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Abstract

In this paper we give a randomized reduction for the Rank Syndrome Decoding

problem and Rank Minimum Distance problem for rank codes. Our results are

based on an embedding from linear codes equipped with Hamming distance unto

linear codes over an extension field equipped with the rank metric. We prove that

if both previous problems for rank metric are in ZPP = RP∩coRP, then we would

have NP=ZPP. We also give complexity results for the respective approximation

problems in rank metric.

1 Introduction

1.1 General presentation

The syndrome decoding problem for Hamming distance is a fundamental problem in com-
plexity theory, which gave rise to many papers over more than 30 years, since the seminal
paper of Berlekamp, McEliece and van Tilborg [5], who proved the NP-completeness of
the problem. The problem of decoding codes is of first importance regarding applications,
in particular for information theory and also for its connections with lattices.

Besides the notion of Hamming distance for error-correcting codes and the notion of
Euclidean distance for lattices, the concept of rank metric was introduced in 1951 by
Loo-Keng Hua [10] as "arithmetic distance" for matrices over a field Fq. Given two n× n
matrices A and B over a finite field Fq, the rank distance between A and B is defined as
dR(A,B) = Rank(A−B). In 1978, Delsarte defined in [8] the notion of rank distance on a
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set of bilinear form (which can also be seen as the set of rectangular matrices)and proposed
a construction of optimal matrix codes in bilinear form representation. A matrix code over
Fq for the rank metric is defined as the set of Fq-linear combinations of a set M of m× n
matrices over Fq. Such codes are linear over Fq and the number k of independent matrices
in M, is bounded from above by nm. Then in 1985, Gabidulin introduced in [11] the
notion of rank codes in vector representation (as opposed to matrix representation) over
an extension field FQ of Fq (for Q = qm). A rank code C[n, k] of length n and dimension k
over FQ in vector representation is defined as a subspace over FQ of dimension k of Fn

Q. It
is possible to associate to any vector x of Fn

Q an m× n matrix X over Fq in the following
way: let x = (x1, · · · , xn) in F

n
Q and let B be a basis of FQ over Fq. One can write any

xi of the extension field FQ, in the Fq-linear basis B, as a column vector (xi1, · · · , xim)
t

of Fm
q , so that one can associate an m × n matrix X over Fq to any x in F

n
Q. The rank

weight of x is then defined as wR(x) = rank(X) and the rank distance between x and y
in F

n
Q, is defined as dR(x, y) = rank(X − Y ). Rank codes in vector representation can

be seen as classical error-correcting codes over FQ but embedded with the rank metric
rather than with the Hamming metric, and one can define standard notions like generator
and parity check matrices. Naturally any rank code C[n, k] in vector representation is
FQ-linear and can be seen as a matrix code defined with k ×m matrices over Fq, but the
converse is not true and any rank matrix code has not, in general, a vector representation.
The vector representation is interesting because such codes are more compact to describe
and to handle. In the following we will simply denote by rank code, a rank code in vector
representation.

In 1985 [11], Gabidulin introduced an optimal class of rank codes (in vector represen-
tation): the so-called Gabidulin codes, which are evaluation codes, analogous to Reed-
Solomon codes but in a rank metric context, where monomial of the form xp are replaced
by linearized monomial of the form xq

p

introduced by Ore in 1933 in [30].

By analogy with the Hamming distance it is possible to define the two following problems:

Rank Syndrome Decoding problem (RSD)
Instance: a (n− k)× n matrix H over F

n
Q, a syndrome s in F

n−k
Q and an integer w

Question: does there exist x ∈ F
n
Q such that H.xt = s and wR(x) ≤ w ?

and

Rank Minimum Distance Problem (RMD)
Instance: a rank code C[n, k], an integer w,
Question: does there exist x ∈ C such that wR(x) ≤ w ?

Remark: the two previous problems fundamentally differ from the so-called MinRank
problem, which is also related to the rank metric but in a more general case as it is
explained in the next section.

The purpose of this paper is to study the computational complexity of the RSD problem
and the RMD problem, our main result reads as follows:
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Theorem 1 If the Rank Minimum Distance Problem for rank codes is in ZPP = RP ∩
coRP, then we must have NP = ZPP. Similarly, if the Rank Syndrome Decoding Problem

for rank codes is in ZPP, we must have NP = ZPP.

1.2 Previous work

Surprisingly the theoretical computational complexities of the RSD and RMD problems
for the rank metric are not known, whereas the problem (and its variations) has been
intensively studied for Hamming distance or for lattices. In particular besides the NP-
completeness of the syndrome decoding problem for Hamming distance proven in [32],
the minimum distance problem for Hamming distance has been proven NP-complete by
Vardy in [32], as are also variations on the problem [6].

As explained earlier in this introduction it is possible to consider the decoding and min-
imum distance problems in the rank metric, but for matrix codes. These problems can
be seen as generalizations of the RSD and RMD problems. For instance for the case of
the decoding problem for rank matrix codes, we are given a set M = {M1, · · · ,Mk} of
n× n matrices over Fq, a matrix M over Fq, and an integer w. The question is to decide
whether there exists an Fq-matrix M0 of rank ≤ w such that M −M0 can be expressed
as an Fq-linear combination of matrices of M (i.e. is in the Fq-linear matrix code gen-
erated by the matrices of M). Note that we have linearity over the small field Fq for
the code, but not necessarily over the extension field FQ. The latter decoding problem
and its minimum distance variant have appeared, in slightly generalized forms, somewhat
confusingly both under the name of “MinRank” in the literature. Courtois makes the
observation in [7] that both the above problems for rank codes in matrix representation
are NP-complete, by remarking that a Hamming metric code in F

n
q can be “lifted” into

a rank metric code in matrix representation simply by transforming any vector x of Fn
q

into a diagonal matrix with x written on the diagonal. By this process a Hamming code
of dimension k with minimum distance d is lifted unto a rank-metric code in matrix rep-
resentation with M a set with k matrix element, with rank minimum distance d. This
transformation yield the NP-completeness of the previous decoding problem for matrix
codes from the NP-completeness of Syndrome Decoding problem for classical Hamming
codes. The NP-completeness of the associated Minimum Rank Distance problem follows
similarly from the NP-completeness of minimum distance problem for Hamming metric.

However, in the case of matrix representations the structure of the linear matrices over
Fq is simpler than the structure for rank [n, k] codes in vector representation which are
linear over the extension field FQ and not only on the base field Fq. The "MinRank"
problem appears as a weakly-structured variation of the RSD and RMD problems. The
above remark by Courtois works well for Fq-linear matrix codes but clearly does not apply
for FQ-linear [n, k] rank codes.
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1.3 Applications of the rank metric

Over the years the notion of rank metric has become a very central tool for new applica-
tions of coding theory and has also very interesting applications to cryptography.

Applications to coding theory. Concerning coding theory, from the end of ’90s new
application contexts appeared for coding theory: space-time coding [31] in 1997 and
network coding in 2001 [28].

Space time coding was introduced by Tarokh, Jafarkhani and Calderbank in 1998 in [31].
One strives to improve the reliability of data transmission in wireless communication
systems using multiple transmission antennas. This redundancy results in a higher chance
of being able to use one or more of the received copies to correctly decode the received
signal. In fact, space–time coding combines all the copies of the received signal in an
optimal way to extract as much information from each of them as possible. A full rank
criterion was proposed for choosing rank matrices with full rank difference, which enables
one to decode errors in this context.

For network coding introduced in 2001 in [28], the idea is optimize information sent in
given time slots, when the information is sent from a single source to a single destination
through a network with nodes which send random linear combination of received infor-
mation. Koetter and Kschichang introduced in 2007 [27] the notion of subspace metric
(which is a small variation on the rank metric [13]), and the so-called Koetter-Kschichang
codes which are an adaptation of the Gabidulin codes in a subspace metric context.

More generally a lot of work has also been done for decoding Gabidulin or Koetter-
Kschichang codes, though admittedly somewhat less than for Reed-Solomon codes, their
Hamming distance counterparts: in particular list-decoding algorithms are known only
for subclasses of Gabidulin codes and not yet for the general family of codes [19, 18, 23].

Applications to cryptography

Rank-based cryptography belongs to the larger class of post-quantum cryptosystems,
which is an alternative class of cryptosystems which are a priori resistant to a puta-
tive quantum computer. The first cryptosystem was proposed in 1991 by Gabidulin,
Paramonov and Tretjakov (the GPT cryptosystem [12] which adapts the McEliece cryp-
tosystem to the rank metric and Gabidulin codes).

The particular interest of rank metric based problems compared to lattices or (Hamming)
codes based problems is that the practical complexity of the best known attacks for
rank-based problems [15] grows very quickly compared to their Hamming counterpart [3].
Indeed such attacks have a quadratic term (related to parameters of the rank code) in
their exponential coefficient, while for Hamming distance problems ( and somehow also
for heuristic LLL attacks for lattice-based cryptographic) , the best practical attacks have
only an exponential term whose exponent is linear in the code parameters. This translates
into rank codes having a decoding complexity that behaves as exp(Ω(N2/3)) rather than
exp(Ω(N1/2)) for Hamming codes, where N is the input size, i.e. the number of q-ary
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symbols needed to describe the code.

In practice it means that it is possible to obtain secure practical parameters for random
instances in rank metric of only a few thousand bits related to a hard problem, when
at least a hundred thousand bits are needed for Hamming distance or for lattices. Such
random instances for rank metric are used for instance, for zero-knowledge authentication
in [17], and weakly structured instances are used for the recent LRPC cryptosystem [14]
(similar to the NTRU cryptosystem [26] for lattices and the recent MDPC cryptosystem
for codes) or for signature [16]. Of course with (Hamming) codes and lattices it is possible
to decrease the size of parameters to a few thousand bits with additional structure [4, 22],
but then the reduction properties to hard problems are lost because they are reduced to
decoding problems for special classes of codes whose complexity is not known..

Overall because of the practical complexity of best known attacks, rank-based cryptogra-
phy has very good potential for cryptography, furthermore, our present results show that
cryptographic protocols whose security can be reduced to the decoding problem for rank
codes will have both reduction to a proven hard problem and the potential for small keys.
Finally, we remark that since the codes actually used for rank-metric applications, cryp-
tographic or otherwise, tend to be rank-codes in the sense of this paper, i.e. with linearity
over the large field, the decoding and minimum distance problems for these codes are more
relevant than the same problems for the looser matrix code class, whose NP-completeness
has been referred to a number of times in the past.

Organization of the paper: the paper is organized as follows, in Section 2, we give
an overview of our results and describe our embedding technique, in Section 3 we give a
probabilistic analysis of our reduction setting, Section 4 describes our main results, and
finally Section 5 considers further results on approximation problems for the rank metric.

2 Overview

It is clear that Courtois’s diagonal embedding of the Hamming space into the rank metric
space works well for rank codes in matrix form linear over Fq but does not work for rank
codes with linearity over the extension field FQ. We shall therefore introduce a different
embedding strategy defined as follows:

Definition 2 Let m ≥ n and Q = qm. Let α = (α1, . . . αn) be an n-tuple of elements of

FQ. Define the embedding of Fn
q into F

n
Q

ψα : F
n
q → F

n
Q

x = (x1, . . . , xn) 7→ x = (x1α1, . . . xnαn)

and for any Fq-linear code C in F
n
q , define C = C(C,α) as the FQ-linear code generated

by ψα(C), i.e. the set of FQ-linear combinations of elements of ψα(C).
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Remark: The condition m ≥ n ensures that, by adjoining m− n zeros to vectors of Fn
Q,

they may be seen as m×m matrices so that the code C may be seen as a rank code.

It should be clear that for any α, the rank weight of ψα(x) is at most the Hamming
weight of x: therefore the Minimum Rank Distance of C never exceeds the Hamming
minimum distance of the original code C. It may however be less. For example, if
α = 1 = (1, 1, . . . , 1) then the rank weight of ψα(x) is always 1 for every x 6= 0. The
minimum rank weight of C(C,α) may also be less than the minimum Hamming distance of
C for more sophisticated reasons. In particular, if α1, . . . αn are Fq-linearly independent,
we have that the rank weight of ψα(x) is always equal to the Hamming weight of x, but
the minimum rank weight of C may still be less than the minimum Hamming distance of
C. Consider for instance the binary code C of words of even weight of length 3, we have
that

x = α2ψα(101) + α1ψα(011) = (α1α2, α1α2, α3(α1 + α2)).

Now if α3 happens to have been chosen equal to α1α2(α1 + α2)
−1, we will have that

rank(x) = 1 < dHmin(C) even though α may very well be of rank 3.

If, given any Hamming code C, we could efficiently find an n-tuple α that would guarantee
that C(C,α) has minimum rank distance equal to dHmin(C), we would have a polynomial
reduction that would derive the NP-completeness of the Minimum Rank Distance problem
for rank codes from the NP-completeness of the classical minimum Hamming distance
problem. We have not been able to see how to do this in any deterministic way. However,
we shall show that when α is chosen randomly, for m = O(n), then we probability tending
to 1 we have dRmin(C(C, α)) = dHmin(C). This makes the Rank Minimum Distance hard
for NP under unfaithful random reductions (UR reductions, in the terminology of [20]).
As a consequence we have that if the Rank Minimum Distance Problem were in coRP
we would have NP ⊂ coRP. With a further transformation we shall obtain that if the
Rank Minimum Distance Problem were in RP then we would have also NP ⊂ RP: our
results will therefore show that if the Rank Minimum Distance Problem were in ZPP =
RP∩coRP, then we would have NP=ZPP.

3 Probabilistic analysis of our embedding

3.1 Notation and definitions

We refer to [24] and [21] for general results on codes and rank codes. Let Fq be a field with
q elements and let FQ, with Q = qm, be an extension of Fq of degree m. In the following
we consider two type of codes, codes with Hamming distance considered as C[n, k, dH]
linear codes over the base field Fq, for n and k the length and dimension of the code
and dH, its minimum Hamming distance. we also consider rank codes with rank distance
written as C[n, k, dR] linear codes over the field FQ of length n, dimension k an minimum
rank distance dR, embedded with the rank metric.
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We recall the Griesmer bound for linear codes over Fq that ill be useful for our proofs:

Proposition 3 (Griesmer bound) Let C be a [n, k, d] over Fq then

n ≥

k−1
∑

i=0

⌈
d

qi
⌉

3.2 Probabilistic analysis of C(C,α)

Lemma 4 Let C⊥ be the dual code of C over Fq. Let β = α−1 = (α−1
1 , . . . , α−1

n ). Then

C(C⊥,β) is the dual code of C(C,α) over FQ and dimFQ
C(C,α) = dimFq

C.

Proof. It should be clear that C(C,α) and C(C⊥,β) are orthogonal to each other. Choos-
ing systematic generator matrices for C and C⊥ shows that dimFQ

C(C,α) = dimFq
C and

dimFQ
C(C⊥,β) = dimFq

C⊥. �

Lemma 5 Let C be an Fq-linear code of F
n
q and let W ⊂ {1, 2, . . . , n} be a set of co-

ordinates such that no non-zero codeword of C has its Hamming support included in

W . Then, for any j ∈ W and for any α, there is a codeword x of C(C,α)⊥ such that

supp(x) ∩W = {j}.

Proof. Since the code C, punctured so as to leave only the coordinates inW , has only the
zero codeword, we have that for any j ∈ W there is x in C⊥ such that supp(x)∩W = {j}.
The conclusion follows by Lemma 4. �

Corollary 6 Let C be an Fq-linear code of Fn
q with minimum Hamming distance d. Then,

for any α, the Hamming minimum distance of the embedded code C(C,α) is equal to d.

Proof. That it is at most d is clear by the definition of C(C,α). To see that it is at
least d follows from Lemma 5. �

Lemma 7 Let C be an Fq-linear code of F
n
q with minimum Hamming distance d. Let

w < q+1
q
d. Then, for any α = (α1, . . . , αn), the only codewords of C(C,α) of Hamming

weight w are of the form λψα(x), λ ∈ FQ, for some codeword of C. In particular, if

α1, . . . , αn are linearly independent, then any codeword of C(C,α) of Hamming weight w
is also of rank weight w.
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Proof. Let W ⊂ {1, 2, . . . , n} be a set of w coordinates. Let C|S be the corresponding
shortened code of C, i.e. the set of codewords of C of support included in W . By
Lemma 4, we have that the dual code of C(C,α)|S has dimension w−dimC|S and therefore
dimC(C,α)|S = dimC|S = dimC(C|S,α). By the Griesmer bound, the dimension of C|S

is at most 1. Therefore the only codewords of C(C|S,α) are of the form λψα(x). �

Theorem 8 Subject to the condition m > 2qn, when α is chosen randomly and uniformly

in F
n
Q, then for any linear code C ∈ F

n
q , the probability that the rank minimum distance

of C(C,α) differs from the Hamming minimum distance of C is bounded from above by a

quantity that vanishes exponentially fast in n.

Proof. Let C be fixed and let d be its Hamming minimum distance. It suffices to prove
that for any Hamming weight w ≤ n, the probability Pw that there exists a codeword of
C(C,α) of Hamming weight w and of rank weight < d vanishes exponentially fast.

• w < d+d/q. If w < d, Then by Corollary 6, Pw = 0. Otherwise, by Lemma 7, Pw is
bounded from above by the probability that α1 . . . αn are linearly dependent, which
is exponentially small in n.

• w ≥ d + d/q. We bound from above Pw by the expected number of codewords of
C(C,α) of rank weight < d and Hamming weight w. Let x be a vector of Fn

Q of
Hamming weight w and let W be the Hamming support of x, so that w = |W |. Let
J be a maximal subset of coordinates of W such that no nonzero codeword of C has
its support included in I. By Lemma 5, we have that there are |J | parity-checks for
the event x ∈ C(C,α) that are satisfied each with probability 1/Q and, truncated to
W , are independent over FQ and therefore are satisfied independently in the sense
of probability. Hence, the probability that x is a codeword of C(C,α) is at most
1/Q|J |. By the Griesmer bound, we have |J | ≥ d + d/q − 1. Bounding from above
the number Nw of vectors of Fn

Q of Hamming weight w and rank weight d− 1 by:

Nw ≤

(

n

w

)

Qd−1(qd−1)w ≤ 2nqm(d−1)+w(d−1)

we obtain

Pw ≤ Nw
1

qmd+md/q−m

≤ 2nqw(d−1)−md/q

and the result follows from the hypothesis m/q > 2n.

�
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4 The syndrome decoding problem

Let us recall the syndrome decoding problem:

Instance: an r × n matrix H = [h1,h2, . . . ,hn] over a field F, a column vector
s ∈ F

r, an integer w
Question: does there exist x = (x1, . . . , xn) ∈ F

n of weight at most w such that
σ(x) = H tx =

∑n
i=1 xihi = s ?

When F = Fq and the weight refers to the Hamming weight, we have the classical or
Hamming syndrome decoding problem: when F = FQ and the weight refers to the rank
(or rank weight) we have the rank syndrome decoding problem. It is classical that the
syndrome decoding problem is equivalent to the decoding (or closest vector) problem,
because looking for the closest codeword to a given vector y amounts to computing the
syndrome s = σ(y) of y and solving the syndrome decoding problem for s (subtracting
the solution to y gives the closest codeword).

Since the Hamming syndrome decoding problem is known to be NP-complete, it is nat-
ural to try and devise a transformation from it to the rank syndrome decoding prob-
lem. For this purpose, let us introduce the following notation: for any r × n matrix
H = [h1,h2, . . . ,hn] of elements of Fq, and for any β = (β1, . . . , βn), βi ∈ FQ, denote by
H(β) the matrix

H(β) = [β1h1, β2,h2, . . . , βnhn].

Our strategy is, given an instance (H, s, w) of the Hamming syndrome decoding problem,
to associate to it the transformed instance (H(β), s, w) of the rank decoding problem.
It is clear that if x is a solution to the Hamming syndrome decoding problem, then
x = ψα(x) is a solution to the associated rank syndrome decoding problem with α =
β−1 = (β−1

1 , . . . , β−1
n ), the rank weight of x being not more than the Hamming weight of

x. Again, we strive to show that when choosing β randomly and uniformly, the smallest
rank weight of a solution to (H(β), s, w) is very probably equal to the smallest Hamming
weight of a solution to (H, s, w).

Lemma 9 Let H be an r × n matrix and let s be a column vector of Fr
q. Let wH be the

minimum Hamming weight of a vector x of Fn
q of syndrome σ(x) = H tx = s. Let x ∈ F

n
Q

be such that σβ(x) = H(β) tx = s. Then, if J ⊂ {1, . . . , n} is the Hamming support of x,

there exists a subset W ⊂ J such that |W | = wH and the columns (hj)j∈W of H indexed

by W are FQ-linearly independent.

Proof. Let W be a maximal subset of the support of x such (βjhj)j∈W is FQ-linearly
independent. Since σβ(x) = s, we must also have that s belongs to the FQ-linear span
of (βjhj)j∈W . Now by Lemma 4 we have that FQ-linear independence of (βjhj)j∈I (and
therefore also simply of (hj)j∈I) is equivalent to Fq-linear independence of (hj)j∈I for any
set I of coordinates. Since any set of columns of H that generate Fq-linearly s must be of
size at least wH by definition of wH we have |W | ≥ wH . �
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Theorem 10 Subject to the condition m > n2, when β is chosen randomly and uniformly

in FQ, then for any r × n matrix H over Fq and any column vector s ∈ F
r
q, denoting by

wH the minimum Hamming weight of a vector of F
n
q of syndrome s by H and by wR

the minimum rank weight of a vector of F
n
Q of syndrome s by H(β), we have that the

probability that wH 6= wR is bounded from above by a quantity that vanishes exponentially

fast in n.

Proof. Let H, s and wH be fixed. Since we have remarked that wR ≤ wH , It suffices to
show for every integer w ≤ n that the probability Pw that there exists a codeword of Fn

Q

of syndrome s by H(β) and of Hamming weight w and rank weight < wH , is a quantity
that vanishes exponentially fast with n.

By Lemma 9, if w < wH we have Pw = 0. Suppose therefore w ≥ wH . Let x be a vector
of Fn

Q of Hamming weight w. Lemma 9 implies that there are at least wH columns of H
indexed by nonzero coordinates of x that are FQ-linearly independent. This implies that
the span of FQ-linear combinations of these wH columns has size QwH , and therefore the
probability that the syndrome by H(β) of x equals s is at most 1/QwH .

Bounding from above Pw by the expectation of the number of codewords of Hamming
weight w and rank weight ≤ wH − 1, we have:

Pw ≤

(

n

w

)

QwH−1(qwH−1)w
1

QwH

≤ 2nqn(wH−1) 1

Q

≤ qnwH−m

which proves the result since the case wH = n is easily dealt with separately. �

Theorems 8 and 10 yield Theorem 1, our main result stated in the introduction:

Proof of Theorem 1

Proof. That NP ⊂ coRP follows directly from the NP-completeness of the Hamming
Minimum Distance Problem and Theorem 8 in the first case and from the NP-completeness
of the Hamming Syndrome Decoding Problem and Theorem 10 in the second case: the
original Hamming problem is simply transformed by a probabilistic embedding into the
corresponding Rank metric problem. To be precise, the hypothesis that the Rank Min-
imum Distance Problem is in coRP means that there is probabilistic polynomial time
algorithm that always outputs “yes” on “yes” instances and often outputs “no” on “no”
instances. Applied to a code C(C,α) for a random α, we obtain an algorithm that, for
the original Hamming Minimum Distance Problem always outputs “yes” (the minimum
distance is not more than a given value) on “yes” instances and often “no” otherwise.

Next we deduce from the hypothesis that the Rank Minimum Distance Problem for rank
codes is in RP that NP ⊂ RP. We need to construct a probabilistic algorithm that given
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an integer w and a Hamming code with minimum distance dW > w always decides “no”,
and often decides “yes” when the minimum distance dH is not more than w. To achieve this
we find a witness for dH ≤ w. The hypothesis that the Rank Minimum Distance Problem
is in RP means that there is a probabilistic polynomial time algorithm that always decides
“no” when the rank minimum distance dR is above w and very often decides “yes” when
it dR ≤ w. Suppose that the Hamming code C is such that dH ≤ w. We transform C
into a random C(C,α) and ask the probabilistic machine for the Minimum Rank Distance
whether dR ≤ w. If the answer is “no” we output a “no”. If it is “yes”, we remove the first
column from a fixed parity-check matrix of C and start the procedure (create another
random rank-metric code from the shortened version of C) again. If the answer is “no”,
we put back the removed column and start again by removing the second column, until
we either run out of columns to remove in which case we output a final “no”, or we obtain
a “yes”, in which case we continue removing columns, always of a larger index than the
columns we have previously tried to remove. We stop removing columns if we reach a point
when only w columns remain. At this point we check that the thus shortened Hamming
code has dimension at least 1, in which case we “output” a “yes”. In all other cases we
output a “no”.

We see that the number of times we use randomness and access the rank minimum distance
oracle is at most n. Furthermore, if it is true that dH ≤ w for the original code, then with
probability exponentially close to 1 for large n and fixed q we will obtain a “yes”, and if it
is not true that dH ≤ w we will always obtain a “no”. This is a random polynomial time
algorithm that puts an NP-complete problem (Minimum Distance for Hamming linear
codes) in RP, hence the result.

To reach the same conclusion from the hypothesis that the Rank Syndrome Decoding
Problem for rank codes is in RP we use a very similar witness constructing technique for
the Hamming syndrome decoding problem. �

Remark. The reduction is somewhat looser in the Decoding case where an extension
field of quadratic degree in n is needed, than in the Minimum distance case where a
degree linear in n was sufficient. This is somewhat surprising, since in the more well-
known Hamming distance and Lattice cases, the Minimum Distance problem has been
more difficult to reduce than the Decoding problem.

5 Further results on approximation problems for rank

metric

The syndrome decoding problem and the minimum distance problem for Hamming dis-
tance are connected to other interesting problems. It is natural to consider generalizations
of these problems from the Hamming distance to rank metric, especially with the use of our
very versatile embedding. In the following as an example of application of our embedding
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we consider the case of two particular well known approximation problems in Hamming
distance: the Gap Minimum Distance Problem (GapMDP), for which we want to ap-
proximate the minimum distance of a code up to a constant and Gap Nearest Codeword
(GapNCP) in which we want to approximate the decoding distance. Notice that equiv-
alently the previous (GapNCP) problem can be stated in terms of Syndrome Decoding
with a parity check matrix.

These approximation problems are stated in the following way:

Definition 11 (GapMDPq,γ) For a prime power q and γ ≥ 1, an instance of the Gap

Minimum Distance problem GapMDPq,γ is a linear code C over Fq, given by its generator

matrix, and an integer t such that:

• it is a YES instance if dH(C) ≤ t;

• it is a NO instance if dH(C) > γt

Definition 12 (GapNCPq,γ) For a prime power q and γ ≥ 1, an instance (C, v, t) of

the Gap Minimum Distance problem GapNCPq,γ is a linear code C over Fq, given by its

generator matrix, v ∈ F
n
q and a positive integer t.

• it is a YES instance if dH(v, C) ≤ t;

• it is a NO instance if dH(v, C) > γt

Both these promise problems have been proven NP-complete for Hamming distance for
γ > 1 respectively in [6] (see also [9]) and [1].

The generalization of these problems to the rank metric is straightforward: we may define
Gap Rank Minimum Distance (GapRMPD) and Gap Rank Nearest Codeword Problem
(GapRNCP):

Definition 13 (GapRMDPq,γ) For a prime power q, an integer m and γ ≥ 1, an in-

stance of the Gap Rank Minimum Distance problem GapMDPq,γ is a linear rank code C
over Fqm, given by its generator matrix, and an integer t such that:

• it is a YES instance if dR(C) ≤ t;

• it is a NO instance if dR(C) > γt

Definition 14 (GapRNCPq,γ) For a prime power q, an integer m and γ ≥ 1, an instance

(C, v, t) of the Gap Rank Minimum Distance problem GapRNCPq,γ is a linear rank code

C over Fqm, given by its generator matrix, v ∈ F n
qm and a positive integer t.

• it is a YES instance if dR(v, C) ≤ t;

• it is a NO instance if dR(v, C) > γt

12



We then deduce the following corollary:

Corollary 15 If the problems GapRMDPq,γ and GapRNCPq,γ are in coRP then NP=ZPP.

Proof. We use the same embedding technique as for Theorem 1. Since the Hamming
distance is always greater or equal than the rank distance, we obtain a Unfaithful Random
(UR) reduction between the respective approximation Hamming distance problems and
rank distance problems and hence by the result of ([20],p.118), the result follows. �

6 Conclusion

In this paper we proved the hardness of the minimum distance and syndrome decoding
problems for rank codes and rank distance under a randomized UR reduction. If we
compare to other type of metrics like Hamming or Euclidean distance, we see that, for
the decoding problem the reductions for codes equipped with Hamming distance and
lattices with Euclidean distance are deterministic and for minimum distance, reductions
are randomized for lattices and deterministic for codes (see [25] and references therein).
A worthwhile challenge would be to obtain a deterministic reduction also for rank metric.
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