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Abstract

As constructing multi-D wavelets remains a challenging problem, we propose a new method called prime coset sum to
construct multi-D wavelets. Our method provides a systematic way to construct multi-D non-separable wavelet filter banks from
two 1-D lowpass filters, with one of whom being interpolatory. Our method has many important features including the following:
1) it works for any spatial dimension, and any prime scalar dilation, 2) the vanishing moments of the multi-D wavelet filter banks
are guaranteed by certain properties of the initial 1-D lowpass filters, and furthermore, 3) the resulting multi-D wavelet filter
banks are associated with fast algorithms that are faster than the existing fast tensor product algorithms.

I. PRELIMINARIES

A. Introduction

Wavelet representation has been one of the most popular datarepresentations in the last two decades. Wavelet filter banks,
which can lead to wavelet systems inL2(R

n) under some well-understood constraints, has been widely used in Signal Processing
applications. In order to obtain wavelet representation for multi-dimensional (multi-D) data, one needs multi-D wavelets. Tensor
product is the most common method for constructing multi-D wavelets, and the resulting wavelets are typically referredto as
the separable wavelets. However, the separable wavelets constitute only a small portion of multi-D wavelets, and they have some
unavoidable limitations. One of the limitations of tensor-product-based wavelets is that the resulting multi-D filters have dense
supports. It is well known that the fast algorithms associated with tensor-product-based wavelets have a complexity constant
(cf. Section III-B for the definition of complexity constant) that increases linearly with the spatial dimensionn. While this
complexity may be satisfactory for many signal processing applications, it can pose a problem for many other signal processing
applications, including the case when we deal with large volume data such as medical images in [12], Geographic Information
Systems images in [38] and seismic data in [41]. Moreover, itis known that tensor-product-based discrete wavelet transform is
memory consuming and cannot directly obtain the target subband signals, due to its dependent subband decomposition process
[16]. There have been many researches on improving the implementation of the existing tensor-product-based wavelets [8], [26],
[28], [29], as well as on constructing new non-tensor-basedmulti-D wavelets [1]–[3], [5]–[7], [9], [11], [14], [15], [20]–[24],
[27], [31], [32], [34], [35], [37], [40], [43], [44]. However, most of these new constructions work only for low dimensions or
have additional constraints on the lowpass filters. Furthermore, most of them are not associated with fast algorithms, preventing
them from being widely used in practice.

Recently, the authors introduced a new method called coset sum for constructing non-tensor-based multi-D wavelets in [19].
There it was shown that the resulting wavelets are associated with fast algorithms whose complexity constant does not increase
as the spatial dimension increases. It was also shown there that many features of tensor product that makes it attractivein
wavelet construction still hold true for coset sum.

However, similar to the tensor product method, coset sum also assumes the dyadic dilation. We recall that then×n matrix
Λ is called adilation matrix if it is an integer matrix whose spectrum lies outside the closed unit disc. It determines the exact
way of how downsampling and upsampling are performed in wavelets or wavelet filter banks. The dilation is calledscalar if
the dilation matrix is a scalar multiple of the identity matrix In, i.e.,Λ = λIn with λ ≥ 2 an integer. In particular, it is called
dyadic if Λ = 2In. In this paper, we say that the dilation isprime if Λ = pIn for a prime numberp. Wavelets with dyadic
dilation are referred to as dyadic wavelets. Dyadic wavelets are the standard and traditional types of wavelets, however they
are not suitable for all applications (see, for example, [13], [30], [42]).

In this paper, we show that we can generalize the coset sum in the sense that multi-D wavelet filter banks with fast algorithms
can be constructed for any prime dilationpIn. We also show that the complexity constant for our fast algorithms with prime
dilation pIn is independent of the spatial dimension.

The organization of this paper is as follows. The rest of Section I is a brief review of some relevant concepts including
the coset sum method. In Section II we discuss a possible generalization of the coset sum, which we call prime coset sum,

This research was partially supported by NSF Grant DMS-1115870.

http://arxiv.org/abs/1407.5513v1


2

together with its properties. In Section III we present a newmethod to construct multi-D wavelet filter banks based on the
prime coset sum refinement masks and show that they are associated with fast algorithms. Section IV is a summary of our
results. Some technical proofs and details in this paper areplaced in Appendix.

B. Notation and Basic Concepts

Let Λ be a dilation matrix and letq := | det Λ|. In the multiresolution analysis [25] setting, the (compactly supported)
scaling or refinable functionφ (with dilation Λ) satisfies the following refinement relation:

φ(·) =
∑

k∈Zn

hφ(k)φ(Λ · −k), (1)

wherehφ : Zn → R is the associated finitely supported filter with dilationΛ.
A maskassociated witha finitely supported filterh : Zn → R is a Laurent trigonometric polynomial defined as

τ(ω) :=
1

q

∑

k∈Zn

h(k)e−ik·ω =: ĥ(ω),

for any ω ∈ T
n := [−π, π]n. That is,τ = ĥ is the Fourier transform of the filterh, up to a normalization. Throughout this

paper, we usêa to denote this Fourier transform ofa.
By taking the Fourier transform of (1), the refinement relation can be recast as

φ̂(Λ∗ω) = τ(ω)φ̂(ω), ∀ω ∈ T
n,

whereτ is the mask associated withhφ, and the superscript∗ is used to denote the conjugate transpose of a matrix, and hence
Λ∗ is the same asΛT , the transpose ofΛ, in this case.

A maskτ with τ(0) = 0 is typically referred to as awavelet mask. In this paper, we use the normalization of the mask so that
a mask withτ(0) = 1 is referred to as arefinement mask. This is equivalent to

∑
k∈Zn h(k) = q, which is our normalization

for a filter to belowpass. A refinement maskτ is calledinterpolatory if, for any ω ∈ T
n,

∑

γ∈Γ∗

τ(ω + γ) = 1,

whereΓ∗ is a complete set of representatives of the distinct cosets of 2π(((Λ∗)−1
Z
n)/Zn) containing0. For example, for

the scalar dilation withλ, the set2πλ {0, 1, · · · , λ− 1}n can be used forΓ∗. We note thatτ is interpolatory if and only if its
corresponding filterh satisfies

h(k) =

{
1, if k = 0,
0, if k ∈ ΛZn\0.

(2)

The order of zeros ofτ atγ ∈ Γ∗\0 is called theaccuracy numberof τ . Throughout this paper, we assume that all refinement
masks have at least accuracy number one. The order of zeros ofτ at the origin is called thenumber of vanishing moments
of τ . Thus a mask is a wavelet mask if and only if it has at least one vanishing moment. The order of zeros of1− τ at the
origin is called theflatness numberof τ . Thus a mask is a refinement mask if and only if it has at least flatness number one.
Throughout this paper, we use the accuracy number, the number of vanishing moments, and the flatness number both for a
mask and for the filter associated with it.

Two refinement masksτ andτd are calledbiorthogonalif
∑

γ∈Γ∗

(ττd)(ω + γ) = 1,

for anyω ∈ T
n. Here and below, the overline is used to denote the complex conjugate. For the corresponding filtersh andg

of τ andτd, respectively, the biorthogonality condition becomes
∑

k∈Zn

h(k)g(k + Λl) = qδl,0 =

{
q, if l = 0,
0, if l ∈ Z

n\0.

For a pair of biorthogonal refinement masksτ andτd and wavelet maskstj andtdj , j = 1, . . . , q−1, we refer to(τ, (tj)j=1,...,q−1)

and (τd, (tdj )j=1,...,q−1) as thecombined biorthogonal masksif they satisfy the following condition: for everyω ∈ T
n,

τ(ω + γ)τd(ω) +

q−1∑

j=1

tj(ω + γ)tdj (ω) = δγ,0 =

{
1, if γ = 0,
0, if γ ∈ Γ∗\0.

(3)

It is well known that the combined biorthogonal masks can give rise to a biorthogonal wavelet system inL2(R
n) (see, for

example, [33]).
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A filter bank is a finite set of filters. We consider only the filter banks that are non-redundant with the perfect reconstruction
property [36]. A (non-redundant) filter bank consists of analysis bank and synthesis bank, which are collections ofq = | detΛ|
filters linked by downsampling and upsampling operators, respectively, associated with the dilation matrixΛ. The analysis bank
splits the input signal intoq signals typically called subband signals using a parallel set of bandpass filters. The synthesis bank
reconstructs the original data fromq subband signals. We are interested in thewavelet filter bankfor which each of analysis
and synthesis banks has exactly one lowpass filter and the rest of them are all highpass filters. We recall that a filterh is
highpassif the associated mask is a wavelet mask, i.e.

∑
k∈Zn h(k) = 0. The filters associated with the combined biorthogonal

masks constitute a wavelet filter bank. Furthermore, it is well known that the minimum of accuracy numbers of lowpass filters
in a given wavelet filter bank provides a lower bound for the number of vanishing moments of the highpass filters in the given
wavelet filter bank [4].

C. Multi-D Wavelet Construction Methods: Tensor Product and Coset Sum

When q = | detΛ| is large, in general, it is not easy to find the combined biorthogonal masks(τ, (tj)j=1,...,q−1) and
(τd, (tdj )j=1,...,q−1). However, if the dilation is dyadic (i.e.Λ = 2In andq = 2n) and the spatial dimensionn satisfiesn ≥ 2,
then the well-known tensor product and more recent coset sumcan be used. Below we provide a brief review of these methods.

We recall that then-D tensor product mask fromn (possibly distinct)1-D masksR1, R2, . . . , Rn is defined as, forω =
(ω1, ω2, . . . , ωn) ∈ T

n,

Tn[R1, R2, . . . , Rn](ω) := R1(ω1)R2(ω2) · · ·Rn(ωn).

Then starting from1-D combined biorthogonal masks(S0, S1) and (U0, U1) with dyadic dilation, one can constructn-D
combined biorthogonal masks with dyadic dilation by setting then-D biorthogonal refinement masks as

τ := Tn[S0, S0, . . . , S0], τd := Tn[U0, U0, . . . , U0],

and then-D wavelet maskstν , tdν , ν = (ν1, ν2, . . . , νn) ∈ {0, 1}n\0, as

tν = Tn[Sν1 , Sν2 , . . . , Sνn ], tdν = Tn[Uν1 , Uν2 , . . . , Uνn ].

It is well known that the above tensor product method has manyadvantages: 1) it preserves the interpolatory property and
the accuracy number of1-D refinement masks; 2) it also preserves the biorthogonality between two refinement masks; and 3)
the resulting separable wavelets are associated with fast algorithms (cf. Section III-B). However, as discussed in Section I-A,
the limitations of the separable wavelets constructed fromthe tensor product are widely known.

Aa an alternative to the tensor product, a new method called coset sum for constructingn-D dyadic refinement masks from
1-D dyadic refinement masks is recently proposed [19]. The coset sum refinement maskCn[R] for a 1-D dyadic refinement
maskR is defined as

Cn[R](ω) :=
1

2n−1


1− 2n−1 +

∑

ν∈{0,1}n\0

R(ω · ν)


 , ω ∈ T

n.

The following results about coset sum refinement masks and coset sum wavelet systems have been proved in [19].
Result 1: Let Cn be the coset sum, and letR andR̃ be univariate dyadic refinement masks.

(a) Cn[R] is interpolatory if and only ifR is interpolatory.
(b) Suppose that one ofR and R̃ is interpolatory. ThenCn[R] and Cn[R̃] are biorthogonal if and only ifR and R̃ are

biorthogonal.
(c) Suppose thatR is interpolatory. ThenCn[R] andR have the same accuracy number.

Result 2: Suppose thatS andU are 1-D biorthogonal dyadic refinement masks, and thatU is interpolatory. Definen-D
biorthogonal refinement masks as

τ := Cn[S], τd := Cn[U ],

andn-D wavelet maskstν , ν ∈ {0, 1}n\0, as

tν(ω) = e−iω·νU(ω · ν + π), ω ∈ T
n. (4)

Then there exist wavelet maskstdν , ν ∈ {0, 1}n\0, such that(τ, (tν)ν∈{0,1}n\0) and (τd, (tdν)ν∈{0,1}n\0) aren-D combined
biorthogonal masks with dyadic dilation.

As we can see above, the coset sum and the tensor product method share many useful properties. In addition, the coset
sum wavelets can overcome some of the limitations of the separable wavelets. For example, attributed to the smallersupports
(number of nonzero entries) of the resulting multi-D filters, as well as the special structure of the filters, the coset sumcan be
associated with fast algorithms whose complexity constantdoes not increase with the spatial dimension. Therefore, inhigher
dimension, coset sum fast algorithms can be much faster thanthe tensor product fast algorithms. For more details about the
coset sum including its comparison with the tensor product,we refer to [19].
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II. PRIME COSETSUM

Since coset sum has many useful properties including fast algorithms, which can be much faster than the existing tensor
product fast algorithms, in this section, we try to extend the coset sum method to non-dyadic scalar dilations. The following
simple lemma plays an important role in our generalization of coset sum.

Lemma 1:Let n ≥ 1 be a fixed spatial dimension. Letp be a prime number, and letΓ and Γ∗ be the complete set of
representatives of the distinct cosets ofZ

n/pZn and2π((p−1
Z
n)/Zn), respectively, containing0. Then for everyγ ∈ Γ∗\0,

we have

#{ν ∈ Γ : γ · ν ≡ 0 (mod 2πZ)} = pn−1.

Remark 1:A special case of Lemma 1 forp = 2 is used for the coset sum (cf. (19) in [19]).
Remark 2: In general, Lemma 1 does not hold true ifp is not a prime number. For example, whenp = 4 andn = 1, we

can takeΓ = {0, 1, 2, 3} andΓ∗\0 = { 2π
4 , 4π

4 , 6π
4 }. Then, it is easy to see that ifγ = 2π

4 or γ = 6π
4 , then the cardinality of

the setZγ := {ν ∈ Γ : γ · ν ≡ 0 (mod2πZ)} is 1 (in fact,Zγ = {0} in both cases), whereas ifγ = 4π
4 , thenZγ = {0, 2} and

hence its cardinality is2. As we will see below, in our proof of the lemma, we used crucially the fact thatZ/pZ is a finite
field for a prime numberp, which does not hold true anymore ifp is not a prime number.

Proof of Lemma 1: First of all, we claim that, without lose of generality, we may assumeΓ = {0, 1, · · · , p − 1}n and
Γ∗ = 2π

p {0, 1, · · · , p−1}n. This is because for any otherΓ̃ andΓ̃∗, there is a one-to-one correspondence between the elements

of Γ̃ andΓ, and between the elements ofΓ̃∗ andΓ∗. To be more specific, for any other̃Γ and Γ̃∗, and for anyν̃ ∈ Γ̃ and
γ̃ ∈ Γ̃∗\0, there exist uniqueν ∈ Γ andγ ∈ Γ∗\0 such that

ν ≡ ν̃ (mod pZn),
p

2π
γ ≡

p

2π
γ̃ (mod pZn),

and vice versa. Therefore,̃γ · ν̃ ≡ γ · ν (mod 2πZ). Hence the cardinality of the set{ν ∈ Γ : γ · ν ≡ 0 (mod2πZ)} is the
same as the cardinality of the set{ν̃ ∈ Γ̃ : γ̃ · ν̃ ≡ 0 (mod 2πZ)}.

Now for anyγ ∈ Γ∗\0 = 2π
p {0, 1, · · · , p − 1}n\0, andν ∈ Γ = {0, 1, · · · , p − 1}n, we let µ := p

2πγ, and letµi and νi,
i = 1, . . . , n, be thei-th component ofµ and ν. Then bothµi and νi lie in the set{0, 1, · · · , p − 1}. Sinceγ 6= 0, at least
one ofµi’s is not 0. Without loss of generality, we may assumeµn 6= 0. Furthermore,γ · ν ≡ 0 (mod 2πZ) if and only if
µ1ν1 + · · ·+ µnνn ≡ 0 (mod pZ).

For anyγ ∈ Γ∗\0, and anyνi ∈ {0, 1, · · · , p− 1}, i = 1, . . . , n− 1, let k ∈ {0, 1, · · · , p− 1} satisfy

µ1ν1 + · · ·+ µn−1νn−1 ≡ k (mod pZ).

SinceZ/pZ is a finite field for a prime numberp, there exists a unique multiplicative inverseρ(µn) ∈ {1, · · · , p− 1} of µn

such thatµnρ(µn) ≡ 1 (mod pZ). Then there exists a uniqueνn ∈ {0, 1, · · · , p− 1} satisfies

νn ≡ (−k)ρ(µn) (mod pZ).

Thus

µ1ν1 + · · ·+ µn−1νn−1 + µnνn ≡ k + µn(−k)ρ(µn) ≡ 0 (mod pZ).

Since there arepn−1 different choices forν1, ν2, · · · , νn−1, for anyγ ∈ Γ∗\0, we have

#{ν ∈ Γ : γ · ν ≡ 0 (mod 2πZ)} = pn−1.

With Lemma 1 in hand, we define a particular generalization ofcoset sum for the prime dilationΛ = pIn, wherep ≥ 2 is a
prime number. LetΓ andΓ∗ be defined as in Lemma 1. For example,Γ = {0, 1, · · · , p− 1}n andΓ∗ = 2π

p {0, 1, · · · , p− 1}n

can be used.
Motivated by the definition of the original coset sumCn (cf. Section I-C), we consider a generalized coset sumCn,p of the

form

Cn,p[R](ω) = A

(
B +

∑

ν∈Γ′

R(ω · ν)

)
,

whereΓ′ := Γ\0, andA andB are constants that will be determined soon. To pin down the constantsA andB, we impose
two conditions that we considernatural on the mapCn,p. Firstly, we requireCn,p to map a 1-D refinement mask with dilation
p to ann-D refinement mask with dilationpIn. That is, we wantCn,p[R](0) = 1 wheneverR(0) = 1. From this we get the
equation

B + pn − 1 =
1

A
. (5)
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1 1 1 −→

1 1 1

1 1 1

1 1 1

Fig. 1. Construction of centered2-D Haar lowpass filter with dilation3 using prime coset sum (cf. Example 1)1

Secondly, we require the accuracy number ofCn,p[R] to be at least one whenever the accuracy number of the 1-D refinement
maskR is at least one. That is, we want, for anyγ ∈ Γ∗\0,

0 = Cn,p[R](γ) = A

(
B +

∑

{ν∈Γ′,γ·ν≡0}

R(0)

)
= A

(
B + pn−1 − 1

)
,

where the last equality is due to Lemma 1. This gives the equation

B + (pn−1 − 1) = 0. (6)

By solvingA andB that satisfy (5) and (6) simultaneously, we reach the following definition of a generalized coset sum for
prime dilations.

Definition 1: Let p be a prime number. We define theprime coset sumCn,p that maps a 1-D refinement maskR with dilation
p to ann-D refinement maskCn,p[R] with dilation pIn as follows: for anyω ∈ T

n,

Cn,p[R](ω) :=
1

(p− 1)pn−1

(
1− pn−1 +

∑

ν∈Γ′

R(ω · ν)

)
,

whereΓ′ = Γ\0.
Remark 3:We refer to the refinement mask obtained byCn,p as theprime coset sum refinement mask. We notice that the

prime coset sumCn,p with p = 2 reduces to the original coset sumCn for dyadic dilation, i.e.Cn,2 = Cn (cf. Section I-C for
the choice ofΓ = {0, 1}n and [19] for more general choice ofΓ).

Let H be the 1-D lowpass filter associated with the 1-D refinement mask R. Let h be then-D lowpass filter associated with
then-D refinement maskCn,p[R]. We refer to such a filterh as theprime coset sum lowpass filter. For any nonzerok ∈ Z

n,
we define a setWk asWk := {l ∈ Z\0 : k = lν for someν ∈ Γ′}. Then then-D prime coset sum lowpass filterh can be
written in terms of the 1-D lowpass filterH as follows:

h(k) =

{
1

p−1 (p− pn + (pn − 1)H(0)), if k = 0,
1

p−1

∑
l∈Wk

H(l), if k 6= 0.
(7)

Now we give a simple example to show the construction of multi-D prime coset sum lowpass filters.
Example 1 (Centered 2-D Haar lowpass filter with dilation 3): Consider the centered1-D Haar lowpass filter with dila-

tion 3:

H(K) =

{
1, if K = 0 or K = ±1,
0, otherwise.

Let us takeΓ = {−1, 0, 1}2 = {(0, 0),±(1, 0),±(0, 1),±(1, 1),±(1,−1)}. Then it is easy to check that the2-D prime coset
sum lowpass filter constructed from the1-D centered Haar is

h(k) =

{
1, if k = (0, 0), k = ±(1, 0), k = ±(0, 1), k = ±(1,−1) or k = ±(−1, 1),
0, otherwise.

Figure 1 shows the1-D filter H and the resulting2-D filter h.

Some of the properties of the original coset sum (cf. SectionI-C) still hold true for the generalized prime coset sum.
Lemma 2:Let Cn,p be the prime coset sum, andR be a univariate refinement mask with dilationp. If R is interpolatory,

thenCn,p[R] is interpolatory.
Proof: See Appendix A.

Lemma 3:Let Cn,p be the prime coset sum,R be a univariate refinement mask with dilationp, and letm1 andm2 be
positive integers. Suppose thatR hasm1 accuracy andm2 flatness. ThenCn,p[R] has at leastmin{m1,m2} accuracy.

Proof: See Appendix B. Similar arguments to the ones given in [19] are used in our proof.
Remark 4: If R is interpolatory, thenm1 = m2. Hence, the above lemma says that, whenR is interpolatory, the accuracy

number ofCn,p[R] is at least as much as the accuracy number ofR. For the case of the original coset sum with dyadic dilation,

1Bold-faced number indicates that it is at the origin. This figure is also given out in [18].
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the accuracy number ofCn[R] is exactly the same as the accuracy number ofR whenR is interpolatory (cf. Result 1(c)). We
do not yet know whether this result would hold true for the prime coset sum in general.

Lemma 4:Let Cn,p be the prime coset sum, andR be a univariate refinement mask with dilationp. Then the flatness number
of Cn,p[R] is at least the flatness number ofR.

We omit the proof of Lemma 4 as it is a simple variant of our proof of Lemma 3.

Unlike the original coset sum with dyadic dilation (cf. Result 1(b)), in general, the prime coset sum does not preserve the
biorthogonality of 1-D refinement masks whenp > 2, even if one of them is interpolatory. Let us look at two examples to
this end. Both of them are related with the Haar refinement masks with dilation3.

Example 2 (Centered 2-D Haar refinement mask with dilation 3): Let us consider the centered 1-D Haar refinement
mask as in Example 1:

1

3

(
eiω + 1 + e−iω

)
.

Then the above mask has dilation3 and it is associated with the refinable functionφ = χ[−1/2,1/2]. If we define bothR andR̃
to be this centered1-D Haar refinement mask with dilation3, then they are interpolatory and biorthogonal with one accuracy.

Let us now takeΓ = {−1, 0, 1}2 = {(0, 0),±(1, 0),±(0, 1),±(1, 1),±(1,−1)}. Then, it is easy to see that transformingR
and R̃ to 2-D using the prime coset sum withp = 3 produces two2-D refinement masksC2,3[R] andC2,3[R̃] (cf. Figure 1)
that are not only interpolatory with one accuracy, but also biorthogonal.

Example 3 (Non-centered2-D Haar refinement mask with dilation 3): Now let us consider the non-centered1-D Haar
refinement mask with dilation3:

1

3

(
1 + e−iω + e−2iω

)
,

that is associated with the refinable functionφ = χ[0,1], whereχ[0,1] is the characteristic function on[0, 1]. Let bothR andR̃
be the above non-centered1-D Haar refinement mask with dilation3. Then it is easy to see thatR and R̃ are interpolatory
and biorthogonal, and they have one accuracy.

We useΓ = {0, 1, 2}2 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)} this time. By transformingR and R̃
to 2-D masks using the prime coset sum withp = 3, we see thatC2,3[R] andC2,3[R̃] are still interpolatory and they still have
one accuracy, but that they are no longer biorthogonal.

III. M ULTI -D WAVELET FILTER BANKS WITH FAST ALGORITHMS

A. Theory

Suppose thatS andU are 1-D biorthogonal refinement masks with dilationp, and thatU is interpolatory. Since then-D
prime coset sum refinement masksCn,p[S] and Cn,p[U ] are not necessarily biorthogonal (cf. Example 3 in Section II), it is
not trivial to construct wavelet filter banks fromCn,p[S] andCn,p[U ] directly. We propose to use a recent method developed
by the first author [17]. This method can construct wavelet filter banks from two refinement masks that are not necessarily
biorthogonal, as long as one of them is interpolatory. Noting thatCn,p[U ] is interpolatory (cf. Lemma 2), we apply this method
to Cn,p[S] and Cn,p[U ] to construct wavelet filter banks. As we will see later (cf. Section III-B), similar to the coset sum
case, the resulting wavelet filter banks using this method can be associated with fast algorithms, that are faster than the tensor
product fast algorithms.

Since the method in [17] works for any dilation matrixΛ, below we present it for the general dilation matrixΛ with
q = | detΛ|. Let Γ andΓ∗ be the complete set of representatives of the distinct cosets of Zn/ΛZn and2π(((Λ∗)−1

Z
n)/Zn),

respectively, containing0. The following result is from [17] written in terms of our notation.
Result 3: Supposeg andh are twon-D lowpass filters with dilationΛ, andh is interpolatory. Then the twon-D refinement

masks defined as

τ(ω) := ĝ(ω) +
(
1−

∑

γ∈Γ∗

ĝ(ω + γ)ĥ(ω + γ)
)
, τd(ω) := ĥ(ω),

for everyω ∈ T
n, and then-D wavelet masks defined as

tν(ω) := e−iω·ν − q (h(ν + Λ·))̂(Λ∗ω),

and

tdν(ω) :=
1

q
e−iω·ν − (g(ν + Λ·))̂(Λ∗ω) ĥ(ω),

for everyω ∈ T
n, andν ∈ Γ′ = Γ\0, form the combined biorthogonal masks (cf. (3)).

Proof: Result 3 is proved in [17], but under slightly different settings. For completeness, we provide an alternative proof
that does not rely on the results of [17]. Our proof is placed in Appendix D.
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Remark 5: In fact, the results in [17] say that, if we assume that, in addition to the assumptions of Result 3,h hasα1

accuracy,g hasα2 accuracy, andα3 flatness, thenτ has at leastmin{α1, α2, α3} accuracy. In such a case,tν andtdν , ν ∈ Γ′,
have at leastmin{α1, α2, α3} vanishing moments (cf. Section I-B).

For the rest of this section, we assume that the dilation is prime, i.e.Λ = pIn, and that the setsΓ andΓ∗ are associated with
the prime dilation, i.e.,Γ andΓ∗ are the complete set of representatives of the distinct cosets ofZn/pZn and2π((p−1

Z
n)/Zn),

respectively, containing0. In particular, we haveq = | det Λ| = pn in this case.
Before presenting our main theorem, let us first define a map

η : F ′
p × Γ′ → Γ′,

with F ′
p := Fp\0, whereFp is a complete set of representatives of the distinct cosets of Z/pZ that contains 0. For example,

the set{0, 1, · · · , p− 1} can be used forFp. Let (l, ν) ∈ F ′
p×Γ′ ⊂ Z×Z

n. Then there exists the unique multiplicative inverse
ρ(l) ∈ F ′

p of l (cf. Remark 2 in Section II). After computing the multiplication ρ(l)ν in the usual sense, we defineη(l, ν) to
be the element inΓ′ = Γ\0 so that

η(l, ν) ≡ ρ(l)ν (mod pZn).

By the above conditions,η(l, ν) is uniquely well defined as an element inΓ′ sinceρ(l)ν is in Z
n but not inpZn. For example,

if n = 2, p = 3, Fp = {0, 1, 2} andΓ = {0, 1, 2}2, thenη(2, (1, 1)) = (2, 2) andη(2, (2, 2)) = (1, 1).
Now we are ready to present our result.
Theorem 1:Suppose thatG andH are two 1-D lowpass filters with dilationp, and thatH is interpolatory. LetS := Ĝ and

U := Ĥ be the 1-D refinement masks associated withG andH , and letCn,p be the prime coset sum. Definen-D biorthogonal
refinement masks as

τ(ω) := Cn,p[S](ω) +


1−

∑

γ∈Γ∗

Cn,p[S](ω + γ)Cn,p[U ](ω + γ)


 , τd(ω) := Cn,p[U ](ω),

for everyω ∈ T
n, andn-D wavelet masks as

tν(ω) := e−iω·ν


1−

p

p− 1

∑

l∈F ′
p

ei(ω·η(l,ν))l Ul

(
pω · η(l, ν)

)

 , ν ∈ Γ′ (8)

and

tdν(ω) :=
1

pn
e−iω·ν


1−

p

p− 1

∑

l∈F ′
p

ei(ω·η(l,ν))l Sl

(
pω · η(l, ν)

)
τd(ω)


 , (9)

for ν ∈ Γ′, and for everyω ∈ T
n, whereUl(ξ) := (H(l+ p·))̂(ξ), andSl(ξ) := (G(l+ p·))̂(ξ), ξ ∈ T.2 Then(τ, (tν)ν∈Γ′)

and (τd, (tdν)ν∈Γ′) form n-D combined biorthogonal masks.
Remark 6: In the dyadic setting, i.e., whenp = 2, one can takeF2 = {0, 1} andΓ = {0, 1}n. Then, since1 is the only

element inF ′
2 andη(1, ν) = ν for all ν ∈ {0, 1}n\0, then-D wavelet masks in (8) become

tν(ω)= e−iω·ν − 2 U1

(
2ω · ν

)

= e−iω·ν − 2 eiω·ν
(
U(ω · ν)−

1

2

)
= e−iω·ν − e−iω·ν

(
1− 2 U(ω · ν + π)

)

=2e−iω·ν U(ω · ν + π), ν ∈ {0, 1}n\0,

where the second identity is from the definition ofU1 and the third identity is from the fact thatU is interpolatory. The above
wavelet masks are the same as the wavelet masks in the coset sum wavelet system (cf. (4) in Result 2) up to a normalization
factor. In fact, the exact forms oftdν for coset sum wavelet system are also provided in [19], and similar calculation shows
that they are the same astdν in (9) up to a normalization factor whenp = 2. Hence we conclude that Theorem 1 reduces to
the known result of the original coset sum case whenp = 2.

Remark 7:We refer to the wavelet filter bank associated with the combined biorthogonal masks constructed in Theorem 1
as theprime coset sum wavelet filter bank. There are many potentially useful properties of the prime coset sum wavelet filter
banks. One important property is that it can be implemented by fast algorithms (cf. Section III-B).

Remark 8: In addition to the assumptions of Theorem 1, if we assume thatU hasα1 accuracy,S hasα2 accuracy, andα3

flatness, then by Lemma 3 and Lemma 4,Cn,p[U ] has at leastα1 accuracy,Cn,p[S] has at leastmin{α2, α3} accuracy, and at

2Ul andSl can be interpreted as the polyphase decomposition of filterH andG, respectively (cf. Appendix C).
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leastα3 flatness. Combining these with Remark 5, we conclude thatτ has at leastmin{α1, α2, α3} accuracy, andtν and tdν ,
ν ∈ Γ′, have at leastmin{α1, α2, α3} vanishing moments.

In order to prove Theorem 1, we use the following lemma which connects the polyphase decomposition of the 1-D
lowpass filterH and the polyphase decomposition of then-D prime coset sum lowpass filterh obtained fromH . Polyphase
decomposition is a common method in Signal Processing and wegive a brief review in Appendix C.

Lemma 5:Let H be a 1-D lowpass filter with dilationp, and leth be then-D lowpass filter obtained fromH by applying
the prime coset sumCn,p. Let the setsΓ′ andF ′

p, and the mapη : Γ′ × F ′
p → Γ′ be defined as before. Then for anyν ∈ Γ′,

(h(ν + p·))̂(pω) = 1

(p− 1)pn−1

∑

l∈F ′
p

eiω·(ν−η(l,ν)l)
(
H(l + p·)

)
̂(pω · η(l, ν)), ω ∈ T

n.

Proof: First it is easy to see that (cf. (15) in Appendix C)

Ĥ(ω) =
∑

l∈Fp

e−iωl
(
H(l + p·)

)
̂(pω), ω ∈ T.

Using this identity and the definition of prime coset sum, we get

ĥ(ω)=
1

(p− 1)pn−1

(
1− pn−1 +

∑

ν∈Γ′

Ĥ(ω · ν)

)
, ω ∈ T

n

=
1

(p− 1)pn−1


1− pn−1 +

∑

ν∈Γ′

∑

l∈Fp

e−iω·νl
(
H(l + p·)

)
̂(pω · ν)


 . (10)

Next we use another identity that can be quickly derived (cf.(48) in [17]):

(h(ν + p·))̂(pω) = 1

pn

∑

γ∈Γ∗

ei(ω+γ)·ν ĥ(ω + γ), ω ∈ T
n. (11)

By using (10), (11), and the fact that
(
H(l + p·)

)
̂(p(ω + γ) · ν̃) =

(
H(l + p·)

)
̂(pω · ν̃), for any l ∈ Fp, ω ∈ T

n, γ ∈ Γ∗

and ν̃ ∈ Γ′, we obtain(h(ν + p·))̂(pω) =

1

pn

∑

γ∈Γ∗

ei(ω+γ)·ν 1

(p− 1)pn−1


1− pn−1 +

∑

ν̃∈Γ′

∑

l∈Fp

e−i(ω+γ)·ν̃l
(
H(l + p·)

)
̂(pω · ν̃)


 .

Then we use the following simple identity (cf. (20)):

∑

γ∈Γ∗

eiγ·ν = pnδν,0 =

{
pn, if ν = 0,
0, if ν ∈ Γ′\0,

to get

(h(ν + p·))̂(pω)

=
1

pn

∑

γ∈Γ∗

ei(ω+γ)·ν 1

(p− 1)pn−1

∑

ν̃∈Γ′

∑

l∈F ′
p

e−i(ω+γ)·ν̃l
(
H(l + p·)

)
̂(pω · ν̃)

=
1

pn
1

(p− 1)pn−1

∑

ν̃∈Γ′

∑

l∈F ′
p

eiω·(ν−ν̃l)
(
H(l + p·)

)
̂(pω · ν̃)

∑

γ∈Γ∗

eiγ·(ν−ν̃l), ω ∈ T
n.

Noting that
∑

γ∈Γ∗ eiγ·(ν−ν̃l) = pn if ν̃ = η(l, ν), and it is equal to0 otherwise, we obtain

(h(ν + p·))̂(pω) = 1

(p− 1)pn−1

∑

l∈F ′
p

eiω·(ν−η(l,ν)l)
(
H(l + p·)

)
̂(pω · η(l, ν)), ω ∈ T

n,

as desired.

We now present the proof of Theorem 1.
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Proof of Theorem 1:Let g andh be then-D lowpass filters associated with refinement masksCn,p[S] andCn,p[U ]. Since
U is interpolatory, by Lemma 2,Cn,p[U ] is also interpolatory, i.e.,h is interpolatory. Therefore, we can obtain the combined
biorthogonal masks by using Result 3. By settingĝ := Cn,p[S] andĥ := Cn,p[U ] in Result 3, we obtain that, for everyω ∈ T

n,

τ(ω)= ĝ(ω) +
(
1−

∑

γ∈Γ∗

ĝ(ω + γ)ĥ(ω + γ)
)

= Cn,p[S](ω) +


1−

∑

γ∈Γ∗

Cn,p[S](ω + γ)Cn,p[U ](ω + γ)


 ,

and

τd(ω) = ĥ(ω) = Cn,p[U ](ω).

Since, in this case,Λ = pIn andq = pn, then-D wavelet maskstν , ν ∈ Γ′, are

tν(ω)= e−iω·ν − q (h(ν + Λ·))̂(Λ∗ω)

= e−iω·ν − pn (h(ν + p·))̂(pω), ω ∈ T
n.

SinceH is the1-D filter associated withU andh is then-D filter associated withCn,p[U ], by Lemma 5, we have

(h(ν + p·))̂(pω) = 1

(p− 1)pn−1

∑

l∈F ′
p

eiω·(ν−η(l,ν)l)
(
H(l + p·)

)
̂(pω · η(l, ν)).

Therefore,

tν(ω)= e−iω·ν − pn
1

(p− 1)pn−1

∑

l∈F ′
p

eiω·(ν−η(l,ν)l)
(
H(l + p·)

)
̂(pω · η(l, ν))

= e−iω·ν −
p

p− 1

∑

l∈F ′
p

eiω·(η(l,ν)l−ν)
(
H(l + p·)

)
̂(pω · η(l, ν))

= e−iω·ν


1−

p

p− 1

∑

l∈F ′
p

eiω·η(l,ν)l Ul

(
pω · η(l, ν)

)

 , ω ∈ T

n.

The wavelet maskstdν , ν ∈ Γ′, in (9) can be obtained by applying similar arguments to the general form oftdν , ν ∈ Γ′,
in Result 3. This concludes that(τ, (tν)ν∈Γ′) and (τd, (tdν)ν∈Γ′) defined as in Theorem 1 formn-D combined biorthogonal
masks.

The following corollary of Theorem 1 may be useful on its own in some contexts.
Corollary 1: Suppose thatS andU are two 1-D refinement masks with prime dilationp, and thatU is interpolatory. Let

Cn,p be the prime coset sum. Then the twon-D refinement masksCn,p[U ] and

Cn,p[S] +


1−

∑

γ∈Γ∗

Cn,p[S](·+ γ)Cn,p[U ](·+ γ)




with dilation pIn are biorthogonal.
Remark 9:Of the two prime coset sum refinement masksCn,p[S] andCn,p[U ], only the non-interpolatory maskCn,p[S] is

modified by adding1 −
∑

γ∈Γ∗ Cn,p[S](· + γ)Cn,p[U ](·+ γ). We note that the statement of Corollary 1 holds true trivially
for the case whenCn,p[S] andCn,p[U ] are already biorthogonal, since1−

∑
γ∈Γ∗ Cn,p[S](·+ γ)Cn,p[U ](·+ γ) = 0 in such a

case. One such case is whenS andU are biorthogonal andp = 2 (cf. Result 1(b)).

Next we illustrate our findings in two examples.
Example 4 (Centered n-D Haar combined biorthogonal masks with prime dilation p): Let us consider the centered 1-

D Haar refinement mask with prime dilationp. We let

S(ω) = U(ω) :=
1

p

(
ei

p−1
2 ω + · · ·+ eiω + 1 + e−iω + · · ·+ e−i p−1

2 ω
)
.

For example, whenp = 3, S(ω) = U(ω) :=
1

3

(
eiω + 1 + e−iω

)
as in Example 2. Then they are both interpolatory with

one accuracy. Now let us takeΓ = {− p−1
2 , · · · ,−1, 0, 1, · · · , p−1

2 }n and Γ∗ = 2π
p {− p−1

2 , · · · ,−1, 0, 1, · · · , p−1
2 }n for any

dimensionn ≥ 2. Then by Theorem 1 then-D biorthogonal refinement masks

τ(ω) = τd(ω) =
1

pn

∑

ν∈Γ

e−iω·ν , ω ∈ T
n,
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Fig. 2. Lowpass filters associated with the masksU andτd in Example 5.

andn-D wavelet masks

tν(ω) = e−iω·ν − 1, tdν(ω) =
1

pn
e−iω·ν −

1

p2n

∑

µ∈Γ

e−iω·µ, ω ∈ T
n,

for ν ∈ Γ′, form n-D combined biorthogonal masks. Whenp = 3, the combined biorthogonal masks are studied in [18]. By
direct computation, we see that bothτ and τd have one accuracy, and that bothtν and tdν have one vanishing moment for
any ν ∈ Γ′. The number of nonzero entries, or the support of the filter associated withtν is only 2 for any ν ∈ Γ′, and any
dimensionn and dilationp.

Example 5 (2-D combined biorthogonal masks with higher vanishing moments): Let U be a1-D interpolatory refine-
ment mask with dilation3 and accuracy4 3

U(ω) :=
1

3

(

−
4

81
e
5iω

−
5

81
e
4iω

+
30

81
e
2iω

+
60

81
e
iω

+ 1 +
60

81
e
−iω

+
30

81
e
−2iω

−
5

81
e
−4iω

−
4

81
e
−5iω

)

.

Let S(ω) :=
1

3

(
eiω + 1 + e−iω

)
. We takeΓ = {−1, 0, 1}2 andΓ∗ = 2π

3 {−1, 0, 1}2. Then by Theorem 1 the2-D biorthogonal
refinement masks

τ(ω) =
1

9





83

27
+

∑

ν∈Γ′

e−iω·ν −
25

81

∑

ν∈Γ′

e−3iω·ν +
4

81

∑

ν∈Γ′

e−6iω·ν



 , ω ∈ T
2,

τ
d
(ω) =

1

9



1 +
60

81

∑

ν∈Γ′

e
−iω·ν

+
30

81

∑

ν∈Γ′

e
−2iω·ν

−
5

81

∑

ν∈Γ′

e
−4iω·ν

−
4

81

∑

ν∈Γ′

e
−5iω·ν



 , ω ∈ T
2
,

and2-D wavelet masks

tν(ω) = e−iω·ν +
5

81
e3iω·ν −

60

81
−

30

81
e−3iω·ν +

4

81
e−6iω·ν , ω ∈ T

2,

tdν(ω) =
1

9

(
e−iω·ν − τd(ω)

)
, ω ∈ T

2,

for ν ∈ Γ′, form 2-D combined biorthogonal masks (cf. Figure 2 for the filters associated withU andτd). Direct computation
shows thatτ has one accuracy,τd has4 accuracy,tν , ν ∈ Γ′, have4 vanishing moments, andtdν , ν ∈ Γ′, have one vanishing
moment. The support of the filter associated withtν is only 5 for any ν ∈ Γ′.

3U is obtained from [21].
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B. Algorithms

Theorem 1 provides only one of many ways to obtain the non-redundant wavelet filter bank, given the twon-D refinement
masksCn,p[S] andCn,p[U ]. However, the resulting prime coset sum wavelet filter bank can be associated with fast algorithms
that are faster than the usual tensor product ones. Below we present these fast prime coset sum algorithms.

Fast Prime Coset Sum Wavelet Algorithms.Let G andH be two 1-D lowpass filters with dilationp, whereH is interpolatory.
In presenting our algorithms, we use the setFp and the mapη that we defined in Section III-A.

input yJ : Zn → R

(1) Decomposition Algorithm: computing yj−1, wν,j−1, ν ∈ Γ′ from yj
for j = J, J − 1, . . . , 1
for ν ∈ Γ′ and k ∈ Z

n

wν,j−1(k) = yj(pk + ν) −
1

p− 1

∑

l∈F ′
p

∑

m≡l

H(m)yj(pk + ν − η(l, ν)m) (i)

end

for k ∈ Z
n

yj−1(k) = yj(pk) +
1

(p− 1)pn

∑

ν∈Γ′

∑

l∈F ′
p

∑

m≡l

G(m)wν,j−1(k −
ν − η(l, ν)m

p
) (ii)

end

end

(2) Reconstruction Algorithm: computing yj from yj−1, wν,j−1, ν ∈ Γ′

for j = 1, . . . , J − 1, J
for k ∈ Z

n

yj(pk) = yj−1(k)−
1

(p− 1)pn

∑

ν∈Γ′

∑

l∈F ′
p

∑

m≡l

G(m)wν,j−1(k −
ν − η(l, ν)m

p
) (iii)

end

for ν ∈ Γ′ and k ∈ Z
n

yj(pk + ν) = wν,j−1(k) +
1

p− 1

∑

l∈F ′
p

∑

m≡l

H(m)yj(pk + ν − η(l, ν)m) (iv)

end

end

For decomposition, we compute the coarse coefficientsyj−1 and wavelet coefficientswν,j−1, ν ∈ Γ′, from yj . To obtain
wν,j−1, ν ∈ Γ′, we apply the filter associated withtν , ν ∈ Γ′ to yj , followed by downsampling with respect to the dilation
matrix Λ = pIn, as is typically done in wavelet decomposition. Sincetν , ν ∈ Γ′, are written in terms ofUl, l ∈ F ′

p, and since
Ul can be written in terms of1-D filter H , we obtain the formula for Step(i). The proof of the identity in Step (i) is given
in Appendix E, in which the concept of polyphase decomposition (cf. Appendix C) is used.

A key step of our decomposition algorithm is Step(ii). Typically, to obtainyj−1, one needs to apply the filter associated

with τ to yj , followed by downsampling. However, since we haveτ = Cn,p[S] +
(
1−

∑
γ∈Γ∗ Cn,p[S](·+ γ)Cn,p[U ](·+ γ)

)

(cf. Theorem 1) in this case, contrary to the filter associated with the first part ofτ , i.e. Cn,p[S], it is not clear how the filter
associated with the rest of the maskτ , i.e. 1−

∑
γ∈Γ∗ Cn,p[S](·+γ)Cn,p[U ](·+ γ), would look like. As a result, the support of

the filter associated withτ could be large. Therefore, the algorithm may not be necessarily faster than other wavelet algorithms
if we use the filter associated withτ directly. However, by using the polyphase representation (cf. Appendix C), one can show
that yj−1 can also be derived by applying the filter associated withCn,p[S] (the first part ofτ ) to wν,j−1, ν ∈ Γ′. This is our
Step(ii), and the details of exactly how it is done are written in Appendix E.

Our reconstruction algorithm is not the same as the typical wavelet reconstruction procedure either. We recall that thetypical
wavelet reconstruction is conducted by applying the reconstruction filters toyj−1 andwν,j−1, ν ∈ Γ′, upsampling them, and
then summing them up. We reconstruct the signal by simply reversing Step(i) and(ii). Step(iii) is a reverse procedure
of Step(ii) that can always be performed. Step(iv) is a reverse procedure of Step(i), and it is possible because the
only yj needed in the right-hand side of Step(iv) is yj(pk), which is already computed in Step(iii).

Complexity. Next we discuss the complexity of the fast prime coset sum wavelet algorithms. We measure the complexity by
counting the number of multiplicative operations needed ina complete cycle of1-level-down decomposition and1-level-up
reconstruction, meaning the number of operations needed tofully derive yj−1 andwν,j−1, ν ∈ Γ′ from yj, and to get back
yj . Here we only compute the number of multiplicative operations such as multiplication and division, as computing additive
operations gives a similar result.

Suppose that at levelj, we have input datayj with N data points. For simplicity, we assume thatN is a multiple of
pn, wherep is the dilation andn is the spatial dimension. Then after1-level-down decomposition, we obtainN/pn coarse
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coefficientsyj−1 in Step(ii), andN/pn wavelet coefficientswν,j−1 for eachν ∈ Γ′ in Step(i). We reconstruct the input
datayj from coarse coefficientsyj−1 and wavelet coefficientswν,j−1, ν ∈ Γ′. In particular, we obtainN/pn original data
yj(pk) in Step(iii) andN/pn original datayj(pk + ν) for eachν ∈ Γ′ in Step(iv).

Supposeα and β are the number of nonzero entries in the1-D lowpass filterG and H , respectively. Recall thatH is
interpolatory. Let

α̃ := #{G(m) : G(m) 6= 0 andm ≡ l (mod pZ) for somel ∈ F ′
p}.

Given theN data points of the input datayj , the number of multiplicative operations needed in a complete cycle of1-level-down
decomposition and1-level-up reconstruction is the sum of

• 2β(pn − 1) N
pn [for Step(i) and(iv)], and

• 2
(
(pn − 1)α̃+ n+ 1

)
N
pn [for Step(ii) and(iii)].

Therefore, as a result, the complexity of the fast prime coset sum wavelet algorithms is
(
2(pn − 1)β + 2(pn − 1)α̃+ 2n+ 2

pn

)
N. (12)

Sinceα̃ ≤ p−1
p (α+ 1), this complexity is bounded above by

(
2β + 2

p− 1

p
(α+ 1) + 1

)
N.

Recall that in dyadic case, the fast tensor product wavelet algorithms have complexity(α + β)nN , whereα andβ are the
number of nonzero entries of1-D lowpass filters,n is the spatial dimension andN is the data size (see, for example, [19]).
Therefore, the algorithm has linear complexity, i.e.,∼ CN , with the data sizeN , whereC is some constant that does not
depend onN . We refer to this constant as thecomplexity constant. The complexity constant for fast tensor product wavelet
algorithm isCTP = (α+ β)n. In particular, it grows linearly with the dimensionn. Now let us consider the fast prime coset
sum wavelet algorithm. In dyadic case, i.e., whenp = 2, the complexity is bounded above by(α + 2β + 2)N . Therefore,
the complexity constant for the prime coset sum isCPCS = α + 2β + 2, which does not increase as dimensionn increases.
Furthermore, sinceα ≥ 2, we haveCPCS ≤ CTP for all n ≥ 2, which suggests that our fast prime coset sum algorithms can
be much faster, at least in theory, than the fast tensor product algorithms whenn is large.

Our fast algorithms withp = 2 are different from the original fast coset sum algorithms in[19], which results in a different
complexity constant for the coset sum case. The complexity constant for the fast coset sum algorithms isCCS = 3

2α + 2β,
and as a result, we haveCPCS ≤ CCS as long asα ≥ 4.

There are a couple of factors that contribute to make our algorithms this fast. Firstly, the number of nonzero entries in then-D
filter associated withtν , ν ∈ Γ′, is essentially the same as that of the1-D filter H (cf. Step (i)). Secondly, our decomposition
algorithm is performed by bypassing the filter associated with τ (cf. Step (ii)), which could have large support, in general.
Finally, the reconstruction algorithm has trivial reconstruction steps, which completely bypass the filters associated with tdν ,
ν ∈ Γ′ (cf. Step (iii) and (iv)).

We now discuss the fast algorithms for the prime coset sum wavelets in our previous examples.
Example 6:(Fast prime coset sum wavelet algorithms for the centeredn-D Haar in Example 4). Let us consider the

centeredn-D Haar combined biorthogonal masks with dilationp constructed in Example 4. For any fixedp, the1-D filter G
andH are given as

G(K) = H(K) =

{
1, if K = 0,
1, if K = ±1,±2, · · · ,± p−1

2 ,
0, otherwise.

Then one can follow Step (i) – (iv) with this pair ofG andH to perform the fast algorithms. In this case,α = β = p,
α̃ = p− 1. Hence for any dimensionn, and input data of sizeN , the algorithms have complexity

(
2p(pn − 1) + 2(p− 1)(pn − 1) + 2n+ 2

pn

)
N ≤ (4p− 1)N.

Hence the complexity constant for a fixedp is 4p− 1, and it is independent of the spatial dimensionn.
Example 7:(Fast prime coset sum wavelet algorithms for2-D wavelets with higher vanishing moments in Example 5).

Let us consider the2-D combined biorthogonal masks constructed in Example 5. Inthis case, the1-D filter G andH are
given as

G(K) =

{
1, if K = 0,
1, if K = ±1,
0, otherwise,

H(K) =





1, if K = 0,
60
81 , if K = ±1,
30
81 , if K = ±2,
− 5

81 , if K = ±4,
− 4

81 , if K = ±5,
0, otherwise.
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Then this pair ofG and H can be used in Step (i) – (iv) to implement the fast algorithms for the wavelet filter bank
constructed in Example 5. In particular, sinceα = 3, β = 9, α̃ = 2, p = 3 andn = 2, the fast algorithms have complexity

(
18(32 − 1) + 4(32 − 1) + 6

32

)
N ≤ 21N,

for any input data of sizeN . Hence the complexity constant in this case is21.

IV. CONCLUSION

In this paper we introduced a method called prime coset sum toconstruct multi-D refinement masks from1-D refinement
masks. This method is a generalization of the existing method, the coset sum ( [19]), that works only for the dyadic dilations.
We showed that for a prime dilation, the prime coset sum method maintains many important properties from the1-D refinement
masks, such as interpolatory property, and under some conditions, the accuracy number. More importantly, the prime coset
sum refinement masks can be used to construct wavelet filer banks with fast algorithms. Similar to the coset sum method for
dyadic case, the prime coset sum fast algorithms have complexity constant that does not increase as the spatial dimension
n increases. This is contrary to the tensor product method, since its complexity constant increases linearly with the spatial
dimension.

APPENDIX

A. Proof of Lemma 2

SupposeH andh are the filters associated with masksR andCn,p[R]. If R is interpolatory, by (2),H(0) = 1, andH(K) = 0
for any K ∈ pZ\0. Then, by (7),h(0) = 1

p−1 (p − pn + (pn − 1)H(0)) = 1, andh(k) = 1
p−1

∑
l∈Wk

H(l) for any k 6= 0.
Since for eachk ∈ pZn\0, every elementl in the setWk = {l ∈ Z\0 : k = lν for someν ∈ Γ′} must lie in pZ\0, we see
that h(k) = 1

p−1

∑
l∈Wk

H(l) = 0 for any k ∈ pZn\0. HenceCn,p[R] is interpolatory.

B. Proof of Lemma 3

First we note thatCn,p[R] has at least accuracy number one, sinceR has at least accuracy number one andCn,p is defined
so that it preserves positive accuracy.

Let F ∗
p be a complete set of representatives of the distinct cosets of 2π((p−1

Z)/Z) containing0. Since the order of zeros of
R at ξ ∈ F ∗

p \0 is m1, and the order of zeros of1−R at the origin ism2, we have, for any integer1 ≤ k ≤ min{m1,m2}−1,

(DkR)(ξ) = 0, for any ξ ∈ F ∗
p . (13)

Thus, for anyγ ∈ Γ∗\0 and anyµ ∈ N
n with 1 ≤ |µ| ≤ min{m1,m2} − 1, where|µ| := µ1 + · · ·+ µn, we get

(DµCn,p[R])(γ)=
1

(p− 1)pn−1

∑

ν∈Γ′

(Dµ[R(ω · ν)]) |ω=γ

=
1

(p− 1)pn−1

∑

ν∈Γ′




n∏

j=1

ν
µj

j


 (D|µ|R)(γ · ν) = 0,

where the last equality is from (13) and the fact thatγ · ν (mod pZ) belongs toF ∗
p . This implies the accuracy number of

Cn,p[R] is at leastmin{m1,m2}.

C. Review of Polyphase Representation of Wavelet Filter Banks

The polyphase decomposition in [39] is widely used in SignalProcessing. We briefly review some relevant concepts in
polyphase decomposition in terms of our notation and terminology, and refer other papers (e.g. [10], [17]) for details.

As before, we useΛ to denote the dilation matrix, andq to denote| detΛ|. The polyphase decomposition transforms a filter
(or signal) intoq filters (or signals) running at the sampling rate1/q. Let Γ be a complete set of representatives of the distinct
cosets ofZn/ΛZn containing0, and letΓ′ = Γ\0. For example, for the scalar dilation withλ, the set{0, 1, · · · , λ− 1}n can
be used forΓ.

The polyphase decomposition of a synthesis filterh is defined as the Fourier series ofh(ν + Λ·), ν ∈ Γ:

Hν(ω) := (h(ν + Λ·))̂(ω) = 1

q

∑

k∈Zn

h(ν + Λk)e−ik·ω , ω ∈ T
n, (14)

and thepolyphase representation of a synthesis filterh is defined as the columnq-vector of the form

H(ω) := [Hν0(ω), Hν1(ω), · · · , Hνq−1 (ω)]
T , ω ∈ T

n,
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whereν0 = 0 andνj , j = 1, . . . , q− 1, are the ordered elements of the setΓ′. Then it is easy to see that the Fourier series of
h can be written in terms of the polyphase decomposition ofh as follows:

ĥ(ω) =
∑

ν∈Γ

e−iω·ν
Hν(Λ

∗ω). (15)

Similarly, the polyphase decomposition of an analysis filterg is defined as the complex conjugate of the Fourier series of
g(ν + Λ·), ν ∈ Γ:

Gν(ω) := (g(ν + Λ·))̂(ω) = 1

q

∑

k∈Zn

g(ν − Λk)e−ik·ω, ω ∈ T
n, (16)

and thepolyphase representation of an analysis filterg is defined as the rowq-vector of the form

G(ω) := [Gν0(ω), Gν1(ω), · · · , Gνq−1(ω)], ω ∈ T
n,

and, as a result, we have the identity

ĝ(ω) =
∑

ν∈Γ

eiω·ν
Gν(Λ

∗ω).

Under these notations, it is easy to see thath andg are biorthogonal if and only ifG(ω)H(ω) = 1/q.
A filter bank (that is non-redunant with perfect reconstruction property) can be represented by twoq× q polyphase matrices

A(ω) andS(ω) that satisfyS(ω)A(ω) = (1/q)Iq. The row vectors ofA(ω) represent the polyphase representation of analysis
filters, where the first row corresponding to the lowpass filter and the rest to the highpass filters. The column vectors ofS(ω)
represent the polyphase representation of synthesis filters, where the first column corresponding to the lowpass filter and the
rest to the highpass filters.

We finish this subsection by stating Result 3 in terms of the polyphase representation, as it will be useful in the later part
of the paper.

Result 4 (Result 3 stated in terms of polyphase representation):Supposeg andh are twon-D lowpass filters with di-
lation Λ, andh is interpolatory. LetG(ω) andH(ω) be the polyphase representation ofg andh with lengthq = | detΛ|, and
let G̃(ω) and H̃(ω) be the subvectors ofG(ω) andH(ω) of lengthq− 1, respectively, obtained by removing the first entry. Then
the following two polyphase matrices

A(ω) :=

[
Gν0(ω) + q B(ω) G̃(ω)

−q H̃(ω) Iq−1

]
S(ω) :=




1

q

1

q
G̃(ω)

H̃(ω)
1

q
Iq−1 − H̃(ω)G̃(ω)


 (17)

satisfyS(ω)A(ω) = (1/q)Iq, whereB(ω) := 1/q − G(ω)H(ω).

D. Proof of Result 3

We want to show thatτ , τd, tν and tdν , ν ∈ Γ′, in Result 3, satisfy the following identity (cf. (3) in Section I-B)

τ(ω + γ)τd(ω) +
∑

ν∈Γ′

tν(ω + γ)tdν(ω) = δγ,0 =

{
1, if γ = 0,
0, if γ ∈ Γ∗\0.

By substituting the masksτ , τd, tν and tdν , ν ∈ Γ′, in Result 3, we get

τ(ω + γ)τd(ω) +
∑

ν∈Γ′

tν(ω + γ)tdν(ω)

=
(
ĝ(ω + γ) +

(
1−

∑

γ̃∈Γ∗

ĝ(ω + γ̃ + γ) ĥ(ω + γ̃ + γ)
))

ĥ(ω)

+
∑

ν∈Γ′

(
ei(ω+γ)·ν − q(h(ν + Λ·))̂(Λ∗ω)

)(1

q
e−iω·ν − (g(ν + Λ·))̂(Λ∗ω) ĥ(ω)

)

= ĝ(ω + γ) ĥ(ω) + ĥ(ω)−
∑

γ̃∈Γ∗

ĝ(ω + γ̃ + γ) ĥ(ω + γ̃ + γ)ĥ(ω)

+
1

q

∑

ν∈Γ

eiγ·ν −
1

q
−

(
∑

ν∈Γ

ei(ω+γ)·ν (g(ν + Λ·))̂(Λ∗ω) ĥ(ω)− g(Λ·)̂(Λ∗ω) ĥ(ω)

)

−

(
∑

ν∈Γ

e−iω·ν(h(ν + Λ·))̂(Λ∗ω)− h(Λ·)̂(Λ∗ω)

)

+q
∑

ν∈Γ′

(h(ν + Λ·))̂(Λ∗ω) (g(ν + Λ·))̂(Λ∗ω) ĥ(ω).
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It is easy to see that the following identity is true:

∑

ν∈Γ

eiγ·ν = qδγ,0 =

{
q, if γ = 0,
0, if γ ∈ Γ∗\0,

(18)

whereq = | detΛ|. Sinceh is interpolatory, we have

h(Λ·)̂(Λ∗ω) =
1

q
. (19)

Then by using (18), (19), (15), and the fact that(g(ν +Λ·))̂(Λ∗ω) = (g(ν +Λ·))̂(Λ∗(ω + γ)), for anyν ∈ Γ, ω ∈ T
n, and

γ ∈ Γ∗, we get

τ(ω + γ)τd(ω) +
∑

ν∈Γ′

tν(ω + γ)tdν(ω)

= δγ,0 −
∑

γ̃∈Γ∗

ĝ(ω + γ̃) ĥ(ω + γ̃)ĥ(ω) + q
∑

ν∈Γ

(h(ν + Λ·))̂(Λ∗ω) (g(ν + Λ·))̂(Λ∗ω) ĥ(ω)

= δγ,0 −


∑

γ̃∈Γ∗

ĝ(ω + γ̃) ĥ(ω + γ̃)− q
∑

ν∈Γ

(h(ν + Λ·))̂(Λ∗ω) (g(ν + Λ·))̂(Λ∗ω)


 ĥ(ω).

Moreover, by (15), and the dual identity of (18):

∑

γ∈Γ∗

eiγ·ν = qδν,0 =

{
q, if ν = 0,
0, if ν ∈ Γ′\0,

(20)

we have
∑

γ∈Γ∗

ĝ(ω + γ) ĥ(ω + γ)

=
∑

γ∈Γ∗

(
∑

ν∈Γ

ei(ω+γ)·ν (g(ν + Λ·))̂(Λ∗ω)

)(
∑

ν̃∈Γ

e−i(ω+γ)·ν̃ (h(ν̃ + Λ·))̂(Λ∗ω)

)

=
∑

ν̃∈Γ


∑

ν∈Γ

( ∑

γ∈Γ∗

eiγ·(ν−ν̃)
)
eiω·ν (g(ν + Λ·))̂(Λ∗ω)


 e−iω·ν̃(h(ν̃ + Λ·))̂(Λ∗ω)

= q
∑

ν∈Γ

(h(ν + Λ·))̂(Λ∗ω) (g(ν + Λ·))̂(Λ∗ω).

Therefore,

τ(ω + γ)τd(ω) +
∑

ν∈Γ′

tν(ω + γ)tdν(ω) = δγ,0.

This concludes the proof.

E. Proof of the identities in the decomposition algorithm

The polyphase decomposition of a signalyj with respect to the dilation matrixΛ = pIn, with q = | detΛ| = pn, is defined
as the Fourier series ofyj(ν + p·), ν ∈ Γ:

Yν,j(ω) := (yj(ν + p·))̂(ω) = 1

q

∑

k∈Zn

yj(ν + pk)e−ik·ω, ω ∈ T
n,

and thepolyphase representation of a signalyj is defined as the columnq-vector of the form

Yj(ω) := [Yν0,j(ω), Yν1,j(ω), · · · , Yνq−1,j(ω)]
T , ω ∈ T

n,

whereν0 = 0 andνj , j = 1, . . . , q − 1, are the ordered elements of the setΓ′. Let Yj−1 andWν,j−1 be the Fourier series of
coarse coefficientsyj−1 and wavelet coefficientswν,j−1, ν ∈ Γ′, respectively,

Yj−1(ω) :=
1

q

∑

k∈Zn

yj−1(k)e
−ik·ω ,

Wν,j−1(ω) :=
1

q

∑

k∈Zn

wν,j−1(k)e
−ik·ω , ν ∈ Γ′,
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for everyω ∈ T
n. Then a1-level-down decomposition, in frequency domain, can be written as

[
Yj−1(ω)
Wj−1(ω)

]
= A(ω)

[
Yν0,j(ω)
Ỹj(ω)

]
,

whereWj−1(ω) := [Wν1,j−1(ω), · · · ,Wνq−1,j−1(ω)]
T and Ỹj(ω) is a subvector ofY(ω) of lengthq− 1 obtained by removing

the first entry.
A key observation, which is also part of the reason why the fast prime coset sum wavelet algorithms is fast, is thatA(ω) as

defined in (17) can be decomposed into two triangular matrices:

A(ω) =

[
1 G̃(ω)
0 Iq−1

] [
1 0

−q H̃(ω) Iq−1

]
.

Thus we can calculateWj−1(ω) first, then useWj−1(ω) to computeYj−1(ω) as follows,

Wj−1(ω)= −q H̃(ω)Yν0,j(ω) + Ỹj(ω), (21)

Yj−1(ω)= Yν0,j(ω) + G̃(ω)Wj−1(ω). (22)

From these (21) and (22), we now derive Step(i) and(ii) in our decomposition algorithm.
From (21), (14) and Lemma 5, we know that, for anyν ∈ Γ′,

Wν,j−1(ω)= −q Hν(ω)Yν0,j(ω) + Yν,j(ω)

= −q (h(ν + p·))̂(ω)Yν0,j(ω) + Yν,j(ω)

= −
p

p− 1

∑

l∈F ′
p

eiω· (ν−η(l,ν)l)
p

(
H(l + p·)

)
̂(ω · η(l, ν))Yν0,j(ω) + Yν,j(ω).

Hence,

1

pn

∑

k∈Zn

wν,j−1(k)e
−ik·ω = Wν,j−1(ω) =

1

pn

∑

k∈Zn

yj(pk + ν)e−ik·ω

−
p

p− 1

∑

l∈F ′
p

eiω·
(ν−η(l,ν)l)

p
1

p

∑

m∈Z

H(l+ pm)e−im(ω·η(l,ν)) 1

pn

∑

k′∈Zn

yj(pk
′)e−ik′·ω.

Therefore,
∑

k∈Zn

wν,j−1(k)e
−ik·ω

=
∑

k∈Zn

yj(pk + ν)e−ik·ω

−
1

p− 1

∑

l∈F ′
p

∑

m∈Z

∑

k′∈Zn

eiω· (ν−η(l,ν)l)
p e−im(ω·η(l,ν))e−ik′·ωH(l + pm)yj(pk

′)

=
∑

k∈Zn

yj(pk + ν)e−ik·ω

−
1

p− 1

∑

l∈F ′
p

∑

m∈Z

∑

k∈Zn

e−ik·ωH(l + pm)yj(pk + ν − η(l, ν)(pm+ l))

=
∑

k∈Zn


yj(pk + ν)−

1

p− 1

∑

l∈F ′
p

∑

m∈Z

H(l + pm)yj(pk + ν − η(l, ν)(pm+ l))


 e−ik·ω

=
∑

k∈Zn


yj(pk + ν)−

1

p− 1

∑

l∈F ′
p

∑

m≡l

H(m)yj(pk + ν − η(l, ν)(m))


 e−ik·ω ,

which in turn implies that we have for anyk ∈ Z
n andν ∈ Γ′,

wν,j−1(k) = yj(pk + ν)−
1

p− 1

∑

l∈F ′
p

∑

m≡l

H(m)yj(pk + ν − η(l, ν)m).

This is exactly Step(i) in our decomposition algorithm.
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From (22), (16) and by Lemma 5 we know that

Yj−1(ω)= Yν0,j(ω) +
∑

ν∈Γ′

Gν(ω)Wν,j−1(ω)

= Yν0,j(ω) +
∑

ν∈Γ′

g(ν + p·)̂(ω) Wν,j−1(ω)

= Yν0,j(ω) +
∑

ν∈Γ′

1

(p− 1)pn−1

∑

l∈F ′
p

eiω·
(η(l,ν)l−ν)

p

(
G(l + p·)

)
̂(ω · η(l, ν)) Wν,j−1(ω).

Hence,

1

pn

∑

k∈Zn

yj−1(k)e
−ik·ω = Yj−1(ω) =

1

pn

∑

k∈Zn

yj(pk)e
−ik·ω +

∑

ν∈Γ′

1

(p− 1)pn

∑

l∈F ′
p

eiω· (η(l,ν)l−ν)
p

∑

m∈Zn

G(l − pm)e−im(ω·η(l,ν)) 1

pn

∑

k′∈Zn

wν,j−1(k
′)e−ik′·ω.

Therefore, we have
∑

k∈Zn

yj−1(k)e
−ik·ω

=
∑

k∈Zn

yj(pk)e
−ik·ω

+
1

(p− 1)pn

∑

ν∈Γ′

∑

l∈F ′
p

∑

m∈Zn

∑

k′∈Zn

eiω· (η(l,ν)l−ν)
p e−im(ω·η(l,ν))e−ik′·ωG(l − pm)wν,j−1(k

′)

=
∑

k∈Zn

yj(pk)e
−ik·ω

+
1

(p− 1)pn

∑

ν∈Γ′

∑

l∈F ′
p

∑

m∈Zn

∑

k∈Zn

e−ik·ωG(l − pm)wν,j−1(k −
ν − η(l, ν)l

p
− η(l, ν)m)

=
∑

k∈Zn


yj(pk) +

1

(p− 1)pn

∑

ν∈Γ′

∑

l∈F ′
p

∑

m≡l

G(m)wν,j−1(k −
ν − η(l, ν)m

p
)


 e−ik·ω ,

As a result, we have, for anyk ∈ Z
n,

yj−1(k)= yj(pk) +
1

(p− 1)pn

∑

ν∈Γ′

∑

l∈F ′
p

∑

m≡l

G(m)wν,j−1(k −
ν − η(l, ν)m

p
).

This is exactly Step(ii) in our decomposition algorithm.
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[21] J. Kovačević and W. Sweldens. Wavelet families of increasing order in arbitrary dimensions.IEEE Trans. Image Processing, 9(3):480–496, 2000.
[22] J. Kovačević and M. Vetterli. Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases forRn. IEEE Trans. Inform. Theory,

38:533–555, 1992.
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