
ar
X

iv
:1

50
3.

00
26

5v
1

 [c
s.

IT
]

1
M

ar
 2

01
5

Multi-Server Coded Caching
Seyed Pooya Shariatpanahi1 , Seyed Abolfazl Motahari2,1, Babak Hossein Khalaj3,1

1: School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
2: Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.
3: Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran.

(emails: pooya@ipm.ir,{motahari,khalaj}@sharif.edu)

Abstract

In this paper, we consider multiple cache-enabled clients connected to multiple servers through an intermediate network.
We design several topology-aware coding strategies for such networks. Based on topology richness of the intermediate network,
and types of coding operations at internal nodes, we define three classes of networks, namely, dedicated, flexible, and linear
networks. For each class, we propose an achievable coding scheme, analyze its coding delay, and also, compare it with an
information theoretic lower bound. For flexible networks, we show that our scheme is order-optimal in terms of coding delay
and, interestingly, the optimal memory-delay curve is achieved in certain regimes. In general, our results suggest that, in case of
networks with multiple servers, type of network topology can be exploited to reduce service delay.

I. I NTRODUCTION

Unprecedented growth in transmit data volumes throughout the networks in recent years demands more efficient use of
storage devices while providing high quality of service (QoS) to the users. Currently, large files are stored on servers and
users’ requests are stored in queues waiting to get service from them. Naturally, one approach to reduce congestion in such
networks is to increase the service rate of such servers. However, this will put additional burden on such nodes. As the cost of
storage devices has decreased over the years, another viable option is to provide geographical content replication in the network
through use of the so-called low-capacitycachingnodes. The idea of using such nodes for data replication and providing easier
local access to data is already covered in the literature (see for example [1]–[6]).

Recently, in their seminal work, Maddah-Ali and Niesen considered a single server network and have shown that through
a two-phase cache placement and content delivery strategy,server load can be reduced inversely proportional to the total size
of cache introduced in the network. In fact, in the cache placement phase, contents are stored on caches without knowing the
actual demands of the users and in content delivery phase theserver transmits packets to fulfill the demands. The fact that
suchglobal caching gaincan be achieved in such network is surprising as the demands are not known apriori at the cache
placement phase.

Maddah-Ali and Niesen’s cache placement strategy is based on shattering each file into many pieces and only distributing
them throughout the caching nodeswithout replication. It should be noted that such approach is in contrast to the conventional
local cache placement strategies where a file or a single piece of it is replicated in caches. The astounding feature of their
strategy is that transmission of a single packet at content delivery phase can then simultaneously serve several users.Imagine
that two pieces of two files are stored at two different cachesand each of them requires the piece available at the other. A
single packet containing the sum of two packets can be sent tofulfill both users’ demands. They have shown that their strategy
is 12-approximation of the optimal strategy.

The network considered in [7] is a simple broadcast network where a packet transmitted by the server arrives unaltered at
all users. A fundamental problem is to see how network topology affects the optimal coding strategy through both placement
and delivery phases.

One of the simplest topologies is the tree network. In [8], Maddah-Ali and Niesen proved that their original strategy can
be used directly for such a network and what is needed to achieve 12-approximation of the optimal strategy is a simple
topology-aware routing strategy at the internal nodes; An internal node routes a packet on its output port if the packet is useful
for at least one of the port’s children.

While the topology-aware routing scheme for tree networks is shown to be an order-optimal solution, real-world topologies
are much more sophisticated than the simple tree structure.In this paper, we characterize the effect of network topologies on
code design and performance analysis of coded caching in a more general setup. In particular, we investigate a multi-server
network topology where a set of servers are connected to the clients through an error-free and delay-free intermediate network
of nodes (see Fig. 1). We assume that each node in the intermediate network can perform any causal processing on its input
data, to generate its outgoing data. This can consist of simple routing or more sophisticated network coding schemes.

The objective considered in [7] is minimizing the traffic load imposed to the single server. However, in general, other
objectives may be of higher importance when designing network operation strategy. One such key criterion is theservice delay

This research was in part supported by a grant from IPM, and bya grant from Iran National Science Foundation under Grant 92017806.

http://arxiv.org/abs/1503.00265v1

Fig. 1. Network Model.

of the network which is specially critical in content delivery networks (see eg. [15]–[17]). We define the service delay of the
network as the total time required to serve any given set of the clients’ requests for a specific strategy. We distinguish between
two types of delay,Network DelayTN and Coding DelayTC , where the total service delay,T , is given byT = TN + TC .
To be more precise,TN is the time it takes for packets to be routed through the network and arrive at their requesting nodes.
Naturally,TN mainly captures the links and queues delays in the network which are intrinsic characteristics of the network.
On the other hand,TC captures the transmission block length required to serve all the users for a specific coding strategy. In
this paper, we focus on the coding delay and design strategies to minimize such delays.

We consider three classes of networks: 1- dedicated networks, 2- flexible networks, and 3- linear networks. These networks
are characterized based on the richness of their internal connections, as shown in Fig. 2. In each class, an important network
topology aspect is the number of servers connected to the network, and their points of contact. In dedicated networks, wecan
dedicate each server to serve a fixed subset of clients, whereeach server can send a common message to its corresponding
subset, interference-free from other servers. Although indedicated networks the assignment of clients to the serversis fixed, in
flexible networks the network topology is rich-enough to letus adapt these assignments during network operation. Finally, in
linear networks we assume random linear network coding operations at the internal nodes. Consequently, in linear networks,
the network input-output relation is characterized by a random matrix. As we show in this paper, in order to minimize the
coding delay, designing the coding strategy for each class should carefully utilize the flexibility of that class. As will be shown
subsequently, there exist coding strategies outperforming that of [8] for all of the three classes of networks. Interestingly, we
obtain an order optimal solution for the flexible networks.

Finally, let us review some notations used in this paper. We use lower case bold-face symbols to represent vectors, and
upper case bold-face symbols to represent matrices. For anymatrix A, At denotes the transpose ofA and for any vectora,
a
⊥ shows that the conditiona.a⊥ = 0 is satisfied. For any two setsS1 andS2, the setS1\S2 consists of those elements ofS1

not present inS2. Also we define[K] = {1, . . . ,K} andN to be the set of integer numbers. Moreover,Fq shows a finite field
with q elements, andFa×b

q denotes the set of alla-by-b matrices whose elements belong toFq. Finally, let x1, . . . , xm ∈ Fq,
thenL(x1, . . . , xm) is a random linear combination ofx1, . . . , xm where the random coefficients are uniformly chosen from
Fq.

The rest of the paper is organized as follows. In Section II, we describe the network model and different classes of
networks. In Section III, we review the main results of the paper, present some examples, and discuss their implications. The
next two sections, i.e. Sections IV and V, present the details of the coding strategies proposed for flexible and linear networks,
respectively. Finally, we conclude the paper in Section VI.

II. M ODEL AND ASSUMPTIONS

ConsiderL servers connected toK users through a network. By network we mean aDirected Acyclic Graph(DAG)
G = (V,E), in which the set of verticesV consists of internal nodes, and every edgee ∈ E on the graph represents an
error-free and delay-freelink with capacity of one symbol per channel use. Each serverand each user is connected to the
network by a single link with capacity of one symbol per channel use. At each channel use each node inside the network sends
symbols on its output links based on (deterministic/random) functions of the symbols on its input links, without introducing

any delay, where functions corresponding to different output ports need not be the same. Also, we assume that there is no
inter-link interference. Data is represented bym-bit symbols which are members of a finite fieldFq, whereq = 2m.

Consider a library ofN files {W1, . . . ,WN} each ofF bits is available to all servers. Each user is also assumed tohave
a cache of sizeMF bits. During its operation, the network experiences two different traffic conditions, namelylow-peakand
high-peakleading to different network transmission costs for the twoconditions. Based on the given traffic condition, the
network operates in two distinctive phases. The first phase that is performed during low-peak condition is called thecache
content placementphase at which servers send data to the users without knowingthe actual requests of the users. This data
is cached at the users with the size constraint ofMF bits and is stored to be used in the future. In the second phasethat is
performed during high-peak network condition, each user requests one of the files (demanddk of userk denotes requesting
file Wdk

), and according to these requests the servers send proper packets over the network. Subsequently, upon receipt of
packets over the network, users try to decode their requested files with the help of their own cache contents. Assuming that
the cache placement transmission delay during the low-peakcondition puts no constraint on overall network performance, the
goal is to design the cache placement strategy such that the service delay at the time ofcontent deliveryis minimized.

Channel uses in the network are indexed by time slotst = 1, 2, At time slott, servers transmit symbolss1(t), . . . , sL(t)
and users receive symbolsr1(t), . . . , rK(t) without delay. We consider the most general case, i.e.,

rk(t) = fk(s1(t), . . . , sL(t)), k = 1, . . . ,K,

in which we have assumed that the network is memory-less across time slots. Functionsfk(.) depend on the topology of the
network and the local operations of the nodes inside the network.

We define:

s(t) ,

s1(t)
...

sL(t)

, r(t) ,

r1(t)
...

rK(t)

,

wheres ∈ F
L×1
q , andr ∈ F

K×1
q .

In the first phase, users store data from the servers without knowing the actual requests. The only concern in the first phase
is respecting the memory constraint of each user. However, in the second phase, we focus on the time needed to deliver the
requested files to the users. The second phase consists ofTC time slots (channel uses). In other words, during the secondphase,
servers sequentially transmits(1), s(2), . . . , s(TC), and the users receiver(1), r(2), . . . , r(TC). Consequently,TC(d1, . . . , dK)
is the number of times slots required to satisfy demandsd1, . . . , dk. Then, we define the optimumCoding Delayas:

D∗ = min max
d1,...,dk

TC(d1, . . . , dK), (1)

where the minimization is over all strategies. In this paper, we are interested in characterizingD∗ for a network, given its
specific topology.

For a given network topology, the network input-output relation depends on operational design of internal nodes. As we
will show, thericher the network topology is, the broader the design space will be. Therefore, we consider the following three
classes of network topologies:

• Dedicated Networks
In this class of networks, each packet transmitted by a server is routed to a fixed subset of the users. In other words,
we can dedicate each server to a fixed subset of users, and thisserver can send packets to these users, concurrently and
without interference to other servers. We assume these subsets to be non-overlapping so that each user is assigned to
a single server. Also, we assume we can balance these assignments such that the number of users assigned to a server
is almost the same for all servers. If network topology allows us to perform such assignments, we call the network a
Dedicated Network.
More formally, there exists a coding (in this case just routing would suffice) strategy at the network nodes such that there
exists a partitioning{P1, . . . , PL} of [K ′] = {1, 2, . . . ,K ′} where

|Pl| =
K ′

L
, l = 1, . . . , L

∀k = 1, . . . ,K, if k ∈ Pl, then fk(s1, . . . , sL) = sl, (2)

in which K ′ is the smallest number larger than or equal toK which is divisible byL.
Consider Fig. 2-(a) in whichL = 2 servers are connected toK = 4 users via a dedicated network. In this example, we
haveK ′ = K, and it is easy to verify that we can find a routing strategy at intermediate nodes such that:

P1 = {1, 2}, P2 = {3, 4}

f1(s1, s2) = f2(s1, s2) = s1,

f3(s1, s2) = f4(s1, s2) = s2.

Fig. 2. Examples for dedicated, flexible, and linear networks.

• Flexible Networks
In this class of networks, we assume that there exists a coding (routing) strategy at network nodes such that forevery
partitioning {P1, . . . , PL} of [K] = {1, 2, . . . ,K} we have:

∀k = 1, . . . ,K, if k ∈ Pl, then fk(s1, . . . , sL) = sl. (3)

It should be noted that in the dedicated networks, each server was assigned to afixed subset of users, while in flexible
networks we can flexibly change these assignments during thedata delivery phase. In the example shown in Fig. 2-(b),
we have chosen two sample partitionings, i.e.P1 = {1, 4}, P2 = {2, 3} for the top figure, andP1 = {2, 4}, P2 = {1, 3}
for the bottom figure. It is obvious that every flexible network is a dedicated network, but the converse is not true. Hence,
flexible networks are generallyricher than dedicated networks in terms of their internal connectivity.

• Linear Networks
In the aforementioned dedicated and flexible networks, the intermediate nodes should know the topology of the network
in order to do a proper routing of their input data onto their output ports. However, in the case of linear networks, we
assume that such knowledge is not available at intermediatenodes. Thus, we assume that each node generates a random
linear combination of data at its input ports to be transmitted on its output ports. Consequently, the overall transmit and
receive vectors of the network are linearly related at each time slot:

r(t) = Hs(t), (4)

whereH ∈ F
K×L
q . H is called theNetwork Transfer Matrix(NTM). Let us define:

X , [s(1), s(2), . . . , s(TC)],

Y , [r(1), r(2), . . . , r(TC)]. (5)

We call matricesX ∈ F
L×TC
q andY ∈ F

K×TC
q , transmit and receive blocks, respectively. Then, transmit and receive

blocks are also linearly related:
Y = HX. (6)

In Linear Networks, we assume that network topology isrich-enoughto guarantee that the elements ofH are i.i.d. random
variables. Similar to most existing papers employing random linear network coding, we assume large-enoughq = 2m to
assure that NTM exhibits full rank matrix properties, with high probability [9], [10]. Also, we assume uniform distribution
on the elements ofH, which is a proper assumption for large scale networks with many sources of randomness [11]–[14].

Fig. 3. The Super-Server Strategy.

Finally, for later reference, definehk as

hk , [hk,1, . . . , hk,L]
t, k = 1, . . . ,K. (7)

It should be noted that we assume a static network transfer matrix H, such that it does not change for the duration ofTC

time slots. As changes in the network transfer matrix is due to topology changes (e.g. failure of a node), such assumption
is valid in most practical scenarios. Fig. 2-(c) illustrates an example of a linear network in the case ofL = 2 andK = 4.

Finally, it should be noted that in this paper, we assumeN > K. Such assumption will lead to more clear presentation
in the rest of this paper and will also exclude the possibility of using uncoded multi-casting schemes that may triviallybe
adopted for the case of small number of files. Extending the results to the caseN < K is straightforward, and the readers are
referred to [7].

Remark 1. It should be noted that if a server is connected to the networkby a number of links (each of integer capacity) with
the total capacity oft symbols per time slot, our model can accommodate this scenario by splitting this server intot separate
servers.

Remark 2. The random linear network coding approach at intermediate nodes is also used in other papers such as [18], [19],
and [20], in the context of uni-casting via interference alignment.

III. M AIN RESULTS: REVIEW AND DISCUSSION

The simplest approach in designing a coding scheme for the multi-server case is to directly transform it to a single-server
scenario and use the scheme presented in [7]. Such approach can be simply adopted by adding aSuper Servernode and
connecting it with edges of infinite capacity to all other servers (see Fig. 3). As shown in [8], we only need to route packets
that are transmitted by the super-server to those users thatcan benefit from receiving them. For tree networks, such approach
results in the following simple topology-aware routing scheme: at each interior node, the packets received at the inputport
benefiting at least one of the descendants of the node, is senton the corresponding output port. As proved in [8], the minimum
traffic load imposed on each link, in the scaling sense, can beachieved by such simple routing scheme. Such approach also
leads to an order-optimal coding delay for tree networks under our formulation.

One can, however, think of another naive and simple approachto the multi-server problem. We can simply dedicate each
server to a subset of users and make it responsible for satisfying the requests of the corresponding subset of users. It isclear
that, in order to prevent congestion at a specific server, we should balance out loads of the servers so that each ofL servers
will be responsible for aboutK/L users. Consequently, one can easily arrive at the followingtheorem for the coding delay in
dedicated networks:

Theorem 1. The coding delay for a dedicated network is upper bounded by apiecewise-linear curve with corner points

D∗(M) 6
K ′
(

1− M
N

)

min
(

K ′, L+K ′M
N

)

F

m
, (8)

where K′M
LN ∈ N should be satisfied, andK ′ is the smallest number larger than or equal toK which is divisible byL.

The proof of Theorem 1 is straightforward, and thus, we just draw the main sketch here. First, let us review the main concept
behind the coded caching scheme for a single server in a broadcast scenario [7]. In this case, if we do not have any cache
at the users, it is clear that the server should in sequence send all the requested files to the users (considering that the users
request different files). This will lead to a total amount ofKF bits to be transmitted. Since the server is only able to transmit
m bits (a symbol inFq) at each time slot, the coding delay will beK F

m time slots. By providing cache at the users, thelocal
caching gainwill reduce the coding delay toK(1− M

N) Fm . The main result in [7] indicates that by exploiting the additional
global caching gain, the coding delay forKM/N ∈ N reduces to:

TC =
K(1−M/N)

1 +KM/N

F

m
, (9)

which is order optimal for this scenario.
As we extend to the multi-server case, let us assume for simplicity that K is divisible byL. Splitting the originalL-server

problem withK users intoL single-server problems withKL users is possible in this case. Since the sub-networks may operate
in parallel, the delay is further reduced to:

TC =
K
L

(

1− M
N

)

1 + K
L

M
N

F

m

=
K(1−M/N)

L+KM/N

F

m
,

whereKM/LN ∈ N. Since in any scheme we can benefit at most all theK users simultaneously, the total multi-casting gain
of any scheme is at mostK, and the denominator should be compared toK (by themin operator in the denominator of (8)).
Extension to the case whereK is not divisible byL can be accomplished by adding virtual users. The following example
compares the above two naive approaches:

Example 1. Consider the network shown in Fig. 4 forK = 4 users. We also assume the library containsN = 4 files, and each
user can storeM = 2 files during the cache content placement phase. By adding a super server a tree network is obtained,
and in the delivery phase, the scheme in [8] suggests to send

R1 =
K(1−M/N)

1 +KM/N
F

=
4
(

1− 2
4

)

1 + 4×2
4

F

=
2

3
F,

bits at the super server’s output. In their scheme, at each node only those packets benefiting the descendants of an outputport
will be copied on that port. However, in our case each packet benefits1 + KM

N = 3 users, and thus should be copied on both
output ports of noden1. This results in:

R2 = R1,

and since we assumed a capacity of one symbol per time slot foreach internal edge, the delay of this scheme is:

TC =
R2

m
=

2

3

F

m
. (10)

At this stage, the key question is whether it is possible to further reduce the required number of time slots or not? In fact,
with a closer look at this network it becomes evident that we can reduce this network to a dedicated network with:

P1 = {1, 2}

P2 = {3, 4}.

Therefore, the original problem can be divided into two sub-problems (see Fig. 4) and each server can address the load of its
corresponding sub-network by:

R3 =
K
L (1−M/N)

1 + K
L

M
N

F

=
F

2
.

Since the sub-networks operate in parallel, the delay of this scheme will be

TC =
R3

m
=

1

2

F

m
(11)

Fig. 4. Example 1.

time slots.

The above example shows that although the scheme in [8] is order-optimal for tree networks, however, by designing a
topology-aware scheme it may be possible to arrive at a better pre-constant factor.

Next, let us consider another class of networks with more flexibility, i.e. Flexible Networks. In such networks, similarto
dedicated networks, we can assign a subset of users to each server, and the network allows parallel operation of the servers.
However, unlike dedicated networks, such assignment can bechanged arbitrarily in subsequent transmissions. Such extra
freedom in user assignments allows a significant reduction in the coding delay as shown in the following example.

Example 2 (L = 2,K = 4, N = 4,M = 1). For a single server case, the scheme proposed in [7] achievesthe following delay
for M = 1:

TC =
K(1−M/N)

1 +KM/N

F

m
=

3

2

F

m
.

In order to get a better insight on this result, consider Fig.5-(a) which shows the cache content placement and the delivery
scheme for requestsA,B,C,D by users1, 2, 3, 4, respectively. In the cache content placement phase, each file is divided into
four equal-sized parts and cached as shown in Fig. 5-(a). In the delivery phase, the single server sends the following data in
sequence:

A2 +B1, A3 + C1, A4 +D1, B3 + C2, B4 +D2, C4 +D3.

As a result, six transmissions are required while each has the delay 1
4
F
m . Thus, the total delay will beTC = 6

4
F
m = 3

2
F
m . In

the above scheme, each transmission benefits a pair of users,and is of no value for the other pair.
If we have two servers, by the definition of flexible networks each server is able to transmit a given data to a pair of users

simultaneously and interference-free from transmission of the other server. In Fig. 5-(b), transmissions of the left and right
servers are colored as blue and red, respectively. Thus, a pair of transmissions in Fig. 5-(a) can be sent simultaneouslyas
shown in Fig. 5-(b), resulting in the achievable pair(M,TC) = (1, 3

4
F
m). Thus, exploiting the extra flexibility of the network

in this example results in the coding delay enhancement, compared with the single-server case.

In dedicated networks, we exploit the network topology to assign a fixed number of users to each server. In this way, a user
receives packets only from a certain server and this assignment is fixed during the course of transmission. In flexible networks,
however, at different time slots users can be served by different servers where the assignment strategy is fixed for each server.
Fig. 6 shows two servers connected to three users through such flexible network. The blue packets originating from server1
are intended for one user (which may change at different timeslots) and the red packets originating from server 2 are intended
for two users (which may change at different time slots). We assign blue packets to be associated with Strategy1 and red
packets with Strategy2. Fig. 6 shows consequent transmissions in such network where Strategy 1 is associated with server 1
and Strategy 2 with server 2. In general, we associate Strategy p to a packet if it is intended forp users. Now, if we fix a
strategy for a server, it means that all the packets transmitted by that server have the same strategy. It is worth mentioning
that packets received by a user do not necessarily have the same strategy, since they may have arrived from different servers
(see Fig. 6).

Fig. 5. Flexible Network Example 2.

Fig. 6. Server 1 and blue packets are associated with Strategy 1, and Server 2 and red packets are associated with Strategy2.

Consider serveri with Strategypi. Also, we assign a fractionFi bits of each file to be delivered by Serveri. In order to
employ the scheme in [7] for this server, we allocate a memoryof sizeM̄i bits from all the users to be used only by Server
i where

M̄i =
N

K
(pi − 1)Fi.

Therefore, Serveri can deliverFi bits to all the users inTC(i) time slots where

TC(i) =
K
(

1− M̄i/Fi

N

)

1 + KM̄i/Fi

N

Fi

m

=
K − pi + 1

pi

Fi

m
. (12)

We assume that a routing strategy exists where packets from different servers do not interfere with each other. In this case,
the total delay is limited by the maximum delay of the servers. Therefore, in order to balance out the servers’ loads, we can
simply set:

Fi = α
pi

K − pi + 1
F,

whereα does not depend oni and satisfies:

L
∑

i=1

Fi = α

L
∑

i=1

pi
K − pi + 1

F = F.

Therefore,

α = 1/

L
∑

i=1

pi
K − pi + 1

. (13)

Since the total memory isM , we have

M =

L
∑

i=1

M̄i/F =
N

KF

L
∑

i=1

(pi − 1)Fi

=
N

K

L
∑

i=1

(pi − 1)α
pi

K − pi + 1

=
N

K

∑L
i=1

pi(pi−1)
K−pi+1

∑L
i=1

pi

K−pi+1

. (14)

Hence,

TC = α
F

m

=
F
m

∑L
i=1

pi

K−pi+1

. (15)

The aforementioned result is based on a strong assumption that a routing strategy exists for parallel and interference-free
transmission of the packets. In Section IV, we show that sucha strategy does in fact exist for flexible networks. The preceding
discussion is a rough proof of the following Theorem:

Theorem 2. Suppose a flexible network withL servers. Then, for allQ ∈ {0, . . . ,K − L} the following(M,TC) pairs (and
the straight lines connecting them) are achievable

(M,TC) =

{(

N

K

∑L
1

pi(pi−1)
K−pi+1

∑L
1

pi

K−pi+1

,
1

∑L
1

pi

K−pi+1

F

m

)

, for all p1 + . . .+ pL = K −Q, where pi > 2

}

, (16)

and thus lead to an upper bound for the optimum coding delayD∗.

Proof: See Section IV for the proof.
In the following example, we present a network in which employing the flexible network strategy results will go beyond

earlier results and paves the way for scaling improvement inthe coding delay compared with the super-server strategy.

Example 3. Consider the network depicted in Fig. 7-(a). In this network, L (an even number) servers are connected to
K = L2/2 users viaL intermediate nodes where each intermediate node has dedicated links to all the users. We also assume:

M

N
=

2

L2

(

L

2
− 1

)

.

In order to use the super-server strategy with the tree approach proposed in [8], we need to choose an appropriate tree inside
the network. It can be easily verified that the tree illustrated in Fig. 7-(b) is the best choice. Therefore,R1, the minimum rate
of the super-server, is given by

R1 =
K(1−M/N)

1 +KM/N
F

=
L2

2 (1 −M/N)
L
2

F

= L(1−M/N)F.

The loadR2 on each server consists of those packets that are useful for at least a user which is a descendant of that server.
We know that each packet benefits a subset of users of size:

1 +
KM

N
=

L

2
.

Therefore, the ratio of packets routed on a specific edge to the total number of packets is:

R2

R1
=

∑L/2
i=1

(

L/2
i

)(L2/2−L/2
L/2−i

)

(L2/2
L/2

)

= 1−

(

1−
L/2

L2/2

)(

1−
L/2

L2/2− 1

)

. . .

(

1−
L/2

L2/2− (L/2− 1)

)

> 1−

(

1−
1

L

)
L
2

∼ 1− e−1/2,

for largeL. Thus, almost a constant number of packets generated by the server will be routed on each edge. This will result
in a delay of:

TC =
R2

m

∼
(

1− e−1/2
)

L(1−
M

N
)
F

m
(17)

time slots.
A closer look at the network topology shows that the network is indeed flexible. Settingpi = L/2 which satisfies

∑

pi = K
and using memory sizeM where

M =
N

K

∑L
1

pi(pi−1)
K−pi+1

∑L
1

pi

K−pi+1

=
N

K

(

L

2
− 1

)

=
N

L2/2

(

L

2
− 1

)

, (18)

Theorem 2 can be used to achieve the following coding delay:

TC =
1

∑L
1

pi

K−pi+1

F

m

=
F/m

L L/2
L2/2−L/2+1

=

(

1−
M

N

)

F

m
. (19)

The above delay in (19) is not only a scaling improvement compared with the super-server tree-based strategy with delay
(17), but also the optimal delay. This is due to the fact that each user can store at mostM

N F bits of each file.

The optimality of the preceding coding scheme can be generalized to any flexible network whereK is divisible byL as the
following theorem states.

Theorem 3. If K is divisible byL, then the upper bound in Theorem 2 is optimal within a multiplicative constant gap.

Proof: See Section IV for the proof.
For flexible and topologically complex networks, finding a proper routing strategy that achieves the optimal coding delay

may not be straightforward. To overcome this difficulty, internal nodes can perform simple random linear network codingwhich
is oblivious to the network’s topology. Although this strategy may not be optimal, it has the advantage of being practical and
robust. In this way, the network model reduces to a linear network model and the following theorem provides an achievable
coding delay for such networks.

Fig. 7. Example 3.

Fig. 8. Example 4:N = 4, K = 4.

Theorem 4. The coding delay for a linear network withL servers is upper bounded by a piecewise-linear curve with the
corner points

D∗(M) 6
K(1−M/N)

min(K,L+KM/N)

F

m
, (20)

whereKM/N ∈ N should be satisfied.

Proof: See Section V for the proof.
In linear networks, a packet intended for a certain number ofusers, in general, interferes with all other users. Proper pre-

coding schemes can be adopted to reduce interference in suchnetworks. Consequently, simultaneous transmission of multiple
packets will further reduce network coding delay. In order to clarify the implications of Theorem 4, we present the following
example:

Example 4 (K = 4, N = 4). Consider a network withK = N = 4. Using Theorem 4, the coding delay for anyL ∈ {1, 2, 3, 4}
is given by

TC =
4−M

min(4, L+M)

F

m
.

The above delay is plotted in Fig. 8 forL ∈ {1, 2, 3, 4}. The problem forL = 1 reduces to that of [7]. ForL = 4, we obtain

a multiplexing gain of4 by constructing four parallel interference-free links each from one server to one user (e.g. through
Singular Value Decomposition) and the optimal coding delayis achieved. Networks withL ∈ {2, 3} are interesting cases
where interference management is required to achieve the gain min(4, L +M) in the denominator. The detail of the coding
strategy is rather involved and we delegate it to AppendicesB and C.

IV. FLEXIBLE NETWORKS: DETAILS

In this section, we present an achievable scheme for the flexible networks leading to the result given in Theorem 2. We also
provide a proof for the optimality result in Theorem 3 through cut-set analysis.

For the achievability part, we need to provide the cache content placement and content delivery strategies. Let us startwith
defining the following parameters: letQ ∈ {0, . . . ,K − L} and consider an integer solution of the following equation:

p1 + . . .+ pL + pL+1 = K,

wherepL+1 = Q andpi > 2, i = 1, . . . , L. We also define

αi ,

(

K

pi − 1

)

, i = 1, . . . , L

γi ,
(K − pi)!pi!

p1! . . . pL+1!
, i = 1, . . . , L+ 1

x , 1/

L
∑

1

αiγi

xi ,
{

γix i = 1, . . . , L
0 i = L+ 1

. (21)

Cache Placement Strategy: First, split each fileWn into L sub-files

Wn =
(

W i
n : i = 1, . . . , L

)

,

whereW i
n is of sizeαixiF . Then, split each sub-fileW i

n into αi equal-sized mini-files:

W i
n =

(

W i
n,τi : τi ⊆ [K], |τi| = pi − 1

)

.

Finally, split each mini-fileW i
n,τi into γi equal-sized pico-files of sizexF bits:

W i
n,τi =

(

W i,j
n,τi : j = 1, . . . , γi

)

,

whereγi is an integer number. For each userk, we cache pico-fileW i,j
n,τi if k ∈ τi, for all possiblei, j, n. Then, the required

memory size for each user is:

M =
1

F
N

(

L
∑

i=1

(

K − 1

pi − 2

)

γixF

)

= N

∑L
i=1

(

K−1
pi−2

)

γi
∑L

i=1

(

K
pi−1

)

γi

=
N

K

∑L
i=1

pi(pi−1)
K−pi+1

∑L
i=1

pi

K−pi+1

, (22)

which is consistent with the assumptions of Theorem 2.

Content Delivery Strategy: DefineP i
1, . . . , P

i

(Kpi)
to be the collection of allpi-subsets of[K] for all i = 1, . . . L + 1. The

delivery phase consists of K!
p1!...pL+1!

transmit slots. Each transmit slot is in one-to-one correspondence with one(p1, . . . , pL+1)-
partition of [K]. Consider the transmit slot associated with the partition

{

P 1
θ1 , . . . , P

L+1
θL+1

}

,

whereθi ∈
{

1, . . . ,
(

K
pi

)

}

. Then, the serveri sends

+r∈P i
θi

W
i,N(P i

θi
)

dr ,P i
θi
\{r}

Fig. 9. Flexible network file distribution for proof of Theorem 2.

to the subset of usersP i
θi

, interference-free from other servers, where the sum is inFq and is over allr ∈ P i
θi

. Since we
have assumed a flexible network, simultaneous transmissions by all servers is feasible. Also, the indexN(P i

θi
) is chosen such

that each new transmission consists of a fresh (not transmitted earlier) pico-file. Obviously, the virtual serverL+ 1 does not
transmit any packet.

Since each pico-file consists ofx F
m symbols, at each transmission slot we should send a block of size L-by-xF

m by the
servers. Also, since this action should be performed for allK!

p1!...pL+1!
slots, the delay of this scheme will be:

Tc =
K!

p1! . . . pL+1!
× x

F

m

=
1

∑L
1

pi

K−pi+1

F

m
, (23)

as stated in Theorem 2. Consequently, if we show that throughthe aforementioned number of transmit slots all users will be
able to recover their requested files, the proof is complete.
Correctness Proof: The main theme of this scheme is to divide each file intoL sub-files, and to assign each sub-file to a
single server. Then, each server’s task is to deliver the assigned sub-files to the desired users (see Fig. 9).

Consider serveri. This server handles sub-filesW i
n, n ∈ [N] though the following delivery tasks:

W i
d1

server i
=⇒ User 1

W i
d2

server i
=⇒ User 2

...

W i
dK

server i
=⇒ User K

The above formulation leads to a single server problem [7] with files of sizeFi = αixiF bits. It can be easily verified that the
proposed cache placement strategy for each sub-file mimics that of [7] for single-server problems. Therefore, if we demonstrate
that this server is able to send a common message of sizexi

F
m symbols to allpi-subsets of users, then this server can handle

this single-server problem successfully. However, in the above scheduling scheme, the server benefits eachpi-subset of the
users by a common message of sizex F

m symbols (a pico-file size),γi times. Consequently, the total volume of common
message that this server is able to send to eachpi-subset isγi · x F

m = xi
F
m symbols.

Since by proper scheduling scheme in flexible networks all servers can perform the same task simultaneously, all requested
portions of files will be delivered. It should be noted that the portion of each file assigned to the virtual server isxL+1 = 0.
Algorithm 1 presents the pseudo-code of the procedure described above.

To prove Theorem 3, we first state the following lemma:

Algorithm 1 Multi-Server Coded Caching - Flexible Networks
1: procedure PLACEMENT(W1, . . . ,WN , p1, . . . , pL+1)
2: αi ←

(

K
pi−1

)

, i = 1, . . . , L
3: γi ← ((K − pi)!pi!)/(p1! . . . , pL+1!), i = 1, . . . , L+ 1
4: x← 1/(

∑L
1 αiγi)

5: xi ← γix, i = 1, . . . , L
6: xL+1 ← 0
7: for all n ∈ [N] do
8: split Wn into (W i

n : i = 1, . . . , L), where|W i
n| = αixi

9: for all i = 1, . . . , L do
10: split W i

n into (W i
n,τi : τi ⊂ [K], |τi| = pi − 1) of equal size

11: for all τi ⊂ [K], |τi| = pi − 1 do
12: split W i

n,τi into (W i,j
n,τi : j = 1, . . . , γi) of equal size

13: end for
14: end for
15: end for
16: for all k ∈ [K] do
17: for all i = 1, . . . , L do
18: Zk ← (W i,j

n,τi : τi ⊂ [K], |τi| = pi − 1, k ∈ τi, j = 1, . . . , γi, n ∈ [N])
19: end for
20: end for
21: end procedure
22:

23: procedure DELIVERY(W1, . . . ,WN , d1, . . . , dK , p1, . . . , pL+1)
24: for all i = 1, . . . , L do
25: for all j = 1, . . . ,

(

K
pi

)

do
26: N(P i

j)← 1
27: end for
28: end for
29: for all partitions of[K] with sizesp1, . . . , pL+1, (pi > 2, i = 1, . . . , L) do
30: {P 1

θ1
, . . . , PL+1

θL+1
} ← selected partition

31: transmit X({P 1
θ1
, . . . , PL+1

θL+1
}) =

+r∈P 1
θ1

W
1,N(P 1

θ1
)

dr,P 1
θ1

\{r}
⇒ P 1

θ1

...

+r∈PL
θL

W
L,N(PL

θL
)

dr ,PL
θL

\{r}
⇒ PL

θL

32: for all i = 1, . . . , L do
33: N(P i

θi
)← N(P i

θi
) + 1

34: end for
35: end for
36: end procedure

Lemma 1. The coding delay for a general network withL servers is lower bounded by

D∗(M) > max
s∈{1,...,K}

1

min(s, L)

(

s−
s

⌊Ns ⌋
M

)

F

m
. (24)

Proof: See Appendix A for the proof.
The above lemma can be used to prove optimality of the proposed scheme in some range of parameters. The following

corollary states the result.

Corollary 1. All (M − TC) pairs in Theorem 2 corresponding toQ = 0 are optimal. Thus, the converse line
(

1− M
N

)

F
m is

achieved forM∗ 6 M 6 N , where

M∗ = min
p1+...+pL=K

N

K

∑L
1

pi(pi−1)
K−pi+1

∑L
1

pi

K−pi+1

. (25)

Proof: Theorem 2 states that all the(M − TC) pairs in (16) are achievable. By some simple calculations one can show

that for these achievable pairs we have:
(

1−
M

N

)

F

m
=

(

1−
Q

K

)

TC . (26)

Therefore, if we putQ = 0 in Theorem 2, all the corresponding(M − TC) pairs satisfy

TC =

(

1−
M

N

)

F

m
.

On the other hand, by considering the case ofs = 1 in Lemma 1 we know that the optimal coding delay satisfies:

D∗(M) >

(

1−
M

N

)

F

m
,

which is matched to our achievable coding delay . Therefore,by settingQ = 0 in Theorem 2, for all

M =
N

K

∑L
1

pi(pi−1)
K−pi+1

∑L
1

pi

K−pi+1

, p1 + . . . , pL = K, pi > 2,

the achievable coding delay is optimum. By minimizing the cache size, over all partitionings satisfyingp1+. . . , pL = K, pi > 2,
the proof is complete.

There is an interesting intuition behind Eq. (26). In the proposed scheme for flexible networks, we assigned a subset ofQ
users to the virtual server, and all the otherK −Q users benefited from other servers. Thus, through each transmission, the
ratio K−Q

K of users will be real users. This is exactly the coefficient that shows how close is the achieved delay to the optimal
curve(1−M/N)F/m.

Finally, we are ready to prove Theorem 3. We consider two regimes for cache sizes. First , we let

M∗ =
N

K

(

K

L
− 1

)

.

In the first regime whereM > M∗, using Theorem 2 withQ = 0 andp1, . . . , pL = K
L , we obtain:

TC =

(

1−
M

N

)

F

m
.

As Corollary 1 states, for this case the optimal curve is achieved.
For the second regime whereM < M∗ (such thatKM/N ∈ N), set

Q = K −

(

KM

N
+ 1

)

L

p1, . . . , pL =
K −Q

L
=

(

KM

N
+ 1

)

.

Then, we obtain:

TC =
1

L

K(1−M/N)

1 +KM/N
.

On the other hand, from Lemma 1 we have:

D∗ > max
s∈{1,...,K}

1

min(s, L)

(

s−
s

⌊Ns ⌋
M

)

F

m

> max
s∈{1,...,K}

1

L

(

s−
s

⌊Ns ⌋
M

)

F

m

>
1

L

1

12

K(1−M/N)

1 +KM/N
,

>
1

12
TC , (27)

where the last inequality follows from [7]. This concludes the proof of Theorem 3.

Fig. 10. Example 5 (L = 2, K = 3, N = 3): Lower and upper bounds on the coding delay.

V. L INEAR NETWORKS: DETAILS

In order to explain the main concepts behind the coding strategy proposed for linear networks, we will first present a simple
example:

Example 5 (L = 2,K = 3, N = 3). In this example, we consider a network consisting ofL = 2 servers,K = 3 users, and a
library of N = 3 files, namelyW1 = A, W2 = B, andW3 = C. By definition of linear networks the input-output relationof
this network is characterized by a3-by-2 random matrixH. Lower and upper bounds for the coding delay of this setting are
shown in Fig. 10. The lower bound is due to Lemma 1 as follows:

D∗ > max

(

1−
M

3
,
3− 3M

2

)

F

m
. (28)

The upper bound is due to Theorem 4 except the achievable pair(M,TC) = (13 , 1), which will be discussed later. We have
also exploited the fact that the straight line connecting every two achievable points on theM −TC curve is also achievable, as
shown in [7]. In order to get a glimpse of the ideas of the coding strategy behind Theorem 4, next we discuss the achievable
(M,TC) pair (1, 23). In this case, as we will show, we can benefit both from the local/global caching gain (provided by cache
of each user), and the multiplexing gain (provided by multiple servers in the network). The question is how to design an
scheme so that we can exploit both gains simultaneously. In what follows we provide the solution:

Suppose that (without loss of generality) in the second phase, the first, second, and third users request filesA, B, andC
respectively. Assume that the cache content placement is similar to that of [7]: First, divide each file into three equal-sized
non-overlapping sub-files:

A = [A1, A2, A3]

B = [B1, B2, B3]

C = [C1, C2, C3].

Then, put the following contents in the cache of users:

Z1 = [A1, B1, C1]

Z2 = [A2, B2, C2]

Z3 = [A3, B3, C3].

Let L(x1, . . . , xm) be a random linear combination ofx1, . . . , xm as defined earlier. Consequently, in this strategy, the two
servers send the following transmit block:

X = [h⊥
1 L

1
1(C2, B3) + h

⊥
2 L

1
2(A3, C1) + h

⊥
3 L

1
3(A2, B1),h

⊥
1 L

2
1(C2, B3) + h

⊥
2 L

2
2(A3, C1) + h

⊥
3 L

2
3(A2, B1)]. (29)

where the random linear combination operatorL(·, ·) operates on sub-files, in an element-wise manner, andh
⊥
i is an orthogonal

vector tohi (i.e. hi.h
⊥
i = 0). Let us focus on the first user who will receive:

h1.X = [(h⊥
2 .h1)L

1
2(A3, C1) + (h⊥

3 .h1)L
1
3(A2, B1), (h

⊥
2 .h1)L

2
2(A3, C1) + (h⊥

3 .h1)L
2
3(A2, B1)]

= [L1(A2, A3, C1, B1), L
2(A2, A3, B1, C1)]. (30)

As the first user has already cachedB1 andC1 in the first phase, by subtracting the effect of interferenceterms, the first user
can recover:

[L(A2, A3), L
′(A2, A3)],

which consists of two independent (with high probability for large field sizeq) linear combinations ofA2 andA3. By solving
these independent linear equations, such user can decodeA2 andA3, and with the help ofA1 cached at the first phase, he can
recover the whole requested fileA. It can easily be verified that other users can also decode their requested files in a similar
fashion. The transmit block size indicated in (29) is2-by-2F3m , resulting inTC = 2F

3m time slots.
Let us forget about one of the servers for a moment and assume we have just one server. Then, the scheme proposed

in [7] only benefits two users per transmission through pure global caching gain. Also, in the case of two servers and no
cache memory (the aforementioned case ofM = 0), we could design an scheme which benefited only two users through
pure multiplexing gain. However, through the proposed strategy, we have designed an scheme which exploited both the global
caching and multiplexing gains such that all the three userscould take advantage from each transmission.

Finally, let us discuss the achievable pair(M,TC) = (13 , 1), where we need to adopt a different strategy. Assume we divide
each of filesA, B andC into three equal parts and fill the caches as follows:

Z1 = [A1 +B1 + C1]

Z2 = [A2 +B2 + C2]

Z3 = [A3 +B3 + C3].

Consequently, the servers transmit the following vectors:

X1 =
h
⊥
3

h1.h⊥
3

B1 +
h
⊥
2

h1.h⊥
2

C1

X2 =
h
⊥
3

h2.h⊥
3

A2 +
h
⊥
1

h2.h⊥
1

C2

X3 =
h
⊥
2

h3.h⊥
2

A3 +
h
⊥
1

h3.h⊥
1

B3. (31)

It can be easily verified that the first user receivesA2, A3, andB1 +C1. So, with the help of its cache content, it can decode
the whole fileA. Similarly, the other users can decode their requested files. As each blockXi is a2-by- F

3m matrix of symbols,
the total delay required to fulfill the users’ demands isTC = F

m time slots.

Example 4, also, discusses the coding delay for a linear network with four users. The details of the coding strategy of
Example 4, which are provided at Appendices B and C, further clarify the basic ideas behind the proposed scheme. However,
in the rest of this section, we provide the formal proof of Theorem 4.

Cache Placement Strategy: The cache content placement phase is identical to [7]: Definet , MK/N , and divide each
file into

(

K
t

)

non-overlapping sub-files as1:

Wn = (Wn,τ : τ ⊂ [K], |τ | = t) , n = 1, . . . , N,

where each sub-file consists ofF/
(

K
t

)

bits. In the first phase, we store the sub-fileWn,τ in the cache of userk if k ∈ τ .
Therefore, the total amount of cache each user needs for thisplacement is:

N
F
(

K
t

)

(

K − 1

t− 1

)

= MF

bits.
We further divide each sub-file into

(

K−t−1
L−1

)

non-overlapping equal-sized mini-files as follows:

Wn,τ =

(

W j
n,τ : j = 1, . . . ,

(

K − t− 1

L− 1

))

.

Thus, each mini-file consists ofF/
(

(

K
t

)(

K−t−1
L−1

)

)

bits.

Content Delivery Strategy: Consider an arbitrary(t+ L)-subset of users denoted byS (i.e. S ⊆ [K], |S| = t+ L). For this

1It should be noted that the definition of sub-files and mini-files here differs from that of flexible networks.

specific subsetS denote all(t+ 1)-subsets ofS by Ti, i = 1, . . . ,
(

t+L
t+1

)

(i.e. Ti ⊆ S, |Ti| = t+ 1). First, we assign aL-by-1
vectoruTi

S to eachTi such that

u
Ti

S ⊥ hj for all j ∈ S\Ti

u
Ti

S 6⊥ hj for all j ∈ Ti. (32)

The following lemma specifies the required field size such that the aforementioned condition is met with high probability:

Lemma 2. If the elements of the network transfer matrixH are uniformly and independently chosen fromFq, then we can
find vectors which satisfy (32) with high probability if:

q ≫ (t+ 1)

(

K

t+ L

)(

t+ L

t+ 1

)

. (33)

Proof: First, since the setS\T hasL− 1 elements, we requireuTi

S to be orthogonal toL− 1 arbitrary vectors, which is
feasible in anL dimensional space of any field size.

Second, the total number of non-orthogonality constraintsin (32) for all possible subsetsS is (t + 1)
(

K
t+L

)(

t+L
t+1

)

. On the
other hand, it can be easily verified that the probability that two uniformly chosen random vectors inFq are orthogonal is
1/q. Thus, by using the union bound, the probability that at least one non-orthogonality constraint in (32) is violated is upper
bounded by

(t+ 1)
(

K
t+L

)(

t+L
t+1

)

q
≪ 1,

which concludes the proof.
For eachTi define:

G(Ti) = Lr∈Ti

(

W j
dr ,Ti\{r}

)

, (34)

whereW j
dr,Ti\{r}

is a mini-file which is available in the cache of all users inTi, exceptr, and is required by userr. Also
Lr∈Ti

represents a random linear combination of the corresponding mini-files for all r ∈ Ti. Note that the indexj is chosen
such that such mini-files have not been observed in the previous (t+L)-subsets. Thus, if we defineN(r, T \{r}) as the index
of the next fresh mini-file required by userr, which is present in the cache of usersT \{r}, then we can rewrite:

G(Ti) = Lr∈Ti

(

W
N(r,Ti\{r})
dr,Ti\{r}

)

, (35)

Subsequently, we make the following definition for such(t+ L)-subsetS:

X(S) =
∑

T⊆S,|T |=t+1

u
T
SG(T). (36)

We repeat the above procedure
(

t+L−1
t

)

times for the given(t+L)-subsetS in order to derive different independent versions
of Xω(S), ω = 1, . . . ,

(

t+L−1
t

)

. In other words,Xω(S)’s only differ in the random coefficients chosen for calculating the
linear combinations in (35), which makes them independent linear combinations of the corresponding mini-files, with high
probability. Thus, to distinguish between these differentversions notationally we define:

Gω(Ti) = Lω
r∈Ti

(

W
N(r,Ti\{r})
dr ,Ti\{r}

)

,Xω(S) =
∑

T⊆S,|T |=t+1

u
T
SGω(T). (37)

Subsequently, for this(t+ L)-subsetS, the servers transmit the block
[

X1(S), . . . ,X(t+L−1

t)(S)
]

, (38)

and we updateN(r, T \{r}) for those mini-files which have appeared in the linear combinations in (35). When the above
procedure for this specific subsetS is completed, we consider another(t+L)-subset of users and do the above procedure for
that subset, and repeat this process until all(t+ L)-subsets of[K] have been taken into account.

Next, let us calculate the coding delay of this scheme, afterwhich we prove the correctness of this content delivery strategy.
For a fixed (t + L)-subsetS eachXω(S) is a L-by- F/m

(Kt)(
K−t−1

L−1)
block of symbols. Thus, the transmit block forS, i.e.

[

X1(S), . . . ,X(t+L−1

t)(S)
]

, is a L-by- F/m

(Kt)(
K−t−1

L−1)

(

t+L−1
t

)

block. Since this transmission should be repeated for all
(

K
t+L

)

(t+ L)-subsets of users, the whole transmit block size will be

L−by−

(

t+L−1
t

)

(

K
t

)(

K−t−1
L−1

)

(

K

t+ L

)

F

m
= L−by−

K(1−M/N)

L+MK/N

F

m
,

which will result in the coding delay of

TC =
K(1−M/N)

L+MK/N

F

m
(39)

time slots. Algorithm 2 shows the pseudo-code of the aforementioned procedure for linear networks.

Correctness Proof: Suppose the userk, who is interested in acquiring the fileWdk
. This file is partitioned into two parts:

1- The part already cached in this user at the first phase and constitutes of sub-files:

(Wdk,τ : τ ⊆ [K], |τ | = t, k ∈ τ) . (40)

2- Those parts which should be delivered to this user throughthe content delivery strategy, which constitutes of sub-files:

(Wdk,τ : τ ⊆ [K], |τ | = t, k 6∈ τ) . (41)

Thus, since due to the following Lemma 4, the sub-files in the second category are successfully delivered to this user through
the content delivery strategy, this user will decode the requested file. Moreover, since this user was arbitrarily chosen, all users
will similarly decode their requested files.

Before proving Lemma 4 we need another lemma which is proved first:

Lemma 3. Suppose an arbitrary subsetT ⊆ [K] such that|T | = t+1, andk ∈ T . Then, through the above content placement
and delivery strategy, userk will be able to decode the sub-fileWdk,T\{k}.

Proof: Consider those transmissions which are assigned to the(t+ L)-subsets which containT . There exist
(

K−t−1
L−1

)

of
such subsets. Let us focus on one of them, namelyS. Corresponding toS, the following transmit block is sent by the servers:

[

X1(S), . . . ,X(t+L−1

t)(S)
]

, (42)

and subsequently, userk receives:

hk.
[

X1(S), . . . ,X(t+L−1

t)(S)
]

. (43)

Let’s focus onhk.X1(S):

hk.X1(S)
(a)
= hk.

∑

T⊆S,|T |=t+1

u
T
SG1(T)

(b)
=

∑

T⊆S,|T |=t+1,k∈T

(

hk.u
T
S

)

G1(T)

(c)
=

∑

T⊆S,|T |=t+1,k∈T

(

hk.u
T
S

)

L1
r∈T (W

j
dr,T\{r}), (44)

where (a) follows from (36), (b) follows from the fact that

u
T
S ⊥ hk for all k ∈ S\T, (45)

and (c) is due to (34). In (44), userk can extractW j
dk,T\{k} from the linear combinationL1

r∈T (W
j
dr ,T\{r}), since all the

other interference terms are present at his cache. Thus, by removing interference terms, userk can carve the following linear
combination from (44):

L1
T⊆S,|T |=t+1,k∈T

(

W j
dk,T\{k}

)

,

which is a random linear combination of
(

t+L−1
t

)

mini-files desired by userk. However, since in (43) userk receives
(

t+L−1
t

)

independent random linear combinations of these mini-files, he can recover the whole set of mini-files:
(

W j
dk,T\{k} : T ⊆ S, |T | = t+ 1, k ∈ T

)

.

Thus, for theT specified in this lemma, he can recover the mini-fileW j
dk,T\{k}. Now, since there exist a total of

(

K−t−1
L−1

)

(t + L)-subsets containing this specificT , by considering the transmissions corresponding to each, this user will recover
(

K−t−1
L−1

)

distinct mini-files of formW j
dk,T\{k}. The distinctness is guaranteed by the appropriate updating of the indexN(·, ·).

These mini-files will recover the sub-fileWdk,T\{k} and the proof is concluded.

Lemma 4. Through the above content delivery strategy an arbitrary user k will be able to decode all the sub-files:

(Wdk,τ : τ ⊆ [K], |τ | = t, k 6∈ τ) . (46)

Proof: Consider an arbitraryτ ⊆ [K] such that|τ | = t, k 6∈ τ . DefineT = τ ∪ {k}. Then, since to Lemma 3, userk is
able to decodeWdk,τ . Sinceτ was chosen arbitrarily, the proof is complete.

Algorithm 2 Multi-Server Coded Caching - Linear Networks
1: procedure PLACEMENT(W1, . . . ,WN)
2: t←MK/N
3: for all n ∈ [N] do
4: split Wn into (Wn,τ : τ ⊂ [K], |τ | = t) of equal size
5: for all τ ⊂ [K], |τ | = t do
6: split Wn,τ into (W j

n,τ : j = 1, . . . ,
(

K−t−1
L−1

)

) of equal size
7: end for
8: end for
9: for all k ∈ [K] do

10: Zk ← (W j
n,τ : τ ⊂ [K], |τ | = t, k ∈ τ, j = 1, . . . ,

(

K−t−1
L−1

)

, n ∈ [N])
11: end for
12: end procedure
13:

14: procedure DELIVERY(W1, . . . ,WN , d1, . . . , dK)
15: t←MK/N
16: for all T ⊆ [K], |T | = t+ 1 do
17: for all r ∈ T do
18: N(r, T \{r})← 1
19: end for
20: end for
21: for all S ⊆ [K], |S| = t+ L do
22: for all T ⊆ S, |T | = t+ 1 do
23: DesignuT

S such that: for allj ∈ S, hj ⊥ u
T
S if j 6∈ T andhj 6⊥ u

T
S if j ∈ T

24: end for
25: for all ω = 1, . . . ,

(

t+L−1
t

)

do
26: for all T ⊆ S, |T | = t+ 1 do
27: Gω(T)← Lω

r∈T

(

W
N(r,T\{r})
dr,T\{r}

)

28: end for
29: Xω(S)←

∑

T⊆S,|T |=t+1 u
T
SGω(T)

30: end for
31: transmit X(S) =

[

X1(S), . . . ,X(t+L−1

t)(S)
]

32: for all T ⊆ S, |T | = t+ 1 do
33: for all r ∈ T do
34: N(r, T \{r})← N(r, T \{r}) + 1
35: end for
36: end for
37: end for
38: end procedure

VI. CONCLUSIONS

In this paper, we investigated coded caching in a multi-server network where servers are connected to multiple cache-
enabled clients. Based on the topology of the network, we defined three types of networks, namely, dedicated, flexible, and
linear networks. In dedicated and flexible networks, we assume that the internal nodes are aware of the network topology,and
accordingly route the data. In linear networks, we assume notopology knowledge at internal nodes, and thus, internal nodes
perform random linear network coding. We have shown that knowledge of type of network topology plays a key role in design
of proper caching mechanisms in such networks. Our results show that all network types can benefit from both caching and
multiplexing gains. In fact, in dedicated and linear networks the global caching and multiplexing gains appear in additive form.
However, in flexible networks they appear in multiplicativeform, leading to an order-optimal solution in terms of coding delay.

REFERENCES

[1] J. Kangasharju, J. Roberts, and K. Ross, “Object Replication Strategies in Content Distribution Networks,”Computer Communications, vol. 38, no. 4,
pp. 376-383, 2002.

[2] I. Baev, R. Rajaraman, and C. Swamy, “Approximation Algorithms for Data Placement Problems,”SIAM Journal on Computing, vol. 38, no. 4, pp.
1411-1429, 2008.

[3] L. W. Dowdy and D. V. Foster, “Comparative Models of the File Assignment Problem,”ACM Computing Surveys, vol. 14, no. 2, pp. 287-313, 1982.
[4] S. Podlipnig and S. Boszormenyi, “A Survey of Web Cache Replacement Strategies”,ACM Computing Surveys, vol. 35, no. 4, pp. 374-398, 2003.
[5] S. Borst, V. Gupta, and A. Walid, “Distributed Caching Algorithms for Content Distribution Networks”,Proc. of IEEE INFOCOM 2010, San Diego-CA,

March 2010, pp. 1-9.
[6] S. Gitzenis, G. S. Paschos, and L. Tassiulas, “Asymptotic Laws for Joint Content Replication and Delivery in Wireless Networks,”Proc. of IEEE INFOCOM

2012, Orlando-FL, March 2012, pp. 531-539.
[7] M. A. Maddah-Ali and U. Niesen, “Fundamental Limits of Caching,” IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856-2867, 2014.
[8] M. A. Maddah-Ali and U. Niesen, “Decentralized Caching Attains Order-Optimal Memory-Rate Tradeoff,” accepted forpublication in IEEE/ACM

Transactions on Networking, 2014.
[9] S. Y. R. Li, R. W. Yeung, and N. Cai, “Linear Network Coding,” IEEE Transactions on Information Theory, vol. 49, no. 2, pp. 371-381, 2003.
[10] S. Yang and R. W. Yeung, “Coding for a Network Coded Fountain,” Proc. of IEEE ISIT 2011, St. Petersburg, August 2011, pp. 2647-2651.
[11] M. J. Siavoshani, C. Fragouli, and S. Diggavi, “Non-Coherent Multi-Source Network Coding,”Proc. of IEEE ISIT 2011, Toronto-ON, July 2008, pp.

817-821.
[12] M. J. Siavoshani, S. Mohajer, C. Fragouli, and S. N. Diggavi, “On the Capacity of Non-Coherent Network Coding,”IEEE Transactions on Information

Theory, vol. 57, no. 2, pp. 1046-1066, 2011.
[13] D. Silva, F. R. Kschischang, and R. Kotter, “Communication Over Finite-Field Matrix Channels,”IEEE Transactions on Information Theory, vol. 56,

no. 3, pp. 1296-1305, 2010.
[14] S. Yang, S.-W. Ho, J. Meng, E.-H. Yang, and R. W. Yeung, “Linear Operator Channels Over Finite Fields,” CoRR, vol. abs/1002.2293, 2010. [Online].

Available: http://arxiv.org/abs/1002.2293
[15] Y. Chen, R. H. Katz, and J. D. Kubiatowicz, “Dynamic Replica Placement for Scalable Content Delivery,”Lecture Notes in Computer Science, vol.

2429, pp. 306-318, 2002.
[16] A. Vakali and G. Pallis, “Content Delivery Networks: Status and Trends,”IEEE Internet Computing, vol. 7, no. 6, pp. 68-74, 2003.
[17] U. Niesen and M. A. Maddah-Ali, “Coded Caching for Delay-Sensitive Content,” arXiv:1407.4489v1 [cs.IT] 16 Jul 2014.
[18] A. Das, S. Vishwanath, S. A. Jafar, and A. Markopoulou, “Network Coding for Multiple Unicasts: An Interference Alignment Approach”,Proc. of IEEE

ISIT 2011, Austin-TX, June 2010, pp. 1878-1882.
[19] C. Meng, A. Ramakrishnan, A. Markopoulou, and S. A. Jafar, “On the Feasibility of Precoding-Based Network Alignment for Three Unicast Sessions,”

Proc. of IEEE ISIT 2012, Cambridge-MA , pp. 1907-1911.
[20] C. Meng, A. Das, A. Ramakrishnan, S. A. Jafar, A. Markopoulou, and S. Vishwanath, “Precoding-Based Network Alignment for Three Unicast Sessions,”

May 2013, e-print ArXiv:1305.0868.
[21] M. Sharif and B. Hassibi, “On the Capacity of MIMO Broadcast Channels With Partial Side Information”IEEE Transactions on Information Theory,

vol. 51, no. 2, pp. 506-522, 2005.

Fig. 11. Converse Proof.

APPENDIX A: CONVERSEPROOF

The proof is similar to the cut-set method presented in [7]. See Fig. 11 and let us concentrate on the firsts users. Define
X1 to be the transmit block sent by the servers such that these users, with the help of their cache contentsZ1, . . . , Zs, will be
able to decodeW1, . . . ,Ws. Also, defineX2 to be the block which enables the users to decodeWs+1, . . . ,W2s, and continue
the same process such thatX⌊N/s⌋ is the block which enables the users to decodeWs⌊N/s⌋−s+1, . . . ,Ws⌊N/s⌋. Also, defineR
to be the maximum information needed to pass through the two cuts shown in the figure, by each transmit block transmission.
Then we will have:

s⌊
N

s
⌋F 6 ⌊

N

s
⌋R+ sMF,

which will result in

R >

(

s−
s

⌊Ns ⌋
M

)

F.

However, we have:

D∗(M) >
R

min− cut

>
R

min(s, L)m

>
1

min(s, L)

(

s−
s

⌊Ns ⌋
M

)

F

m
. (47)

Now we can maximize on the free parameters to arrive at the tightest bound, which concludes the proof.

APPENDIX B: DETAILS OF EXAMPLE 4 (L = 2, N = 4,K = 4)

In this appendix, we consider the scenario in Example 4 for the case of two servers. For each memory sizeM = 0, . . . , 4,
we present the scheme which achieves the coding delay as stated in Example 4.

• M = 0
In this case, we do not have any cache space available at the users. Suppose we divide each file into three equal-sized
non-overlapping parts:

A = [A1, A2, A3]

B = [B1, B2, B3]

C = [C1, C2, C3]

D = [D1, D2, D3].

Then, the servers transmit the following blocks, in sequence:

X({1, 2}) = h
⊥
1 B

1 + h
⊥
2 A

1

X({1, 3}) = h
⊥
1 C

1 + h
⊥
3 A

2

X({1, 4}) = h
⊥
1 D

1 + h
⊥
4 A

3

X({2, 3}) = h
⊥
2 C

2 + h
⊥
3 B

2

X({2, 4}) = h
⊥
2 D

2 + h
⊥
4 B

3

X({3, 4}) = h
⊥
3 D

3 + h
⊥
4 C

3. (48)

Let’s focus on the first user which receives:

h1.X({1, 2}) = (h1.h
⊥
2)A

1

h1.X({1, 3}) = (h1.h
⊥
3)A

2

h1.X({1, 4}) = (h1.h
⊥
4)A

3.

From the above data, this user can recover the whole fileA. Similarly, other users can decode their requested files.
The transmission stated in (48) consists of six blocks of size 2-by- F

3m , resulting in a coding delay ofTC = 6 F
3m = 2 F

m .
• M = 1

Consider the cache content placement used in [7]: First divide each file into4 equal-sized non-overlapping sub-files:

A = [A1, A2, A3, A4]

B = [B1, B2, B3, B4]

C = [C1, C2, C3, C4]

D = [D1, D2, D3, D4],

and then, fill the caches as follows:

Z1 = [A1, B1, C1, D1]

Z2 = [A2, B2, C2, D2]

Z3 = [A3, B3, C3, D3]

Z4 = [A4, B4, C4, D4].

Such placement respects the memory constraint ofM = 1. Also, divide each sub-file into two equal parts of size1
2
F
4 = F

8
bits:

Ai = [A1
i , A

2
i],

Bi = [B1
i , B

2
i],

Ci = [C1
i , C

2
i],

Di = [D1
i , D

2
i],

wherei = 1, 2, 3, 4. In the second phase, we send the following blocks of size2-by-F4 bits:

X({1, 2, 3}) = [h⊥
1 L

1
{2,3}(B

1
3 , C

1
2) + h

⊥
2 L

1
{1,3}(A

1
3, C

1
1) + h

⊥
3 L

1
{1,2}(A

1
2, B

1
1),

h
⊥
1 L

2
{2,3}(B

1
3 , C

1
2) + h

⊥
2 L

2
{1,3}(A

1
3, C

1
1) + h

⊥
3 L

2
{1,2}(A

1
2, B

1
1)]

X({1, 2, 4}) = [h⊥
1 L

1
{2,4}(B

1
4 , D

1
2) + h

⊥
2 L

1
{1.4}(A

1
4, D

1
1) + h

⊥
4 L

1
{1,2}(A

2
2, B

2
1),

h
⊥
1 L

2
{2,4}(B

1
4 , D

1
2) + h

⊥
2 L

2
{1,4}(A

1
4, D

1
1) + h

⊥
4 L

2
{1,2}(A

2
2, B

2
1)]

X({1, 3, 4}) = [h⊥
1 L

1
{3,4}(C

1
4 , D

1
3) + h

⊥
3 L

1
{1,4}(A

2
4, D

2
1) + h

⊥
4 L

1
{1,3}(A

2
3, C

2
1),

h
⊥
1 L

2
{3,4}(C

1
4 , D

1
3) + h

⊥
3 L

2
{1,4}(A

2
4, D

2
1) + h

⊥
4 L

2
{1,3}(A

2
3, C

2
1)]

X({2, 3, 4}) = [h⊥
2 L

1
{3,4}(C

2
4 , D

2
3) + h

⊥
3 L

1
{2,4}(B

2
4 , D

2
2) + h

⊥
4 L

1
{2,3}(B

2
3 , C

2
2),

h
⊥
2 L

2
{3,4}(C

2
4 , D

2
3) + h

⊥
3 L

2
{2,4}(B

2
4 , D

2
2) + h

⊥
4 L

2
{2,3}(B

2
3 , C

2
2)].

(49)

Let’s focus on the first user. From the above transmissions herecovers:

h1.X({1, 2, 3}) = [(h1.h
⊥
2)L

1
{1,3}(A

1
3, C

1
1) + (h1.h

⊥
3)L

1
{1,2}(A

1
2, B

1
1),

(h1.h
⊥
2)L

2
{1,3}(A

1
3, C

1
1) + (h1.h

⊥
3)L

2
{1,2}(A

1
2, B

1
1)]

= [L1(A1
3, C

1
1 , A

1
2, B

1
1), L

2(A1
3, C

1
1 , A

1
2, B

1
1)]

h1.X({1, 2, 4}) = [(h1.h
⊥
2)L

1
{1,4}(A

1
4, D

1
1) + (h1.h

⊥
4)L

1
{1,2}(A

2
2, B

2
1),

(h1.h
⊥
2)L

2
{1,4}(A

1
4, D

1
1) + (h1.h

⊥
4)L

2
{1,2}(A

2
2, B

2
1)]

= [L1(A1
4, D

1
1 , A

2
2, B

2
1), L

2(A1
4, D

1
1, A

2
2, B

2
1)]

h1.X({1, 3, 4}) = [(h1.h
⊥
3)L

1
{1,4}(A

2
4, D

2
1) + (h1.h

⊥
4)L

1
{1,3}(A

2
3, C

2
1),

(h1.h
⊥
3)L

2
{1,4}(A

2
4, D

2
1) + (h1.h

⊥
4)L

2
{1,3}(A

2
3, C

2
1)]

= [L1(A2
4, D

2
1 , A

2
3, C

2
1), L

2(A2
4, D

2
1, A

2
3, C

2
1)].

(50)

(Although user 1 also receivesh1.X({2, 3, 4}), such information is of no value to him.) With the help of its cache contents
the first user can eliminate the undesired terms and obtain:

[L(A1
3, A

1
2), L

′(A1
3, A

1
2)]→ A1

3, A
1
2

[L(A1
4, A

2
2), L

′(A1
4, A

2
2)]→ A1

4, A
2
2

[L(A2
4, A

2
3), L

′(A2
4, A

2
3)]→ A2

4, A
2
3.

SinceA1
1 and A2

1 is already available in first user’s cache location, he can subsequently recover the whole blockA.
Similarly, all other users can recover their requested files.
The transmission scheme adopted in (49) consists of four2-by- F

4m blocks which will result in the coding delayTC =
4 F
4m = F

m time slots.
• M = 2

Consider the cache content placement used in [7]: First divide each file into6 equal-sized non-overlapping sub-files:

A = [A1, A2, A3, A4, A5, A6]

B = [B1, B2, B3, B4, B5, B6]

C = [C1, C2, C3, C4, C5, C6]

D = [D1, D2, D3, D4, D5, D6],

and then, fill the caches as follows:

Z1 = [A1, A2, A3, B1, B2, B3, C1, C2, C3, D1, D2, D3]

Z2 = [A1, A4, A5, B1, B4, B5, C1, C4, C5, D1, D4, D5]

Z3 = [A2, A4, A6, B2, B4, B6, C2, C4, C6, D2, D4, D6]

Z4 = [A3, A5, A6, B3, B5, B6, C3, C5, C6, D3, D5, D6].

In the second phase, we send the following block of symbols ofsize2-by- F
2m :

X = [h
⊥
1 L

1
{2,3,4}(B6, C5, D4) + h

⊥
2 L

1
{1,3,4}(A6, C3, D2) + h

⊥
3 L

1
{1,2,4}(A5, B3, D1) + h

⊥
4 L

1
{1,2,3}(A4, B2, C1),

h
⊥
1 L

2
{2,3,4}(B6, C5, D4) + h

⊥
2 L

2
{1,3,4}(A6, C3, D2) + h

⊥
3 L

2
{1,2,4}(A5, B3, D1) + h

⊥
4 L

2
{1,2,3}(A4, B2, C1),

h
⊥
1 L

3
{2,3,4}(B6, C5, D4) + h

⊥
2 L

3
{1,3,4}(A6, C3, D2) + h

⊥
3 L

3
{1,2,4}(A5, B3, D1) + h

⊥
4 L

3
{1,2,3}(A4, B2, C1)].

(51)

Let’s focus on the first user who receives:

[L1(A4, A5, A6, B2, B3, C1, C3, D1, D2),

L2(A4, A5, A6, B2, B3, C1, C3, D1, D2),

L3(A4, A5, A6, B2, B3, C1, C3, D1, D2)].

This user also has the unwanted termsB2, B3, C1, C3, D1, D2 in his cache, and after removing them from above linear
combinations he has three different linear combinations ofits required termsA4, A5, andA6. After solving these equations,
and with the help ofA1, A2, andA3 stored in his cache, he can recover the whole fileA. Similarly the other users are
able to decode their required files.
The transmit block stated in (51) is of size2-by- F

2m vector, resulting inTC = 1
2
F
m time slots.

• M = 3
In this case, by the scheme proposed in [7], all four users canget useful information through a single transmission from a
single server. Thus, we cannot further reduce the delay by activating the other server. Thus, by activating just one server
and based on [7] a coding delay ofTC = 1

4
F
m time slots is obtained.

• M = 4
In the case ofM = 4, all four files can be stored in the cache of each user, and the required delivery delay in the second
phase is zeroTC = 0.

APPENDIX C: DETAILS OF EXAMPLE 4 (L = 3, N = 4,K = 4)

In this example, we consider the three server case in Example4, and for all values ofM = 0, . . . , 4 present the schemes
that lead to achievable rates.

• M = 0
In this case, we do not have any cache space available at the user locations. Suppose we divide each file into three
equal-sized non-overlapping parts:

A = [A1, A2, A3]

B = [B1, B2, B3]

C = [C1, C2, C3]

D = [D1, D2, D3].

The three servers can then send the following3-by-1 vectors:

X({1, 2, 3}) = u
{1}
{1,2,3}A

1 + u
{2}
{1,2,3}B

1 + u
{3}
{1,2,3}C

1

X({1, 2, 4}) = u
{1}
{1,2,4}A

2 + u
{2}
{1,2,4}B

2 + u
{4}
{1,2,4}D

1

X({1, 3, 4}) = u
{1}
{1,3,4}A

3 + u
{3}
{1,3,4}C

2 + u
{4}
{1,3,4}D

2

X({2, 3, 4}) = u
{2}
{2,3,4}B

3 + u
{3}
{2,3,4}C

3 + u
{4}
{2,3,4}D

3, (52)

where we require

u
T
S ⊥ hj , ∀hj ∈ S\T

u
T
S 6⊥ hj , ∀hj ∈ T. (53)

In this example, since we have three dimensional transmit vectors (three servers) and|S\T | = 2, such vectors can be
found.
Let’s focus on the first user who receives:

h1.X({1, 2, 3}) =
(

h1.u
{1}
{1,2,3}

)

A1 +
(

h1.u
{2}
{1,2,3}

)

B1 +
(

h1.u
{3}
{1,2,3}

)

C1 =
(

h1.u
{1}
{1,2,3}

)

A1

h1.X({1, 2, 4}) =
(

h1.u
{1}
{1,2,4}

)

A2 +
(

h1.u
{2}
{1,2,4}

)

B2 +
(

h1.u
{4}
{1,2,4}

)

D1 =
(

h1.u
{1}
{1,2,4}

)

A2

h1.X({1, 3, 4}) =
(

h1.u
{1}
{1,3,4}

)

A3 +
(

h1.u
{3}
{1,3,4}

)

C2 +
(

h1.u
{4}
{1,3,4}

)

D2 =
(

h1.u
{1}
{1,3,4}

)

A3. (54)

The first user can then successfully decode its requested file. Similarly, the other users will also be able to decode their
requested files.
The transmission stated in (52) consists of four3-by- F

3m blocks, resulting inTC = 4F
3m time slots.

• M = 1
The cache content placement is the same as [7]. Then, the transmit block by the three servers is:

X = [X1,X2,X3], (55)

where (forω = 1, 2, 3)

Xω = u
{1,2}
{1,2,3,4}L

ω
{1,2}(A2, B1) + u

{1,3}
{1,2,3,4}L

ω
{1,3}(A3, C1) + u

{1,4}
{1,2,3,4}L

ω
{1,4}(A4, D1)

+ u
{2,3}
{1,2,3,4}L

ω
{2,3}(B3, C2) + u

{2,4}
{1,2,3,4}L

ω
{2,4}(B4, D2) + u

{3,4}
{1,2,3,4}L

ω
{3,4}(C4, D3). (56)

Now let’s focus on the first user who receives:

y1 = h1.X = [h1.X1,h1.X2,h1.X3]. (57)

Let’s consider first the term:

h1.X1 =
(

h1.u
{1,2}
{1,2,3,4}

)

L1
{1,2}(A2, B1) +

(

h1.u
{1,3}
{1,2,3,4}

)

L1
{1,3}(A3, C1) +

(

h1.u
{1,4}
{1,2,3,4}

)

L1
{1,4}(A4, D1)

+
(

h1.u
{2,3}
{1,2,3,4}

)

L1
{2,3}(B3, C2) +

(

h1.u
{2,4}
{1,2,3,4}

)

L1
{2,4}(B4, D2) +

(

h1.u
{3,4}
{1,2,3,4}

)

L1
{3,4}(C4, D3)

=
(

h1.u
{1,2}
{1,2,3,4}

)

L1
{1,2}(A2, B1) +

(

h1.u
{1,3}
{1,2,3,4}

)

L1
{1,3}(A3, C1) +

(

h1.u
{1,4}
{1,2,3,4}

)

L1
{1,4}(A4, D1)

= L1(A2, A3, A4, C1, B1, D1). (58)

As this user has cachedB1, C1, D1 in the first phase, it can remove these terms from this linear combination to obtain

L(A2, A3, A4).

Thus, user1 can recover a linear combination of its requested sub-files from h1.X1. From,h1.X2 andh1.X3 he can
obtain two other independent linear combinations from which he can recover all three subfilesA2, A3, A4. Since he
already hasA1 in his cache, he can decode the wholeA file. Similarly, all the other users can also decode their requested
files.
The transmit block stated in (55) consists of one3-by-3F4m vectors, resulting inTC = 3

4
F
m time slots.

• M = 2 In this case, we only activate two of the servers and thus the problem reduces to the case withL = 2, N = 4,K = 4
for which we achievedTC = 1

2
F
m .

• M = 3 In this case, we only activate one server and thus the problemreduces to [7] withTC = 1
4
F
m .

• M = 4 In this case we haveTC = 0.

	I Introduction
	II Model and Assumptions
	III Main Results: Review and Discussion
	IV Flexible Networks: Details
	V Linear Networks: Details
	VI Conclusions
	References

