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New bounds on the number of tests for disjunct
matrices
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Abstract—Given n items with at most d of which being items included are negative. Usually the number of positive
positive, instead of testing these items individually, thetheory jtems is bounded by a positive integérTo find this specified

of combinatorial group testing aims to identify all positive g hqat one can trivially test every item individually andtiis
items using as few tests as possible. This paper is devoted to

a fundamental and thirty-year-old problem in the nonadaptive way n tests are needed, which will be g Waste;{ifs much .
group testing theory. A binary matrix is called d_disjunct if the Sma”er thal’m. On the Other ha.nd the |nf0rmat|0n'theoret|c

boolean sum of arbitrary d columns does not contain another bound suggests that at ledsg Z?:o (’;) ~ dlog % tests are
column not in this collection. Let 7'(d) denote the minimalt needed. There is a huge gap betweeand dlog Z, so we
such that there exists at x n d-disjunct matrix with n > t.  g5y1d carefully design our testing algorithms.

T'(d) can also be viewed as the minimail such that there exists .

a nonadaptive group testing scheme which is better than the In Qe”era' there are two typ_es of algorlt_hms, ne_l_mely,
trivial one that tests each item individually. It was known that adaptive (sequential) or nonadaptive. An adaptive algorits

T(d) > (*}?) and was conjectured thatT'(d) > (d+1)*. In this  designed to several rounds and the later tests are alloweskto

paper we narrow the gap by proving 7'(d)/d* > (15++/33)/24, the outcomes of all previous ones. Conversely, a nonadaptiv

a quantity in [6/7,7/8]. algorithm carries out all tests simultaneously and all {pasi
Index Terms—nonadaptive group testing, disjunct matrix, items should be identified in a single round. The adaptive
graph matching number. algorithms inherently require fewer tests than the nontap

ones since more information can be used. Asymptotically, fo
a nonadaptive group testing scheme, the known bounds show
. . _ _ _ ~ thatat Ieasﬂ(]j@ log n) tests are needed [10]. [17], [21]. But
Given n items with at mostd of which being positive, for the adaptive setting, there exist algorithms with aslsasa
instead of testing these items individually, the theory qf(4logn) tests, optimal up to a constant factor [6]. However,
combinatorial group testing aims to identify all posititemns  the nonadaptive algorithms have their own advantages. They
using as few tests as possible. Its history can date backgi@ time-saving and are encouraged in the applications that
World War Il when the biologists needed to identify peoplgme is the most emergent issue, such as DNA screening and
with syphilitic antigen from a large population. The ideaswvanetwork security.
first introduced by Dorfman for testing blood samplé$ [7]. The application of nonadaptive group testing into molecula
Since then, the theory of group testing has been extensivg|y|ogy, especially in the design of screening experimeas,
studied due to its many applications in a variety of fieldsfsu peen extensively studied during the last twenty years. The
as chemical leak testing [22], electric shorting detecf4ln readers are referred to the comprehensive book of Du and
multi-access channel communication [1]./[23], DNA screeni Hwang [9] for more detailed information. Recently, Xuan
[9], pattern finding[[20] and recently, network security [24 et al. [24] have found that the idea of group testing can
Assume each of the items is associated with an Undeterbe adapted natura”y to network Security_ In the Simp'est
mined binary status, positive (used to be called defective) attack scenario there are clients connecting ta: servers
negative (used to be called pure). A test can be viewed ag@ amongn clients, there arel attackers. Just like the
subset of the items. The outcome of a test (positive) when-  detecting of positive response in a single test, once ankatta
ever it contains a positive item afdnegative) otherwise. The starts attacking a server, the resources of this serverbeill
problem is to identify all positive items. Our strategy iith exhausted dramatically. So it is not hard to identify which
we group the items into several tests. In each test, a pesitderver is a victim. In the security setting the nonadaptieeig
outcome indicates that at least one of the items included t&t”']g attracts more attention since it is very |mportant t
this test is positive and a negative outcome indicates that getect the defective items as soon as possible before thiesg ca
great damage to the whole network.
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and Furedi([14] introduced a combinatorial object named dfeorem 1.2. SupposeM is a ¢t x n d-disjunct matrix. If
“cover-free family”, whose incidence matrix was exactly & > ¢, then it holds that > %ﬁd?
disjunct matrix. We say a matrix ig-disjunct if the boolean

sum of anyd columns does not contain any other column. In 1h€ rest of this paper is organised as follows. In Section
other words, a matrix ig-disjunct if for anyd + 1 columns 2 We Will prove Theoreri 11 and in Section 3 we will prove

indexed byc, ..., car1 and for everyj — 1,...,d+1, there Theoren{I.2. We conclude this paper in Section 4.

must exist a row that has exactly one 1 in theth position
and zeros in the other positions. It is not very difficult to
see that al-disjunct matrix gives a nonadaptive group testing
scheme that identifies any positive set up to giz@n the other For at x n binary matrix M, 1s and Os can represent the
hand any nonadaptive group testing scheme that identifies Aidence structure of a corrésponding set system.TLet
positive set up to sizé must also be &d — 1)-disjunct matrix (1 t} be a set of elements and IeF — {F} F,) C
[8]. Denotei(d, n) the minimalt such that & x n d-disjunct 51"y’ collection of subsets @F. Then M can be viewed
matrix exists. The recent results of D’yachkov et. [al] [128]

h d that the followina bounds hold woticall as the incidence matrix dfl’, 7) such that for alll <1 <,
showed that the Toflowing bounds hold asymptoticaly 1<j<mn,ie€F;ifandonlyif M(i,j) = 1. We can simply

) ) replace the sef; by the columnc;, then we just write; € ¢;
ogn(1 Fo(1)) < i(dyn) < e ogn(1 +o(1)). if M(i,7) =1, which also |n_d|cates that rOW|s.conta|ned in
2logd 4logd columne;. A column of M is called isolated if there exists

For generah, it holds thatt(d, n) > mm{(dw)’n}’ which & row incident to it but not to any other column. M is d-

was attributed to Bassalygo by D’yachkonand Rykovl [11 isjunct and has an isolated columnthen by deleting: and
he isolated row contained in it we get(a— 1) x (n — 1)

This bound implies that if. < (‘“2“2) then nod-disjunct algo- SuE o e

rithm is superior to the trivial algorithm that tests evetgni matrix M wh|c_h -mamtam_s th.ej-d|31_unctness. Them > t

individually. An interesting problem is suggested by theab holds for the original mgtn)/M IS equwalc_ar!t_tcn —1>i-1

result: givend, when does there exist &disjunct algorithm h‘?"%‘s for the_ne\_/v matrbaf’. By the d_ef|n|t|0n ofT'(d), the
minimal ¢ satisfying(n — 1) > (¢t — 1) is at leastI'(d) + 1.

better than the trivial one? It is equivalent to ask: gidewhat ise this ob ) he following |
is the minimalt such that there existstax n d-disjunct matrix We can summarise this observation as the following lemma.

with n > ¢ + 1. Denote this minimakt by T'(d). Obviously, | emma II.1. SupposéV/ is at x n d-disjunct matrix with an

we haveT'(d) > (*1?) and(d,n) > min{T(d),n}. In 1985, isolated column. If n > ¢, thent > T/(d).
Erdos, Frankl and Furedi conjectured tHat|[14]

II. A SIMPLE BOUND FOR CONSTANT WEIGHT MATRIX

Proof: Deleting columnc and the corresponding isolated
rows yields a(t — r.) x (n — 1) d-disjunct matrix, where

. 2 .
dli)H;OT(d)/d =1 (weaker version), r. > 1 is the number of isolated rows containeddnThen
T(d) > (d+1)? (stronger version), by the definitio_n ofT'(d) we havet — r. > T'(d) and hence

t>T(d)+r.sincen—1>t—r. [

and they stated without proof that the stronger versiondold Therefore, to determin@(d) we only need to consider the
for d < 3 and limy,o T(d)/d* > 5/6. Note that the matrices with no isolated columns. The weight of a column
incidence matrix of an affine plane of ordér+ 1 is @ . denoted agc|, is defined to be the number of 1s contained
(d+1)?x ((d+1)*+ (d+1)) d-disjunct matrix with constant jn jt. One can see that a non-isolated column i-disjunct
column weightd+1. And an affine plane of ordet+1 exists if - matrix has weight at least + 1, since any 1 in this column
d+1is a prime power([2]. This impliem, .o T(d)/d* <1 s contained in some other columns. So for a matrix with
and7'(d) < (d+1)* whend-+1is a prime power. Later, Huang no isolated columns, the minimal weight of the columns is
and Hwangl[18] proved the stronger version @ 4, while  at |eastd + 1. Theorem Ll establishes the validity for the
Chen and Hwang [5] fodl = 5. In this paper, based on astronger version of the conjecture in the simplest case, i.e
graph matching theorem of Erdds and Gallail[15], we shope 4-disjunct matrix being considered is of constant column
that T(d) > %cﬂ by counting the number of specifiedweight d + 1.

substructures contained in the columns of the matrix. Our\ye present the proof of Theordmll.1 as follows.

result significantly improves the previous ones. It is alswttv Proof of Theorem LIt We can always assume thaf

mentioning that disjunct matrices with constant columnghei has no isolated columns by Lemria]l.1. Then for arbitrary
are of particular interest in the framework of DNA screening,v0 distinct columns:, ¢ it is easy to Se¢.cf'ﬁc'| < 1. Denote

[9]. 1n the. thesis of C_:h_ee [3], th_e a_uthor considered th@(z’) as the collection of columns that has a 1 in k& row.
above conjecture fod-disjunct matrix with constant column By counting the number of 1s in the whole matrix we get

weightd +1 and the problem was not completely settled (segs: ()| = n(d + 1) > (t + 1)(d + 1). Therefore, there
Theorem 5.3.1 of [3]). By an easy counting argument we W.exilgtls somel < in < ¢ sach that|C (i) > I—(d+1)(t+1’)-| >
verify the conjecture under this constant weight constrain = 0= A ¢

/ - icti / =y
Our main results are presented as follows, d+2. Note thatenc’ = {iy} holds for all distincte, ¢ € C(ip),

then the theorem follows from > | Veeci) ¢f = 1+ (d +
Theorem I.1. Supposel is at x n d-disjunct matrix with 2)d = (d+1)2, whereV denotes the boolean sum (the union)
constant column weight + 1. If n > ¢, thent > (d + 1) of the columns. [ |



I1l. A GENERAL BOUND FORT'(d) column weight ofM is at leastd+ 1. We will apply induction

Supposek is a k-element set, we us(a’f) to denote the Ond to prove the theorem. Our statement is truelfet d < 5
collection of all \-element subsets ok, wherel < \ < k by previous results. Agsume the statement is trgedferl.
is a positive integer. Leg C (%) be a family of \-element Let ¢ be the _column with the largest column weight and for
subsets of. The matching number(G) is defined to be the the sake of simplicity, denote = (15 + /33)/24. Then our
maximum number of pairwise disjoint membersfOne of 90al is to provel > rd?. The proof can be divided into two
the classical problems of extremal set theory is to deteemif@S€s: .
max |G| for fixed v(K). Definem(k, \, p) = max{|G| : G € Case L|c| > [2xd]. By LemmalllL3, deleting: and all
(%), |K| = k, v(G) < u}. In 1959, Erd6s and Gallai [L5] FOWS intersecting it we get & — |cf) x (n — 1) (d — 1)-
determinedm(k, A, p) for A = 2 (see, Theorem 4.1 of [15]) _d|51un(_:t matrix. Ob\_/louslyn—l > t—|c| sincen > t. By the

induction hypothesis we can deduce that |c|+x(d—1)% >

Lemma lIl.1. ([L5]) m(k, 2, 1) < max{(*5"), (5) = (*3;")}  2kd + r(d — 1) > rd?.
for k> 2p + 1. Case 2.|c| < |2xd]. Then every column of/ has weight

A very important notion in studying disjunct matrix is@t Most|2xd]. Fix a columnu with |u| = d + s, wherel <
“privateness”, which was introduced as “own part’ [][14]5 < (25— 1)d. Let us estimate the nu[inber of private 2-subsets
For a given matrix}, a subset of(1,...,t} is private if contained inu. On one hand, ifu| < 3 +, then by the first
it belongs to a unique column. On the contrary, a subset ffmula of (1) we have P(c)| = (“3°) — [N(c)| > (“31).
{1,...,t} is called non-private if it belongs to at least twdon the other hand, ifu| > 3! + %, then2d/3 < s < (2x —
columns. When proving Theorefill.1, we actually considdpd, by the second formula of (1) we hayB(c)| > (“3°) —
the private 1-subsets since a column is isolated if and dnly(*, ") > (d% +2ds — 3s%)/2 > (3 — 1)(2 — 2k)d? = kd? /2.
it contains a private 1-subset. In order to establish oueggn Note that|P(c)| > xd?/2 holds in both cases since < 1.
bound, we investigate the properties of private 2-subbttse Then the statement follows from the fact that the number of
precisely, a lower bound for the number of private 2-subseasivate 2-subsets ifil, ..., ¢} can not exceed’), i.e., (%) >
that a column must contain is obtained. For a columatenote >_.|P(c)| > n x kd?/2 > (t + 1)kd? /2.

Ple)={T C{1,...,t}:|T| =2, T C cand T is private} The following result is straightforward.

as the collection of private 2-subsets containedamd denote

N{c) as the collection of ”°“‘F’Sj"ate 2-subsets contained igig o1 d-disjunct matrix. Then it holds that{d, n) >

c. If column ¢ has weightk, then (%) = [P(c)|+|N(c)| since min{15£VE 2 oy

P(c) and N(c¢) partition all 2-subsets of. The lemma below 24 b

presents an upper bound for the sizeNdfc). Proof: The corollary holds sinc&d, n) > min{T(d),n}.
|

Corollary 1ll.4. Denotet(d,n) the minimalt such that there

Lemma ll.2. SupposéV is at x n d-disjunct matrix with no
isolated columns. Then for any arbitrary columrsatisfying
le| = d+ s, wherel < s < d—1, it holds that|N(c)| <

m(d+ s,2,s — 1) < max{(*; "), (“3*) — (“3)}. Corollary 1Il.5. SupposeV is at x n d-disjunct matrix. If
n > t and for every columa of M, there is|c| < |3¢]. Then
it holds thatt > d% + d + 1.

Through a similar argument to that of Theoren 1.2, one can
prove the following corollary.

Proof: It suffices to showN (¢) does not contai pair-
wise disjoint members. If otherwise, the 1éftt-s)—2s = d—s
1s of ¢ is contained in the union of somé— s columns of Proof: By (1) we have|P(c)| > (dfgl) for every non-
M sincec has no private 1-subsets. Thers contained in the isolated columnc. Then the conclusion follows fron@;) >
union of somes + (d — s) = d columns, which violates the S |P(e)] > n(dﬂgl) > (t+ 1)(d12“1)_ u
d-disjunct property. [ ]

For s > 1, by direct computation one can verify the
following formula holds

IV. CONCLUDING REMARKS
In this paper we consider the lower bound of the minimal

max{ (23 - 1) (d+ 5) _ (d+ 1)} t when there exists & x n d-disjunct matrix withn > ¢,
2 T\ 2 2 and our new bound improves the previous results signifigantl
(d+s) — (d+1) s<2d+2 M) The novelty of our method is that we consider the properties o
= 2 23 3 i -subsets of the given disjunct matrix and applyeglr
(2551)7 s> §d+ % private 2-subsets o g ] pplyea

matching theorem of Erdés and Gallai [15]. A natural idea to
One more lemma is needed to prove Theokem I.2. generalize our method is to consider larger private sulasets
then a hypergraph version of matching theorem will be needed
[16]. It will be interesting if someone can improve our resul

in this way.

Lemma Ill.3. Supposeé is atxn d-disjunct matrix. Assume
¢ is an arbitrary column ofM with weightw,, then deleting
¢ and all rows intersecting it yields & — w.) x (n — 1)
(d — 1)-disjunct matrix.

Proof: See Lemma 2.2.2 of [9)]. [1] T. Berger, N. Mehravari, D. Towsley, and J. Wolf, “Randamultiple
Proof of Theorem Again, we can assume that access communication and group testingZEE Trans. Commun.

has no isolated columns by Lemrhall.1. Then the minimal vol. 32, no. 7, pp. 769-779, 1984.
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