|·), t = n− 1, n− 2, . . . , 0, given by

π∗,rt (dxt|yt−1) =
exp

{∫
Yt

{
log
(
drt(·|yt−1,yt)
dπt(·|yt−1)

(xt)
)

+ Ct+1(yt)
}
qt(dyt|yt−1, xt)

}
πt(dxt|yt−1)∫

Xt exp
{∫
Yt

{
log
(
drt(·|yt−1,yt)
dπt(·|yt−1)

(xt)
)

+ Ct+1(yt)
}
qt(dyt|yt−1, xt)

}
πt(dxt|yt−1)

. (IV.44)

Moreover, when (IV.44) is evaluated at rt(·|·, ·) = r∗,πt (·|·, ·), t = n−1, n−2, . . . , 0, given by (IV.43) then

π∗,r
∗

t (dxt|yt−1) =

exp

{∫
Yt

{
log
(
dqt(·|yt−1,xt)
dνπt (·|yt−1)

(yt)
)

+ Ct+1(yt)
}
qt(dyt|yt−1, xt)

}
πt(dxt|yt−1)

∫
Xt exp

{∫
Yt

{
log
(
dqt(·|yt−1,xt)
dνπt (·|yt−1)

(yt)
)

+ Ct+1(yt)
}
qt(dyt|yt−1, xt)

}
πt(dxt|yt−1)

.

(IV.45)

Part B. The extremum problem Cfb,UMCO
0,n defined by (IV.30) is equivalent to the following sequential

double maximization problem.

Cfb,UMCO
0,n = sup

π0(dx0|y−1)∈M1(X0)

sup
rπ0 (dx0|y−1,y0)∈M1(X0)

. . . sup
πn(dxn|yn−1)∈M1(Xn)

sup
rπn(dxn|yn−1,yn)∈M1(Xn){ n∑

i=0

∫
Yi−1,i×Xi

log
(drπi (·|yi−1, yi)

dπi(·|yi−1)
(xi)

)
qi(dyi|yi−1, xi)⊗ πi(dxi|yi−1)⊗ νπi (dyi−1)

}
(IV.46)

and statements (i)-(iv) hold.

Proof: Part A. (i) (IV.38) and (IV.40) follow directly from (IV.36). (ii) (IV.41) is obtained as follows.
Fix rn(dxn|yn−1, yn) ∈ M1(Xn), calculate the Gâteaux differential inside the maximization in (IV.38) at
π∗,rn (dxn|yn−1) in the direction πrn(dxn|yn−1) − π∗,rn (dxn|yn−1), i.e., πε,rn (dxn|yn−1)

4
= π∗,rn (dxn|yn−1) −

ε
{
πrn(dxn|yn−1)−π∗,rn (dxn|yn−1)

}
, ε ∈ [0, 1], by incorporating the constraint

∫
Xn π

r
n(dxn|yn−1) = 1 via a

Lagrange multiplier λn(yn−1). The Gâteaux differential gives (IV.41). Then substitute (IV.40) into (IV.41)
to obtain (IV.42). (iii) For fixed πt(dxt|yt−1) ∈M1(Xt), the second RHS term in (IV.37) is a function of
the channel distribution, hence (IV.39) and (IV.43) follow directly as in (i). (iv) To show (IV.44), (IV.45),
compute the Gâteux differential as in (ii), by tracking the additional second RHS term in (IV.39).
Part B. Since ν−1(dy−1) ∈M1(Y−1) is fixed, then (IV.46) follows directly from Part A., and the definition
of Ct(yt−1) evaluated at t = 0.
Theorem IV.2, specifically (IV.42), (IV.45), are the equations, which should be used to derive a sequential
algorithm to compute numerically the optimal channel input distribution.
Below, we discuss applications of Theorem IV.2, and identify generalizations, and directions for future
research.

Remark IV.3. (Sequential algorithms for feedback capacity)
(1) For the UMCO, Theorem IV.2 provides all necessary ingredients to derive a sequential algorithm

at each time step, t = n, n − 1, . . . , 0, similar to the BAA. It remains to show at each time step,
t = n, n− 1, . . . , 0, that (IV.42), (IV.44) have fixed points corresponding to the optimal channel input
distribution, and to derive upper and lower bounds on Ct(yt−1), t = n, n − 1, . . . , 0, to stop the
iterations at each time step of the algorithm. For finite alphabet spaces {(Xi,Yi) : i = 0, 1, . . . , n},
these additional steps can be carried out using Theorem IV.2 and the procedure in [39].

(2) For the UMCO, if the alphabet spaces Xi ≡ X , Yi ≡ Y , i = 0, 1, . . ., and the joint process
{(Xi, Yi) : i = 0, 1, . . .} is stationary ergodic or directed information stable, then the per unit time
limiting version of dynamic programming recursive equations (IV.36), (IV.37) can be derived [54],
and these involve only a single stage maximization over π(dxi|yi−1) ∈M1(X ), ∀i. Hence, a theorem
similar to Theorem IV.2 can be derived.
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(3) For general channels, it is possible to derive the analogue of Theorem IV.2, provided the set of
optimal channel input distributions, which maximize

∑n
i=0 I(X i;Yi|Y i−1) is identified, as in the case

of UMCO (see [53]).

V. CONCLUSION

In this paper we derive functional and topological properties of directed information, for abstract
alphabet spaces (i.e., complete separable metric spaces). These include, convexity of the set of consistent
family of distributions, which uniquely define causally conditioned compound distributions, convexity and
concavity of directed information with respect to consistent family of distributions, and a general theorem
on weak compactness of causally conditioned distributions, their joint distributions, and marginals, which
are utilized to define directed information. Further, we use this main theorems to show lower semicontinuity
of directed information as a functional of two causally conditioned distributions, and under additional
conditions continuity of directed information. In addition, we derive sequential variational equalities for
directed information. Throughout the paper, we discuss application examples in the context of extremum
problems of directed information, such as, in feedback capacity, nonanticipative RDF, and in developing
sequential computational algorithms, similar to the Blahut-Arimoto algorithm [39].

APPENDIX A
BACKGROUND MATERIAL

In this section, we introduce some of the basic analytical concepts which are used throughout the paper.

Weak Convergence and Compactness.
The main notions discussed are weak convergence of probability measures, the relation to convergence
with respect to Prohorov metric, tightness of a family of probability measures and relative compactness
[31].
Let (X , d) be a metric space, B(X ) the σ−algebra of Borel subsets of X , and M1(X ) the family of
probability measures on X . Let BC(X ) denote the set of bounded, continuous real-valued function f
on (X , d), endowed with the supremum norm ||f || = supx∈X |f(x)|. A sequence of probability measures
{Pn : n = 1, 2, . . .} ⊂ M1(X ) is said to converge weakly to a probability measure P ∈M1(X ) if

lim
n→∞

∫
X
f(x)dPn(x) =

∫
X
f(x)dP (x), ∀f ∈ BC(X ).

Weak convergence of {Pn : n = 1, 2, . . .} to P is denoted by Pn
w−→ P . The space of probability measures

M1(X ) is metrizable with respect to the Prohorov metric (see [30]).

A crucial result for the characterization of compact subsets ofM1(X ) is the next theorem due to Prohorov,
which relates compactness and tightness of a family of measures.

Definition A.1. (Tightness and Relative Compactness) [30, p. 308]
Let M ⊂M1(X ) be a family of probability measures on a metric space (X , d). M is said to be

1) tight or uniformly tight if for every ε > 0 there exists a compact set K(ε) ⊂ X such that infP∈M P (K(ε)) ≥
1− ε;

2) relatively compact or weakly compact if every sequence in M contains a weakly convergent subsequence,
that is, for every sequence {Pn : n = 1, 2, . . .} in M there is a subsequence {Pni : i ∈ {1, 2, . . .}} and a
P ∈ M1(X ) such that Pni

w−→ P . Here, the limit P is not required to belong to M , but all is required
is to belong to M1(X ).

Prohorov states that for (X , d) a metric space and X compact, then any sequence {Pn : n = 1, 2, . . .} of
probability measures on X possess a convergent subsequence. The following theorem due to Prohorov,
relates weak compactness and tightness of a family of probability measures.
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Theorem A.2. (Prohorov’s Theorem) [30, Theorem A.3.15, p. 309]
Let M ⊂M1(X ) be a family of probability measures on a metric space (X , d).

1) If M is tight, then it is relative compact.
2) Suppose X is separable and complete. If M is relatively compact, then it is tight.

Thus, a family of probability measures M ⊂ M1(X ) on a complete separable metric space (X , d)
is weakly compact or relatively compact with respect to weak convergence if and only if it is tight.
Moreover, if Pn

w−→ P , then the family {Pn : n = 1, 2, . . .} is tight.
Finally, we give another version due to Prohorov for a family of measures M ⊂M1(X ) to be compact.

Theorem A.3. (Corollary of Prohorov’s Theorem)
Let (X , d) be a separable metric and M ⊂M1(X ) a set of measures. The following hold.

(a) If M is closed and tight, then M is compact.
(b) Suppose X is complete. If M is compact then M is closed and tight.

In what follows, we give the definition of weak continuity of conditional distributions, which is often
associated with proving results using weak convergence of probability distributions, and we distinguish it
from strong continuity.

Definition A.4. (Strong and weak continuity)
Let (X , d), (Y , d′) be metric spaces, Q(·|·) ∈ Q(Y|X ) a conditional distribution, and define by BM(Y)
the set of bounded measurable functions on Y . Then Q(·|·) ∈ Q(Y|X ) is said to be
1) strongly continuous if the function mapping

x 7−→
∫
Y
f(y)Q(dy|x) ∈ BC(Y)

whenever f(·) ∈ BM(Y),
2) weakly continuous if the function mapping

x 7−→
∫
Y
f(y)Q(dy|x) ∈ BC(Y)

whenever f(·) ∈ BC(Y).

It can be shown that strong continuity is equivalent to Q(B|·) is continuous on Y for every set B ∈ B(Y)
(i.e., its conditional distribution is continuous), and this is much stronger than weak continuity of Q(·|·) ∈
Q(Y|X ).
Uniform Integrability.
In this paper we shall also need stronger sufficient conditions to verify convergence of a sequence of
integrals using the concept of uniform integrability. We state this next.

Definition A.5. (Uniform Integrability of RV’s) [45, Definition 4, p. 188]
Let (Ω,F ,P) be a probability space. A sequence of RV’s {Xn : n ∈ N1}, N1 , {1, 2, . . .}, is said to be
uniformly P-integrable if

lim
c→∞

sup
n∈N1

∫
{ω:|Xn(ω)|≥c}

|Xn(ω)|dP(ω) = 0.

Note that if {Xn : n ∈ N1} satisfy |Xn| ≤ Y and E{Y } < ∞, then the sequence {Xn : n ∈ N1} is
uniformly integrable.
The following theorem gives some properties for a family of uniformly integrable RV’s.

Theorem A.6. (Uniform Integrability of RV’s) [45, Theorem 4, pp. 188-189]
Let (Ω,F ,P) be a probability space and {Xn : n ∈ N1} a uniformly P-integrable family of RV’s. Then

(a) E lim infnXn ≤ lim infn EXn ≤ lim supn EXn ≤ E lim supnXn.
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(b) If Xn
a.s.
=⇒ X , then E|X| <∞, limn→∞ E|Xn| = E|X| and limn→∞ E

{
|Xn −X|

}
= 0.

The next definition of uniform integrability is with respect to a family of probability measures for a fixed
integrand.

Definition A.7. (Uniform Integrability for a family of probability measures)
Let M ⊂ M1(X ) be a family of probability measures on

(
X ,B(X )

)
. A measurable function f on X is

said to be uniformly integrable over M if

lim
c→∞

sup
P∈M

∫
{x∈X :|f(x)|>c}

|f(x)|dP (x) = 0.

A sufficient condition for the convergence of a sequence of integrals of a function with respect to a weakly
convergent sequence of measures is the following.

Theorem A.8. [29, Appendix, Theorem A.2, p. 3084]
Let M ⊂M1(X ) be a closed family of probability measures on

(
X ,B(X )

)
, and let {Pn : n ∈ N1} ⊂M

be a weakly convergent sequence in M . If f is a continuous function on X and uniformly integrable over
{Pn : n ∈ N1} then limn→∞

∫
f(x)dPn(x) =

∫
f(x)dP (x).

Absolute Continuity of Probability Measures.
Let (Ω,F) be a measurable space. Given two probability measures P,Q on (Ω,F), Q is said to be
absolutely continuous with respect to P (denoted P � Q) if for every A ∈ F such that P (A) = 0
then Q(A) = 0. If Q � P, by Radon-Nikodym Derivative theorem, there exists a P−integrable and
F−measurable function f such that for every A ∈ F , Q(A) =

∫
A
f(ω)dP (ω). Let (Ω,F ,P) be a

probability space and G be a sub-σ-algebra of F . A regular conditional probability distribution P (·|G)
on (Ω,F) exist, when G is generated by a countable partition of Ω. Moreover, if (Ω, d) is a metric space
which is complete and separable (Polish space), and F is a Borel σ−algebra, then for any probability
measure P on (Ω,F) and any sub-σ-algebra G ⊆ F , a regular conditional probability measure of P given
G always exists.
The next lemma summarizes certain relationships between the absolute continuity of probability measures.

Lemma A.9. (Absolute Continuity of Probability Measures) [55, Lemma 4.4.7, pp. 149-150]
a) Suppose QG � PG. If Q(·|G)(ω)� P (·|G)(ω), QG − a.s., then Q� P.
b) Conversely, if Q� P, then Q(·|G)(ω)� P (·|G)(ω), P (·|G)(ω)− a.s.

If Y : (Ω,F) 7−→ (Y ,A) is a RV on (Ω,F) into a measurable space (Y ,A) and Y is a Polish space, then
a regular conditional distribution for Y given the sub-σ-algebra G of F denoted by P (dy|G)(ω), always
exists. Additionally, if X : (Ω,F) 7−→ (X ,B) is a RV on (Ω,F) into a measurable space (X ,B), and G
is the sub-σ-algebra of F generated by X, then P (dy|X)(ω) is called the regular conditional distribution
of Y given X. One can go one step further to define an equivalent definition of a regular conditional
distribution for Y given X = x as a quantity P (dy|X = x) called stochastic kernel.

APPENDIX B
PROOF OF THEOREM III.3

1) Fix
←−
P 0,n(·|yn−1) ∈ MC1

1 (X0,n) and let
−→
Q

1

0,n(·|xn),
−→
Q

2

0,n(·|xn) ∈ MC2
1 (Y0,n). Then, the joint

distributions corresponding to
−→
Q

1

0,n(·|xn),
−→
Q

2

0,n(·|xn) are

(
←−
P 0,n ⊗

−→
Q

1

0,n)(dxn, dyn) and (
←−
P 0,n ⊗

−→
Q

2

0,n)(dxn, dyn),

and the marginals are

ν1
0,n(dyn) = (

←−
P 0,n ⊗

−→
Q

1

0,n)(X0,n, dy
n), ν2

0,n(dyn) = (
←−
P 0,n ⊗

−→
Q

2

0,n)(X0,n, dy
n).



36

Since the set MC2
1 (Y0,n) is convex, given λ ∈ (0, 1) there exists a probability measure P̃ on (X N0 ×

YN0 ,B(X N0)⊗ B(YN0)) whose regular conditional measure Q(·|x) ∈M1(YN0) satisfies
−→
Q 0,n(·|xn) = λ

−→
Q

1

0,n(·|xn) + (1− λ)
−→
Q

2

0,n(·|xn), P̄
∣∣
B(X0,n)

− a.e. xn

and C1 holds. Define

ν0,n(dyn) = λν1
0,n(dyn) + (1− λ)ν2

0,n(dyn).

Introduce the RNDs Λi
0,n(xn, yn) =

d
−→
Q
i

0,n(·|xn)

dνi0,n(·) (yn), Ψi
0,n(xn, yn) =

d
−→
Q
i

0,n(·|xn)

dν0,n(·) (yn), Ki
0,n(yn) =

dνi0,n(·)
dν0,n(·)(y

n)

and Λ0,n(xn, yn) =
d
−→
Q0,n(·|xn)

dν0,n(·) (yn), i = 1, 2. Then,

λΨ1
0,n(xn, yn) + (1− λ)Ψ2

0,n(xn, yn) = λ
d
−→
Q

1

0,n(·|xn)

dν0,n(·)
(yn) + (1− λ)

d
−→
Q

2

0,n(·|xn)

dν0,n(·)
(yn)

=
d
(
λ
−→
Q

1

0,n(·|xn) + (1− λ)
−→
Q

2

0,n(·|xn)
)

d
(
λν1

0,n(·) + (1− λ)ν2
0,n(·)

) (yn) = Λ0,n(xn, yn)

and

λK1
0,n(yn) + (1− λ)K2

0,n(yn) = λ
dν1

0,n(·)
dν0,n(·)

(yn) + (1− λ)
dν2

0,n(·)
dν0,n(·)

(yn) =
d
(
λν1

0,n(·) + (1− λ)ν2
0,n(·)

)
d
(
λν1

0,n(·) + (1− λ)ν2
0,n(·)

)(yn) = 1.

Applying the log-sum formula [56, Theorem 2.7.1, p. 31] yields

λΨ1
0,n(xn, yn) log Λ1

0,n(xn, yn) + (1− λ)Ψ2
0,n(xn, yn) log Λ2

0,n(xn, yn)

= λΨ1
0,n(xn, yn) log

( d
−→
Q

1

0,n(·|xn)

dν0,n(·) (yn)

dν1
0,n(·)

dν0,n(·)(y
n)

)
+ (1− λ)Ψ2

0,n(xn, yn) log

( d
−→
Q

2

0,n(·|xn)

dν0,n(·) (yn)

dν2
0,n(·)

dν0,n(·)(y
n)

)

= λ
d
−→
Q

1

0,n(·|xn)

dν0,n(·)
(yn) log

(
λ
d
−→
Q

1

0,n(·|xn)

dν0,n(·) (yn)

λ
dν1

0,n(·)
dν0,n(·)(y

n)

)
+ (1− λ)

d
−→
Q

2

0,n(·|xn)

dν0,n(·)
(yn) log

(
(1− λ)

d
−→
Q

2

0,n(·|xn)

dν0,n(·) (yn)

(1− λ)
dν2

0,n(·)
dν0,n(·)(y

n)

)

≥

(
λ
d
−→
Q

1

0,n(·|xn)

dν0,n(·)
(yn) + (1− λ)

d
−→
Q

2

0,n(·|xn)

dν0,n(·)
(yn)

)
log

(
λ
d
−→
Q

1

0,n(·|xn)

dν0,n(·) (yn) + (1− λ)
d
−→
Q

2

0,n(·|xn)

dν0,n(·) (yn)

λ
dν1

0,n(·)
dν0,n(·)(y

n) + (1− λ)
dν2

0,n(·)
dν0,n(·)(y

n)

)

=
d
−→
Q 0,n(·|xn)

dν0,n(·)
(yn) log

d
−→
Q 0,n(·|xn)

dν0,n(·)
(yn).

Integrating the above with respect to ν0,n(dyn)⊗
←−
P 0,n(dxn|yn−1) yields:∫

X0,n×Y0,n

log
(d−→Q 0,n(·|xn)

dν0,n(·)
(yn)

)d−→Q 0,n(·|xn)

dν0,n(·)
(yn)

(
ν0,n(dyn)⊗

←−
P 0,n(dxn|yn−1)

)
=

∫
X0,n×Y0,n

log
(d−→Q 0,n(·|xn)

dν0,n(·)
(yn)

)
(
−→
Q 0,n ⊗

←−
P 0,n)(dxn, dyn)

≤ λ

∫
X0,n×Y0,n

log
(d−→Q 1

0,n(·|xn)

dν1
0,n(·)

(yn)
)

(
−→
Q

1

0,n ⊗
←−
P 0,n)(dxn, dyn)

+ (1− λ)

∫
X0,n×Y0,n

log
(d−→Q 2

0,n(·|xn)

dν2
0,n(·)

(yn)
)

(
−→
Q

2

0,n ⊗
←−
P 0,n)(dxn, dyn).
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Hence,

IXn→Y n
(←−
P 0,n, λ

−→
Q

1

0,n + (1− λ)
−→
Q

2

0,n

)
≤ λIXn→Y n

(←−
P 0,n,

−→
Q

1

0,n

)
+ (1− λ)IXn→Y n

(←−
P 0,n,

−→
Q

2

0,n

)
.

This completes the derivation of 1).
2) Fix

−→
Q 0,n(·|xn) ∈ MC2

1 (Y0,n) and let
←−
P

1

0,n(·|yn−1),
←−
P

2

0,n(·|yn−1) ∈ MC1
1 (X0,n). Then, the joint

distributions corresponding to
←−
P

1

0,n(·|yn−1),
←−
P

2

0,n(·|yn−1) are

(
←−
P

1

0,n ⊗
−→
Q 0,n)(dxn, dyn) and (

←−
P

2

0,n ⊗
−→
Q 0,n)(dxn, dyn).

The marginals corresponding to
←−
P

1

0,n(·|yn−1),
←−
P

2

0,n(·|yn−1) are

ν1
0,n(dyn) = (

←−
P

1

0,n ⊗
−→
Q 0,n)(X0,n, dy

n), ν2
0,n(dyn) = (

←−
P

2

0,n ⊗
−→
Q 0,n)(X0,n, dy

n).

Since the set MC1
1 (X0,n) is convex, given λ ∈ (0, 1) there exists a probability measure P̃ on (X N0 ×

YN0 ,B(X N0)⊗ B(YN0)) whose regular conditional measure P(·|y) ∈M1(X N0) satisfies
←−
P 0,n(·|yn−1) = λ

←−
P

1

0,n(·|yn−1) + (1− λ)
←−
P

2

0,n(·|yn−1), P̄
∣∣
B(Y0,n−1)

− a.e. yn−1

and C2 holds. Then, corresponding to
←−
P 0,n(·|yn−1) and

−→
Q 0,n(·|xn) we have

ν0,n(dyn) =

∫
X0,n

(
λ
←−
P

1

0,n(dxn|yn−1) + (1− λ)
←−
P

1

0,n(dxn|yn−1)
)
⊗
−→
Q 0,n(dyn|xn)

= λ(
←−
P

1

0,n ⊗
−→
Q 0,n)(X0,n, dy

n) + (1− λ)(
←−
P

2

0,n ⊗
−→
Q 0,n)(X0,n, dy

n) = λν1
0,n(dyn) + (1− λ)ν2

0,n(dyn).

Pick any measure U0,n(dyn) ∈ M1(Y0,n) with D(ν0,n||U0,n) < ∞, e.g., such that ν0,n(·)�U0,n(·). Since−→
Q(·|xn)�ν0,n(·), for almost all xn ∈ X0,n, and ν0,n(·)�U0,n(·), then

−→
Q 0,n(·|xn)�U0,n(·), for almost all

xn ∈ X0,n. Consider

IXn→Y n
(←−
P 0,n,

−→
Q 0,n

)
=

∫
X0,n×Y0,n

log
(d−→Q 0,n(·|xn)

dν0,n(·)
(yn)

)
(
−→
Q 0,n ⊗

←−
P 0,n)(dxn, dyn)

=

∫
X0,n×Y0,n

log
(d(−→Q 0,n(·|xn)×U0,n(·)

)
d
(
ν0,n(·)× U0,n(·)

) (yn)
)

(
−→
Q 0,n ⊗

←−
P 0,n)(dxn, dyn)

=

∫
X0,n×Y0,n

log
(d−→Q 0,n(·|xn)

dU0,n(·)
(yn)

)
(
−→
Q 0,n ⊗

←−
P 0,n)(dxn, dyn)

−
∫
X0,n×Y0,n

log
( dν0,n(·)
dU0,n(·)

(yn)
)

(
−→
Q 0,n ⊗

←−
P 0,n)(dxn, dyn)

=

∫
X0,n×Y0,n

log
(d−→Q 0,n(·|xn)

dU0,n(dyn)
(yn)

)
(
−→
Q 0,n ⊗

←−
P 0,n)(dxn, dyn)

−
∫
Y0,n

log
( dν0,n(·)
dU0,n(·)

(yn)
)(∫

X0,n

(
−→
Q 0,n ⊗

←−
P 0,n)(dxn, dyn)

)

=

∫
X0,n×Y0,n

log
(d−→Q 0,n(·|xn)

dU0,n(·)
(yn)

)
(
−→
Q 0,n ⊗

←−
P 0,n)(dxn, dyn)−

∫
Y0,n

log
( dν0,n(·)
dU0,n(·)

(yn)
)
ν0,n(dyn).
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Hence,

IXn→Y n
(
λ
←−
P

1

0,n + (1− λ)
←−
P

2

0,n,
−→
Q 0,n

)
=

∫
X0,n×Y0,n

log
(d−→Q 0,n(·|xn)

dU0,n(·)
(yn)

)
×
−→
Q 0,n(dyn|xn)⊗

(
λ
←−
P

1

0,n(dxn|yn−1) + (1− λ)
←−
P

2

0,n(dxn|yn−1)
)
−
∫
Y0,n

log

(
dν0,n(·)
dU0,n(·)

(yn)

)
ν0,n(dyn).

Moreover, relative entropy is convex in both arguments
(
e.g., D(·||U0,n) is convex for fixed U0,n

)
, hence

IXn→Y n
(
λ
←−
P

1

0,n + (1− λ)
←−
P

2

0,n,
−→
Q 0,n

)
≥ λ

∫
X0,n×Y0,n

log
(d−→Q 0,n(·|xn)

dU0,n(·)
(yn)

)
(
−→
Q 0,n ⊗

←−
P

1

0,n)(dxn, dyn)

− λ
∫
Y0,n

log
( dν1

0,n(·)
dU0,n(·)

(yn)
)
ν1

0,n(dyn)

+ (1− λ)

∫
X0,n×Y0,n

log
(d−→Q 0,n(·|xn)

dU0,n(·)
(yn)

)
(
−→
Q 0,n ⊗

←−
P

2

0,n)(dxn, dyn)

− (1− λ)

∫
Y0,n

log
( dν2

0,n(·)
dU0,n(·)

)
ν2

0,n(dyn).

Finally, since ν1
0,n(·)�U0,n(·) and ν2

0,n(·)�U0,n(·) by substituting the following versions
d
(−→
Q0,n(·|xn)×νi0,n(·)

)
d
(
U0,n(·)×νi0,n(·)

) (yn), i = 1, 2, of the RND for d
−→
Q0,n(·|xn)

dU0,n(·) (yn) in the first and third RHS expression in

the preceding equations yields

IXn→Y n
(
λ
←−
P

1

0,n + (1− λ)
←−
P

2

0,n,
−→
Q 0,n

)
≥ λIXn→Y n

(←−
P

1

0,n,
−→
Q 0,n

)
+ (1− λ)IXn→Y n

(←−
P

2

0,n,
−→
Q 0,n

)
.

This completes the derivation of 2).
3) Here, it will be shown that for

−→
Q

1

0,n(·|xn),
−→
Q

2

0,n(·|xn) ∈MC2
1 (Y0,n) such that

−→
Q

1

0,n(·|xn) 6=
−→
Q

2

0,n(·|xn),

and λ ∈ (0, 1), then IXn→Y n
(←−
P 0,n, λ

−→
Q

1

0,n+(1−λ)
−→
Q 0,n

)
< λIXn→Y n

(←−
P 0,n,

−→
Q

1

0,n

)
+(1−λ)IXn→Y n

(←−
P 0,n,

−→
Q

2

0,n

)
, for a fixed

←−
P 0,n(·|yn−1) ∈MC1

1 (X0,n).
It is already known that IXn→Y n(

←−
P 0,n,

−→
Q 0,n) is a convex functional on

−→
Q 0,n(·|xn) ∈ MC2

1 (Y0,n) for
a fixed

←−
P 0,n(·|yn−1) ∈ MC1

1 (X0,n). All is required to show in order to have strict convexity is that
IXn→Y n(

←−
P 0,n,

−→
Q 0,n) < ∞. This can be easily obtained from part 1) since

←−
P 0,n ⊗

−→
Q 0,n �

←−
P 0,n ⊗

ν0,n if and only if
−→
Q 0,n(·|xn) � ν0,n(·), for µ0,n−almost all xn ∈ X0,n. Hence, from the strict con-

vexity of the function slogs, s ∈ [0,∞), and the expression of directed information as a functional
of {
←−
P 0,n(·|yn−1),

−→
Q 0,n(·|xn)} ∈ MC1

1 (X0,n) × MC2
1 (Y0,n), with

−→
Q 0,n(·|xn) = λ

−→
Q 1

0,n(·|xn) + (1 −
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λ)
−→
Q

2

0,n(·|xn) it follows that

IXn→Y n(
←−
P 0,n,

−→
Q 0,n) =

∫
X0,n×Y0,n

log
(d(
←−
P 0,n ⊗

−→
Q 0,n)(·, ·)

−→
Π(·, ·)

(xn, yn)
)

(
−→
Q 0,n ⊗

←−
P 0,n)(dxn, dyn)

=

∫
X0,n×Y0,n

log
(d−→Q 0,n(·|xn)

dν0,n(·)
(yn)

)
(
−→
Q 0,n ⊗

←−
P 0,n)(dxn, dyn)

≤
∫
X0,n×Y0,n

λ log
(d−→Q 1

0,n(·|xn)

dν0,n(·)
(yn)

)
(
−→
Q

1

0,n ⊗
←−
P 0,n)(dxn, dyn)

+

∫
X0,n×Y0,n

(1− λ) log
(d−→Q 2

0,n(·|xn)

dν0,n(·)
(yn)

)
(
−→
Q

2

0,n ⊗
←−
P 0,n)(dxn, dyn)

= λIXn→Y n
(←−
P 0,n,

−→
Q

1

0,n

)
+ (1− λ)IXn→Y n

(←−
P 0,n,

−→
Q

2

0,n

)
<∞.

This completes the derivation of 3).

APPENDIX C
PROOF OF THEOREM III.5

Part A. Let
−→
Qα

0,n(·|·) ∈ QC2(Y0,n|X0,n), α = 1, 2, . . ., be a sequence of forward channels and
(Xn,(α), Y n,(α)), α = 1, 2, . . . a sequence of the basic joint process corresponding to the backward channel←−
P 0,n(·|·) ∈ QC1(X0,n|Y0,n−1) and the sequence of forward channels

−→
Q
α

0,n(·|·) ∈ QC2(Y0,n|X0,n), α =
1, 2, . . .. The important steps for the derivation of A1) are outlined in [32] for stochastic control problems
with randomized controls. Since we shall use A1) and parts of its derivation to show A2)–A4), we give
the details of the derivation.

A1) First, it is shown that the joint distribution of the basic joint process {(X(α)
i , Y

(α)
i ) : i ∈ N0} converges

as α −→ ∞ to the joint distribution of a joint process {(X(o)
i , Y

(o)
i ) : i ∈ N0} and secondly, that this

limiting joint process {(X(o)
i , Y

(o)
i ) : i ∈ N0} is also a basic joint process corresponding to the backward

channel
←−
P 0,n(·|·) ∈ QC1(X0,n|Y0,n−1), that is, (

←−
P 0,n ⊗

−→
Q
α

0,n)(dxn, dyn)
w−→ (
←−
P 0,n ⊗ Q̄o

0,n)(dxn, dyn) ∈
M1(X0,n ×Y0,n) and that (

←−
P 0,n ⊗ Q̄o

0,n)(dxn, dyn) has backward channel
←−
P 0,n(·|·) ∈ QC1(X0,n|Y0,n−1),

but Q̄o
0,n(·|xn) ∈M1(Y0,n) is not necessarily an element of MC2

1 (Y0,n).
For any g(·) ∈ BC(Xn), by condition CA, the function

f : X0,n−1 × Y0,n−1 7−→ R, f(xn−1, yn−1)
4
=

∫
Xn
g(x)pn(dxn|xn−1, yn−1)

is continuous, and hence for any compact sets Ki ∈ Xi, i = 0, 1, . . . , n − 1, and by the compactness
of Y0,n−1, the image of f(·, ·) under K0,n−1 × Y0,n−1

4
= K0 × K1 × . . . × Kn−1 × Y0,n−1, f(K0,n−1 ×

Y0,n−1) = R ⊂ R, and R is compact (since the image of any real-valued continuous function on a
compact set is compact). Thus, by condition CA and the compactness of {Yi : i ∈ Nn

0}, for any
compact sets K0 ∈ X0, K1 ∈ X1, . . . , Kn−1 ∈ Xn−1 the family of distributions {pn(·|xn−1, yn−1) :

x0∈K0, x1∈K1, . . . , xn−1∈Kn−1, y
n−1 ∈ Y0,n−1} is compact. Indeed, given any sequence {x(α)

0 , . . . , x
(α)
n−1,

y
(α)
0 , . . . , y

(α)
n−1}, by selecting a subsequence αi such that the subsequence {x(αi)

0 , . . . , x
(αi)
n−1, y

(αi)
0 , . . . , y

(αi)
n−1}

converges to {x(o)
0 , . . . , x

(o)
n−1, y

(o)
0 , . . . , y

(o)
n−1}, a weakly convergent subsequence of measures

pn(·|x(αi)
0 , . . . , x

(αi)
n−1, y

(αi)
0 , . . . , y

(αi)
n−1) is obtained. Utilizing Prohorov’s theorem (see Theorem A.2), we

verify that for any sequence of compact sets K0 ⊂ X0, K1 ⊂ X1, . . . , Kn−1 ⊂ Xn−1, and ε1 > 0 a
compact set Kn ⊂ Xn can be constructed such that pn(Kn|xn−1, yn−1) ≥ 1− ε1, for any yn−1 ∈ Y0,n−1.
To this end, pick ε1 > 0 and construct the compact sets as follows. Choose compact set K0 ⊂ X0 such
that p0(K0) ≥ 1− ε1

2
, compact set K1 ⊂ X1 such that p1(K1|x0, y0) ≥ 1− ε1

22 , for any x0 ∈ K0, y0 ∈ Y0,
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compact set K2 ⊂ X2 such that p2(K2|x0, x1, y0, y1) ≥ 1− ε1
23 , for any x0 ∈ K0, x1 ∈ K1, y0 ∈ Y0, y1 ∈ Y1,

and compact set Kn such that

pn(Kn|xn−1, yn−1) ≥ 1− ε1
2n+1

. (C.1)

Utilizing (C.1) then

P
{
X

(α)
0 ∈ K0, . . . , X

(α)
n ∈ Kn

}
= P

{
X

(α)
0 ∈ K0, . . . , X

(α)
n ∈ Kn, Y

(α)
0 ∈ Y0, . . . , Y

(α)
n−1 ∈ Yn−1

}
=

∫
×ni=0Ki

∫
Y0,n−1

P
{
X(α)
n ∈ Kn|X(α)

0 = x0, . . . , X
(α)
n−1 = xn−1, Y

(α)
0 = y0, . . . , Y

(α)
n−1 = yn−1

}
P
{
X

(α)
0 ∈ dx0, . . . , X

(α)
n−1 ∈ dxn−1, Y

(α)
0 ∈ dy0, . . . , Y

(α)
n−1 ∈ dyn−1

}
≥

(
1− ε1

2n+1

)∫
×n−1
i=0 Ki

P
{
X

(α)
0 ∈ dx0, . . . , X

(α)
n−1 ∈ dxn−1

}
=

(
1− ε1

2n+1

)
P
{
X

(α)
0 ∈ K0, . . . , X

(α)
n−1 ∈ Kn−1

}
≥

(
1− ε1

2n+1

)(
1− ε1

2n

)
P
{
X

(α)
0 ∈ K0, . . . , X

(α)
n−2 ∈ Kn−2

}
=

(
1− ε1

2n+1
− ε1

2n
+

ε21
22n+1

)
P
{
X

(α)
0 ∈ K0, . . . , X

(α)
n−2 ∈ Kn−2

}
≥

(
1− ε1

2n+1
− ε1

2n

)
P
{
X

(α)
0 ∈ K0, . . . , X

(α)
n−2 ∈ Kn−2

}

≥

(
1− ε1

2n+1
− ε1

2n

)(
1− ε1

2n−1

)
P
{
X

(α)
0 ∈ K0, . . . , X

(α)
n−3 ∈ Kn−3

}
=

(
1− ε1

2n+1
− ε1

2n
− ε1

2n−1
+

ε21
22n

+
ε21

22n−1

)
P
{
X

(α)
0 ∈ K0, . . . , X

(α)
n−3 ∈ Kn−3

}
≥

(
1− ε1

2n+1
− ε1

2n
− ε1

2n−1

)
P
{
X

(α)
0 ∈ K0, . . . , X

(α)
n−3 ∈ Kn−3

}
. (C.2)

Iterating the RHS of (C.2) we obtain

P
{
X

(α)
0 ∈ K0, . . . , X

(α)
n ∈ Kn

}
≥ 1− ε1

2n+1
− ε1

2n
− ε1

2n−1
− . . .− ε1

21
= 1− ε1

n∑
i=1

1

2i+1

≥ 1− ε1, for all α = 1, 2, . . ., and any n ∈ N0. (C.3)

By (C.3), the family of marginal distributions of the joint process {(X(α)
i , Y

(α)
i ) : i ∈ N0}, α = 1, 2, . . .

on X0,n is uniformly tight, and by Prohorov’s theorem [57] it has a weakly convergent subsequence. On
the other hand, since {Yi : i ∈ Nn

0} are compact metric spaces, the family of marginal distributions of the
joint sequence {(X(α)

i , Y
(α)
i ) : i ∈ N0} on Y0,n is uniformly tight. Utilizing the uniform tightness of the

marginal distribution of the joint process {(X(α)
i , Y

(α)
i ) : i ∈ N0}, then the family of joint distributions of

the joint process {(X(α)
i , Y

(α)
i ) : i ∈ N0} is uniformly tight. By Prohorov’s theorem [57], the sequence of

joint distribution of the joint process {(X(α)
i , Y

(α)
i ) : i ∈ N0} possess a weakly convergent subsequence

to a joint process {(X(o)
i , Y

(o)
i ) : i ∈ N0}. A restatement of Prohorov’s theorem states that, if Z is a
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separable metric space then every uniformly tight sequence of measures {γα : α = 1, 2, . . .} on Z has a
subsubsequence which is weakly convergent. Moreover, by [57], if each subsequence {γαi : i = 1, 2, . . .}
of {γα : α = 1, 2, . . .} contains a further subsequence {γαim : m = 1, 2, . . .} such that γαim w−→ γo as
m −→∞, then γα w−→ γo as α −→∞. Utilizing these facts, then the joint distribution of the joint process
{(X(α)

i , Y
(α)
i ) : i ∈ N0} converges weakly to a joint process {(X(o)

i , Y
(o)
i ) : i ∈ N0}. Next, we show that

the limiting joint process {(X(o)
i , Y

(o)
i ) : i ∈ N0} is a basic joint process with the same backward channel←−

P (·|·) ∈ QC1(X0,n|Y0,n−1). For any n ∈ N0, consider bounded and continuous real-valued functions
gn(·) ∈ BC(Xn) and Ψ0,n−1(·, ·) ∈ BC(X0,n−1×Y0,n−1). By the weak convergence of the joint measures
corresponding to {(X(α)

i , Y
(α)
i ) : i ∈ N0} to the joint measures corresponding to {(X(o)

i , Y
(o)
i ) : i ∈ N0}

denoted by (
←−
P 0,n⊗

−→
Qα

0,n)(dxn, dyn)
w−→ P o

0,n(dxn, dyn), the continuity of gn(·) and the continuity of the
function mapping (xn−1, yn−1) ∈ X0,n−1×Y0,n−1 7−→

∫
Xn gn(x)pn(dx|xn−1, yn−1) ∈ R, given ε > 0 there

exists N ∈ N0 such that for all α ≥ N∣∣∣∣∣
∫
X0,n−1×Y0,n−1

(∫
Xn
gn(x)pn(dx|xn−1, yn−1)

)
Ψ0,n−1(xn−1, yn−1)P o

0,n−1(dxn−1, dyn−1)

−
∫
X0,n−1×Y0,n−1

(∫
Xn
gn(x)pn(dx|xn−1, yn−1)

)
Ψ0,n−1(xn−1, yn−1)Pα

0,n−1(dxn−1, dyn−1)

∣∣∣∣∣ ≤ ε.

Since ε > 0 is arbitrary, then

lim
α→∞

E
{
gn(X(α)

n )Ψ(X
(α)
0 , . . . , X

(α)
n−1, Y

(α)
0 , . . . , Y

(α)
n−1)

}
= E

{
gn(X(o)

n )Ψ(X
(o)
0 , . . . , X

(o)
n−1, Y

(o)
0 , . . . , Y

(o)
n−1)

}
.

(C.4)

Moreover, for all α = 1, 2, . . ., then

E
{
gn(X(α)

n )Ψ(X
(α)
0 , . . . , X

(α)
n−1, Y

(α)
0 , . . . , Y

(α)
n−1)

}
= E

{
Ψ(X

(α)
0 , . . . , X

(α)
n−1, Y

(α)
0 , . . . , Y

(α)
n−1)E

{
gn(X(α)

n )|X(α)
0 , . . . , X

(α)
n−1, Y

(α)
0 , . . . , Y

(α)
n−1)

}}
= E

{(∫
Xn
gn(x)pn(dx|X(α)

0 , . . . , X
(α)
n−1, Y

(α)
0 , . . . , Y

(α)
n−1)

)
Ψ(X

(α)
0 , . . . , X

(α)
n−1, Y

(α)
0 , . . . , Y

(α)
n−1)

}
.

Hence, (C.4) is equivalent to

lim
α→∞

E
{∫

Xn
gn(x)pn(dx|X(α)

0 , . . . , X
(α)
n−1, Y

(α)
0 , . . . , Y

(α)
n−1)Ψ(X

(α)
0 , . . . , X

(α)
n−1, Y

(α)
0 , . . . , Y

(α)
n−1)

}
= E

{∫
Xn
gn(x)pn(dx|X(o)

0 , . . . , X
(o)
n−1, Y

(o)
0 , . . . , Y 0

n−1)Ψ(X
(o)
0 , . . . , X

(o)
n−1, Y

(o)
0 , . . . , Y

(o)
n−1)

}
.

From the previous equality, the following identity is obtained.

E
{
gn(X(o)

n )|X(o)
0 , . . . , X

(o)
n−1, Y

(o)
0 , . . . , Y

(o)
n−1)

}
=

∫
Xn
gn(x)pn(dx|X(o)

0 , . . . , X
(o)
n−1, Y

(o)
0 , . . . , Y

(o)
n−1)− a.s.

(C.5)

Since for any indicator function IE, E ∈ B(Xn) there exists a sequence {gn,j : j = 1, 2, . . .} ⊂ BC(Xn)
which is nondecreasing such that gn,j ↑ IE , by utilizing such a sequence in (C.5), and by invoking
Lebesgue’s monotone convergence theorem then

P
{
X(o)
n ∈ E|X

(o)
0 , . . . , X

(o)
n−1, Y

(o)
0 , . . . , Y

(o)
n−1

}
= pn(E|X(o)

0 , . . . , X
(o)
n−1, Y

(o)
0 , . . . , Y

(o)
n−1).
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This shows that the limiting joint process {(X(o)
i , Y

(o)
i ) : i ∈ N0} is a basic process corresponding to the

backward channel
←−
P 0,n(·|yn−1) ∈ MC1

1 (X0,n) and a forward channel Q̄o
0,n(·|xn) ∈ M1(Y0,n). Moreover,

the marginal distributions of the basic joint process {(X(α)
i , Y

(α)
i ) : i ∈ N0} converge to the marginal

distributions of the basic joint process {(X(o)
i , Y

(o)
i ) : i ∈ N0} corresponding to the backward channel←−

P 0,n(·|yn−1) ∈MC1
1 (X0,n) and a forward channel Q̄o

0,n(·|xn) ∈M1(Y0,n). This completes the derivation
of A1).

A2) By consistency condition C1, any
←−
P 0,n(·|·) ∈ QC1(X0,n|Y0,n−1) uniquely defines a family {pi(·|·, ·) ∈

Q(Xi|X0,i−1×Y0,i−1), i ∈ Nn
0} via (II.1). Hence, (II.1) can be used to relate tightness of pi(·|xi−1, yi−1) ∈

M1(Xi), (xi−1, yi−1) ∈ X0,i−1 × Y0,i−1, i ∈ Nn
0 , to tightness of

←−
P 0,n(·|yn−1) ∈ MC1

1 (X0,n), yn−1 ∈
Y0,n−1.
By recalling the derivation A1), condition (C.1), for K0,n = ×ni=0Ki, Ki ∈ B(Xi) compact sets, i ∈ Nn

0 ,
then

P(K0,n|y)
4
=

∫
K0

p0(dx0)

∫
K1

p1(dx1|x0, y0) . . .

∫
Kn

pn(dxn|xn−1, yn−1)

≥
(

1− ε1
2n+1

)∫
K0

p0(dx0)

∫
K1

p1(dx1|x0, y0) . . .

∫
Kn−1

pn−1(dxn−1|xn−2, yn−2)

≥
(

1− ε1
2n+1

)(
1− ε1

2n

)∫
K0

p0(dx0)

∫
K1

p1(dx1|x0, y0) . . .

∫
Kn−2

pn−2(dxn−2|xn−3, yn−3)

=

(
1− ε1

2n+1
− ε1

2n
+

ε21
22n+1

)∫
K0

p0(dx0)

∫
K1

p1(dx1|x0, y0) . . .

∫
Kn−2

pn−2(dxn−2|xn−3, yn−3)

≥

(
1− ε1

2n+1
− ε1

2n

)∫
K0

p0(dx0)

∫
K1

p1(dx1|x0, y0) . . .

∫
Kn−2

pn−2(dxn−2|xn−3, yn−3).

By repeating the above procedure the following bound is obtained.

P(K0,n|y) ≥ 1− ε1
2n+1

− ε1
2n
− ε1

2n−1
− . . .− ε1

21
= 1− ε1

n∑
i=1

1

2i+1

≥ 1− ε1, for any n ∈ N0 and for every y ∈ YN0 .

Since {Ki : i = 0, 1, . . . , n} are compact, from the last inequality it follows that the family of measures←−
P 0,n(·|yn−1) ∈MC1

1 (X0,n), yn−1 ∈ Y0,n−1 is uniformly tight. This completes the derivation of A2).

A3) Weak compactness of the family of measures
−→
Q 0,n(·|xn) ∈ MC2

1 (Y0,n) for fixed xn ∈ X0,n follows
from the fact that Y0,n is a compact Polish space.

A4) Utilizing the weak convergence να0,n
w−→ νo0,n

(
shown in A2)

)
, we shall show weak convergence of the

convolution of measures
−→
Πα

0,n(dxn, dyn) ≡
←−
P 0,n(dxn|yn−1)⊗να0,n(dyn)

w−→
←−
P 0,n(dxn|yn−1)⊗νo0,n(dyn) ≡

−→
Π o

0,n(dxn, dyn), when
←−
P 0,n(·|yn−1) ∈ MC1

1 (X0,n) is fixed. We show weak convergence by considering
integrals with respect to g0,n(xn)h0,n(yn), where g0,n(·) ∈ BC(X0,n) and h0,n(·) ∈ BC(Y0,n). Let ε > 0
be given. Condition CA implies that the function mapping

yn−1 ∈ Y0,n−1 7−→
∫
X0,n

g(xn)
←−
P 0,n(dxn|yn−1) ∈ R (C.6)
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is continuous. Hence, by the weak convergence να0,n
w−→ νo0,n and the continuity of the function mapping

(C.6) then there exists N ∈ N0 such that for all α ≥ N∣∣∣∣∣
∫
Y0,n

(∫
X0,n

g(xn)
←−
P 0,n(dxn|yn−1)

)
h(yn)νo0,n(dyn)−

∫
Y0,n

(∫
X0,n

g(xn)
←−
P 0,n(dxn|yn−1)

)
h(yn)να0,n(dyn)

∣∣∣∣∣
≤ ε.

Since ε > 0 is arbitrary, then the derivation of A5) is complete.

Part B. The methodology is similar to that of Part A., hence it is omitted.

APPENDIX D
PROOF OF LEMMA III.6

By Theorem III.5, Part A., A2), the family of measures
←−
P 0,n(·|yn−1) ∈ MC1

1 (X0,n), yn−1 ∈ Y0,n−1

are tight, and by Appendix C, (C.1), {pi(·|xi−1, yi−1) ∈ MC1
1 (Xi) : i = 0, 1, . . . , n} are tight. Since

pi(·|xi−1, yi−1) are probability measures on MC1
1 (Xi), i = 0, 1, . . . , n, for any sequence

←−
P α

0,n(·|yn−1) ∈
MC1

1 (X0,n), α = 1, 2, . . . , there is a collection {pαi (·|xi−1, yi−1) : i = 0, 1, . . . , n}, α = 1, 2, . . ., such
that

pαi (·|xi−1, yi−1)
w−→ poi (·|xi−1, yi−1), i = 0, 1, . . . , n.

Hence, to show closedness of
←−
P 0,n(·|yn−1) ∈MC1

1 (X0,n), yn−1 ∈ Y0,n−1 it suffices to show that

⊗ni=0p
α
i (·|xi−1, yi−1)

w−→ ⊗ni=0p
o
i (·|xi−1, yi−1)

whenever pαi (·|xi−1, yi−1)
w−→ poi (·|xi−1, yi−1), for each (xi−1, yi−1), i = 0, 1, . . . , n. This will be shown

by induction.
Consider n = 0. For any h0(·) ∈ BC(X0), by definition of weak convergence we have

lim
α−→∞

∫
X0

h0(x)pα0 (dx0) =

∫
X0

h0(x)po0(dx0).

Consider n = 1. For any h0(·) ∈ BC(X0), h1(·) ∈ BC(X1), we need to show ∀ε > 0, there exists an
N ∈ N+

4
= {1, 2, . . .} such that for α > N∣∣∣∣∣

∫
X0

h0(x0)pα0 (dx0)

∫
X1

h1(x1)pα1 (dx1|x0, y0)−
∫
X0

h0(x0)po0(dx0)

∫
X1

h1(x1)po1(dx1|x0, y0)

∣∣∣∣∣ ≤ ε. (D.1)

From the left hand side (LHS) of (D.1), by adding and subtracting terms, we have the following upper
bound.

A0,1
4
=

∣∣∣∣∣
∫
X0×X1

h0(x0)h1(x1)pα1 (dx1|x0, y0)pα0 (dx0)−
∫
X0×X1

h0(x0)h1(x1)po1(dx1|x0, y0)po0(dx0)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
X0×X1

h0(x0)h1(x1)po1(dx1|x0, y0)pα0 (dx0)−
∫
X0×X1

h0(x0)h1(x1)po1(dx1|x0, y0)po0(dx0)

∣∣∣∣∣︸ ︷︷ ︸
Term−1

+

∣∣∣∣∣
∫
X0×X1

h0(x0)h1(x1)pα1 (dx1|x0, y0)pα0 (dx0)−
∫
X0×X1

h0(x0)h1(x1)po1(dx1|x0, y0)pα0 (dx0)

∣∣∣∣∣︸ ︷︷ ︸
Term−2

. (D.2)
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Term-1: Let ε0 > 0 be given, and consider Term-1. By the continuity of the function mapping (x0, y0) ∈
X0 × Y0 7−→

∫
X1
h(x1)p1(dx1|x0, y0) and the weak convergence pα1 (·|x0, y0)

w−→ po1(·|x0, y0), for each
(x0, y0) ∈ X0 × Y0, then there exists an N1 ∈ N+ such that for all α ≥ N1∣∣∣∣∣

∫
X0

h0(x0)

(∫
X1

h1(x1)po1(dx1|x0, y0)

)(
pα0 (dx0)− po0(dx0)

)∣∣∣∣∣ ≤ ε0. (D.3)

Term-2: Consider Term-2. By the weak convergence, pα0 (dx0)
w−→ po0(dx0), pα1 (dx1|x0, y0)

w−→ po1(dx1|x0, y0),
for each (x0, y0) ∈ X0 × Y0. According to Prohorov’s theorem there exist compact subset K0 ⊂ X0 such
that pα0 (Kc

0) ≤ ε1, α = 1, 2, . . ., and compact subset K1 ⊂ X1 such that pα1 (Kc
1|x0, y0) ≤ ε2, α = 1, 2, . . .,

for each (x0, y0) ∈ X0 × Y0.
Hence, Term-2 is written as follows.∣∣∣∣∣
∫
K0∪Kc

0

h0(x0)
(∫
X1

h1(x1)pα1 (dx1|x0, y0)
)
pα0 (dx0)−

∫
K0∪Kc

0

h0(x0)
(∫
X1

h1(x1)po1(dx1|x0, y0)
)
pα0 (dx0)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Kc

0

h0(x0)
(∫
X1

h1(x1)pα1 (dx1|x0, y0)
)
pα0 (dx0)−

∫
Kc

0

h0(x0)
(∫
X1

h1(x1)po1(dx1|x0, y0)
)
pα0 (dx0)

(D.4)

+

∫
K0

h0(x0)
(∫
X1

h1(x1)pα1 (dx1|x0, y0)
)
pα0 (dx0)−

∫
K0

h0(x0)
(∫
X1

h1(x1)po1(dx1|x0, y0)
)
pα0 (dx0)

∣∣∣∣∣
≤
∫
Kc

0

||h0(·)||∞||h1(·)||∞pα0 (dx0) +

∫
Kc

0

||h0(·)||∞||h1(·)||∞pα0 (dx0)

+

∣∣∣∣∣
∫
K0

h0(x0)
(∫
X1

h1(x1)pα1 (dx1|x0, y0)−
∫
X1

h1(x1)po1(dx1|x0, y0)
)
pα0 (dx0)

∣∣∣∣∣
≤ 2.||h0(·)||∞||h1(·)||∞pα0 (Kc

0)

+

∣∣∣∣∣
∫
K0

h0(x0)
(∫
X1

h1(x1)pα1 (dx1|x0, y0)−
∫
X1

h1(x1)po1(dx1|x0, y0)
)
pα0 (dx0)

∣∣∣∣∣.
≤ 2.||h0(·)||∞||h1(·)||∞.ε1 + ||h0(·)||∞ sup

x0∈K0

∣∣∣∣∣
∫
X1

h1(x1)pα1 (dx1|x0, y0)−
∫
X1

h1(x1)po1(dx1|x0, y0)

∣∣∣∣∣.
(D.5)

By utilizing condition (III.26), ∀ε2 > 0 there exists N2 ∈ N1 such that for all α ≥ N2

sup
x0∈K0

∣∣∣∣∣
∫
X1

h1(x1)pα1 (dx1|x0, y0)−
∫
X1

h1(x1)po1(dx1|x0, y0)

∣∣∣∣∣ < ε2, ∀y0 ∈ Y0 (D.6)

Hence, by (D.3), (D.5), (D.6), there exists an N ∈ N1 large enough such that for all α ≥ N2, expression
(D.2) is further bounded by

A0,1 ≤ ε0 + 2.||h0(·)||∞||h1(·)||∞.ε1 + ||h0(·)||∞.ε.

Since ε0, ε1, ε2 > 0 are arbitrary, the claim holds for n = 1, as well.
Suppose that for n = k, and for each hi(·) ∈ BC(Xi), i = 0, 1, . . . , k, and ∀ ε > 0, there exists Nk ∈ N1

such that for each α ≥ Nk∣∣∣∣∣
∫
X0,k

⊗ki=0hi(xi)p
α
i (dxi|xi−1, yi−1)−

∫
X0,k

⊗ki=0hi(xi)p
o
i (dxi|xi−1, yi−1)

∣∣∣∣∣ ≤ ε. (D.7)
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We need to show that (D.7) holds for n = k + 1, i.e.,

⊗k+1
i=0 p

α
i (·|xi−1, yi−1)

w−→ ⊗k+1
i=0 p

o
i (·|xi−1, yi−1)

whenever pαi (·|xi−1, yi−1)
w−→ poi (·|xi−1, yi−1), i = 0, 1, . . . , k+1, and provided that⊗ki=0p

α
i (·|xi−1, yi−1)

w−→
⊗ki=0p

o
i (·|xi−1, yi−1). The derivation is similar to showing (D.1), hence it is omitted.

This shows (III.27), hence the set
←−
P 0,n(·|yn−1) ∈MC1

1 (X0,n), yn−1 ∈ Y0,n−1 is closed. By Theorem III.5,
Part A. A2), this set is also tight, hence by Prohorov’s theorem (Appendix A, Theorem A.3) it is compact.
This completes the derivation.

APPENDIX E
PROOF OF LEMMA III.8

(1) Since every probability measure on a compact metric space is weakly compact, then the set−→
Q 0,n(·|xn) ∈MC2

1 (Y0,n), xn ∈ X0,n is weakly compact. This means that any sequence {
−→
Qα

0,n(·|xn) : α =

1, 2, . . .}, possesses a weakly convergent subsequence
−→
Qαi

0,n(dyn|xn)
w−→ Q̄o

0,n(dyn|xn), for each xn ∈
X0,n, and hence tight (by Prohorov’s theorem, see Appendix A, Theorem A.2), but Q̄o

0,n(dyn|xn) may
not be an element of MC2

1 (Y0,n) (i.e., it may fail to satisfy consistency condition C2). By Prohorov’s
theorem, to show compactness of

−→
Q 0,n(·|xn) ∈ MC2

1 (Y0,n), xn ∈ X0,n, we need to show Q̄o
0,n(·|xn) =

−→
Q o

0,n(·|xn)
4
= ⊗ni=0q

o
i (dyi|yi−1, xi), whenever qαi (dyi|yi−1, xi)

w−→ qoi (dyi|yi−1, xi), i = 0, 1, . . . , n (since
Yi, i = 0, 1, . . . , n are compact Polish spaces). The method is precisely the same as in Lemma III.6,
hence it is omitted. Therefore, the set

−→
Q 0,n(·|xn) ∈ MC2

1 (Y0,n), xn ∈ X0,n is closed, and since it is also
tight, it is compact.
(2) Next, we discuss how the fidelity set Q0,n(D) is a closed subset of the compact setMC2

1 (Y0,n), hence
compact itself, that is, for each sequence {

−→
Qα

0,n(·|xn) : α = 1, 2, . . .} ∈ Q0,n(D) there is a subsequence
such that

−→
Qα

0,n(·|xn)
w−→
−→
Q o

0,n(·|xn) ∈ Q0,n(D). We outline the derivation. Let {
−→
Qα

0,n(·|xn) : α =
1, 2, . . .} ∈ Q0,n(D) ⊂MC2(Y0,n). Since MC2

1 (Y0,n) is closed and uniformly tight, and hence compact,
there exists a subsequence {

−→
Qαi

0,n(·|xn) : i = 1, 2, . . .} ∈ MC2
1 (Y0,n) and a measure

−→
Q o

0,n(·|xn) ∈
MC2

1 (Y0,n) such that
−→
Qαi

0,n(·|xn)
w−→
−→
Q o

0,n(·|xn) for each xn ∈ X0,n. Recall that d0,n : X0,n × Y0,n 7−→
[0,∞] is a Borel measurable, non-negative, and continuous function on yn ∈ Y0,n. Consider the sequence
{d(k)

0,n

4
= d0,n ∧ k : k ∈ N0}, N1

4
= {1, 2, . . .}, which is bounded, and continuous function in the second

argument yn ∈ Y0,n. By Lebesgue’s monotone convergence theorem and Fatou’s lemma it can be shown
that Q0,n(D) is closed with respect to the topology of weak convergence. Since a closed subset of a
compact set is compact, then Q0,n(D) is compact. This completes the derivation.

APPENDIX F
PROOF OF THEOREM III.10

1) We need to show that for any sequence {
−→
Qα

0,n(·|xn) ∈ MC2
1 (Y0,n) : α = 1, 2, . . .}, such that

−→
Qα

0,n(·|xn)
w−→
−→
Q o

0,n(·|xn) for each xn ∈ X0,n then

IXn→Y n(
←−
P 0,n,

−→
Q o

0,n) ≤ lim inf
α→∞

IXn→Y n(
←−
P 0,n,

−→
Qα

0,n).

Define the sequence of joint distribution Pα
0,n(dxn, dyn)

4
= (
←−
P 0,n ⊗

−→
Qα

0,n)(dxn, dyn), α = 1, 2, . . .. Weak
convergence Pα

0,n(dxn, dyn)
w−→ (
←−
P 0,n ⊗

−→
Q
o

0,n)(dxn, dyn) ≡ P o
0,n(dxn, dyn) is shown by considering

integrals with respect to a test function φ0,n(·, ·)∈BC(X0,n × Y0,n) via∫
X0,n×Y0,n

φ0,n(xn, yn)Pα
0,n(dxn, dyn) =

∫
X0,n×Y0,n

φ0,n(xn, yn)(
←−
P 0,n ⊗

−→
Q
α

0,n)(dxn, dyn).
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By Theorem III.5, Part A., A1), Pα
0,n(dxn, dyn)

w−→ P o
0,n(dxn, dyn). Similarly, consider

−→
Π
α

0,n

4
=
←−
P 0,n ⊗

να0,n α = 1, 2, . . ., where {να0,n : α = 1, 2, . . .} are the marginals of {Pα
0,n : α = 1, 2, . . .}. Then by

Theorem III.5, Part A., A4) we have
−→
Πα

0,n =
←−
P 0,n ⊗ να0,n

w−→
−→
Π o

0,n =
←−
P 0,n ⊗ νo0,n.

Recall the definition of directed information via relative entropy given by

D(P0,n||
−→
Π 0,n) = D(

←−
P 0,n ⊗

−→
Q 0,n||

←−
P 0,n ⊗ ν0,n) = IXn→Y n(

←−
P 0,n,

−→
Q 0,n). (F.1)

It is well known that relative entropy is lower semicontinuous, hence

D(P o
0,n||
−→
Π o

0,n) = D(
←−
P 0,n ⊗

−→
Q o

0,n||
−→
Π o

0,n) ≤ lim inf
α→∞

D(Pα
0,n||
−→
Πα

0,n). (F.2)

By (F.1) it follows that (F.2) is also equivalent to

IXn→Y n(
←−
P 0,n,

−→
Q o

0,n) ≤ lim inf
α→∞

IXn→Y n(
←−
P 0,n,

−→
Qα

0,n)

Hence, directed information is lower semicontinuous as a functional of
−→
Q 0,n(·|xn) ∈ MC2

1 (Y0,n) for a
fixed

←−
P 0,n(·|yn−1) ∈MC1

1 (X0,n). This completes the derivation of 1).
2) The derivation is similar to 1).

APPENDIX G
PROOF OF THEOREM III.13

To show continuity of IXn→Y n(·,
−→
Q 0,n) we need to show that for every sequence {

←−
P α

0,n(·|yn−1) : α =

1, 2, . . .} such that
←−
P α

0,n
w−→
←−
P o

0,n, we have

IXn→Y n(
←−
P α

0,n,
−→
Q 0,n) −→ IXn→Y n(

←−
P o

0,n,
−→
Q 0,n).

The derivation is based on the procedure utilized in [29] to show continuity for single letter mutual
information. First, decompose directed information into two terms as follows.

IXn→Y n(
←−
P 0,n,

−→
Q 0,n) =

∫
X0,n×Y0,n

log
(d−→Q 0,n(·|xn)

dν0,n(·)
(yn)

)
(
←−
P 0,n ⊗

−→
Q 0,n)(dxn, dyn)

=

∫
X0,n×Y0,n

log
(d−→Q 0,n(·|xn)

dν0,n(·)
(yn)

)
(
←−
P 0,n ⊗

−→
Q 0,n)(dxn, dyn)

−
∫
Y0,n

log
(d−→Q 0,n(·|xn)

dν0,n(·)
(yn)

)
ν0,n(dyn)

=

∫
X0,n×Y0,n

(
ξν̄0,n(xn, yn) log ξν̄0,n(xn, yn)

)←−
P 0,n(dxn|yn−1)⊗ ν̄0,n(dyn)

−
∫
Y0,n

(
ξ
ν̄0,n,

←−
P 0,n

(yn) log ξ
ν̄0,n,

←−
P 0,n

(yn)
)
ν̄0,n(dyn), (G.1)

where ξ
ν̄0,n,

←−
P 0,n

(yn)
4
= dν0,n(·)

dν̄0,n(·)(y
n) emphasizes the fact that this RND depends on

←−
P 0,n(·|yn−1) via ν̄(·).

For now, assume that both terms in on the RHS of the above formula are finite; the validity of this
assumption will be established at the end. Thus, we only need to show that both terms are bounded and
continuous in the weak sense over MC1,cl

1 (X0,n).
Continuity of the first term. Since

←−
P α

0,n(·|yn−1)
w−→
←−
P o

0,n(·|yn−1), by [30, Theorem A.5.8, p. 320], utilizing
Lebesgue’s dominated convergence theorem, we have

←−
P α

0,n ⊗ ν̄0,n
w−→
←−
P o

0,n ⊗ ν̄0,n. Since ξν̄0,n(xn, yn)
is continuous, then so is ξν̄0,n(xn, yn) log ξν̄0,n(xn, yn). By hypothesis, ξν̄0,n(xn, yn) log ξν̄0,n(xn, yn) is



47

uniformly integrable over
{
ν̄0,n ⊗

←−
P 0,n :

←−
P 0,n(·|yn−1) ∈ MC1,cl

1 (X0,n)
}

. Therefore, using Theorem A.8,
Appendix A, we conclude that

lim
α→∞

∫
X0,n×Y0,n

ξν̄0,n(xn, yn) log ξν̄0,n(xn, yn)
←−
P α

0,n(dxn|yn−1)⊗ ν̄0,n(dyn)

=

∫
X0,n×Y0,n

ξν̄0,n(xn, yn) log ξν̄0,n(xn, yn)P o
0,n(dxn|yn−1)⊗ ν̄0,n(dyn). (G.2)

This proves the continuity of the first term. The finiteness of the first term is obtained from uniform
integrability as follows. For a given ε > 0 and sufficiently large c > 0

sup
←−
P 0,n(·|yn−1)∈MC1,cl

1 (X0,n)

{∫
X0,n×Y0,n

∣∣ξν̄0,n(xn, yn) log ξν̄0,n(xn, yn)
∣∣I{|ξν̄0,n (xn,yn) log ξν̄0,n (xn,yn)|≥c}

×
←−
P α

0,n(dxn|yn−1)⊗ ν̄0,n(dyn)

+

∫
X0,n×Y0,n

∣∣ξν̄0,n(xn, yn) log ξν̄0,n(xn, yn)
∣∣I{|ξν̄0,n (xn,yn) log ξν̄0,n (xn,yn)|<c}

←−
P α

0,n(dxn|yn−1)⊗ ν̄0,n(dyn)
}

≤ sup
←−
P 0,n(·|yn−1)∈MC1,cl

1 (X0,n)

{∫
{|ξν̄0,n (xn,yn) log ξν̄0,n (xn,yn)|≥c}

∣∣ξν̄0,n(xn, yn) log ξν̄0,n(xn, yn)
∣∣

×
←−
P α

0,n(dxn|yn−1)⊗ ν̄0,n(dyn)
}

+ sup
←−
P 0,n(·|yn−1)∈MC1,cl

1 (X0,n)

{∫
{|ξν̄0,n (xn,yn) log ξν̄0,n (xn,yn)|<c}

∣∣ξν̄0,n(xn, yn) log ξν̄0,n(xn, yn)
∣∣

×
←−
P α

0,n(dxn|yn−1)⊗ ν̄0,n(dyn)
}
≤ ε+ c.

Continuity of the second term. For a fixed yn ∈ Y0,n, since ξν̄0,n(xn, yn) is uniformly integrable over
MC1,cl

1 (X0,n), by Theorem A.6, Appendix A, we obtain that
←−
P α

0,n
w−→
←−
P o

0,n, implies pointwise con-
vergence of ξ

ν̄0,n,
←−
P α0,n

(yn) −→ ξ
ν̄0,n,

←−
P o

0,n
(yn). By continuity of the logarithm, we obtain the pointwise

convergence of ξ
ν̄0,n,

←−
P α

0,n
(yn) log ξ

ν̄0,n,
←−
P α

0,n
(yn) −→ ξ

ν̄0,n,
←−
P o

0,n
(yn) log ξ

ν̄0,n,
←−
P 0

0,n
(yn). It only remains to show

convergence under the integral with respect to ν̄0,n. By (III.34), then ∀α∣∣∣∣∣ξν̄0,n,
←−
P α0,n

(yn) log ξ
ν̄0,n,

←−
P α

0,n
(yn)

∣∣∣∣∣ ≤ 2

e ln 2
+ ξ

ν̄0,n,
←−
P α

0,n
(yn) log ξ

ν̄0,n,
←−
P α

0,n
(yn)

=
2

e ln 2

∫
X0,n

ξ
ν̄0,n,

←−
P α0,n

(yn) log ξ
ν̄0,n,

←−
P α

0,n
(yn)
←−
P α

0,n(dxn|yn−1) (G.3)

≤ 2

e ln 2
+

∫
X0,n

(
ξν̄0,n(xn, yn) log ξν̄0,n(xn, yn)

)←−
P α

0,n(dxn|yn−1).

where (G.3) follows from (G.1) and the nonnegativity of IXn→Y n(
←−
P 0,n,

−→
Q 0,n). By (G.2), the integration

of the RHS over ν̄0,n converges. Thus, by the generalized Lebesgue’s dominated convergence theorem
[58, p. 59], we conclude that∫

Y0,n

ξ
ν̄0,n,

←−
P α

0,n
(yn) log ξ

ν̄0,n,
←−
P α0,n

(yn)ν̄0,n(dyn)
α→∞−→

∫
Y0,n

ξ
ν̄0,n,

←−
P 0

0,n
(yn) log ξ

ν̄0,n,
←−
P o

0,n
(yn)ν̄0,n(dyn).

This implies the continuity of the second term. Furthermore, its finiteness follows as before. Since both
terms are finite and continuous we deduce continuity of the directed information IXn→Y n(·,

−→
Q 0,n) with

respect to
←−
P 0,n(·|yn−1), for fixed

−→
Q(·|xn). This completes the derivation.
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