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Abstract

Locally repairable codes (LRCs) are a class of codes designed for the local correction of erasures. They have

received considerable attention in recent years due to their applications in distributed storage. Most existing results

on LRCs do not explicitly take into consideration the field size q, i.e., the size of the code alphabet. In particular, for

the binary case, only a few results are known.

In this work, we present an upper bound on the minimum distance d of linear LRCs with availability, based

on the work of Cadambe and Mazumdar. The bound takes into account the code length n, dimension k, locality r,

availability t, and field size q. Then, we study binary linear LRCs in three aspects. First, we focus on analyzing

the locality of some classical codes, i.e., cyclic codes and Reed-Muller codes, and their modified versions, which

are obtained by applying the operations of extend, shorten, expurgate, augment, and lengthen. Next, we construct

LRCs using phantom parity-check symbols and multi-level tensor product structure, respectively. Compared to other

previous constructions of binary LRCs with fixed locality or minimum distance, our construction is much more

flexible in terms of code parameters, and gives various families of high-rate LRCs, some of which are shown to be

optimal with respect to their minimum distance. Finally, availability of LRCs is studied. We investigate the locality

and availability properties of several classes of one-step majority-logic decodable codes, including cyclic simplex

codes, cyclic difference-set codes, and 4-cycle free regular low-density parity-check (LDPC) codes. We also show

the construction of a long LRC with availability from a short one-step majority-logic decodable code.

Index Terms

Locally repairable codes, cyclic codes, tensor product codes, one-step majority-logic decodable codes.

I. INTRODUCTION

Distributed and cloud storage systems today are required to tolerate the failure or unavailability of some of the

nodes in the system. The simplest and most commonly used way to accomplish this task is replication, where every
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node is replicated several times, usually three. This solution has clear advantages due to its simplicity and fast

recovery from node failures. However, it entails a large storage overhead which becomes costly in large storage

systems.

In order to achieve better storage efficiency, erasure codes, e.g., Reed-Solomon codes, are deployed. Reed-

Solomon and more generally maximum distance separable (MDS) codes are attractive since they tolerate the

maximum number of node failures for a given redundancy. However, they suffer from a very slow recovery process,

in the case of a single node failure, which is the most common failure scenario. Hence, an important objective in

the design of erasure codes is to ensure fast recovery while efficiently supporting a large number of node failures.

There are several metrics in the literature to quantify the efficiency of rebuilding. Three of the most popular consider

the number of communicated bits in the network, the number of read bits, and the number of accessed nodes. In

this work, we study codes with respect to the last metric.

Locally repairable codes (LRCs) are a class of codes in which a failure of a single node can be recovered by

accessing at most r other nodes, where r is a predetermined value [6], [18], [20]. For a length-n code with dimension

k, it is said that the code has all-symbol locality r if every symbol is recoverable from a set of at most r symbols.

If the code is systematic and only its information symbols have this property then the code has information locality

r. LRCs are well studied in the literature and many works have considered code constructions and bounds for such

codes. In [6], an upper bound, which can be seen as a modified version of the Singleton bound, was given on the

minimum distance of LRCs. More specifically, if an [n, k, d]q linear code has information locality r, then

d 6 n − k −
⌈

k
r

⌉
+ 2. (1)

In [20], it was proved that bound (1) also holds for non-linear codes with all-symbol locality. Code constructions

which achieve bound (1) were given in [5], [8], [9], [26], [28], [32], [34]. However, for some cases, bound (1) is not

tight, so several improvements were proposed in [22], [30], [35]. Recently, a new upper bound on the dimension

k of LRCs was presented in [4]. This bound takes into account the code length, minimum distance, locality, and

field size, and it is applicable to both non-linear and linear codes. Namely, if an (n, M, d)q code has all-symbol

locality r, then
k 6 min

x∈Z+

{
xr + k(q)

opt(n − x(r + 1), d)
}

, (2)

where M denotes the codebook size, k = logq M, Z+ is the set of all positive integers, and k(q)
opt(n′, d′) is the

largest possible dimension of a length-n′ code with minimum distance d′ and a given field size q. There also exist

some constructions of LRCs over small fields, e.g., binary field, in [7], [10], [11], [29], [33], [40].

In addition to symbol locality, another important property of LRCs is their symbol availability, meaning the

number of disjoint sets of symbols that can be used to recover a given symbol. High availability is a particularly

attractive property for so-called hot data in a distributed storage network. More precisely, a code C has all-symbol

locality r and availability t if every code symbol can be recovered from t disjoint repair sets of other symbols,

each set of size at most r symbols. We refer to such a code as an (r, t)a-LRC. If the code is systematic and these

properties apply only to its information symbols, then the code has information locality r and availability t, and it

is referred to as an (r, t)i-LRC.
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Several recent works have considered codes with both locality and availability properties. In [36], it was shown

that the minimum distance d of an [n, k, d]q linear (r, t)i-LRC satisfies the upper bound

d 6 n − k −
⌈

t(k − 1) + 1
t(r − 1) + 1

⌉
+ 2. (3)

In [23], it was proved that bound (3) is also applicable to (n, M, d)q non-linear (r, t)i-LRCs. In the same paper, it

was also shown that if each repair set in a linear (r, t)i-LRC contains only one parity symbol, then the minimum

distance d of the code satisfies the following upper bound

d 6 n − k −
⌈

kt
r

⌉
+ t + 1, (4)

and codes achieving bound (4) were constructed using MDS codes and Gabidulin codes. For (r, t)a-LRCs with

parameters (n, M, d)q, it was shown in [31] that d satisfies

d 6 n −
t

∑
i=0

⌊
k − 1

ri

⌋
. (5)

There are several constructions of LRCs with availability. In [32], two constructions of (r, 2)a-LRCs were

proposed. One relies on the combinatorial concept of orthogonal partitions, and the other one is based on product

codes. In [19], a class of (r, t)a-LRCs was constructed from partial geometries. A family of systematic fountain

codes having information locality and strong probabilistic guarantees on availability was introduced in [2]. More

recently, in [7], [40], constructions based on the simplex code were proposed. In [37], a family of LRCs with

arbitrary availability was constructed, and it outperforms the direct product codes with respect to the information

rate.

In this paper, we study bounds and constructions for linear LRCs over a fixed field size; in particular, we focus on

binary linear LRCs. We first develop field size dependent upper bounds that incorporate the availability t, based on

the work by Cadambe and Mazumdar [4]. For constructions, we make contributions in the following three aspects.

We investigate the locality of two classes of classical codes, i.e., cyclic codes and Reed-Muller codes. We observe

that the locality of a cyclic code is determined by the minimum distance of its dual code, and show that this

result also holds for Reed-Muller codes. We also discuss the locality of a code obtained when we extend, shorten,

expurgate, augment, and lengthen an LRC.

Tensor product codes, first proposed by Wolf in [38], are a family of codes defined by a parity-check matrix

that is the tensor product of the parity-check matrices of two constituent codes. Later, they were generalized

in [12]. As shown in [39], the encoding steps of tensor product codes involve using phantom syndrome symbols,

which only appear in the encoding procedure and will disappear in the final codewords. Motivated by these ideas,

we give three constructions (Constructions A, B, and C) of LRCs that leverage phantom parity-check symbols.

These constructions are effective for LRCs with small minimum distance. To obtain LRCs with higher minimum

distance, we present another construction (Construction D) based on multi-level tensor product structure. All our

constructions are flexible and generate a variety of high-rate LRCs with different localities. Some of these codes

are proved to have an optimal minimum distance.
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One-step majority-logic decodable codes were first formally studied by Massey [15], [17]. Historically, these

codes were introduced for low-complexity error correction. Every symbol of such codes has several disjoint repair

sets, and is decoded according to the majority of the values given by all of its repair sets. In this work, we make

the connection between one-step majority-logic decodable codes and LRCs with availability. We also demonstrate

how a long (r, t)a-LRC can be constructed from a short one-step majority-logic decodable code using multi-level

tensor product structure.

The rest of the paper is organized as follows. In Section II, we formally define the problem and present field size

q dependent bounds on the minimum distance d and the dimension k of [n, k, d]q linear (r, t)i-LRCs. In Section III,

we investigate the locality of several classical codes and their modified versions obtained using standard code

operations. In Section IV, we construct various families of (r, 1)i-LRCs and (r, 1)a-LRCs using phantom parity-

check symbols and multi-level tensor product structure. In Section V, we review several families of one-step

majority-logic decodable codes, and identify the locality and availability of these codes. Section VI concludes the

paper.

II. DEFINITIONS AND BOUNDS

We begin with several basic definitions and notational conventions. We use the notation [n] to define the set

{1, . . . , n}. For a length-n vector v and a set I ⊆ [n], the vector vI denotes the restriction of the vector v to

coordinates in the set I . A linear code C over Fq of length n, dimension k, and minimum distance d will be denoted

by [n, k, d]q, and its generator matrix is G = (g1, . . . , gn), where gi ∈ Fk
q is a column vector for i ∈ [n]. We define

kI (C) = logq |{cI : c ∈ C}|, and, for simplicity, we write kI instead of kI (C) when C is clear from the context.

The dual code of a linear code C will be denoted by C⊥.

We follow the conventional definitions of linear LRCs with availability, as established in [23], [31], [36].

Definition 1. The ith code symbol of an [n, k, d]q linear code C is said to have locality r and availability t if there exist

t pairwise disjoint repair sets R1
i , . . . , Rt

i ⊆ [n]\{i}, such that 1) |R j
i | 6 r, for 1 6 j 6 t, and 2) for each repair set

R j
i , 1 6 j 6 t, gi is a linear combination of the columns gu, u ∈ R j

i .

Definition 2. Let C be an [n, k, d]q linear code. A set I ⊆ [n] is said to be an information set if |I| = kI = k.

1) The code C is said to have all-symbol locality r and availability t if every code symbol has locality r and availability

t. We refer to C as a linear (r, t)a-LRC.

2) The code C is said to have information locality r and availability t if there is an information set I such that, for any

i ∈ I , the ith code symbol has locality r and availability t. We refer to C as a linear (r, t)i-LRC.

Note that when t = 1, Definition 2 reduces to the definition of linear LRCs. It is straightforward to verify that

the minimum distance d of a linear (r, t)a-LRC satisfies d > t + 1. We now present upper bounds on the minimum

distance and the dimension of linear (r, t)i-LRCs, based on the framework established in [4]. The following lemma

and theorem are extensions of Lemma 1 and Theorem 1 from [4], respectively, and for the completeness of the

results in the paper we provide their detailed proofs in Appendix A and Appendix B.
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Let r and x be two positive integers and y = (y1, . . . , yx) ∈ ([t])x be a vector of x positive integers. We define

the integers A(r, x, y) and B(r, x, y) as follows,

A(r, x, y) =
x

∑
j=1

(r − 1)y j + x,

B(r, x, y) =
x

∑
j=1

ry j + x.

Lemma 3. Let C be an [n, k, d]q linear (r, t)i-LRC. Assume that x ∈ Z+ and y = (y1, . . . , yx) ∈ ([t])x satisfy

1 6 x 6 ⌈ k−1
(r−1)t+1 ⌉ and A(r, x, y) < k. Then, there exists a set I ⊆ [n] such that |I| = B(r, x, y) and kI (C) 6

A(r, x, y).

Now, let d(q)
ℓ−opt[n, k] denote the largest possible minimum distance of an [n, k, d]q linear code, and let k(q)

ℓ−opt[n, d]

denote the largest possible dimension of such a code. Applying Lemma 3, we get the following upper bounds on

d and k for [n, k, d]q linear (r, t)i-LRCs.

Theorem 4. For any [n, k, d]q linear (r, t)i-LRC, the minimum distance d satisfies

d 6 min
16x6⌈ k−1

(r−1)t+1 ⌉, x∈Z+ ,
y∈([t])x ,

A(r,x,y)<k

{
d(q)
ℓ−opt[n − B(r, x, y), k − A(r, x, y)]

}
,

(6)

and the dimension satisfies

k 6 min
16x6⌈ k−1

(r−1)t+1 ⌉, x∈Z+ ,
y∈([t])x ,

A(r,x,y)<k

{
A(r, x, y) + k(q)

ℓ−opt[n − B(r, x, y), d]
}

.
(7)

Remark 1 Since a linear (r, t)a-LRC is also a linear (r, t)i-LRC, bounds (6) and (7) hold for linear (r, t)a-LRCs

as well.

III. LOCALITY OF BINARY CLASSICAL CODES AND THEIR MODIFIED VERSIONS

In this section, we study the all-symbol locality of classical codes and their modified versions. We also investigate

their optimality, in the sense of the following definition.

Definition 5. An [n, k, d]q linear code C with all-symbol locality r is said to be d-optimal if there does not exist an

[n, k, d + 1]q code with all-symbol locality r. Similarly, it is called k-optimal if there does not exist an [n, k + 1, d]q

code with all-symbol locality r. Finally, it is called r-optimal if there does not exist an [n, k, d]q code with all-symbol

locality r − 1.

Example 1. Consider the binary simplex code C with parameters [2m − 1, m, 2m−1]. It was proved in [4] that this

code has all-symbol locality r = 2 and it is r-optimal for these given parameters. Since this code satisfies the

Plotkin bound, it is d-optimal and k-optimal as well.

In the remainder of this section, we consider only codes with all-symbol locality, and thus when saying that a

code has locality r we refer to all-symbol locality.
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A. Locality of Classical Codes

In this subsection, we study two classes of binary classical codes, namely, cyclic codes and Reed-Muller codes.

First, we give our main result for cyclic codes, and also present several examples. We start with a simple

observation about the locality of code symbols. Even though it has been mentioned before, see e.g., [6], [21], [22],

we state it here as a remark for completeness.

Remark 2 For a binary linear code C, if its ith coordinate, i ∈ [n], belongs to the support of a codeword in C⊥

with weight r + 1, then the ith code symbol has locality r.

The next lemma is an immediate consequence of the preceding remark.

Lemma 6. Let C be an [n, k, d] cyclic binary linear code, and let d⊥ be the minimum distance of its dual code C⊥.

Then, the code C has locality d⊥ − 1.

Proof: The dual code C⊥ has a codeword of weight d⊥. Since C is a cyclic linear code, its dual code C⊥ is

also a cyclic linear code. Thus every i ∈ [n] belongs to the support of some codeword of weight d⊥ in C⊥. From

Remark 2, every coordinate has locality d⊥ − 1. Thus, the code C has locality r = d⊥ − 1.

Next, we give several examples to illustrate how the locality of specific codes can be determined from Lemma 6

and then study their optimality.

Example 2. Let C be the [n = 2m − 1, k = 2m − 1 − m, d = 3] cyclic binary Hamming code. Its dual code is the

[2m − 1, m, 2m−1] cyclic binary simplex code. Therefore, the Hamming code has locality r = 2m−1 − 1. Since it

is a perfect code, it is both d-optimal and k-optimal. In order to show r-optimality, let us assume on the contrary

that there exists an [n, k, d] code with locality r̂ = 2m−1 − 2. According to bound (2) for x = 1, we have that

k 6xr̂ + k(2)
opt(n − x(r̂ + 1), d) = 2m−1 − 2 + k(2)

opt(2m−1, 3)

(a)
<2m−1 − 2 + 2m−1 − (m − 1) = 2m − m − 1,

where step (a) is from the Hamming bound. Thus, we get a contradiction to the value of k. We also get from

Lemma 6 that the simplex code has locality 2. This gives an alternative proof to the one given in [4] in case the

code is cyclic.

Example 3. Here we consider the [23, 12, 7] cyclic binary Golay code C. Its dual code C⊥ is the [23, 11, 8] cyclic

binary code. Hence, we conclude that C has locality r = 7 and the dual code C⊥ has locality r⊥ = 6. The code

C is both d-optimal and k-optimal since it is a perfect code. C⊥ is d-optimal due to the Hamming bound, and

k-optimal according to the online table [27] for k(2)
ℓ−opt[23, 8]. The r-optimality of these two codes is proved in a

similar way to the optimality proof in Example 2.

Example 4. Let C be the cyclic double-error-correcting binary primitive BCH (DBCH) code with parameters [2m −
1, 2m − 1 − 2m, 5] where m > 4. Its dual code C⊥ has parameters [2m − 1, 2m, 2m−1 − 2⌊m/2⌋] [15]. Therefore,

we conclude that C has locality r = 2m−1 − 2⌊m/2⌋ − 1, and C⊥ has locality r⊥ = 4. We utilize bound (2) and the

online table from [27] to check the d-optimality, k-optimality, and r-optimality of the DBCH codes and their dual
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TABLE I

PARAMETERS OF DBCH CODES AND THEIR DUAL CODES.

C n k d r d-opt k-opt r-opt

m = 4 15 7 5 3 X X X
m = 5 31 21 5 11 X X ?

m = 6 63 51 5 23 X X ?

m = 7 127 113 5 55 X X ?

m = 8 255 239 5 111 X X ?

C⊥ n⊥ k⊥ d⊥ r⊥ d-opt k-opt r-opt

m = 4 15 8 4 4 X ? ?

m = 5 31 10 12 4 X X ?

m = 6 63 12 24 4 ? ? ?

m = 7 127 14 56 4 X ? ?

m = 8 255 16 112 4 ? ? ?

codes. The results are summarized in Table I (where X indicates that we could prove optimality while ? means

that we could not).

Reed-Muller (RM) codes form another important class of codes. They are simple to construct and rich in structural

properties. This motivates us to study their locality. Recall that a µth-order binary RM code RM(µ, m) has code

length n = 2m, dimension k = ∑µ
i=0 (m

i ), and minimum distance d = 2m−µ .

In [24], two classes of codes with locality 2 and 3 were constructed based on the non-binary RM codes of first

and second orders. Here, we focus on the binary RM codes of any order, and determine their locality as follows.

Lemma 7. The µth-order binary RM code RM(µ, m) has locality r = d⊥ − 1 = 2µ+1 − 1.

Proof: It is known that the dual code of RM(µ, m) is RM(m − µ − 1, m), and the minimum weight

codewords of an RM code generate all of its codewords [15]. Therefore, every coordinate i, i ∈ [n], belongs to

the support of a certain minimum weight codeword of RM(m − µ − 1, m). To see that, assume on the contrary

that there exists a coordinate j, j ∈ [n], in which all the minimum weight codewords of RM(m − µ − 1, m)

have value 0. Thus, any linear combinations of the minimum weight codewords cannot produce the all-ones

codeword 1, which is a valid codeword. Thus, we get a contradiction, which implies that RM(µ, m) has locality

r = d⊥ − 1 = 2µ+1 − 1.

Finally, we mention that a µth-order cyclic binary RM code C is a [2m − 1, ∑µ
i=0 (m

i ), 2m−µ − 1] punctured binary

RM code, represented in a cyclic form [15]. Its dual code C⊥ is also cyclic and is a [2m − 1, ∑m
i=µ+1 (m

i ) − 1, 2µ+1]

binary code. From Lemma 6, C has locality r = 2µ+1 − 1, and C⊥ has locality r⊥ = 2m−µ − 2.

B. Locality of Modified Classical Codes

In this subsection, we show how to find the locality of codes which are obtained by applying the standard code

operations of extending, shortening, expurgating, augmenting, and lengthening to existing LRCs. For a binary vector

c, let c represent the complement vector of c. For a binary code C, define C = {c : c ∈ C}.
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1) Extend Operation: The extended code of an [n, k, d] binary code C is an [n + 1, k, dext] code Cext with an

overall parity bit added to each codeword,

Cext =

{
(c1, . . . , cn, cn+1) : (c1, . . . , cn) ∈ C , cn+1 =

n

∑
i=1

ci

}
,

where dext = d + 1 for odd d and dext = d for even d. We use the notation C⊥
ext to denote the dual code of Cext.

Lemma 8. Let C be an [n, k, d] binary code with locality r. If the maximum Hamming weight of codewords in C⊥ is

n − r, then the extended code Cext has locality rext = r.

Proof: For every i ∈ [n], there exists a set Ri of size at most r such that the ith symbol is recoverable from

the set Ri. Thus, we only need to prove this property for the (n + 1)st symbol. Since the maximum weight of

codewords in C⊥ is n − r, there exists a codeword c ∈ C⊥ such that wH(c) = n − r. Note also that the vectors

(c, 0) and 1 are codewords in C⊥
ext. Therefore the vector c′ = (c, 0) + 1 is a codeword in C⊥

ext and its Hamming

weight is r + 1. Hence, from Remark 2, we get that the (n + 1)st symbol can also be recovered by a set of r other

symbols.

We have the following corollary for cyclic binary linear codes, for which we have already seen that r = d⊥ − 1.

Corollary 9. Let C be an [n, k, d] cyclic binary code and let d⊥ be the minimum distance of its dual code. If the

maximum Hamming weight of codewords in C⊥ is n + 1 − d⊥, then the extended code Cext has locality rext = d⊥ −
1.

Example 5. Let C be the [2m − 1, 2m − 1 − m, 3] cyclic binary Hamming code. Its extended code Cext has parameters

[2m, 2m − 1 − m, 4]. The dual code C⊥ is the simplex code, whose nonzero codewords have constant Hamming

weight 2m−1. Hence, the condition from Corollary 9 holds and we conclude that the extended Hamming code Cext

has locality rext = d⊥ − 1 = 2m−1 − 1. Cext is both d-optimal and k-optimal according to the Hamming bound.

To show that it is also r-optimal, let us assume on the contrary that there exists a [2m, 2m − 1 − m, 4] binary code

with locality r̂ = 2m−1 − 2. According to bound (2) for x = 1, we have

kext 62m−1− 2+k(2)
opt(2m−1+ 1, 4)

(a)
= 2m−1− 2+k(2)

opt(2m−1, 3)

(b)
<2m−1 − 2 + 2m−1 − (m − 1) = 2m − m − 1.

Thus, we get a contradiction to the value of kext. In the above proof, step (a) follows from the property that

A(n, 2s − 1) = A(n + 1, 2s), where A(n, d) denotes the largest number of codewords M in any binary code

(n, M, d) [16]. Step (b) follows from the Hamming bound.

Next, we determine the locality of the dual of the extension of a cyclic code.

Lemma 10. Let C be an [n, k, d] cyclic binary code with odd minimum distance d. Then, the code C⊥
ext has locality

r⊥
ext = d.

Proof: Since d is odd, each codeword with weight d in C generates a parity-check bit 1. Since C is cyclic, for

any i ∈ [n], i belongs to the support of some codeword (c, 1) ∈ Cext, where c has weight d. Moreover, the support

of (c, 1) also contains coordinate n + 1. Thus, from Remark 2, every symbol of C⊥
ext has locality d.



9

Example 6. Let C be the [n = 2m − 1, k = 2m − 1 − m, d = 3] cyclic binary Hamming code. Correspondingly,

C⊥
ext is the biorthogonal code [n⊥

ext = 2m, k⊥
ext = m + 1, d⊥

ext = 2m−1] [13]. From Lemma 10, C⊥
ext has locality

r⊥
ext = d = 3. C⊥

ext is both d-optimal and k-optimal according to the Plotkin bound. To show that C⊥
ext is r-optimal,

we utilize bound (2) with x = 1, and have the following constraint on the dimension of the code,

k⊥
ext = m + 1 6 r⊥

ext + k(2)
opt(2m − (r⊥

ext + 1), 2m−1)

(a)
6 r⊥

ext + log2
2 · 2m−1

2 · 2m−1 − 2m + (r⊥
ext + 1)

= r⊥
ext + m − log2(r⊥

ext + 1),

where step (a) is from the Plotkin bound. Therefore, we obtain

r⊥
ext > log2(r⊥

ext + 1) + 1.

Thus, we have r⊥
ext > 3. Therefore, the code is r-optimal.

2) Shorten Operation: For an [n, k, d] binary code C, its shortened code Cs of C is the set of all codewords in

C that are 0 in a fixed position with that position deleted. Let the last one of the coordinates of C be the position

deleted, then the shortened code Cs is

Cs = {(c1, . . . , cn−1) : (c1, . . . , cn−1, 0) ∈ C}.

We assume here that there is a codeword c ∈ C such that cn = 1. Otherwise, we will remove another coordinate

satisfying this condition. The code Cs has parameters [n − 1, k − 1, ds > d] and its dual code is denoted by C⊥
s .

Lemma 11. Let C be an [n, k, d] binary code with locality r > 2. The shortened code Cs has locality r or r − 1.

Proof: Since C has locality r, for all i ∈ [n − 1], the ith code symbol has a repair set Ri with respect to C
of size at most r. If n /∈ Ri then this symbol has the same repair set also with respect to the shortened code Cs.

Otherwise, note that if c ∈ Cs then (c, 0) ∈ C, so we conclude that the ith symbol is recoverable also from the set

Ri \ {n}.

The following is an immediate consequence of Lemma 11 for cyclic binary codes.

Corollary 12. Let C be an [n, k, d] cyclic binary code whose dual code has minimum distance d⊥ > 3. Then, the code

Cs has locality either d⊥ − 2 or d⊥ − 1.

The next example shows that the shortened code can in fact have locality r − 1.

Example 7. Let C be the [2m − 1, 2m − 1 − m, 3] cyclic binary Hamming code. Its shortened code Cs is a [2m −
2, 2m − 2 − m, 3] code and from Corollary 12 it has locality d⊥ − 2 or d⊥ − 1, where d⊥ = 2m−1. We show that

it has locality d⊥ − 2. According to the proof of Lemma 11, it is enough to show that for every i ∈ [n − 1], the ith

code symbol has a repair set Ri of size 2m−1 − 1 which contains the nth coordinate. Or, according to Remark 2,

it is enough to show that there exists a codeword c ∈ C⊥ such that ci = cn = 1 and wH(c) = 2m−1. We can omit

the last requirement on the weight since all nonzero codewords in C⊥ have the same weight 2m−1. Let c1, c2 ∈ C⊥

be two codewords such that c1,i = c2,n = 1. If c1,n = 1 or c2,i = 1 then we are done. Otherwise, the codeword
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TABLE II

LOCALITY OF BINARY CLASSICAL CODES AND THEIR MODIFIED VERSIONS.

C n k d r d-opt k-opt r-opt

Hamming code 2m − 1 2m − 1 − m 3 2m−1 − 1 X X X
Simplex code 2m − 1 m 2m−1 2 X X Xa

Golay code 23 12 7 7 X X X
Dual of Golay code 23 11 8 6 X X X

DBCH code (m > 4) 2m − 1 2m − 1 − 2m 5 2m−1 − 2⌊m/2⌋ − 1 Table I Table I Table I

Dual of DBCH code (m > 4) 2m − 1 2m 2m−1 − 2⌊m/2⌋ 4 Table I Table I Table I

Extended Hamming code 2m 2m − 1 − m 4 2m−1 − 1 X X X
Extended Golay code 24 12 8 7 X X X

Extended DBCH code (m > 4) 2m 2m − 1 − 2m 6 2m−1 − 2⌊m/2⌋ − 1 X ? ?

Extended TBCH code (m > 5) 2m 2m − 1 − 3m 8 2m−1 − 2⌊m/2+1⌋ − 1 X ? ?

Biorthogonal code 2m m + 1 2m−1 3 X X X
Expurgated Hamming code 2m − 1 2m − 2 − m 4 2m−1 − 2 X X X

Expurgated DBCH code (m > 4) 2m − 1 2m − 2 − 2m 6 2m−1 − 2⌊m/2⌋ − 2 X ? ?

Expurgated TBCH code (m > 5) 2m − 1 2m − 2 − 3m 8 2m−1 − 2⌊m/2+1⌋ − 2 X ? ?

Augmented simplex code 2m − 1 m + 1 2m−1 − 1 3 X X X
Shortened Hamming code 2m − 2 2m − 2 − m 3 2m−1 − 2 X X X
Shortened simplex code 2m − 2 m − 1 2m−1 1 X X X

RM(µ, m) 2m ∑µ
i=0 (m

i ) 2m−µ 2µ+1 − 1 ? ? ?

Cyclic RM(µ, m) 2m − 1 ∑µ
i=0 (m

i ) 2m−µ − 1 2µ+1 − 1 ? ? ?

Dual of cyclic RM(µ, m) 2m − 1 ∑m
i=µ+1 (m

i ) − 1 2µ+1 2m−µ − 2 ? ? ?

ar-optimality is proved in [4].

c1 + c2 satisfies this property. The d-optimality, k-optimality, and r-optimality of Cs are proved in a similar way to

the previous examples.

3) Expurgate, Augment, and Lengthen Operations: For an [n, k, d] binary code C having at least one odd weight

codeword, the expurgated code Cexp is a subcode of C which contains only the codewords of even weight. That is,

Cexp = {c : c ∈ C , wH(c) is even }.

Cexp is an [n, k − 1, we] code, where we denotes the minimum even weight of nonzero codewords in C. We denote

by C⊥
exp the dual code of Cexp and note that C⊥

exp = C⊥ ∪ C⊥.

For an [n, k, d] binary code C which does not contain the all-ones codeword 1, the augmented code Ca is the code

C ∪ C with parameters [n, k + 1, min{d, n − wmax}], where wmax denotes the maximum weight of codewords in

C. We use the notation C⊥
a to denote the dual code of Ca.

According to these definitions, if the code C is cyclic then the expurgated and augmented codes of C are cyclic

as well. Hence, for an [n, k, d] cyclic binary code C, we have the following two observations:

a) If C has an odd weight codeword, then Cexp has locality rexp = min{d⊥, n − w⊥
max} − 1, where w⊥

max is the

maximum weight of codewords in C⊥. (Here, we assume w⊥
max < n − 1, since w⊥

max = n − 1 is not an interesting

case.)
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IV

I II III

Fig. 1. An (r, 1)i-LRC using Construction A. Information symbols are in block I, local parity-check symbols are in block II, phantom symbols

are in block III, and global parity-check symbols are in block IV.

b) If C does not contain the all-ones codeword 1, then Ca has locality ra = w⊥
e − 1, where w⊥

e is the minimum

even weight of nonzero codewords in C⊥.

For an [n, k, d] binary code C which does not contain the all-ones codeword 1, the lengthened code Cℓ is

obtained as follows. First, the code C is augmented to the code Ca = C ∪ C. Then, Ca is extended. Thus,

Cℓ = {(c1, . . . , cn, cn+1) : cn+1 = ∑n
i=1 ci and (c1, . . . , cn) ∈ C ∪ C}. After the lengthen operation, the length

and dimension of the code are increased by 1. By leveraging the results from the augment and extend operations,

we conclude that if the minimum even weight of nonzero codewords in C⊥ is w⊥
e , and the maximum weight of

codewords in C⊥
a is n + 1 − w⊥

e , then the lengthened code Cℓ has locality rℓ = w⊥
e − 1.

Our results on locality of binary classical codes and their modified versions are summarized in Table II, where

X means we can prove the optimality of the given codes, whereas ? means we have not verified their optimality.

IV. CONSTRUCTION OF BINARY LRCS

In this section, we focus on constructing binary LRCs. We first present constructions of LRCs with small minimum

distance (i.e., d = 3, 4, and 5) by using phantom parity-check symbols. Then, in order to obtain LRCs with higher

minimum distance, we propose another construction which is based on multi-level tensor product structure.

A. Construction Using Phantom Parity-Check Symbols

We first consider constructing binary linear (r, 1)i-LRCs with minimum distance 3 and 4. The general framework

is depicted in Fig. 1. We specify an [n′, k′, d′] systematic binary code as a base code, Cbase. The following

construction produces an (r, 1)i-LRC of length n = (k′ + 1)ℓ + n′ − k′, dimension k = k′ℓ, and information

locality r = k′.

Construction A

Step 1: Place an ℓ × k′ array of information symbols in block I.

Step 2: For each row of information symbols, (µi1, . . . , µik′), 1 6 i 6 ℓ, compute local parity-check symbols

pLi = ∑k′
j=1 µi j, 1 6 i 6 ℓ, and place them in the corresponding row of block II.

Step 3: Encode each row of information symbols in block I using Cbase, producing parity-check symbols

(pi1, . . . , pi,n′−k′), 1 6 i 6 ℓ. Place these parity-check symbols in block III. (These symbols are referred to

as phantom symbols because they will not appear in the final codeword.)
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Step 4: Compute a row of global parity-check symbols, pG j = ∑ℓ
i=1 pi j, 1 6 j 6 n′ − k′, by summing the rows

of phantom symbols in block III. Place these symbols in block IV.

Step 5: The constructed codeword consists of the symbols in blocks I, II, and IV. �

Note that for r|k, Pyramid codes are optimal (r, 1)i-LRCs over sufficiently large field size [8]. A Pyramid code

is constructed by splitting a parity-check symbol of a systematic MDS code into k/r local parity-check symbols.

However, for the binary case, it is hard to find a good binary code first and then conduct the splitting operation.

In contrast, we take a different approach. We first design the local parity-check symbols, and then construct the

global parity-check symbols.

If Cbase has an information-sum parity-check symbol, a parity-check symbol which is the sum of all its information

symbols, we can simply modify Step 3 of Construction A to reduce the code redundancy as follows. After encoding

each row of information symbols in block I, define the corresponding row of phantom symbols to be the computed

parity-check symbols with the information-sum parity-check symbol excluded, and store them in block III. Then

proceed with the remaining steps in Construction A. We refer to this modified construction as Construction A′.

It is easy to verify that the resulting code is an (r, 1)i-LRC with length n = (k′ + 1)ℓ + n′ − k′ − 1, dimension

k = k′ℓ, and information locality r = k′.

Now, if we use a Cbase with minimum distance 3, we have a lower bound on the minimum distance of the

constructed LRC, as stated in the following lemma.

Lemma 13. If Cbase is an [n′, k′, d′ = 3] code, the (r, 1)i-LRC produced by Construction A (or Construction A′, if

appropriate) has minimum distance d > 3.

Proof: See Appendix C.

Based on Lemma 13, we have the following theorem on the construction of (r, 1)i-LRCs with optimal minimum

distance d = 3.

Theorem 14. Let Cbase be an [n′, k′, d′ = 3] binary code with an information-sum parity-check symbol and assume

that d(2)
ℓ−opt[n

′, k′] = 3. The (r, 1)i-LRC obtained from Construction A′ has parameters [n = (k′ + 1)ℓ + n′ − k′ −
1, k = k′ℓ, d = 3] and r = k′. Its minimum distance d = 3 is optimal.

Proof: From Construction A′, the length, dimension and locality of the (r, 1)i-LRC are determined. From

Lemma 13, the minimum distance satisfies d > 3. On the other hand, from bound (6)1, with x = ℓ − 1 and t = 1,

d 6 d(2)
ℓ−opt[n − (k′ + 1)(ℓ − 1), k − k′(ℓ − 1)] = d(2)

ℓ−opt[n
′, k′] = 3. Therefore, d = 3 and it is optimal.

We give some examples of (r, 1)i-LRCs with d = 3. First, let Cbase be the [7, 4, 3] systematic binary Hamming

code whose parity-check matrix is

H[7,4,3] =




0 1 1 1 1 0 0

1 1 1 0 0 1 0

1 1 0 1 0 0 1


 .

1Note that we use here and henceforth bound (6) instead of bound (2) simply because bound (6) is stated explicitly for the minimum distance

and bound (2) is given for the code dimension.
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Using Construction A, we obtain an (r, 1)i-LRC with parameters [5ℓ + 3, 4ℓ, 3] with r = 4. However, the upper

bound on the minimum distance from bound (6) is 4. To construct an (r, 1)i-LRC whose minimum distance is

optimal with respect to bound (6), we use a [6, 3, 3] shortened binary Hamming code as the Cbase whose parity-

check matrix H[6,3,3] is obtained by deleting the first column of H[7,4,3],

H[6,3,3] =




1 1 1 1 0 0

1 1 0 0 1 0

1 0 1 0 0 1


 .

Now, the Cbase has an information-sum parity-check symbol and d(2)
ℓ−opt[6, 3] = 3. From Theorem 14, the (r, 1)i-

LRC generated by Construction A′ has parameters [4ℓ + 2, 3ℓ, 3] and r = 3. Moreover, its minimum distance d = 3

is optimal.

The above [6, 3, 3] base code Cbase can be generalized as follows. Let C be a [2m − 1, 2m − 1 − m, 3] systematic

binary Hamming code with parity-check matrix

H =




h1,1 h1,2 . . . h1,2m−1−m 1 0 . . . 0

h2,1 h2,2 . . . h2,2m−1−m 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...

hm,1 hm,2 . . . hm,2m−1−m 0 0 . . . 1




,

whose columns range over all the nonzero vectors in Fm
2 . The first 2m − 1 − m coordinates of C form the systematic

information symbols. The parity-check matrix Hs of the shortened binary Hamming code Cs is obtained by deleting

any ith column of H, if 1 6 i 6 2m − 1 − m and h1,i = 0. As a result, Cs is systematic and has an information-sum

parity-check symbol.

Lemma 15. The code Cs has parameters [2m−1 + m − 1, 2m−1 − 1, 3], and its minimum distance is optimal.

Proof: The first row of H has 2m−1 ones and 2m−1 − 1 zeros, since it is a nonzero codeword of the

[2m − 1, m, 2m−1] binary simplex code. According to the shortening operation, we delete in total 2m−1 − m columns

from H, so the length of Cs becomes 2m−1 + m − 1 and the dimension becomes 2m−1 − 1. Since the shortening

operation does not decrease the minimum distance, and there always exist three dependent columns in Hs (e.g.,

[1, 1, 0, . . . , 0]T , [1, 0, 0, . . . , 0]T , and [0, 1, 0, . . . , 0]T), the minimum distance remains 3. Lastly, we have that

d(2)
ℓ−opt[2

m−1 + m − 1, 2m−1 − 1] = 3 from the anticode bound [1].

The following example is a direct result of Theorem 14 and Lemma 15.

Example 8. Let Cbase be the shortened binary Hamming code Cs in Lemma 15. The (r, 1)i-LRC obtained from

Construction A′ has parameters [2m−1ℓ + m − 1, (2m−1 − 1)ℓ, 3] and r = 2m−1 − 1. Its minimum distance is

optimal.

Next, we use a code Cbase with minimum distance 4, and have the following lemma.

Lemma 16. If Cbase is an [n′, k′, d′ = 4] code, the (r, 1)i-LRC produced by Construction A (or Construction A′, if

appropriate) has minimum distance d > 4.
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Proof: The proof is similar to the one of Lemma 13.

Based on Lemma 16, we have the following two theorems on the construction of (r, 1)i-LRCs with optimal

minimum distance d = 4.

Theorem 17. Let Cbase be an [n′, k′, d′ = 4] binary code with d(2)
ℓ−opt[n

′ + 1, k′] = 4. The (r, 1)i-LRC obtained from

Construction A has parameters [n = (k′ + 1)ℓ + n′ − k′, k = k′ℓ, d = 4] and r = k′. Its minimum distance d = 4 is

optimal.

Proof: The proof is similar to the one of Theorem 14.

Theorem 18. Let Cbase be an [n′, k′, d′ = 4] binary code with an information-sum parity-check symbol and

d(2)
ℓ−opt[n

′, k′] = 4. The (r, 1)i-LRC obtained from Construction A′ has parameters [n = (k′ + 1)ℓ + n′ − k′ − 1, k =

k′ℓ, d = 4] and r = k′. Its minimum distance d = 4 is optimal.

Proof: The proof is similar to the one of Theorem 14.

We give examples of (r, 1)i-LRCs with d = 4 using expurgated or extended binary Hamming code as Cbase. The

following lemma gives properties of expurgated and extended binary Hamming codes.

Lemma 19. For m > 4, the [2m − 1, 2m − 2 − m, 4] systematic expurgated binary Hamming code has no information-

sum parity-check symbol, and d(2)
ℓ−opt[2

m, 2m − 2 − m] = 4. For m > 3, the [2m, 2m − 1 − m, 4] systematic extended

binary Hamming code has no information-sum parity-check symbol, and d(2)
ℓ−opt[2

m + 1, 2m − 1 − m] = 4.

Proof: For the expurgated binary Hamming code, in its dual code, except the all-ones codeword with weight

2m − 1, there is no codeword with weight larger than 2m−1. If the expurgated binary Hamming code has an

information-sum parity-check symbol, then in its dual code there is a codeword with weight 2m − 1 − m, which

is larger than 2m−1 for m > 4. We have d(2)
ℓ−opt[2

m, 2m − 2 − m] = 4 from the Hamming bound. Similarly, for

the extended binary Hamming code, in its dual code, except the all-ones codeword with weight 2m, there is no

codeword with weight larger than 2m−1. If the extended binary Hamming code has an information-sum parity-check

symbol, then in its dual code there is a codeword with weight 2m − m, which is larger than 2m−1 for m > 3. We

have d(2)
ℓ−opt[2

m + 1, 2m − 1 − m] = 4 from the Hamming bound.

The following example presents (r, 1)i-LRCs with d = 4 from Theorem 17 and Lemma 19.

Example 9. Let Cbase be the [2m − 1, 2m − 2 − m, 4] expurgated binary Hamming code, where m > 4. The (r, 1)i-

LRC obtained from Construction A has parameters [(2m − 1 − m)ℓ + m + 1, (2m − 2 − m)ℓ, 4] and r = 2m − 2 −
m. Its minimum distance 4 is optimal. Similarly, let Cbase be the [2m, 2m − 1 − m, 4] extended binary Hamming

code, where m > 3. The (r, 1)i-LRC obtained from Construction A has parameters [(2m − m)ℓ + m + 1, (2m −
1 − m)ℓ, 4] and r = 2m − 1 − m. Its minimum distance 4 is optimal.

Next, we give a construction of (r, 1)i-LRCs for d = 5. Let Cbase be an [n′, k′, 5] systematic binary code, and

let C ′
base = {c[k′+w] : c ∈ Cbase}, i.e., restrict Cbase to k′ information coordinates and w parity-check coordinates,
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Fig. 2. An (r, 1)i-LRC using Construction B.

where w is chosen properly such that C ′
base has minimum distance at least 3. The following new construction is

based on two rows of global parity-check symbols as shown in Fig. 2.

Construction B

Step 1: Follow Steps 1, 2, and 3 of Construction A to get local parity-check symbols and phantom symbols.

Step 2: Divide phantom symbols into two parts: w columns in block III(a) and the rest of the columns in block

III(b).

Step 3: Compute global parity-check symbols in block IV: 1) Follow Step 4 of Construction A to get the first row

(pG11 , · · · , pG1,n′−k′ ). 2) Use an [ℓ + 2, ℓ, 3] doubly extended Reed-Solomon code to encode the phantom symbols

in block III(a) to get the second row (pG21 , · · · , pG2,w), by taking each row in block III(a) as a symbol in F2w .

Step 4: The constructed codeword consists of the symbols in blocks I, II, and IV. �

Let α be a primitive element in F2w , and ℓ 6 2w − 1. Then, the parity-check matrix for the doubly extended

Reed-Solomon code in Construction B is

H =


 1 1 1 · · · 1 1 0

1 α α2 · · · αℓ−1 0 1


 .

Note that an alternative to the doubly extended Reed-Solomon code is an EVENODD code [3].

Theorem 20. The (r, 1)i-LRC obtained from Construction B has parameters [n = (k′ + 1)ℓ + n′ − k′ + w, k =

k′ℓ, d > 5], where ℓ 6 2w − 1. It has information locality r = k′.

Proof: See Appendix D.

Example 10. Let Cbase be the [2m − 1, 2m − 1 − 2m, 5] binary BCH code where m > 4. For the case of m = 4,

exhaustive search shows that we can choose w to be 4. For ℓ 6 15, the (r, 1)i-LRC from Construction B has

parameters [n = 8ℓ + 12, k = 7ℓ, d = 5] and r = 7. An upper bound on d from bound (6) is 8. For the case of

m = 5, exhaustive search shows that we can choose w to be 6. For ℓ 6 63, the (r, 1)i-LRC from Construction B

has parameters [n = 22ℓ + 16, k = 21ℓ, d = 5] and r = 21. An upper bound on d from bound (6) is 8.

We finish this subsection with a construction of (r, 1)a-LRCs with minimum distance 4 by using phantom parity-

check symbols. We start with an [n′, k′, d′] systematic binary code as a base code, Cbase. For simplicity, we assume

that k′ > n′ − k′. We use Fig. 1 to illustrate our construction of (r, 1)a-LRCs as follows.

Construction C
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Step 1: Place an ℓ× k′ array of symbols in block I. The first ℓ− 1 rows are all information symbols. The last row has

2k′ − n′ information symbols (i.e., µℓ1, . . . , µℓ,2k′−n′ ) and n′ − k′ zero symbols (i.e., µℓ,2k′−n′+1 = 0, . . . , µℓ,k′ = 0).

Step 2: Encode each row of symbols in block I using Cbase, producing parity-check symbols (pi1, . . . , pi,n′−k′),

1 6 i 6 ℓ. Place these parity-check symbols in block III as phantom symbols.

Step 3: Compute a row of global parity-check symbols, pG j = ∑ℓ
i=1 pi j, 1 6 j 6 n′ − k′, by summing the rows

of phantom symbols in block III. Place these symbols in block IV.

Step 4: Let µℓ,2k′−n′+ j = pG j , 1 6 j 6 n′ − k′. For each row of symbols, (µi1, . . . , µik′), 1 6 i 6 ℓ, compute

local parity-check symbols pLi = ∑k′
j=1 µi j, 1 6 i 6 ℓ, and place them in the corresponding row of block II.

Step 5: The constructed codeword consists of the symbols in blocks I and II. �

The resulting code is an (r, 1)a-LRC of code length n = (k′ + 1)ℓ, dimension k = k′ℓ − (n′ − k′), and all-symbol

locality r = k′.

We give the following theorem on the construction of (r, 1)a-LRCs with optimal minimum distance 4.

Theorem 21. Let Cbase be an [n′, k′, d′ = 4] systematic binary code with k′ > n′ − k′ and d(2)
ℓ−opt[k

′ + 1, 2k′ − n′] 6
4. The (r, 1)a-LRC obtained from Construction C has parameters [n = (k′ + 1)ℓ, k = k′ℓ − (n′ − k′), d = 4] and

all-symbol locality r = k′. Its minimum distance d = 4 is optimal.

Proof: From Construction C, the length, dimension and locality of the (r, 1)a-LRC are determined. On one

hand, the minimum distance d > 4 since the (r, 1)a-LRC can correct any 3 erasures (The proof is similar to

the one of Lemma 13, so we omit it here). On the other hand, from bound (6), with x = ℓ − 1 and t = 1,

d 6 d(2)
ℓ−opt[k

′ + 1, 2k′ − n′] 6 4.

We give the following example of (r, 1)a-LRCs with d = 4.

Example 11. Let Cbase be the [n′ = 2m − 1, k′ = 2m − 2 − m, d′ = 4] expurgated binary Hamming code, where

m > 4. Since d(2)
ℓ−opt[k

′ + 1, 2k′ − n′] = d(2)
ℓ−opt[2

m − m − 1, 2m − 2m − 3] 6 4 due to the Hamming bound, from

Theorem 21, the (r, 1)a-LRC obtained from Construction C has parameters [(2m − 1 − m)ℓ, (2m − 2 − m)ℓ −
1 − m, 4] and all-symbol locality r = 2m − 2 − m. Its minimum distance 4 is optimal. Similarly, let Cbase be the

[2m, 2m − 1 − m, 4] extended binary Hamming code, where m > 3. The (r, 1)a-LRC obtained from Construction

C has parameters [(2m − m)ℓ, (2m − 1 − m)ℓ − 1 − m, 4] and all-symbol locality r = 2m − 1 − m. Its minimum

distance 4 is optimal.

The binary LRCs constructed in this subsection are summarized in Table III.

B. Construction Using Multi-level Tensor Product Structure

In the previous subsection, we presented constructions of binary LRCs with small minimum distance (i.e., d = 3,

4, and 5) based on phantom parity-check symbols. Here, we propose a new construction by using the multi-level

tensor product structure [12], leading to (r, 1)a-LRCs with higher minimum distance.

We start by presenting the tensor product operation of two matrices H
′

and H
′′
. Let H

′
be the parity-check

matrix of a binary code with length n′ and dimension n′ − v. H
′

can be considered as a v (row) by n′ (column)
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TABLE III

CONSTRUCTED BINARY LRCS IN SECTION IV-A

(r, 1)i-LRCs n k d r

Example 8 2m−1ℓ + m − 1 (2m−1 − 1)ℓ 3 2m−1 − 1

Example 9 (2m − 1 − m)ℓ + m + 1 (2m − 2 − m)ℓ 4 2m − 2 − m

Example 9 (2m − m)ℓ + m + 1 (2m − 1 − m)ℓ 4 2m − 1 − m

Example 10 8ℓ + 12 (ℓ 6 15) 7ℓ 5 7

Example 10 22ℓ + 16 (ℓ 6 63) 21ℓ 5 21

(r, 1)a-LRCs n k d r

Example 11 (2m − 1 − m)ℓ (2m − 2 − m)ℓ − 1 − m 4 2m − 2 − m

Example 11 (2m − m)ℓ (2m − 1 − m)ℓ − 1 − m 4 2m − 1 − m

matrix over F2 or as a 1 (row) by n′ (column) matrix of elements from F2v . Let H
′
= [h

′
1 h

′
2 · · · h

′
n′ ], where h

′
j,

1 6 j 6 n′, are elements of F2v . Let H
′′

be the parity-check matrix of a code of length ℓ and dimension ℓ − λ

over F2v . We denote H
′′

by

H
′′

=




h
′′
11 · · · h

′′
1ℓ

...
. . .

...

h
′′
λ1 · · · h

′′
λℓ


 ,

where h
′′
i j, 1 6 i 6 λ and 1 6 j 6 ℓ, are elements of F2v .

The tensor product of the two matrices H
′

and H
′′

is defined as

H
′′ ⊗

H
′
=




h
′′
11H

′ · · · h
′′
1ℓH

′

...
. . .

...

h
′′
λ1H

′ · · · h
′′
λℓH

′


 ,

where h
′′
i jH

′
= [h

′′
i jh

′
1 h

′′
i jh

′
2 · · · h

′′
i jh

′
n′ ], 1 6 i 6 λ and 1 6 j 6 ℓ, and the products of elements are calculated

according to the rules of multiplication for elements over F2v .

Our construction of (r, 1)a-LRCs is based on the multi-level tensor product structure proposed in [12]. Define

the matrices H
′
i and H

′′
i (i = 1, 2, . . . , µ) as follows. H

′
i is a vi × n′ matrix over F2 such that the (v1 + v2 +

· · · + vi) × n′ matrix

Bi =




H
′
1

H
′
2

...

H
′
i




is a parity-check matrix of an [n′, n′ − v1 − v2 − · · · − vi , d
′
i] binary code. H

′′
i is a λi × ℓ matrix over F2vi , which

is a parity-check matrix of an [ℓ, ℓ − λi , δi]2vi code.

We define a µ-level tensor product code as a binary linear code having a parity-check matrix in the form of the
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following µ-level tensor product structure

H =




H
′′
1

⊗
H

′
1

H
′′
2

⊗
H

′
2

...

H
′′
µ

⊗
H

′
µ




. (8)

We denote this code by Cµ
TP. Its length is n = n′ℓ and the number of parity-check symbols is n − k = ∑µ

i=1 viλi.

Let us give an example of a 2-level tensor product code C2
TP.

Example 12. Let H
′
1 = [1 1 1 1 1 1 1] over F2, and

H
′
2 =




0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1




over F2. Let H
′′
1 = [1 1 1] over F2 and

H
′′
2 =


 1 1 0

1 0 1




over F8. Hence, in this construction, we use the following parameters: n′ = 7, ℓ = 3, v1 = 1, v2 = 3, λ1 = 1,

λ2 = 2, δ1 = 2, δ2 = 3, d′
1 = 2 and d′

2 = 4. The binary parity-check matrix H of the 2-level tensor product code

C2
TP is

H =


 H

′′
1

⊗
H

′
1

H
′′
2

⊗
H

′
2




=




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0

0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0

1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1




.

The code length is n = n′ℓ = 21 and the dimension is k = n − ∑2
i=1 viλi = 14. It is possible to verify that every

3 columns of H are linearly independent, but columns 1, 2, 5 and 6 of H are linearly dependent. Therefore, the

minimum distance of the code is d = 4.

Next, we give the following lemma on the minimum distance of a µ-level tensor product code Cµ
TP.

Lemma 22. Assume the following inequalities hold: 1) d′
µ 6 δ1, and 2) d′

µ 6 δid′
i−1, for i = 2, 3, . . . , µ. Then, the

minimum distance d of the µ-level tensor product code Cµ
TP is d′

µ .
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Proof: First, we show that d 6 d′
µ . For i = 1, 2, . . . , µ, let H

′
i = [h

′
1(i), h

′
2(i), . . . , h

′
n′(i)] over F2vi , and

let [h
′′
11(i), h

′′
21(i), . . . , h

′′
λi1

(i)]T over F2vi be the first column of H
′′
i . Since the code with parity-check matrix

Bµ has minimum distance d′
µ , there exist d′

µ columns of Bµ , say in the set of positions J = {b1, b2, . . . , bd′
µ
},

which are linearly dependent. That is ∑ j∈J h
′
j(i) = 0, for i = 1, 2, . . . , µ. Thus, we have ∑ j∈J h

′′
p1(i)h

′
j(i) =

h
′′
p1(i)

(
∑ j∈J h

′
j(i)

)
= 0, for p = 1, 2, . . . , λi and i = 1, 2, . . . , µ. That is, the columns in positions b1, b2, . . . , bd′

µ

of H are linearly dependent.

The inequality d > d′
µ is shown in the proof of Theorem 2 in [12].

Remark 3 Lemma 22 is a modified version of Theorem 2 in [12], which incorrectly states that the minimum

distance of a µ-level tensor product code Cµ
TP is the largest integer dm satisfying the following inequalities: 1)

dm 6 d′
µ , 2) dm 6 δ1, and 3) dm 6 δid′

i−1, i = 2, 3, . . . , µ. If this were true, the 2-level C2
TP code in Example 12,

with δ1 = 2, δ2 = 3, d′
1 = 2 and d′

2 = 4, would have minimum distance 2. However, the true minimum distance

is 4. Theorem 2 only gives a lower bound on the minimum distance, which we have used in the proof of Lemma

22.

We now present a construction of (r, 1)a-LRCs based on the multi-level tensor product structure.

Construction D

Step 1: Choose vi × n′ matrices H
′
i over F2 and λi × ℓ matrices H

′′
i over F2vi , for i = 1, 2, . . . , µ, which satisfy

the following two properties:

1) H
′
1 = [1, 1, · · · , 1], i.e., a length-n′ all-ones vector, and H

′′
1 = Iℓ×ℓ, i.e., an ℓ × ℓ identity matrix.

2) The matrices H
′
i and H

′′
i are chosen such that d′

µ 6 δid′
i−1, for i = 2, 3, · · · , µ.

Step 2: Generate the parity-check matrix H of the (r, 1)a-LRC according to (8) with the matrices H
′
i and H

′′
i , for

i = 1, 2, . . . , µ. �

Theorem 23. The binary (r, 1)a-LRC from Construction D has length n = n′ℓ, dimension k = n′ℓ − ∑µ
i=1 viλi,

minimum distance d = d′
µ , and all-symbol locality r = n′ − 1.

Proof: According to Construction D, the code length n = n′ℓ and dimension k = n′ℓ − ∑µ
i=1 viλi are

determined by the construction of the multi-level tensor product codes. From property 1) in Step 1, the tensor

product matrix H
′′
1

⊗
H

′
1 in H gives all-symbol locality r = n′ − 1. Since δ1 = ∞ (H

′′
1 is the identity matrix),

d′
1 = 2, and d′

µ 6 δid′
i−1, we conclude from Lemma 22, that the minimum distance of the constructed (r, 1)a-LRC

is d = d′
µ .

Construction D gives a general method to construct (r, 1)a-LRCs, but not an explicit construction. Next, we give

a specific code design.

Let n′ = 2m − 1 and α be a primitive element of F2m . In Construction D, for i = 2, 3, · · · , µ, we choose

H
′
i = [β0, β1, · · · , βn′−1] where β = α2i−3. Thus, Bi is the parity-check matrix of an expurgated binary BCH

code, so we have d′
i = 2i. We also choose H

′′
i to be the parity-check matrix of an [ℓ, ℓ − λi , δi = ⌈ µ

i−1 ⌉]2m code,

so we have d′
µ = 2µ 6 δid′

i−1 = 2(i − 1)⌈ µ
i−1 ⌉. We refer to the (r, 1)a-LRC constructed according to the above



20

design as CLRC, and conclude with the following corollary.

Corollary 24. The (r, 1)a-LRC CLRC has parameters [(2m − 1)ℓ, (2m − 2)ℓ − m ∑µ
i=2 λi , 2µ] and all-symbol locality

r = 2m − 2.

In particular, for the construction of the CLRC, in order to minimize the value of λi, we can choose H
′′
i to be

the parity-check matrix of an [ℓ, ℓ − δi + 1, δi = ⌈ µ
i−1 ⌉]2m MDS code, where we require that ℓ 6 2m + 1 only for

the case µ > 2. Thus, the resulting (r, 1)a-LRC has parameters [(2m − 1)ℓ, (2m − 2)ℓ − m ∑µ
i=2(⌈

µ
i−1 ⌉ − 1), 2µ]

and all-symbol locality r = 2m − 2. We refer to this particular (r, 1)a-LRC as CI. We give some instances of CI as

follows.

Example 13. For µ = 2, CI is a [(2m − 1)ℓ, (2m − 2)ℓ − m, 4] LRC with r = 2m − 2. It has an optimal minimum

distance with respect to bound (6). For µ = 3 and ℓ 6 2m + 1, CI is a [(2m − 1)ℓ, (2m − 2)ℓ − 3m, 6] LRC with

r = 2m − 2. For µ = 4 and ℓ 6 2m + 1, CI is a [(2m − 1)ℓ, (2m − 2)ℓ − 5m, 8] LRC with r = 2m − 2.

In the design of the code CLRC, we can also choose H
′′
i to be the parity-check matrix of a non-MDS code to

remove the length constraint on ℓ. We illustrate this design with the following example.

Example 14. For the CLRC with µ = 3, we choose H
′′
2 to be the parity-check matrix of an [ℓ = 2ms−1

2m−1 , 2ms−1
2m−1 −

s, 3]2m non-binary Hamming code and H
′′
3 = [1, 1, · · · , 1]. The resulting (r, 1)a-LRC has parameters [2ms −

1, (2m−2)(2ms−1)
2m−1 − (s + 1)m, 6] and all-symbol locality r = 2m − 2. For the CLRC with µ = 4, we choose

H
′′
2 to be the parity-check matrix of an [ℓ = 22m + 1, 22m − 3, 4]2m non-binary code (see problem 3.44 in

[25]), H
′′
3 = [1, 1, · · · , 1], and H

′′
4 = [1, 1, · · · , 1]. The resulting (r, 1)a-LRC has parameters [(22m + 1)(2m −

1), (22m + 1)(2m − 2) − 6m, 8] and all-symbol locality r = 2m − 2. In general, we can choose the matrix H
′′
i for

i = 2, 3, . . . , µ to be the parity-check matrix of an [ℓ = 2ms − 1, ℓ − λi > ℓ − s(⌈ µ
i−1 ⌉ − 1), δi > ⌈ µ

i−1 ⌉]2m non-

binary BCH code [16]. The resulting (r, 1)a-LRC has parameters [n = (2ms − 1)(2m − 1), k > (2ms − 1)(2m −
2) − ms ∑µ

i=2(⌈
µ

i−1 ⌉ − 1), d = 2µ] and all-symbol locality r = 2m − 2. We refer to this code as C ′
I .

Remark 4 There exist other choices of the matrices H
′
i and H

′′
i in Construction D. For example, we can choose H

′
i

so that Bi is the parity-check matrix of an extended binary BCH code, and choose H
′′
i to be the parity-check matrix

of an MDS code. Then, the resulting (r, 1)a-LRC has parameters [2mℓ, (2m − 1)ℓ − m ∑µ
i=2(⌈

µ
i−1 ⌉ − 1), 2µ] and

all-symbol locality r = 2m − 1, where we require that ℓ 6 2m + 1 if µ > 2. We refer to this code as CII.

The (r, 1)a-LRCs constructed in this subsection are summarized in Table IV.

C. Comparison to Existing Results

In this subsection, we summarize our constructions of binary LRCs and compare them with previous results.

Our constructions of binary (r, 1)i-LRCs and (r, 1)a-LRCs have the following features.

1) They provide LRCs with a wide range of values of minimum distance and locality. This diversity is based

on the flexible choices of the base code Cbase for Construction A, B, C, and of the matrices H
′
i and H

′′
i for
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TABLE IV

CONSTRUCTED BINARY (r, 1)a-LRCS IN SECTION IV-B

Code n k d r

CI (2m − 1)ℓ (2m − 2)ℓ − m ∑µ
i=2(⌈ µ

i−1 ⌉ − 1) 2µ 2m − 2

CI(µ = 2) (2m − 1)ℓ (2m − 2)ℓ − m 4 2m − 2

CI(µ = 3) (2m − 1)ℓ (2m − 2)ℓ − 3m 6 2m − 2

CI(µ = 4) (2m − 1)ℓ (2m − 2)ℓ − 5m 8 2m − 2

CII 2mℓ (2m − 1)ℓ − m ∑µ
i=2(⌈ µ

i−1 ⌉ − 1) 2µ 2m − 1

CII(µ = 2) 2mℓ (2m − 1)ℓ − m 4 2m − 1

CII(µ = 3) 2mℓ (2m − 1)ℓ − 3m 6 2m − 1

CII(µ = 4) 2mℓ (2m − 1)ℓ − 5m 8 2m − 1

Example 14 2ms − 1 (2m−2)(2ms−1)
2m−1 − (s + 1)m 6 2m − 2

Example 14 (22m + 1)(2m − 1) (22m + 1)(2m − 2) − 6m 8 2m − 2

C ′
I (2ms − 1)(2m − 1) (2ms − 1)(2m − 2) − ms ∑µ

i=2 (⌈ µ
i−1 ⌉ − 1) 2µ 2m − 2

For CI and CII, we require ℓ 6 2m + 1 when µ > 2.

TABLE V

EXISTING CONSTRUCTIONS OF BINARY (r, 1)a-LRCS

Code n k d r

[7] 2m − 1 (2|m) 2
3 (2m − 1) − m 6 2

[7] 2m − 1 (2|m) 2
3 (2m − 1) − 2m 10 2

[40] 2m + 1 (2 - m) 2
3 (2m + 1) − 2m 10 2

[40] (2r + 1)(r + 1) (2r − 1)r 6 r

[29] 2m − (s
2) − 1 (s 6 m) m 2m−1 − ⌊ s2

4 ⌋ 2

[29] 2m − 2t + t + 1 (t 6 m) m 2m−1 − 2t−1 + 2 2

[10], [29] 2m−1 − 1 m 2m−2 − 1 3

[29] 3 · 2m−2 m 3 · 2m−3 2

[33] 45 30 4 8

[33] 21 12 4 5

Construction D. This feature of our constructions makes it possible to satisfy different design requirements on the

code parameters.

2) They produce high-rate LRCs. For example, for the family of code CI(µ = 2), its code rate asymptotically

approaches r
r+1 as ℓ → ∞. Moreover, for all of the constructed binary LRCs with d = 3 or d = 4, the minimum

distance is optimal with respect to bound (6).

There exist several other constructions of binary (r, 1)a-LRCs, which are summarized in Table V. Goparaju et

al. [7] and Zeh et al. [40] focused on constructing high-rate binary (r, 1)a-LRCs with fixed small locality 2 and

small minimum distance. In [40], another construction for LRCs with arbitrary locality and fixed minimum distance

6 was given. In contrast, Silberstein et al. [29] proposed constructions of low-rate binary (r, 1)a-LRCs with fixed

small locality but large minimum distance. In [33], Tamo et al. gave some specific examples of cyclic binary

(r, 1)a-LRCs from subfield subcodes.

Compared to these previous code constructions, our constructions offer more flexibility with regard to the possible

code parameters. First, we compare our results to those in [7], [40]. Roughly speaking, for a given length and
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minimum distance, our codes generally offer higher rate but at the cost of larger locality. For example, Goparaju et

al. give a [255, 162, 6] LRC with locality r = 2 and rate 0.6353. Zeh et al. give a [198, 155, 6] LRC with locality

r = 5 and rate 0.7828. By comparison, referring to Table IV, we can use CI(µ = 3) and parameters m = 4 and

ℓ = 16 to construct a [240, 212, 6] LRC with locality r = 14 and rate 0.8833.

We also compare our constructions to some of those examples given in [33]. One example is a [45, 30, 4] binary

(r, 1)a-LRC with r = 8, while we can construct a [45, 35, 4] binary (r, 1)a-LRC with r = 8 from Construction C

using a [13, 8, 4] binary base code Cbase. Another example in [33] is a [21, 12, 4] binary (r, 1)a-LRC with r = 5.

In contrast, we can construct a [20, 12, 4] binary (r, 1)a-LRC with r = 4 from Construction C using an [8, 4, 4]

binary base code Cbase. In these cases, our codes offer higher rates with the same or smaller locality.
Finally, we apply bound (2) to give an upper bound on the dimension of the constructed (r, 1)a-LRC CI, which

has parameters [n = (2m − 1)ℓ, k = (2m − 2)ℓ − m ∑µ
i=2(⌈

µ
i−1 ⌉ − 1), d = 2µ] and r = 2m − 2. For x = ℓ − 1,

bound (2) gives an upper bound kub,

kub =xr + k(q)
opt(n − x(r + 1), d)

=(2m − 2)(ℓ − 1) + k(2)
opt

(
(2m − 1)ℓ − (2m − 1)(ℓ − 1), 2µ

)

=(2m − 2)(ℓ − 1) + k(2)
opt

(
2m − 1, 2µ

)

≈(2m − 2)(ℓ − 1) + 2m − 2 − (µ − 1)m

=(2m − 2)ℓ − (µ − 1)m.

For small µ, the gap between k and the upper bound kub is small, e.g., for µ = 3, kub − k = m, and for µ = 4,

kub − k = 2m. For large µ, the gap between k and kub becomes large. However, it is not known whether bound

(2) is tight.

V. BINARY LRCS WITH AVAILABILITY

In this section, we study binary (r, t)a-LRCs based on one-step majority-logic decodable codes [15].

Definition 25. An [n, k, d]q linear code C is said to be a one-step majority-logic decodable code with t orthogonal

repair sets if the ith symbol, for i ∈ [n], has t pairwise disjoint repair sets R j
i , j ∈ [t], such that for every j ∈ [t] the

ith symbol is a linear combination of all symbols in R j
i .

According to Definition 25, it is evident that if C is a one-step majority-logic decodable code with t orthogonal

repair sets, and if the size of all repair sets is at most r, then C has all-symbol locality r and availability t. Moreover,

referring to a well known result (Theorem 8.1 in [15]), we can see that for an [n, k, d]q one-step majority-logic

decodable code with t orthogonal repair sets, all of the same size r, the availability t satisfies

t 6
⌊

n − 1
r

⌋
. (9)

Note that for a cyclic code, once t repair sets are found for one symbol, the repair sets for all other symbols can

be determined correspondingly from the cyclic symmetry of the code. Therefore, most of one-step majority-logic

decodable codes found so far are cyclic codes. There are several constructions of one-step majority-logic decodable

codes, such as doubly transitive invariant (DTI) codes, cyclic simplex codes, cyclic difference-set codes, and 4-cycle
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TABLE VI

DIFFERENCE-SET CODES

C n k d r t tu du

m = 2 21 11 6 4 5 5 6

m = 3 73 45 10 8 9 9 12

m = 4 273 191 18 16 17 17 31

m = 5 1057 813 34 32 33 33 80

free regular linear codes [15]. The following examples present two families of one-step majority-logic decodable

cyclic codes, and we give their locality and availability.

Example 15. Consider a cyclic binary simplex code with parameters [n = 2m − 1, k = m, d = 2m−1]. It is a

one-step majority-logic decodable code with 2m−1 − 1 disjoint repair sets [15]. It is easy to verify that every repair

set has size 2. Therefore, it has all-symbol locality r = 2 and availability t = 2m−1 − 1. This code has the optimal

minimum distance, due to the Plotkin bound. This locality and availability property of the simplex codes was also

observed independently in [14].

Example 16. Consider a cyclic binary difference-set code with parameters [n = 22m + 2m + 1, k = 22m + 2m −
3m, d = 2m + 2]. It is a one-step majority-logic decodable code with 2m + 1 disjoint repair sets [15]. We can verify

that every repair set has size 2m. Thus, this code has all-symbol locality r = 2m and availability t = 2m + 1. For

the codes with 2 6 m 6 5, Table VI gives the upper bound tu on t from bound (9) and the upper bound du on d

from bound (6).

Another important class of one-step majority-logic decodable codes is 4-cycle free linear codes that have a parity-

check matrix H with constant row weight ρ and constant column weight γ. Obviously, such codes have all-symbol

locality r = ρ − 1 and availability t = γ. In particular, 4-cycle free (ρ, γ)-regular low-density parity-check (LDPC)

codes have this property. Based upon this observation, a family of codes with all-symbol locality and availability

were constructed using partial geometries in [19]. The authors of [19] also derived lower and upper bounds on the

code rate; however, the exact dimension and minimum distance of these codes are still not known.

Many 4-cycle free regular LDPC codes have been constructed by leveraging different mathematical tools, e.g.,

finite geometries, algebraic methods, and block designs [15]. Here we consider a family of such codes based

on Euclidean Geometries (EG), and we give explicit expressions for their code length, dimension, and minimum

distance, as well as their locality and availability.

Example 17. Consider the class of binary 4-cycle free regular LDPC codes called in [15] the two-dimensional

type-I cyclic (0, m)th-order EG-LDPC codes, with parameters [n = 22m − 1, k = 22m − 3m, d = 2m + 1]. From

the structure of their parity-check matrices, they have all-symbol locality r = 2m − 1 and availability t = 2m. Table

VII lists the parameters of these codes for 2 6 m 6 5 and gives the upper bound tu on t from bound (9) and the

upper bound du on d from bound (6).

Finally, we briefly show how to get a long LRC with availability from a short one-step majority-logic decodable

code based on a multi-level tensor product structure. We modify Step 1 in Construction D to provide availability
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TABLE VII

TWO-DIMENSIONAL TYPE-I CYCLIC (0, m)TH-ORDER EG-LDPC CODES

C n k d r t tu du

m = 2 15 7 5 3 4 4 5

m = 3 63 37 9 7 8 8 12

m = 4 255 175 17 15 16 16 30

m = 5 1023 781 33 31 32 32 80

by using the parity-check matrix of a one-step majority-logic decodable code as H
′
1. We illustrate this modification

with the following example where we use for H
′
1 the parity-check matrix of the [15, 7, 5] binary BCH code, which

is a one-step majority-logic decodable code with all-symbol locality r = 3 and availability t = 4 [15].

Example 18. Let n′ = 15 and α be a primitive element of F16. Let

H
′
1 =


 α0 α1 · · · α14

(α3)0 (α3)1 · · · (α3)14




and H
′
2 = [(α5)0, (α5)1, · · · , (α5)14]. Let H

′′
1 = Iℓ×ℓ and H

′′
2 = [1, 1, · · · , 1]. The parity-check matrix H of the

constructed LRC is

H =


 H

′′
1

⊗
H

′
1

H
′′
2

⊗
H

′
2


 .

This LRC has parameters [15ℓ, 7ℓ − 2, 7] with all-symbol locality r = 3 and availability t = 4.

VI. CONCLUSION

In this paper, we first studied the locality of binary classical codes and their modified versions obtained from

standard code operations. We then presented several constructions of binary LRCs by using phantom parity-check

symbols and a multi-level tensor product structure. Compared to other recently proposed schemes which produce

binary LRCs with fixed minimum distance or locality, our constructions are more flexible and offer wider choices of

the code parameters, i.e., code length, dimension, minimum distance, and locality. We also showed that our binary

LRCs with minimum distance 3 or 4 are optimal with respect to the minimum distance. Finally, we studied the

locality and availability properties of one-step majority-logic decodable codes, and demonstrated a construction of

a long binary LRC with availability from a short one-step majority-logic decodable code.

REFERENCES

[1] R. Ahlswede, H. K. Aydinian, and L. H. Khachatrian, “On perfect codes and related concepts,” Designs, Codes and Cryptography, vol. 22,

no. 3, pp. 221–237, 2001.

[2] M. Asteris and A. Dimakis, “Repairable fountain codes,” IEEE J. Sel. Areas Commun., vol. 32, no. 5, pp. 1037–1047, May 2014.

[3] M. Blaum, J. Brady, J. Bruck, and J. Menon, “Evenodd: An efficient scheme for tolerating double disk failures in raid architectures,” IEEE

Trans. Comput., vol. 44, no. 2, pp. 192–202, 1995.

[4] V. Cadambe and A. Mazumdar, “An upper bound on the size of locally recoverable codes,” arXiv preprint arXiv:1308.3200, 2015.



25
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[27] R. Schürer and W. Schmid, “Table for linear codes,” mint.sbg.ac.at/table.php?i=c, 2014.

[28] N. Silberstein, A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath, “Optimal locally repairable codes via rank-metric codes,” in Proc. IEEE

Int. Symp. Inf. Theory, 2013, pp. 1819–1823.

[29] N. Silberstein and A. Zeh, “Optimal binary locally repairable codes via anticodes,” in Proc. IEEE Int. Symp. Inf. Theory, 2015.

[30] W. Song, S. H. Dau, C. Yuen, and T. Li, “Optimal locally repairable linear codes,” IEEE J. Sel. Areas Commun., vol. 32, no. 5, pp.

1019–1036, May 2014.

[31] I. Tamo and A. Barg, “Bounds on locally recoverable codes with multiple recovering sets,” in Proc. IEEE Int. Symp. Inf. Theory, June

2014, pp. 691–695.

[32] ——, “A family of optimal locally recoverable codes,” IEEE Trans. Inf. Theory, vol. 60, no. 8, pp. 4661–4676, Aug 2014.

[33] I. Tamo, A. Barg, S. Goparaju, and R. Calderbank, “Cyclic LRC codes and their subfield subcodes,” in Proc. IEEE Int. Symp. Inf. Theory,

2015.

[34] I. Tamo, D. S. Papailiopoulos, and A. G. Dimakis, “Optimal locally repairable codes and connections to matroid theory,” in Proc. IEEE

Int. Symp. Inf. Theory, 2013, pp. 1814–1818.

[35] A. Wang and Z. Zhang, “An integer programming based bound for locally repairable codes,” arXiv preprint arXiv:1409.0952, 2014.

[36] ——, “Repair locality with multiple erasure tolerance,” IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 6979–6987, Nov 2014.



26

[37] ——, “Achieving arbitrary locality and availability in binary codes,” in Proc. IEEE Int. Symp. Inf. Theory, 2015.

[38] J. Wolf, “On codes derivable from the tensor product of check matrices,” IEEE Trans. Inf. Theory, vol. 11, no. 2, pp. 281–284, Apr 1965.

[39] ——, “An introduction to tensor product codes and applications to digital storage systems,” in Proc. IEEE Inf. Theory Workshop, Oct

2006, pp. 6–10.

[40] A. Zeh and E. Yaakobi, “Optimal linear and cyclic locally repairable codes over small fields,” in Proc. IEEE Inf. Theory Workshop, April

2015, pp. 1–5.

APPENDIX A

PROOF OF LEMMA 3

Proof: Assume that x ∈ Z+, y = (y1, . . . , yx) ∈ ([t])x satisfy the conditions in the lemma. Also, assume

without loss of generality that the first k symbols of the code C form an information set.

The set I is constructed according to the following procedure.

Procedure A

1) Let I0 = ∅.

2) For j = 1, . . . , x

3) Choose an integer a j ∈ [k] and a j /∈ I j−1, such that

kI j−1∪{a j} = kI j−1 + 1.

4) I j = I j−1 ∪ {a j} ∪ R1
a j

∪ · · · ∪ Ry j
a j .

5) End

6) Let I = Ix ∪ S , where S ⊆ [n] \ Ix is a set of cardinality min{n, B(r, x, y)} − |Ix|. 2

This completes the construction of the set I .

First, let us show that the construction of the set I is well defined.

Claim 1 In step 3), it is always possible to find a coordinate a j ∈ [k], for 1 6 j 6 x, that satisfies the condition in this

step.

Proof: To see this, we show that on the jth loop, for 1 6 j 6 x, the value of kI j−1 satisfies kI j−1 < k, and

thus at least one of the first k coordinates does not belong to the set I j−1. Since the value of kI j−1 increases with

j, it is enough to show that kIx−1 6 k − 1.

Let Sa j = {a j} ∪ R1
a j

∪ · · · ∪ Ry j
a j for j ∈ [x]. First, we show that kSa j

6 (r − 1)t + 1. Let G = [g1, . . . , gn] be

a generator matrix of the code C. For the repair set Ru
a j

, u ∈ [y j], ga j is a linear combination of the columns gm,

m ∈ Ru
a j

, so there exists a coordinate bu
j ∈ Ru

a j
such that ga j = ∑m∈Ru

a j \{bu
j } αmgm +βbu

j
gbu

j
, where αm, βbu

j
∈ Fq

and βbu
j
̸= 0. Thus, k{a j}∪Ru

a j \{bu
j } = k{a j}∪Ru

a j
. Therefore, we have

kSa j
=kSa j \{∪

y j
u=1bu

j }

(a)
6 |Sa j\{∪y j

u=1bu
j }| 6 (r − 1)y j + 1

6(r − 1)t + 1,

where (a) follows from the fact that kM 6 |M| for any set M ⊆ [n].
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From the construction of the set I , we have that Ix−1 = ∪x−1
j=1 Sa j and therefore

kIx−1 = k∪x−1
j=1 Sa j

(a)
6

x−1

∑
j=1

kSa j

(b)
6(x − 1)[(r − 1)t + 1]

(c)
6

(⌈
k − 1

(r − 1)t + 1

⌉
− 1

)
[(r − 1)t + 1]

<
k − 1

(r − 1)t + 1
[(r − 1)t + 1] = k − 1,

where (a) follows from the fact that kM1
∪ M2 6 kM1 + kM2 for any sets M1, M2 ⊆ [n] and a simple induction.

Inequality (b) follows from kSa j
6 (r − 1)t + 1, and (c) follows from x 6 ⌈ k−1

(r−1)t+1 ⌉.

It is clear to see that the set I has size of |I| = min{n, B(r, x, y)}.

Next, we show that kI 6 A(r, x, y). To do this, in Procedure A, for each jth iteration, let us add the following

coordinate selection steps between step 3) and step 4).

3.1) For ℓ = 1, . . . , y j

3.2) Choose an integer aℓ
j ∈ Rℓ

a j
and aℓ

j /∈ I j−1, such

that k{a j}∪Rℓ
a j \{aℓ

j}
= k{a j}∪Rℓ

a j
.

3.3) End

We next show that the above steps are well defined.

Claim 2 In step 3.2), it is always possible to find an integer aℓ
j , for 1 6 j 6 x and 1 6 ℓ 6 y j, that satisfies the

condition in this step.

Proof: First, assume on the contrary that Rℓ
a j

⊆ I j−1. Then, we conclude that kI j−1∪{a j} = kI j−1 , which

violates the selection rule in step 3). Second, for the case of Rℓ
a j

* I j−1, since ga j is a linear combination of gi,

i ∈ Rℓ
a j

, there exists at least one coordinate aℓ
j ∈ Rℓ

a j
and aℓ

j /∈ I j−1 such that ga j = ∑i∈Rℓ
a j \{aℓ

j}
αigi + βaℓ

j
gaℓ

j
,

where αi , βaℓ
j
∈ Fq and βaℓ

j
̸= 0. Therefore, gaℓ

j
can be expressed as a linear combination of the columns gi, for

i ∈ {a j} ∪ Rℓ
a j

\{aℓ
j}, so we have k{a j}∪Rℓ

a j \{aℓ
j}

= k{a j}∪Rℓ
a j

.

Now, let P be the set of coordinates chosen in steps 3.1) – 3.3): P = {a1
1, . . . , ay1

1 , . . . , a1
x, . . . , ayx

x }. From the

construction, the integers a1
1, . . . , ay1

1 , . . . , a1
x, . . . , ayx

x are all different, i.e., |P| = ∑x
j=1 y j.

Next, we prove that kI 6 A(r, x, y) by showing that kI\P 6 A(r, x, y) and kI = kI\P .

Claim 3 kI\P 6 A(r, x, y).

Proof:

kI\P 6|I\P| (a)
= min{n, B(r, x, y)} −

x

∑
j=1

y j

6B(r, x, y) −
x

∑
j=1

y j = A(r, x, y),
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where (a) follows from |I| = min{n, B(r, x, y)} and |P| = ∑x
j=1 y j.

Claim 4 kI = kI\P .

Proof: Showing that kI = kI\P is equivalent to showing that for any two codewords c and ĉ in code C, if

cI\P = ĉI\P , then cP = ĉP .

Assume on the contrary that there exist two codewords c = (c1, . . . , cn) and ĉ = (ĉ1, . . . , ĉn) in code C that

cI\P = ĉI\P , but cP ̸= ĉP . Let E = {i : ci ̸= ĉi , i ∈ P}. We order the elements in E according to the

lexicographical order ≺ defined as follows:

1. If i < j, then au
i ≺ av

j , for i, j ∈ [x], u ∈ [yi], and v ∈ [y j].

2. If u < v, then au
i ≺ av

i , for i ∈ [x], u, v ∈ [yi].

Suppose that the smallest element with respect to the lexicographical order ≺ in E is au
i . According to the

construction steps, we have ({ai} ∪ Ru
ai
\{au

i })
∩ E = ∅ and ({ai} ∪ Ru

ai
\{au

i }) ⊆ I . Since cI\E = ĉI\E , we have

c{ai}∪Ru
ai \{au

i } = ĉ{ai}∪Ru
ai \{au

i }, but cau
i

̸= ĉau
i
. This violates the selection rule in step 3.2) for au

i : k{ai}∪Ru
ai \{au

i } =

k{ai}∪Ru
ai

, which indicates that if c{ai}∪Ru
ai \{au

i } = ĉ{ai}∪Ru
ai \{au

i } then cau
i

= ĉau
i
. Thus, we get a contradiction and

conclude that there do not exist two codewords c and ĉ in code C that cI\P = ĉI\P , but cP ̸= ĉP .

From Claims 3 and 4, it is clear to see that we have kI 6 A(r, x, y). Therefore, there exists a set I ⊆ [n],

|I| = min{n, B(r, x, y)}, such that kI 6 A(r, x, y). Finally, since kI 6 A(r, x, y) < k and k[n] = k, we conclude

that B(r, x, y) < n and |I| = min{n, B(r, x, y)} = B(r, x, y).

APPENDIX B

PROOF OF THEOREM 4

Proof: We follow similar steps to the proof in [4] which consists of two parts. First, from Lemma 3, for any

[n, k, d]q linear code C with information locality r and availability t, for all x ∈ Z+ and y = (y1, . . . , yx) ∈ ([t])x

satisfying 1 6 x 6 ⌈ k−1
(r−1)t+1 ⌉ and A(r, x, y) < k, there exists a set I ⊆ [n], |I| = B(r, x, y), such that kI 6

A(r, x, y).

For the second part of the proof, for any x ∈ Z+ and y = (y1, . . . , yx) ∈ ([t])x, the I ⊆ [n] is constructed as

in the first part. Then, we consider the code C0
I = {c[n]\I : cI = 0 and c ∈ C}. Since the code C is linear, the

size of the code C0
I is qk−kI and it is a linear code as well. Moreover, the minimum distance D of the code C0

I is

at least d, i.e., D > d.

Thus, we get an upper bound on the minimum distance d,

d 6 D 6d(q)
ℓ−opt[n − |I|, k − kI ]

6d(q)
ℓ−opt[n − |I|, k − A(r, x, y)].

Therefore, we conclude that

d 6d(q)
ℓ−opt[n − |I|, k − A(r, x, y)]

=d(q)
ℓ−opt[n − B(r, x, y), k − A(r, x, y)].
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Similarly, we also get an upper bound on the dimension k,

k − kI 6 k(q)
ℓ−opt[n − |I|, D] 6 k(q)

ℓ−opt[n − |I|, d].

Therefore, we conclude that

k 6k(q)
ℓ−opt[n − |I|, d] + kI

6k(q)
ℓ−opt[n − B(r, x, y), d] + A(r, x, y).

APPENDIX C

PROOF OF LEMMA 13

Proof: We prove that the minimum distance of the constructed (r, 1)i-LRC from Construction A is at least 3

by verifying that it can correct any two erasures. We consider the following 2-erasure patterns, where we refer to

their locations in the blocks in Fig. 1. We refer to block I-II as the union of block I and block II.

1) Two erasures are in the same row in block I-II, e.g., µ11 and pL1 are erased in the first row. We can first

recover parity-check symbols (p11, . . . , p1,n′−k′), based on which two erased symbols can be recovered.

2) Two erasures in different rows in block I-II can be recovered individually from the local parity-check equation.

3) Two erasures in block IV can be recovered from all existing information symbols.

4) One erasure is in block I-II and one erasure is in block IV. First, the erasure in block I-II can be recovered from

the local parity-check equation. Then, the erasure in block IV can be recovered from all the existing information

symbols.

The proof for the constructed (r, 1)i-LRC from Construction A′ follows the same ideas and is thus omitted.

APPENDIX D

PROOF OF THEOREM 20

Proof: From Construction B, the code length, dimension, and locality are determined. As in the proof of

Lemma 13, to prove that the minimum distance of the (r, 1)i-LRC is at least 5, we only need to enumerate all

possible 4-erasure patterns and then verify they can be corrected. In the following, we show how to recover two

typical 4-erasure patterns in Fig. 2. Other patterns can be verified in a similar way and hence are omitted.

1) There are two erasures in a row in block I and two erasures in another row in block I. Without loss of

generality, assume they appear on the first two rows (µ11, . . . , µ1k′) and (µ21, . . . , µ2k′) in block I. We can recover

this 4-erasure pattern as follows. First, with (pG11 , . . . , pG1,w) and (pG21 , . . . , pG2,w), we can recover (p11, . . . , p1,w)

and (p21, . . . , p2,w). Then, two erasures in the first row (µ11, . . . , µ1k′) can be recovered since only two erasures

appear in the codeword (µ11, . . . , µ1k′ , p11, . . . , p1,w) which belongs to a code with minimum distance at least 3.

Similarly, two erasures in the second row (µ21, . . . , µ2k′) can be recovered since only two erasures appear in the

codeword (µ21, . . . , µ2k′ , p21, . . . , p2,w).
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2) There are two erasures in a row in block I, one erasure in (pG11 , . . . , pG1,w) in block IV, and one more

erasure in (pG21 , . . . , pG2,w) in block IV. For simplicity, we assume that the erasures are located in positions µ11,

µ12, pG11 , and pG21 . We can recover this 4-erasure pattern as follows. First, with (pG12 , . . . , pG1,n′−k′ ), we can

recover (p12, . . . , p1,n′−k′). Then, µ11 and µ12 can be recovered since only three erasures appear in the codeword

(µ11, . . . , µ1k′ , p11, . . . , p1,n′−k′). Finally, pG11 and pG21 can be recovered.


