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Buket Özkaya

Mathematics, Doctorate Thesis, 2014

Thesis Supervisor: Assoc. Prof. Dr. Cem Güneri
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Abstract

We introduce multidimensional generalizations of quasi-cyclic codes and inves-

tigate their algebraic properties as well as their links to multidimensional convolu-

tional codes. We call these generalized codes n-dimensional quasi-cyclic (QnDC)

codes. We provide a concatenated structure for QnDC codes in the sense that

they can be decomposed into shorter codes over extensions of their base field.

This structure allows us to prove that these codes are asymptotically good.

Then, we extend the relation between quasi-cyclic and convolutional codes to

multidimensional case. Lally has shown that the free distance of a convolutional

code is lower bounded by the minimum distance of an associated quasi-cyclic code.

We show that a QnDC code can be associated to a given nD convolutional code.

Moreover, we prove that the relation between distances of convolutional and quasi-

cyclic codes extend to a class of 1-generator 2D convolutional codes and the asso-

ciated Q2DC codes. Along the way, an alternative new description of noncatas-

trophic polynomial encoders is given for 1-generator 1D convolutional codes and

a sufficient condition for noncatastrophic nD polynomial encoders is obtained for

1-generator nD convolutional codes.



Çok Boyutlu Sanki-Devirsel ve Konvolusyonel Kodlar

Buket Özkaya

Matematik, Doktora Tezi, 2014

Tez Danışmanı: Doç. Dr. Cem Güneri

Anahtar Kelimeler: Sanki-devirsel kodlar, çok boyutlu sanki-devirsel kodlar,

konvolusyonel kodlar.

Özet

Bu tez çalışmasında, sanki-devirsel kodların çok boyutlu genellemeleri sunulup

cebirsel özellikleri ile çok boyutlu konvolusyonel kodlarla olan ilişkileri ele alınmıştır.

Bu genelleştirilmiş kodlara n-boyutlu sanki-devirsel kodlar adı verilmiştir. Çok

boyutlu sanki-devirsel kodların birleşik yapısı tanımlandıkları cismin genişlemeleri

üzerindeki daha kısa kodlar cinsinden verilmiştir. Bu birleşik yapı sayesinde n-

boyutlu sanki-devirsel kodların asimptotik iyi oldukları gösterilmiştir.

Daha sonra sanki-devirsel ve konvolusyonel kodların bilinen ilişkisi cok boyuta

genellenmiştir. Bir boyutlu durumda her konvolusyonel kodun serbest uzaklıǧının

ilişkili sanki-devirsel kodun minimum uzaklıǧı tarafından alttan sınırlı olduǧu Lally

tarafından ispatlanmıştır. Verilen her n-boyutlu konvolusyonel kodla ilişkili bir n-

boyutlu sanki-devirsel kod olduǧu gösterilmiştir. Benzer bir sonucun çok boyutlu

durumda da geçerli olduǧu özel bir 2-boyutlu tek üreteçli konvolusyonel kod sınıfı

için gösterilmiştir. Ayrıca, 1-boyutlu tek üreteçli konvolusyonel kodların polinom

üreteç matrislerinin katastrofik olmaması için yeni bir tarif bulunmuş, n-boyutlu

tek üreteçli konvolusyonel kodların polinom üreteç matrislerinin katastrofik olma-

ması için ise yeterli koşul elde edilmiştir.
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(TÜBİTAK) under the Project Grant 111T234 partly last year and fully during

my last term.

vii



Contents

Abstract v
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Introduction

The main goal of coding and information theory is to provide a reliable commu-

nication over a noisy channel. Any information sent across a noisy channel may be

received with possible transmission errors. The communication system has to be

designed in such a way that these errors are first detected and then corrected. This

is obtained by redundancy, i.e. the messages are sent with some extra information

so that the receiver can recover the original message. That operation is done via

encoding which has to be done efficiently: the message is supposed to be encoded

with least possible amount of redundancy and be capable of a certain error correc-

tion level with a suitable decoding process. The design and the implementation of

such a system are the fundamental issues in the theory of error-correcting-codes.

From theoretical point of view, the research on efficient information transmission

is directed towards studying well-performing error-correcting codes with a nice al-

gebraic structure. This dissertation is aimed at developing algebraic coding theory

in this direction.

In this work, we focus on a specific class of linear block codes, namely quasi-

cyclic codes. They yield explicit codes with good parameters (see [3, 5, 10, 11]) and

they are asymptotically good ([6, 20, 24, 28]). For m, ` integers with gcd(m, q) = 1,

a quasi-cyclic (QC) code of length m` and index ` over Fq is a linear code C ⊂ Fm`q
which is invariant under the shift of codewords by ` positions (where ` is the

minimal such number). It is well-known that such a QC code can be viewed

algebraically as an R-module of R`, where R = Fq[x]/〈xm − 1〉. Alternatively, we

can let S = Fq[x, y]/〈xm − 1, y` − 1〉 and view a QC code of length m` and index

` as an R-submodule of S.

One can decompose a QC code over Fq into its constituent codes, which are

shorter linear codes over certain extensions of Fq ([23]). Also, a concatenated

decomposition can be described for QC codes where the inner codes in the de-
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composition are minimal cyclic codes ([19]). It has been shown in [16] that the

constituents in the sense of Ling-Solé and the outer codes in the concatenated

structure given by Jensen are the same.

Convolutional codes are also an important class of codes which are extensively

studied. An (`, k) convolutional code C over Fq is defined as a k-dimensional

Fq(x)-subspace of Fq(x)` in general (see [29]). In this sense, convolutional codes

are also linear codes, but they are not block codes since the symbol field is no more

the finite field Fq, but the rational function field Fq(x), which produces codewords

of different lengths over Fq. The reason for taking that field as the alphabet is

that convolutional codes are codes with memory. The message is not sent in a

fixed-length block but in a data stream where each codeword is loaded with the

information of some previous codewords. Given a sequence of information words

u0(x), u1(x), . . . they are mapped to a sequence of codewords c0(x), c1(x), . . . such

that ci(x) = ui(x)·G for each i = 0, 1, . . ., where G is the corresponding encoder for

C and given as a k × ` matrix over Fq(x). In particular, if we consider a so-called

basic encoder for a convolutional code, then all polynomial codewords are produced

from polynomial input sequences. Hence, such a convolutional code can be defined

as an Fq[x]-submodule of Fq[x]`. The degrees of the entries of G determine the

memory of the convolutional code. Hence, convolutional codes generalize block

codes in the sense that block codes are memoryless convolutional codes.

The first chapter of the thesis contains all the required background about quasi-

cyclic and convolutional codes for the next chapters. Quasi-cyclic codes are nat-

urally related to convolutional codes. It has been shown by Lally that the free

distance of a convolutional code can be lower bounded by the minimum distance

of an associated QC code (see [21]).

In the second chapter, we define multidimensional generalizations of QC codes

and investigate their properties. For n ≥ 1, we consider the quotient ring Rn =

Fq[x1, x2, . . . , xn]/〈xm1
1 − 1, . . . , xmn

n − 1〉 and define the nD quasi-cyclic (QnDC)

code of size m1×· · ·×mn+1 as an Rn-submodule of Rn+1. It is clear the for n = 1,

we obtain QC codes (of length m1m2 and index m2). QnDC codes are linear

codes of length m1 · · ·mn+1 over Fq and they can also be viewed as QC codes of

index l = m2 · · ·mn+1. However, they have extra shift-invariance properties than

ordinary QC codes.
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Being QC codes, we can talk about the decomposition of QnDC codes into con-

stituents (or the concatenated structure). We prove that the constituents (or the

outer codes in Jensen’s concatenated decomposition) of a lengthm1 · · ·mn+1 QnDC

code are Q(n− 1)DC codes (over various extensions of Fq) of length m2 · · ·mn+1.

We also prove that the family of QnDC codes are asymptotically good for any

n ≥ 1.

Multidimensional versions of convolutional codes have been studied by Weiner

in his PhD thesis ([33]), although they have not been as extensively investigated

as the 1D convolutional codes. In the last chapter, we show that one can natu-

rally associate a QnDC code to any nD convolutional code, which is defined as

an Fq[x1, x2, . . . , xn]-submodules of Fq[x1, x2, . . . , xn]`. Then we prove an analogue

of Lally’s result for a particular class of 1-generator 2D convolutional codes. In

addition, we give a new alternative description for a polynomial generating matrix

of a 1-generator 1D convolutional code to be noncatastrophic. For the 1-generator

nD case, we obtain a sufficient condition for the polynomial encoder to be non-

catastrophic.

Weiner mentions in the conclusion of his thesis that connections between mul-

tidimensional convolutional codes and algebraic geometry should be investigated.

Let us note that the number of rational points on Artin-Schreier type hypersur-

faces over finite fields helps us estimate the minimum distance of multidimensional

cyclic codes via the trace representation of this class of codes (see [13, 15], and also

[32] for another relation between algebraic geometry and multidimensional cyclic

codes). Multidimensional cyclic codes are closely related to multidimensional QC

codes, as we will explain in this thesis. Moreover, QnDC codes can be viewed as

QC codes and there is a trace representation for QC codes ([23, Thereom 5.1]).

So, an analysis similar to those in [13, 15] can be in principal applied to QnDC

codes and the relation with certain nD convolutional codes can be used to write

a lower bound on the free distance of nD convolutional codes in terms of rational

points on Artin-Schreier hypersurfaces. This remains as a work to be done in the

future.
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Chapter 1

Preliminaries

In this first chapter, we will give a brief background on quasi-cyclic, 2D cyclic

and convolutional codes, along with the notation and some important results used

throughout this study.

1.1 QC and 2D cyclic codes

Let Fq denote the finite field with q elements, where q is a prime power, and

let m and ` be positive integers with gcd(m, q) = 1. A linear code C of length m`

over Fq is called a quasi-cyclic (QC) code of index `, if it is invariant under shift

of codewords by ` positions and ` is the minimal number with this property. In

particular if ` = 1, then C is a cyclic code. If we view codewords of C ⊆ Fm`q ' Fm×`q

as m× ` arrays as follows

c =


c00 . . . c0,`−1
...

...

cm−1,0 . . . cm−1,`−1

 , (1.1.1)

then invariance under shift by ` units amounts to being closed under row shift.

Now consider the principal ideal I = 〈xm − 1〉 of Fq[x] and let R := Fq[x]/I. If

T denotes the shift-by-1 operator on Fm`q , let us denote its action on c ∈ Fm`q by

T ·c. Then Fm`q has an Fq[x]-module structure given by the following multiplication

Fq[x]× Fm`q −→ Fm`q

(a(x), c) 7→ a(T `) · c

4



For instance, if a(x) = a0 + a1x+ a2x
2, then

a(T `) · (cij) = a0(cij) + a1(T
` · (cij)) + a2(T

2` · (cij)).

Observe that the ideal I annihilates Fm`q :

(xm − 1) · (cij) = Tm` · (cij)− (cij) = 0.

Therefore Fm`q can also be viewed as an R-module and a QC code C ⊂ Fm`q of

index ` is an R-submodule of Fm`q .

To an element c ∈ Fm×`q as in (1.1.1), we associate an element of R`

~c(x) := (c0(x), c1(x), . . . , c`−1(x)) ∈ R`, (1.1.2)

where for each 0 ≤ j ≤ `− 1,

cj(x) := c0,j + c1,jx+ c2,jx
2 + · · ·+ cm−1,jx

m−1 ∈ R. (1.1.3)

Then, the following map is an R-module isomorphism

φ : Fm`q −→ R`

c =


c00 . . . c0,`−1
...

...

cm−1,0 . . . cm−1,`−1

 7−→ ~c(x).
(1.1.4)

Note that the case ` = 1 amounts to the classical polynomial representation

of cyclic codes where 1-shift on Fmq corresponds to multiplication by x in R. Ob-

serve that `-shift on Fm`q corresponds to componentwise multiplication by x in R`.

Namely, if c ∈ Fm×`q corresponds to ~c(x) ∈ R` (as in (1.1.2) and (1.1.3)), then

φ(T ` · (cij)) = φ


cm−1,0 . . . cm−1,`−1

c00 . . . c0,`−1
...

...

cm−2,0 . . . cm−2,`−1

 = (x · c0(x), . . . , x · c`−1(x)) = x · ~c(x).

Thus, a QC code C ⊂ R` is an R-submodule of R`.
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Now, let J = 〈xm−1, y`−1〉 be an ideal of Fq[x, y] and set S := Fq[x, y]/J . The

ring S is clearly an R-module and the following map is an R-module isomorphism

(cf. (1.1.2) and (1.1.3)).

ψ : R` −→ S

~c(x) = (cj(x))j 7→
`−1∑
j=0

cj(x)yj =
`−1∑
j=0

m−1∑
i=0

ci,jx
iyj (1.1.5)

Hence, Fm`q , R` and S are all isomorphic as R-modules and a q-ary QC code C of

length m` and index ` can be considered as an R-submodule in any of these rings.

Let us now introduce 2D cyclic codes (see [13, 17, 18] for further information)

as a special case of QC codes. Again, let C be a length m` linear code over Fq
whose codewords are written as in (1.1.1). Then, C is called 2D cyclic, if it is

closed under not only row shifts of codewords but also under column shifts:


c00 . . . c0,`−2 c0,`−1

...
...

...

cm−2,0 . . . cm−2,`−2 cm−2,`−1

cm−1,0 . . . cm−1,`−2 cm−1,`−1

 ∈ C

⇒


cm−1,0 . . . cm−1,`−2 cm−1,`−1

c00 . . . c0,`−2 c0,`−1

...
...

...

cm−2,0 . . . cm−2,`−2 cm−2,`−1

 ∈ C

⇒


c0,`−1 c00 . . . c0,`−2

...
... . . .

...

cm−2,`−1 cm−2,0 cm−2,`−2

cm−1,`−1 cm−1,0 . . . cm−1,`−2

 ∈ C

Clearly, a length m` 2D cyclic code is also an index ` QC code. Hence, it is

also an R-submodule of S. The extra column-shift invariance property amounts

to being closed under multiplication by y. Thus, 2D cyclic codes are ideals of S.

Remark 1.1.1. Note that both QC and 2D cyclic codes are 2-dimensional codes,

where the former has one shift invariance and the latter has two shift invariances.

Remark 1.1.2. Let C1 and C2 be length m` QC and 2D cyclic codes, respectively,

and assume that they have the same generator set in S (or in R`). Since C2 is

an S-submodule in S and C1 is an R-submodule in S, C2 contains C1. Hence

d(C1) ≥ (C2). In other words, given a QC code, the 2D cyclic code with the same

generating elements provide a lower bound for its minimum distance.

6



1.2 Encoding of QC Codes

After presenting QC codes in vectorial and polynomial terminologies, we now

move onto the two equivalent encoding schemes based on these descriptions. We

will illustrate the idea first on 1-generator QC codes.

Let C = 〈~g(x)〉 = 〈(g0(x), . . . , g`−1(x))〉 be a 1-generator QC code in R`, where

R = Fq[x]/〈xm − 1〉 as before. In vectorial presentation, C is a length m`, index `

QC code. Let us write each gj(x) as

gj(x) = gj0 + gj1x+ · · ·+ gj,m−1x
m−1.

By (1.1.4), we have the following m × ` array (or, length m` vector) over Fq
which corresponds to ~g(x)

~g :=


g00 g10 . . . g`−1,0

g01 g11 . . . g`−1,1
...

...
...

g0,m−1 g1,m−1 . . . g`−1,m−1


Being an R-module, the codewords of C are Fq-linear combinations of the

polynomials {~g(x), x~g(x), . . . , xm−1~g(x)} in R`. Recall that the multiplication of

~g(x) by x in R` amounts to row shift of ~g. Hence, as a subspace in Fm×`q , C is

generated by Fq-linear combinations of {~g, x · ~g, . . . , xm−1 · ~g}, where for 0 ≤ j ≤
m− 1, we have

xj · ~g :=


g0,m−j g1,m−j . . . g`−1,m−j

g0,m−j+1 g1,m−j+1 . . . g`−1,m−j+1

...
...

...

g0,m−j−1 g1,m−j−1 . . . g`−1,m−j−1


Note that the indices are considered mod m so that g0,m should actually be

g00, g0,m+1 should be g01, and so on. Let us now write each m× ` array xj · ~g as a

length m` vector over Fq by listing the entries in columns one after the other:

xj · ~g := (g0,m−j , . . . , g0,m−j−1; g1,m−j , . . . , g1,m−j−1; · · · ; g`−1,m−j , . . . , g`−1,m−j−1)

(1.2.1)

7



Remark 1.2.1. Note that when we say C is closed under `-shift, we are expanding

m×` codewords in C into length m` vectors by listing the entries in rows one after

the other. So, the vectors in (1.2.1) are in fact obtained from actual codewords in

C by a fixed permutation. In other words, the Fq-space generated by vectors in

(1.2.1) will be a code which is equivalent to C.

Now let us write each vector in (1.2.1) as a row of an m ×m` matrix. Since

the Fq-span of these rows generate (a code equivalent to) C, this matrix will be

thought of as a generating matrix of C:

G :=


g00 . . . g0,m−1 g10 . . . g1,m−1 · · · g`−1,0 . . . g`−1,m−1

g0,m−1 . . . g0,m−2 g1,m−1 . . . g1,m−2 · · · g`−1,m−1 . . . g`−1,m−1
...

...
...

... · · · ...
...

g01 . . . g00 g00 . . . g11 · · · g`−1,1 . . . g`−1,0


Let each m×m block in G be denoted by Gj:

Gj =


gj0 gj1 . . . gj,m−1

gj,m−1 gj0 . . . gj,m−2
...

...
...

gj1 gj2 . . . gj0

 , 0 ≤ j ≤ `− 1. (1.2.2)

Note that the rows of Gj are obtained from the previous row by a cyclic shift.

Such a matrix is called an m × m circulant matrix. Hence, a scalar generator

matrix for the QC code

C = 〈~g(x)〉 = 〈(g0(x), . . . , g`−1(x))〉

can be given as

G =
(
G0 G1 · · · G`−1

)
, (1.2.3)

where each Gj is an m×m circulant matrix and these blocks are associated to the

polynomial entries gj(x)’s in ~g(x).

We will call the 1× ` matrix

G =
(
g0(x) . . . g`−1(x)

)
(1.2.4)
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a polynomial generating matrix (PGM) of C, since

C = {b(x)(g0(x), . . . , g`−1(x)) : b(x) ∈ R} . (1.2.5)

So, we have introduced a scalar and polynomial generating matrix for a 1-

generator QC code.

Remark 1.2.2. The scalar matrix G in (1.2.3) may have linearly independent

rows, since it is not expected that every index `, length m` QC code has dimension

m. So, the actual generating matrix, which has as many rows as the dimension of

C, can be obtained by removing the linearly dependent rows from G.

Equivalently, the R-module isomorphism (1.1.5) allows us to view C ⊆ S as an

R-submodule generated by g(x, y) = ψ(~g(x)) in S and (1.2.5) becomes

C = {c(x, y) = b(x)G : b(x) ∈ R} , (1.2.6)

where G =
(
g(x, y)

)
is the corresponding PGM over S.

Now let us extend these notions to the r-generator case. Let C ⊆ R` be

generated by {~g1(x), . . . , ~gr(x)}, then

C = 〈~g1(x), . . . , ~gr(x)〉

= 〈
(
g10(x), . . . , g1,`−1(x)

)
, . . . ,

(
gr0(x), . . . , gr,`−1(x)

)
〉

=

{
~c(x) =

r∑
i=1

bi(x)
(
gi0(x), . . . , gi,`−1(x)

)
: bi(x) ∈ R

}
. (1.2.7)

Hence,

C =
{
~c(x) =

(
b1(x), . . . , br(x)

)
G : bi(x) ∈ R

}
, (1.2.8)

where G is the following PGM:

G =


~g1(x)

~g2(x)
...

~gr(x)

 =


g10(x) · · · g1,`−1(x)

g20(x) · · · g2,`−1(x)
...

...

gr0(x) · · · gr,`−1(x)

 (1.2.9)

As in 1-generator case, we can write a scalar generator matrix for C as
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G =


G10 G11 · · · G1,`−1

G20 G21 · · · G2,`−1
...

...
...

Gr0 Gr1 · · · Gr,`−1

 , (1.2.10)

where each Gij is the circulant matrix corresponding to gij(x) as in (1.2.2).

If C is considered as an R-submodule in S, then to ~gj(x) ∈ R` we associate

gj(x, y) = ψ(~gj(x)) ∈ S for each 0 ≤ j ≤ `− 1 and then(1.2.9) becomes

G =


g1(x, y)

g2(x, y)
...

gr(x, y)

 .

1.3 Concatenated Structure of QC Codes

We now describe the decomposition of a q-ary QC code into shorter codes over

extensions of Fq. We follow the brief presentation in [16] and refer to [23] for

details. Consider the factorization of xm − 1 into irreducibles in Fq[x], say

xm − 1 = f1(x)f2(x) . . . fs(x). (1.3.1)

Since m is relatively prime to q, there are no repeating factors in (1.3.1). By

Chinese Remainder Theorem we have the following ring isomorphism.

R ∼=
s⊕
i=1

Fq[x]/〈fi(x)〉. (1.3.2)

Since each fi(x) divides xm− 1, their roots are powers of some fixed primitive mth

root of unity ξ. For each i = 1, 2, . . . , s, let ui be the smallest nonnegative integer

such that fi(ξ
ui) = 0. Since fi(x)’s are irreducible, direct summands in (1.3.2) are

field extensions of Fq. If Ei := Fq[x]/〈fi(x)〉 for 1 ≤ i ≤ s, then we have

R ∼= E1 ⊕ · · · ⊕ Es

a(x) 7→ (a(ξu1), . . . , a(ξus)) . (1.3.3)
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This implies that

R` ∼= E`1 ⊕ · · · ⊕ E`s (1.3.4)

~a(x) = (a0(x), . . . , a`−1(x)) 7−→ [(a0(ξ
u1), . . . , a`−1(ξ

u1)), . . . , (a0(ξ
us), . . . , a`−1(ξ

us))] .

Hence, a QC code C ⊂ R` can be viewed as an (E1 ⊕ · · · ⊕ Es)-submodule of

E`1 ⊕ · · · ⊕ E`s and decomposes as

C = C1 ⊕ · · · ⊕ Cs, (1.3.5)

where Ci is a linear code of length ` over Ei, for each i. These length ` linear codes

over various extensions of Fq are called the constituents of C.

For an r-generator QC code C = 〈~g1(x), . . . , ~gr(x)〉 ⊂ R` we have

Ci = spanEi
{(gj,0(ξui), . . . , gj,`−1(ξui)) ∈ E`i |1 ≤ j ≤ r}

by (1.3.4) and Ci = 0 if and only if fi(x) | gj,t(x) for all 1 ≤ j ≤ r, 0 ≤ t ≤ `− 1.

Note that each field Ei is isomorphic to a minimal cyclic code of length m

over Fq. Namely, consider the cyclic code of length m whose check polynomial is

fi(x) (i.e. the code is generated by xm−1
fi(x)

). Let θi denote the generating primitive

idempotent for the minimal cyclic code ([22, Theorem 6.4.1 and Definition 6.4.2])

The isomorphism between 〈θi〉 and Ei is given by the maps

ϕi : 〈θi〉 −→ Ei
a(x) 7−→ a(ξui)

ψi : Ei −→ 〈θi〉

δ 7−→
m−1∑
k=0

akx
k

, (1.3.6)

where

ak =
1

m
TrEi/Fq(δξ

−kui).

If Ci is a length ` linear code over Ei, we will denote its concatenation with

〈θi〉 by 〈θi〉2Ci and the concatenation will be carried out by the map ψi. In other

words, each entry of the codewords of Ci are mapped by ψi to length m codewords

in 〈θi〉 so that we obtain a length m` vector over Fq. If we apply this concatenation

for each i = 1, . . . , s, we get the following concatenated description for QC codes,

which is given by Jensen.
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Theorem 1.3.1. ([19]) (i) Let C be an R-submodule of S (i.e. a QC code). Then

for some subset I of {1, . . . , s}, there exist linear codes Ci of length ` over Ei
(which can be explicitly described) such that C = ⊕i∈I〈θi〉2Ci.

(ii) Conversely, let Ci be a linear code over Ei of length ` for each i ∈ I ⊆
{1, . . . , s}. Then, C = ⊕i∈I〈θi〉2Ci is a q-ary QC code of length m` and index `.

It is proved in [16] that for a given QC code C, the constituents Ci’s in (1.3.5)

and the outer codes Ci’s in the concatenated structure are equal to each other (see

[16, Theorem 4.1] ).

1.4 Convolutional Codes

QC codes are not only closely related to cyclic and 2D cyclic codes, but also

to another well-studied class of codes, namely convolutional codes. In this section

we will cover some basic facts on convolutional codes and then present their link

to QC codes.

An (`, k) convolutional code C over Fq is defined as a k-dimensional Fq(x)-

subspace of Fq(x)`. The weight of an element c(x) ∈ Fq(x) is defined as the number

of terms in c(x) expressed as a Laurent series, since every rational function has a

unique causal Laurent series representation. Therefore, the weight of a codeword

~c(x) = (c0(x), . . . , c`−1(x)) ∈ C is the sum of the weights of its coordinates. The

free distance of the convolutional code df (C) is the minimum weight among nonzero

codewords.

An encoder of C is a k×` matrix over Fq(x), which is called a generator matrix

of C as usual. By clearing off the denominators of all the entries in any generating

matrix, we can obtain a polynomial generator matrix (PGM) for C which is a k×`
matrix G of rank k with entries from Fq[x] such that

C =
{

(u0(x), . . . , uk−1(x))G : (u0(x), . . . , uk−1(x)) ∈ Fq(x)k
}
. (1.4.1)

Moreover, it is usually assumed that G is noncatastrophic in the sense that

finite weight codewords of C can only be produced from finite weight information

words. For instance, consider the following PGM

G =
(
x2 + 1, x+ 1

)
,
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which generates a (2, 1)-convolutional code C over F2. Let

u(x) = 1 + x+ x2 + · · · = 1

x+ 1
.

Then u(x)G = (x + 1, 1) which is a codeword with weight 3 but wt(u(x)) = ∞.

This may cause an infinite number of fails in the decoding, which is undesired.

Definition 1.4.1. ( [26, 29]) Let G be a PGM for an (`, k) convolutional code.

i. G is noncatastrophic if and only if the greatest common divisor of all k × k
minors of G is xb for some nonnegative integer b.

ii. G is basic if and only if the greatest common divisor of all k × k minors of

G is 1.

In this sense, G =
(
x + 1, 1

)
is a basic (hence, noncatastrophic) PGM for the

example above. Note that a basic PGM exists for any convolutional code (see [29,

Section 3]).

Remark 1.4.2. If C is given with a basic PGM, then all finite weight codewords

with polynomial coordinates come from information words with polynomial coor-

dinates ([29]).

Viewing convolutional codes as linear codes over Fq(x) leads to codewords with

infinite weight, which can not occur in practice and there is no reason to use this

as the definition (see [8, 21]). Moreover, again due to practical purposes, finite

weight codewords which are causal are of interest ([21, 29]). These are exactly the

polynomial codewords. For this reason, we consider an (`, k) convolutional code

C as a rank k Fq[x]-submodule of Fq[x]`. Note that C is necessarily a free module

since Fq[x] is a principal ideal domain. Such convolutional codes are also called

finite support convolutional codes ([4]) and in this case (1.4.1) turns out to be

C =
{

(u0(x), . . . , uk−1(x))G : (u0(x), . . . , uk−1(x)) ∈ Fq[x]k
}
. (1.4.2)

Observe that ifG is a basic PGM for C, then (1.4.2) describes all the polynomial

codewords (since polynomial output implies polynomial input for a basic PGM).

13



We are ready to associate a QC code to a given convolutional code. Let R =

Fq[x]/〈xm − 1〉 as before and consider the projection map

Φ : Fq[x] −→ R

f(x) 7→ f ′(x) := f(x) mod 〈xm − 1〉. (1.4.3)

It is clear that for a given (`, k) convolutional code C, there is a natural QC code

C ′ related to it (of length m` and index `, for any m > 1) as shown below. Note

that we denote the map from C to C ′ also by Φ.

Φ : C −→ C ′

~c(x) = (c0(x), . . . , c`−1(x)) 7→ ~c′(x) = (c′0(x), . . . , c′`−1(x)). (1.4.4)

In fact, the minimum distance of the QC code C ′ is a lower bound on the free

distance of the convolutional code C, as shown by Lally ([21]). We will formulate

several crucial findings of Lally in the following. Note that the last result below is

a consequence of the first two.

Theorem 1.4.3. ([21, Theorem 2 and its proof]) Let C be an (`, k) convolutional

code over Fq with a basic PGM and C ′ be the related QC code in R`. Let ~c be a

codeword in C and set ~c′ = Φ(~c) ∈ C ′.

i. If ~c′(x) 6= 0, then wt(~c) ≥ wt(~c′).

ii. If ~c′(x) = ~0, let γ ≥ 1 be the maximal positive integer such that (xm − 1)γ

divides each coordinate of ~c. Write ~c = (xm−1)γ (v0(x), . . . , v`−1(x)) and set

~v = (v0(x), . . . , v`−1(x)). Then, ~v is a codeword of C. Moreover, by using

the weight preserving property proven in [25], we have wt(~c) ≥ wt(~v′) for

~v′ ∈ C ′ \ {~0}

iii. By (i) and (ii), df (C) ≥ d(C ′).

An important fact to emphasize is that the assumption of a basic PGM for the

given convolutional code is crucial in this theorem since a catastrophic PGM may

violate the second result, as the following example shows.
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Example 1.4.4. Let C be a (2, 1) convolutional code over F2 with the PGM below

G =
(
x2 + x+ 1 x2 + x+ 1

)
and suppose that C ′ is the related QC code in (F2[x]/〈x3 + 1〉)2. Then ~c(x) =

(x3 + 1, x3 + 1) is a codeword in C and ~c′(x) = ~0. But ~c = (x3 + 1) · (1, 1) and

~v = (1, 1) is not a codeword of C, which is considered as an F2[x]-submodule in

F2[x]2. Therefore we have to take the PGM G = (1, 1), which is basic.

Remark 1.4.5. Let us note that Lally uses an alternative module description of

convolutional and QC codes in [21]. Namely, a basis {1, α, . . . , α`−1} of Fq` over

Fq is fixed and the Fq[x]-modules Fq[x]` and Fq` [x] are identified via the following

map:

Fq[x]` −→ Fq` [x]

~c(x) = (c0(x), . . . , c`−1(x)) 7→ c(x) =
`−1∑
i=0

ci(x)αi

With this identification, a length ` convolutional code is viewed as an Fq[x]-module

in Fq` [x] and a length m`, index ` QC code is viewed as an Fq[x]-module in

Fq` [x]/〈xm − 1〉. However, all of Lally’s findings can be translated to the mod-

ule descriptions that we have been using for convolutional and QC codes and this

is how they are presented in Theorem 1.4.3.
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Chapter 2

Multidimensional Quasi-Cyclic

Codes

In this chapter, multidimensional generalization of quasi-cyclic codes will be

introduced. Due to the ease in visualization of the idea, we first focus on 3D codes

in the following section. Generalization to arbitrary dimension as well as the study

of their algebraic structure are given in later sections.

2.1 Quasi 2D Cyclic and 3D Cyclic Codes

Let C be a q-ary length m`k linear code and view its codewords as m× `× k
cubes as follows:

c0,0,k−1 c0,`−1,k−1

c0,0,j c0,`−1,j

c0,0,0 c0,`−1,0

cm−1,0,k−1 cm−1,`−1,k−1

cm−1,0,j cm−1,`−1,j

cm−1,0,0 cm−1,`−1,0

(2.1.1)

A 3D code C is called a 3D cyclic if it is closed under bottom-to-top, right-

to-left and back-to-front face shifts of its codewords (see the figures below). Let
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us note that multidimensional cyclic codes have been studied in the literature (see

[13, 15, 17, 18, 32]).

(2.1.2)

Moreover, the codewords of a 3D cyclic code can be put into a 2D form. For

this, let us write the cube (2.1.1) as a m× `k array in Fm×`kq :

c000 . . . c0,`−1,0 . . . . . . c0,0,k−1 . . . c0,`−1,k−1
c100 . . . c1,`−1,0 . . . . . . c1,1,k−1 . . . c1,`−1,k−1

...
...

...
...

... . . .
...

cm−1,0,0 . . . cm−1,`−1,0 . . . . . . cm−1,0,k−1 . . . cm−1,`−1,k−1




(2.1.3)

So, a length m`k linear code C ⊂ Fm`kq is called 3D cyclic if its codewords

viewed as m× `k arrays are not only closed under row shift and column shifts in

each m× ` subarrays, but also under shift of m× ` subarrays.

Remark 2.1.1. It is easy to see that the arrows in (2.1.3) correspond to face shifts

in the 3D picture. Namely, the bottom-to-top, right-to-left and back-to-front face

shifts in the 3D representation (2.1.2) correspond to row shift, column shift in each

m× ` subarrays and m× ` block shift, respectively. Hence, the codewords of a 3D

cyclic code are closed under shift by `k, mk and m` positions.

Observe that for k = 1 we get a 2D cyclic code. Recall from Chapter 1 that a

QC code is a 2D linear code which misses one of the shift invariances that a 2D

cyclic code has. We proceed similarly to define quasi 2D cyclic codes.

Definition 2.1.2. A length m`k linear code C ⊂ Fm`kq is called a quasi 2D cyclic

(Q2DC) code if its codewords viewed as m× `k arrays are closed under row shift

and column shifts in each m× ` subarrays.
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c000 . . . c0,`−1,0 . . . . . . c0,0,k−1 . . . c0,`−1,k−1
c100 . . . c1,`−1,0 . . . . . . c1,1,k−1 . . . c1,`−1,k−1

...
...

...
...

... . . .
...

cm−1,0,0 . . . cm−1,`−1,0 . . . . . . cm−1,0,k−1 . . . cm−1,`−1,k−1




(2.1.4)

In other words, the codewords of a Q2DC code C ⊂ Fm`kq are closed under shift

by `k and mk positions. Therefore, C can be viewed as an index `k QC code.

Remark 2.1.3. The codewords of a Q2DC cyclic code C viewed as m × ` × k

cubes as in (2.1.1) are closed under bottom-to-top, right-to-left shifts (see 2.1.2).

Therefore, just like the case in QC and 2D cyclic codes, 3D cyclic codes can also

be viewed as a special case of Q2DC codes with one more shift invariance.

In order to realize the algebraic description of Q2DC cyclic codes, let J =

〈xm − 1, y` − 1〉 be an ideal of Fq[x, y] and set S := Fq[x, y]/J as before. For an

m× `× k cube c ∈ Fm×`×kq as in (2.1.1), assign an element of Sk via the following

analogue of the map φ in (1.1.4):

φ′ : Fm×`×kq −→ Sk

(ci,j,t) 7→ ~c(x, y) = (c0(x, y), . . . , ck−1(x, y)) , (2.1.5)

where for each 0 ≤ t ≤ k − 1,

ct(x, y) =
m−1∑
i=0

`−1∑
j=0

ci,j,tx
iyj ∈ S. (2.1.6)

Now, let U = 〈xm − 1, y` − 1, zk − 1〉 be an ideal of Fq[x, y, z] and define the

quotient ring P := Fq[x, y, z]/U . Then we define the following analogue of the map

ψ in (1.1.5):

ψ′ : Sk −→ P

~c(x, y) 7→ c(x, y, z), (2.1.7)

where

c(x, y, z) =
k−1∑
t=0

ct(x, y)zt =
k−1∑
t=0

m−1∑
i=0

`−1∑
j=0

ci,j,tx
iyjzt. (2.1.8)
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Note that under these identifications, bottom-to-top and right-to-left face shifts

of (ci,j,t) ∈ Fm×`×kq correspond, respectively, to multiplication by x and y (compo-

nentwise) in Sk and in P . The back-to-front shift of (ci,j,t) corresponds to cyclic

shift of ~c(x, y) in Sk and to multiplication by z in P .

The following is immediate after the preparation provided above.

Proposition 2.1.4. A Q2DC code as in Definition 2.1.2 is an S-submodule in Sk

and in P . Moreover, a 3D cyclic code is an ideal in P .

Remark 2.1.5. It has been noted by Ling and Solé in [23] that a QC code C

of length m` and index ` can be characterized algebraically by the automorphism

group Perm(C) of the code, which is a subgroup of the symmetric group Sm`.

Namely, C is QC of length m` and index ` if and only if there exists a fixed point

free permutation in Perm(C) that consists of ` disjoint cycles of length m. With

our notation so far, a 3D linear code C of length m× `× k is a Q2DC code if and

only if there exists a fixed point free permutation in Perm(C) which consists of `k

disjoint cycles of length m and there exists another fixed point free permutation

in Perm(C) which consists of mk disjoint cycles of length `.

2.2 QnDC Codes

We have extended the definition of QC codes to Q2DC codes, which are 3D

codes with 2 shift invariances, and described their algebraic structure in the pre-

vious section. We now move onto the higher dimensional generalizations of QC

codes. For this, let us first define certain rings:

R1 = Fq[x1]/〈xm1
1 − 1〉

R2 = Fq[x1, x2]/〈xm1
1 − 1, xm2

2 − 1〉
...

... (2.2.1)

Rn = Fq[x1, . . . , xn]/〈xm1
1 − 1, . . . , xmn

n − 1〉

Rn+1 = Fq[x1, . . . , xn+1]/〈xm1
1 − 1, . . . , x

mn+1

n+1 − 1〉

Here, mi’s are positive integers and m1 will be assumed to be relatively prime to

q. Note that the rings R, S and P in Section 2.1 are the first three rings above.
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Keeping the analogy with QC and Q2DC codes, a quasi nD cyclic code will

be an (n + 1)D linear code with n shift invariances. Algebraically, the natural

definition that corresponds to this is as follows.

Definition 2.2.1. A quasi nD cyclic code (QnDC) C over Fq of length m1 ×
· · · × mn+1 is an Rn-submodule of Rn+1. Alternatively, C can be defined as an

Rn-module in Rmn+1
n (this was done for n = 2 case (Proposition 2.1.4) via the

identification given in (2.1.7)).

Let us note that an (n+ 1)D cyclic code of length m1 × · · · ×mn+1 is an ideal

in Rn+1 ([15, 32]). In particular, it is also a QnDC code.

Remark 2.2.2. We can characterize QnDC codes via their automorphism groups

as we did for n = 2 case in Remark 2.1.5. Namely, an (n + 1)D linear code C of

length m1 × · · · × mn+1 is QnDC if and only if Perm(C) contains n fixed point

free automorphisms σ1, . . . , σn, where each σi consists of m1 · · ·mi−1mi+1 · · ·mn+1

disjoint cycles of length mi.

Remark 2.2.3. We can extend the distance relation given in Remark 1.1.2 to nD

case as well. If C1 and C2 are QnDC and (n + 1)D cyclic codes given with the

same generator set in Rn+1, respectively, then C1 ⊆ C2 and hence d(C1) ≥ d(C2).

Now let us generalize the encoding of the QC codes given in Section 1.2 to

QnDC codes. We begin with 1-generator Q2DC codes: let C = 〈~g(x, y)〉 =

〈
(
g0(x, y), . . . , gk−1(x, y)

)
〉 be an S-submodule in Sk where S = Fq[x, y]/〈xm −

1, y` − 1〉 as in Section 2.1. Then

C =
{
~c(x, y) =

(
b(x, y)g0(x, y), . . . , b(x, y)gk−1(x, y)

)
: b(x, y) ∈ S

}
and G =

(
g0(x, y), g1(x, y), . . . , gk−1(x, y)

)
is the corresponding PGM for C in Sk.

Equivalently, C = 〈g(x, y, z)〉 ⊂ P , where P ' Sk = Fq[x, y, z]/〈xm − 1, y` −
1, zk − 1〉 as before and g(x, y, z) = ψ′(~g(x, y)). From this point of view,

C = {c(x, y, z) = b(x, y)g(x, y, z) : b(x, y) ∈ S}

and
(
g(x, y, z)

)
is the PGM of C in P .
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If C = 〈~g1(x, y), . . . , ~gr(x, y)〉 is an r-generator Q2DC code in Sk, where

~g1(x, y) =
(
g10(x, y), . . . , g1,k−1(x, y)

)
...

...

~gr(x, y) =
(
gr0(x, y), . . . , gr,k−1(x, y)

)
,

then

C =

{
~c(x, y) =

(
r∑
t=1

bt(x, y)gt0(x, y), . . . ,
r∑
t=1

bt(x, y)gt,k−1(x, y)

)
: bt(x, y) ∈ S

}
.

In this case, the PGM for C over S is given by

G =


g10(x, y) g11(x, y) · · · g1,k−1(x, y)

g20(x, y) g21(x, y) · · · g2,k−1(x, y)
...

...
...

gr0(x, y) gr1(x, y) · · · gr,k−1(x, y)

 . (2.2.2)

Clearly, by setting gi(x, y, z) = ψ′(~gi(x, y)), we get the following PGM in T :

G =


g1(x, y, z)

...

gr(x, y, z)

 .

Now we describe the encoders for QnDC codes. Let C be a 1-generator QnDC

code with C = 〈g(x1, ..., xn+1)〉 ⊂ Rn+1. Then, as we did for n = 2 case in (1.2.6),

C = {c(x1, ..., xn+1) = b(x1, ..., xn)G : b(x1, ..., xn) ∈ Rn} (2.2.3)

and G =
(
g(x1, ..., xn+1)

)
is the corresponding PGM for C in Rn+1.

There exists a uniquely determined element ~g(x1, ..., xn) ∈ Rmn+1
n , which is

obtained by the following analogue of the maps (1.1.5) and (2.1.7)

Ψ : Rmn+1
n −→ Rn+1

~g(x1, ..., xn) 7→ g(x1, ..., xn+1) =

mn+1−1∑
i=0

gi(x1, ..., xn)xin+1. (2.2.4)
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Obviously, Ψ is an isomorphism and therefore we have the following PGM for

C over Rn, which generalizes (1.2.4):

G =
(
g0(x1, ..., xn) g1(x1, ..., xn) · · · gmn+1−1(x1, ..., xn)

)
(2.2.5)

Now let C = 〈g1(x1, ..., xn+1), . . . , gr(x1, ..., xn+1)〉 ∈ Rn+1 be an r-generator

QnDC code. In this case (2.2.3) turns out to be

C =

{
c(x1, ..., xn+1) =

r∑
t=1

bt(x1, ..., xn)gt(x1, ..., xn+1) : bt(x1, ..., xn) ∈ Rn

}

where

G =


g1(x1, ..., xn+1)

...

gr(x1, ..., xn+1)


and

G =


g10(x1, ..., xn) g11(x1, ..., xn) · · · g1,mn+1−1(x1, ..., xn)

g20(x1, ..., xn) g21(x1, ..., xn) · · · g2,mn+1−1(x1, ..., xn)
...

...
...

gr0(x1, ..., xn) gr1(x1, ..., xn) · · · gr,mn+1−1(x1, ..., xn)

 (2.2.6)

are the corresponding PGM’s for C in Rn+1 and Rn, respectively. We have C =

〈~g1(x1, ..., xn), . . . , ~g1(x1, ..., xn)〉 ∈ Rmn+1
n where gt(x1, ..., xn+1) = Ψ(~gt(x1, ..., xn))

for all 1 ≤ t ≤ n. By using (1.2.1) for each xj and ~gt(x1, ..., xn) with 1 ≤ j ≤ n

and 1 ≤ t ≤ r, we can also get a generator matrix for C over Fq.

2.3 Concatenated Structure and Asymptotics

Being a QC code, both QnDC and (n + 1)D cyclic codes have concatenated

structures. It was proved in [16, Theorem 4.3] that outer codes (or constituents)

of an (n + 1)D cyclic code are nD cyclic codes. We now prove the analogue of

that statement for QnDC codes. We assume that xm1 − 1 factors into irreducibles

over Fq[x] as in (1.3.1) (setting m = m1) and use the notations in (1.3.2), (1.3.3),

(1.3.4) and (1.3.5). We let ξ be a primitive mth
1 root of unity over Fq.
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Theorem 2.3.1. Let n ≥ 2 and (m1, q) = 1. For each 1 ≤ i ≤ s, let 〈θi〉 be the

minimal cyclic code of length m1 over Fq, whose parity check polynomial is fi(x)

and which is generated by the primitive idempotent θi.

i. If C is a QnDC code of length m1 × · · · × mn+1 over Fq, then it can be

decomposed as

C =
s⊕
i=1

〈θi〉2Ci,

where each Ci is a Q(n-1)DC code of length m2 × · · · ×mn+1 over Ei.

ii. Conversely, if Ci is a Q(n-1)DC code of length m2× · · · ×mn+1 over Ei (for

each i), then

C =
s⊕
i=1

〈θi〉2Ci

is a QnDC code of length m1 × · · · ×mn+1 over Fq.

Proof. View C as a QC code of index m2 · · ·mn+1 and note by [16, Theorem 4.3]

that its constituents lie in

Em2×···×mn+1

i ' Ei[x2, . . . , xn+1]/〈xm2
2 − 1, . . . , x

mn+1

n+1 − 1〉.

Each constituent Ci (for 1 ≤ i ≤ s) is of the form

Ci =

{
m2−1∑
a2=0

· · ·
mn+1−1∑
an+1=0

[
m1−1∑
k=0

cka2...an+1ξ
kui

]
xa22 . . . x

an+1

n+1 :
(
cka2...an+1

)
∈ C

}
.

Since C is an Rn-submodule in Rn+1, it is closed under multiplication by

x2, ..., xn and by elements of Fq. Hence, Ci is closed under multiplication by

x2, ..., xn and by elements of Fq. It remains to show that Ci is also closed under

multiplication by ξui to conclude that it is a Ei[x2, . . . , xn]/〈xm2
2 − 1, . . . , xmn

n − 1〉-
submodule in Ei[x2, . . . , xn+1]/〈xm2

2 − 1, . . . , x
mn+1

n+1 − 1〉 (i.e. Ci is a Q(n − 1)DC

code over Ei). If we take an arbitrary codeword from Ci and multiply it with ξui ,

it takes the form

m2−1∑
a2=0

· · ·
mn+1−1∑
an+1=0

(
m1−1∑
k=0

cka2...an+1ξ
(k+1)ui

)
xa22 · · · x

an+1

n+1 .
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This polynomial is obtained from the polynomial x1c(x1, . . . , xn+1), where

c(x1, . . . , xn+1) =

m2−1∑
a2=0

· · ·
mn+1−1∑
an+1=0

[
m1−1∑
k=0

cka2...an+1x
k
1

]
xa22 · · ·x

an+1

n+1 .

Note that we have not used the fact that C is closed under multiplication by x1

so far. Using this fact, x1c(x1, . . . , xn+1) ∈ C and part i is proved.

For the converse recall that Ci is a Ei[x2, . . . , xn]/〈xm2
2 − 1, . . . , xmn

n − 1〉- sub-

module in Ei[x2, . . . , xn+1]/〈xm2
2 − 1, . . . , x

mn+1

n+1 − 1〉 for each i. Moreover, the con-

catenation is of the form (cf. (1.3.6))

〈θi〉2Ci =

{
m2−1∑
a2=0

· · ·
mn+1−1∑
an+1=0

ψi(ca2...an+1)x
a2
2 · · · x

an+1

n+1 :
(
ca2,...,an+1

)
∈ Ci

}
.

Since 〈θi〉 is a cyclic code of length m1 over Fq, ψi(ca2...an+1) lies in Fq[x1]/〈xm1
1 −

1〉 and hence 〈θi〉2Ci ⊂ Ei[x1, . . . , xn+1]/〈xm1
1 − 1, . . . , x

mn+1

n+1 − 1〉 which is closed

under multiplication by x2, . . . , xn+1 and by constants in Ei due to the fact that

Ci is Q(n − 1)DC. Moreover, it is also closed under multiplication by x1 since

ψi(ca2...an+1) ∈ 〈θi〉 and 〈θi〉 is an ideal of Fq[x1]/〈xm1
1 − 1〉. This finishes the

proof.

It is known that QC codes and various special families of QC codes are asymp-

totically good ([6, 20, 24, 28]). Our goal in this section is to show that for any

n ≥ 2, QnDC codes are also asymptotically good. For this, we will utilize the

concatenated structure of these codes.

Theorem 2.3.2. For every n ≥ 2 and any finite field Fq, there exists an asymp-

totically good sequence of QnDC codes over Fq. When these codes are viewed as

QC codes, their index is N/(q + 1) where N denotes the length of the codes.

Proof. Note that for any prime power r, the polynomial f(x) = xr+1 − 1 has

exactly one linear factor (x − 1) and all other irreducible factors of f over Fr[x]

are quadratic with roots β and βr = β−1. In particular, Fr2 is the splitting field of

f over Fr.

Let f0(x) = xq+1− 1 ∈ Fq[x] and fix a root 1 6= α0 which is a root of one of the

quadratic irreducible factors f ∗0 (x) of f0(x). Then, Fq2 = Fq(α0). Now, consider

f1(x) = xq
2+1 − 1 ∈ Fq2 [x] and fix a root 1 6= α1 which is a root of one of the
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quadratic irreducible factors f ∗1 (x) of f1(x). Then, Fq22 = Fq2(α1) = Fq(α0, α1).

More generally for 0 ≤ j ≤ n − 1, let mj = q2
j

+ 1 and note that each mj is

relatively prime to q. Consider the polynomials

fj(x) = xmj − 1 ∈ Fq2j [x] = Fmj−1[x]

and fix a root αj of each fj(x) as one of the roots of a chosen quadratic irreducible

factor f ∗j (x) of fj(x). Then, a sequence of field extensions is obtained:

Fq ⊂ Fq2 = Fq(α0) ⊂ Fq22 = Fq(α0, α1) ⊂ · · · ⊂ Fq2n = Fq(α0, . . . , αn−1).

Let 〈θ∗j 〉 be the minimal cyclic code over Fq2j , which is generated by the prim-

itive idempotent θ∗j and whose parity check polynomial is f ∗j (x). Note that 〈θ∗j 〉
has dimension 2 and length mj (for each 0 ≤ j ≤ n− 1). We denote the minimum

distance of 〈θ∗j 〉 by d∗j .

Now start with an asymptotically good sequence of linear codes (Ci) over Fq2n =

Fq(α0, . . . , αn−1) and assume that Ni, di and ki denote respectively the length,

minimum distance and dimension of Ci, for all i. Let

δ := lim
i

di
Ni

and α := lim
i

ki
Ni

denote the limit distance and the limit rate of the sequence (Ci) and note that

both quantities are positive, since (Ci) is asymptotically good.

Consider the sequence of codes (〈θ∗n−1〉2Ci). By Theorem 1.3.1, this sequence

consists of QC codes over Fq2n−1 = Fq(α0, . . . , αn−2), where for each i the length

and the dimension of 〈θ∗n−1〉2Ci are, respectively, mn−1Ni and 2ki. Moreover,

the minimum distance of 〈θ∗n−1〉2Ci is at least d∗n−1di. Now, take the members

of this sequence of QC codes as outer codes and concatenate each with the code

〈θ∗n−2〉 to obtain a sequence of Q2DC codes
(
〈θ∗n−2〉2

(
〈θ∗n−1〉2Ci

))
over Fq2n−2 =

Fq(α0, . . . , αn−3) (Theorem 2.3.1). Note that the ith code in this new sequence has

length mn−2mn−1Ni and its dimension is 22ki. The minimum distance of this ith

code is at least d∗n−2d
∗
n−1di. Continue this way to form the sequence of codes

(
〈θ∗0〉2

(
〈θ∗1〉2

(
· · ·2

(
〈θ∗n−1〉2Ci

))))
. (2.3.1)
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By Theorem 2.3.1, the sequence (2.3.1) consists of QnDC codes over Fq. The

length and the dimension of the ith code in this last sequence are respectively,

m0 · · ·mn−1Ni and 2nki.

The minimum distance of the ith code is at least d∗0 · · · d∗n−1di. If we denote the

limit parameters of the sequence of QnDC codes in (2.3.1) as δ∗ and α∗, we have

δ∗ ≥
d∗0 · · · d∗n−1
m0 · · ·mn−1

δ > 0 and α∗ =
2n

m0 · · ·mn−1
α > 0.

It is clear that the ith code in this sequence can be viewed as a QC code of index

m1 · · ·mn−1Ni.

Remark 2.3.3. Whether cyclic codes are asymptotically good or not is an impor-

tant open problem in coding theory ([27]). As in Theorem 2.3.2, a sequence of nD

cyclic codes can be obtained by starting with a sequence of cyclic codes and con-

tinuing with consecutive concatenations. Hence, if cyclic codes are asymptotically

good, so are nD cyclic codes for any n ≥ 2. We are not aware of any result on the

asymptotic performance of nD cyclic codes.
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Chapter 3

Multidimensional Convolutional

Codes and Their Relation to

QnDC Codes

We have shown in the first chapter that QC codes are naturally related to con-

volutional codes and they yield a lower bound on the free distance of convolutional

codes. Our aim in this chapter is to provide an analogous relation between mul-

tidimensional quasi-cyclic and multidimensional convolutional codes. For this, we

will first recall some basic facts on multidimensional convolutional codes.

3.1 Multidimensional Convolutional Codes

Suppose that G is a k × ` full rank polynomial matrix G with entries from

Fq[x1, . . . , xn]. An n-dimensional (nD) convolutional code over Fq of length ` is

defined in general as an Fq[[x1, . . . , xn]]-module in Fq[[x1, . . . , xn]]` generated by

the rows of G ([7, 33]):

C = {(u0, . . . , uk−1)G : ui ∈ Fq[[x1, . . . , xn]] ∀i} .

Here, Fq[[x1, . . . , xn]] denotes the ring of formal power series.

Analogous to the 1D case, we define the weight of a power series c(x1, . . . , xn) as

the number of its terms and the weight of a codeword ~c(x1, . . . , xn) = (c0(x1, . . . , xn),

. . . , c`−1(x1, . . . , xn)) as the sum of the weights of its coordinates. The free distance

of code df (C) is the minimum nonzero weight in C.
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Furthermore, as in the 1D case, it is generally assumed that C is encoded

by a noncatastrophic PGM G, again in the sense that finite weight outputs can

only come from finite weight inputs. Noncatastrophicity for G means that if a

polynomial in Fq[x1, . . . , xn] divides all (k × k) minors of G, then this polynomial

is a constant polynomial or a polynomial with zero constant term ([33, Proposition

5.1.7]). Finite weight power series are clearly polynomials. Again for the purpose

of weight analysis infinite weight codewords are not of interest and hence we will

focus on codes with polynomial representations. Therefore, we will consider

C = {(u0, . . . , uk−1)G : ui ∈ Fq[x1, . . . , xn] ∀i} (3.1.1)

and such a code will be referred to as (`, k) nD convolutional code. In other words,

an nD convolutional code will be an Fq[x1, . . . , xn]-module in Fq[x1, . . . , xn]`. This

is also the point of view taken in [4, 9, 33]. Unlike the classical case (n = 1), not

every such module is necessarily free when n ≥ 2 (see [9, Example 8.3]), although

only free nD convolutional codes are studied in some articles (e.g. [4]).

Recall that a QnDC code of size m1×· · ·×mn+1 can be viewed as an Rn-module

in Rmn+1
n . Set ` = mn+1 and define the analogue of the projection in (1.4.3) as:

Φ : Fq[x1, x2, . . . , xn] −→ Rn

f 7→ f ′ := f mod 〈xm1
1 − 1, . . . , xmn

n − 1〉 (3.1.2)

Then, for an nD convolutional code C of length `, we can associate a size m1 ×
· · · ×mn× ` QnDC code C ′, which is viewed as an Rn-module in R`

n, as was done

for n = 1 case in (1.4.4):

Φ : C −→ C ′

~c = (c0, . . . , c`−1) 7→ ~c′ =
(
c′0, . . . , c

′
`−1
)
. (3.1.3)

3.2 Background on Gröbner Bases

Before proceeding further on the relation of multidimensional QC and convolu-

tional codes, let us go over some facts about Gröbner bases. For details and proofs

of the following statements, we refer to [1].
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Let K be a field and fix a term order on K[x1, . . . , xn]. A power product

xα1
1 . . . xαn

n will be denoted by Xα. Any element f ∈ K[X]\{0} can be written as

f = a1X
α1 + . . .+ arX

αr ,

where ai ∈ K∗ and Xα1 > . . . > Xαr .

We will use the following the notation:

`p(f) = Xα1 : the leading power product of f

`c(f) = a1 : the leading coefficient of f

`t(f) = a1X
α1 : the leading term of f

Definition 3.2.1. Let f, g ∈ K[X] with g 6= 0. We say that f reduces to h modulo

g in one step (f
g−→ h) if `p(g) divides a nonzero term X that appears in f and

h = f − X

`t(g)
g.

Definition 3.2.2. Let f, h, f1, . . . , fs ∈ K[X] and let F = {f1, . . . , fs}. We say

that f reduces to h mod F (f
F−→ h) if there exists a sequence of indices i1, . . . , it ∈

{1, . . . , s} (not necessarily distinct) and a sequence of polynomials h1, . . . , ht−1 ∈
K[X] such that

f
fi1−→ h1

fi2−→ h2
fi3−→ · · ·

fit−1−−−→ ht−1
fit−→ h.

Definition 3.2.3. A polynomial r ∈ K[X] is called reduced with respect to F =

{f1, . . . , fs} if r = 0 or no power product that appears in r is divisible by one of

the `p(fi)’s (i = 1, . . . , s), i.e. r cannot be reduced mod F .

Definition 3.2.4. If f
F−→ r and r is reduced with respect to F , then r is called a

remainder for f with respect to F .

Definition 3.2.5. A set of nonzero polynomials G = {g1, . . . , gt} contained in an

ideal I is called a Gröbner basis for I, if for any nonzero element f ∈ I there exists

i ∈ {1, . . . , s} such that `p(gi)|`p(f).

Theorem 3.2.6. i. G is a Gröbner basis for the ideal I if and only if

f ∈ I ⇔ f
G−→ 0.
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ii. If G is a Gröbner basis for I then I = 〈g1, . . . , gt〉.

iii. Every nonzero ideal in K[X] has a Gröbner basis.

Definition 3.2.7. We say thatG = {g1, . . . , gt} is a Gröbner basis if it is a Gröbner

basis for the ideal 〈G〉 that it generates.

Theorem 3.2.8. G is a Gröbner basis if and only if for all f ∈ K[X] the remainder

of the division of f with respect to G is unique.

Definition 3.2.9. Let f, g ∈ K[X] be nonzero and let L = lcm(`p(f), `p(g)). The

polynomial

S(f, g) =
L

`t(f)
f − L

`t(g)
g

is called the S-polynomial of f and g.

Theorem 3.2.10. Let G = {g1, . . . , gt} be a set of nonzero polynomials in K[X].

Then G is a Gröbner basis if and only if for each i 6= j we have S(gi, gj)
G−→ 0.

The following observations are immediate from the facts stated so far.

Proposition 3.2.11. For any n ∈ N and mi ≥ 1 (i = 1, . . . , n), {xm1
1 −1, . . . , xmn

n −
1} is a Gröbner basis.

Proposition 3.2.12. Let G = {g1, . . . , gn}, where gi = xmi
i −1 for all i = 1, . . . , n.

Let f ∈ K[X] be nonzero and reduce f by g1 as much as possible, then by g2 as

much as possible and so on. Then, f can be written as

f = a1g1 + · · ·+ angn + r,

where

i. r is the unique remainder of f with respect to G,

ii. For i > 1, ai is reduced with respect to {g1, . . . , gi−1}. In particular, ai is not

divisible by gt for any t ∈ {1, . . . , i− 1}.
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3.3 On Noncatastrophicity for 1-Generator Con-

volutional Codes

Let C ⊂ Fq[x1, . . . , xn]` be a 1-generator nD convolutional code with the PGM

G =
(
~g(x1, . . . , xn)

)
=
(
g1(x1, . . . , xn), . . . , g`(x1, . . . , xn)

)
. (3.3.1)

Consider the set

Jm1,...,mn = {u(x1, . . . , xn) ∈ Fq[x1, . . . , xn];ugi ∈ 〈xm1
1 −1, . . . , xmn

n −1〉,∀i = 1, . . . , `}

Note that Jm1,...,mn is an ideal of Fq[x1, . . . , xn]. Moreover,

〈xmn
1 − 1, . . . , xmn

n − 1〉 ⊆ Jm1,...,mn

holds in general.

We will study 1-generator nD convolutional codes given with a PGM G =(
g1(x1, . . . , xn), . . . , g`(x1, . . . , xn)

)
which satisfies

Jm1,...,mn = 〈xmn
1 − 1, . . . , xmn

n − 1〉, (3.3.2)

for all mi ≥ 1 relatively prime to q. For 1D convolutional codes, condition (3.3.2)

is equivalent to noncatastrophicity.

Proposition 3.3.1. Let g1(x), . . . , g`(x) be nonzero polynomials in Fq[x]. Let

Jm = {h(x) ∈ Fq[x] : h(x)gi(x) ∈ 〈xm − 1〉, ∀i = 1, . . . , `}.

Then, the encoder G =
(
g1(x), . . . , g`(x)

)
is noncatastrophic for the convolutional

code C that it generates if and only if Jm = 〈xm − 1〉 for all m ≥ 1, relatively

prime to q.

Proof. (⇐) Suppose a(x) ∈ Fq[x] is a common divisor of each gi(x). If a(x) is not

a constant polynomial or not of the form cxd for c ∈ F∗q and d ≥ 1, then it

has a root α ∈ Fqu ⊂ F̄q in some extension of Fq. Let m be the multiplicative

order of α in F∗qu and note that being a divisor of qu−1, m is relatively prime
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to q. Let fα(x) ∈ Fq[x] denote the minimal polynomial of α over Fq. Then

fα(x)|a(x) in Fq[x]. Moreover, being an m’th root of unity, α is also a root

of xm − 1. Hence fα(x)|(xm − 1) also holds. Therefore,

xm − 1

fα(x)
∈ Fq[x] and

xm − 1

fα(x)
gi ∈ 〈xm − 1〉 ∀i.

However,
xm − 1

fα(x)
/∈ 〈xm−1〉 by Definition 3.2.5 and Proposition 3.2.11. This

contradicts the assumption and hence a(x) is constant or a monomial.

(⇒) Since Jm is an ideal in the PID Fq[x], Jm = 〈f(x)〉 for some f(x) ∈ Fq[x].

Moreover, 〈xm − 1〉 ⊆ Jm = 〈f(x)〉 implies f(x)|(xm − 1). Say xm − 1 =

f(x)k(x) for some k(x) ∈ Fq[x]. Then for all i we have

f(x)gi(x) = (xm − 1)ui(x) = f(x)k(x)ui(x)

for some ui(x) ∈ Fq[x]. Hence, k(x) is a common divisor for each gi(x). This

means by assumption that k(x) is a constant polynomial or a monomial of the

form cxd. Since k(x)|(xm− 1), we conclude that k(x) is constant. Therefore,

Jm = 〈f(x)〉 = 〈xm − 1〉.

We would like to see the relation between Condition (3.3.2) and noncatas-

trophicity for 1-generator nD convolutional codes. The 2D case will be studied in

detail first and for this, we need some preparation.

Lemma 3.3.2. Let a(x, y) ∈ Fq[x, y] be a nonconstant polynomial with a nonzero

constant term. Then a(x, y) has a root (u, v) ∈ Fq × Fq with u 6= 0 6= v.

Proof. If a is a single-variable polynomial (say in x) with a nonzero constant term,

then it has a nonzero root u ∈ Fq and then for any v ∈ F∗q, (u, v) can be thought

of as a root of a(x) = a(x, y).

So, assume that a is bivariate and write

a(x, y) =
n∑
i=0

fi(x)yi

where fi(x) ∈ Fq[x] for all i and f0(x) has a nonzero constant term.
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Let u ∈ F∗q be such that

f0(u) 6= 0 and fi(u) 6= 0

for at least one i ∈ {1, . . . , n}. Consider a(u, y), which has coefficients in some

extension Fqs of Fq and by the choice of u,

i. it has a nonzero constant term (since f0(u) 6= 0)

ii. it is not a constant polynomial (since fi(u) 6= 0 for some 1 ≤ i ≤ n).

Then, a(u, y) ∈ Fqs [y] has a nonzero root in Fq, say v, and the proof is finished.

Definition 3.3.3. Let I ⊆ K[x1, . . . , xn] be an ideal, where K is a field. I is called

zero-dimensional if

VK(I) := {(u1, . . . , un) ∈ Kn
: f(u1, . . . , un) = 0,∀f ∈ I}

is a finite set.

Lemma 3.3.4 (Seidenberg’s Lemma 92). ([2, Proposition 8.14],[31]) Let K be a

perfect field and I ⊆ K[x1, . . . , xn] be a zero-dimensional ideal. Then, I is a radical

ideal if and only if it contains a univariate, square-free polynomial in each variable

xi (i = 1, . . . , n).

Example 3.3.5. If (mi, q) = 1 for all 1 ≤ i ≤ n, then In = 〈xm1
1 −1, . . . , xmn

n −1〉 ⊆
Fq[x1, . . . , xn] is a radical ideal. Moreover, any ideal J of Fq[x1, . . . , xn] which

contains In is also radical.

Let m1,m2 be positive integers relatively prime to q and let α1, α2 be primitive

m1’th, m2’th roots of unity over Fq, respectively. Define the set

Ω = {(αi1, α
j
2); 0 ≤ i ≤ m1 − 1, 0 ≤ j ≤ m2 − 1}

in Fq × Fq. Note that Ω = VFq
(〈xm1 − 1, ym2 − 1〉).

For an element (αi1, α
j
2) ∈ Ω, define its Fq-conjugacy class as

[(αi1, α
j
2)] := {(αi1, α

j
2), (α

qi
1 , α

qj
2 ), . . . , (αq

m−1i
1 , αq

m−1j
2 )},
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where m is the least common multiple of [Fq(αi1) : Fq] and [Fq(αj2) : Fq]. It is easy

to see that Ω is a disjoint union of such Fq-conjugacy classes. Also, if J is an ideal

of Fq[x, y] that contains 〈xm1 − 1, ym2 − 1〉, then its zero set VFq
(J) is a union of

conjugacy classes of Ω.

Convention: By a subset U of Ω, we mean a single Fq-conjugacy class or a union

of Fq-conjugacy classes in Ω.

Definition 3.3.6. For a subset U of Ω, define the corresponding ideal

I(U) := {f ∈ Fq[x, y]; f(u, v) = 0 ∀(u, v) ∈ U}.

Note that I(U) ⊇ 〈xm1 − 1, ym2 − 1〉.

Hilbert’s Nullstellensatz ([1, Theorem 2.2.5]) implies that for any ideal I of

Fq[x, y],

I(VFq
(I)) =

√
I,

where
√
I denotes the radical of I. By Lemma 3.3.4, I(U) is a radical ideal and

hence

I
(
VFq

(I(U))
)

= I(U),

for any subset U of Ω.

Proposition 3.3.7. With the notation so far, let U be a subset of Ω. Then,

VFq
(I(U)) = U.

Proof. [14, Proposition 2.11].

Corollary 3.3.8. If U1 ( U2 are subsets of Ω, then

I(U1) ) I(U2) ⊇ 〈xm1 − 1, ym2 − 1〉.

Proof. It is clear that I(U1) ⊇ I(U2) ⊇ 〈xm1 − 1, ym2 − 1〉. If I(U1) = I(U2), then

using Proposition 3.3.7 we have

VFq
(I(U1)) = U1 = U2 = VFq

(I(U2)),

which is a contradiction.
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We are ready to prove a generalization of one implication in Proposition 3.3.1

to the 2D case.

Theorem 3.3.9. Let G = (g1(x, y), . . . , g`(x, y)) be a PGM for the 2D convolu-

tional code C. Assume that Jm1,m2 = 〈xm1 − 1, ym2 − 1〉 for all positive integers

m1 and m2, which are relatively prime to q. Then G is noncatastrophic.

Proof. Assume that there exists a nonconstant polynomial a(x, y) ∈ Fq[x, y], whose

constant term is nonzero, which divides gi(x, y) for all 1 ≤ i ≤ `. Let gi(x, y) =

a(x, y)g̃i(x, y) for some g̃i(x, y) ∈ Fq[x, y], for all i. By Lemma 3.3.2, a(x, y) has a

root (u, v) ∈ Fq×Fq with u 6= 0 6= v. Assume that m1 and m2 denote, respectively,

the multiplicative orders of u and v. Note that since each mi is a divisor of qs− 1,

for some s ≥ 1, they are relatively prime to q.

If a(x, y) vanishes on Ω, then a(x, y) belongs to I(Ω) = 〈xm1−1, ym2−1〉. This

would imply that gi(x, y) ∈ 〈xm1 − 1, ym2 − 1〉 for each i, and hence

Jm1,m2 = Fq[x, y] ) 〈xm1 − 1, ym2 − 1〉,

which contradicts the assumption. Hence, there is a proper subset (i.e. a union of

Fq-conjugacy classes) U ( Ω such that a(x, y) ∈ I(U)\〈xm1 − 1, ym2 − 1〉.
Let U ′ := Ω\U be the complementary subset. By Corollary 3.3.8, I(U ′) )

〈xm1−1, ym2−1〉. Let f(x, y) be a polynomial from I(U ′)\〈xm1−1, ym2−1〉. Then

the product fa ∈ Fq[x, y] vanishes on U
⋃
U ′ = Ω and hence belongs to I(Ω) =

〈xm1 − 1, ym2 − 1〉. Therefore, for each 1 ≤ i ≤ `, fgi = fag̃i ∈ 〈xm1 − 1, ym2 − 1〉
although f 6∈ 〈xm1 − 1, ym2 − 1〉. Hence, f belongs to Jm1,m2\〈xm1 − 1, ym2 − 1〉,
which is a contradiction.

Remark 3.3.10. For 2D convolutional codes, there are noncatastrophic encoders

which do not satisfy condition (3.3.2). Namely, consider the 2D convolutional code

of length 2 over F2, which is generated by the following PGM:

G = (x2 + x+ 1, y4 + y3 + y2 + y + 1).

Then, G is clearly noncatastrophic but J3,5 6= 〈x3 +1, y5 +1〉, since (x+1)(y+1)G

has its coordinates in the ideal 〈x3 + 1, y5 + 1〉 (hence (x + 1)(y + 1) ∈ J3,5) but

(x+ 1)(y + 1) 6∈ 〈x3 + 1, y5 + 1〉.
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Remark 3.3.11. The proof of Theorem 3.3.9 is based on Corollary 3.3.8, which

relies on Proposition 3.3.7. Moreover, the proof of Proposition 3.3.7 uses Seiden-

berg’s Lemma 92 (Lemma 3.3.4) and some basic facts on Commutative Algebra

(see its proof in [14]). Both Seidenberg’s Lemma and the facts from Commutative

Algebra hold for ideals of Fq[x1, . . . , xn] for any n ≥ 2. Hence, Theorem 3.3.9’s

proof can be extended to n-variable case and one can write the same statement for

1-generator nD convolutional codes (i.e. a sufficient condition for noncatastrophic-

ity of such nD convolutional codes).

3.4 A Distance Relation for 1-Generator 2D Con-

volutional Codes

We are ready to prove a generalization of Lally’s result (Theorem 1.4.3 iii) to

the multivariable case for a particular class of 1-generator 2D convolutional codes.

Theorem 3.4.1. Let C be a 1-generator (`, k) 2D convolutional code given with a

PGM G = (g1(x, y), . . . , g`(x, y)) satisfying (3.3.2) for some m1,m2 and let C ′ be

the associated Q2DC code in (Fq[x, y]/〈xm1 − 1, ym2 − 1〉)`. Then df (C) ≥ d(C ′).

Proof. For any a ≥ 0, let

Ca :=

{
~c(x, y) =

(
c1(x, y), . . . , c`(x, y)

)
∈ C : max

1≤i≤`
(degy(ci)) ≤ a

}
.

Note that

C0 ⊂ C1 ⊂ C2 ⊂ · · · (3.4.1)

and

C =
⋃
a≥0

Ca.

We define a map, which will be called the unfolding map, that produces vectors

over Fq[x] out of vectors in Fq[x, y]`:

ϕx : Fq[x, y]` −→
⋃
d≥0

Fq[x](d+1)`(
d∑
i=0

c1i(x)y
i, . . . ,

d∑
i=0

c`i(x)y
i

)
7−→

(
c10(x), . . . , c1d(x); . . . ; c`0(x), . . . , c`d(x)

)
,

where d = max
1≤j≤`

(
degy cj(x, y)

)
.

36



Clearly, one can define an analogous unfolding map ϕy for y. The inverse of ϕx

is called the folding map. Note that the unfolding map preserves weights; i.e.

wt
(
~c(x, y)

)
= wt

(
ϕx(~c(x, y))

)
.

Consider the unfolded version of each Ca:

Da := ϕx(Ca) =
{
~c(x) =

(
c10(x), . . . , c1a(x); . . . ; c`0(x), . . . , c`a(x)

)
:

~c(x) = ϕx(~c(x, y)) for some ~c(x, y) ∈ Ca} .

It is clear thatDa is closed under addition. Let h(x) ∈ Fq[x] and ~c(x) = ϕx(~c(x, y)) ∈
Da for some ~c(x, y) ∈ Ca. Consider the product

h(x)~c(x) =
(
h(x)c10(x), . . . , h(x)c`a(x)

)
= ϕx

(
h(x)

(
a∑
i=0

c1i(x)yi, . . . ,
a∑
i=0

c`i(x)yi

))
= ϕx

(
h(x)~c(x, y)

)
.

Multiplication of ~c(x, y) by h(x) does not change the y-degrees of its coordinates.

Hence, h(x)~c(x, y) ∈ Ca again. Therefore, h(x)~c(x) lies in Da. This shows that

Da ⊂ Fq[x](a+1)` is an Fq[x]-module. So, via unfolding, we obtain a family Da

(a ≥ 0) of length (a+ 1)` 1D convolutional codes out of the 2D convolutional code

C of length ` that we started with. For a < b, the length of Da is less than the

length of Db. However, we can insert 0’s at suitable positions of codewords of Da

and view it as a code of the same length as Db. Then by (3.4.1) we have

D0 ⊂ D1 ⊂ D2 ⊂ · · · (3.4.2)

For a ≥ 0, let D′a denote the associated QC code in (Fq[x]/〈xm1 − 1〉)(a+1)`.

Namely,

D′a =
{
~c′(x) = (c′10(x), . . . , c′`a(x)) : ~c(x) ∈ Da

}
.

View elements of D′a as vectors in Fq[x](a+1)` and fold them back into Fq[x, y]`:

D′a
ϕ−1
x−→ Fq[x, y]`

~c′(x) 7−→ ~c′(x, y) =

(
a∑
i=0

c′1i(x)yi, . . . ,
a∑
i=0

c′`i(x)yi
)
.
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Write the coordinates of folded vectors as polynomials in x

~c′(x, y) = ~ct(x, y) =

(
m1−1∑
i=0

ct1i(y)xi, . . . ,

m1−1∑
i=0

ct`i(y)xi

)
,

and then unfold them by the map ϕy:

~ct(x, y)
ϕy7−→ ~ct(y) =

(
ct10(y), . . . , ct1,m1−1(y); . . . ; ct`0(y), . . . , ct`,m1−1(y)

)
Let us denote this operation by T and call it twisting, i.e. ~ct(y) = T (~c′(x)). Note

that twisting does not change weights of vectors:

wt(~c′(x)) = wt(~ct(y)).

We set Ea := T (D′a) for all a ≥ 0. Namely,

Ea =
{
~ct(y) = T (~c′(x)) : ~c′(x) ∈ D′a

}
.

Note that Ea lies in Fq[y]m1` for all a ≥ 0. On the other hand, coordinate

degrees of elements in Ea are upper bounded by a, hence depend on a. Finally, let

E :=
⋃
a≥0

Ea ⊂ Fq[y]m1`.

We claim that E is an Fq[y]-module, hence a 1D convolutional code of length

m1`. Let ~et(y) ∈ Ea and ~f t(y) ∈ Eb be elements of E and suppose a < b. Then

~et(y) = T (~e′(x)) for some ~e′(x) ∈ D′a and ~e(x) ∈ Da. Similarly, ~f t(y) = T (~f ′(x))

for some ~f ′(x) ∈ D′b and ~f(x) ∈ Db. Since a < b, both ~e(x) and ~f(x) can be viewed

as elements of Db by (3.4.2). Since Db is a 1D convolutional code, ~e(x)+ ~f(x) ∈ Db

and hence ~e′(x) + ~f ′(x) ∈ D′b. Note that twisting respects addition. Hence,

T
(
~e′(x) + ~f ′(x)

)
= T

(
~e′(x)

)
+ T

(
~f ′(x)

)
= ~et(y) + ~f t(y).

Therefore, ~et(y) + ~f t(y) ∈ Eb ⊂ E and hence E is closed under addition.

Now we show that E is closed under scalar multiplication. Let ~et(y) ∈ Ea be as

above and k ∈ Fq. Then, k~et(y) = T (k~e′(x)). Note that reduction mod 〈xm1 − 1〉
respects scalar multiplication and hence k~e′(x) = (k~e)′(x) for ~e(x) ∈ Da. Since
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Da is a 1D convolutional code, k~e ∈ Da and hence k~e′(x) ∈ D′a. Therefore k~et(y),

being the twist of k~e′(x), lies in Ea ⊂ E.

Finally, we will show that E is closed under multiplication by y and this will

prove our claim that E is an Fq[y]-module. Let ~et(y) = T (~e′(x)) ∈ Ea be as above

and fold back y~et(y):

ϕ−1y

(
y~et(y)

)
=

(
m1−1∑
i=0

(
yet1i(y)

)
xi, . . . ,

m1−1∑
i=0

(
yet`i(y)

)
xi

)
.

For any 1 ≤ j ≤ `, we know that

m1−1∑
i=0

etji(y)xi =
a∑
i=0

e′ji(x)yi.

Therefore
m1−1∑
i=0

(
yetji(y)

)
xi =

a∑
i=0

e′ji(x)yi+1

and

y~et(y) = T (0, e′10(x), . . . , e′1a(x); . . . ; 0, e′`0(x), . . . , e′`a(x)) . (3.4.3)

Let ~e(x) ∈ Da be the vector whose reduction is ~e′(x) ∈ D′a and let its folded

version ϕ−1x (~e(x)) be ~e(x, y) ∈ Ca. Note that y~e(x, y) lies in Ca+1 ⊂ C. Then

~(ye)(x) = ϕx(y~e(x, y)) is in Da+1 and the argument of T in (3.4.3) is an element

of D′a+1. Therefore y~et(y) is the twist of some element in D′a+1 and hence lies in

Ea+1 ⊂ E. This proves the claim.

Consider the QC code

E ′ ⊂ (Fq[y]/〈ym2 − 1〉)m1`

associated to the 1D convolutional code E. Let us note that E consists of unfolded

versions of codewords of C after reduction mod 〈xm1 − 1〉. Hence, if we view

codewords of E ′ as polynomials in Fq[y] and fold them back by the map ϕ−1y , the

resulting set corresponds to the codewords of C after reduction mod 〈xm1−1, ym2−
1〉. In other words, ϕ−1y (E ′) is the same as the Q2DC code C ′ associated to C.

We are ready to prove the assertion of the theorem. Note that any codeword

of C is of the form ~c(x, y) = u(x, y)G.
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By Proposition 3.2.12 we can assume that

u(x, y) = a(x, y)(xm1 − 1) + b(x, y)(ym2 − 1) + r(x, y), (3.4.4)

where b(x, y) is reduced with respect to (xm1−1) and r(x, y) is reduced with respect

to 〈xm1 − 1, ym2 − 1〉. For ~c(x, y) ∈ Ca, let ~c(x) ∈ Da denote its unfolded version.

Then we have two possible outcomes for the associated QC codeword ~c′(x) ∈ D′a:
Case 1. If ~c′(x) 6= 0, then wt(~c(x, y)) = wt(~c(x)) ≥ wt(~c′(x)) by Theorem 1.4.3.

Case 2. If ~c′(x) = 0, then (xm1−1)|cij(x) for all i, j and therefore (xm1−1)|ci(x, y)

for 1 ≤ i ≤ `. Hence ci(x, y) = u(x, y)gi(x, y) ∈ 〈xm1 − 1, ym2 − 1〉 for all i.

By assumption (3.3.2) and Equation 3.4.4, we conclude that r(x, y) = 0, i.e.

u(x, y) ∈ 〈xm1 − 1, ym2 − 1〉. Let γ1 be the maximal power such that (xm1 − 1)γ1

divides all cij(x). Then

~c(x) = (xm1 − 1)γ1
(
v10(x), . . . , v1a(x); . . . ; v`,0(x), . . . , v`,a(x)

)
(3.4.5)

for some vij ∈ Fq[x].

By maximalitiy of γ1, there exists i, j such that vij(x) is not divisible by (xm1−1).

So,

~c(x, y) =
(
a(x, y)(xm1 − 1) + b(x, y)(ym2 − 1)

)
G = (xm1 − 1)γ1~v(x, y),

where ~v(x, y) = ϕ−1x (~v(x)).

We claim that ~v(x, y) ∈ Ca ⊂ C and therefore ~v(x) ∈ Da. If so, ~v′(x) ∈ D′a\{0},
since at least one coordinate of ~v(x) is not divisible by xm1 − 1. This, then implies

by Theorem 1.4.3 that wt(~c(x, y)) ≥ wt(~v′(x)).

By (3.4.5), ~c(x, y) is of the form

~c(x, y) = (xm1 − 1)γ1~v(x, y)

= u(x, y)(g1(x, y), . . . , g`(x, y)).

Thus, for all i = 1, . . . , ` we have

(xm1 − 1)γ1vi(x, y) = u(x, y)gi(x, y).
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Let xm1 − 1 =
∏
pi(x)

∏
qj(x) be the factorization of xm1 − 1 into irreducibles

over Fq[x] and suppose that
∏
pi(x) is the factor that divides u(x, y). Then

(
∏
qj(x)) |gi(x) for all i and(

xm1 − 1∏
qj(x)

)
G =

(∏
pi(x)

)
G ∈ 〈xm1 − 1, ym2 − 1〉`.

By assumption (3.3.2),
∏
pi(x) must be in Jm1,m2 = 〈xm1 − 1, ym2 − 1〉. However,

this is not true unless
∏
pi(x) = xm1 − 1. Hence (xm1 − 1)γ1 has to divide u(x, y)

and therefore

~v(x, y) =
u(x, y)

(xm1 − 1)γ1
G,

where
u(x, y)

(xm1 − 1)γ1
is a polynomial in Fq[x, y]. This implies that ~v(x, y) ∈ Ca ⊂ C.

Let us denote ~c(x) or ~v(x) (from Case 1 or 2, respectively) by ~s(x) ∈ Da and

let ~s′(x) be the reduction of ~s(x) mod 〈xm1 − 1〉. Note that ϕ−1x (~s(x)) = ~s(x, y) ∈
Ca ⊂ C and

wt(~c(x, y)) ≥ wt(~s′(x)). (3.4.6)

Moreover, the information word of ~s(x, y), which is u(x, y) for ~c(x, y) and
u(x, y)

(xm1 − 1)γ1
for ~v(x, y), is not divisible by (xm1 − 1). Let us write ~s(x, y) as

(
m(x, y)(xm1 − 1) + k(x, y)(ym2 − 1) + r̃(x, y)

)
G

following the convention in Proposition 3.2.12.

Consider the twist ~st(y) ∈ E of ~s′(x). Since twisting preserves weights, we have

wt(~s′(x)) = wt(~st(y)). Set ~(st)′(y) ∈ E ′ as the reduction of ~st(y) mod 〈ym2 − 1〉.
Observe that ϕ−1y

( ~(st)′(y)
)

is the reduction of ~s(x, y) mod 〈xm1 − 1, ym2 − 1〉, i.e.

ϕ−1y
( ~(st)′(y)

)
∈ C ′. After this second reduction, we again end up with two possible

cases:

Case 1’. If ~(st)′(y) 6= 0, then wt(~st(y)) ≥ wt( ~(st)′(y)). In this case, for ~c(x, y) ∈ C
we found a nonzero codeword ϕ−1y

( ~(st)′(y)
)
∈ C ′ such that

wt(~c(x, y)) ≥ wt(~s′(x)) = wt(~st(y)) ≥ wt( ~(st)′(y)) = wt(ϕ−1y
( ~(st)′(y)

)
)

and the desired inequality of the theorem is obtained.
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Case 2’. If ~(st)′(y) = 0, then ~s(x, y) ∈ Ca is congruent to 0 mod 〈xm1−1, ym2−1〉.
By assumption (3.3.2), we have

~s(x, y) =
(
m(x, y)(xm1 − 1) + k(x, y)(ym2 − 1)

)
G.

Then,

~s′(x, y) = [k(x, y)(ym2 − 1)G′] mod 〈xm1 − 1〉, (3.4.7)

where G′ = (g′1, . . . , g
′
`) = (g1 mod 〈xm1 − 1〉, . . . , g` mod 〈xm1 − 1〉). Let us also

recall that k(x, y) is reduced mod (xm1 − 1) by Proposition 3.2.12.

Let (ym2 − 1)γ2 be the maximal power that divides all coordinates of ~st(y).

Then, there exists ~w(y) ∈ Fq[y]m1` such that

~st(y) = (ym2 − 1)γ2 ~w(y)

= (ym2 − 1)γ2
(
w10(x), . . . , w1,m1−1(x); . . . ;w`,0(x), . . . , w`,m1−1(x)

)
and

~s′(x, y) = ~st(x, y) = (ym2 − 1)γ2 ~w(x, y)

= (ym2 − 1)γ2(w1(x, y), . . . , w`(x, y)). (3.4.8)

By maximalitiy of γ2, at least one coordinate of ~w(y) is not divisible by (ym2 − 1).

We claim that ~w(x, y) ∈ Ca ⊂ C and therefore ~w(y) ∈ E with ~(w)′(y) ∈ E ′\{0}.
This would yield wt(~s(x, y)) ≥ wt( ~(w)′(y)).

By (3.4.7) and (3.4.8), we obtain

~s′(x, y) = (ym2 − 1)γ2(w1(x, y), . . . , w`(x, y))

= (ym2 − 1)
(
[k(x, y)g′1(x, y)] mod 〈xm1 − 1〉, . . . , [k(x, y)g′`(x, y)] mod 〈xm1 − 1〉

)
.

Observe that even though both k(x, y) and g′i(x, y)’s are reduced mod 〈xm1 − 1〉,
their product may require further reduction mod 〈xm1−1〉. Also ~w(x, y) is reduced

mod 〈xm1 − 1〉 and at least one coordinate of ~w(x, y) is not divisible by (ym2 − 1).

Then, for all i = 1, . . . , ` it follows that

(ym2 − 1)γ2−1wi(x, y) = k(x, y)g′i(x, y) mod 〈xm1 − 1〉. (3.4.9)
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Therefore for some polynomials ti(x, y), K(x, y) ∈ Fq[x, y] and for each 1 ≤ i ≤ `,

we have

k
(
gi − ti(xm1 − 1)

)
mod 〈xm1 − 1〉 = (ym2 − 1)γ2−1wi(x, y),

kgi − kti(xm1 − 1)−K(xm1 − 1) = (ym2 − 1)γ2−1wi(x, y).

Hence the following holds for all i ∈ {1, . . . , `}:

kgi = [kti +K](xm1 − 1) + (ym2 − 1)γ2−1wi ∈ 〈xm1 − 1, ym2 − 1〉.

Our assumption (3.3.2) implies that k(x, y) ∈ 〈xm1 − 1, ym2 − 1〉. Since k(x, y)

is reduced mod 〈xm1 − 1〉, k(x, y) = k̃(x, y)(ym2 − 1) for some k̃(x, y). Therefore,

by (3.4.9) we have for all i

k̃(x, y)(ym2 − 1)g′i(x, y) mod 〈xm1 − 1〉 = (ym2 − 1)γ2−1wi(x, y).

Hence,

k̃(x, y)g′i(x, y) mod 〈xm1 − 1〉 = (ym2 − 1)γ2−2wi(x, y), for all i.

We are back to the same situation. We repeat the same argument on k̃(x, y)

until (ym2−1) disappears on the right side so that k(x, y) = k̄(x, y)(ym2−1)γ2−1 for

some k̄(x, y) ∈ Fq[x, y] and k̄(x, y)g′i(x, y) mod 〈xm1 − 1〉 = wi(x, y) for all i. Since

at least one of the wi(x, y)’s is not divisible by (ym2−1) and every wi(x, y) is reduced

mod 〈xm1−1〉, we no longer have k̄(x, y)g′i(x, y) mod 〈xm1−1〉 ∈ 〈xm1−1, ym2−1〉
for every i. Hence, k̄(x, y) is no longer divisible by (ym2 − 1). Therefore, if the

information word of ~s(x, y) ∈ C is written as

m(x, y)(xm1 − 1) + k̄(x, y)(ym2 − 1)γ2−1(ym2 − 1),

then ~w(x, y) is the reduction mod 〈xm1 − 1〉 of k̄(x, y)G ∈ C. Hence, in the Case

2’, we also have

wt(~c(x, y)) ≥ wt(~s′(x)) = wt(~st(y)) ≥ wt( ~(w)′(y)).
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Let us illustrate the idea of the proof in the following example.

Example 3.4.2. Let C be a 2D convolutional code of length 2 over F2 given with

the PGM

G = (x, y)

and let C ′ be the associated QC code in (F2[x, y]/〈x3 + 1, y5 + 1〉)2. It is easy to

see that J3,5 = 〈x3 +1, y5 +1〉, hence our assumption holds for m1 = 3 and m2 = 5.

For the information words u1(x, y) = x4 +x ∈ F2[x, y] and u2(x, y) = x3 + y5 ∈
F2[x, y], consider the corresponding codewords ~c1(x, y),~c2(x, y) ∈ C, respectively:

~c1(x, y) = u1(x, y)G = (x5 + x2, x4y + xy),

~c2(x, y) = u2(x, y)G = (x4 + xy5, x3y + y6).

Let us begin with ~c1(x, y). We have max
1≤j≤2

(
degy c1j(x, y)

)
= 1. Therefore

~c1(x, y) ∈ C1 ⊂ C. We unfold it by the map ϕx and get the following vector

of length (1 + 1) · 2 = 4:

~c1(x) = ϕx(~c1(x, y)) = (0, x5 + x2 ;x4 + x, 0)

such that ~c1(x) is a codeword of the length 4 convolutional code D1 = ϕx(C1) and

wt(~c1(x, y)) = wt(~c1(x)) = 4.

Let D′1 denote the QC code in (F2[x]/〈x3 + 1〉)4 associated to D1, then

~c′1(x) = ~c1(x) mod 〈x3 − 1〉 = (0, 0 ; 0, 0).

The maximal power of x3 + 1 which divides the coordinates of ~c1(x) is 1, so

~c1(x) = (x3 + 1)~v1(x) with

~v1(x) = (0, x2 ;x, 0)

and (x3 + 1) does not divide the coordinates of ~v1(x). So,

~v1(x, y) = ϕ−1x (~v1(x)) = (x2, xy) ∈ C1 ⊂ C,

where ~v1(x, y) = x ·G and

~v′1(x) = ~v1(x) mod 〈x3 + 1〉 = (0, x2 ;x, 0)
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is a nonzero codeword in D′1 with wt(~v′1(x)) = 2.

Next, we twist ~v′1(x) to get a vector of length 3 · 2 = 6 such that

~vt1(y) = T (~v′(x)) = (1, 0, 0 ; 0, y, 0),

where ~vt1(y) is a codeword of E with wt(~v′1(x)) = wt(~ct1(y)) = 2. Let E ′ be the

associated QC code in (F2[y]/〈y5 + 1〉)6 , then we have

~(vt1)
′(y) = ~vt1(y) mod 〈y5 + 1〉 = (1, 0, 0 ; 0, y, 0)

and wt( ~(vt1)
′(y)) = 2.

Now we fold it back by ϕ−1y :

~v′1(x, y) = ϕ−1y (~vt1(y)) = (x2, xy),

where ~v′1(x, y) ∈ C ′ is the Q2DC codeword satisfying wt(~v′1(x, y)) = 2 ≤ wt(~c1(x, y)).

We continue with ~c2(x, y) = (x4+xy5, x3y+y6). We have max
1≤j≤2

(
degy c2j(x, y)

)
=

6. Therefore ~c2(x, y) ∈ C6 ⊂ C. Again, we unfold it by the map ϕx and get the

following vector of length (6 + 1) · 2 = 14:

~c2(x) = ϕx(~c2(x, y)) = (0, x, 0, 0, 0, 0, x4 ; 1, 0, 0, 0, 0, x3, 0)

such that ~c2(x) ∈ D6 = ϕx(C6) and wt(~c2(x, y)) = wt(~c2(x)) = 4.

Let D′6 be associated the QC code in (F2[x]/〈x3 + 1〉)14, then

~c′2(x) = ~c2(x) mod 〈x3 − 1〉 = (0, x, 0, 0, 0, 0, x ; 1, 0, 0, 0, 0, 1, 0)

is a nonzero codeword in D′6 with wt(~c2(x)) = wt(~c′2(x)) = 4.

Then we twist ~c′2(x) and obtain

~ct2(y) = T (~c′2(x)) = (0, y5 + 1, 0 ; 0, 0, y6 + y),

where ~ct2(y) ∈ E with wt(~c′2(x)) = wt(~ct2(y)) = 4. Let E ′ be the associated QC

code in (F2[y]/〈y5 + 1〉)6, then

~(ct2)
′(y) = ~ct2(y) mod 〈y5 + 1〉 = (0, 0, 0 ; 0, 0, 0).
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The maximal power of (y5 + 1) which divides the coordinates of ~ct2(y) is 1, so

~ct2(y) = (y5 + 1) ~w2(y) with

~w2(y) = (0, 1, 0 ; 0, 0, y)

and (y5 + 1) does not divide the coordinates of ~w2(y). So,

~w2(x, y) = φ−1y ( ~w2(y)) = (x, y) ∈ C1 ⊂ C,

where ~w2(x, y) = 1 ·G and

~(w2)′(y) = ~w2(y) mod 〈y5 + 1〉 = (0, 1, 0 ; 0, 0, y)

is a nonzero codeword in E ′ with wt( ~w2(x, y)) = wt( ~(w2)′(y)) = 2.

Finally we fold it back by ϕ−1y :

~(w2)′(x, y) = ϕ−1y ( ~w2(y)) = (x, y),

where ~(w2)′(x, y) ∈ C ′ and wt( ~w′2(x, y)) = 2 ≤ wt(~c2(x, y)).
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