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Abstract—This paper investigates the compress-and-forward
scheme for an uplink cloud radio access network (C-RAN) mode
where multi-antenna base-stations (BSs) are connected tacboud-
computing based central processor (CP) via capacity-liméd
fronthaul links. The BSs compress the received signals with
Wyner-Ziv coding and send the representation bits to the CPthe
CP performs the decoding of all the users’ messages. Underith
setup, this paper makes progress toward the optimal structre
of the fronthaul compression and CP decoding strategies fothe
compress-and-forward scheme in C-RAN. On the CP decoding
strategy design, this paper shows that under a sum fronthaul
capacity constraint, a generalized successive decodingrategy
of the quantization and user message codewords that allows
arbitrary interleaved order at the CP achieves the same rate
region as the optimal joint decoding. Further, it is shown that
a practical strategy of successively decoding the quantifan
codewords first, then the user messages, achieves the sam
maximum sum rate as joint decoding under individual fronthaul
constraints. On the joint optimization of user transmissian and
BS quantization strategies, this paper shows that if the inpt
distributions are assumed to be Gaussian, then under joint
decoding, the optimal quantization scheme for maximizing tie
achievable rate region is Gaussian. Moreover, Gaussian inp
and Gaussian quantization with joint decoding achieve to vthin
a constant gap of the capacity region of the Gaussian multig+
input multiple-output (MIMO) uplink C-RAN model. Finally,
this paper addresses the computational aspect of optimizin
uplink MIMO C-RAN by showing that under fixed Gaussian
input, the sum rate maximization problem over the Gaussian
guantization noise covariance matrices can be formulated s
convex optimization problems, thereby facilitating its eficient
solution.
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I. INTRODUCTION

Cloud Radio Access Network (C-RAN) is an emerging mo-
bile network architecture in which base-stations (BSs) u-m
tiple cells are connected to a cloud-computing based dentra
processor (CP) through wired/wireless fronthaul linkstHa
deployment of a C-RAN system, the BSs degenerate into re-
mote antennas heads implementing only radio functioraliti
such as frequency up/down conversion, sampling, filtedng,
power amplification. The baseband operations at the BSs are
migrated to the CP. The C-RAN model effectively virtualizes
radio-access operations such as the encoding and decdding o
user information and the optimization of radio resourc¢ds [1
Advanced joint multicell processing techniques, such &s th
coordinated multi-point (CoMP) and network multiple-iipu
multiple-output (MIMO), can be efficiently supported by the
C-RAN architecture, potentially enabling significanthgher
data rates than conventional cellular netwoiKs [2].

This paper considers the uplink of a MIMO C-RAN system
under finite-capacity fronthaul constraints, as shown m [Bi
which consists of multiple remote users sending independen
messages to the CP through multiple BSs serving as relay
nodes. Both the user terminals and the BSs are equipped
with multiple antennas. The BSs and the CP are connected
via noiseless fronthaul links with finite capacity. This oha
nel model can be thought of as a two-hop relay network,
with an interference channel between the users and the BSs,
followed by a noiseless multiple-access channel between th
BSs and the CP. This paper assumes that a compress-and-
forward relaying strategy is employed, in which the relayin
BSs perform distributed lossy source coding to compress the
received signals and forward the representation bits t&Cthe
through digital fronthaul links, and all the user messages a
eventually decoded at the CP. The lossy source coding imple-
mented at BSs involves Wyner-Ziv coding typically consigti
of quantization followed by binning in order to achieve high
compression efficiency by leveraging the correlation betwe
the received signals across different BSs, which is differe
from the point-to-point fronthaul compression implemehire
today’s conventional C-RAN systems.
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strategy in uplink C-RAN is the optimal input coding strateg

at the user terminals, the optimal relaying strategy at t6e,B
and the optimal decoding strategy at the CP. Toward this end,
this paper restricts attention to the strategy of compmnegssi
the received signals at the BSs, then eitf@nt decoding
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The achievable rate region of the compress-and-forwaad str
egy with practical successive decoding, in which the quanti
tion codewords are decoded first, then the user messages are
decoded based on the recovered quantization codewords, has
S also been studied for the uplink C-RAN model [5, Theorem
1]. One of the objectives of this paper is to illustrate the
Pf:fg:})r relationship between joint decoding and successive dagodi
- In the existing literature, the equivalence between these t
decoding schemes is first demonstrated for single-source,
single-destination, and single-relay networks [6, Append
16C], then shown for single-source, single-destinatiamj a
multiple-relay networks[]7], under either block-by-blofik-
ward decoding or block-by-block backward decoding. This
Fig. 1. The uplink C-RAN model under finite-capacity fronthaonstraints paper further demonstrates that in the case of uplink C-RAN,
which is a multiple-source, single-destination, multipdday

o . network, the optimality of successive decoding still holds
of the quantization and message codewords smultaneoua der suitable conditions

or generalized succe_ssive decod_iug the quantization and In general, it is challenging to find the optimal joint in-
message codewords in some arbitrary order at the CP. U”Sﬁ{ and quantization noise distributions that maximize the

:?J\I/\S/aa:jsfercggl(i):’ ttr;]'z 2?rﬂiun::izefstrt£e(:o:!%v:|ngoﬁn:g‘;{,\ achievable rate of the compress-and-forward scheme farkupl
9 P P -RAN. Gaussian signaling is not necessarily optimal—in

forward strategy. articular, in a simple example of uplink C-RAN with one user

First, motivated by the fact that successive decoding istmu . . : .
: . o ; nd two BSs shown if[5], binary input is shown to outperform
easier to implement than joint decoding, we seek to undsast o . : .
ussian input for a broad range of signal-to-noise ratios

whether successive decoding at the CP can perform as Rs). However, Gaussian input and Gaussian quantization

as Jomt_ decoding. Toward th.|s gnd, this paper shows th n be shown to be approximately optimal. In fact, the uplink
generalized successive decoding indeed achieves the aMneé_RAN model is an example of a general Gaussian relay

region as joint decoding for an uplink C-RAN model under a . . . L
. -~ hetwork with multiple sources and a single destination for
sum fronthaul constraint. Further, although not necelyssoi : o L
o T which a generalization of compress-and-forward with joint
for the general rate region, if one focuses on maximizing th , : )
. . . ecoding (referred to as noisy network coding scheme [8]—
sum rate, the particular strategy of successively decottiag

N i . [11]) and with Gaussian input and Gaussian quantization can
guantization codewords first, then the user messages vashi ) P q

! e shown to achieve to within a constant gap to the informatio
the optimal sum rate. theoretical capacity of the overall network. Instead ofngsi
Second, we seek to understand the optimal input distributig pacty : Y

and quantization schemes in uplink C-RAN. Although it ig 15y network coding, our previous work [12] shows that

. . . successive decoding can achieve the sum capacity of uplink
well known that joint Gaussian strategies are not necdgsa g pacity P

X . . . : e -RAN to within constant gap, if the fronthaul links are
optimal, this paper shows that if we fix the input distribatio subjected to a sum capacity constraint. In this work, wehtent

Yemonstrate that the compress-and-forward scheme with joi
%(tecoding can achieve to within a constant gap to the entire

tsf']gengg]gssng Eﬂe Itshlz\f\'lrr: tc; r?]CTtI'eY:.(:hte Cta(pl\jﬁ\'/tlyo)regF;?Q capacity region of the uplink C-RAN model with individual
usst uttipie-input mutip'e-outpu UMM fronthaul constraints; same is true for successive degodin

C-RAN model to within a constant gap. Finally, this paper . .
: . under suitable condition.
makes progress on the computational front by showing that

under the joint Gaussian assumption, the optimization ﬁfAn important theoretical result obtained in this paper &t th

e ) . S the input distributions of the uplink C-RAN model are fixed
the quantization covariance matrices for maximizing thea su . . . o .
o to be Gaussian, then Gaussian quantizer is in fact optimal
rate can be formulated as a convex optimization problem

L T g ) under joint decoding. Finding the optimal quantization thoe
These_results suggest j[hat joint Gaussian input signalig %-RAN model is related to the mutual information constraint
Gaussian quantization is a suitable strategy for the uplink

problem [13], for which entropy power inequality is used to
RAN. . o2 X

show that Gaussian quantization is optimal for a three-node

relay network with Gaussian input. However, it is challemgi
A. Related Work to extend this approach to the uplink C-RAN model, which

The achievable rate region of compress-and-forward wittas multiple sources. This paper provides a novel proof®f th

joint decoding for the uplink C-RAN model was first characeptimality of Gaussian quantization based on the de Bruijn
terized in [3] for a single-transmitter model then in [4] fitve  identity and the Fisher information inequality. The ideatod
multi-transmitter case. However, the number of rate caitgis proof is inspired by the connection between the C-RAN model
in the joint decoding rate region grows exponentially witle t and the CEO problem in source codingl[14], where a source
size of the network[[3, Proposition 1V.1], which makes thé described to a central unit by remote agents with noisy
evaluation of the achievable rate computationally prdiwigi observations. The solution to the CEO problem is known for

under joint decoding, and vice versa. Moreover, joint Geuss
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the scalar Gaussian casel[15],][16]; significant recentnessy achieves to within a constant gap of the capacity region
has been made in the vector case, elg. [17]. The similarity of the uplink MIMO C-RAN model. Combining with the
between the uplink C-RAN model and the CEO problem has result above, the same constant-gap result also holds for
been noted in[[5], based on which a capacity upper bound generalized successive decoding under a sum fronthaul
for the uplink C-RAN model is established. In this paper, constraint and for successive decoding for sum rate
we use techniques for establishing the outer bound for the maximization.

Gaussian vector CEO problein [18] to prove the optimality of « This paper shows that under fixed Gaussian input, Gaus-
Gaussian quantization. We also remark the connection legtwe  sian quantization maximizes the achievable rate region

this quantization optimization problem and the informatio
bottleneck method [19], for which joint Gaussian distribat

is shown to be Pareto optimal. The technique used in this

paper is a significantly simpler alternative to the enharem@m
technique given in[[20].

under joint decoding. Combining with the optimality

result for successive decoding, this also implies that unde
fixed Gaussian input, Gaussian quantization is optimal for
generalized successive decoding under a sum fronthaul
constraint, and for successive decoding for sum rate

This paper also makes progress in observing that the opti- maximization.
mization of Gaussian quantization noise covariance negtric « Under joint Gaussian signaling and Gaussian quantiza-

for maximizing the (weighted) sum rate of uplink C-RAN

can be reformulated as a convex optimization problem. The

guantization noise covariance optimization problem fdinkp
C-RAN has been considered extensively in the literaturei- Va

tion, the optimization of quantization noise covariance
matrices for maximizing weighted sum rate under joint
decoding and for maximizing sum rate under successive
decoding can be formulated as convex optimization prob-

ous optimization algorithms have been developed to maemiz  lems, which facilitate their efficient solution.
the achievable rates of the compress-and-forward scheme fo

the case of either successive decoding of the quantization paper Organization and Notation
codewords followed by the user messages [21], [22] or joint

: o The rest of the paper is organized as follows. Sedfion I
decoding of the quantization codewords and user messages Jces the channel model for the uplink MIMO C-RAN
simultaneously[[23]. In particular, a zero-duality gapules

has b h for th iahted ¢ o t_and characterizes the achievable rate regions for compress
as been shown for the weighted sum rate maximizaligi g t,yard schemes with joint decoding and generalized
problem under a sum fronthaul capacity constraint[in| [2 ccessive decoding respectively. Sectign Il demorestrat
based on a time-sharing argument to facilitate the algtnritr}h

design for searching optimal quantization noise covaganc e rate-region optimality of ggnerallzed successive dep;p .
matrices. However, the optimization problems formulated Iunder asum frontha}ul constraint and the sum-rate qptlynaht
) . - - - . of successive decoding. Sectlod IV focuses on establighimg
these works (i.e.[[21]/122]/123]) are inherently noncery optimality of Gaussian quantizers with joint decoding unde
Gaussian input. In addition, Sectign]IV also establishes th

allows globally optimal Gaussian quantization noise cbvargbprOXimate capacity of the uplink MIMO C-RAN model
globally op q .~ 7 "o, within constant gap, and shows the convex formulation
ance matrices to be found. Note that here the optimization

th tizati . . trix i ¢ q the (weighted) sum rate maximization problems over the
€ guantizalion noise covariance matrix Is performed Unog,» - ation noise covariance matrices. Sediion V comdud
the fixed Gaussian input. The joint optimization of the inp

. L : X : " the paper.
signal an_d quantization noise covariance matrices remains Ngtal?[ion: Boldface letters denote vectors or matrices,rehe
computationally challenging difficult problern [24]. context should make the distinction clear. Superscripts,

()T and(-)~! denote transpose operation, Hermitian transpose
and matrix inverse operatoiB|-] andTr(-) denote expectation

This paper establishes several information theoreticltees ?d Matrix trace operators; €p denotes the convex closure
on the compress-and-forward scheme for the uplink MIMO operation;p(-) denotes the probability distribution function

i i J_ X .
RAN model with finite-capacity fronthaul links. A summaryln this paper. We us&; = (X;, X;1,...,X;) to denote
of our main contributions is as follows: a matrix with (j — i + 1) columns forl < i < j.

This paper demonstrates that generalized successive FQr @ vector/matrixX, X.s denotes a vector/matrix with
* > Pap 9 . ments whose indices are elementsSofGiven matrices
coding for compress-and-forward, which allows the de-

: o 1,-.., X}, diag ({X,}}_,) denotes the block diagonal
podmg of_the quantization and_ user message codewq 3trix formed withX, on the diagonal. For random vectors
in an arbitrary order, can achieve the same rate regign

- . andY, J(X]|Y) denotes the Fisher information matrix of
as joint decoding for compress-and-forward under a s

: . ) conditional onY; cov(X|Y) denotes the covariance matrix
fronthaul capacity constraint. Further, successive deco MX[Y)

. e ; of X conditional onY.
ing of the quantization codewords first, then the user

message codewords, can achieve the same maximum
9 . . o Il. ACHIEVABLE RATE REGIONS FORUPLINK C-RAN
sum rate as joint decoding under individual fronthaul

constraints. A. Channel Model

« This paper shows that under Gaussian input and GaussiaiThis paper considers an uplink C-RAN model, whete
quantization, compress-and-forward with joint decodingnobile users communicate with a CP througBSs, as shown

B. Main Contributions
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in Fig.[d. The noiseless digital fronthaul link connectihg BS As a more practical decoding strategy, successive decoding

¢ to the CP has the capacity 6% bits per complex dimension. of quantization codewords first, and then the user messages

The fronthaul capacity’, is the maximum long-term averageat the CP can also be used in uplink C-RAN. The following

throughput of theéth fronthaul link, i.e., lim %2?21 Cy(i) < proposition states the rate-fronthaul region achieved umy s
n—oo . .

C, whereCy(i) represents the instantaneous transmission r&@ssive decoding. ) _

of the ¢th fronthaul link at theith time slot. Each user terminal Proposition 2 ([5, Theorem 1])For the uplink C-RAN

is equipped withM antennas; each BS is equipped with model shown in Fid.]1, the achievable rate-fronthaul regibn

antennas. Perfect channel state information (CSI) is asdten compress-and-forward with successive decodiigy, is the

be available to all the BSs and to the CP. For simple notatidi{inLre of the convex hull of allRy, - - - , Rk, C1,...,CL) €
we denoteC = {1,--- , K} andl = {1,---, L} in this paper. Ry satisfying

Let X;, € CM be the signal transmitted by theh user s

S . . . ' R I X7 Y| X7 VT CK 3
which is subject to per-user transmit power constrainfpf ]; k< ( 7 Ye[Xr ) ’ TCK, (3)
i.e. E {XkXH < Py. The signal received at thé&h BS can and
be expressed as I (YS;YSWSC) < ZCL VS CL. 4)

K tes

Ye= Z HewXp+ 2, £=1,2,...,1L @) for some product distribution[ [r_, p (xx) [T, p(¥Felye)
=1 such thatk IXkXL <P, fork=1,... K.
whereZ, ~ CJ\_/((_), 3,) represents the additive Gaussian noise Note that [B) is the multiple-access rate regidn, (4) repre-
for BS £ and is independent across different BSs, &lidi  sents the Berger-Tung rate region for distributed lossy-com
denotes the complex channel matrix from useio BS /(. pression[[6, Theorem 12.1], whil€](2) incorporates thetjoin
We consider the compress-and-forward scheme [23], [2@coding of the quantization codewords and the user message
applied to the uplink C-RAN system, in which the BSs comgecause of its lower decoding complexity, successive dagod
press the received signal,, and forward the quantizationjs ysyally preferred for practical implementation of thdinip
bits to the CP for decoding. At the CP, the user messagesRAN systems[[21],[[22]. Note that in the above strategy,
are decoded using either joint decoding or some form gficcessive decoding applies only to the veckr (user

words and the message codewords are decsidadtaneously the elements within vectorX, and Y, are still decoded

whereas, in successive decoding, the quantization codewqpijntly.

and messages are decodmatcessivelyn some prescribed |t js possible to improve upon the successive decoding
orde_zr. Different orderings can potentially result in di#at scheme by allowing arbitrary interleaved decoding orders
achievable rates. between quantization codewords and user message codewords
We call this the generalized successive decoding scheme in
B. Achievable Rates for Joint Decoding, Successive Degpdil{!iS Paper. The generalized successive decoding scheme is
and Generalized Successive Decoding first suggested in_[27] under the name of joint base-station

. ) . successive interference cancelation scheme. In such assucc
In the following, we present the achievable rate region %f

o : _ ve decoding strategy, the set of potential decoding srder
compress-gnd-forwa_rd with joint decoding and differentrie o ges all the permutations of quantization and user aggss
of successive decoding.

" i . ) . codewords.
Proposition 1 (3, Proposition IV.1]):For the uplink C- pengter as a permutation on the set of quantization and
RAN model shown in Fig.]1, the achievable rate-fronthaul reser message codeworfl¥,, Ys Y. X1 Xs X5
gion of compress-and-forward with joint decodif®j; ,, is the . . e T e )
closure of the convex hull of allRy, - - , Ry, Ci,. ... Cy) € For a given permutanqﬁ, _the decoding order .|§.g|ven by the
index of the elements im, i.e.,n(1) - 7(2) = --- = 7(L+

RK+L ti H v )
+ " satisfying K). For example, consider an uplink C-RAN model as shown
S R<Y {Cz 7 (Yz;?elxzc)} ) (XT;Ysclec) in Fig.[d with 2 BSs and? users. Ifr = (Yl,Xl,Yg,Xg),

keT Les then the decoding o, and X, can use both previously

(2) > .
forall T C K andS C £, for some product distribution Qecoded user messages and quantization codewords as side

K L . + information. The resulting rate region is characterized as
15, p(xe) T, p(3elye) such thatE [xkxk} < P, for )
k=1,.... K. Ri<I Xl;Yl),

Note that for the uplink C-RAN model, the rate regiam (2) Ry <1 XQ§Y1,Y2|X1) ’
given by compress-and-forward with joint decoding is ident
cal to the rate region of the noisy network coding scheme [dpr some product distribution(x1)p(x2)p(¥1]y1)p(¥2ly2)
which is an extension of the compress-and-forward scheith@t satisfies
to the general multiple access relay network by using joint Cy > Y1;Y1) 7

decoding at the receiver and block Markov coding at the 7
transmitters. Cy>1 Y2;Y2|Y1,X1) )

()

(6)
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Let 7x,, Zy, denote the indices of user messages that drikewise, the rate region achieved with generalized sisices

decoded befor&;, andY, under the permutation, respec- decodingR¢sp, , is given by

tively. Likewise, let Jx,, Jvy, denote the indices of quanti-

zation codewords that are decoded bef&rge and Y, under Résp,s =

the permutationr, respectively. The rate-fronthaul region of (Ri, -+ ,Rk,C1,...,CrL) € Pésps

generalized successive decoding for uplink C-RAN is state{i( Lo Ri) ’ ZeLﬂ C,<C, C,>0 }

in the following proposition. - - (11)
Proposition 3: For the uplink C-RAN model shown in . . . .

Fig. [1, the achievable rate-fronthaul region of generdlizeT h‘?h?cl)l:)ev;lr:n:?'lt:r;erotrﬁtran j:)"lj‘itneks g]??,;nl\?l?nroesglltv(\:ift rt]h'ti:escj'r?]n

successive decoding with decoding orderPgsp (), is the fronthaul capacity constraiﬁZéL:l Cy < C andC, > 0, the

%?{iugesg;g;;nc;nvex hullof allity, -+, e, C1,, Cr) € rate region achieved by generalized successive decodithg an
+ joint coding are identical, i.eR¢sp « = Rip -
Ry <1 (Xk;YJxk |X1Xk) , VkeK, (7) Proof: See AppendikA. =
The roadmap for the proof of Theordrh 1 shares the same

idea as the characterization of the rate distortion regam f
the CEO problem under logarithmic loss [28] and the capac-
ity region for the multiple-access channel [29], which uses
the properties of submodular polyhedron (see Appehdix B).
Specifically, in order to shoR¢; s, , = R7p ;, We show that
under fixed product distributior]!—[szlp(xk) Hlep(ydyg),
every extreme point of the polyhedrd®’, ., C') is domi-
nated by the points in the polyhedron defined®¢, s, ., C).

and
Cy >I(Yg;Yg|YJYE,XIY[), VieLl.  (8)

for some product distributionHszlp (xk) Hlep(yﬂyg)
such thafE XkXL < P, fork=1,...,K. The generalized
successive decoding regidty. o, is defined to be the closure
of the convex hull of the union of regiorBgsp(7) over all
possible permutation’s, i.e.,

. We conjecture that Theore 1 holds also for the case of
Pasp = co <UPG5D(”)> : ©) individual fronthaul capacity constraints. However, imatth
" case, finding the dominant faces of polyheddf), becomes
Il. OPTIMALITY OF SUCCESSIVEDECODING much more difficult, it appears non-trivial to extend therent

In general, we haveP;, C PtLgp C Pjp. However, proof to the case of individual fronthaul constraints.
successive decoding is more desirable than joint decodirtg,
only because of its lower complexity, but also due to the fagt Optimality of Successive Decoding for Maximizing Sum
that its rate region can be more easily evaluated. Thus tker Rate
a tradeoff between complexity and performance in designing
decoding strategies for uplink C-RAN. To further undersltanSu
this tradeoff, this section establishes that: 1) By allayémbi-

As a special instance of generalized successive decoding,
ccessive decoding reconstructs quantization codeviiosts

. o then user message codewords in a sequential order. In what
trary decoding orders of quantization and message codewo llows, we show that the optimal sum rate achieved by this

the gengrahze(_j successive decoding actually achievessthe special successive decoding is the same as that achieved by
rate region as joint decoding under a sum fronthaul comfrai; .+ decoding

2) The practical successive decoding strategy in which theUnder fixed input distribution and fixed fronthaul capascitie
BSs decode the quantization codewords first, then the user e p—1 L, the maximum sum rate achieved by joint
messages, actually achieves the same maximum sum rat(aééodingR*""’ ,is defined as

JD,SUM

joint decoding under individual fronthaul constraints.

K
) max ) Ry
Sum Fronthaul Constraint TP SUM st ’(“2117 o Rg,Ci,...,CL) € Pip.

This section shows that in the special case where the fron- (12)
thaul links are subject to a sum capacity constraint, gdéimech Likewise, the maximum sum rate for successive decoding
successive decoding achieves the rate region as joint terodRsp suas iS given by
In this model, the fronthaul capacities are constrained by

A. Optimality of Generalized Successive Decoding under @«

K
ZZL:lC’g < C and Cy; > 0, justifiable in situations where ,, ) max ) Ry
the fronthaul are implemented in shared medium (e.g. véigele ©2-5UM = k=1 .
fronthaul links), as has been considered!inl [12]] [21]. Unde st (Ry,ooo B, Ch,e.,CL) € P51(71'3)

theh_surrgj E‘)ronthsql _cazacit)(/j_ cor:strai.ﬂ?t,d t?e :jate regions e following theorem demonstrates the optimality of sgece
achieved by with joint decodin®} , , is defined as sive decoding for maximizing uplink C-RAN under individual

Rip . = fronthaul constraints.
’ . Theorem 2:For the uplink C-RAN model with fronthaul
{(R1,...7RK)‘ (Rl""’LRK’Ol""’OL) €Pip } capacitiesC, shown in Fig.[1, the maximum sum rates
21 Ce<C, Cp20 achieved by successive decoding and joint decoding are the

10 i * = R*
( ) same, |-e-,RSD7SUM—RJD,SUM'



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 00, NO. 0, XXX016 6

Proof: See AppendiXC. B joint decoding and for sum rate maximization under prattica

We remark that Theorerhl 2 can be thought as a gesuccessive decoding can be cast as convex optimization prob
eralization of a result in[]7] that shows under block-bylems, thereby facilitating their efficient numerical sadut
block forward decoding, the compress-and-forward schenfibroughout this section, we focus on the achievable rates
with compression-message successive decoding achiesesuthder the fixed Gaussian input, and the fixed fronthaul cpaci
same maximum rate as that with compression-message jaianstraintsC, for £ =1,..., L.
decoding for a single-source, single-destination relawaek.
The uplink C-RAN is a multiple-source, single-destinatiol. Achievable Rate Regions under Gaussian Input and Gaus-
relay network. If all the user terminals are regarded as oBgn Quantization
super transmitter, then it follows froniI[7] that successive \yo |et the input distribution be Gaussian, i.&; ~

decoding and joint decoding qchieve_ the same mf"‘XimUéW(O,Kk), then evaluate the rate regions for the compress-
sum rate. However, the proof inl[7] is quite complicated,, tqrward scheme with joint decoding and successive de-

In this paper, we provide an alternative proof technique f%'bding under Gaussian quantization, denote®4s, .., and
showing the optimality of successive decoding for sum ralﬁc respectivel SeﬂL Selye) CN( "Q )
maximization in uplink C-RAN. The new proof utilizes the'“5D.Gin’ €SP - (=1 P\Ye1ye Ye, <L)y

properties of submodular optimization, which is simplearth whereQ; is the Gaussian guantization noise covariance matrix

. ) at the/th BS.
the proof provided inll7]. The proofs of Theordth 2 and The- With Gaussian input and Gaussian quantization, we have

orem[] illustrate the usefulness of submodular optimizaitio

estaphshlng this type of resuIFs. . N . [(Y 0 Yo Xx) = log |20 + Q¢ (14)
It is remarked that successive decoding and joint decoding |Q|

achieve the same sum rate, but do not achieve the same ggig

region. The achievable rate region of generalized successi N

decoding is in general larger than that of successive degodi 1 (XT%YS“|XT“)

For example, consider the compress-and-forward scheme for ‘ T .

maximizing the rate of user, R, only. The optimal decoding  _ 1., Hse 7K7Hs. 7+ diag ({3 + Qeleese) (15)

order should beXx\ (13 — Y, — X;. With this decoding |diag ({2¢ + Qe}eese)

order, user 1 can achieve larger rate than using the decoditfe achievable rate regiofi](2) for joint decoding can be
order of Y; — Xy, because the decoded user messagégluated as

X5, X3, ..., Xk can serve as side information for the decod-

. 2 S . 2 + Q

ing of Y. In general, to maximize a weighted sum rate, onez Ry < Z Cy — log T

needs to maximize ovefL + K)! orderings for generalized keT Les ¢

successive decodmg._ T_h_e main result of _thls section shows ‘HSC,TKTHLC -+ diag ({20 + Qe }rese)
however that for maximizing the sum rate in uplink C-RAN, + log _— ,
successive decoding of the quantization codewords firgt, an |diag ({3¢ + Qr}rese)| 16
then the user messages is optimal; this reduces the seawd sp (16)
considerably tal! K'! decoding orders. forall 7 C K andS C L.

Likewise the achievable rate expressigh (3) for successive

IV. UPLINK C-RAN WITH GAUSSIAN INPUT AND decoding becomes

GAUSSIAN QUANTIZATION ’HSC,/CK/CHLK + diag ({Z¢ + Qe}eer)

In this section, we specialize to the compress-and-forwardz Ry, <log |diag ({Z¢ + Qeleer) ’
scheme for uplink C-RAN with Gaussian input signal at the *<7 (17)
users and Gaussian quantization at the BSs. Although itgés 51| 7 k.
known that joint Gaussian distribution is suboptimal folinip In deriving the fronthaul constrainl(4), we start with eval
C-RAN [3], Gaussian input is desirable, because it leadgting the mutual information
to achievable rate regions that can be easily evaluated. In o
the following section, it is shown that with Gaussian input I Ys;Yle5c)
and Gaussian quantization, compress-and-forward witht joi SN . N
decoding can achieve the capacity region of uplink C-RAN to — 1 (X’Cst;YSWSC) -1 (X’C;YSWS’YSC)
within a constant gap. The gap depends on the network size _ XN X %
but is independent of the channel gain matrix and the SNR. d (X’C’Y‘S'Y‘SC) 1 (Y‘S’YleK’Y‘SC)

We further establish the optimality of Gaussian compressio -7 (XIC;YS|YS,YSC)
at the relaying BSs for joint decoding, if the input is Gaassi @ o R
These results can be further extended to generalized sivees = (X,C; Y5|Y5c) +1 (Ys; Y5|X,C)

decoding under a sum fronthaul constraint and successive . . .
decoding for the maximum sum rate. Additionally, under = I (XK;YL) -1 (XICQYSC) +ZI(Y13;Y@|X;C)
Gaussian signaling, the optimization of quantization @ois les

covariance matrices for weighted sum-rate maximizatiaenn (18)
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for all S C £, where the equality (a) follows from the factand H,+ denotes the channel matrix froX to Y,. Fur-

that
1(YsiYslX, Yo ) =1 (Y VsIXe)  (19)
and
I(Xk: Ys|Ys, Ys:) =0, (20)
and equality (b) follows from the fact that
I (Y85?8|XIC) = I(Ye; Yol X). (21)

Les

thermore, under the fixed fronthaul capacity constraifits
for ¢ =1,..., L, the rate region achieved by joint decoding
RYp.ary is defined as

R?D,Gln = {(Rl,. .. ,RK) :
(Ri,-- ,Rg,Ch,...,Cr) ePJGDVGM}. (24)

Proposition 5: For the uplink C-RAN model shown in
Fig. [ and under fixed Gaussian inpXtc ~ CN(0,Kx)

The above equations (19)={21) follow from the Markov chailfith Kx = diag ({Kx}kex). The rate-fronthaul region for

Yi(—)YiHXKHYj(—)Yj, VZ#]

We further evaluate the mutual information expression (18)
with Gaussian input and Gaussian quantization, which gield Z Ry <log

that
I (Ys;YAv5|YAv5c)
‘Hﬁ,ICKICHTL,;C + diag ({3 + Qé}éeﬁ)‘
|diag ({X¢ + Qe}rec)|
‘HSC,KKKH207K + diag ({3 + Qr}rese)
|diag ({2 + Qe}eese)]

|30 + Q|
+Zlog7
s Q|

‘HL,ICKICHTLJC + diag ({Ez + QE}ZGE)’
’HSC,/CKICHTSc,;C + diag ({2 + Qr}rese)

— log Q|

Les

<> C.

Les

Instead of parameterizing the rate expressions Qyeas in

= log

— log

= log

successive decodin®R¢), 4, is the closure of the convex
hull of all (Ry,---, Rk, Ch,...,CL) satisfying

L H B K|

VT CK
1 ) =\
kcT ‘KT ‘
(25)
and
L 1
Z HZ,K:BZHL’C + K/E |271|
lOg =1 + Z 10g Fé_m
l% H)  BH, o+ Kc'| (€S ¢ ¢
6 c

<Y Ci, VSCL, (26)
leS

for some0 < B, < X', whereK; = E|X7XI| is
the covariance matrix oK, andH, + denotes the channel
matrix from X+ to Y,. Moreover, under the fixed fronthaul
capacity constraintg’, for / = 1,...,L, the rate region
achieved by successive decodiR§, ., is defined as

RgD,GIn = {(Rla ..., RK):
(Rla' o aRKaclv" '7CL) € PSC';D,GIH}' (27)

above, in this section, we introduce the following repar@me g Gaussian Input and Gaussian Quantization Achieve Ca-
ization, which is crucial for proving our main results. Defin pacity to within Constant Gap
With Gaussian input and Gaussian quantization, the rate

B, = (2 +Qy) . (22) _ AU _ ne
) o ) region of joint decoding[(23) can be shown to be within a
We repres_ent the rate regions of jomt decoding and sus@essignstant gap to the capacity region of uplink C-RAN. This
decoding in terms 0B in the following. _constant-gap result is stated in the following theorem.
Proposition 4: For the uplink C-RAN model shown in  Thegrem 3:For any rate tuple(Ry, Rs, ..., Rx) within
Fig. [I and under fixed Gaussian inpMic ~ CA(0,Kx) the cut-set bound for uplink C-RAN with fixed fronthaul
with Ki = diag ({Ky}rex). The rate-fronthaul region for capacities ofC, shown in Fig.[l, the rate tupléR, —
joint decoding under Gaussian quanUzaﬂ@{ﬁDGlm is the n,Ra—1,...,Rix —n), with n = NL + M is achievable for

closure of the convex hull of allRy,-- -, Rx,C1,...,CL)  compress-and-forward with Gaussian input, Gaussian guant
satisfying zation, and joint decoding, wherg is the number of BSs
= in the network, M is the number of transmit antennas at
Z Ry, < Z {Cé —log 4} user, andN is the number of receive antennas at BS, i.e.,
27" By Ry —n, Ry — Rk —n) € RG
keT =5 ¢ (Ry —n,Ry—m,..., K n) € Rip crn-
H'.BH K‘l‘ Proof: See App.endlﬂl . [ |
+1og ‘2’365 erBeteT T Ry (23)  Although the uplink C-RAN model is an example of a
]K}ly relay network for which noisy network coding approach ap-

plies and it is known that compress-and-forward with joint
decoding achieves the same rate region as noisy network
coding for uplink C-RAN, we remark that Theordrh 3 does

foral 7 C K andS C £, for some0 < B, < ¥,,
where K+ = E [XTXH is the covariance matrix oXr,
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not immediately follow from the constant-gap optimalitguéé moments, andN be a zero-mean Gaussian random vector with
of noisy network coding([9]. The constant-gap optimality ofovarianceA y. Assume(V1,Vy) and N are independent.
noisy network coding is proven for Gaussian relay networkéfe have

whereas the uplink C-RAN model contains fronthaul links _

which are digital connections and not Gaussian channels. " (V2[V1, Vo + N) = Ay — AnJ (Vo + N[Vy) A](Vs;l)

Comb_mlng W'th. our earlier results on the optimality of Theorem 4:For the uplink C-RAN under fixed Gaussian
successive decoding, constant-gap optimality resultsatsm . o N . .
. . . input distribution and assuming joint decoding, Gaussizamng
be obtained for compress-and-forward with generalized syc .. " imal. i I s
cessive decoding and successive decoding. These reselts |5<;;1t|on 's optimal, 1.8.R.jp.¢rn = Rip.Gin: .
ized in the followi I ' Proof: Recall that the achievable rate region of the
summarized n the Toflowing corofiary. compress-and-forward scheme under joint decoding is given

_Corollary L. For the uplink C'R.AN model_as shown Ny the set of(Ry,..., Rxk) derived from [2) under the joint
Fig. [, compress-and-forward with generalized successi Rtribution

decoding, under Gaussian input and Gaussian quantization
achieves the capacity region to withML + M bits per com- (X1s- e XK Y1see s YL Y1, Y1)
plex dimension if the fronthaul links are subjected to a sum I

K L
. ; L
capacity constraind_,_, C, < C. Furthermore, compress- =TT p(xx p(yelxi,. .. Xk pFelye). (32)
and-forward with successive decoding, under Gaussiant inpu kl;Il ( )e:r[1 (e )El_[ (elyz)

=1
and Gaussian quantization, achieves the sum capacity ofr_ad"lg ' o '
: o X fixed G K ~ 0,K d fixed
uplink C-RAN model with individual fronthaul constraints t HL IX(eA | ?usﬁglsellgplcvitﬁ 0 < ENL é)‘f)sui?l thz;[(e
within NL + MK bits per complex dimension. t=1 PWYEIYe), ¢ — =

cov (Yflxﬁa?f) =3, -%B/%, (=1,---,L

C. Optimality of Gaussian Quantization under Joint Decgdee proceed to show that the achievable rate region as given by

For the Gaussian uplink MIMO C-RAN model, it is known@3) with a Gaussiaf [, p(§¢lye) ~ CN(Y,, Qy), where
that Gaussian input and Gaussian quantization are notyjoing, — B,! — %, is as large as that of](2) under Gaussian
optimal [5]. However, if the quantization noise is fixed agpyt.

Gaussian, then the optimal input distribution must be Gaus-First, note that

sian. This is because the channel reduces to a conventional | .
Gaussian multiple-access channel in this case. The maitt red ( Y¢ Y€|XI<) = log|(me)X¢| — h (Y4|X;c, Yfz)
of this section is that the converse is also true, i.e., ufided -
Gaussian input, Gaussian quantization actually maxintizes = log|(me)3¢| — log ‘(m) cov (Yle’C’ Y")‘

achievable rate region of the uplink C-RAN model under joint \2;1\
decoding. = log 7‘2—1 — Bg]’ t=1,---,L, (33)
Under fixed fronthaul capacity constraints, for ¢ = ¢

1 L, we let R%,, o, denote the rate region of jointwhere we use the fact that Gaussian distribution maximizes
yeee b JD,GIn

decoding under Gaussian input and optimal quantization. §ffferential entropy.
the following, we first define Fisher information and state th Moreover, we have
two main tools for proving this result: the Bruijn identitné 7 (XT;YSC XTc) —h(X7)—h (XTIXTC,YSC)
the Fisher information inequality. We then present the main .
theorem on the optimality of Gaussian quantization for tjoin <log |K7|—log ‘J‘l (X7—|X7—C,Ysc)
decoding, i..RSp c1n = Rb cin- . - .

Definition 1: Let (X,Y) be a pair of random vectors withWhere the inequality is due to Lemrlia 1. Since
joint probability distribution functionp (x,y). The Fisher Yse =Hse 7X7 +Hge 7eX7e + Zge,
information matrix ofX is defined as

)

it follows from the MMSE estimation of Gaussian random

J(X)=E [v logp (X) Vlogp (X)T} . (28) vectors that
Likewise, the Fisher information matrix X conditional on X7 =E[X7|X7¢, Yse] + N se
Y is defined as - Z Gr(Yy—HyreX7e) + Nryse,
J(X|Y)=E [v logp (X|Y) Vlogp(X|Y)T} . (@9) tese
where
Lemma 1 (Fisher Information Inequality, [30] [18, Lemma 2]) -1

Let (U,X) be an arbitrary complex random vector, where
the conditional Fisher information oK conditioned onU
exists. We have

log |(me)J ™" (X|U)| < h(X|U). (30)

-1
Lemma 2 (Bruijn Identity,[[31][[18, Lemma 3])Let AN = K}l + Z H} TEZlﬂz.T ) (34)
(V1,V3) be an arbitrary random vector with finite second tese '

Gro= K7+ Y H Z'H;7 | H X,
jES*®

andN7 s- ~ CN (0, An) with covariance matrix
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HereE [X7|X 7, Ys:] is the MMSE estimator oX from over{Ry,B,} as follows:

Xe, Yse. The error in estimation iN s, and the MMSE K

matrix is An. _ _ _ _  max ZukRk (36)
By the matrix complementary identity between Fisher in&.B. 1 —

formation matrix and MMSE in Lemmd 2, we have _
‘ZZESC HZ,TBEHLT + KTI‘

R s.t. Ry < log —)
3 (XrlX7e, Y- ) ]; K|
= A__l 2_1
N +Z{0g—1og7|z|/ |B|],V’rg/c, VS C L,
~ ¢ — D
— A} cov (Z Gro(Y, - Hg,TcXTc)|X,<,YSC> AR tes -
P 0B, =x%;!, V/eL,

wherep, represents the weight associated with usewhich
is typically determined from upper layer protocols. The key

= A;II — Ail cov (Z GT,ngX;C,YSc) Ail
observation is that the above problem is convexX Ry, B,}.

LeSe

_ A;l _ A]:Jl Z Grcov (YzIX/c,Ye) Gir,é A]:Jl ?owever, we alsq no_te that becfauge of jqint decoding, the
et umber of cc|>nstrr]a|ntsb|s exponential in the st|)zle of the nEk\I/vob
Consequently, the above optimization problem can only be
= AN - Z HZT (2" =B Her solved?‘or sn)1/all networks inppractice. i ’
tese Note that the above formulation considers the optimization
=K'+ Z HZTBeHe,T- of instantaneous achievable ratég, under instantaneous
Lese fronthaul capacity constraint§’, in a fixed time slot. The
solution obtained, however, also applies to the more génera
Therefore, case of optimizing the weighted sum rates under weighted sum
R fronthaul constraint (e.gZéL:1 veCp < C). This is because if
N ’J(XT|XT% Yse) we consider a slightly more general formulation of optimgi
1 (XT;Y8°|XT“) < log K| an objective of
7 K L
1 t
g ‘KT + D rese He,TBéHfz,T‘ (35) _max Z kR — Z e (37)
jie=y mEOT =1

for all 7 C K and S C £. Combining [38) and[(35), we under the same constraints as [inl(36) @(jzl v,Cy < C.

conclude thatR$,, ., as derived from[(23) is as large asouch an optimization problem is convex, so time-sharing is
R* Therefore ﬁc — R not needed. For this reason, the rest of this section caisside
JD,GIn* /Y ID.GIn = "VJD,GIn:

the formulation with instantaneous rates only.

We now consider the weighted sum-rate maximization prob-
ggm for the case of successive decoding of the quantization
codewords followed by the user messages. However, the
direct characterization of successive decoding raté (28)-

This section addresses the numerical optimization of tl@es not give rise to a convex formulation. Nevertheless,
Gaussian input and guantization noise covariance matiicesfor the special case of maximizing the sum rate (i.e., with
uplink MIMO C-RAN under given fronthaul capacity con-u; = --- = ux = 1), using Theoreni]2, which shows that
straints. First, we note that even when restricting to Gauss successive decoding achieves the same maximum sum rate
input and Gaussian quantization, the joint optimization @fs joint decoding, the sum-rate maximization problem with
input and quantization noise covariance matrices is still successive decoding can be equivalently formulated asisll
challenging problem for the uplink MIMO C-RAN. However, Theorem 5:For the uplink C-RAN model with individual
if we fix the quantization noise covariance, then the inptitonthaul capacity constraint; as shown in Figl]l, the sum
optimization reduces to that of optimizing a conventionahte maximization problem under successive decoding can be
Gaussian multiple-access channel. In particular, thelpnob formulated as the following convex problem:
of maximizing the weighted sum rate can be formulated as a

D. Optimization of Gaussian Input and Gaussian Quantiz
tion Noise Covariance Matrices

convex optimization, which can be readily solvéd][32]. A R (38)
Conversely, if we fix the transmit covariance matrix, the oyt

optimization of quantization noise covariance can in some s.t. R < Z [Ce —log %]

cases be formulated as convex optimization. The key ermblin tes ¢ — By

fa_lct is the_ reparameterization in term -Bfg 22), mstead_ qf ’Z%SC H},TBZHE,T + KEI’

direct optimization ovelQ,. Consider first the case of joint + log — , VS C L,

decoding. Using[(23) under the fix& for ¢ =1,..., L, the ‘KIC ‘

weighted sum rate maximization problem can be formulated 0=<B,= 2;1, vVielLl.
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Further, if the fronthaul links are subject to a sum capacifgint decoding under a sum fronthaul constraint. Moreoter,
constraint ofC, the sum rate maximization problem can beractical successive decoding of the quantization codgsvor

formulated as the following convex problem: followed by the user messages is shown to achieve the
39 same maximum sum rate as joint decoding under individual
max R (39)  fronthaul constraints. In addition, if the input distritart is
‘ZL H B/H, .+ Kfl‘ a_lssumed_ tc_) be Gaussia}n, it is shown that Ga_us_sian qua_ntiza-
st. R<log (=10 KRR K tion maximizes the achievable rate region of joint decoding
o - K| ’ With Gaussian input signaling, the optimization of Gaussia
L -1 guantization for maximizing the weighted sum rate undentjoi
RJFZlOg'—l# <C, decoding and the sum rate under successive decoding can
= X, — B/ be cast as convex optimization problems, which facilitates
0=<B,<X;! vieL efficient numerical solution. Finally, Gaussian input areL&-

sian quantization achieve the capacity region of the uplink
We remark that the formulation for uplink C-RAN withC.RAN model to within constant gap. Collectively, these
individual fronthaul capacitied (88) has exponential nembresults provide justifications for the practical choice sing
of constraints, because the CP in effect needs to search qegissian-like input signals at the user terminals, Gansiia
L! different decoding orders of quantization codewords glantization at the relaying BSs, and successive decoding o

the BSs. In practical implementation, a heuristic methoal cuantization codewords followed by user messages at the CP
be used to determine the decoding orders of quantizatigy implementing uplink MIMO C-RAN.

codewords for avoiding the exponential search| [24],] [33].
Alternatively, if the C-RAN has a sum fronthaul constraint, APPENDIX A

because we only need to consider the case& of £ and . . .
S = 0 in @8). Consequently, the resulting quantization In this appendix, we prove Theorellh 1, which states the

noise covariance optimization problem39) can be solved tlaquivalence between generalized successive decodingand |
P P coding under a sum-capacity fronthaul constraint. Wenbeg

polynomial time. Note that convexity is a key advantage % introducing an outer bound for the achievable rate region

the above problem formulations as compared to previous E%#joint decoding under a sum fronthaul constraint. Under

pro_ac_hes_ in the literature (e.g.]21L \_2_2]) _that parame - € the sum fronthaul capacity constraint, define the ratetfraul
optimization problem over the quantization noise covaman__". - S
region for joint decodingP$, , as the closure of the convex

Q., which leads to a nonconvex formulation. L
We emphasize the importance of Gaussian input for the cdiill of all {7y, Bs, .., R, €) satisfying
vex formulation in Theorerﬁls. Suppose that both input sign

! . in{C— I(Y VX )
X and compressed sign3f, are discrete random vectors l;Rk < mm{C E; 6 YelXk ),

with finite alphabet. For fixed input distribution, the suate .
maximization problem under the sum fronthaul constraimt ca I (XT§Y£|XTC) }, VT CK,
be written as -
A C>Y el (Yg;YdX,C)
max I (X,C;YL) , (40) (41)
P(Felye) A for some product distribution[ [/, p (xx) [T+, p(¥¢|ye)-
s.t. I (Yg;Yg) <C, Under fixed sum fronthaul constrairit, define the region
A R RS p. s as follows
pFelye) =0, > p(Felye) =1, VL€ L D
50 = {(R1,.. R): (Ry,-+ Ry, C) € Php ).
The above problem can be thought as a variant of the (42)

information bottleneck method [19], which can be solvetote that the rate regio®5, ; is an outer bound for joint
by a generalized Blahut-Arimoto (BA) algorithri [34], [35].decoding rate regiori_ (10) because only the constraintecorr
However, due to the non-convex nature of probldm] (409ponding toS = ) andS = £ are included. These constraints
the generalized BA algorithm can only converge to a locérn out to be the only active ones under the sum fronthaul
optimum. constrainty";_, C; < C andCy > 0.
Under the sum fronthaul constraint, the generalized suc-
V. CONCLUSION cessive decoding regioPzsp,s(m) for decoding orderr
. . L o

This paper provides a number of information theoreticgf .b.e derived from[(Z) by letting_,_, C; = C. More
. ecifically, Posp s(m) is the closure of the convex hull of
results on the optimal compress-and-forward scheme for tﬁpﬁ (Ri, R jos ¢ satisfyin
uplink MIMO C-RAN model, where the BSs are connected to  + =22 MK 9
a _CP through noiseless fro_nthaul links qf limited <_:apasitie Rp <1 (Xk;fok |Xka) ., VkeKk,
It is shown that the generalized successive decoding scheme I
which allows arbitrary decoding orders between quantbzafu C> ZI (Yz;YdYJYWXIY[) 7
and message codewords, can achieve the same rate region as =

(43)
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for some product distributionHszlp(xk)Hlep(ydyz),
where Ix, , Zy, are the indices of user messages that are
decoded befor&X,;, andY, under the permutation, and Jx, .
Jv, are the indices of the quantization codewords that are
decoded befor&; andY, under decoding ordex. Define
Pésp. to be the closure of the convex hull of &b.sp s(7)'s

over decoding order’s, i.e., Plsp , = co (U PGSD,S(w))

We say a poin{R;,...,Rk,C) is domin%tedby a point
in Pgop o if there exists somgRy, ..., Ry, C’) in Pégp
for which R, < R}, for k=1,2,...,K, andC > C".

Given the definitions ofR¢,sp o, Ryp , and R9p ,, it
is easy to see thaRisp, € Rjp, € Rjp, To
show R¢sp . = Rip, it suffices to showR(jDS C
Résp.s which is equivalent to showing that if a point
(Rl,Rg,.. ,Ri,C) € P9p.s then the same point
(R1,Ra,...,Ri,C) € PGSDS also. To show this, it
suffices to show that for any fixed product distribution
szlp(xk) szlp(ydyg) and fixedC, each extreme point
(Ry,..., Rk, C) as defined by[{41) is dominated by a point in
P&sp.s With the average sum fronthaul capacity requirement
at mostC.

To this end, define a set functigh: 2 — R as follows:

C = I(Ye: Yo Xx),

I (XT; Y£|X’rc) } ,
el

for each7 C K. It can be verified that the functiofis a sub-
modular function (Appendik1B, Lemnid 3). By construction,
(R1, Rs, ..., Rk) as defined by[(42) satisfies

Z Ry < f(T
keT
which is a submodular polyhedron associated vyith
It follows by basic results in submodular optimization
(Appendix[B, Propositiof]6) that, for a linear ordering <
iz < -++ < i on the set’, an extreme point o7, . can
be computed as follows

Riy = f({in, i 1) = f ({insvija}).

Furthermore, the extreme points &9, can be enumerated
over all the orderings ok. Each ordering ofC is analyzed

in the same manner, hence for notational simplicity we only
consider the natural ordering = j in the following proof.

By construction,
(e, |

Rj :min{
—min{C’—ZI(YﬁYHXIC)a I(X{_1§Y5|X§()

el
Due to the fact thaf (X{,Y5|X7+1 > (X{‘l;YdXJK),

for some product dlStI’IbutIOﬂHkle(xk)Hlelp(yﬂyg),
equation [(44) can vyield two different results. Case 1: the
first termC — >, . I(Yy; Y| X)) in the minima in equa-
tion (44) is not active for anyj; Case 2: the ternC' —
Yoer I(Ys; Y| Xx) is active starting with some indei

f(T):= min{

C = I(Ys Yo Xx),
Lel

(44)

11

. Case 1 holds iC' > I (X,C;YL) Y 1Y Yo Xk,
teL
In this case the resulting extreme point,

(Rh Rs,..., Rk, C) satisfies

R, —I(X,,YL|XJ+1>7 for j=1,2,...,K —1,

Rx =1 (XK;YL) ,

c=1 (X/C;YL) + Z I (YZ§Y5|XIC) .
ceL

Consider successive decoding with the decoding or-

der Y, - Xg — --- — X;. The extreme point

(Ri,..., Ry, C*) € Pigp . corresponding to this de-

coding order is

R: —I(Xj,YL|XJ+1) for j=1,2,...,K —1,
Rie =1 (X ¥e)
C*=1(Yr; Ye).
Following the Markov chain
Yi<—>YZ—<—>X;C<—>Y]—<—>Yj, Vi#7y,

it can be shown that
ZI(Yg;Yg|X)c) +1 (X/C;YL) = I(YL;YAvL).
teL

Clearly, r}, can be achieved by the decoding order of
Y: = Xxg — - — X3. Thus, rJD is dominated by a
point in PgSDﬁ

Case 2 holds i’ < I (X,C;YL) FY 1Y Yo Xk).

. tec
We let X = () for i < j, and assume that

I (x{*l;YdXJK) <C -3 (Y YoXk)

teL

and

C— S I(YiYiX) <1 (x{;deﬁl)

teL

for somel < j < K. The resulting extreme point , =
(Rh Rs,..., Rk, C) satisfies
o= 1 (X YelXEK,)

Ri—[C—ZI

LeL
Ry =0, fori>j
c=1 (X{,YL|X]+1) +€Z:£I(Y5;Y5|X’C)'
€

for i < j,
+
(Yo, Yo Xi) — 1 (lel;YdXzK)] :

for i =7,

where[-]T meansmax{-,0}. Note that users with index

i > j are inactive, and are essentially removed from
the network. In this case, the rate-fronthaul tuple does
not correspond to a specific corner point obtained with a
specific generalized successive decoding order, but that it
lies on the convex-hull of two corner points of two dif-
ferent generalized successive decoding orders. To obtain
a visualization on Case 2, the rate-fronthaul region for a
two-user C-RAN model under a fixed joint distribution
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Fig. 2. An llustration of the rate-fronthaul tuple in Casei2 Ap-
pendix[A with a two-user C-RAN model under a fixed joint distrion

p(x1,X2,¥1,¥2,¥1,2).

p(x1,%X2,¥1,¥2,¥1,¥2) is illustrated in Fig[P2. In the
case of K = j = 2, it is shown that the rate-fronthaul
tuple r%,, lies on the convex-hull of two corner points
rM andr®,

To prove the statement mathematically, we consider
generalized successive decoding with the following two
different decoding orders: (i) Decoding order 1 satisfies

XK—>...—>Xj+1—>Y£—>Xj—>...—>X1.
The extreme point) = (R, ... R{Y c®) of

P&sp.s corresponding to Decoding order 1 satisfies

RY =1 (Xl,Y£|Xl+1) for i < j,
R =,
c =7 (YL,Y£|XJ+1)

for i > j,

whereC'(") represents the required fronthaul capacity in

order to achieve the above rate tur(lﬁgl),...,Rg))

with decoding order 1.

(i) Decoding order 2 is
XK—>...—>XJ-—>Y£—>XJ-_1—>...—>X1.

The extreme point2) = = (R ... R c®) of

12

Pésp.s corresponding to Decoding order 2 satisfies

R? =1 (XZ,Y£|XZ+1) for i < j,
R? =0
(

C® =1 (Yo Ve IXE).

for i > j,

whereC'(!) represents the required fronthaul capacity in
order to achieve the above rate tup(lﬁgg),...,Rg))
with decoding order 2. Observe that the rate tuples
(R%”,...,Rﬁ?) and (R%Q),...,Rg)) given by above
two decoding orders different at only thitgh component,
where R(l) = I(X,-;YdXK ) and R(.Q) = 0 and

Rz(l) R(2) R; for all i < j. Now choose a parameter
6 such that
C— Z I(Yg; Yg|X}c) -1 (X{_l; ?£|Xf<)
0 — (el

(XJ, Y£|X7+1)
(45)
Following the Markov chaiXx < Y < Y ., we have
the following identity,

Consider the following pointrf, o, = Hr(GSD + (1 -
9)rg§D, which is in Pggp .- The corresponding sum
fronthaul requirement is given by

oCcM + (1 - 0)Cc®
— 01 (YL,Y£|XJ+1) (1-0)1 (YL;YL|X§<)
I (YL,Y5|XJ+1) .y (YL;Y5|XJK)

I (XJ,Y£|X7+1)

I (Yg; Y5|Xﬁ1)

=(C x

+ (XJ,Y£|XJH) X {I (YL§Y£|X§<)
(Yo Ve X)) = 1 (XX )|
@, ! (Yei¥elXE,) -1 (Yes Ye/XE)

1(X5: YelXE,)
I (Yg;YdXﬁl)
1(X5:YeIXE,)
I (YL;Y£|X{<) I (X{—l;Yde)}

@ (X5 Yo VelXE ) - 1 (Ve YelxE)

(XJ, Y£|X7+1)

+ x [I (X-{‘l,Yﬁ;Yde)

—c, (46)

where the equality(c) follows from the fact that
I(X{*l,Yg;YdXJK = I(YL;Y,JXJK) due to
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Markov chain Xx « Y. + Y., and inequality Algorithm 1 Greedy Algorithm for Submodular Polyhedron
(d) follows from the fact thatl (YL;YAXﬁS < 1 comment Returns extreme pointvi,...,v,) of P(f)
with the ordering<.

I (Xj,YL;YL|X§fH). Thus, we have that} , is domi- .. ¢, j=1,....ndo
nated by some point lying on line segment betweng 3 Setv; = f ({i1,02,...,4}) — f {G1,92, ..., 05-1})-

andr(},, which lies inPgg ... 4: end for
Therefore, for every extreme poifiR;, ..., Rx) of RYp, 5: retumn (v, ..., vn)
the point(Ri, ..., Rk, C) liesin Pggp . This completes the
proof.
is submodular.
APPENDIXB Proof: Define a set functiorf’ (7) = I (XT; ?£|XTC).
SUBMODULAR FUNCTIONS By definition, it can be verified that functiorf’ is sub-

In this appendix, we review some basic results in submodmodular [38]. Under fixed sum fronthaul capaciy and
lar optimization used proving Theordrh 1 and Theofém 2. VW@nditional distributioanzle[‘Ye, the expressionC —

tailor our statements toward submodularity and supemmdulzza I(Yy; Y| Xk) is a constant. LetC! = C —
ity, which are used in the proofs. _ Sver 1(Ye; Y| Xx). Now the problem reduces to show that
We begin with the definition of submodular function. F(T) =min {C", f'(T)) is submodular.
Definition 2: Let D = {1,...,n} be a finite set. A set = Next, observe thay’ is monotonically increasing, i.e., if
function f : 2P — R is submodular if for allS, 7 C D, S T, then f'(S) < f/(T). Thus, fixingS, T C K, we can
F(S)+ F(T) = F(SUT) + f(SNT). (47) @assume without loss of generality that
Definition 3: Let £ = {1,...,m} be a finite set. A set I SENT)S (S S f(T) < f(SUT)

: of ; )
function g : 2¢ — R is supermodular if for allS, 7 C &, If ' < f/(SNT), thenf(S) = f(T) = f(SNT) = f(T) <

9g(S)+g(T) <g(SUT)+g(SNT). (48) f(SUT)=C". Clearly, f is then submodular. On the other
hand, ifC’ > f/(SUT), then£(S) = £'(S), £(T) = f'(T),

If the function f is submodular, we call a ponhedronf(Sm T) = F(SNT), and F(SUT) = F(SUT), f is

defined by also submodular. Thus, it suffices to check the followingé¢hr
cases:
P(f) = ., xy) ER™: i < f(S), VSCD
() {(“’”1 ™) € ;x 18) . Case 1f(SNT) < C' < f'(8) < f/(T) < f(SUT).
(49) By definition of functionf, we have

the submodular polyhedron associated with the submodular

function f. Similarly, we define the supermodular polyhedron FEHNT) 2+ [(SNT) = [(SUT)+ F(SNT).

P(g) to be the set ofz4,...,x,) € R™ satisfying e Case 2if/(SNT) < f/(S)<C' < f(T) < f(SUT).
in > g(T), VT CE. (50) Since f’ is monotonically increasing, we have
€T fE+HT)=1(S)+C" = f(SNT)+fSUT)
We say a point inP(f) is an extreme point if it cannot be = fSNT)+ FfSUT).
expressed as a convex combination of the other two points in
P(f). e Case 3:f'(SNT) < f(S) < f(T)<C'" < f/(SUT).

One important property of submodular polyhedron is that all  In this case, the submodularity ¢f and the fact off’ <
the extreme points can be enumerated through solving alinea f imply that
optimization. The following proposition provides an alijlom o ,
that enumerates the extreme pointsRff). F&+HT) = [(S+1(T)

Proposition 6 ( [36] [37]): For a linear ordering; < is < > f(SNT)+ f(SUT)
-+ < i, of the elements irD, Algorithm[ returns an extreme > f(SENT)+ f(SUT).
point (vy,...,v,) of P(f). Moreover, all extreme points of e )
P(f) can be enumerated by considering all linear orderin§i€nce./ = min{C", f’} is submodular, which completes the
of the elements oD. proof of Lemme[ B. o . =u
Propositiori 6 is the key tool we employ to prove Theofém 1 Lemma 4:For any joint distribution

L L N :
and Theoren]2. In order to apply this proposition, we requiﬂkdp (xk_) [Ti-ip (wle)_mzl p(yelye) and  fixed
the following lemmas, R € R, define the set functiop : 2 — R as:

Lemma 3:For any joint distribution . < _ <
I o T (el T pigaty) and fed 96 = R+§SI (Yo Yolxe) - 1 (Xe: Vse)
C € R, the set functionf : 2 — R defined as follows

R, asg’ = max{g,0}. The functionsg and g™ are super-

and the corresponding non-negative set funcgon: 2 —
} modular.

f (T) = min {O - ZI(Y4§Y2|XI€), I (XT;YL|XTC)
Lel
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Proof: We first prove that the set functiog (7) = Definition 5: Define P, to be the closure of the convex
I (X;C;YT) is submodular. To this end, we evaluate hull all (R, C1,...,CL) satisfying
Jd(TNS)+4¢ (TUS) R<I(X’C;Y£)’ 2)
= (XIC»YTUS) +17 (XK;Y’ms) ZCE >1 (YS;YSWSC) , VSCEL
tes
=1 (X’CvYSvYSCﬂT) +1 (XleYTﬂs) for some product distributior}n‘[kK:1 P (Xk) Hlep(yﬂyg).
Note that P5, represents the sum-rate and fronthaul-
= §/(8)+9 (T)+1(Xx; Yoerr|¥s) Pip rep

capacity region of joint decoding. All the partial sums over
7 (XK;YSmTIYTms) _ S in (57) can be strictly attained with equality depending on
the values of the fronthaul capaciti€s for ¢ = 1,...,L
Furthermore, and the sum rateR. Similarly, P¢, corresponds to the
O 5 O 5 ion of successive decoding. For fixed product distrisuti
(X Vsrrl¥s) =1 (Xoi Vser|¥ras) Hk 0 (x0) ITE, p(Fely:), we say a poin(R, 1, ...,y )

- (mefrl?s) _h (Ys<:mTIYs,ch) is dominated by a pointR’,C1,...,C}) in P, if C) < C;
fore=1,...,L andR' > R.
—h (YscmﬂYTﬁs) +h (Ysmﬂ?fms, X,C) Clearly, the maximum sum rate achieved by joint decoding
. . R . is always larger or equal to that achieved by successive
= h (YSCﬁT|YS) —h (YSCﬂT|YSﬂT) decoding, i.e.Rp suar > Rip syar- TO ShOWRY 1) gy =
< 0. R&p sy it remains to show thally, s < RSp suar-

, , , ) . Forany given product distributiof[ ,_, p (xx) [Tr—, p(¢lye)
Therefore/g_ (TNS)+g'(TUS) < g'(S)+g'(T), which and joint decoding sum ratB ;p, definePo C Rﬁ to be the
proves thaty’ is submodular.

In the following, we prove thay is supermodular. Evaluate S€t Of (€1, Cr) such that

+
9(S) +9(T) as . .
S Coz |Rip+ Y 1(YaYelXe) —1 (X Vs )|
9(S) +9(T) tes tes (53)
= 2R+ Y1 (YaYalXe) + 01 (Yo YelXx) for all S C L. Now, to ShowR’, gpns < Rip syar it
tes teT \ 7 _ : _
. A suffices to show that each extreme point (@;p,Pc) is
-1 (ch;Ysc) -1 (XK;YTc) dominated by a point ifP§ ,, that achieves a sum rate greater

R R or equal to the joint decoding sum rak&;p.
2R + Z I (Yg;Yg|X;<) + Z I (YZ;YAX,C) To this end, define a set functign: 2 — R as follows:

ZESUTA éefﬁT 8) = Rjyp + ZI (YZ§YE|XIC) -1 (X;C;?Sc) ,
-1 (XK;Y(SnT)c) -1 (XIC§Y(SUT)C) tes
= g(SNT)+g(SUT), for eachS C L. It can be verified that the function
gt (S) = max{g(S),0} is a supermodular function (see
Appendix[B, Lemmal4). By constructio is equal to the

A
INe

where inequality (e) follows from the fact that (7) =

I (Xx:Y7) is a submodular function. set of (C4, Ra, ..., CL) satisfying

herefore, we show thaj is supermodular. Following the
result of [28, Lemma 6], it can be shown thgt = max{g,0} Z Cezg VEL L.
is also supermodular. ] fes

Following the results in submodular optimization (Ap-
pendix[B, Proposition]6), we have that for a linear ordering
i1 <i9 < --- < ix on the setC, an extreme point 0P can
be computed as follows

APPENDIXC
OPTIMALITY OF SUCCESSIVEDECODING FOR
MAXIMIZING SUM RATE

Similar to the proof of Theorerfi]1, Theorem 2 can also Ci, =g ({in,- i) — g™ (i, d5-13).
be proven using submodular optimization. In the followingill the L! extreme points of°c can be analyzed in the same
we consider the regiofR, C1,...,C}), and prove that joint manner. For notational simplicity we only consider the naltu
decoding and successive decoding achieve the same maxinosdering:; = j in the following proof.
rate using the properties of submodular optimization. By construction,

Definition 4: Define P35, to be the closure of the convex
hull of all (R, C4,...,C}) satisfying

R< Z;S [cg — I (Yg;Yg|X;g)} ), (X,C;Ysc) ,VSCL,

(51)
for some product distributior}n‘[kK:1 p (Xk) ]'[ZL:1 p(¥elye)-

_ +
Cj= |Rp+ XJ:I (Yz;YdX/C) (XK7Y3+1)1

=1

- +
Ryp + Jil (Yg;YdX;() .y (X,C;YJ-L)] .
=1
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Let j be the first index for whicly ({1,...,5}) > 0. Then, in c* is given by
by construction,
(1 - a)RG) + aRG),
Cr =I (X;c;YkIY,SH) 41 (Yk;YkIX;c) —(1—a)l (X,C;YJ.LH) tal (X,C;YJ.L)
— Y L R j—1 )
=] (Yk,Yk|Yk+1) I (X}GYJL) —Ryp — Z I (YZ§YZ|X/C)
)] (=1

for all k > j, where the Markov chaiiY; < Y; < X I (Yj+1§Yj+1|YJL+1)

Y; < Yj, fori # j, is utilized in deriving the second equality. L
Clearly, all theC)’s are in the successive decoding region I (X’C’Yﬁl)
Pip- d : L
Moreover, we havg ({1,...,5'}) < 0forall j* < j. Thus, Rip +Z;I (Y“YAX’C) -1 (X’C;Yﬁl)
I (Yj+1;Yj+1|Yf+1)

C; can be expressed as

) J ) ) X I (X YF)
Cj = Ryp —|—ZI (Yg;Yg|X)c) -1 (X}c;YJI-‘Jrl) J ) )
P Ryp x {1 (X,C;YJL) —I (X,C;YJLH”
— v IvE > — —
= ol (Y”l’Y”l'Yj“) I (Yj+1;Yj+1|YgL+1)
wherea € [0, 1] is defined as N I (Yj;Yj|XI<) x 1 (XK;YJ-L)
i I (Yj+1§Yj+1|YjL+1)
e _ L . . .
R;p +£2::1I (YZ,YAXIC) I (XIC,YJ-H) (9) I (X/GYJ‘L) — 71 (XICQYJL_H) + 7 (Yj§Yj|XIC)
a= - > . > Ryp X " .
I (Yi+1;Yj+1|Yj+1) I (Yj+1;Yj+1|YJL+1)
= Rjp, (54)

Consider the two following successive decoding schemes:

« Scheme 1: The CP decodes quantization codewor\f\fhere the (?quaht}/L(f) follows fror‘r] theA Lfact that
Y;i1,...,Y first, then decodes the message codé—txl@Yj+1;Yj+1|Yj+1) = I(Yj+1§YJ'+1|Yj+1)' and

words Xx sequentially. Note that the BSs with in-inequality(g) follows from the fact thatz,; p < I(XK;YjL).
dex ¢ < j are inactive, and are essentially removed '

from the network. The resulting extreme poieft) = Therefore, for every extreme poiriC,...,C1) of Pc,

1) (1) (1) s . the point(Ryp,C1, . ..,Cy) is dominated by a point iP .
(Rgp,Cy,...,CL7) of Pg,, satisfies This proves Theoreifd 2.
ct =o, for i < j,
Ci(l) -7 (Yi;Yi|YZ—L+1) for i > j, APPENDIXD
n . CONSTANT-GAP RESULT FORCOMPRESSAND-FORWARD
Rgp =1 (XK,Yj+1) WITH JOINT DECODING

. Scheme 2: The CP decodes quantization codewordsThe idea of the proof is to compare the achievable rate of

Yi,... .Y, first, then decodes the message COdeworagmpress-and-forward with joint decoding with the follogi

X sequentially. Note that in this scheme, the BSs witfltSet upper bound [6]
index i < j are inactive, and are essentially removed

from the network. The resulting extreme poief®) = .
. Ry, < C
(RZ),c® ... ¢ of Py, satisfies ]; ko= ZEZS ‘
T —1 —1
2 . ‘Zé seHy 7%, " Her + Kp ‘
c® o, for i < j, flog 25 = (55)
CiQ) =1 (Y“Y1|Yf‘+l) for 1 > j, ‘ T ‘
(2) _ Y .
Rgp =1 (XK:’YJL) . forall ® c 7 C K andS C L. In the expression of cut-set

bound, the first term represents the cut across the fronthaul
SinceC, is defined to be the maximum long-term averagénks in setS, and the second term represents the cut from the
throughput of fronthaul link, the following point:c® = (1 —  users to the BSs in s&°.
a)c® +ac® lies in Pg . The corresponding sum rafesp Recall that the rate region for joint decodirig](23) under
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Gaussian quantization is the @R, - , Rx) such that
Z R < Z {Cg 10g | _1| :|
1
keT =5 % =By
‘Zzesc TBL’Hé 7+ K7 ‘
+ log T
K7 |

forall ¢ 7 C K andS C £, for some0 < B, < =, .
We now show that if a rate tuplgR;, - - - , Rk ) is within the
cut-set bound, thefiR; —
rate region of joint decoding, where

IE — By
‘Zzesc H) /5, ' Her + K?I’

’ZZESC H},TBZHKT + Kjrll

Tn < log

Les

+ log

is the gap between the cut-set bound and achievable rate of

joint decoding.

[2
Choose quantization noise level to be at the background

noise level, i.e.Q, = 3,. Then we have
1_
B/ =(Z/+Q) ' = 524 L
Evaluate gap) with the above choice aB, gives

n<@
— 7

which completes the proof of Propositibh 3.

N+ M<NL+ M,
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