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New bounds on the number of tests for disjunct
matrices

Chong Shangguan and Gennian Ge

Abstract—Given n items with at most d of which being
positive, instead of testing these items individually, thetheory
of combinatorial group testing aims to identify all positive
items using as few tests as possible. This paper is devoted to
a fundamental and thirty-year-old problem in the nonadaptive
group testing theory. A binary matrix is called d-disjunct if the
boolean sum of arbitrary d columns does not contain another
column not in this collection. Let T (d) denote the minimal t
such that there exists at × n d-disjunct matrix with n > t.
T (d) can also be viewed as the minimalt such that there exists
a nonadaptive group testing scheme which is better than the
trivial one that tests each item individually. It was known that
T (d) ≥

(

d+2

2

)

and was conjectured thatT (d) ≥ (d+ 1)2. In this
paper we narrow the gap by provingT (d)/d2 ≥ (15+

√
33)/24,

a quantity in [6/7,7/8].

Index Terms—nonadaptive group testing, disjunct matrix,
graph matching number.

I. I NTRODUCTION

Given n items with at mostd of which being positive,
instead of testing these items individually, the theory of
combinatorial group testing aims to identify all positive items
using as few tests as possible. Its history can date back to
World War II when the biologists needed to identify people
with syphilitic antigen from a large population. The idea was
first introduced by Dorfman for testing blood samples [7].
Since then, the theory of group testing has been extensively
studied due to its many applications in a variety of fields, such
as chemical leak testing [22], electric shorting detection[4],
multi-access channel communication [1], [23], DNA screening
[9], pattern finding [20] and recently, network security [24].

Assume each of then items is associated with an undeter-
mined binary status, positive (used to be called defective)or
negative (used to be called pure). A test can be viewed as a
subset of the items. The outcome of a test is1 (positive) when-
ever it contains a positive item and0 (negative) otherwise. The
problem is to identify all positive items. Our strategy is that
we group the items into several tests. In each test, a positive
outcome indicates that at least one of the items included in
this test is positive and a negative outcome indicates that all
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items included are negative. Usually the number of positive
items is bounded by a positive integerd. To find this specified
subset, one can trivially test every item individually and in this
way n tests are needed, which will be a waste ifd is much
smaller thann. On the other hand the information-theoretic
bound suggests that at leastlog

∑d

i=0

(

n
i

)

≈ d log n
d

tests are
needed. There is a huge gap betweenn and d log n

d
, so we

should carefully design our testing algorithms.
In general there are two types of algorithms, namely,

adaptive (sequential) or nonadaptive. An adaptive algorithm is
designed to several rounds and the later tests are allowed touse
the outcomes of all previous ones. Conversely, a nonadaptive
algorithm carries out all tests simultaneously and all positive
items should be identified in a single round. The adaptive
algorithms inherently require fewer tests than the nonadaptive
ones since more information can be used. Asymptotically, for
a nonadaptive group testing scheme, the known bounds show
that at leastΩ( d2

log d
logn) tests are needed [10], [17], [21]. But

for the adaptive setting, there exist algorithms with as small as
O(d log n) tests, optimal up to a constant factor [6]. However,
the nonadaptive algorithms have their own advantages. They
are time-saving and are encouraged in the applications that
time is the most emergent issue, such as DNA screening and
network security.

The application of nonadaptive group testing into molecular
biology, especially in the design of screening experiment,has
been extensively studied during the last twenty years. The
readers are referred to the comprehensive book of Du and
Hwang [9] for more detailed information. Recently, Xuan
et. al. [24] have found that the idea of group testing can
be adapted naturally to network security. In the simplest
attack scenario there aren clients connecting tot servers
and amongn clients, there ared attackers. Just like the
detecting of positive response in a single test, once an attacker
starts attacking a server, the resources of this server willbe
exhausted dramatically. So it is not hard to identify which
server is a victim. In the security setting the nonadaptive group
testing attracts more attention since it is very important to
detect the defective items as soon as possible before they cause
great damage to the whole network.

A nonadaptive group testing scheme can be represented as
a t × n boolean matrixM whose rows are indexed by the
tests and whose columns are indexed by the items, in which
M(i, j) = 1 if the j-item is contained in thei-th test and 0
otherwise. The matrixM is often designed to be a disjunct
matrix. The notion of “disjunctness” was introduced by Kautz
and Singleton [19] when they were studying some important
problems in information retrieval system. Later Erdős, Frankl
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and Füredi [14] introduced a combinatorial object named as
“cover-free family”, whose incidence matrix was exactly a
disjunct matrix. We say a matrix isd-disjunct if the boolean
sum of anyd columns does not contain any other column. In
other words, a matrix isd-disjunct if for anyd + 1 columns
indexed byc1, . . . , cd+1 and for everyj = 1, . . . , d+1, there
must exist a row that has exactly one 1 in thecj-th position
and zeros in the other positions. It is not very difficult to
see that ad-disjunct matrix gives a nonadaptive group testing
scheme that identifies any positive set up to sized. On the other
hand any nonadaptive group testing scheme that identifies any
positive set up to sized must also be a(d−1)-disjunct matrix
[8]. Denotet(d, n) the minimalt such that at× n d-disjunct
matrix exists. The recent results of D’yachkov et. al. [12],[13]
showed that the following bounds hold asymptotically

d2 logn

2 log d
(1 + o(1)) ≤ t(d, n) ≤ e2d2 logn

4 log d
(1 + o(1)).

For generaln, it holds thatt(d, n) ≥ min{
(

d+2
2

)

, n}, which
was attributed to Bassalygo by D’yachkov and Rykov [11].
This bound implies that ifn ≤

(

d+2
2

)

then nod-disjunct algo-
rithm is superior to the trivial algorithm that tests every item
individually. An interesting problem is suggested by the above
result: givend, when does there exist ad-disjunct algorithm
better than the trivial one? It is equivalent to ask: givend, what
is the minimalt such that there exists at×n d-disjunct matrix
with n ≥ t + 1. Denote this minimalt by T (d). Obviously,
we haveT (d) ≥

(

d+2
2

)

andt(d, n) ≥ min{T (d), n}. In 1985,
Erdös, Frankl and Füredi conjectured that [14]

lim
d→∞

T (d)/d2 = 1 (weaker version),

T (d) ≥ (d+ 1)2 (stronger version),

and they stated without proof that the stronger version holds
for d ≤ 3 and limd→∞ T (d)/d2 ≥ 5/6. Note that the
incidence matrix of an affine plane of orderd + 1 is a
(d+1)2× ((d+1)2+(d+1)) d-disjunct matrix with constant
column weightd+1. And an affine plane of orderd+1 exists if
d+1 is a prime power [2]. This implieslimd→∞ T (d)/d2 ≤ 1
andT (d) ≤ (d+1)2 whend+1 is a prime power. Later, Huang
and Hwang [18] proved the stronger version ford = 4, while
Chen and Hwang [5] ford = 5. In this paper, based on a
graph matching theorem of Erdős and Gallai [15], we show
that T (d) ≥ 15+

√
33

24 d2 by counting the number of specified
substructures contained in the columns of the matrix. Our
result significantly improves the previous ones. It is also worth
mentioning that disjunct matrices with constant column weight
are of particular interest in the framework of DNA screening
[9]. In the thesis of Chee [3], the author considered the
above conjecture ford-disjunct matrix with constant column
weightd+1 and the problem was not completely settled (see,
Theorem 5.3.1 of [3]). By an easy counting argument we will
verify the conjecture under this constant weight constraint.

Our main results are presented as follows.

Theorem I.1. SupposeM is a t × n d-disjunct matrix with
constant column weightd+ 1. If n > t, thent ≥ (d+ 1)2.

Theorem I.2. SupposeM is a t × n d-disjunct matrix. If
n > t, then it holds thatt ≥ 15+

√
33

24 d2.

The rest of this paper is organised as follows. In Section
2 we will prove Theorem I.1 and in Section 3 we will prove
Theorem I.2. We conclude this paper in Section 4.

II. A SIMPLE BOUND FOR CONSTANT WEIGHT MATRIX

For a t × n binary matrixM , 1s and 0s can represent the
incidence structure of a corresponding set system. LetT =
{1, . . . , t} be a set oft elements and letF = {F1, . . . , Fn} ⊆
2T be a collection of subsets ofT . ThenM can be viewed
as the incidence matrix of(T,F) such that for all1 ≤ i ≤ t,
1 ≤ j ≤ n, i ∈ Fj if and only if M(i, j) = 1. We can simply
replace the setFj by the columncj , then we just writei ∈ cj
if M(i, j) = 1, which also indicates that rowi is contained in
column cj . A column of M is called isolated if there exists
a row incident to it but not to any other column. IfM is d-
disjunct and has an isolated columnc, then by deletingc and
the isolated row contained in it we get a(t − 1) × (n − 1)
matrix M ′ which maintains thed-disjunctness. Thenn > t
holds for the original matrixM is equivalent ton− 1 > t− 1
holds for the new matrixM ′. By the definition ofT (d), the
minimal t satisfying(n − 1) > (t − 1) is at leastT (d) + 1.
We can summarise this observation as the following lemma.

Lemma II.1. SupposeM is a t×n d-disjunct matrix with an
isolated columnc. If n > t, thent > T (d).

Proof: Deleting columnc and the corresponding isolated
rows yields a(t − rc) × (n − 1) d-disjunct matrix, where
rc ≥ 1 is the number of isolated rows contained inc. Then
by the definition ofT (d) we havet − rc ≥ T (d) and hence
t ≥ T (d) + rc sincen− 1 > t− rc.

Therefore, to determineT (d) we only need to consider the
matrices with no isolated columns. The weight of a column
c, denoted as|c|, is defined to be the number of 1s contained
in it. One can see that a non-isolated column in ad-disjunct
matrix has weight at leastd + 1, since any 1 in this column
is contained in some other columns. So for a matrix with
no isolated columns, the minimal weight of the columns is
at leastd + 1. Theorem I.1 establishes the validity for the
stronger version of the conjecture in the simplest case, i.e.,
the d-disjunct matrix being considered is of constant column
weight d+ 1.

We present the proof of Theorem I.1 as follows.
Proof of Theorem I.1: We can always assume thatM

has no isolated columns by Lemma II.1. Then for arbitrary
two distinct columnsc, c′ it is easy to see|c∩ c′| ≤ 1. Denote
C(i) as the collection of columns that has a 1 in thei-th row.
By counting the number of 1s in the whole matrix we get
∑t

i=1 |C(i)| = n(d + 1) ≥ (t + 1)(d + 1). Therefore, there
exists some1 ≤ i0 ≤ t such that|C(i0)| ≥ ⌈ (d+1)(t+1)

t
⌉ ≥

d+2. Note thatc∩c′ = {i0} holds for all distinctc, c′ ∈ C(i0),
then the theorem follows fromt ≥ | ∨c∈C(i0) c| = 1 + (d +
2)d = (d+1)2, where∨ denotes the boolean sum (the union)
of the columns.
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III. A GENERAL BOUND FORT (d)

SupposeK is a k-element set, we use
(

K
λ

)

to denote the
collection of all λ-element subsets ofK, where1 ≤ λ ≤ k
is a positive integer. LetG ⊆

(

K
λ

)

be a family ofλ-element
subsets ofK. The matching numberv(G) is defined to be the
maximum number of pairwise disjoint members ofG. One of
the classical problems of extremal set theory is to determine
max |G| for fixed v(K). Definem(k, λ, µ) = max{|G| : G ⊆
(

K
λ

)

, |K| = k, v(G) ≤ µ}. In 1959, Erdős and Gallai [15]
determinedm(k, λ, µ) for λ = 2 (see, Theorem 4.1 of [15])

Lemma III.1. ([15]) m(k, 2, µ) ≤ max{
(

2µ+1
2

)

,
(

k
2

)

−
(

k−µ
2

)

}
for k ≥ 2µ+ 1.

A very important notion in studying disjunct matrix is
“privateness”, which was introduced as “own part” in [14].
For a given matrixM , a subset of{1, . . . , t} is private if
it belongs to a unique column. On the contrary, a subset of
{1, . . . , t} is called non-private if it belongs to at least two
columns. When proving Theorem I.1, we actually consider
the private 1-subsets since a column is isolated if and only if
it contains a private 1-subset. In order to establish our general
bound, we investigate the properties of private 2-subsets.More
precisely, a lower bound for the number of private 2-subsets
that a column must contain is obtained. For a columnc, denote
P (c) = {T ⊆ {1, . . . , t} : |T | = 2, T ⊆ c and T is private}
as the collection of private 2-subsets contained inc and denote
N(c) as the collection of non-private 2-subsets contained in
c. If column c has weightk, then

(

k
2

)

= |P (c)|+ |N(c)| since
P (c) andN(c) partition all 2-subsets ofc. The lemma below
presents an upper bound for the size ofN(c).

Lemma III.2. SupposeM is a t×n d-disjunct matrix with no
isolated columns. Then for any arbitrary columnc satisfying
|c| = d + s, where1 ≤ s ≤ d − 1, it holds that |N(c)| ≤
m(d+ s, 2, s− 1) ≤ max{

(

2s−1
2

)

,
(

d+s
2

)

−
(

d+1
2

)

}.

Proof: It suffices to showN(c) does not contains pair-
wise disjoint members. If otherwise, the left(d+s)−2s = d−s
1s of c is contained in the union of somed − s columns of
M sincec has no private 1-subsets. Thenc is contained in the
union of somes + (d − s) = d columns, which violates the
d-disjunct property.

For s ≥ 1, by direct computation one can verify the
following formula holds

max{
(

2s− 1

2

)

,

(

d+ s

2

)

−
(

d+ 1

2

)

}

=

{

(

d+s
2

)

−
(

d+1
2

)

, s ≤ 2
3d+

2
3 ,

(

2s−1
2

)

, s ≥ 2
3d+

2
3 .

(1)

One more lemma is needed to prove Theorem I.2.

Lemma III.3. SupposeM is a t×n d-disjunct matrix. Assume
c is an arbitrary column ofM with weightwc, then deleting
c and all rows intersecting it yields a(t − wc) × (n − 1)
(d− 1)-disjunct matrix.

Proof: See Lemma 2.2.2 of [9].
Proof of Theorem I.2: Again, we can assume thatM

has no isolated columns by Lemma II.1. Then the minimal

column weight ofM is at leastd+1. We will apply induction
ond to prove the theorem. Our statement is true for1 ≤ d ≤ 5
by previous results. Assume the statement is true ford − 1.
Let c be the column with the largest column weight and for
the sake of simplicity, denoteκ = (15 +

√
33)/24. Then our

goal is to provet ≥ κd2. The proof can be divided into two
cases:

Case 1.|c| ≥ ⌈2κd⌉. By Lemma III.3, deletingc and all
rows intersecting it we get a(t − |c|) × (n − 1) (d − 1)-
disjunct matrix. Obviously,n−1 > t−|c| sincen > t. By the
induction hypothesis we can deduce thatt ≥ |c|+κ(d−1)2 ≥
2κd+ κ(d− 1)2 ≥ κd2.

Case 2.|c| ≤ ⌊2κd⌋. Then every column ofM has weight
at most⌊2κd⌋. Fix a columnu with |u| = d + s, where1 ≤
s ≤ (2κ−1)d. Let us estimate the number of private 2-subsets
contained inu. On one hand, if|u| ≤ 5d

3 + 2
3 , then by the first

formula of (1) we have|P (c)| =
(

d+s
2

)

− |N(c)| ≥
(

d+1
2

)

.
On the other hand, if|u| > 5d

3 + 2
3 , then2d/3 ≤ s ≤ (2κ−

1)d, by the second formula of (1) we have|P (c)| ≥
(

d+s
2

)

−
(

2s−1
2

)

≥ (d2 +2ds− 3s2)/2 ≥ (3κ− 1)(2− 2κ)d2 = κd2/2.
Note that|P (c)| ≥ κd2/2 holds in both cases sinceκ < 1.
Then the statement follows from the fact that the number of
private 2-subsets in{1, . . . , t} can not exceed

(

t
2

)

, i.e.,
(

t
2

)

≥
∑

c |P (c)| ≥ n× κd2/2 ≥ (t+ 1)κd2/2.
The following result is straightforward.

Corollary III.4. Denotet(d, n) the minimalt such that there
exists at× n d-disjunct matrix. Then it holds thatt(d, n) ≥
min{ 15+

√
33

24 d2, n}.

Proof: The corollary holds sincet(d, n) ≥ min{T (d), n}.

Through a similar argument to that of Theorem I.2, one can
prove the following corollary.

Corollary III.5. SupposeM is a t × n d-disjunct matrix. If
n > t and for every columnc of M , there is|c| ≤ ⌊ 5d

3 ⌋. Then
it holds thatt > d2 + d+ 1.

Proof: By (1) we have|P (c)| ≥
(

d+1
2

)

for every non-
isolated columnc. Then the conclusion follows from

(

t
2

)

≥
∑

c |P (c)| ≥ n
(

d+1
2

)

≥ (t+ 1)
(

d+1
2

)

.

IV. CONCLUDING REMARKS

In this paper we consider the lower bound of the minimal
t when there exists at × n d-disjunct matrix withn > t,
and our new bound improves the previous results significantly.
The novelty of our method is that we consider the properties of
private 2-subsets of the given disjunct matrix and apply a graph
matching theorem of Erdős and Gallai [15]. A natural idea to
generalize our method is to consider larger private subsetsand
then a hypergraph version of matching theorem will be needed
[16]. It will be interesting if someone can improve our results
in this way.
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Combin. Theory Ser. A, vol. 120, no. 5, pp. 1068–1072, 2013. [Online].
Available: http://dx.doi.org/10.1016/j.jcta.2013.01.008
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