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Abstract

As constructing multi-D wavelets remains a challengingbpgm, we propose a new method called prime coset sum to
construct multi-D wavelets. Our method provides a syst&maay to construct multi-D non-separable wavelet filter ksafrom
two 1-D lowpass filters, with one of whom being interpolatddur method has many important features including the vietig:
1) it works for any spatial dimension, and any prime scal&tidin, 2) the vanishing moments of the multi-D wavelet filb@nks
are guaranteed by certain properties of the initial 1-D lasgfilters, and furthermore, 3) the resulting multi-D waveillter
banks are associated with fast algorithms that are fasaer tiine existing fast tensor product algorithms.

|. PRELIMINARIES
A. Introduction

Wavelet representation has been one of the most popular@atasentations in the last two decades. Wavelet filter djank
which can lead to wavelet systemslig(R™) under some well-understood constraints, has been widelyinsSignal Processing
applications. In order to obtain wavelet representatiomfalti-dimensional (multi-D) data, one needs multi-D wiets. Tensor
product is the most common method for constructing multi-&velets, and the resulting wavelets are typically refetceds
the separable wavelets. However, the separable wavelessittte only a small portion of multi-D wavelets, and theywé some
unavoidable limitations. One of the limitations of tengooduct-based wavelets is that the resulting multi-D Slteave dense
supports. It is well known that the fast algorithms assedawith tensor-product-based wavelets have a complexitgteot
(cf. SectionIII-B for the definition of complexity constarthat increases linearly with the spatial dimensianWhile this
complexity may be satisfactory for many signal processimglieations, it can pose a problem for many other signal @ssing
applications, including the case when we deal with largewva data such as medical imageslin [12], Geographic Inféomat
Systems images in [38] and seismic data in [41]. Moreovés, known that tensor-product-based discrete wavelet fivamsis
memory consuming and cannot directly obtain the target anthisignals, due to its dependent subband decompositicegso
[16]. There have been many researches on improving the imgitation of the existing tensor-product-based wave831§26],
[28], [29], as well as on constructing new non-tensor-basetti-D wavelets [1]-13], [5]-7], [9], [11], [14], [15], 20]-[24],
[27], [31], [32], [34], [35], [37], [40], [43], [44]. Howeve most of these new constructions work only for low dimensior
have additional constraints on the lowpass filters. Funtioee, most of them are not associated with fast algorithmes,gmting
them from being widely used in practice.

Recently, the authors introduced a new method called cosetfgr constructing non-tensor-based multi-D waveletsl@i [
There it was shown that the resulting wavelets are assdlcigitd fast algorithms whose complexity constant does notsiase
as the spatial dimension increases. It was also shown thatertany features of tensor product that makes it attradative
wavelet construction still hold true for coset sum.

However, similar to the tensor product method, coset sum adsumes the dyadic dilation. We recall that the n matrix
A is called adilation matrixif it is an integer matrix whose spectrum lies outside thesetbunit disc. It determines the exact
way of how downsampling and upsampling are performed in \eésv@r wavelet filter banks. The dilation is calledalar if
the dilation matrix is a scalar multiple of the identity matt,,, i.e., A = AI,, with A > 2 an integer. In particular, it is called
dyadicif A = 2I,,. In this paper, we say that the dilationpsime if A = pI,, for a prime numbep. Wavelets with dyadic
dilation are referred to as dyadic wavelets. Dyadic wasgetee the standard and traditional types of wavelets, hawtbey
are not suitable for all applications (see, for example],[130], [42]).

In this paper, we show that we can generalize the coset sune isense that multi-D wavelet filter banks with fast algonith
can be constructed for any prime dilatipi,,. We also show that the complexity constant for our fast dtigars with prime
dilation pI,, is independent of the spatial dimension.

The organization of this paper is as follows. The rest of iBadl is a brief review of some relevant concepts including
the coset sum method. In Sectioh Il we discuss a possiblerglezaion of the coset sum, which we call prime coset sum,
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together with its properties. In Sectién]lll we present a maethod to construct multi-D wavelet filter banks based on the
prime coset sum refinement masks and show that they are at&sbevith fast algorithms. SectignllV is a summary of our
results. Some technical proofs and details in this papeplaeed in Appendix.

B. Notation and Basic Concepts

Let A be a dilation matrix and leg := |det A|. In the multiresolution analysis [25] setting, the (combasupported)
scaling or refinable functios (with dilation A) satisfies the following refinement relation:
0() = D ho(k)o(A - —k), (1)
kezr

whereh, : Z™ — R is the associated finitely supported filter with dilatian
A maskassociated witha finitely supported filteh, : Z™ — R is a Laurent trigopnometric polynomial defined as

1 _ ~
T(w) = - Z h(k)e=Fv =: h(w),
1 fezn
for anyw € T" := [—m, #n|". Thatis,7 = 1 is the Fourier transform of the filte, up to a normalization. Throughout this

paper, we us@ to denote this Fourier transform of
By taking the Fourier transform ofl(1), the refinement relattan be recast as

H(Aw) = T(w)p(w), VYw e T,
wherer is the mask associated witly,, and the superscriptis used to denote the conjugate transpose of a matrix, armehen
A* is the same ad”, the transpose o, in this case.

A maskr with 7(0) = 0 is typically referred to as wavelet maskin this paper, we use the normalization of the mask so that
a mask with7(0) = 1 is referred to as @efinement maskThis is equivalent t® . _,.. h(k) = ¢, which is our normalization
for a filter to belowpass A refinement mask is calledinterpolatoryif, for any w € T,

dorw+r) =1,

yelr*

whereI™* is a complete set of representatives of the distinct cosetsr(((A*)~1Z")/Z™) containing0. For example, for
the scalar dilation with\, the setQT”{O, 1,---,A—1}" can be used foF'*. We note thatr is interpolatory if and only if its
corresponding filtei satisfies
1, if k=0,
h(k) = { (2)

0, if ke AZM\0.

The order of zeros of aty € T'*\0 is called theaccuracy numbeof 7. Throughout this paper, we assume that all refinement
masks have at least accuracy number one. The order of zerosmbthe origin is called th@umber of vanishing moments
of 7. Thus a mask is a wavelet mask if and only if it has at least amshing moment. The order of zeros of- 7 at the
origin is called theflatness numbeof 7. Thus a mask is a refinement mask if and only if it has at leastets number one.
Throughout this paper, we use the accuracy number, the nuaib&anishing moments, and the flatness number both for a
mask and for the filter associated with it.

Two refinement masks and < are calledbiorthogonalif

S @ w+y) =1,
yel'*

for anyw € T". Here and below, the overline is used to denote the complejugate. For the corresponding filteisand g
of 7 and 4, respectively, the biorthogonality condition becomes

B _fgq, ifl=0,
Z h(k)g(k+ Al) = ¢d10 = {07 if 1 € 2™\0.
kGZTI
For a pair of biorthogonal refinement maskandr< and wavelet mask andt{, j = 1,...,¢—1, we refer to(r, (t;)j=1,....4—1)
and (74, (t{);=1,...,—1) as thecombined biorthogonal maslkthey satisfy the following condition: for every € T",
ot 1, ify=0
LA d . d = = ’ . - !
7w+ W) + D W+ N (W) = 8y0 { 0, if ye*\0. ®

j=1

It is well known that the combined biorthogonal masks caregige to a biorthogonal wavelet systemiin(R") (see, for
example, [[33]).



A filter bank is a finite set of filters. We consider only the fillanks that are non-redundant with the perfect recon#bruct
property [36]. A (non-redundant) filter bank consists oflgsia bank and synthesis bank, which are collectiong of | det A|
filters linked by downsampling and upsampling operatoispeetively, associated with the dilation mattix The analysis bank
splits the input signal intg signals typically called subband signals using a paradieb$ bandpass filters. The synthesis bank
reconstructs the original data fromnsubband signals. We are interested in Wavelet filter bankor which each of analysis
and synthesis banks has exactly one lowpass filter and thefrdésem are all highpass filters. We recall that a filteis
highpassf the associated mask is a wavelet mask, }.&,.,. h(k) = 0. The filters associated with the combined biorthogonal
masks constitute a wavelet filter bank. Furthermore, it i kreown that the minimum of accuracy numbers of lowpassrlte
in a given wavelet filter bank provides a lower bound for thenber of vanishing moments of the highpass filters in the given
wavelet filter bank([4].

C. Multi-D Wavelet Construction Methods: Tensor Productl 8@pset Sum

then the well-known tensor product and more recent cosetcaumibe used. Below we provide a brief review of these methods.
We recall that then-D tensor product mask from (possibly distinct)1-D masksR:, Rs, ..., R, is defined as, foww =
(w17w27 s 7wn) eTm,

%[Rl, RQ, ceey Rn](w) = Rl(wl)RQ(QJQ) e Rn(wn)

Then starting from1-D combined biorthogonal masksSy, S1) and (Uy, U;) with dyadic dilation, one can construetD
combined biorthogonal masks with dyadic dilation by settihe n-D biorthogonal refinement masks as

T = %[S@,S@,...,S@], Td = %[U@,Uo,...,Uo],
and then-D wavelet masks,, td, v = (v1,v9,...,1v,) € {0,1}7\0, as
tl/ = %[SV1?SV27 e 7SVn]’ ts = %[UVNUIQ? Tt Ul/n]'

It is well known that the above tensor product method has namiwantages: 1) it preserves the interpolatory property and
the accuracy number df-D refinement masks; 2) it also preserves the biorthoggnladitween two refinement masks; and 3)
the resulting separable wavelets are associated with Iigstithms (cf. Sectio III-B). However, as discussed in tRetl-Al
the limitations of the separable wavelets constructed frloentensor product are widely known.

Aa an alternative to the tensor product, a new method caltbsdtcsum for constructing-D dyadic refinement masks from
1-D dyadic refinement masks is recently proposed [19]. Thetcesm refinement mask,[R] for a 1-D dyadic refinement
mask R is defined as

Cn|R](w) := ! -2t 4 Z Rw-v)|, weT"
v€{0,1}7\0
The following results about coset sum refinement masks aret@um wavelet systems have been proved in [19].
Result 1: Let C,, be the coset sum, and I& and R be univariate dyadic refinement masks.
(a) C,[R] is interpolatory if and only ifR is interpolatory.
(b) Suppose that one aR and R is interpolatory. TherC, [R] and C,[R] are biorthogonal if and only if? and R are
biorthogonal.
(c) Suppose thak is interpolatory. Therf,,[R] and R have the same accuracy number. ]
Result 2: Suppose thatt and U are 1-D biorthogonal dyadic refinement masks, and thas interpolatory. Define:-D
biorthogonal refinement masks as

andn-D wavelet masks,, v € {0,1}"\0, as

t(w)=e “"U(w-v+n), weT™ 4)
Then there exist wavelet masks, v € {0,1}™\0, such that(r, (t,),e(0,13-\0) and (74, (t3),e(0,13n\0) aren-D combined
biorthogonal masks with dyadic dilation. ]

As we can see above, the coset sum and the tensor productdreihoe many useful properties. In addition, the coset
sum wavelets can overcome some of the limitations of therabfmwavelets. For example, attributed to the smallgrports
(number of nonzero entries) of the resulting multi-D filiems well as the special structure of the filters, the coset cambe
associated with fast algorithms whose complexity consdaets not increase with the spatial dimension. Thereforljgher
dimension, coset sum fast algorithms can be much fasterttietensor product fast algorithms. For more details aboait t
coset sum including its comparison with the tensor produetrefer to [19].



Il. PRIME COSETSUM

Since coset sum has many useful properties including fasirithms, which can be much faster than the existing tensor
product fast algorithms, in this section, we try to extend tloset sum method to non-dyadic scalar dilations. Thevidilg
simple lemma plays an important role in our generalizatibnaset sum.

Lemma 1l:Let n > 1 be a fixed spatial dimension. Letbe a prime number, and lét andI'* be the complete set of
representatives of the distinct cosetsZsf/pZ" and2r((p~1Z")/Z™), respectively, containing. Then for everyy € I'*\0,
we have

#{vel: v v=0(mod2rZ)} =p" L.

Remark 1:A special case of Lemnid 1 far= 2 is used for the coset sum (cf. (19) in [19]). ]

Remark 2:In general, Lemmall does not hold truepifis not a prime number. For example, wher= 4 andn = 1, we
can takel' = {0,1,2,3} andT*\0 = {2%, 4% SZ} Then, it is easy to see thatif= Z or v = &, then the cardinality of
the setZ, := {v € I': v-v = 0(mod27Z)} is 1 (in fact,Z, = {0} in both cases), whereas+f= 4, thenZ, = {0,2} and
hence its cardinality i2. As we will see below, in our proof of the lemma, we used crlicithe fact thatZ/pZ is a finite
field for a prime numbep, which does not hold true anymorejifis not a prime number. ]

Proof of LemmdIl: First of all, we claim that, without lose of generality, we ynassumel’ = {0,1,---,p — 1}"™ and
™= 27”{0, 1,---,p—1}". This is because for any othBrand[*, there is a one-to-one correspondence between the elements
of I andT, and between the elements Bf andI'*. To be more specific, for any oth&randI'*, and for any € I and
7 e T*\0, there exist uniquer € T' and~ € T'*\0 such that
r P
27 27
and vice versa. Thereforé,- 7 = v - v (mod 27Z). Hence the cardinality of the st € ' : ~-v = 0 (mod 27Z)} is the
same as the cardinality of the st € T': 4 - = 0 (mod 27Z)}.

Now for any~ € I'*\0 = 27”{0, L--,p—1}"\0, andv € I' = {0,1,---,p — 1}", we lety := J=v, and lety; andv;,
it =1,...,n, be thei-th component ofx andv. Then bothy; andy; lie in the set{0,1,---,p — 1}. Sincev # 0, at least
one of u;'s is not 0. Without loss of generality, we may assume # 0. Furthermore;y - v = 0 (mod 27Z) if and only if
pavi + - 4 pnty = 0 (mod pZ).

For anyy € T*\0, and anyy; € {0,1,---,p—1},i=1,...,n—1, letk € {0,1,---,p — 1} satisfy

v = U (mod pZ"), v = —4 (mod pZ"),

pivy + -+ fin—1Vp—1 = k (mod pZ).

SinceZ/pZ is a finite field for a prime numbey, there exists a unique multiplicative invers@u,) € {1,---,p — 1} of u,
such thatu, p(u,) = 1 (mod pZ). Then there exists a uniquse, € {0,1,---,p — 1} satisfies

vn = (—k)p(pn) (mod pZ).
Thus
pavy + -+ o 1Vp—1 + fintn =k + pn (= k)p(pa) = 0 (mod pZ).
Since there ar@™~! different choices fow, v, - - -, v,_1, for anyy € T*\0, we have
#{vel: v v=0(mod27Z)} = p" *.
[

With Lemma[l in hand, we define a particular generalizationasfet sum for the prime dilatioh = pI,,, wherep > 2 is a
prime number. Lel” andT* be defined as in Lemnid 1. For examdle= {0,1,---,p— 1}™ andT™* = 27’7{0, 1,--,p—1}"
can be used.

Motivated by the definition of the original coset suip (cf. SectionI-C), we consider a generalized coset slyp of the
form

Cnp[Rl(w) = A <B + Z R(w - V)) ,
vel”
whereI” :=T'\0, and A and B are constants that will be determined soon. To pin down tmstemtsA and B, we impose
two conditions that we consideratural on the mag’,, ,,. Firstly, we requireC,, ,, to map a 1-D refinement mask with dilation
p to ann-D refinement mask with dilatiopI,. That is, we want,, ,[R](0) = 1 wheneverR(0) = 1. From this we get the
equation

L 5)
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Fig. 1. Construction of centere2D Haar lowpass filter with dilatior8 using prime coset sum (cf. Examie[d)

Secondly, we require the accuracy numbecCgj,[R] to be at least one whenever the accuracy number of the 1-Ceneéint
maskR is at least one. That is, we want, for afmy I'*\0,

O:Cn,p[R](7)=A<B+ > R(O)) :A<B+p”1_1>’

{ver’,v-v=0}

where the last equality is due to Lemida 1. This gives the émuat
B+ (" '-1)=0. (6)

By solving A and B that satisfy [(b) and{6) simultaneously, we reach the falhmdefinition of a generalized coset sum for
prime dilations.

Definition 1: Let p be a prime number. We define theme coset sund,, ,, that maps a 1-D refinement magkwith dilation
p to ann-D refinement mask,, ,[R] with dilation pI,, as follows: for anyw € T,

1
CoplRl(W) i= ———— [ 1—p" !t + Rw-v) ],
P[ ]( ) (p _ 1)pn,1 ( VeZF/ ( ))
whereI” = T'\0. [ |
Remark 3:We refer to the refinement mask obtained®y, as theprime coset sum refinement mas¥e notice that the
prime coset sung,, , with p = 2 reduces to the original coset sufy for dyadic dilation, i.eC,, » = C,, (cf. SectioiI-C for
the choice ofl" = {0,1}™ and [19] for more general choice o). ]

Let H be the 1-D lowpass filter associated with the 1-D refinemersknia Let 4 be then-D lowpass filter associated with
the n-D refinement mask,, ,[R]. We refer to such a filteh as theprime coset sum lowpass filtdfor any nonzerd: € Z",
we define a sell, asW,, := {l € Z\0 : k = v for somev € I''}. Then then-D prime coset sum lowpass filtér can be
written in terms of the 1-D lowpass filtdd as follows:

_ %(p—p” + (p" = 1)H(0)), if k=0,
h(k) =14 "1 _
=1 2ew, H(), if k0.
Now we give a simple example to show the construction of ridlfirime coset sum lowpass filters.

Example 1 Centered 2-D Haar lowpass filter with dilation 3): Consider the centeredD Haar lowpass filter with dila-
tion 3:

(@)

1, if K=0or K =41,
H(EK) = {0, otherwise

Let us takel’ = {—1,0,1}2 = {(0,0),+(1,0),£(0,1),4(1,1),£(1,—1)}. Then it is easy to check that tieeD prime coset
sum lowpass filter constructed from theD centered Haar is

hey = {1 1 E=(0,0), k= £(1,0), = £(0,1), k = £(1, ~1) or k= +(~1,1),
10, otherwise

Figure[d shows the-D filter H and the resultin@-D filter h. [ ]

Some of the properties of the original coset sum (cf. Sed#@ still hold true for the generalized prime coset sum.
Lemma 2:Let C,, , be the prime coset sum, aritl be a univariate refinement mask with dilatipnIf R is interpolatory,
thenC,, ,[R] is interpolatory.
Proof: See AppendifCA. [ |
Lemma 3:Let C, , be the prime coset suni? be a univariate refinement mask with dilatipnand letm; andmy be
positive integers. Suppose thAthasm; accuracy andn, flatness. Thert,, ,[R] has at leastmin{m,, m2} accuracy.
Proof: See AppendiXB. Similar arguments to the ones given in [18]waed in our proof. ]
Remark 4:If R is interpolatory, thenn, = ms. Hence, the above lemma says that, wliems interpolatory, the accuracy
number ofC,, ,,[R] is at least as much as the accuracy numbeR.dfor the case of the original coset sum with dyadic dilation,

1Bold-faced number indicates that it is at the origin. Thisifgis also given out i [18].



the accuracy number @, [R] is exactly the same as the accuracy numbeRafhen R is interpolatory (cf. Resulfl1(c)). We
do not yet know whether this result would hold true for thex@icoset sum in general. ]
Lemma 4:LetC, , be the prime coset sum, adtibe a univariate refinement mask with dilatipnThen the flatness number
of C,, ,[R] is at least the flatness number Bf
We omit the proof of LemmB&l4 as it is a simple variant of our prabbLemmal3.

Unlike the original coset sum with dyadic dilation (cf. R&gIb)), in general, the prime coset sum does not presewrve th
biorthogonality of 1-D refinement masks where> 2, even if one of them is interpolatory. Let us look at two exéespo
this end. Both of them are related with the Haar refinementkmasdth dilation 3.

Example 2 Centered 2-D Haar refinement mask with dilation 3): Let us consider the centered 1-D Haar refinement
mask as in Examplel 1:

% (e +14+e ™).
Then the above mask has dilatidrand it is associated with the refinable function= x[_1/2,1/2). If we define bothR? andR
to be this centered-D Haar refinement mask with dilatid$) then they are interpolatory and biorthogonal with one eacy

Let us now takd = {—1,0,1}2 = {(0,0),4(1,0),£(0,1),4(1,1),£(1,—1)}. Then, it is easy to see that transformiRg
and R to 2-D using the prime coset sum with= 3 produces tw-D refinement maské, 3[R] andCs 3[R] (cf. Figure[1)
that are not only interpolatory with one accuracy, but algthogonal. ]

Example 3 lon-centered2-D Haar refinement mask with dilation 3): Now let us consider the non-centereéd Haar
refinement mask with dilatio:

1

3
that is associated with the refinable functior= x|y 1j, Whereyq 1) is the characteristic function g, 1]. Let both R andR
be the above non-center@éeD Haar refinement mask with dilatioh Then it is easy to see thd and R are interpolatory
and biorthogonal, and they have one accuracy.

We usel’ = {0,1,2}2 = {(0,0), (0,1),(0,2),(1,0), (1,1),(1,2),(2,0),(2,1),(2,2)} this time. By transforming? and R
to 2-D masks using the prime coset sum with= 3, we see that, 3[R] andCQ,3[R] are still interpolatory and they still have
one accuracy, but that they are no longer biorthogonal. ]

1+€7iw+€72iw ’
(

Il. MuULTI-D WAVELET FILTER BANKS WITH FAST ALGORITHMS
A. Theory

Suppose that andU are 1-D biorthogonal refinement masks with dilatipnand thatU is interpolatory. Since the-D
prime coset sum refinement masks,[S] andC,, ,[U] are not necessarily biorthogonal (cf. Example 3 in Sedinitl is
not trivial to construct wavelet filter banks frot, ,,[S] andC, ,[U] directly. We propose to use a recent method developed
by the first author[[17]. This method can construct waveléerfibanks from two refinement masks that are not necessarily
biorthogonal, as long as one of them is interpolatory. NpthmatC,, ,,[U] is interpolatory (cf. Lemmgl2), we apply this method
to C,,[S] and C,, ,[U] to construct wavelet filter banks. As we will see later (cfctBm [I-B), similar to the coset sum
case, the resulting wavelet filter banks using this methadbeaassociated with fast algorithms, that are faster thartethsor
product fast algorithms.

Since the method in_[17] works for any dilation matrx below we present it for the general dilation matfAxwith
q=|detAl. LetT andT"* be the complete set of representatives of the distinct sasfet” /AZ" and2r(((A*)~1Z")/Z"),
respectively, containing. The following result is from[[17] written in terms of our ragion.

Result 3: Supposgy andh are twon-D lowpass filters with dilatiom\, andh is interpolatory. Then the twa-D refinement
masks defined as

r(w) =) + (1= 3 Gw+hw+7)), T4w) = hw),
~yeI*

for everyw € T", and then-D wavelet masks defined as

ty(w) = e — ¢ (v + A)) " (Aw),

and
1 _ ~
o) i= o e = (gl 1)) (W) h(w),
for everyw € T", andv € TV = I'\0, form the combined biorthogonal masks (¢fl (3)). ]

Proof: Result(B is proved in[17], but under slightly different s&gs. For completeness, we provide an alternative proof
that does not rely on the results 6f [17]. Our proof is plaged\ppendixD. ]



Remark 5:In fact, the results in[([17] say that, if we assume that, initmil to the assumptions of ResUl B8, has a;
accuracyg hasasy accuracy, andvs flatness, then has at leastin{ a1, a2, a3} accuracy. In such a casg, andtf}, vel,
have at leastnin{ a1, as, a3} vanishing moments (cf. Sectién 1-B). [ |

For the rest of this section, we assume that the dilationimegri.e.A = pI,,, and that the sef6 andI'™* are associated with
the prime dilation, i.e.]’ andT'* are the complete set of representatives of the distinctso$&" /pZ" and2x((p~*Z")/Z"),
respectively, containing. In particular, we have = |det A| = p™ in this case.

Before presenting our main theorem, let us first define a map

n: FZI) xI" =T,
with F} := F,\0, whereF), is a complete set of representatives of the distinct codes/pZ that contains 0. For example,
the set{0,1,---,p—1} can be used foF},. Let (I,v) € F; xI" C Z x ZZ"". Then there exists the unique multiplicative inverse

p(l) € F, of I (cf. RemarK2 in Sectioflll). After computing the multiplt@n p(7)v in the usual sense, we definél, ) to
be the element i’ = T'\0 so that

n(l,v) = p(l)v (mod pZ™).
By the above conditions;(l, v) is uniquely well defined as an elementlih sincep(l)v is in Z™ but not inpZ™. For example,
if n=2,p=3, F,={0,1,2} andl = {0, 1, 2}?, thenn(2,(1,1)) = (2,2) andn(2, (2,2)) = (1,1).
Now we are ready to present our result. R
Theorem 1:Suppose that’ and H are two 1-D lowpass filters with dilatiop, and thatH is interpolatory. LetS := G and
U := H be the 1-D refinement masks associated withnd H, and letC,, , be the prime coset sum. DefimeD biorthogonal
refinement masks as

T(w) = CnplSJ(w) + | 1 - Z Crp[S](w 4+ 7)Crp[U](w +7) 7Td(w) 1= Cpp[U](w),

yel'*

for everyw € T", andn-D wavelet masks as

ty(w):=e @[ 1— Ll Z el nbt o, (po.) . n(l,l/)) , vel’ (8)
Pt iew
and
1 , : D2
ty(w) == ——e ™ | 1~ %1 > eentls, (wa(l,v)) W) |, ©)
p p leF,

for v € I, and for everyw € T", whereU;(¢) := (H(I +p-))"(¢), and$;(¢) := (G(I +p-))"(€), € € TA Then (7, (t,)ver)
and (14, (t4),cr/) form n-D combined biorthogonal masks.

Remark 6:In the dyadic setting, i.e., whem = 2, one can take, = {0,1} andT’ = {0,1}". Then, sincel is the only
element inf} andn(1,v) = v for all v € {0,1}™\0, the n-D wavelet masks in{8) become

ty(w)=e " -20, (2w : V)

. } 1 . . -
=e WV _Q eiwv (U(w V) — 5) =e WY _ e_““’(l —2U(w-v+ w))
=2 WY U(w-v+m), ve{0,1}"\0,

where the second identity is from the definition{df and the third identity is from the fact théat is interpolatory. The above
wavelet masks are the same as the wavelet masks in the cosatatelet system (cf[{4) in Resllt 2) up to a normalization
factor. In fact, the exact forms afl for coset sum wavelet system are also provided_in [19], andlai calculation shows
that they are the same &$in (@) up to a normalization factor whegn= 2. Hence we conclude that Theoréin 1 reduces to
the known result of the original coset sum case when 2. ]
Remark 7:We refer to the wavelet filter bank associated with the coraibiorthogonal masks constructed in Theofém 1
as theprime coset sum wavelet filter barkhere are many potentially useful properties of the primget sum wavelet filter
banks. One important property is that it can be implementethbt algorithms (cf. Section 111B). [ ]
Remark 8:In addition to the assumptions of Theoréin 1, if we assumeltheisa; accuracy,S hasas accuracy, ands
flatness, then by Lemnid 3 and LemmaC4,,(U] has at leasty; accuracyC, ,[S] has at leastin{as, a3} accuracy, and at

2y, and S; can be interpreted as the polyphase decomposition of filtemd G, respectively (cf. AppendikIC).



leastas flatness. Combining these with Remaik 5, we conclude thiaas at leastnin{a;, as, a3} accuracy, and, andtd,
v € I, have at leastin{ay, a2, a3} vanishing moments. [ ]

In order to prove Theorerm] 1, we use the following lemma whicmnects the polyphase decomposition of the 1-D
lowpass filterH and the polyphase decomposition of thé prime coset sum lowpass filtér obtained fromH. Polyphase
decomposition is a common method in Signal Processing andiveea brief review in AppendikIC.

Lemma 5:Let H be a 1-D lowpass filter with dilatiop, and leth be then-D lowpass filter obtained fronf/ by applying
the prime coset sur@, ;. Let the setd” and I, and the map; : T x F;) — I"" be defined as before. Then for any I”,

(v + ) (p0) = gy D T (H () (T, ), 0 € T
leFy

Proof: First it is easy to see that (cf_{I15) in Appendik C)
= Z el (H(l —i—p-))A(pw), weT.

IEF,

Using this identity and the definition of prime coset sum, ve¢ g

vel”
_(_1;”_1( P 1+ZZ 7“‘”’1( l—l—p))A(pw-V)). (10)
p )p velVleF,
Next we use another identity that can be quickly derived @8) in [17]):
(h(v+p)) " (pw) = Z% ; ellwtnv ﬁ(w +7), weT. (11)
el

By using [10), [(I1l), and the fact thétH(l —l—p-))A(p(w +7) D) = (H(l —i—p-))A(pw -v), foranyl € F,, w e T", y € IT'*
andz € TV, we obtain(h(v + p)) " (pw) =

il Z i(wty)v 11)pn71 (1 —p 4 Z Z e~ iHwty)-7l (H(l—i—p-))A(pw . ;))) .

yeT* pEr IEF,
Then we use the following simple identity (cE_{20)):

yv o, n _ pnv if v= 0,
;e =p 5”70_{0, if v e T\0,
g

to get
(h(v +p)) " (pw)

S I 3 S e (4 )

yer vET’ IEFY,

:inﬁ Z Z iw-(v—ol) ( l—l—p))/\(pw'ﬁ) Z ei’Y'(l/ff/l)7 we T

per IEF) yED*
Noting that}> . e (=) = p if i = n(l, v), and it is equal td) otherwise, we obtain
(h( 4 p) () = gy 3 @D (H U 4+p)) o nllv) w € T
IeF)
as desired. ]

We now present the proof of Theorér 1.



Proof of Theoreri]1:Let g andh be then-D lowpass filters associated with refinement magks[S] andC,, ,[U]. Since
U is interpolatory, by LemmBl 2, ,[U] is also interpolatory, i.e, is interpolatory. Therefore, we can obtain the combined
biorthogonal masks by using Result 3. By setting= C,, ,[S] andh := C, ,[U] in Resul3, we obtain that, for every € T,

(@) =g(@) + (1= 3 Glw+hw +7))

yer*

= CnplS](w) + (1 =D CplSIw+ wm) ,

yel'*
and
(@) = h(w) = Ca U] w).
Since, in this case\ = pI,, andq = p", the n-D wavelet masks,, v € I, are
ty(w)=e"" = q (h(v + M)~ (Aw)
e’ _p" (h(v +p)) (pw), we T
Since H is the1-D filter associated witl/ and i is then-D filter associated witlC,, ,[U], by Lemmd5, we have

(v + ) () = gy D @O (H 4 ) (o, 0).

leF)

Therefore,

ty(w)=e ™V —pn CEE Z eiw- (v—n(l,v l)( ( -|—p'))A(pw -n(l,v))

leF)
— e W b Z iw-(n(l,v)l—v) (H(l—i—p))/\(pwﬁ(laV))
lEF’
= (1= LSS e g (o (1)) |, we T
r-15

The wavelet maskg?, v € T7, in (@) can be obtalned by applying similar arguments to teaegal form oftd, v € T7,

in Result[3. This concludes thét, (t,),er) and (79, (t3),¢r/) defined as in Theore 1 form-D combined biorthogonal
masks. ]

The following corollary of Theorerfil1 may be useful on its ownsbme contexts.
Corollary 1: Suppose that andU are two 1-D refinement masks with prime dilatipnand thatU is interpolatory. Let
Cn.p be the prime coset sum. Then the tweD refinement maskse,, ,[U] and

Cop[S]+ (1 = D CaplSI +7)Casp[UIC +7))

~yeI'*
with dilation pI,, are biorthogonal. [ |
Remark 9:Of the two prime coset sum refinement masks,[S] andC,, ,[U], only the non-interpolatory mask, ,,[S] is
modified by addingl — 3" . Csp[S](- + 7)Cn p[U](- + ). We note that the statement of Corollddy 1 holds true triyial

for the case whe(,, ,[5] andcw[ | are already biorthogonal, sinde- " (- +9)CnplU](- +v) =0 in such a
case. One such case is wh€rand U are biorthogonal ang = 2 (cf. Resulh(b)) ]

Next we illustrate our findings in two examples.
Example 4 Centered n-D Haar combined biorthogonal masks with prime dilation p): Let us consider the centered 1-
D Haar refinement mask with prime dilatign We let

1 p— . ) p—
S(w) =U(w) ::—(elp_;“’+-~-+e“"+1—|—67“"+-~-—|—67sz1“’).

p
1, . ) . . .
For example, whem = 3, S(w) = U(w) := 3 (em +1+ e_“") as in Examplé]2. Then they are both interpolatory with
one accuracy. Now let us také = {—23%,..-, —1,0,1,---,22}" and ™ = 27”{—7"7*1,---,—1,0,1,---,1"2;1}" for any
dimensionn > 2. Then by Theoreriil1 the-D biorthogonal refinement masks

1 .
T(w) = Td(w) = — Zeﬂ“’"’, we T,

2
p vel
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“so om0 &% w1 & s 0 -& w
Filter associated witt/
l Co.3 (Prime coset sum)
-4 0 o0 o o0 -%& 0o o0 0o o0 -&
0o -& 0 0 0 - 0 0 0 -Z O
0 0 0 0 0 0 0 O 0 0
0 o 0 ¥ o % o ¥ o o0 0
0 o 0 o0 ¥ & % o 0 o0 0
- w0 0% om ! ow & 0 -& —a
0 o 0 0 ¥ © & o 0 o0 0
0 0o 0 % o £ o0 £ o0 o0 0
0 0 0 O 0 0 0 0 O 0 0
o -2 o 0o 0 -% 0o o0 0 -&% o0
-4 0 o0 o o0 -%& 0o 0o 0o o0 -&

Filter associated withrd = Cy 3[U]

Fig. 2. Lowpass filters associated with the masksind < in Example[b.

andn-D wavelet masks

. 1. 1 .
ty(w)=e @ -1, tdw)= —e Y — —— Z e W weTn
p p pel’
for v € TV, form n-D combined biorthogonal masks. When= 3, the combined biorthogonal masks are studied in [18]. By
direct computation, we see that bothand 7¢ have one accuracy, and that bathandtd have one vanishing moment for
anyv € I''. The number of nonzero entries, or the support of the filtebeiated witht, is only 2 for any v € T”, and any

dimensionn and dilationp. o o ) n
Example 5 2-D combined biorthogonal masks with higher vanishing momets): Let U be al-D interpolatory refine-

ment mask with dilatior8 and accuracyt

U( ).7 1 4 S5iw 5 diw Jr 30 2iw Jr 60 Tw +1+ 60 —iw Jr 30 —2iw 5 —4diw 4 —5iw
N T 81¢ 81¢ 81¢ g1°¢ 81¢ g1¢ g1°¢ :

1, . : .
Let S(w) := = (" + 1+ e ™). We takel' = {—1,0,1}* andI"™* = 2 {—1,0, 1} Then by Theorer1 th2-D biorthogonal
refinement masks

1 (83 ; 25 ; 4 ;

‘r(w) — 4 2 : efwwvu _ 873%.,“1/ 4 z : efﬁwwu , wE .]1-27

9\ 27 81 81
ver’ ver’ ver’

o Jiw-v 60 30 —3iw-v 4
—e - — — —€
81 81 81 81

td(w) = é (e7v — Td(w)) , weT?

for v € T, form 2-D combined biorthogonal masks (cf. Figlife 2 for the filtessaxiated witi/ and~¢). Direct computation
shows thatr has one accuracyd has4 accuracyt,, v € I, have4 vanishing moments, ang, v € I, have one vanishing
moment. The support of the filter associated withis only 5 for anyv € T, ]

83U is obtained from[[2iL].
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B. Algorithms

Theoren{]L provides only one of many ways to obtain the nonni@dnt wavelet filter bank, given the twoeD refinement
masksC,, ,[S] andC,, ,[U]. However, the resulting prime coset sum wavelet filter baank loe associated with fast algorithms
that are faster than the usual tensor product ones. Belowrgsept these fast prime coset sum algorithms.

Fast Prime Coset Sum Wavelet AlgorithmsLet G and H be two 1-D lowpass filters with dilation, whereH is interpolatory.
In presenting our algorithms, we use the sgtand the map; that we defined in Sectidn1HA.

input y; : Z" - R
(1) Decomposmon Algorithm: computing y,_1, w,, j—1, v € I from y;

for j=J,J—-1,...,1
for vel’ and kez”
wy,j—1(k) = y;(pk +v) ——ZZH m)y;(pk +v —n(l,v)m) (1)
IEF), m=l
end
for ke Z" ’
yj-1(k) = y;(pk) + Z >N Gmyw, W) (ii)
vel” l€F), m=l
end
end

(2) Reconstruction Algorithm: computing y; from y;_1, w, j_1, v € I
for j=1,....J—-1,J

for ke Z" L)
v—n(l,v)m L
yj(pk) =Yj— 1(k) — Z Z ZG wu,g 1k———————) (1ii)
Vel IF) m=l p
end
for v €I’ and kEZ"
yi(pk +v) =w, j—1( —|— — Z ZH m)y,;(pk +v —n(l,v)m) (iv)
leF'm 1
end
end

For decomposition, we compute the coarse coefficignts and wavelet coefficients), ;_,, v € I, from y;. To obtain
wy,j—1, ¥ € IV, we apply the filter associated with, v € I” to y;, followed by downsampling with respect to the dilation
matrix A = pI,, as is typically done in wavelet decomposition. Singer € I”, are written in terms ot/;, [ € F;, and since
U, can be written in terms of-D filter H, we obtain the formula for Stepi). The proof of the identity in Step (i) is given
in Appendix(E, in which the concept of polyphase decompasifcf. AppendiX_C) is used.

A key step of our decomposition algorithm is Stepi) . Typically, to obtainy;_;, one needs to apply the filter associated
with 7 to y;, followed by downsampling. However, since we have= C,, ,[S] + (1 = 3. cpv Cnp[S](- +7)Crnp[U](- +7)

(cf. Theoreni L) in this case, contrary to the filter assodiatéh the first part ofr, i.e. C, ,[5], it is not clear how the filter
associated with the rest of the maski.e. 1 -3 .. C »[S](- +7)Cy[U](- + ), would look like. As a result, the support of
the filter associated with could be large. Therefore, the algorithm may not be necigséaster than other wavelet algorithms
if we use the filter associated withdirectly. However, by using the polyphase representatiénXppendixXC), one can show
thaty;_1 can also be derived by applying the filter associated @ijth[S] (the first part ofr) to w, j_1, v € I'. This is our
Step (ii), and the details of exactly how it is done are written in ApgizfE.

Our reconstruction algorithm is not the same as the typieadelet reconstruction procedure either. We recall thatytpieal
wavelet reconstruction is conducted by applying the reironson filters toy;_; andw, ;_1, v € IV, upsampling them, and
then summing them up. We reconstruct the signal by simplgreing Step(i) and (ii). Step(iii) is a reverse procedure
of Step (ii) that can always be performed. Stepv) is a reverse procedure of Stgp), and it is possible because the
only y; needed in the right-hand side of Stefiv) is y;(pk), which is already computed in Stegiii).

Complexity. Next we discuss the complexity of the fast prime coset sumeleaalgorithms. We measure the complexity by
counting the number of multiplicative operations needed icomplete cycle of -level-down decomposition ant-level-up
reconstruction, meaning the number of operations needéallyoderive y;_; andw, ;_1, v € I from y;, and to get back
y;. Here we only compute the number of multiplicative operaisuch as multiplication and division, as computing adeliti
operations gives a similar result.

Suppose that at level, we have input datag; with N data points. For simplicity, we assume thsitis a multiple of
p", wherep is the dilation andr is the spatial dimension. Then aftéfevel-down decomposition, we obtaiN/p™ coarse
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coefficientsy;_, in Step (ii), and N/p"™ wavelet coefficientsv, ;_, for eachr € I" in Step (1). We reconstruct the input
datay; from coarse coefficientg;_, and wavelet coefficients, ;_1, v € I". In particular, we obtainV/p™ original data
y;(pk) in Step (1ii) and N/p™ original datay; (pk + v) for eachr € I in Step (iv).

Supposex and 8 are the number of nonzero entries in thd lowpass filterG and H, respectively. Recall thail is
interpolatory. Let

a = #{G(m): G(m) # 0 andm = [ (mod pZ) for somel € F,}.

Given theN data points of the input daig, the number of multiplicative operations needed in a cotepgcle ofl-level-down
decomposition and-level-up reconstruction is the sum of

e 26(p" — 1)1% [for Step (1) and (iv)], and
. 2((p" —1a+n+ l)p—]\i [for Step (ii) and (iii)].
Therefore, as a result, the complexity of the fast prime tesm wavelet algorithms is
<2(p" -1 +2(p" - 1a+2n+ 2> N
pn
—1

Sincea < pT(a + 1), this complexity is bounded above by

(12)

(25—!—21%1(04—1-1)4— 1)]\7.

Recall that in dyadic case, the fast tensor product wavégerithms have complexitya + 8)nN, wherea and 5 are the
number of nonzero entries dfD lowpass filtersy: is the spatial dimension anl is the data size (see, for example,|[19]).
Therefore, the algorithm has linear complexity, i®.,CN, with the data sizeV, whereC is some constant that does not
depend onV. We refer to this constant as tlwemplexity constanfThe complexity constant for fast tensor product wavelet
algorithm isCrp = (a + 8)n. In particular, it grows linearly with the dimension Now let us consider the fast prime coset
sum wavelet algorithm. In dyadic case, i.e., whes= 2, the complexity is bounded above Wy + 25 + 2)N. Therefore,
the complexity constant for the prime coset sunCiscs = o + 28 + 2, which does not increase as dimensiolincreases.
Furthermore, sincer > 2, we haveCpcs < Crp for all n > 2, which suggests that our fast prime coset sum algorithms can
be much faster, at least in theory, than the fast tensor ptaggorithms whem is large.

Our fast algorithms witlp = 2 are different from the original fast coset sum algorithm¢§1i@], which results in a different
complexity constant for the coset sum case. The complexifstant for the fast coset sum algorithmsgs = %a + 28,
and as a result, we havgpcg < Ccgs as long asy > 4.

There are a couple of factors that contribute to make ouriitgos this fast. Firstly, the number of nonzero entrieshient-D
filter associated with,,, v € T”, is essentially the same as that of th® filter H (cf. Step {)). Secondly, our decomposition
algorithm is performed by bypassing the filter associatetth wi(cf. Step (1)), which could have large support, in general.
Finally, the reconstruction algorithm has trivial reconstion steps, which completely bypass the filters assediatith ¢4,

v eI (cf. Step fii) and Gv)).

We now discuss the fast algorithms for the prime coset sunmelets/in our previous examples.

Example 6:(Fast prime coset sum wavelet algorithms for the centered.-D Haar in Example [4). Let us consider the
centeredn-D Haar combined biorthogonal masks with dilatiprtonstructed in Examplé 4. For any fixedthe 1-D filter G
and H are given as

1, if K=0,
G(K)_H(K)_{l, ifK:il’iz...’in;l’
0, otherwise

Then one can follow Stepif — (iv) with this pair of G and H to perform the fast algorithms. In this case,= 5 = p,
a = p — 1. Hence for any dimension, and input data of sizéV, the algorithms have complexity

(Qp(p” -D+2(p—-D(p"—1)+2n+2
pn
Hence the complexity constant for a fixgds 4p — 1, and it is independent of the spatial dimensian ]
Example 7:(Fast prime coset sum wavelet algorithms foR2-D wavelets with higher vanishing moments in Examplé&lp
Let us consider th@-D combined biorthogonal masks constructed in Exariple Zhim case, the-D filter G and H are
given as

) N < (4p— 1)N.

1’ |f K - Ol
60 H —
1, if K=o, B 1o
G(K)_{l, if K==+1, H(K)={ 85 ifK::I:4’
. 81 - '
0, otherwise _él’ it K =45
0 otherwise.
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Then this pair ofG and H can be used in Stepi) — (iv
constructed in Example 5. In particular, singe=3, g =9,
432

<18(32 — 1)+

|mplement the fast algorithms for the wavelet filter bank
= 3 andn = 2, the fast algorithms have complexity

2 )+6>N§21N,

for any input data of sizéV. Hence the complexity constant in this cas€is [ ]

v) o

IV. CONCLUSION

In this paper we introduced a method called prime coset suoombstruct multi-D refinement masks fromD refinement
masks. This method is a generalization of the existing nikttie coset sum (([19]), that works only for the dyadic ddas.
We showed that for a prime dilation, the prime coset sum ntkthaintains many important properties from th® refinement
masks, such as interpolatory property, and under some timmsli the accuracy number. More importantly, the primeetos
sum refinement masks can be used to construct wavelet fildsshaith fast algorithms. Similar to the coset sum method for
dyadic case, the prime coset sum fast algorithms have campleonstant that does not increase as the spatial dimensio
n increases. This is contrary to the tensor product methottesits complexity constant increases linearly with thetiapa
dimension.

APPENDIX
A. Proof of Lemm&]2

Supposed andh are the filters associated with maﬂRananyp[R]. If Ris interpolatory, by[IJZ)H( )=1,andH(K)=0
for any K € pZ\0. Then, by [¥),h(0) = 71(}7 p"+ (p" — 1)H(0)) = 1, andh(k) = 15 > iew, H(l) forany k& # 0.
Since for eacm € pZ™\0, every element in the setW,, = {l € Z\0 : k = lv for somev e I} must lie inpZ\0, we see
thath(k) = = L > iew, H (1) =0 for any k € pZ™\0. HenceC,, ,[R] is interpolatory.

B. Proof of Lemm&l3

First we note that,, ,[R] has at least accuracy number one, sifchas at least accuracy number one &@ng, is defined
so that it preserves positive accuracy.

Let F* be a complete set of representatives of the distinct co$ets(¢p~'Z)/Z) containing0. Since the order of zeros of
Raté e F;\O is m1, and the order of zeros df— R at the origin isms, we have, for any integer < k£ < min{m,,ma}—1,

(D*R)(¢) =0, forany¢ e F). (13)
Thus, for anyy € T*\0 and anyu € N™ with 1 < |H| < min{m, mo} — 1, where|u| := p1 + - - - + pn, We get
(D" Cupl B () = gt 2 (PMR@ - V) |y
vel”
= nlz HV“J (D R)(y-v) =0,
- vel’ \j=1

where the last equality is froni (IL3) and the fact thatv (mod pZ) belongs toF;;. This implies the accuracy number of
Cn.p[R] is at leastmin{my, ms}.

C. Review of Polyphase Representation of Wavelet FiltekBan

The polyphase decomposition in_[39] is widely used in SigRedcessing. We briefly review some relevant concepts in
polyphase decomposition in terms of our notation and testogy, and refer other papers (e.g.][10].][17]) for details.

As before, we usé\ to denote the dilation matrix, angdto denotel det A|. The polyphase decomposition transforms a filter
(or signal) intog filters (or signals) running at the sampling rdtg;. LetT" be a complete set of representatives of the distinct

cosets ofZ™ /AZ™ containing0, and letT” = I'\0. For example, for the scalar dilation with the set{0,1,---, A — 1}" can
be used for".
The polyphase decomposition of a synthesis filies defined as the Fourier seriesiofy + A-), v € T
Hy(w) :== (h(r + A)) (w) = ! Z h(v + Ak)e”*«  weT", (14)
kezn

and thepolyphase representation of a synthesis filieis defined as the columgtvector of the form

H(w) = [HVO (W), HV1 (W), T 7Huq,1 (w)]T, w e Tn,
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wherery =0 andv;, j =1,...,9— 1, are the ordered elements of the B&tThen it is easy to see that the Fourier series of
h can be written in terms of the polyphase decomposition @f follows:

hw) =" e “VH, (Aw). (15)
vel
Similarly, the polyphase decomposition of an analysis filteis defined as the complex conjugate of the Fourier series of
glv+A),vel:

Go(w) = (glv+A)) (w) = ! Z gv — Ak)e ™ *v e Tm, (16)

kezn
and thepolyphase representation of an analysis filteis defined as the row-vector of the form

G(w) = [Gvo (W)’ Gy, (W)’ T ’GVq—l (w)]’ we T,

and, as a result, we have the identity

gw) =Y €6, (Aw).
vel
Under these notations, it is easy to see thand g are biorthogonal if and only i6(w)H(w) = 1/g.

A filter bank (that is non-redunant with perfect reconstiutiproperty) can be represented by twe ¢ polyphase matrices
A(w) ands(w) that satisfyS(w)A(w) = (1/¢)I,. The row vectors ofi(w) represent the polyphase representation of analysis
filters, where the first row corresponding to the lowpassrfdted the rest to the highpass filters. The column vectos ©f
represent the polyphase representation of synthesisfiltdrere the first column corresponding to the lowpass filbetr the
rest to the highpass filters.

We finish this subsection by stating Reddlt 3 in terms of thigpgitase representation, as it will be useful in the latet par
of the paper.

Result 4 Result[3 stated in terms of polyphase representation)Supposey and i are twon-D lowpass filters with di-
lation A, andh is interpolatory. LetG(w) andH(w) be the polyphase representationgofnd i with lengthq = | det A|, and
let G(w) andH(w) be the subvectors @f(w) andH(w) of lengthq — 1, respectively, obtained by removing the first entry. Then
the following two polyphase matrices

1 1.
o [B@) +aBw) EW)] . | 7 g 8 .
1 LD B P %Iq-l—ﬁ(mf:(w) o
satisfy S(w)A(w) = (1/q)1,, whereB(w) :=1/q — G(w)H(w). [ |

D. Proof of ResulE3
We want to show that, 74, ¢, andtd, v € T’, in Resulf’3, satisfy the following identity (cf(3) in Sem [-B)

M) + S B =do={ o 11T h
vel”
By substituting the masks, 79, ¢, andtd, v € I, in Resul8, we get
Tw+ W) + D bW+ Ntw)
vel”
= () + (1= X Jw a9 hw+7+7)) )hw)
Fer-
ei(w+y)»u _ v N (A w le—iw»u _ v * T
3 o+ 4 (1)) (G - GO F R ) 7))
=5(w+7) h(w) + hw) = Y Gw+7+7) hw + 7 +7)h(w)
yer*
OIS (Z e Tglu 4 R)) (W) i) - Wﬁ(m)
uGF vel
- <Z e (h(v + A)) T (Afw) — h(A~)A(A*w>>
vel
+q Y (h(v + M) (A w) (g(v+ A)) (A w) A(w).

vel”
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It is easy to see that the following identity is true:

iy )9 if Y= 07
DT =00 = { 0, if ver™\0, (18)

vel ’
whereq = | det A|. Sincenh is interpolatory, we have

A (Aw) = - . (19)

Q

Then by using[(18)[(19)[(15), and the fact tifatr + A-)) " (A*w) = (g(v + A-)) " (A*(w +7)), for anyrv € T, w € T", and
v eI, we get

TwHNT W) + Y (w7t (w)
vel’
=0y0— Y §w+7) h(w +A)hw) +¢ Y (h(v+A)) " (Aw) (g(v + &))" (Aw) h(w)
el vel

yer+* vel

=00 — (Z Gw+7) h(w+79) — ¢ > _(A(v+A)) (A'w) (g(v + A->>A(A*w>) h(w).
Moreover, by [(Ib), and the dual identity ¢f {18):
D = b = {g :; I;:%\o (20)

we have

yel'*

< TV (g(v + A'))A(A*w)> <Z e WINPT (5 + A'))A(A*W)>
yel'* \wvel

vell

(Z > @ ”’) R IOE A-))A(A*w)) e~ (W7 + M) (A"w)
vel

vell ~yel'™*

(h(v 4+ A))"(Aw) (g(v + A))" (A*w).
VEF
Therefore,
Tw+ N W) + Dt (w+ (W) = 5y0.
vel’
This concludes the proof.

E. Proof of the identities in the decomposition algorithm

The polyphase decomposition of a signgl with respect to the dilation matriX = pI,,, with ¢ = | det A| = p", is defined
as the Fourier series of;(v + p-), v € I:

Y5() = (550 +p)) @) = = 3 g+ ph)e ™, we T,
kezn

and thepolyphase representation of a signgl is defined as the columg+vector of the form
Yj (w) = [YVo,j (W)v Yo, 2J (W)v T 7YVq717j (w)]Tv w e Tnu

whereyy =0 andv;, j =1,...,q — 1, are the ordered elements of the BétLet Y;_; andW, ;_; be the Fourier series of
coarse coefficientg,;_; and wavelet coefficients, ;_1, v € I, respectively,

E —ik-w
y] 1 9
kEZ"

_k. /
u7 1 § Wy, j— 1 ! w’ I/EF,
kEZ"
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for everyw € T". Then al-level-down decomposition, in frequency domain, can bdtemias

Yj_1(w) Yy, (w)
P — A U
[le(w)} ) { Yi(w) |’
whereW;_1 (w) := Wy, j_1(w), -+, W,,_, j—1(w)]T and¥;(w) is a subvector of (w) of lengthq — 1 obtained by removing
the first entry.

A key observation, which is also part of the reason why thefasne coset sum wavelet algorithms is fast, is th@at) as
defined in [[1¥) can be decomposed into two triangular matrice

=y ] e |

Thus we can calculaté/;_; (w) first, then uséV;_, (w) to computeY;_;(w) as follows,
Wi1(w) = —q B(w)Yy, j(w) + ¥;(w), (21)
Yj,l(w) :Yl/o,j (w) + G(W)ijl(w). (22)

From these[(21) and (R2), we now derive Step) and (ii) in our decomposition algorithm.
From (21), [I#) and Lemmid 5, we know that, for any I,

Wy j-1(w) = —q Hy (W)Y, (W) + Y, 5(w)
= —q (Mv +p)) (W)Y (W) +Yu ;(w)

p iw. =@y =N
oo ¢ ’ (H(l+p~)) (w (L)) Yoy 5(w) + Yo, (w).
P=LiE
Hence,
ik 1 iy
— Z wy,j—1( ko — W, i 1(w) = — Z y; (pk + v)e=*
kezZn A
p W M 1 —im(w- v —ik’w
o e ZH l—l—pm) (wn(l, )) Z yj(pk’)e Kow
p IEF), mEZ k’eZ"
Therefore,

Z Wy 1 (k)e—ik»w

kezn

:Z%w+m%“

kezn

LT Y S e R i e o)

lEF’ meZk'ern

:Z%w+m*“

kezn

— = >0 30 Y e H I+ pm)y, (pk + v — (. v)(pm + 1))

lEF’ meZkeZm

= Z (yj(]?k +v)— p%l Z Z H(l+pm)y;(pk +v —n(l,v)(pm + l))) o—ikw

kezn lEF), meEL
=> v NH*'————EZEZH' m)y; (pk + v — n(l,v)(m)) | e *,
kezn lGF’ m=l

which in turn implies that we have for arlye Z™ andv € I,

wyj-1(k) = y;(pk +v) — —— Z > H(m)y;(pk + v —n(l,v)m).
leF/m l

This is exactly Step(i) in our decomposition algorithm.
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From [22), [16) and by Lemnid 5 we know that
Vi1 (w) = Yo, j (@) + D Gu(@)Wi-1(w)

vel’
= 1/0 g + Z V+p w) WVyjfl(w)
vel”
w. (=) u)z v) —
= Y@+ Y g e (GU+p)) (@ n(t0) Wiy ().
VEF’ leF/

Hence,

71' ‘W 1 —tk-w
—Z%l g :nl(w):ﬁzyj(pk)e By

keZn kezn

1 jw- GI=v) —im(w- v 1 —ikw
Do X T 2 Gl pme e S o (ke

ver’ IEF mezr P iezn

Therefore, we have

Z y]_ 71k-w

kezn

= Z y;(pk)e "
kezn
T S 2 2y e e G pmu o ()

vel leF) mel™ k' €Z™

= Z yi(pk)e™ "

kezn
T Y 3 e G gt~ i m)
vel’ leF) meZ™ keZ™ p
- Z y; (pk) + Z Z ZG m)w, j_1(k — M) ek,
kezn vel” leF) m=l p

As a result, we have, for any € 7",

yi—1(k) =y;(pk) + Z SN Glmywy o (k M>_

velleF) m=l p

This is exactly Step(ii) in our decomposition algorithm.
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