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Abstract—This paper investigates the compress-and-forward
scheme for an uplink cloud radio access network (C-RAN) model,
where multi-antenna base-stations (BSs) are connected to acloud-
computing based central processor (CP) via capacity-limited
fronthaul links. The BSs compress the received signals with
Wyner-Ziv coding and send the representation bits to the CP;the
CP performs the decoding of all the users’ messages. Under this
setup, this paper makes progress toward the optimal structure
of the fronthaul compression and CP decoding strategies forthe
compress-and-forward scheme in C-RAN. On the CP decoding
strategy design, this paper shows that under a sum fronthaul
capacity constraint, a generalized successive decoding strategy
of the quantization and user message codewords that allows
arbitrary interleaved order at the CP achieves the same rate
region as the optimal joint decoding. Further, it is shown that
a practical strategy of successively decoding the quantization
codewords first, then the user messages, achieves the same
maximum sum rate as joint decoding under individual fronthaul
constraints. On the joint optimization of user transmission and
BS quantization strategies, this paper shows that if the input
distributions are assumed to be Gaussian, then under joint
decoding, the optimal quantization scheme for maximizing the
achievable rate region is Gaussian. Moreover, Gaussian input
and Gaussian quantization with joint decoding achieve to within
a constant gap of the capacity region of the Gaussian multiple-
input multiple-output (MIMO) uplink C-RAN model. Finally,
this paper addresses the computational aspect of optimizing
uplink MIMO C-RAN by showing that under fixed Gaussian
input, the sum rate maximization problem over the Gaussian
quantization noise covariance matrices can be formulated as
convex optimization problems, thereby facilitating its efficient
solution.
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I. I NTRODUCTION

Cloud Radio Access Network (C-RAN) is an emerging mo-
bile network architecture in which base-stations (BSs) in mul-
tiple cells are connected to a cloud-computing based central
processor (CP) through wired/wireless fronthaul links. Inthe
deployment of a C-RAN system, the BSs degenerate into re-
mote antennas heads implementing only radio functionalities,
such as frequency up/down conversion, sampling, filtering,and
power amplification. The baseband operations at the BSs are
migrated to the CP. The C-RAN model effectively virtualizes
radio-access operations such as the encoding and decoding of
user information and the optimization of radio resources [1].
Advanced joint multicell processing techniques, such as the
coordinated multi-point (CoMP) and network multiple-input
multiple-output (MIMO), can be efficiently supported by the
C-RAN architecture, potentially enabling significantly higher
data rates than conventional cellular networks [2].

This paper considers the uplink of a MIMO C-RAN system
under finite-capacity fronthaul constraints, as shown in Fig. 1,
which consists of multiple remote users sending independent
messages to the CP through multiple BSs serving as relay
nodes. Both the user terminals and the BSs are equipped
with multiple antennas. The BSs and the CP are connected
via noiseless fronthaul links with finite capacity. This chan-
nel model can be thought of as a two-hop relay network,
with an interference channel between the users and the BSs,
followed by a noiseless multiple-access channel between the
BSs and the CP. This paper assumes that a compress-and-
forward relaying strategy is employed, in which the relaying
BSs perform distributed lossy source coding to compress the
received signals and forward the representation bits to theCP
through digital fronthaul links, and all the user messages are
eventually decoded at the CP. The lossy source coding imple-
mented at BSs involves Wyner-Ziv coding typically consisting
of quantization followed by binning in order to achieve high
compression efficiency by leveraging the correlation between
the received signals across different BSs, which is different
from the point-to-point fronthaul compression implemented in
today’s conventional C-RAN systems.

A key question in the design of compress-and-forward
strategy in uplink C-RAN is the optimal input coding strategy
at the user terminals, the optimal relaying strategy at the BSs,
and the optimal decoding strategy at the CP. Toward this end,
this paper restricts attention to the strategy of compressing
the received signals at the BSs, then eitherjoint decoding
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Fig. 1. The uplink C-RAN model under finite-capacity fronthaul constraints

of the quantization and message codewords simultaneously,
or generalized successive decodingof the quantization and
message codewords in some arbitrary order at the CP. Under
this assumption, this paper makes the following contributions
toward revealing the structure of the optimal compress-and-
forward strategy.

First, motivated by the fact that successive decoding is much
easier to implement than joint decoding, we seek to understand
whether successive decoding at the CP can perform as well
as joint decoding. Toward this end, this paper shows that
generalized successive decoding indeed achieves the same rate
region as joint decoding for an uplink C-RAN model under a
sum fronthaul constraint. Further, although not necessarily so
for the general rate region, if one focuses on maximizing the
sum rate, the particular strategy of successively decodingthe
quantization codewords first, then the user messages, achieves
the optimal sum rate.

Second, we seek to understand the optimal input distribution
and quantization schemes in uplink C-RAN. Although it is
well known that joint Gaussian strategies are not necessarily
optimal, this paper shows that if we fix the input distribution to
be Gaussian, then the optimal quantization scheme is Gaussian
under joint decoding, and vice versa. Moreover, joint Gaussian
signaling can be shown to achieve the capacity region of
the Gaussian multiple-input multiple-output (MIMO) uplink
C-RAN model to within a constant gap. Finally, this paper
makes progress on the computational front by showing that
under the joint Gaussian assumption, the optimization of
the quantization covariance matrices for maximizing the sum
rate can be formulated as a convex optimization problem.
These results suggest that joint Gaussian input signaling and
Gaussian quantization is a suitable strategy for the uplinkC-
RAN.

A. Related Work

The achievable rate region of compress-and-forward with
joint decoding for the uplink C-RAN model was first charac-
terized in [3] for a single-transmitter model then in [4] forthe
multi-transmitter case. However, the number of rate constraints
in the joint decoding rate region grows exponentially with the
size of the network [3, Proposition IV.1], which makes the
evaluation of the achievable rate computationally prohibitive.

The achievable rate region of the compress-and-forward strat-
egy with practical successive decoding, in which the quantiza-
tion codewords are decoded first, then the user messages are
decoded based on the recovered quantization codewords, has
also been studied for the uplink C-RAN model [5, Theorem
1]. One of the objectives of this paper is to illustrate the
relationship between joint decoding and successive decoding.
In the existing literature, the equivalence between these two
decoding schemes is first demonstrated for single-source,
single-destination, and single-relay networks [6, Appendix
16C], then shown for single-source, single-destination, and
multiple-relay networks [7], under either block-by-blockfor-
ward decoding or block-by-block backward decoding. This
paper further demonstrates that in the case of uplink C-RAN,
which is a multiple-source, single-destination, multiple-relay
network, the optimality of successive decoding still holds
under suitable conditions.

In general, it is challenging to find the optimal joint in-
put and quantization noise distributions that maximize the
achievable rate of the compress-and-forward scheme for uplink
C-RAN. Gaussian signaling is not necessarily optimal—in
particular, in a simple example of uplink C-RAN with one user
and two BSs shown in [5], binary input is shown to outperform
Gaussian input for a broad range of signal-to-noise ratios
(SNRs). However, Gaussian input and Gaussian quantization
can be shown to be approximately optimal. In fact, the uplink
C-RAN model is an example of a general Gaussian relay
network with multiple sources and a single destination for
which a generalization of compress-and-forward with joint
decoding (referred to as noisy network coding scheme [8]–
[11]) and with Gaussian input and Gaussian quantization can
be shown to achieve to within a constant gap to the information
theoretical capacity of the overall network. Instead of using
noisy network coding, our previous work [12] shows that
successive decoding can achieve the sum capacity of uplink
C-RAN to within constant gap, if the fronthaul links are
subjected to a sum capacity constraint. In this work, we further
demonstrate that the compress-and-forward scheme with joint
decoding can achieve to within a constant gap to the entire
capacity region of the uplink C-RAN model with individual
fronthaul constraints; same is true for successive decoding
under suitable condition.

An important theoretical result obtained in this paper is that
if the input distributions of the uplink C-RAN model are fixed
to be Gaussian, then Gaussian quantizer is in fact optimal
under joint decoding. Finding the optimal quantization forthe
C-RAN model is related to the mutual information constraint
problem [13], for which entropy power inequality is used to
show that Gaussian quantization is optimal for a three-node
relay network with Gaussian input. However, it is challenging
to extend this approach to the uplink C-RAN model, which
has multiple sources. This paper provides a novel proof of the
optimality of Gaussian quantization based on the de Bruijn
identity and the Fisher information inequality. The idea ofthe
proof is inspired by the connection between the C-RAN model
and the CEO problem in source coding [14], where a source
is described to a central unit by remote agents with noisy
observations. The solution to the CEO problem is known for
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the scalar Gaussian case [15], [16]; significant recent progress
has been made in the vector case, e.g., [17]. The similarity
between the uplink C-RAN model and the CEO problem has
been noted in [5], based on which a capacity upper bound
for the uplink C-RAN model is established. In this paper,
we use techniques for establishing the outer bound for the
Gaussian vector CEO problem [18] to prove the optimality of
Gaussian quantization. We also remark the connection between
this quantization optimization problem and the information
bottleneck method [19], for which joint Gaussian distribution
is shown to be Pareto optimal. The technique used in this
paper is a significantly simpler alternative to the enhancement
technique given in [20].

This paper also makes progress in observing that the opti-
mization of Gaussian quantization noise covariance matrices
for maximizing the (weighted) sum rate of uplink C-RAN
can be reformulated as a convex optimization problem. The
quantization noise covariance optimization problem for uplink
C-RAN has been considered extensively in the literature. Vari-
ous optimization algorithms have been developed to maximize
the achievable rates of the compress-and-forward scheme for
the case of either successive decoding of the quantization
codewords followed by the user messages [21], [22] or joint
decoding of the quantization codewords and user messages
simultaneously [23]. In particular, a zero-duality gap result
has been shown for the weighted sum rate maximization
problem under a sum fronthaul capacity constraint in [21]
based on a time-sharing argument to facilitate the algorithm
design for searching optimal quantization noise covariance
matrices. However, the optimization problems formulated in
these works (i.e., [21], [22], [23]) are inherently nonconvex,
hence only locally convergent algorithms are obtained. Instead,
this paper provides a convex formulation of the problem that
allows globally optimal Gaussian quantization noise covari-
ance matrices to be found. Note that here the optimization of
the quantization noise covariance matrix is performed under
the fixed Gaussian input. The joint optimization of the input
signal and quantization noise covariance matrices remainsa
computationally challenging difficult problem [24].

B. Main Contributions

This paper establishes several information theoretic results
on the compress-and-forward scheme for the uplink MIMO C-
RAN model with finite-capacity fronthaul links. A summary
of our main contributions is as follows:

• This paper demonstrates that generalized successive de-
coding for compress-and-forward, which allows the de-
coding of the quantization and user message codewords
in an arbitrary order, can achieve the same rate region
as joint decoding for compress-and-forward under a sum
fronthaul capacity constraint. Further, successive decod-
ing of the quantization codewords first, then the user
message codewords, can achieve the same maximum
sum rate as joint decoding under individual fronthaul
constraints.

• This paper shows that under Gaussian input and Gaussian
quantization, compress-and-forward with joint decoding

achieves to within a constant gap of the capacity region
of the uplink MIMO C-RAN model. Combining with the
result above, the same constant-gap result also holds for
generalized successive decoding under a sum fronthaul
constraint and for successive decoding for sum rate
maximization.

• This paper shows that under fixed Gaussian input, Gaus-
sian quantization maximizes the achievable rate region
under joint decoding. Combining with the optimality
result for successive decoding, this also implies that under
fixed Gaussian input, Gaussian quantization is optimal for
generalized successive decoding under a sum fronthaul
constraint, and for successive decoding for sum rate
maximization.

• Under joint Gaussian signaling and Gaussian quantiza-
tion, the optimization of quantization noise covariance
matrices for maximizing weighted sum rate under joint
decoding and for maximizing sum rate under successive
decoding can be formulated as convex optimization prob-
lems, which facilitate their efficient solution.

C. Paper Organization and Notation

The rest of the paper is organized as follows. Section II
introduces the channel model for the uplink MIMO C-RAN
and characterizes the achievable rate regions for compress-
and-forward schemes with joint decoding and generalized
successive decoding respectively. Section III demonstrates
the rate-region optimality of generalized successive decoding
under a sum fronthaul constraint and the sum-rate optimality
of successive decoding. Section IV focuses on establishingthe
optimality of Gaussian quantizers with joint decoding under
Gaussian input. In addition, Section IV also establishes the
approximate capacity of the uplink MIMO C-RAN model
to within constant gap, and shows the convex formulation
of the (weighted) sum rate maximization problems over the
quantization noise covariance matrices. Section V concludes
the paper.

Notation: Boldface letters denote vectors or matrices, where
context should make the distinction clear. Superscripts(·)T,
(·)† and(·)−1 denote transpose operation, Hermitian transpose
and matrix inverse operators;E[·] andTr(·) denote expectation
and matrix trace operators; co(·) denotes the convex closure
operation;p(·) denotes the probability distribution function
in this paper. We useXj

i = (Xi,Xi+1, . . . ,Xj) to denote
a matrix with (j − i + 1) columns for 1 ≤ i ≤ j.
For a vector/matrixX, XS denotes a vector/matrix with
elements whose indices are elements ofS. Given matrices
{X1, . . . ,XL}, diag

(

{Xℓ}Lℓ=1

)

denotes the block diagonal
matrix formed withXℓ on the diagonal. For random vectors
X andY, J(X|Y) denotes the Fisher information matrix of
X conditional onY; cov(X|Y) denotes the covariance matrix
of X conditional onY.

II. A CHIEVABLE RATE REGIONS FORUPLINK C-RAN

A. Channel Model

This paper considers an uplink C-RAN model, whereK

mobile users communicate with a CP throughL BSs, as shown
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in Fig. 1. The noiseless digital fronthaul link connecting the BS
ℓ to the CP has the capacity ofCℓ bits per complex dimension.
The fronthaul capacityCℓ is the maximum long-term average
throughput of theℓth fronthaul link, i.e., lim

n→∞

1
n

∑n

i=1 Cℓ(i) ≤

Cℓ, whereCℓ(i) represents the instantaneous transmission rate
of theℓth fronthaul link at theith time slot. Each user terminal
is equipped withM antennas; each BS is equipped withN
antennas. Perfect channel state information (CSI) is assumed to
be available to all the BSs and to the CP. For simple notation,
we denoteK = {1, · · · ,K} andL = {1, · · · , L} in this paper.

Let Xk ∈ CM be the signal transmitted by thekth user,
which is subject to per-user transmit power constraint ofPk,
i.e. E

[

XkX
†
k

]

≤ Pk. The signal received at theℓth BS can
be expressed as

Yℓ =
K
∑

k=1

Hℓ,kXk + Zℓ, ℓ = 1, 2, . . . , L, (1)

whereZℓ ∼ CN (0,Σℓ) represents the additive Gaussian noise
for BS ℓ and is independent across different BSs, andHℓ,k

denotes the complex channel matrix from userk to BS ℓ.
We consider the compress-and-forward scheme [25], [26]

applied to the uplink C-RAN system, in which the BSs com-
press the received signalsYℓ, and forward the quantization
bits to the CP for decoding. At the CP, the user messages
are decoded using either joint decoding or some form of
successive decoding. In joint decoding, the quantization code-
words and the message codewords are decodedsimultaneously,
whereas, in successive decoding, the quantization codewords
and messages are decodedsuccessivelyin some prescribed
order. Different orderings can potentially result in different
achievable rates.

B. Achievable Rates for Joint Decoding, Successive Decoding,
and Generalized Successive Decoding

In the following, we present the achievable rate region of
compress-and-forward with joint decoding and different forms
of successive decoding.

Proposition 1 ( [3, Proposition IV.1]):For the uplink C-
RAN model shown in Fig. 1, the achievable rate-fronthaul re-
gion of compress-and-forward with joint decoding,P∗

JD, is the
closure of the convex hull of all(R1, · · · , RK , C1, . . . , CL) ∈
R

K+L
+ satisfying
∑

k∈T

Rk <
∑

ℓ∈S

[

Cℓ − I
(

Yℓ; Ŷℓ|XK

)]

+ I
(

XT ; ŶSc |XT c

)

(2)
for all T ⊆ K and S ⊆ L, for some product distribution
∏K

k=1 p(xk)
∏L

ℓ=1 p(ŷℓ|yℓ) such thatE
[

XkX
†
k

]

≤ Pk for
k = 1, . . . ,K.

Note that for the uplink C-RAN model, the rate region (2)
given by compress-and-forward with joint decoding is identi-
cal to the rate region of the noisy network coding scheme [9],
which is an extension of the compress-and-forward scheme
to the general multiple access relay network by using joint
decoding at the receiver and block Markov coding at the
transmitters.

As a more practical decoding strategy, successive decoding
of quantization codewords first, and then the user messages
at the CP can also be used in uplink C-RAN. The following
proposition states the rate-fronthaul region achieved by suc-
cessive decoding.

Proposition 2 ( [5, Theorem 1]):For the uplink C-RAN
model shown in Fig. 1, the achievable rate-fronthaul regionof
compress-and-forward with successive decoding,P∗

SD, is the
closure of the convex hull of all(R1, · · · , RK , C1, . . . , CL) ∈
R

K+L
+ satisfying

∑

k∈T

Rk < I
(

XT ; ŶL|XT c

)

, ∀ T ⊆ K, (3)

and
I
(

YS ; ŶS |ŶSc

)

<
∑

ℓ∈S

Cℓ, ∀ S ⊆ L. (4)

for some product distribution
∏K

k=1 p (xk)
∏L

ℓ=1 p(ŷℓ|yℓ)

such thatE
[

XkX
†
k

]

≤ Pk for k = 1, . . . ,K.
Note that (3) is the multiple-access rate region, (4) repre-

sents the Berger-Tung rate region for distributed lossy com-
pression [6, Theorem 12.1], while (2) incorporates the joint
decoding of the quantization codewords and the user messages.
Because of its lower decoding complexity, successive decoding
is usually preferred for practical implementation of the uplink
C-RAN systems [21], [22]. Note that in the above strategy,
successive decoding applies only to the vectorXk (user
message codewords) and vectorYℓ (quantization codewords);
the elements within vectorsXk and Yℓ are still decoded
jointly.

It is possible to improve upon the successive decoding
scheme by allowing arbitrary interleaved decoding orders
between quantization codewords and user message codewords.
We call this the generalized successive decoding scheme in
this paper. The generalized successive decoding scheme is
first suggested in [27] under the name of joint base-station
successive interference cancelation scheme. In such a succes-
sive decoding strategy, the set of potential decoding orders
includes all the permutations of quantization and user message
codewords.

Denoteπ as a permutation on the set of quantization and
user message codewords

(

Ŷ1, Ŷ2, . . . , ŶL,X1,X2, . . .XK

)

.
For a given permutationπ, the decoding order is given by the
index of the elements inπ, i.e.,π(1) → π(2) → · · · → π(L+
K). For example, consider an uplink C-RAN model as shown

in Fig. 1 with 2 BSs and2 users. Ifπ =
(

Ŷ1,X1, Ŷ2,X2

)

,

then the decoding of̂Y2 and X2 can use both previously
decoded user messages and quantization codewords as side
information. The resulting rate region is characterized as







R1 < I
(

X1; Ŷ1

)

,

R2 < I
(

X2; Ŷ1, Ŷ2|X1

)

,
(5)

for some product distributionp(x1)p(x2)p(ŷ1|y1)p(ŷ2|y2)
that satisfies







C1 > I
(

Y1; Ŷ1

)

,

C2 > I
(

Y2; Ŷ2|Ŷ1,X1

)

.
(6)
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Let IXk
, IYℓ

denote the indices of user messages that are
decoded beforeXk andYℓ under the permutationπ, respec-
tively. Likewise, letJXk

, JYℓ
denote the indices of quanti-

zation codewords that are decoded beforeXk andYℓ under
the permutationπ, respectively. The rate-fronthaul region of
generalized successive decoding for uplink C-RAN is stated
in the following proposition.

Proposition 3: For the uplink C-RAN model shown in
Fig. 1, the achievable rate-fronthaul region of generalized
successive decoding with decoding orderπ, PGSD(π), is the
closure of the convex hull of all(R1, · · · , RK , C1, . . . , CL) ∈
R

K+L
+ satisfying

Rk < I
(

Xk; ŶJXk
|XIXk

)

, ∀ k ∈ K, (7)

and
Cℓ > I

(

Yℓ; Ŷℓ|ŶJYℓ
,XIYℓ

)

, ∀ ℓ ∈ L. (8)

for some product distribution
∏K

k=1 p (xk)
∏L

ℓ=1 p(ŷℓ|yℓ)

such thatE
[

XkX
†
k

]

≤ Pk for k = 1, . . . ,K. The generalized
successive decoding regionP∗

GSD is defined to be the closure
of the convex hull of the union of regionsPGSD(π) over all
possible permutationπ’s, i.e.,

P∗
GSD = co

(

⋃

π

PGSD(π)

)

. (9)

III. O PTIMALITY OF SUCCESSIVEDECODING

In general, we haveP∗
SD ⊆ P∗

GSD ⊆ P∗
JD. However,

successive decoding is more desirable than joint decoding,not
only because of its lower complexity, but also due to the fact
that its rate region can be more easily evaluated. Thus, there is
a tradeoff between complexity and performance in designing
decoding strategies for uplink C-RAN. To further understand
this tradeoff, this section establishes that: 1) By allowing arbi-
trary decoding orders of quantization and message codewords,
the generalized successive decoding actually achieves thesame
rate region as joint decoding under a sum fronthaul constraint;
2) The practical successive decoding strategy in which the
BSs decode the quantization codewords first, then the user
messages, actually achieves the same maximum sum rate as
joint decoding under individual fronthaul constraints.

A. Optimality of Generalized Successive Decoding under a
Sum Fronthaul Constraint

This section shows that in the special case where the fron-
thaul links are subject to a sum capacity constraint, generalized
successive decoding achieves the rate region as joint decoding.
In this model, the fronthaul capacities are constrained by
∑L

ℓ=1Cℓ ≤ C and Cℓ ≥ 0, justifiable in situations where
the fronthaul are implemented in shared medium (e.g. wireless
fronthaul links), as has been considered in [12], [21]. Under
the sum fronthaul capacity constraintC, the rate regions
achieved by with joint decodingR∗

JD,s is defined as

R∗
JD,s =
{

(R1, . . . , RK)

∣

∣

∣

∣

(R1, · · · , RK , C1, . . . , CL) ∈ P∗
JD,

∑L

ℓ=1 Cℓ ≤ C, Cℓ ≥ 0

}

.

(10)

Likewise, the rate region achieved with generalized successive
decodingR∗

GSD,s is given by

R∗
GSD,s =

{

(R1, . . . , RK)

∣

∣

∣

∣

(R1, · · · , RK , C1, . . . , CL) ∈ P∗
GSD,

∑L

ℓ=1Cℓ ≤ C, Cℓ ≥ 0

}

.

(11)

The following theorem states the main result of this section.
Theorem 1:For the uplink C-RAN model with the sum

fronthaul capacity constraint
∑L

ℓ=1 Cℓ ≤ C andCℓ ≥ 0, the
rate region achieved by generalized successive decoding and
joint coding are identical, i.e.,R∗

GSD,s = R∗
JD,s.

Proof: See Appendix A.
The roadmap for the proof of Theorem 1 shares the same

idea as the characterization of the rate distortion region for
the CEO problem under logarithmic loss [28] and the capac-
ity region for the multiple-access channel [29], which uses
the properties of submodular polyhedron (see Appendix B).
Specifically, in order to showR∗

GSD,s = R∗
JD,s, we show that

under fixed product distribution
∏K

k=1 p(xk)
∏L

ℓ=1 p(ŷℓ|yℓ),
every extreme point of the polyhedron(R∗

JD,s, C) is domi-
nated by the points in the polyhedron defined by(R∗

GSD,s, C).
We conjecture that Theorem 1 holds also for the case of
individual fronthaul capacity constraints. However, in that
case, finding the dominant faces of polyhedronP∗

JD becomes
much more difficult, it appears non-trivial to extend the current
proof to the case of individual fronthaul constraints.

B. Optimality of Successive Decoding for Maximizing Sum
Rate

As a special instance of generalized successive decoding,
successive decoding reconstructs quantization codewordsfirst,
then user message codewords in a sequential order. In what
follows, we show that the optimal sum rate achieved by this
special successive decoding is the same as that achieved by
joint decoding.

Under fixed input distribution and fixed fronthaul capacities
Cℓ, for ℓ = 1, . . . , L, the maximum sum rate achieved by joint
decodingR∗

JD,SUM is defined as

R∗
JD,SUM =







max
K
∑

k=1

Rk

s.t. (R1, · · · , RK , C1, . . . , CL) ∈ P∗
JD.

(12)
Likewise, the maximum sum rate for successive decoding
RSD,SUM is given by

R∗
SD,SUM =







max
K
∑

k=1

Rk

s.t. (R1, · · · , RK , C1, . . . , CL) ∈ P∗
SD.

(13)
The following theorem demonstrates the optimality of succes-
sive decoding for maximizing uplink C-RAN under individual
fronthaul constraints.

Theorem 2:For the uplink C-RAN model with fronthaul
capacitiesCℓ shown in Fig. 1, the maximum sum rates
achieved by successive decoding and joint decoding are the
same, i.e.,R∗

SD,SUM = R∗
JD,SUM .
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Proof: See Appendix C.
We remark that Theorem 2 can be thought as a gen-

eralization of a result in [7] that shows under block-by-
block forward decoding, the compress-and-forward scheme
with compression-message successive decoding achieves the
same maximum rate as that with compression-message joint
decoding for a single-source, single-destination relay network.
The uplink C-RAN is a multiple-source, single-destination
relay network. If all the user terminals are regarded as one
super transmitter, then it follows from [7] that successive
decoding and joint decoding achieve the same maximum
sum rate. However, the proof in [7] is quite complicated.
In this paper, we provide an alternative proof technique for
showing the optimality of successive decoding for sum rate
maximization in uplink C-RAN. The new proof utilizes the
properties of submodular optimization, which is simpler than
the proof provided in [7]. The proofs of Theorem 2 and The-
orem 1 illustrate the usefulness of submodular optimization in
establishing this type of results.

It is remarked that successive decoding and joint decoding
achieve the same sum rate, but do not achieve the same rate
region. The achievable rate region of generalized successive
decoding is in general larger than that of successive decoding.
For example, consider the compress-and-forward scheme for
maximizing the rate of user1, R1, only. The optimal decoding
order should beXK\{1} → ŶL → X1. With this decoding
order, user 1 can achieve larger rate than using the decoding
order of ŶL → XK, because the decoded user messages
X2,X3, . . . ,XK can serve as side information for the decod-
ing of ŶL. In general, to maximize a weighted sum rate, one
needs to maximize over(L + K)! orderings for generalized
successive decoding. The main result of this section shows
however that for maximizing the sum rate in uplink C-RAN,
successive decoding of the quantization codewords first, and
then the user messages is optimal; this reduces the search space
considerably toL!K! decoding orders.

IV. U PLINK C-RAN WITH GAUSSIAN INPUT AND

GAUSSIAN QUANTIZATION

In this section, we specialize to the compress-and-forward
scheme for uplink C-RAN with Gaussian input signal at the
users and Gaussian quantization at the BSs. Although it is
known that joint Gaussian distribution is suboptimal for uplink
C-RAN [5], Gaussian input is desirable, because it leads
to achievable rate regions that can be easily evaluated. In
the following section, it is shown that with Gaussian input
and Gaussian quantization, compress-and-forward with joint
decoding can achieve the capacity region of uplink C-RAN to
within a constant gap. The gap depends on the network size
but is independent of the channel gain matrix and the SNR.
We further establish the optimality of Gaussian compression
at the relaying BSs for joint decoding, if the input is Gaussian.
These results can be further extended to generalized successive
decoding under a sum fronthaul constraint and successive
decoding for the maximum sum rate. Additionally, under
Gaussian signaling, the optimization of quantization noise
covariance matrices for weighted sum-rate maximization under

joint decoding and for sum rate maximization under practical
successive decoding can be cast as convex optimization prob-
lems, thereby facilitating their efficient numerical solution.
Throughout this section, we focus on the achievable rates
under the fixed Gaussian input, and the fixed fronthaul capacity
constraintsCℓ for ℓ = 1, . . . , L.

A. Achievable Rate Regions under Gaussian Input and Gaus-
sian Quantization

We let the input distribution be Gaussian, i.e.,Xk ∼
CN (0,Kk), then evaluate the rate regions for the compress-
and-forward scheme with joint decoding and successive de-
coding under Gaussian quantization, denoted asRG

JD,GIn and

RG
SD,GIn, respectively. Set

∏L

ℓ=1 p(ŷℓ|yℓ) ∼ CN (yℓ,Qℓ),
whereQℓ is the Gaussian quantization noise covariance matrix
at theℓth BS.

With Gaussian input and Gaussian quantization, we have

I(Yℓ; Ŷℓ|XK) = log
|Σℓ +Qℓ|

|Qℓ|
(14)

and

I
(

XT ; ŶSc |XT c

)

= log

∣

∣

∣HSc,T KT H
†
Sc,T + diag ({Σℓ +Qℓ}ℓ∈Sc)

∣

∣

∣

|diag ({Σℓ +Qℓ}ℓ∈Sc)|
. (15)

The achievable rate region (2) for joint decoding can be
evaluated as
∑

k∈T

Rk <
∑

ℓ∈S

[

Cℓ − log
|Σℓ +Qℓ|

|Qℓ|

]

+ log

∣

∣

∣HSc,T KT H
†
Sc,T + diag ({Σℓ +Qℓ}ℓ∈Sc)

∣

∣

∣

|diag ({Σℓ +Qℓ}ℓ∈Sc)|
,

(16)

for all T ⊆ K andS ⊆ L.
Likewise the achievable rate expression (3) for successive

decoding becomes

∑

k∈T

Rk < log

∣

∣

∣HSc,KKKH
†
L,K + diag ({Σℓ +Qℓ}ℓ∈L)

∣

∣

∣

|diag ({Σℓ +Qℓ}ℓ∈L)|
,

(17)
for all T ⊆ K.

In deriving the fronthaul constraint (4), we start with eval-
uating the mutual information

I
(

YS ; ŶS |ŶSc

)

= I
(

XK,YS ; ŶS |ŶSc

)

− I
(

XK; ŶS |YS , ŶSc

)

= I
(

XK; ŶS |ŶSc

)

+ I
(

YS ; ŶS |XK, ŶSc

)

− I
(

XK; ŶS |YS , ŶSc

)

(a)
= I

(

XK; ŶS |ŶSc

)

+ I
(

YS ; ŶS |XK

)

(b)
= I

(

XK; ŶL

)

− I
(

XK; ŶSc

)

+
∑

ℓ∈S

I(Yℓ; Ŷℓ|XK)

(18)
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for all S ⊆ L, where the equality (a) follows from the fact
that

I
(

YS ; ŶS |XK, ŶSc

)

= I
(

YS ; ŶS |XK

)

(19)

and
I
(

XK; ŶS |YS , ŶSc

)

= 0, (20)

and equality (b) follows from the fact that

I
(

YS ; ŶS |XK

)

=
∑

ℓ∈S

I(Yℓ; Ŷℓ|XK). (21)

The above equations (19)-(21) follow from the Markov chain

Ŷi ↔ Yi ↔ XK ↔ Yj ↔ Ŷj , ∀ i 6= j.

We further evaluate the mutual information expression (18)
with Gaussian input and Gaussian quantization, which yields
that

I
(

YS ; ŶS |ŶSc

)

= log

∣

∣

∣HL,KKKH
†
L,K + diag ({Σℓ +Qℓ}ℓ∈L)

∣

∣

∣

|diag ({Σℓ +Qℓ}ℓ∈L)|

− log

∣

∣

∣HSc,KKKH
†
Sc,K + diag ({Σℓ +Qℓ}ℓ∈Sc)

∣

∣

∣

|diag ({Σℓ +Qℓ}ℓ∈Sc)|

+
∑

ℓ∈S

log
|Σℓ +Qℓ|

|Qℓ|

= log

∣

∣

∣HL,KKKH
†
L,K + diag ({Σℓ +Qℓ}ℓ∈L)

∣

∣

∣

∣

∣

∣HSc,KKKH
†
Sc,K + diag ({Σℓ +Qℓ}ℓ∈Sc)

∣

∣

∣

−
∑

ℓ∈S

log |Qℓ|

≤
∑

ℓ∈S

Cℓ.

Instead of parameterizing the rate expressions overQℓ as in
above, in this section, we introduce the following reparameter-
ization, which is crucial for proving our main results. Define

Bℓ = (Σℓ +Qℓ)
−1

. (22)

We represent the rate regions of joint decoding and successive
decoding in terms ofBℓ in the following.

Proposition 4: For the uplink C-RAN model shown in
Fig. 1 and under fixed Gaussian inputXK ∼ CN (0,KK)
with KK = diag ({Kk}k∈K). The rate-fronthaul region for
joint decoding under Gaussian quantization,PG

JD,GIn, is the
closure of the convex hull of all(R1, · · · , RK , C1, . . . , CL)
satisfying

∑

k∈T

Rk <
∑

ℓ∈S

[

Cℓ − log
|Σ−1

ℓ |

|Σ−1
ℓ −Bℓ|

]

+ log

∣

∣

∣

∑

ℓ∈Sc H
†
ℓ,T BℓHℓ,T +K−1

T

∣

∣

∣

∣

∣K−1
T

∣

∣

(23)

for all T ⊆ K and S ⊆ L, for some0 � Bℓ � Σ−1
ℓ ,

whereKT = E

[

XT X
†
T

]

is the covariance matrix ofXT ,

andHℓ,T denotes the channel matrix fromXT to Yℓ. Fur-
thermore, under the fixed fronthaul capacity constraintsCℓ

for ℓ = 1, . . . , L, the rate region achieved by joint decoding
RG

JD,GIn is defined as

RG
JD,GIn =

{

(R1, . . . , RK) :

(R1, · · · , RK , C1, . . . , CL) ∈ PG
JD,GIn

}

. (24)

Proposition 5: For the uplink C-RAN model shown in
Fig. 1 and under fixed Gaussian inputXK ∼ CN (0,KK)
with KK = diag ({Kk}k∈K). The rate-fronthaul region for
successive decoding,PG

SD,GIn, is the closure of the convex
hull of all (R1, · · · , RK , C1, . . . , CL) satisfying

∑

k∈T

Rk < log

∣

∣

∣

∑L

ℓ=1H
†
ℓ,T BℓHℓ,T +K−1

T

∣

∣

∣

∣

∣K−1
T

∣

∣

, ∀ T ⊆ K,

(25)
and

log

∣

∣

∣

∣

L
∑

ℓ=1

H
†
ℓ,KBℓHℓ,K +K−1

K

∣

∣

∣

∣

∣

∣

∣

∣

∑

ℓ∈Sc

H
†
ℓ,KBℓHℓ,K +K−1

K

∣

∣

∣

∣

+
∑

ℓ∈S

log
|Σ−1

ℓ |

|Σ−1
ℓ −Bℓ|

<
∑

ℓ∈S

Cℓ, ∀ S ⊆ L, (26)

for some 0 � Bℓ � Σ−1
ℓ , where KT = E

[

XT X
†
T

]

is
the covariance matrix ofXT , andHℓ,T denotes the channel
matrix from XT to Yℓ. Moreover, under the fixed fronthaul
capacity constraintsCℓ for ℓ = 1, . . . , L, the rate region
achieved by successive decodingRG

SD,GIn is defined as

RG
SD,GIn =

{

(R1, . . . , RK) :

(R1, · · · , RK , C1, . . . , CL) ∈ PG
SD,GIn

}

. (27)

B. Gaussian Input and Gaussian Quantization Achieve Ca-
pacity to within Constant Gap

With Gaussian input and Gaussian quantization, the rate
region of joint decoding (23) can be shown to be within a
constant gap to the capacity region of uplink C-RAN. This
constant-gap result is stated in the following theorem.

Theorem 3:For any rate tuple(R1, R2, . . . , RK) within
the cut-set bound for uplink C-RAN with fixed fronthaul
capacities ofCℓ shown in Fig. 1, the rate tuple(R1 −
η,R2 − η, . . . , RK − η), with η = NL+M is achievable for
compress-and-forward with Gaussian input, Gaussian quanti-
zation, and joint decoding, whereL is the number of BSs
in the network,M is the number of transmit antennas at
user, andN is the number of receive antennas at BS, i.e.,
(R1 − η,R2 − η, . . . , RK − η) ∈ RG

JD,GIn.
Proof: See Appendix D.

Although the uplink C-RAN model is an example of a
relay network for which noisy network coding approach ap-
plies and it is known that compress-and-forward with joint
decoding achieves the same rate region as noisy network
coding for uplink C-RAN, we remark that Theorem 3 does
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not immediately follow from the constant-gap optimality result
of noisy network coding [9]. The constant-gap optimality of
noisy network coding is proven for Gaussian relay networks,
whereas the uplink C-RAN model contains fronthaul links
which are digital connections and not Gaussian channels.

Combining with our earlier results on the optimality of
successive decoding, constant-gap optimality results canalso
be obtained for compress-and-forward with generalized suc-
cessive decoding and successive decoding. These results are
summarized in the following corollary.

Corollary 1: For the uplink C-RAN model as shown in
Fig. 1, compress-and-forward with generalized successive
decoding, under Gaussian input and Gaussian quantization
achieves the capacity region to withinNL+M bits per com-
plex dimension if the fronthaul links are subjected to a sum
capacity constraint

∑L

ℓ=1 Cℓ ≤ C. Furthermore, compress-
and-forward with successive decoding, under Gaussian input
and Gaussian quantization, achieves the sum capacity of an
uplink C-RAN model with individual fronthaul constraints to
within NL+MK bits per complex dimension.

C. Optimality of Gaussian Quantization under Joint Decoding

For the Gaussian uplink MIMO C-RAN model, it is known
that Gaussian input and Gaussian quantization are not jointly
optimal [5]. However, if the quantization noise is fixed as
Gaussian, then the optimal input distribution must be Gaus-
sian. This is because the channel reduces to a conventional
Gaussian multiple-access channel in this case. The main result
of this section is that the converse is also true, i.e., underfixed
Gaussian input, Gaussian quantization actually maximizesthe
achievable rate region of the uplink C-RAN model under joint
decoding.

Under fixed fronthaul capacity constraintsCℓ for ℓ =
1, . . . , L, we let R∗

JD,GIn denote the rate region of joint
decoding under Gaussian input and optimal quantization. In
the following, we first define Fisher information and state the
two main tools for proving this result: the Bruijn identity and
the Fisher information inequality. We then present the main
theorem on the optimality of Gaussian quantization for joint
decoding, i.e.,RG

JD,GIn = R∗
JD,GIn.

Definition 1: Let (X,Y) be a pair of random vectors with
joint probability distribution functionp (x,y). The Fisher
information matrix ofX is defined as

J (X) = E

[

∇ log p (X)∇ log p (X)
T

]

. (28)

Likewise, the Fisher information matrix ofX conditional on
Y is defined as

J (X|Y) = E

[

∇ log p (X|Y)∇ log p (X|Y)
T

]

. (29)

Lemma 1 (Fisher Information Inequality, [30] [18, Lemma 2]):
Let (U,X) be an arbitrary complex random vector, where
the conditional Fisher information ofX conditioned onU
exists. We have

log
∣

∣(πe)J−1 (X|U)
∣

∣ ≤ h (X|U) . (30)

Lemma 2 (Bruijn Identity, [31] [18, Lemma 3]):Let
(V1,V2) be an arbitrary random vector with finite second

moments, andN be a zero-mean Gaussian random vector with
covarianceΛN . Assume(V1,V2) and N are independent.
We have

cov (V2|V1,V2 +N) = ΛN −ΛNJ (V2 +N|V1)ΛN .

(31)
Theorem 4:For the uplink C-RAN under fixed Gaussian

input distribution and assuming joint decoding, Gaussian quan-
tization is optimal, i.e.,RG

JD,GIn = R∗
JD,GIn.

Proof: Recall that the achievable rate region of the
compress-and-forward scheme under joint decoding is given
by the set of(R1, . . . , RK) derived from (2) under the joint
distribution

p (x1, . . . ,xK ,y1, . . . ,yL, ŷ1, . . . , ŷL)

=

K
∏

k=1

p (xk)

L
∏

ℓ=1

p (yℓ|x1, . . . ,xK)

L
∏

ℓ=1

p (ŷℓ|yℓ) . (32)

For fixed Gaussian inputXK ∼ CN (0,KK) and fixed
∏L

ℓ=1 p(ŷℓ|yℓ), chooseBℓ with 0 � Bℓ � Σ−1
ℓ such that

cov
(

Yℓ|XK, Ŷℓ

)

= Σℓ −ΣℓBℓΣℓ, ℓ = 1, · · · , L.

We proceed to show that the achievable rate region as given by
(23) with a Gaussian

∏L

ℓ=1 p(ŷℓ|yℓ) ∼ CN (Yℓ,Qℓ), where
Qℓ = B−1

ℓ − Σℓ, is as large as that of (2) under Gaussian
input.

First, note that

I
(

Yℓ; Ŷℓ|XK

)

= log |(πe)Σℓ| − h
(

Yℓ|XK, Ŷℓ

)

≥ log |(πe)Σℓ| − log
∣

∣

∣(πe) cov
(

Yℓ|XK, Ŷℓ

)∣

∣

∣

= log

∣

∣Σ−1
ℓ

∣

∣

∣

∣Σ−1
ℓ −Bℓ

∣

∣

, ℓ = 1, · · · , L, (33)

where we use the fact that Gaussian distribution maximizes
differential entropy.

Moreover, we have

I
(

XT ; ŶSc |XT c

)

= h (XT )− h
(

XT |XT c , ŶSc

)

≤ log |KT | − log
∣

∣

∣J
−1
(

XT |XT c , ŶSc

)∣

∣

∣ ,

where the inequality is due to Lemma 1. Since

YSc = HSc,T XT +HSc,T cXT c + ZSc ,

it follows from the MMSE estimation of Gaussian random
vectors that

XT = E [XT |XT c ,YSc ] +NT ,Sc

=
∑

ℓ∈Sc

GT ,ℓ (Yℓ −Hℓ,T cXT c) +NT ,Sc ,

where

GT ,ℓ =



K−1
T +

∑

j∈Sc

H
†
j,T Σ

−1
j Hj,T





−1

H
†
ℓ,T Σ

−1
ℓ ,

andNT ,Sc ∼ CN (0,ΛN) with covariance matrix

ΛN =

(

K−1
T +

∑

ℓ∈Sc

H
†
ℓ,T Σ

−1
ℓ Hℓ,T

)−1

. (34)
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HereE [XT |XT c ,YSc ] is the MMSE estimator ofXT from
XT c ,YSc . The error in estimation isNT ,Sc , and the MMSE
matrix isΛN.

By the matrix complementary identity between Fisher in-
formation matrix and MMSE in Lemma 2, we have

J
(

XT |XT c , ŶSc

)

= Λ−1
N

−Λ−1
N cov

(

∑

ℓ∈Sc

GT ,ℓ(Yℓ −Hℓ,T cXT c)|XK, ŶSc

)

Λ−1
N

= Λ−1
N −Λ−1

N cov

(

∑

ℓ∈Sc

GT ,ℓYℓ|XK, ŶSc

)

Λ−1
N

= Λ−1
N −Λ−1

N

[

∑

ℓ∈Sc

GT ,ℓ cov
(

Yℓ|XK, Ŷℓ

)

G
†
T ,ℓ

]

Λ−1
N

= Λ−1
N −

∑

ℓ∈Sc

H
†
ℓ,T

(

Σ−1
ℓ −Bℓ

)

Hℓ,T

= K−1
T +

∑

ℓ∈Sc

H
†
ℓ,T BℓHℓ,T .

Therefore,

I
(

XT ; ŶSc |XT c

)

≤ log

∣

∣

∣J(XT |XT c , ŶSc)
∣

∣

∣

∣

∣K−1
T

∣

∣

= log

∣

∣

∣K
−1
T +

∑

ℓ∈Sc H
†
ℓ,T BℓHℓ,T

∣

∣

∣

∣

∣K−1
T

∣

∣

(35)

for all T ⊆ K and S ⊆ L. Combining (33) and (35), we
conclude thatRG

JD,GIn as derived from (23) is as large as
R∗

JD,GIn. Therefore,RG
JD,GIn = R∗

JD,GIn.

D. Optimization of Gaussian Input and Gaussian Quantiza-
tion Noise Covariance Matrices

This section addresses the numerical optimization of the
Gaussian input and quantization noise covariance matricesfor
uplink MIMO C-RAN under given fronthaul capacity con-
straints. First, we note that even when restricting to Gaussian
input and Gaussian quantization, the joint optimization of
input and quantization noise covariance matrices is still a
challenging problem for the uplink MIMO C-RAN. However,
if we fix the quantization noise covariance, then the input
optimization reduces to that of optimizing a conventional
Gaussian multiple-access channel. In particular, the problem
of maximizing the weighted sum rate can be formulated as a
convex optimization, which can be readily solved [32].

Conversely, if we fix the transmit covariance matrix, the
optimization of quantization noise covariance can in some
cases be formulated as convex optimization. The key enabling
fact is the reparameterization in term ofBℓ (22), instead of
direct optimization overQℓ. Consider first the case of joint
decoding. Using (23) under the fixedCℓ for ℓ = 1, . . . , L, the
weighted sum rate maximization problem can be formulated

over {Rk,Bℓ} as follows:

max
Rk,Bℓ

K
∑

k=1

µkRk (36)

s.t.
∑

k∈T

Rk ≤ log

∣

∣

∣

∑

ℓ∈Sc H
†
ℓ,T BℓHℓ,T +K−1

T

∣

∣

∣

∣

∣K−1
T

∣

∣

+
∑

ℓ∈S

[

Cℓ − log
|Σ−1

ℓ |

|Σ−1
ℓ −Bℓ|

]

, ∀ T ⊆ K, ∀S ⊆ L,

0 � Bℓ � Σ−1
ℓ , ∀ ℓ ∈ L,

whereµk represents the weight associated with userk, which
is typically determined from upper layer protocols. The key
observation is that the above problem is convex in{Rk,Bℓ}.
However, we also note that because of joint decoding, the
number of constraints is exponential in the size of the network.
Consequently, the above optimization problem can only be
solved for small networks in practice.

Note that the above formulation considers the optimization
of instantaneous achievable ratesRk under instantaneous
fronthaul capacity constraintsCℓ in a fixed time slot. The
solution obtained, however, also applies to the more general
case of optimizing the weighted sum rates under weighted sum
fronthaul constraint (e.g.,

∑L

ℓ=1 νℓCℓ ≤ C). This is because if
we consider a slightly more general formulation of optimizing
an objective of

max
Rk,Bℓ,Cℓ

K
∑

k=1

µkRk − γ

L
∑

ℓ=1

νℓCℓ (37)

under the same constraints as in (36) and
∑L

ℓ=1 νℓCℓ ≤ C.
Such an optimization problem is convex, so time-sharing is
not needed. For this reason, the rest of this section considers
the formulation with instantaneous rates only.

We now consider the weighted sum-rate maximization prob-
lem for the case of successive decoding of the quantization
codewords followed by the user messages. However, the
direct characterization of successive decoding rate (25)-(26)
does not give rise to a convex formulation. Nevertheless,
for the special case of maximizing the sum rate (i.e., with
µ1 = · · · = µK = 1), using Theorem 2, which shows that
successive decoding achieves the same maximum sum rate
as joint decoding, the sum-rate maximization problem with
successive decoding can be equivalently formulated as follows:

Theorem 5:For the uplink C-RAN model with individual
fronthaul capacity constraintCℓ as shown in Fig. 1, the sum
rate maximization problem under successive decoding can be
formulated as the following convex problem:

max
R,Bℓ

R (38)

s.t. R ≤
∑

ℓ∈S

[

Cℓ − log
|Σ−1

ℓ |

|Σ−1
ℓ −Bℓ|

]

+ log

∣

∣

∣

∑

ℓ∈Sc H
†
ℓ,T BℓHℓ,T +K−1

K

∣

∣

∣

∣

∣K−1
K

∣

∣

, ∀S ⊆ L,

0 � Bℓ � Σ−1
ℓ , ∀ ℓ ∈ L.
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Further, if the fronthaul links are subject to a sum capacity
constraint ofC, the sum rate maximization problem can be
formulated as the following convex problem:

max
R,Bℓ

R (39)

s.t. R ≤ log

∣

∣

∣

∑L

ℓ=1 H
†
ℓ,KBℓHℓ,K +K−1

K

∣

∣

∣

∣

∣K−1
K

∣

∣

,

R+

L
∑

ℓ=1

log
|Σ−1

ℓ |

|Σ−1
ℓ −Bℓ|

≤ C,

0 � Bℓ � Σ−1
ℓ , ∀ ℓ ∈ L.

We remark that the formulation for uplink C-RAN with
individual fronthaul capacities (38) has exponential number
of constraints, because the CP in effect needs to search over
L! different decoding orders of quantization codewords at
the BSs. In practical implementation, a heuristic method can
be used to determine the decoding orders of quantization
codewords for avoiding the exponential search [24], [33].
Alternatively, if the C-RAN has a sum fronthaul constraint,
then the number of constraints is linear in network size,
because we only need to consider the case ofS = L and
S = ∅ in (38). Consequently, the resulting quantization
noise covariance optimization problem (39) can be solved in
polynomial time. Note that convexity is a key advantage of
the above problem formulations as compared to previous ap-
proaches in the literature (e.g. [21], [22]) that parameterize the
optimization problem over the quantization noise covariance
Qℓ, which leads to a nonconvex formulation.

We emphasize the importance of Gaussian input for the con-
vex formulation in Theorem 5. Suppose that both input signal
XK and compressed signal̂Yℓ are discrete random vectors
with finite alphabet. For fixed input distribution, the sum-rate
maximization problem under the sum fronthaul constraint can
be written as

max
p(ŷℓ|yℓ)

I
(

XK; ŶL

)

, (40)

s.t. I
(

YL; ŶL

)

≤ C,

p (ŷℓ|yℓ) ≥ 0,
∑

ŷℓ

p (ŷℓ|yℓ) = 1, ∀ ℓ ∈ L.

The above problem can be thought as a variant of the
information bottleneck method [19], which can be solved
by a generalized Blahut-Arimoto (BA) algorithm [34], [35].
However, due to the non-convex nature of problem (40),
the generalized BA algorithm can only converge to a local
optimum.

V. CONCLUSION

This paper provides a number of information theoretical
results on the optimal compress-and-forward scheme for the
uplink MIMO C-RAN model, where the BSs are connected to
a CP through noiseless fronthaul links of limited capacities.
It is shown that the generalized successive decoding scheme,
which allows arbitrary decoding orders between quantization
and message codewords, can achieve the same rate region as

joint decoding under a sum fronthaul constraint. Moreover,the
practical successive decoding of the quantization codewords
followed by the user messages is shown to achieve the
same maximum sum rate as joint decoding under individual
fronthaul constraints. In addition, if the input distribution is
assumed to be Gaussian, it is shown that Gaussian quantiza-
tion maximizes the achievable rate region of joint decoding.
With Gaussian input signaling, the optimization of Gaussian
quantization for maximizing the weighted sum rate under joint
decoding and the sum rate under successive decoding can
be cast as convex optimization problems, which facilitates
efficient numerical solution. Finally, Gaussian input and Gaus-
sian quantization achieve the capacity region of the uplink
C-RAN model to within constant gap. Collectively, these
results provide justifications for the practical choice of using
Gaussian-like input signals at the user terminals, Gaussian-like
quantization at the relaying BSs, and successive decoding of
quantization codewords followed by user messages at the CP
for implementing uplink MIMO C-RAN.

APPENDIX A
OPTIMALITY OF GENERALIZED SUCCESSIVEDECODING

In this appendix, we prove Theorem 1, which states the
equivalence between generalized successive decoding and joint
decoding under a sum-capacity fronthaul constraint. We begin
by introducing an outer bound for the achievable rate region
of joint decoding under a sum fronthaul constraint. Under
the sum fronthaul capacity constraint, define the rate-fronthaul
region for joint decodingPo

JD,s as the closure of the convex
hull of all (R1, R2, . . . , RK , C) satisfying


























∑

k∈T

Rk < min

{

C −
∑

ℓ∈L

I
(

Yℓ; Ŷℓ|XK

)

,

I
(

XT ; ŶL|XT c

)

}

, ∀ T ⊆ K,

C >
∑

ℓ∈L I
(

Yℓ; Ŷℓ|XK

)

(41)
for some product distribution

∏K

k=1 p (xk)
∏L

ℓ=1 p(ŷℓ|yℓ).
Under fixed sum fronthaul constraintC, define the region
Ro

JD,s as follows

Ro
JD,s =

{

(R1, . . . , RK) : (R1, · · · , RK , C) ∈ Po
JD,s

}

.

(42)
Note that the rate regionRo

JD,s is an outer bound for joint
decoding rate region (10) because only the constraints corre-
sponding toS = ∅ andS = L are included. These constraints
turn out to be the only active ones under the sum fronthaul
constraint

∑L

ℓ=1 Cℓ ≤ C andCℓ ≥ 0.
Under the sum fronthaul constraint, the generalized suc-

cessive decoding regionPGSD,s(π) for decoding orderπ
can be derived from (2) by letting

∑L

ℓ=1 Cℓ = C. More
specifically,PGSD,s(π) is the closure of the convex hull of
all (R1, R2, . . . , RK , C) satisfying















Rk < I
(

Xk; ŶJXk
|XIXk

)

, ∀ k ∈ K,

C >

L
∑

ℓ=1

I
(

Yℓ; Ŷℓ|ŶJYℓ
,XIYℓ

)

,
(43)
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for some product distribution
∏K

k=1 p (xk)
∏L

ℓ=1 p(ŷℓ|yℓ),
where IXk

, IYℓ
are the indices of user messages that are

decoded beforeXk andYℓ under the permutationπ, andJXk
,

JYℓ
are the indices of the quantization codewords that are

decoded beforeXk andYℓ under decoding orderπ. Define
P∗
GSD,s to be the closure of the convex hull of allPGSD,s(π)’s

over decoding orderπ’s, i.e.,P∗
GSD,s = co

(

⋃

π

PGSD,s(π)

)

.

We say a point(R1, . . . , RK , C) is dominatedby a point
in P∗

GSD,S if there exists some(R′
1, . . . , R

′
K , C′) in P∗

GSD,s

for which Rk ≤ R′
k for k = 1, 2, . . . ,K, andC ≥ C′.

Given the definitions ofR∗
GSD,s, R∗

JD,s and Ro
JD,s, it

is easy to see thatR∗
GSD,s ⊆ R∗

JD,s ⊆ Ro
JD,s. To

show R∗
GSD,s = R∗

JD,s, it suffices to showRo
JD,s ⊆

R∗
GSD,s, which is equivalent to showing that if a point

(R1, R2, . . . , RK , C) ∈ Po
JD,s, then the same point

(R1, R2, . . . , RK , C) ∈ P∗
GSD,s also. To show this, it

suffices to show that for any fixed product distribution
∏K

k=1 p (xk)
∏L

ℓ=1 p(ŷℓ|yℓ) and fixedC, each extreme point
(R1, . . . , RK , C) as defined by (41) is dominated by a point in
P∗
GSD,s with the average sum fronthaul capacity requirement

at mostC.
To this end, define a set functionf : 2K → R as follows:

f (T ) := min

{

C −
∑

ℓ∈L

I(Yℓ; Ŷℓ|XK), I
(

XT ; ŶL|XT c

)

}

,

for eachT ⊆ K. It can be verified that the functionf is a sub-
modular function (Appendix B, Lemma 3). By construction,
(R1, R2, . . . , RK) as defined by (42) satisfies

∑

k∈T

Rk ≤ f (T ) ,

which is a submodular polyhedron associated withf .
It follows by basic results in submodular optimization

(Appendix B, Proposition 6) that, for a linear orderingi1 ≺
i2 ≺ · · · ≺ iK on the setK, an extreme point ofR∗

JD,s can
be computed as follows

R̃ij = f ({i1, . . . , ij})− f ({i1, . . . , ij−1}) .

Furthermore, the extreme points ofRo
JD can be enumerated

over all the orderings ofK. Each ordering ofK is analyzed
in the same manner, hence for notational simplicity we only
consider the natural orderingij = j in the following proof.

By construction,

R̃j = min

{

C −
∑

ℓ∈L

I(Yℓ; Ŷℓ|XK), I
(

X
j
1; ŶL|X

K
j+1

)

}

−min

{

C −
∑

ℓ∈L

I(Yℓ; Ŷℓ|XK), I
(

X
j−1
1 ; ŶL|X

K
j

)

}

.

(44)

Due to the fact thatI
(

X
j
1; ŶL|XK

j+1

)

≥ I
(

X
j−1
1 ; ŶL|XK

j

)

,

for some product distribution
∏K

k=1 p (xk)
∏L

ℓ=1 p(ŷℓ|yℓ),
equation (44) can yield two different results. Case 1: the
first termC −

∑

ℓ∈L I(Yℓ; Ŷℓ|XK) in the minima in equa-
tion (44) is not active for anyj; Case 2: the termC −
∑

ℓ∈L I(Yℓ; Ŷℓ|XK) is active starting with some indexj.

• Case 1 holds ifC ≥ I
(

XK; ŶL

)

+
∑

ℓ∈L

I(Yℓ; Ŷℓ|XK).

In this case the resulting extreme pointr1JD =
(R̃1, R̃2, . . . , R̃K , C) satisfies


















R̃j = I
(

Xj ; ŶL|XK
j+1

)

, for j = 1, 2, . . . ,K − 1,

R̃K = I
(

XK ; ŶL

)

,

C = I
(

XK; ŶL

)

+
∑

ℓ∈L

I
(

Yℓ; Ŷℓ|XK

)

.

Consider successive decoding with the decoding or-
der ŶL → XK → · · · → X1. The extreme point
(R∗

1, . . . , R
∗
K , C∗) ∈ P∗

GSD,s corresponding to this de-
coding order is














R̃∗
j = I

(

Xj ; ŶL|XK
j+1

)

, for j = 1, 2, . . . ,K − 1,

R̃∗
K = I

(

XK ; ŶL

)

,

C∗ = I(YL; ŶL).

Following the Markov chain

Ŷi ↔ Yi ↔ XK ↔ Yj ↔ Ŷj , ∀ i 6= j,

it can be shown that
∑

ℓ∈L

I(Yℓ; Ŷℓ|XK) + I
(

XK; ŶL

)

= I(YL; ŶL).

Clearly, r1JD can be achieved by the decoding order of
ŶL → XK → · · · → X1. Thus,r1JD is dominated by a
point in P∗

GSD,s.

• Case 2 holds ifC ≤ I
(

XK; ŶL

)

+
∑

ℓ∈L

I(Yℓ; Ŷℓ|XK).

We letXi
j = ∅ for i < j, and assume that

I
(

X
j−1
1 ; ŶL|X

K
j

)

≤ C −
∑

ℓ∈L

I(Yℓ; Ŷℓ|XK)

and

C −
∑

ℓ∈L

I(Yℓ; Ŷℓ|XK) ≤ I
(

X
j
1; ŶL|X

K
j+1

)

for some1 ≤ j ≤ K. The resulting extreme pointr2JD =
(R̃1, R̃2, . . . , R̃K , C) satisfies














































R̃i = I
(

Xi; ŶL|XK
i+1

)

, for i < j,

R̃i =

[

C −
∑

ℓ∈L

I(Yℓ; Ŷℓ|XK)− I
(

X
j−1
1 ; ŶL|XK

i

)

]+

,

for i = j,

R̃i = 0, for i > j,

C = I
(

X
j
1; ŶL|XK

j+1

)

+
∑

ℓ∈L

I(Yℓ; Ŷℓ|XK).

where[·]+ meansmax{·, 0}. Note that users with index
i > j are inactive, and are essentially removed from
the network. In this case, the rate-fronthaul tuple does
not correspond to a specific corner point obtained with a
specific generalized successive decoding order, but that it
lies on the convex-hull of two corner points of two dif-
ferent generalized successive decoding orders. To obtain
a visualization on Case 2, the rate-fronthaul region for a
two-user C-RAN model under a fixed joint distribution
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C

C(1)

C(2)

R1

R2

0

r(1)

r(2)

r2JD

Fig. 2. An illustration of the rate-fronthaul tuple in Case 2in Ap-
pendix A with a two-user C-RAN model under a fixed joint distribution
p (x1,x2,y1,y2, ŷ1, ŷ2).

p (x1,x2,y1,y2, ŷ1, ŷ2) is illustrated in Fig. 2. In the
case ofK = j = 2, it is shown that the rate-fronthaul
tuple r2JD lies on the convex-hull of two corner points
r(1) andr(2).
To prove the statement mathematically, we consider
generalized successive decoding with the following two
different decoding orders: (i) Decoding order 1 satisfies

XK → . . . → Xj+1 → ŶL → Xj → . . . → X1.

The extreme pointr(1)GSD = (R
(1)
1 , . . . , R

(1)
K , C(1)) of

P∗
GSD,s corresponding to Decoding order 1 satisfies















R
(1)
i = I

(

Xi; ŶL|XK
i+1

)

, for i ≤ j,

R
(1)
i = 0, for i > j,

C(1) = I
(

YL; ŶL|XK
j+1

)

.

whereC(1) represents the required fronthaul capacity in
order to achieve the above rate tuple(R(1)

1 , . . . , R
(1)
K )

with decoding order 1.
(ii) Decoding order 2 is

XK → . . . → Xj → ŶL → Xj−1 → . . . → X1.

The extreme pointr(2)GSD = (R
(2)
1 , . . . , R

(2)
K , C(2)) of

P∗
GSD,s corresponding to Decoding order 2 satisfies















R
(2)
i = I

(

Xi; ŶL|XK
i+1

)

, for i < j,

R
(2)
i = 0, for i ≥ j,

C(2) = I
(

YL; ŶL|XK
j

)

.

whereC(1) represents the required fronthaul capacity in
order to achieve the above rate tuple(R(2)

1 , . . . , R
(2)
K )

with decoding order 2. Observe that the rate tuples
(R

(1)
1 , . . . , R

(1)
K ) and (R

(2)
1 , . . . , R

(2)
K ) given by above

two decoding orders different at only thejth component,
where R

(1)
j = I

(

Xj ; ŶL|XK
j+1

)

and R
(2)
j = 0 and

R
(1)
i = R

(2)
i = R̃i for all i < j. Now choose a parameter

θ such that

θ =

C −
∑

ℓ∈L

I(Yℓ; Ŷℓ|XK)− I
(

X
j−1
1 ; ŶL|XK

j

)

I
(

Xj ; ŶL|XK
j+1

) .

(45)
Following the Markov chainXK ↔ YL ↔ ŶL, we have
the following identity,

1− θ =
I
(

YL; ŶL|XK
j+1

)

− C

I
(

Xj ; ŶL|XK
j+1

) .

Consider the following point:rθGSD = θr
(1)
GSD + (1 −

θ)r
(2)
GSD, which is in P∗

GSD,s. The corresponding sum
fronthaul requirement is given by

θC(1) + (1− θ)C(2)

= θI
(

YL; ŶL|X
K
j+1

)

+ (1− θ)I
(

YL; ŶL|X
K
j

)

= C ×
I
(

YL; ŶL|XK
j+1

)

− I
(

YL; ŶL|XK
j

)

I
(

Xj ; ŶL|XK
j+1

)

+
I
(

YL; ŶL|XK
j+1

)

I
(

Xj ; ŶL|XK
j+1

) ×
[

I
(

YL; ŶL|X
K
j

)

−I
(

YL; ŶL|X
K
1

)

− I
(

X
j−1
1 ; ŶL|X

K
j

)]

(c)
= C ×

I
(

YL; ŶL|XK
j+1

)

− I
(

YL; ŶL|XK
j

)

I
(

Xj ; ŶL|XK
j+1

)

+
I
(

YL; ŶL|XK
j+1

)

I
(

Xj ; ŶL|XK
j+1

) ×
[

I
(

X
j−1
1 ,YL; ŶL|X

K
j

)

−I
(

YL; ŶL|X
K
1

)

− I
(

X
j−1
1 ; ŶL|X

K
j

)]

(d)

≤ C ×
I
(

Xj ,YL; ŶL|X
K
j+1

)

− I
(

YL; ŶL|X
K
j

)

I
(

Xj ; ŶL|XK
j+1

)

= C, (46)

where the equality(c) follows from the fact that

I
(

X
j−1
1 ,YL; ŶL|XK

j

)

= I
(

YL; ŶL|XK
j

)

due to
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Markov chain XK ↔ YL ↔ ŶL, and inequality
(d) follows from the fact thatI

(

YL; ŶL|XK
j+1

)

≤

I
(

Xj ,YL; ŶL|XK
j+1

)

. Thus, we have thatr2JD is domi-

nated by some point lying on line segment betweenr
(1)
GSD

andr(2)GSD, which lies inP∗
GSD,s.

Therefore, for every extreme point(R̃1, . . . , R̃K) of Ro
JD,

the point(R̃1, . . . , R̃K , C) lies inP∗
GSD,s. This completes the

proof.

APPENDIX B
SUBMODULAR FUNCTIONS

In this appendix, we review some basic results in submodu-
lar optimization used proving Theorem 1 and Theorem 2. We
tailor our statements toward submodularity and supermodular-
ity, which are used in the proofs.

We begin with the definition of submodular function.
Definition 2: Let D = {1, . . . , n} be a finite set. A set

function f : 2D → R is submodular if for allS, T ⊆ D,

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ). (47)

Definition 3: Let E = {1, . . . ,m} be a finite set. A set
function g : 2E → R is supermodular if for allS, T ⊆ E ,

g(S) + g(T ) ≤ g(S ∪ T ) + g(S ∩ T ). (48)

If the function f is submodular, we call a polyhedron
defined by

P(f) =

{

(x1, . . . , xn) ∈ R
n :
∑

i∈S

xi ≤ f(S), ∀ S ⊆ D

}

(49)
the submodular polyhedron associated with the submodular
functionf . Similarly, we define the supermodular polyhedron
P(g) to be the set of(x1, . . . , xn) ∈ Rn satisfying

∑

i∈T

xi ≥ g(T ), ∀ T ⊆ E . (50)

We say a point inP(f) is an extreme point if it cannot be
expressed as a convex combination of the other two points in
P(f).

One important property of submodular polyhedron is that all
the extreme points can be enumerated through solving a linear
optimization. The following proposition provides an algorithm
that enumerates the extreme points ofP(f).

Proposition 6 ( [36] [37]): For a linear orderingi1 ≺ i2 ≺
· · · ≺ in of the elements inD, Algorithm 1 returns an extreme
point (v1, . . . , vn) of P(f). Moreover, all extreme points of
P(f) can be enumerated by considering all linear orderings
of the elements ofD.

Proposition 6 is the key tool we employ to prove Theorem 1
and Theorem 2. In order to apply this proposition, we require
the following lemmas,

Lemma 3:For any joint distribution
∏K

k=1 p (xk)
∏L

ℓ=1 p
(

yℓ|xK
1

)
∏L

ℓ=1 p(ŷℓ|yℓ) and fixed
C ∈ R, the set functionf : 2K → R defined as follows

f (T ) := min

{

C −
∑

ℓ∈L

I(Yℓ; Ŷℓ|XK), I
(

XT ; ŶL|XT c

)

}

Algorithm 1 Greedy Algorithm for Submodular Polyhedron

1: comment: Returns extreme point(v1, . . . , vn) of P(f)
with the ordering≺.

2: for j = 1, . . . , n do
3: Setvj = f ({i1, i2, . . . , ij})− f ({i1, i2, . . . , ij−1}).
4: end for
5: return (v1, . . . , vn)

is submodular.
Proof: Define a set functionf ′ (T ) = I

(

XT ; ŶL|XT c

)

.

By definition, it can be verified that functionf ′ is sub-
modular [38]. Under fixed sum fronthaul capacityC and
conditional distribution

∏L

ℓ=1 pŶℓ|Yℓ
, the expressionC −

∑

ℓ∈L I(Yℓ; Ŷℓ|XK) is a constant. LetC′ = C −
∑

ℓ∈L I(Yℓ; Ŷℓ|XK). Now the problem reduces to show that
f (T ) = min {C′, f ′ (T )) is submodular.

Next, observe thatf ′ is monotonically increasing, i.e., if
S ⊂ T , thenf ′(S) ≤ f ′(T ). Thus, fixingS, T ⊆ K, we can
assume without loss of generality that

f ′(S ∩ T ) ≤ f ′(S) ≤ f ′(T ) ≤ f ′(S ∪ T )

If C′ ≤ f ′(S ∩T ), thenf(S) = f(T ) = f(S ∩T ) = f(T ) ≤
f ′(S ∪ T ) = C′. Clearly,f is then submodular. On the other
hand, ifC′ ≥ f ′(S ∪ T ), thenf(S) = f ′(S), f(T ) = f ′(T ),
f(S ∩ T ) = f ′(S ∩ T ), and f(S ∪ T ) = f ′(S ∪ T ), f is
also submodular. Thus, it suffices to check the following three
cases:

• Case 1:f ′(S ∩ T ) ≤ C′ ≤ f ′(S) ≤ f ′(T ) ≤ f ′(S ∪ T ).
By definition of functionf , we have

f(S)+ f(T ) ≥ C′+ f ′(S ∩T ) = f(S ∪T )+ f(S ∩T ).

• Case 2:f ′(S ∩ T ) ≤ f ′(S) ≤ C′ ≤ f ′(T ) ≤ f ′(S ∪ T ).
Sincef ′ is monotonically increasing, we have

f(S) + f(T ) = f ′(S) + C′ ≥ f ′(S ∩ T ) + f(S ∪ T )

= f(S ∩ T ) + f(S ∪ T ).

• Case 3:f ′(S ∩ T ) ≤ f ′(S) ≤ f ′(T ) ≤ C′ ≤ f ′(S ∪ T ).
In this case, the submodularity off ′ and the fact off ′ ≤
f imply that

f(S) + f(T ) = f ′(S) + f ′(T )

≥ f ′(S ∩ T ) + f ′(S ∪ T )

≥ f(S ∩ T ) + f(S ∪ T ).

Hence,f = min{C′, f ′} is submodular, which completes the
proof of Lemma 3.

Lemma 4:For any joint distribution
∏K

k=1 p (xk)
∏L

ℓ=1 p
(

yℓ|xK
1

)
∏L

ℓ=1 p(ŷℓ|yℓ) and fixed
R ∈ R, define the set functiong : 2L → R as:

g (S) := R+
∑

ℓ∈S

I
(

Yℓ; Ŷℓ|XK

)

− I
(

XK; ŶSc

)

,

and the corresponding non-negative set functiong+ : 2L →
R+ as g+ = max{g, 0}. The functionsg and g+ are super-
modular.
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Proof: We first prove that the set functiong′ (T ) =

I
(

XK; ŶT

)

is submodular. To this end, we evaluate

g′ (T ∩ S) + g′ (T ∪ S)

= I
(

XK; ŶT ∪S

)

+ I
(

XK; ŶT ∩S

)

= I
(

XK; ŶS , ŶSc∩T

)

+ I
(

XK; ŶT ∩S

)

= g′ (S) + g′ (T ) + I
(

XK; ŶSc∩T |ŶS

)

−I
(

XK; ŶSc∩T |ŶT ∩S

)

.

Furthermore,

I
(

XK; ŶSc∩T |ŶS

)

− I
(

XK; ŶSc∩T |ŶT ∩S

)

= h
(

ŶSc∩T |ŶS

)

− h
(

ŶSc∩T |ŶS ,XK

)

−h
(

ŶSc∩T |ŶT ∩S

)

+ h
(

ŶSc∩T |ŶT ∩S ,XK

)

= h
(

ŶSc∩T |ŶS

)

− h
(

ŶSc∩T |ŶS∩T

)

≤ 0.

Therefore,g′ (T ∩ S)+g′ (T ∪ S) ≤ g′ (S)+g′ (T ), which
proves thatg′ is submodular.

In the following, we prove thatg is supermodular. Evaluate
g(S) + g(T ) as

g(S) + g(T )

= 2R+
∑

ℓ∈S

I
(

Yℓ; Ŷℓ|XK

)

+
∑

ℓ∈T

I
(

Yℓ; Ŷℓ|XK

)

−I
(

XK; ŶSc

)

− I
(

XK; ŶT c

)

(e)

≤ 2R+
∑

ℓ∈S∪T

I
(

Yℓ; Ŷℓ|XK

)

+
∑

ℓ∈S∩T

I
(

Yℓ; Ŷℓ|XK

)

−I
(

XK; Ŷ(S∩T )c

)

− I
(

XK; Ŷ(S∪T )c

)

= g(S ∩ T ) + g(S ∪ T ),

where inequality (e) follows from the fact thatg′ (T ) =

I
(

XK; ŶT

)

is a submodular function.
Therefore, we show thatg is supermodular. Following the

result of [28, Lemma 6], it can be shown thatg+ = max{g, 0}
is also supermodular.

APPENDIX C
OPTIMALITY OF SUCCESSIVEDECODING FOR

MAXIMIZING SUM RATE

Similar to the proof of Theorem 1, Theorem 2 can also
be proven using submodular optimization. In the following,
we consider the region(R,C1, . . . , CL), and prove that joint
decoding and successive decoding achieve the same maximum
rate using the properties of submodular optimization.

Definition 4: DefinePs
JD to be the closure of the convex

hull of all (R,C1, . . . , CL) satisfying

R <
∑

ℓ∈S

[

Cℓ − I
(

Yℓ; Ŷℓ|XK

)]

+I
(

XK; ŶSc

)

, ∀ S ⊆ L,

(51)
for some product distribution

∏K

k=1 p (xk)
∏L

ℓ=1 p(ŷℓ|yℓ).

Definition 5: DefinePs
SD to be the closure of the convex

hull all (R,C1, . . . , CL) satisfying










R < I
(

XK; ŶL

)

,
∑

ℓ∈S

Cℓ > I
(

YS ; ŶS |ŶSc

)

, ∀ S ⊆ L
(52)

for some product distribution
∏K

k=1 p (xk)
∏L

ℓ=1 p(ŷℓ|yℓ).
Note that Ps

JD represents the sum-rate and fronthaul-
capacity region of joint decoding. All the partial sums over
S in (51) can be strictly attained with equality depending on
the values of the fronthaul capacitiesCℓ for ℓ = 1, . . . , L
and the sum rateR. Similarly, Ps

SD corresponds to the
region of successive decoding. For fixed product distribution
∏K

k=1 p (xk)
∏L

ℓ=1 p(ŷℓ|yℓ), we say a point(R,C1, . . . , CL)
is dominated by a point(R′, C′

1, . . . , C
′
L) in Ps

SD if C′
ℓ ≤ Cℓ

for ℓ = 1, . . . , L andR′ ≥ R.
Clearly, the maximum sum rate achieved by joint decoding

is always larger or equal to that achieved by successive
decoding, i.e.,R∗

JD,SUM ≥ R∗
SD,SUM . To showR∗

JD,SUM =
R∗

SD,SUM , it remains to show thatR∗
JD,SUM ≤ R∗

SD,SUM .
For any given product distribution

∏K

k=1 p (xk)
∏L

ℓ=1 p(ŷℓ|yℓ)
and joint decoding sum rateRJD, definePC ⊂ RL

+ to be the
set of (C1, . . . , CL) such that

∑

ℓ∈S

Cℓ ≥

[

RJD +
∑

ℓ∈S

I
(

Yℓ; Ŷℓ|XK

)

− I
(

XK; ŶSc

)

]+

,

(53)
for all S ⊆ L. Now, to showR∗

JD,SUM ≤ R∗
SD,SUM , it

suffices to show that each extreme point of(RJD,PC) is
dominated by a point inPs

SD that achieves a sum rate greater
or equal to the joint decoding sum rateRJD.

To this end, define a set functiong : 2L → R as follows:

g (S) := RJD +
∑

ℓ∈S

I
(

Yℓ; Ŷℓ|XK

)

− I
(

XK; ŶSc

)

,

for each S ⊆ L. It can be verified that the function
g+ (S) = max {g (S) , 0} is a supermodular function (see
Appendix B, Lemma 4). By construction,PC is equal to the
set of (C1, R2, . . . , CL) satisfying

∑

ℓ∈S

Cℓ ≥ g+ (S) , ∀ S ⊆ L.

Following the results in submodular optimization (Ap-
pendix B, Proposition 6), we have that for a linear ordering
i1 ≺ i2 ≺ · · · ≺ iK on the setK, an extreme point ofPC can
be computed as follows

C̃ij = g+ ({i1, . . . , ij})− g+ ({i1, . . . , ij−1}) .

All the L! extreme points ofPC can be analyzed in the same
manner. For notational simplicity we only consider the natural
orderingij = j in the following proof.

By construction,

C̃j =

[

RJD +

j
∑

ℓ=1

I
(

Yℓ; Ŷℓ|XK

)

− I
(

XK; Ŷ
L
j+1

)

]+

−

[

RJD +

j−1
∑

ℓ=1

I
(

Yℓ; Ŷℓ|XK

)

− I
(

XK; Ŷ
L
j

)

]+

.
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Let j be the first index for whichg ({1, . . . , j}) > 0. Then,
by construction,

C̃k =I
(

XK; Ŷk|Ŷ
L
k+1

)

+ I
(

Yk; Ŷk|XK

)

=I
(

Yk; Ŷk|Ŷ
L
k+1

)

for all k > j, where the Markov chain̂Yi ↔ Yi ↔ XK ↔
Yj ↔ Ŷj , for i 6= j, is utilized in deriving the second equality.
Clearly, all the C̃k ’s are in the successive decoding region
Ps
SD.

Moreover, we haveg ({1, . . . , j′}) ≤ 0 for all j′ < j. Thus,
C̃j can be expressed as

C̃j = RJD +

j
∑

ℓ=1

I
(

Yℓ; Ŷℓ|XK

)

− I
(

XK; Ŷ
L
j+1

)

= αI
(

Yj+1; Ŷj+1|Ŷ
L
j+1

)

whereα ∈ [0, 1] is defined as

α =

RJD +
j
∑

ℓ=1

I
(

Yℓ; Ŷℓ|XK

)

− I
(

XK; Ŷ
L
j+1

)

I
(

Yj+1; Ŷj+1|ŶL
j+1

) .

Consider the two following successive decoding schemes:

• Scheme 1: The CP decodes quantization codewords
Ŷj+1, . . . , ŶL first, then decodes the message code-
words XK sequentially. Note that the BSs with in-
dex i ≤ j are inactive, and are essentially removed
from the network. The resulting extreme pointc(1) =

(R
(1)
SD, C

(1)
1 , . . . , C

(1)
L ) of Ps

SD satisfies















C
(1)
i = 0, for i ≤ j,

C
(1)
i = I

(

Yi; Ŷi|ŶL
i+1

)

for i > j,

R
(1)
SD = I

(

XK; Ŷ
L
j+1

)

.

• Scheme 2: The CP decodes quantization codewords
Ŷj , . . . , ŶL first, then decodes the message codewords
XK sequentially. Note that in this scheme, the BSs with
index i < j are inactive, and are essentially removed
from the network. The resulting extreme pointc(2) =

(R
(2)
SD, C

(2)
1 , . . . , C

(2)
L ) of Ps

SD satisfies















C
(2)
i = 0, for i < j,

C
(2)
i = I

(

Yi; Ŷi|ŶL
i+1

)

for i ≥ j,

R
(2)
SD = I

(

XK; Ŷ
L
j

)

.

SinceCℓ is defined to be the maximum long-term average
throughput of fronthaul linkℓ, the following point:cα = (1−
α)c(1)+αc(2) lies in Ps

SD. The corresponding sum rateRSD

in cα is given by

(1− α)R
(1)
SD + αR

(2)
SD

= (1 − α)I
(

XK; Ŷ
L
j+1

)

+ αI
(

XK; Ŷ
L
j

)

(f)
=

I
(

XK; Ŷ
L
j

)

−RJD −
j−1
∑

ℓ=1

I
(

Yℓ; Ŷℓ|XK

)

I
(

Yj+1; Ŷj+1|ŶL
j+1

)

× I
(

XK; Ŷ
L
j+1

)

+

RJD +
j
∑

ℓ=1

I
(

Yℓ; Ŷℓ|XK

)

− I
(

XK; Ŷ
L
j+1

)

I
(

Yj+1; Ŷj+1|ŶL
j+1

)

× I
(

XK; Ŷ
L
j

)

≥
RJD ×

[

I
(

XK; Ŷ
L
j

)

− I
(

XK; Ŷ
L
j+1

)]

I
(

Yj+1; Ŷj+1|ŶL
j+1

)

+
I
(

Yj ; Ŷj |XK

)

× I
(

XK; Ŷ
L
j

)

I
(

Yj+1; Ŷj+1|ŶL
j+1

)

(g)

≥ RJD ×
I
(

XK; Ŷ
L
j

)

− I
(

XK; Ŷ
L
j+1

)

+ I
(

Yj ; Ŷj |XK

)

I
(

Yj+1; Ŷj+1|ŶL
j+1

)

= RJD, (54)

where the equality (f) follows from the fact that

I
(

XK,Yj+1; Ŷj+1|Ŷ
L
j+1

)

= I
(

Yj+1; Ŷj+1|Ŷ
L
j+1

)

, and

inequality(g) follows from the fact thatRJD ≤ I
(

XK; Ŷ
L
j

)

.

Therefore, for every extreme point(C̃1, . . . , C̃L) of PC ,
the point(RJD, C̃1, . . . , C̃L) is dominated by a point inPs

SD.
This proves Theorem 2.

APPENDIX D
CONSTANT-GAP RESULT FORCOMPRESS-AND-FORWARD

WITH JOINT DECODING

The idea of the proof is to compare the achievable rate of
compress-and-forward with joint decoding with the following
cut-set upper bound [6]

∑

k∈T

Rk ≤ min

{

∑

ℓ∈S

Cℓ

+ log

∣

∣

∣

∑

ℓ∈Sc H
†
ℓ,T Σ

−1
ℓ Hℓ,T +K−1

T

∣

∣

∣

∣

∣K−1
T

∣

∣







(55)

for all ∅ ⊂ T ⊆ K andS ⊆ L. In the expression of cut-set
bound, the first term represents the cut across the fronthaul
links in setS, and the second term represents the cut from the
users to the BSs in setSc.

Recall that the rate region for joint decoding (23) under
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Gaussian quantization is the of(R1, · · · , RK) such that

∑

k∈T

Rk <
∑

ℓ∈S

[

Cℓ − log
|Σ−1

ℓ |

|Σ−1
ℓ −Bℓ|

]

+ log

∣

∣

∣

∑

ℓ∈Sc H
†
ℓ,T BℓHℓ,T +K−1

T

∣

∣

∣

∣

∣K−1
T

∣

∣

for all ∅ ⊂ T ⊆ K and S ⊆ L, for some0 � Bℓ � Σ−1
ℓ .

We now show that if a rate tuple(R1, · · · , RK) is within the
cut-set bound, then(R1−η, · · · , RK −η) is in the achievable
rate region of joint decoding, where

|T |η ≤
∑

ℓ∈S

log
|Σ−1

ℓ |

|Σ−1
ℓ −Bℓ|

+ log

∣

∣

∣

∑

ℓ∈Sc H
†
ℓ,T Σ

−1
ℓ Hℓ,T +K−1

T

∣

∣

∣

∣

∣

∣

∑

ℓ∈Sc H
†
ℓ,T BℓHℓ,T +K−1

T

∣

∣

∣

(56)

is the gap between the cut-set bound and achievable rate of
joint decoding.

Choose quantization noise level to be at the background
noise level, i.e.,Qℓ = Σℓ. Then we have

Bℓ = (Σℓ +Qℓ)
−1 =

1

2
Σ−1

ℓ .

Evaluate gapη with the above choice ofBℓ gives

η ≤
|S|

|T |
·N +M ≤ NL+M,

which completes the proof of Proposition 3.
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