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Abstract

We establish the capacity region of several classes of broadcast channels with random state in which the channel to each
user is selected from two possible channel state componentsand the state is known only at the receivers. When the channel
components are deterministic, we show that the capacity region is achieved via Marton coding. This channel model does not
belong to any class of broadcast channels for which the capacity region was previously known and is useful in studying wireless
communication channels when the fading state is known only at the receivers. We then establish the capacity region when the
channel components are ordered, e.g., degraded. In particular we show that the capacity region for the broadcast channel with
degraded Gaussian vector channel components is attained via Gaussian input distribution. Finally, we extend the results on ordered
channels to two broadcast channel examples with more than two channel components, but show that these extensions do not hold
in general.

I. I NTRODUCTION

Consider the discrete memoryless broadcast channel (DM-BC) with random (IID) state(X ×S, p(y1, y2|x, s)p(s),Y1 ×Y2)
with the stateS known only at the receivers. Assume the setup in which the sender wishes to transmit a common message
M0 ∈ [1 : 2nR0 ] to both receivers and private messagesMj ∈ [1 : 2nRj ] to receiverj ∈ {1, 2} as depicted in Figure 1.

It is well known that this broadcast channel with state setupcan be viewed as a general DM-BC with inputX and outputs
(Y1, S) and(Y2, S). Hence the definitions of a(2nR0 , 2nR1 , 2nR2) code, achievability and the capacity regionC are the same
as for the general broadcast channels [1]. Moreover, the capacity region for this broadcast channel with state setup is not
known in general. The Marton inner bound and theUV outer bound on the general broadcast channel hold for this channel
and they coincide when the channelX → (Y1, S), (Y2, S) falls into any of the classes of the broadcast channel for which
the capacity region is known (see [2] for examples of these classes). Beyond these classes, there have been some efforts on
evaluating inner bounds on the capacity region of the Gaussian fading BC model, including superposition coding by Jafarian
and Vishwanath [3], time division with power control by Liang and Goldsmith [4], and superposition of binary inputs motivated
by a capacity achieving strategy for a layered erasure broadcast channel by Tse and Yates [5].
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Fig. 1: Broadcast channel with state known only at the receivers.

In this paper we focus on the special class of the broadcast channel with state in Figure 1 in which there are only two
channel state components as depicted in Figure 2. In this model, which we refer to as thebroadcast channel with two channel
states(BC-TCS), the stateS = (S1, S2) ∈ {1, 2}2 with pS1(1) = p1, pS1(2) = 1 − p1 = p̄1 and pS2(1) = p2, pS2(2) = p̄2,
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and the two possible channel components are denoted byỸ1 ∼ p(ỹ1|x) and Ỹ2 ∼ p(ỹ2|x). The outputs of the BC-TCS is

Y1 =

{

Ỹ1 if S1 = 1,

Ỹ2 if S1 = 2,

Y2 =

{

Ỹ1 if S2 = 1,

Ỹ2 if S2 = 2.

(1)

Without loss of generality, we assume throughout thatp1 ≥ p2 and that receiverj = 1, 2 knows the state sequenceSn but the
sender does not.1
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(a) (S1, S2) = (1, 1), pS1(1) = p1, pS2(1) = p2 (b) (S1, S2) = (1, 2), pS1(1) = p1, pS2(2) = p̄2

(c) (S1, S2) = (2, 1), pS1(2) = p̄1, pS2(1) = p2 (d) (S1, S2) = (2, 2), pS1(2) = p̄1, pS2(2) = p̄2

Fig. 2: Broadcast channel with two channel state components.

In [6], we established the private message capacity region for the special case of the BC-TCS in which the state components
are deterministic functions, i.e.,̃Y1 = f1(X) and Ỹ2 = f2(X). Achievability is established using Marton coding [7]. The
key observation is that the auxiliary random variables in the Marton region characterization,U1 andU2, are always set to
f1, f2, X , or ∅. In particular if the channelp(y1|x) is more likely to bef1 than the channelp(y2|x), then(U1, U2) are set to
(X, ∅), (∅, X), or (f1, f2). The converse is established by showing that the Marton inner bound with these extreme choices
of auxiliary random variables coincides with theUV outer bound [8]. It is important to note that this class of broadcast
channels with two deterministic channel components (BC-TDCS) does not belong to any class of broadcast channels for which
the capacity region is known. It also provides yet another class of broadcast channels for which Marton coding is optimal.
Moreover, the BC-TDCS model can be used to approximate certain fading broadcast channels in high SNR (see Example 2
in Section II).

In this paper we provide a complete proof for the result in [6]and extend it to the case with common message (see
Section II). In addition, we include several new results on the capacity region of the BC-TCS. In Section III, we study the
case when the channel components are ordered, which models,for example, a wireless downlink channel in which the channel
to each user can be either “strong” or “weak”. We show that if the BC p(ỹ1, ỹ2|x) is degraded, less noisy, more capable, or
dominantly c-symmetric, then the corresponding BC-TCSp(y1, y2, s|x) is degraded, less noisy, more capable, or dominantly
c-symmetric, and the capacity region is achieved via superposition coding. This is surprising (and as we will show does not
extend to more than two components in general) because the sender does not know the state, hence does not know which of
the two channelsp(y1, s|x) or p(y2, s|x) is stronger. We further show that the capacity region of the BC-TCS with degraded
Gaussian vector channel components, which is a special caseof the BC-TCS with degraded channel components, is attainedby
Gaussian channel input. This is again unexpected because for the general degraded fading Gaussian BC (where we know that
one channel is always a degraded version of the other), the optimizing input distribution is not Gaussian [9]. In SectionIV,
we present results on the broadcast channel with more than two channel components. We establish the capacity region when

1Since the capacity region of the broadcast channel depends only on its marginal distributions [1], we only need to specify the marginal pmfs ofS1 and
S2. Moreover, it suffices to assume that receiverj = 1, 2 knows only its state sequenceSn

j .
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there are three BEC or BSC channel components and show that there is a gap between the Marton inner bound and the UV
outer bound when there are four BSC channel components. Hence our results for the two channel state components do not
extend to more than two state components in general.

II. D ETERMINISTIC CHANNEL STATE COMPONENTS

In this section, we consider the BC-TCS with two deterministic channel components̃Y1 = f1(X) andỸ2 = f2(X), henceforth
referred to as BC-TDCS. We show that the capacity region of the BC-TDCS is achieved using Marton coding.

Theorem 1 (private message capacity region for BC-TDCS [6]). The private message capacity region of the BC-TDCS
(X × S, p(s)p(y1, y2|x, s),Y1 × Y2) with the state known only at the receivers is

C = co{R1 ∪ {(C1, 0)} ∪ {(0, C2)}}, (2)

whereCj = maxp(x) I(X ;Yj |S) for j = 1, 2, and

R1 = {(R1, R2) : R1 ≤ I(f1;Y1 |S),
R2 ≤ I(f2;Y2 |S),

R1 +R2 ≤ I(f1;Y1 |S) + I(f2;Y2 |S)− I(f1; f2) for somep(x) ∈ P},
where

P = { argmax
p(x)

(

I(f1;Y1 |S) + λ(I(f2;Y2 |S)− I(f1; f2))
)

for p̄1/p̄2 ≤ λ ≤ 1,

argmax
p(x)

(I(f1;Y1 |S)− I(f1; f2) + νI(f2;Y2 |S)) for 1 ≤ ν ≤ p1/p2}.

Proof: For achievability we use Marton coding which achieves the set of rate pairs(R1, R2) such that

R1 ≤ I(U1;Y1 |S),
R2 ≤ I(U2;Y2 |S),

R1 +R2 ≤ I(U1;Y1 |S) + I(U2;Y2 |S)− I(U1;U2)

(3)

for some pmfp(u1, u2, x).
Note that the rate pair(C1, 0) satisfies the inequalities (3) forp(x) = argmax I(X ;Y1|S) and(U1, U2) = (X, ∅). Similarly,

the rate pair(0, C2) satisfies the inequalities (3) forp(x) = argmax I(X ;Y2|S) and (U1, U2) = (∅, X). Thus (C1, 0) and
(0, C2) are achievable. Now letR′

1 be the set of rate pairs that satisfy (3) for somep(x) and (U1, U2) = (f1, f2). We can
easily see thatR1 ⊆ R′

1. ThusC is achievable via Marton coding and time-sharing.
To establish the converse, we show thatC coincides with theUV outer bound. TheUV outer bound for the broadcast channel

with state known at the receivers states that if a rate pair(R1, R2) is achievable, then it must satisfy the inequalities

R1 ≤ I(U ;Y1 |S),
R2 ≤ I(V ;Y2 |S),

R1 +R2 ≤ I(U ;Y1 |S) + I(X ;Y2 |U, S),
R1 +R2 ≤ I(V ;Y2 |S) + I(X ;Y1 |V, S)

(4)

for some pmfp(u, v, x). Let this outer bound be denoted byR̄. ClearlyC ⊆ R̄. We now show that every supporting hyperplane
of R̄ intersectsC, i.e., for all λ ≥ 0,

max
(R1,R2)∈R̄

(R1 + λR2) ≤ max
(r1,r2)∈C

(r1 + λr2). (5)

We first show that inequality (5) holds for0 ≤ λ ≤ 1. Consider

max
(R1,R2)∈R̄

(R1 + λR2) ≤ max
p(u,x)

(I(U ;Y1 |S) + λH(Y2 |U, S))

= max
p(x)

(

H(Y1 |S) + max
p(u|x)

(λH(Y2 |U, S)−H(Y1 |U, S))
)

= max
p(x)

(

p1H(f1) + p̄1H(f2) + max
p(u|x)

((λp̄2 − p̄1)H(f2 |U) + (λp2 − p1)H(f1 |U))
)

.

We now consider different ranges of0 ≤ λ ≤ 1.
• For 0 ≤ λ ≤ p̄1/p̄2, (λp̄2 − p̄1)H(f2|U) + (λp2 − p1)H(f1|U) ≤ 0 for any fixedp(x) with equality if U = X . Thus,

max
(R1,R2)∈R̄

(R1 + λR2) ≤ max
p(x)

(p1H(f1) + p̄1H(f2)).
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Since(C1, 0) = (maxp(x)(p1H(f1) + p̄1H(f2)), 0) ∈ C. the inequality (5) holds.
• For p̄1/p̄2 < λ ≤ 1, consider

(λp̄2 − p̄1)H(f2 |U) + (λp2 − p1)H(f1 |U) = (λ− 1)H(f1 |U) + (λp̄2 − p̄1)(H(f2 |f1, U)−H(f1 |f2, U))

≤ (λp̄2 − p̄1)H(f2 |f1)
for any fixedp(x) with equality if U = f1. Thus,

max
(R1,R2)∈R̄

(R1 + λR2) ≤ max
p(x)

(p1H(f1) + p̄1H(f2) + (λp̄2 − p̄1)H(f2 |f1))

= max
p(x)

(I(f1;Y1 |S) + λ(I(f2;Y2 |S)− I(f1; f2)))

= max
p(x)∈P

(I(f1;Y1 |S) + λ(I(f2;Y2 |S)− I(f1; f2)))

Finally since(I(f1;Y1|S), I(f2;Y2|S)− I(f1; f2)) ∈ C for p(x) ∈ P , the inequality (5) holds.
We now prove the inequality (5) forλ > 1. We consider the equivalent maximization problem:max(R1,R2)∈R̄(λ

−1R1+R2).
Consider

max
(R1,R2)∈R̄

(λ−1R1 +R2) ≤ max
p(v,x)

(λ−1H(Y1 |V, S) + I(V ;Y2 |S))

= max
p(x)

(

H(Y2 |S) + max
p(v|x)

(λ−1H(Y1 |V, S)−H(Y2 |V, S))
)

= max
p(x)

(

p2H(f1) + p̄2H(f2) + max
p(v|x)

((λ−1p̄1 − p̄2)H(f2 |V ) + (λ−1p1 − p2)H(f1 |V ))
)

.

We now consider different ranges ofλ > 1.
• For λ > p1/p2, (λ−1p̄1 − p̄2)H(f2|V ) + (λ−1p1 − p2)H(f1|V ) ≤ 0 for any fixedp(x) with equality if V = X . Thus,

max
(R1,R2)∈R̄

(R1 + λR2) ≤ max
p(x)

(λp2H(f1) + λp̄2H(f2)).

Since(0, C2) = (0,maxp(x)(p2H(f1) + p̄2H(f2))) ∈ C. the inequality (5) holds.
• For 1 < λ ≤ p1/p2, consider

(λ−1p̄1 − p̄2)H(f2 |V ) + (λ−1p1 − p2)H(f1 |V ) = (λ−1 − 1)H(f2 |V ) + (λ−1p1 − p2)(H(f1 |f2, V )−H(f2 |f1, V ))

≤ (λ−1p1 − p2)H(f1 |f2)
for any fixedp(x) with equality if V = f2. Thus,

max
(R1,R2)∈R̄

(R1 + λR2) ≤ max
p(x)

(

λp2H(f1) + λp̄2H(f2) + (p1 − λp2)H(f1 |f2)
)

= max
p(x)

(I(f1;Y1 |S)− I(f1; f2) + λI(f2;Y2 |S))

= max
p(x)∈P

(I(f1;Y1 |S)− I(f1; f2) + λI(f2;Y2 |S)).

Finally since(I(f1;Y1|S)− I(f1; f2), I(f2;Y2|S)) ∈ C for p(x) ∈ P , the inequality (5) holds.
The proof of the converse is completed using the following lemma.

Lemma 1. [10] Let R ∈ Rd be convex andR1 ⊆ R2 be two bounded convex subsets ofR, closed relative toR. If every
supporting hyperplane ofR2 intersectsR1, thenR1 = R2.

As an example of a BC-TDCS, consider the following.

Example 1 (Blackwell channel with state [11]). The functionsf1 andf2 for this example are depicted in Figure 3.
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Fig. 3: The deterministic components of the Blackwell channel with state.

The private message capacity region of the Blackwell channel with state known only to the receivers is the convex hull of

R
′
1 = {(R1, R2) : R1 ≤ H(α0)− p̄1ᾱ1H(α0/ᾱ1),
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R2 ≤ H(α1)− p2ᾱ0H(α1/ᾱ0),

R1 +R2 ≤ H(α0)− p̄1ᾱ1H(α0/ᾱ1) + p̄2ᾱ0H(α1/ᾱ0)

for someα0, α1 ≥ 0, α0 + α1 ≤ 1}.
whereH(a), a ∈ [0, 1] is the binary entropy function. Note thatR′

1, defined in the proof of Theorem 1, is the Marton rate region
with (U1, U2) = (f1, f2) andX ∈ {0, 1, 2} for pX(0) = α0, pX(1) = α1, pX(2) = 1− α0 − α1 for α0, α1 ≥ 0, α0 + α1 ≤ 1.
Also, since the rate pairs(C1, 0) = (1, 0) ∈ R′

1 and (0, C2) = (0, 1) ∈ R′
1, C is the convex hull ofR′

1. The capacity region
with state for(p1, p2) = (0.5, 0.5), (0.7, 0.3), and (1, 0) is plotted in Figure 4. For(p1, p2) = (0.5, 0.5), the two channels
are statistically identical, hence the capacity region coincides with the time-division region. For(p1, p2) = (1, 0), the channel
reduces to the Blackwell channel with no state [12]. For(p1, p2) in between these two extreme cases, the capacity region is
established by our theorem.
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Fig. 4: Capacity region of the Blackwell channel with the state.

Next consider the following example which is motivated by deterministic approximations of wireless channels.

Example 2 (Finite-field BC-TDCS). Consider the BC-TDCS with the state known only at the receivers withX =
[

X1 X2

]T
:

Y1 =

{

h11X1 + h12X2 if S1 = 1,

h21X1 + h22X2 if S1 = 2,

Y2 =

{

h11X1 + h12X2 if S2 = 1,

h21X1 + h22X2 if S2 = 2,

(6)

where the channel matrix is full-rank,Y1 = Y2 = X1 = X2 = [0 : K − 1], and the arithmetic is over the finite field.
To compute the private message capacity region, note thatC1 = logK andC2 = logK. To evaluateR1, we computeP .

p1H(f1) + p̄1I(f1; f2) + λp̄2H(f2 |f1) = p1H(f1) + p̄1H(f2) + (λp̄2 − p̄1)H(f2 |f1)
≤ (p1 + λp̄2) logK

for p̄1/p̄2 ≤ λ ≤ 1 with equality if X ∼ Unif([0 : K − 1]2). Similarly,

p1H(f1) + p̄1I(f1; f2) + λp̄2H(f2 |f1) = p1H(f1) + p̄1H(f2) + (λp̄2 − p̄1)H(f2 |f1)
≤ (p1 + λp̄2) logK

for 1 ≤ λ ≤ p1/p2 with equality if X ∼ Unif([0 : K − 1]2). Thus,P =
{

Unif([0 : K − 1]2)
}

. Note that whenX is uniform,
H(f1) = H(f2) = H(f1|f2) = H(f2|f1) = logK. Hence,

R1 = {(R1, R2) : R1 ≤ p1 logK,R2 ≤ p̄2 logK},
and the capacity region is

C = co{R1 ∪ {(logK, 0)} ∪ {(0, logK)}} = co{(0, 0) ∪ (logK, 0) ∪ (0, logK) ∪ (p1 logK, p̄2 logK)}.



6

Figure 5 plots the capacity region for(p1, p2) = (0.5, 0.5), (0.7, 0.4), and(1, 0). For (p1, p2) = (0.5, 0.5), the two channels
are statistically identical and the capacity region coincides with the time-division region. For(p1, p2) = (1, 0), the capacity
region is{(R1, R2) : R1 ≤ logK, R2 ≤ logK} because the chahnnel matrix is full-rank. For(p1, p2) in between these two
extreme cases, the capacity region is established by our theorem.
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Fig. 5: Capacity region of the Finite Field BC-TDCS.

Remark 1. Connection to wireless channels.Consider the following fading broadcast channel

Yj = H
†
jX+ Zj for j = 1, 2, (7)

where† denotes the conjugate-transpose,X =
[

X1 X2

]T ∈ C2×1,E[X†
X] ≤ P , Zj ∼ CN (0, 1) and the noise sequences

Zji, j = 1, 2 and i ∈ [1 : n], are i.i.d. In addition, forj = 1, 2,

H
†
j =

{

[h11 h12] if Sj = 1 w.p. pj ,

[h21 h22] if Sj = 2 w.p. p̄j ,

where the channel matrix is inC2×2 and is full rank.
We now show that the degrees of freedom (DoF) of this fading Gaussian broadcast channel, obtained by dividing the

maximum sum-rate bylogP and taking the limit, isp1 + p̄2.
Since the variance of the noiseZj is bounded, the DoF of channel in (7) is equal to that of the BC-TDCS withYj = H

†
jX

for j = 1, 2 [13]. We show that the DoF is achieved whenU1 = f1 andU2 = f2 are independent and Gaussian with variances
αP andβP for someα, β > 0 such that

[

X1

X2

]

=

[

h11 h12

h21 h22

]−1 [
U1

U2

]

satisfy the power constraint. First note that for(R1, R2) ∈ C,

max lim
P→∞

R1 +R2

logP

= max
p(X)

lim
P→∞

p1H(f1) + p̄2H(f2) + (p̄1 − p̄2)I(f1; f2)

logP
. (8)

Now we show that each term in (8) is maximized with the chosen input. First, limP→∞ p1H(f1)/ logP =
limP→∞ p1 log(αP )/ logP = p1. Now we show thatp1 = max limP→∞ p1H(f1)/ logP . SinceVar(f1) = Var(h11X1 +
h12X2) = |h11|2γP + |h12|2γ̄P + (h∗

11h12 + h∗
12h11)ρ

√
γγ̄P for some 0 ≤ γ, ρ ≤ 1 due to the power constraint,

H(f1) ≤ log(|h11|2γ + |h12|2γ̄ + (h∗
11h12 + h∗

12h11)ρ
√
γγ̄) + logP . Hence, limP→∞ p1H(f1)/ logP ≤ p1. Similarly,

limP→∞ p̄2H(f2)/ logP is maximized and is equal tōp2, and limP→∞(p̄1 − p̄2)I(f1; f2)/ logP is maximized and is equal
to 0. Thus, the following holds:

max
p(X)

lim
P→∞

p1H(f1) + p̄2H(f2) + (p̄1 − p̄2)I(f1; f2)

logP
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= p1 + p̄2,

and the DoF of the fading Gaussian BC in (7) isp1 + p̄2.

The capacity region result can be readily extended to the case with common message (R0 6= 0).

Theorem 2. The capacity region of a BC-TDCS(X ×S, p(s)p(y1, y2|x, s),Y1×Y2) with the state known only at the receivers
is the convex hull of the set of all rate pairs(R0, R1, R2) such that

R0 ≤ min{I(U0;Y1 |S), I(U0;Y2 |S)}
R0 +R1 ≤ I(U0;Y1 |S) + I(U1;Y1 |U0, S)

R0 +R2 ≤ I(U0;Y2 |S) + I(U2;Y2 |U0, S)

R0 +R1 +R2 ≤ min{I(U0;Y1 |S), I(U0;Y2 |S)}+ I(U1;Y1 |U0, S) + I(U2;Y2 |U0, S)− I(U1;U2 |U0)

for somep(u0, x) and either(U1, U2) = (X, ∅), (U1, U2) = (f1, f2), or (U1, U2) = (∅, X).

The proof is in Appendix A.

III. O RDERED CHANNEL STATE COMPONENTS

Recall the definitions of the following classes of BC for which superposition coding was shown to be optimal.

Definition 1 (Degraded BC [14]). For a DM-BC(X , p(ỹ1, ỹ2|x), Ỹ1 × Ỹ2) receiverỸ2 is said to be a degraded version ofỸ1

if there existsZ such thatZ|{X = x} ∼ pỸ1|X
(z|x), i.e.,Z has the same conditional pmf asỸ1 (givenX), andX → Z → Ỹ2

form a Markov chain.

Definition 2 (Less noisy BC [15]). For a DM-BC (X , p(ỹ1, ỹ2|x), Ỹ1 × Ỹ2) receiver Ỹ1 is said to be less noisy thañY2

I(U ; Ỹ1) ≥ I(U ; Ỹ2) for all p(u, x).

Van-Dijk [16] showed that receiver̃Y1 is less noisy than receiver̃Y2 if I(X ; Ỹ1)−I(X ; Ỹ2) is concave inp(x), or equivalently,
I(X ; Ỹ1) − I(X ; Ỹ2) is equal to its upper concave envelopeC[I(X ; Ỹ1) − I(X ; Ỹ2)] (the smallest concave function that is
greater than or equal toI(X ; Ỹ1)− I(X ; Ỹ2)).

Definition 3 (More capable BC [15]). For a DM-BC (X , p(ỹ1, ỹ2|x), Ỹ1 × Ỹ2) receiverỸ1 is said to be more capable than
Ỹ2 if I(X ; Ỹ1) ≥ I(X ; Ỹ2) for all p(x).

The more capable condition can also be recast in terms of the concave envelope: Receiver̃Y1 is more capable thañY2 if
C[I(X ; Ỹ2)− I(X ; Ỹ1)] = 0 for everyp(x).

Definition 4 (Dominantly c-symmetric BC [17]). A DMC with input alphabetX = {0, 1, . . . ,m−1} and output alphabetY of
sizen is said to bec-symmetricif, for eachj = 0, . . . ,m−1, there is a permutationπj(·) of Y such thatpY |X(πj(y)|(i+j)m) =

pY |X(y|i) for all i, where(i+ j)m = (i+ j) modm. A DM-BC (X , p(ỹ1, ỹ2|x), Ỹ1 × Ỹ2) is said to be c-symmetric if both
channel componentsX to Ỹ1 andX to Ỹ2 are c-symmetric. A c-symmetric DM-BC is said to bedominantly c-symmetricif

I(X ; Ỹ1)p − I(X ; Ỹ2)p ≤ I(X ; Ỹ1)u − I(X ; Ỹ2)u (9)

for everyp(x), whereu(x) is the uniform pmf andI(X ; Ỹ1)p denotes the mutual information betweenX andỸ1 for X ∼ p(x).

In the following we show the surprising fact that if the DM-BCsatisfies any of the above definitions, then the corresponding
BC-TCS with the state known at the receivers also satisfies the same condition. Hence, the capacity regions for these
corresponding BC-TCS are achieved using superposition coding.

Theorem 3. The DM-BC (X , p(y1, y2, s|x), (Y1,S)× (Y2,S)) with state known only at the receivers is
(i) degraded if the DM-BCp(ỹ1, ỹ2|x) is degraded,
(ii) less noisy if the DM-BCp(ỹ1, ỹ2|x) is less noisy,
(iii) more capable if the DM-BCp(ỹ1, ỹ2|x) is more capable,
(iv) dominantly c-symmetric if the DM-BCp(ỹ1, ỹ2|x) is dominantly c-symmetric.

Proof: We prove (i). The proof of the rest of this theorem is in Appendix B.

(i) For a degraded DM-BCp(ỹ1, ỹ2|x), there existsZ such thatZ|{X = x} ∼ pỸ1|X
(z|x) andX → Z → Ỹ2 forms a

Markov chain. We show that there exists(Y ′
1 , S

′
1, S

′
2) such that(Y ′

1 , S
′
1, S

′
2)|{X = x} ∼ pY1,S1,S2|X(y′1, s

′
1, s

′
2|x) and

X → (Y ′
1 , S

′
1, S

′
2) → (Y2, S1, S2) forms a Markov chain.
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Let (S′
1, S

′
2) be distributed according to

pS′
1|S1,S2

(s′1 |s1, s2) =











q1 if (s′1, s2) = (1, 1),

p1 − q1 if (s′1, s2) = (1, 2),

1− p1 if (s′1, s2) = (2, 2),

andpS′
2|S

′
1,S1,S2

(s′2|s′1, s1, s2) = pS2|S1
(s′2|s′1). Thus(S′

1, S
′
2)|{X = x} ∼ pS1,S2|X(s′1, s

′
2|x) and

p(s1, s2 |y′1, s′1, s′2, x) = p(s1, s2 |y′1, s′1, s′2). (10)

Let Y ′
1 be distributed according to

Y ′
1 =

{

Y2 if (S′
1, S2) = (1, 1) or (2, 2),

Z if (S′
1, S2) = (1, 2)

whereX → Z → Ỹ2.
ThenY ′

1 |{(S′
1, S

′
2, X) = (s′1, s

′
2, x)} ∼ pY1|S1,S2,X(y′1|s′1, s′2, x) and

p(y2, |s1, s2, y′1, s′1, s′2, x) = p(y2 |s1, s2, y′1, s′1, s′2). (11)

By (10) and (11), It follows that(Y ′
1 , S

′
1, S

′
2)|{X = x} ∼ pY1,S1,S2|X(y′1, s

′
1, s

′
2|x) andX → (Y ′

1 , S
′
1, S

′
2) → (Y2, S1, S2)

forms a Markov chain.

Remark 2. The DM-BC(X , p(y1, y2, s|x), (Y1,S)×(Y2,S)) is degraded, less noisy, or more capableif and only if the DM-BC
p(ỹ1, ỹ2|x) is degraded, less noisy, or more capable, respectively (assumingp1 > p2). If the DM-BC (X , p(y1, y2, s|x), (Y1,S)×
(Y2,S)) is degraded, there exists(Y ′

1 , S
′
1, S

′
2) such that(Y ′

1 , S
′
1, S

′
2)|{X = x} ∼ pY1,S1,S2|X(y′1, s

′
1, s

′
2|x) and X →

(Y ′
1 , S

′
1, S

′
2) → (Y2, S1, S2) forms a Markov chain. LetZ be distributed according topZ|X(z|x) = pY ′

1 |S
′
1,X

(z|1, x) and
pỸ2|Z,X(ỹ2|z, x) = pY2|S2,S

′
1,Y

′
1 ,X

(ỹ2|2, 1, z, x). Then Z|{X = x} ∼ pỸ1|X
(z|x) and Ỹ2|{X = x} ∼ pỸ2|X

(ỹ2|x). Also

X → Z → Ỹ2 becausepY2|S2,S
′
1,Y

′
1 ,X

(ỹ2|2, 1, z, x) = pY2|S2,S
′
1,Y

′
1
(ỹ2|2, 1, z). Therefore the DM-BCp(ỹ1, ỹ2|x) is degraded.

The proofs for less noisy and more capable DM-BC follow directly from the proof of part (ii) and (iii) of Theorem 3. We do
not know however if the DM-BC(X , p(y1, y2, s|x), (Y1,S)× (Y2,S)) is dominantly c-symmetric if and only if the DM-BC
p(ỹ1, ỹ2|x) is dominantly c-symmetric.

It follows from Theorem 3 that the capacity region of the BC-TCS satisfying the conditions in Theorem 3 is the set of rate
pairs(R1, R2) such that

R1 ≤ I(X ;Y1 |U, S),
R2 ≤ I(U ;Y2 |S),

R1 + R2 ≤ I(X ;Y1 |S)
(12)

for somep(u, x).

Remark 3. Using superposition coding, receiverỸ1 can recover receiver̃Y2’s message. Hence when there is common message
(R0 6= 0), the capacity region is obtained by replacingR1 with R0 +R1.

As an example of BC-TCS with more capable or dominantly c-symmetric components, consider the following.

Example 3 (A BC-TCS with a BSC and a BEC channel components). A BC-TCS with a BSC and a BEC channel components
has inputX = {0, 1} and channel components BSC(p) and BEC(e). Without loss of generality, we assume0 ≤ p ≤ 1/2 and
0 ≤ e ≤ 1. In [17], it is shown that for the DM-BCp(ỹ1, ỹ2|x),

1) Ỹ1 is a degraded version of̃Y2 if and only if 0 ≤ e ≤ 2p.
2) Ỹ2 is less noisy thañY1 if and only if 0 ≤ e ≤ 4p(1− p).
3) Ỹ2 is more capable thañY1 if and only if 0 ≤ e ≤ H(p).
4) Ỹ1 is dominantly c-symmetric ifH(p) ≤ e ≤ 1.

Hence, by Theorem 3, the corresponding BC-TCS with BSC(p) and BEC(e) channel components is degraded, less noisy, more
capable, or dominantly c-symmetric for the above channel parameter ranges.
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A. A product of reversely more capable channel components

Another class of broadcast channel for which superpositioncoding is shown to be optimal for each component is the product
of reversely more capable broadcast channels [2].

Definition 5 (Product of reversely more capable BCs). A DM-BC (X , p(ỹ1, ỹ2|x), Ỹ1 × Ỹ2) is said to be a product of
reversely more capable DM-BC ifX = (X1,X2), Ỹ1 = (Ỹ11, Ỹ12), Ỹ2 = (Ỹ21, Ỹ22), and p(ỹ11, ỹ12, ỹ21, ỹ22|x1, x2) =
p(ỹ11, ỹ12|x1)p(ỹ21, ỹ22|x2), andI(X1; Ỹ11) ≥ I(X1; Ỹ21) for all p(x1) andI(X2; Ỹ12) ≤ I(X2; Ỹ22) for all p(x2).

We extend this definition to the broadcast channel with two channel state components as follows.

Definition 6 (A product BC-TCS). A 2-receiverproduct broadcast channel with two channel state components is a DM-BC
with random sate(X × S, p(s)p(y1, y2|x, s),Y1 × Y2), whereX = [X1, X2] andS = (S1, S2) for

Yj = [Yj1, Yj2],

Sj = [Sj1, Sj2],

Yj1 =

{

Ỹ11 if Sj1 = 1,

Ỹ21 if Sj1 = 2

Yj2 =

{

Ỹ12 if Sj2 = 1,

Ỹ22 if Sj2 = 2

for j = 1, 2 andp(ỹ11, ỹ12|x1)p(ỹ21, ỹ22|x2).

Let pSj1(1) = pj1 andpSj2(1) = pj2 for j = 1, 2. Without loss of generality, we assumep11 ≥ p12 andp21 ≥ p22. In the
following we establish the capacity region of BC-TCS with reversely more capable components.

Theorem 4. A 2-receiver product BC-TCS(X × S, p(s)p(y1, y2|x, s),Y1 × Y2) is more capable if the product DM-BC
(X , p(ỹ1, ỹ2|x), Ỹ1 × Ỹ2) for X = (X1,X2), Ỹ1 = (Ỹ11, Ỹ12), Ỹ2 = (Ỹ21, Ỹ22) is reversely more capable.

Proof: We show that the product DM-BC(X , p(y1, y2|x),Y1 × Y2) for X = (X1,X2), Y1 = ((Y11,S11), (Y12,S12)),
Y2 = ((Y21,S21), (Y22,S22)) is reversely more capable if the product DM-BC(X , p(ỹ1, ỹ2|x), Ỹ1 × Ỹ2) for X = (X1,X2),
Ỹ1 = (Ỹ11, Ỹ12), Ỹ2 = (Ỹ21, Ỹ22) is reversely more capable. Consider

I(X1;Y11, S11) = p11I(X1; Ỹ11) + p̄11I(X1; Ỹ21)

≥ p12I(X1; Ỹ11) + p̄12I(X1; Ỹ21)

= I(X1;Y21, S21).

Similarly we can show thatI(X2;Y12, S12) ≤ I(X2;Y22, S22).
An immediate consequence of Theorem 4 is that superpositioncoding for each component is optimal. The capacity region

is the region shown in Theorem 3 of [2] by replacingYji with (Yji, S) for j, i ∈ [1 : 2].

B. Gaussian vector channel components

Consider the BC-TCS with degraded vector Gaussian channel components

Ỹ1 = GX+ Z1,

Ỹ2 = GX+ Z2,
(13)

where X,Z1,Z2 ∈ Rt and X and Zj are independent forj = 1, 2. The channel gain matrix isG ∈ Rt×t, and
Z1 ∼ N (0, N1), and Z2 ∼ N (0, N2) for some N2 − N1 � 0. Assume the average transmission power constraint
∑n

i=1 xT (m1,m2, i)x(m1,m2, i) ≤ nP for (m1,m2) ∈ [1 : 2nR1 ]× [1 : 2nR2 ].
By Theorem 3, the BC-TCS with degraded vector Gaussian channel components is degraded and its capacity region is

achieved via superposition coding. In the following, we show that it suffices to consider only Gaussian(U,X).

Proposition 1. The capacity region of a BC-TCS with degraded vector Gaussian components is the set of rate pairs(R1, R2)
such that

R1 ≤ p1 log
|GK1G

T +N1|
|N1|

+ p̄1 log
|GK1G

T +N2|
|N2|

,

R2 ≤ p2 log
|GKGT +N1|
|GK1GT +N1|

+ p̄2 log
|GKGT +N2|
|GK1GT +N2|

(14)

for someK � 0 for tr(K) ≤ P andK � K1 � 0.
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Proof: By Theorem 3, the capacity region is set of rate pairs(R1, R2) such that

R1 ≤ I(X;Y1 |U, S),

R2 ≤ I(U;Y2 |S)
(15)

for some pmfp(u,x).
Let CG denote the set of rate pairs(R1, R2) that satisfy the inequalities in (15) for someU ∼ N (0,K1) and V ∼

N (0,K −K1), independent of each other, andX = U +V for someK � K1 � 0 and tr(K) ≤ P . It can be easily shown
thatCG is the set of rate pairs that satisfy inequalities in (14). Toshow thatCG is the capacity region, we show the following.

Lemma 2. For all λ ≥ 0,

max
(R1,R2)∈CG

(R1 + λR2) ≥ max
p(u,x) : E[XTX]≤P

(I(X;Y1 |U, S) + λI(U;Y2 |S)).

The proof of this lemma is in Appendix C. The proof of Proposition 1 is completed using Lemma 1.

Remark 4. Recall that Gaussian superposition coding and dirty paper coding both achieve the capacity region of Gaussian
BC-TCS when(p1, p2) = (1, 0), i.e., when the channel gain is fixed. For general(p1, p2), Gaussian superposition coding
achieves the capacity region, but dirty paper coding does not. See Appendix D for the proof.

IV. M ORE THAN TWO CHANNEL STATE COMPONENTS

In this section we consider the BC with more than two channel state components. Consider a DM-BC with random state,
where the stateS = (S1, S2) ∈ [1 : k]2, pS1(i) = pi andpS2(i) = qi, channel componentsp(ỹi|x) for i ∈ [1 : k], and outputs
Y1 = Ỹi if S1 = i andY2 = Ỹi if S2 = i for i ∈ [1 : k].

In the following we establish several results whenk > 2.

A. Binary erasure broadcast channel withk channel components

Consider a BC withk state components where the channelp(ỹi|x) is a BEC(ǫi), 0 ≤ ǫi ≤ 1, for i ∈ [1 : k]. We show that
this channel is always less noisy.

Theorem 5. The binary erasure broadcast channel withk channel state components with the state known only at the receivers
is always less noisy.

Proof: Without loss of generality, assume that the capacity of channel p(y1, s|x), C1, is larger than the capacity of the
channelp(y2, s|x), C2. Then for anyp(u, x),

I(U ;Y1, S) = H(U)−
k
∑

i=1

pi
(

ǫiH(U) + (1− ǫi)H(U |X)
)

= C1I(U ;X)

≥ C2I(U ;X)

= I(U ;Y2, S).

An immediate consequence of this theorem is that the capacity region is achieved via superposition coding. Since
I(U ;Y1|S) = C1I(U ;X) andI(X ;Y2|S) = H(X)−∑k

i=1 piǫiH(X) = C2H(X), superposition coding inner bound in (12)
is equivalent to the set of rate pairs that satisfy

R1 ≤ C1I(U ;X),

R2 ≤ C2H(X |U),

R1 +R2 ≤ C2H(X)

for somep(u, x). It can be easily seen that any achievable rate pair(R1, R2) satisfiesR1/C1 +R2/C2 ≤ H(X) ≤ 1, and the
rate pairs(C1, 0) and (0, C2) are achievable. Thus capacity region is the set of rate pairs(R1, R2) such that

R1

C1
+

R2

C2
≤ 1.
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B. Binary symmetric broadcast channel with three channel components

Consider a BC with three channel state components where the channelp(ỹi|x) is a BSC(αi), 0 ≤ αi ≤ 1, for i ∈ [1 : 3].
We can show that superposition coding is optimal for this channel.

Theorem 6. The BC with three binary symmetric channel state componentsis more capable or dominantly c-symmetric.

Proof: Let D(x) = I(X ;Y1|S)− I(X ;Y2|S) for X ∼ Bern(x), i.e.,

D(x) =

3
∑

i=1

piH(x ∗ αi)−
3
∑

i=1

piH(αi)−
(

3
∑

i=1

qiH(x ∗ αi)−
3
∑

i=1

qiH(αi)
)

,

wherea ∗ b = a(1 − b) + b(1− a) for a, b ∈ [0, 1]. Without loss of generality, we assumeD(0.5) = C1 − C2 ≥ 0.
The DM-BC (X , p(y1, y2, s|x), (Y1,S) × (Y2,S)) is dominantly c-symmetric ifX → (Y1, S) and X → (Y2, S) are c-

symmetric andI(X ;Y1|S)p − I(X ;Y2|S)p ≤ I(X ;Y1|S)u − I(X ;Y2|S)u.
Note that the proof of part (iv) of Theorem 3 which shows thatX → (Yj , S) are c-symmetric ifX → Ỹj are symmetric

for j = 1, 2 does not rely on the cardinality ofS. Thus the proof can be extended to show thatX → (Yj , S) for j = 1, 2 are
c-symmetric for BC with three channel state components. In order to show the DM-BC(X , p(y1, y2, s|x), (Y1,S)× (Y2,S))
is more capable or dominantly c-symmetric, we now show thatD(0.5) ≥ D(x) for everyx ∈ [0, 1] or D(x) ≥ 0 for every
x ∈ [0, 1]. After some computation, we obtain

D′′(x) =
(p1 − q1)((1 − 2α3)

2α1ᾱ1 − (1− 2α1)
2α3ᾱ3)

(x ∗ α1)(1− x ∗ α1)(x ∗ α3)(1 − x ∗ α3)
+

(p2 − q2)((1 − 2α3)
2α2ᾱ2 − (1− 2α2)

2α3ᾱ3)

(x ∗ α2)(1 − x ∗ α2)(x ∗ α3)(1− x ∗ α3)
.

Note thatD′′(x) = 0 if

(p1 − q1)((1− 2α3)
2α1ᾱ1 − (1− 2α1)

2α3ᾱ3)

(x ∗ α1)(1− x ∗ α1)
+

(p2 − q2)((1 − 2α3)
2α2ᾱ2 − (1− 2α2)

2α3ᾱ3)

(x ∗ α2)(1 − x ∗ α2)
= 0.

SinceD′′(x) = 0 has at most two solutions in(0, 1), D′(x) = 0 has at most three solutions in(0, 1). SinceD′(0.5) = 0 and
D(x) = D(1−x), i.e., symmetric with respect tox = 0.5, D′(x) = 0 has one solution or three solutions. If it has one solution,
D(x) is concave (see Figure 6-(a) for an example). If it has three solutions,D(x) ≥ 0 or D(0.5) ≥ D(x) for x ∈ [0, 1] as
illustrated in Figure 6-(b) and 6-(c).
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Fig. 6: Examples ofD(x) vs x for α = [0.2, 0.3, 0.4], p = [1/3, 1/3, 1/3] and (a)q = [0.2, 0.3, 0.5] (b) q = [0.2, 0.7, 0.1] (c) q = [0.45, 0, 0.55].

An immediate consequence of this theorem is that the capacity region of the BC with three BSC state components when
the state is known only at the receivers is the set of rate pairs (R1, R2) that satisfy the inequalities in (12). We now show that
this region is reduced to the set of rate pairs(R1, R2) such that

R1 ≤
3
∑

i=1

pi





2
∑

j=1

γjH(βj ∗ αi)−H(αi)



 ,

R2 ≤ 1−
3
∑

i=1

qi

2
∑

j=1

γjH(βj ∗ αi),

R1 +R2 ≤ 1−
3
∑

i=1

piH(αi)

(16)
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for some0 ≤ γj , βj ≤ 1 for j ∈ [1 : 2] such thatγ1 + γ2 = 1.
Suppose a rate pair(R1, R2) satisfies the inequalities in (12) for somep(u, x) such that|U| = 3. Then, this rate pair is also

achievable with the following(U ′, X ′) such thatU ′ ∈ {−3,−2,−1, 1, 2, 3} and

pU ′(u) = pU ′(−u) =
1

2
pU (u), u ∈ {1, 2, 3},

pX′|U ′(x|u) = pX′|U ′(1− x| − u) = pX|U (x|u), (u, x) ∈ {1, 2, 3}× {0, 1}.

Further let (Y ′
1 , Y

′
2) be the output when the input isX ′. It can be easily seen thatH(Y ′

1 |U ′, S) = H(Y1|U, S) and
H(Y ′

2 |U ′, S) = H(Y2|U, S). Also note thatH(Y ′
1 |S) = H(Y ′

2 |S) = 1 becauseX ′ ∼ Bern(1/2). Thus, I(U ;Y1|S) ≤
I(U ′;Y ′

1 |S), I(X ;Y2|U, S) ≤ I(X ′;Y ′
2 |U ′, S), andI(X ;Y2|S) ≤ I(X ′;Y ′

2 |S).
Therefore, it suffices to evaluate the superposition rate region with the above symmetric input pmfsp(u′, x′), and the capacity

region is the set of rate pairs(R1, R2) that satisfy

R1 ≤
3
∑

i=1

pi





3
∑

j=1

γjH(βj ∗ αi)−H(αi)



 ,

R2 ≤ 1−
3
∑

i=1

qi

3
∑

j=1

γjH(βj ∗ αi),

R1 +R2 ≤ 1−
3
∑

i=1

piH(αi)

for some0 ≤ γj , βj ≤ 1 for j ∈ [1 : 3] such thatγ1 + γ2 + γ3 = 1. Note that this rate region can be written as an intersection
of two rate regions,R1 ∩ R2, whereR1 = {(R1, R2) : R1 +R2 ≤ 1−∑3

i=1 piH(αi)} and

R2 =
{

(R1, R2) : R1 ≤
3
∑

i=1

pi





3
∑

j=1

γjH(βj ∗ αi)−H(αi)



 ,

R2 ≤ 1−
3
∑

i=1

qi

3
∑

j=1

γjH(βj ∗ αi) for some0 ≤ γj , βj ≤ 1 s.t.
3
∑

j=1

γj = 1, j ∈ [1 : 3]
}

.

Let R̄2 denote theconvex hullof the set of rate pairs(R1, R2) such that

R1 ≤
3
∑

i=1

pi (H(β ∗ αi)−H(αi)) ,

R2 ≤ 1−
3
∑

i=1

qiH(β ∗ αi)

for some0 ≤ β ≤ 1. Note that sincēR2 is a convex set in 2-dimension, all rate pairs inR̄2 is a convex combination of two
rate pairs included in̄R2. Thus,

R̄2 =
{

(R1, R2) : R1 ≤
3
∑

i=1

pi





2
∑

j=1

γjH(βj ∗ αi)−H(αi)



 ,

R2 ≤ 1−
3
∑

i=1

qi

2
∑

j=1

γjH(βj ∗ αi) for some0 ≤ γj , βj ≤ 1 s.t.
2
∑

j=1

γj = 1, j ∈ [1 : 2]
}

.

Note that this rate region is a subset ofR2, so R̄2 ⊆ R2. Also it can be easily seen thatR2 ⊆ R̄2, and soR2 = R̄2. Therefore,
the capacity region for BC-TCS with three BSC channel components isR1 ∩ R̄2, the region shown in (16).

In the following we show that superposition coding is not in general optimal for BC with more than three BSC state
components.

C. Binary symmetric broadcast channel with four channel components

Consider a BC-TCS with BSC components withα1 = 0.28, α2 = 0.04, α3 = 0.02, α4 = 0.18, andp = [0.38, 0.62, 0, 0] and
q = [0, 0, 0.38, 0.62]. ThusC1 = 0.5247, C2 = 0.5246, and the maximum sum rate for superposition coding ismax(C1, C2) =
0.5247.
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Now we consider the Marton inner bound. In [18], Geng, Jog, Nair and Wang showed that for binary input broadcast
channels, Marton’s inner bound reduces to the set of rate pairs (R1, R2) such that

R1 < I(W ;Y1) +
k
∑

j=1

βjI(X ;Y1 |W = j),

R2 < I(W ;Y2) +
5
∑

j=k+1

βjI(X ;Y2 |W = j),

R1 +R2 < min{I(W ;Y1), I(W ;Y2)}+
k
∑

j=1

βjI(X ;Y1 |W = j) +

5
∑

j=k+1

βjI(X ;Y2 |W = j)

(17)

for somepW (j) = βj , j ∈ [1 : 5], andp(x|w). This region is achieved usingrandomized time-division[19]. This ingenious
insight helps simplify the computation of Marton’s inner bound for BC-TCS with BSC components. In this case, the maximum
sum rate is0.5250 and is strictly greater than maximum sum rate for superposition coding. Thus, superposition coding is
suboptimal. It is not known whether Marton coding is optimal, however, because there is a gap between the Marton maximum
sum rate and the sum rate for theUV outer bound, which in this case is at least 0.5256.

V. CONCLUSION

We established the capacity region of several classes of BC-TCS channel when the state is known only at the receivers.
When the channel state components are deterministic, the capacity region is achieved via Marton coding. This is an interesting
result because this channel model does not belong to any class of broadcast channels for which the capacity was previously
known. When the channel state components are ordered, the BC-TCS is also ordered and the capacity region is achieved
via superposition coding. We showed that when the BC-TCS hasdegraded vector Gaussian channel components, the capacity
region is attained via Gaussian input and auxiliary random variables. We extended our results on ordered channel components
to two example channels with more than two channel components, but showed that this extension does not hold in general.
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APPENDIX A
PROOF OF THEOREM2

Let Co denote the region shown in Theorem 2. Achievability followsimmediately sinceCo is included in Marton’s inner
bound with common message.

To establish the converse, we show that the capacity region coincides with theUVW outer bound. TheUVW outer bound
for the broadcast channel with state known at the receivers states that if a rate tuple(R0, R1, R2) is achievable, then it must
satisfy the inequalities

R0 ≤ min{I(U0;Y1 |S), U(U0;Y2 |S)},
R0 +R1 ≤ I(U1;Y1 |U0, S) + min{I(U0;Y1 |S), U(U0;Y2 |S)},
R0 +R2 ≤ I(U2;Y2 |U0, S) + min{I(U0;Y1 |S), U(U0;Y2 |S)},

R0 +R1 +R2 ≤ min{I(U0;Y1 |S), U(U0;Y2 |S)}+ I(U1;Y1 |U2, U0, S) + I(U2;Y2 |U0, S),

R0 +R1 +R2 ≤ min{I(U0;Y1 |S), U(U0;Y2 |S)}+ I(U1;Y1 |U0, S) + I(U2;Y2 |U1, U0, S)

for some pmfp(u0, u1, u2, x). Let this outer bound be denoted bȳRo. We now show that every supporting hyperplane ofR̄o

intersectsCo, i.e.

max
(R0,R1,R2)∈R̄o

(λ0R0 + λ1R1 + λ2R2) ≤ max
(r0,r1,r2)∈Co

(λ0r0 + λ1r1 + λ2r2). (18)

We consider different ranges of(λ0, λ1, λ2) and show that the inequality (18) always holds.

(1) If λ2 ≤ λ0 ≤ λ1 or λ0 ≤ λ2 ≤ λ1, note that for any(R0, R1, R2) ∈ R̄o,

λ0R0 + λ1R1 + λ2R2 ≤ λ1(R0 +R1) + λ2R2.

Thus

max
(R0,R1,R2)∈R̄o

(λ0R0 + λ1R1 + λ2R2) ≤ max
(r1,r2)∈R̄

(λ1r1 + λ2r2)

≤ max
(r0,r1,r2)∈Co

(λ0r0 + λ1r1 + λ2r2),

whereR̄ denotes theUV outer bound in (4). The last inequality follows becauseCo includes the private message capacity
regionC.

(2) If λ1 ≤ λ0 ≤ λ2 or λ0 ≤ λ1 ≤ λ2, note that for any(R0, R1, R2) ∈ R̄o,

λ0R0 + λ1R1 + λ2R2 ≤ λ1R1 + λ2(R0 +R2).

Thus

max
(R0,R1,R2)∈R̄o

(λ0R0 + λ1R1 + λ2R2) ≤ max
(r1,r2)∈R̄

(λ1r1 + λ2r2)

≤ max
(r0,r1,r2)∈Co

(λ0r0 + λ1r1 + λ2r2),

whereR̄ denotes theUV outer bound in (4). The last inequality follows becauseCo includes the private message capacity
regionC.

(3) If λ1 ≤ λ2 ≤ λ0, note that for any(R0, R1, R2) ∈ R̄o,

λ0R0 + λ2R2 + λ1R1 ≤ λ0 min{I(U0;Y1 |S), I(U0;Y2 |S)}+ λ2I(U2;Y2 |U0, S) + λ1I(X ;Y1 |U2, U0, S)

= λ0 min{I(U0;Y1 |S), I(U0;Y2 |S)}+ λ2I(U2;Y2 |U0, S) + λ1H(Y1 |U2, U0, S)

= λ0 min{I(U0;Y1 |S), I(U0;Y2 |S)}+ λ2H(Y2 |U0, S)

+ λ1H(Y1 |U2, U0, S)− λ2H(Y2 |U2, U0, S)

= λ0 min{I(U0;Y1 |S), I(U0;Y2 |S)}+ λ2p2H(f1 |U0) + λ2p̄2H(f2 |U0)

+ (p̄1λ1 − p̄2λ2)H(f2 |U2, U0) + (p1λ1 − p2λ2)H(f1 |U2, U0)
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For a fixedp(u0, x), only the last two terms depend onp(u2|u0, x). We now consider different ranges of(λ1, λ2).
• If λ2 ≥ p1λ1/p2, then for any fixedp(u0, x),

(p̄1λ1 − p̄2λ2)H(f2 |U2, U0) + (p1λ1 − p2λ2)H(f1 |U2, U0) ≤ 0

with equality if U2 = X . Thus,

λ0R0 + λ2R2 + λ1R1 ≤ λ0 min{I(U0;Y1 |S), I(U0;Y2 |S)}+ λ2p2H(f1 |U0) + λ2p̄2H(f2 |U0)

≤ max
(r0,r1,r2)∈Co

(λ0r0 + λ2r2 + λ1r1).

• If λ2 < p1λ1/p2, then for any fixedp(u0, x),

(p̄1λ1 − p̄2λ2)H(f2 |U2, U0) + (p1λ1 − p2λ2)H(f1 |U2, U0)

= (λ1 − λ2)H(f2 |U2, U0) + (p1λ1 − p2λ2){H(f1 |U2, U0)−H(f2 |U2, U0)}
= (λ1 − λ2)H(f2 |U2, U0) + (p1λ1 − p2λ2){H(f1 |f2, U2, U0)−H(f2 |f1, U2, U0)}
≤ (p1λ1 − p2λ2)H(f1 |f2, U0)

with equality if U2 = f2. Thus,

λ0R0 + λ2R2 + λ1R1 ≤ λ0 min{I(U0;Y1 |S), I(U0;Y2 |S)}+ λ2H(Y2 |U0, S) + (p1λ1 − p2λ2)H(f1 |f2, U0)

= λ0 min{I(U0;Y1 |S), I(U0;Y2 |S)}+ λ2p2H(f1 |U0) + λ2p̄2H(f2 |U0) + (p1λ1 − p2λ2)H(f1 |f2, U0)

= λ0 min{I(U0;Y1 |S), I(U0;Y2 |S)}+ λ2I(f2;Y2 |U0, S) + λ1p1H(f1 |f2, U0)

= λ0 min{I(U0;Y1 |S), I(U0;Y2 |S)}+ λ2I(f2;Y2 |U0, S) + λ1(I(f1;Y1 |U0, S)− I(f1; f2 |U0, S))

≤ max
(r0,r1,r2)∈Co

(λ0r0 + λ2r2 + λ1r1).

(4) If λ2 ≤ λ1 ≤ λ0, note that for any(R0, R1, R2) ∈ R̄o,

λ0R0 + λ1R1 + λ2R2 ≤ λ0 min{I(U0;Y1 |S), I(U0;Y2 |S)}+ λ1I(U1;Y1 |U0, S) + λ2I(X ;Y2 |U1, U0, S)

= λ0 min{I(U0;Y1 |S), I(U0;Y2 |S)}+ λ1I(U1;Y1 |U0, S) + λ2H(Y2 |U1, U0, S)

= λ0 min{I(U0;Y1 |S), I(U0;Y2 |S)}+ λ1H(Y1 |U0, S)

+ λ2H(Y2 |U1, U0, S)− λ1H(Y1 |U1, U0, S)

= λ0 min{I(U0;Y1 |S), I(U0;Y2 |S)}+ λ1p1H(f1 |U0) + p̄1H(f2 |U0)

+ (p2λ2 − p1λ1)H(f1 |U1, U0) + (p̄2λ2 − p̄1λ1)H(f2 |U1, U0)

For a fixedp(u0, x), only the last two terms depend onp(u1|u0, x). We now consider different ranges of(λ1, λ2).
• If λ1 ≥ p̄2λ2/p̄1, then for any fixedp(u0, x),

(p2λ2 − p1λ1)H(f1 |U1, U0) + (p̄2λ2 − p̄1λ1)H(f2 |U1, U0) ≤ 0

with equality if U1 = X . Thus,

λ0R0 + λ1R1 + λ2R2 ≤ λ0 min{I(U0;Y1 |S), I(U0;Y2 |S)}+ λ1p1H(f1 |U0) + p̄1H(f2 |U0)

≤ max
(r0,r1,r2)∈Co

(λ0r0 + λ2r2 + λ1r1).

• If λ1 < p̄2λ2/p̄1, then for any fixedp(u0, x),

(p2λ2 − p1λ1)H(f1 |U1, U0) + (p̄2λ2 − p̄1λ1)H(f2 |U1, U0)

= (λ2 − λ1)H(f1 |U1, U0) + ((p̄2λ2 − p̄1λ1){H(f2 |U1, U0)−H(f1 |U1, U0)}
= (λ2 − λ1)H(f1 |U1, U0) + ((p̄2λ2 − p̄1λ1){H(f2 |f1, U1, U0)−H(f1 |f2, U1, U0)}
≤ (p̄2λ2 − p̄1λ1)H(f2 |f1, U0)

with equality if U1 = f1. Thus,

λ0R0 + λ1R1 + λ2R2 ≤ λ0 min{I(U0;Y1 |S), I(U0;Y2 |S)}+ λ1H(Y1 |U0, S) + (p̄2λ2 − p̄1λ1)H(f2 |f1, U0)

= λ0 min{I(U0;Y1 |S), I(U0;Y2 |S)}
+ λ1p1H(f1 |U0) + λ1p̄1H(f2 |U0) + (p̄2λ2 − p̄1λ1)H(f2 |f1, U0)

= λ0 min{I(U0;Y1 |S), I(U0;Y2 |S)}+ λ1I(f1;Y1 |U0, S) + λ2p̄2H(f2 |f1, U0)

= λ0 min{I(U0;Y1 |S), I(U0;Y2 |S)}+ λ1I(f1;Y1 |U0, S) + λ2I(X ;Y2 |f1, U0, S)

≤ max
(r0,r1,r2)∈Co

(λ0r0 + λ2r2 + λ1r1).

The proof of the converse is completed using Lemma 1.
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APPENDIX B
PROOF OF(II ) - (IV ) OF THEOREM 3

We show that if a DM-BC(X , p(ỹ1, ỹ2), Ỹ1×Ỹ2) is less noisy, more capable, or dominantly c-symmetric, then the DM-BC
(X , p(y1, y2, s|x), (Y1,S)× (Y2,S)) is also less noisy, more capable, or dominantly c-symmetric, respectively.

(ii) For a less noisy DM-BCp(ỹ1, ỹ2|x), I(U ; Ỹ1) ≥ I(U ; Ỹ2) for everyp(u, x). Consider

I(U ;Y1, S)− I(U ;Y2, S) = I(U ;Y1 |S)− I(U ;Y2 |S)
= p1I(U ; Ỹ1) + p̄1I(U ; Ỹ2)− p2I(U ; Ỹ1)− p̄2I(U ; Ỹ2)

= (p1 − p2)(I(U ; Ỹ1)− I(U ; Ỹ2))

≥ 0.

Thus the DM-BC(X , p(y1, s1, y2, s2|x), (Y1,S)×(Y2,S)) is less noisy. Note that ifp1 > p2, I(U ;Y1, S)−I(U ;Y2, S) ≥
0 if and only if I(U ; Ỹ1)− I(U ; Ỹ2) ≥ 0.

(iii) For a more capable DM-BCp(ỹ1, ỹ2|x), I(X ; Ỹ1) ≥ I(X ; Ỹ2) for everyp(u, x). Consider

I(X ;Y1, S)− I(X ;Y2, S) = I(X ;Y1 |S)− I(X ;Y2 |S)
= p1I(X ; Ỹ1) + p̄1I(X ; Ỹ2)− p2I(X ; Ỹ1)− p̄2I(X ; Ỹ2)

= (p1 − p2)(I(X ; Ỹ1)− I(X ; Ỹ2))

≥ 0.

Thus the DM-BC(X , p(y1, s1, y2, s2|x), (Y1,S) × (Y2,S)) is more capable. Note that ifp1 > p2, I(X ;Y1, S) −
I(X ;Y2, S) ≥ 0 if and only if I(X ; Ỹ1)− I(X ; Ỹ2) ≥ 0.

(iv) For a dominantly c-symmetric DM-BCp(ỹ1, ỹ2|x), let π1
j (y) andπ2

j (y) be functions that satisfy

pỸ1|X
(π1

j (ỹ1)|(i+ j)m) = pỸ1|X
(ỹ1 |i),

pỸ2|X
(π2

j (ỹ2)|(i+ j)m) = pỸ2|X
(ỹ2 |i)

for i ∈ [0 : m− 1], where(i+ j)m denotes(i+ j) modm. To show that the DM-BC(X , p(y1, s1, y2, s2|x), (Y1,S)×
(Y2,S)) is dominantly c-symmetric, we first show thatX → (Y1, S) andX → (Y2, S) are c-symmetric channels. Let

πj(y, s) = (πs
j (y), s).

Consider

p(Y1,S)|X((y, s)|i) = pS(s)pY1|X,S(y |i, s)
= pS(s)pỸs1 |X

(y |i)
= pS(s)pỸs1 |X

(πs1
j (y)|(i+ j)m)

= pS(s)pY1|X,S(π
s1
j (y)|(i+ j)m, s)

= p(Y1,S)|X((πs1
j (y), s)|(i+ j)m)

= p(Y1,S)|X(πj(y, s)|(i+ j)m).

ThusX → (Y1, S) is c-symmetric. Similarly we can show thatX → (Y2, S) is c-symmetric. To complete the proof we
show that the inequality in (9) holds. Consider

I(X ;Y1, S)p − I(X ;Y2, S)p = I(X ;Y1 |S)p − I(X ;Y2 |S)p
= (p1 − p2)(I(X ; Ỹ1)p − I(X ; Ỹ2)p)

≤ (p1 − p2)(I(X ; Ỹ1)u − I(X ; Ỹ2)u)

= I(X ;Y1, S)u − I(X ;Y2, S)u.

Thus the DM-BC(X , p(y1, s1, y2, s2|x), (Y1,S)× (Y2,S)) is dominantly c-symmetric.

APPENDIX C
PROOF OFLEMMA 2

We first prove the lemma forλ ≥ 1. For λ ≥ 1, consider

max
p(u,x) :

E[XT X]≤P

(

I(X;Y1 |U, S) + λI(U;Y2 |S)
)

= max
p(x) :

E[XT X]≤P

(

λI(X;Y2 |S) + C[I(X;Y1 |S)− λI(X;Y2 |S)]
)
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= max
K�0 :

tr(K)≤P

max
p(x):

E[XXT ]=K

(

λI(X;Y2 |S) + C[I(X;Y1 |S)− λI(X;Y2 |S)]
)

= max
K�0 :

tr(K)≤P

max
p(x):E[XXT ]=K

(

λI(X;Y2 |S) + C[I(X;Y1 |S)− λI(X;Y2 |S)]
)

= max
K�0 :

tr(K)≤P

max
p(x):E[XXT ]=K

(

λp2I(X; Ỹ1) + λp̄2I(X; Ỹ2) + C[(p1 − λp2)I(X; Ỹ1) + (p̄1 − λp̄2)I(X; Ỹ2)]
)

≤ max
K�0 :

tr(K)≤P

(

max
p(x):E[XXT ]=K

λp2I(X; Ỹ1) + max
p(x):E[XXT ]=K

λp̄2I(X; Ỹ2)

+ max
p(x):E[XXT ]=K

C[(p1 − λp2)I(X; Ỹ1) + (p̄1 − λp̄2)I(X; Ỹ2)]
)

(a)
= max

K�0 :
tr(K)≤P

(

λp2 log
|GKGT +N1|

|N1|
+ λp̄2 log

|GKGT +N2|
|N2|

+ max
K1 :

0�K1�K

(

(p1 − λp2) log
|GK1G

T +N1|
|N1|

+ (p̄1 − λp̄2) log
|GK1G

T +N2|
|N2|

)

)

= max
K�0 :

tr(K)≤P

max
0�K1�K

(

λp2 log
|GKGT +N1|
|GK1GT +N1|

+ λp̄2 log
|GKGT +N2|
|GK1GT +N2|

+ p1 log
|GK1G

T +N1|
|N1|

+ p̄1 log
|GK1G

T +N2|
|N2|

)

= max
(R1,R2)∈CG

(R1 + λR2).

To show step(a) for λ ≥ p1/p2, note thatp1 − λp2 ≤ 0 and p̄1 − λp̄2 ≤ 0, and thus

max
p(x) :

E[XXT ]=K

C[(p1 − λp2)I(X; Ỹ1) + (p̄1 − λp̄2)I(X; Ỹ2)] = 0.

To show step(a) for 1 ≤ λ < p1/p2, note that(p1−λp2)I(X; Ỹ1)+(p̄1−λp̄2)I(X; Ỹ2) = (p1−λp2)(I(X; Ỹ1)−µI(X; Ỹ2))
whereµ = 1 + (λ− 1)/(p1 − λp2) > 1, and forµ > 1,

max
p(x) :

E[XXT ]=K

C[I(X; Ỹ1)− µI(X; Ỹ2)] = max
K1 : K�K1

(

log
|GK1G

T +N1|
|N1|

− µ log
|GK1G

T +N2|
|N2|

)

.

We now prove the lemma forλ < 1. SinceI(U;Y2|S) ≤ I(U;Y1|S) for any p(u,x), it follows that

max
p(u,x) :

E[XT X]≤P

(

I(X;Y1 |U, S) + λI(U;Y2 |S)
)

≤ max
p(x) :

E[XT X]≤P

I(X;Y1 |S)

= max
K�0 : tr(K)≤P

(

p1 log
|GKGT +N1|

|N1|
+ p̄1 log

|GKGT +N2|
|N2|

)

≤ max
(R1,R2)∈CG

(R1 + λR2).

APPENDIX D
SUBOPTIMALITY OF DIRTY PAPER CODING

Consider a BC-TCS with scalar Gaussian channel components,i.e., t = 1 in (13). LetU1 ∼ N (0, 1), U2 ∼ N (0, 1), and
E[U1U2] = ρ, X = aU1 + bU2, where(a, b, ρ) satisfies the power constraint,E[X2] = a2 + b2 + 2abρ = T ≤ P . Using dirty
paper coding,(R1, R2) is achievable if

R1 < p1 log

(

1 +
(a+ bρ)2

b2(1 − ρ2) +N1

)

+ p̄1 log

(

1 +
(a+ bρ)2

b2(1− ρ2) +N2

)

,

R2 < p2 log

(

1 +
(b+ aρ)2

a2(1− ρ2) +N1

)

+ p̄2 log

(

1 +
(b+ aρ)2

a2(1 − ρ2) +N2

)

,

R1 + R2 < p1 log

(

1 +
(a+ bρ)2

b2(1 − ρ2) +N1

)

+ p̄1 log

(

1 +
(a+ bρ)2

b2(1− ρ2) +N2

)

+ p2 log

(

1 +
(b+ aρ)2

a2(1 − ρ2) +N1

)

+ p̄2 log

(

1 +
(b + aρ)2

a2(1− ρ2) +N2

)

− log

(

1

1− ρ2

)

.
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Let this region be denoted byRD. To show that dirty paper coding is suboptimal, we show thatmax(r1,r2)∈RD
(r1 + λr2) <

max(R1,R2)∈CG
(R1 + λR2) for someλ > 1. Note that forλ > 1,

max
(R1,R2)∈RD

(R1 + λR2) = max
a,b,ρ : a2+b2+2abρ=T≤P

(

p1 log

(

T +N1

b2(1− ρ2) +N1

)

+ p̄1 log

(

T +N2

b2(1− ρ2) +N2

)

− log

(

1

1− ρ2

)

+ λp2 log

(

T +N1

a2(1 − ρ2) +N1

)

+ λp̄2 log

(

T +N2

a2(1− ρ2) +N2

)

)

,

max
(R1,R2)∈CG

(R1 + λR2) = max
α∈[0:1],T≤P

(

p1 log

(

αT +N1

N1

)

+ p̄1 log

(

αT +N2

N2

)

+ λp2 log

(

T +N1

αT +N1

)

+ λp̄2 log

(

T +N2

αT +N2

)

)

. (19)

Consider

max
(R1,R2)∈CG

(R1 + λR2)

(a)

≥ p1 log

(

a2(1− ρ2) +N1

N1

)

+ p̄1 log

(

a2(1− ρ2) +N2

N2

)

+ λp2 log

(

T +N1

a2(1− ρ2) +N1

)

+ λp̄2 log

(

T +N2

a2(1− ρ2) +N2

)

(b)

≥ p1 log

(

T +N1

b2(1− ρ2) +N1

)

+ p̄1 log

(

T +N2

b2(1− ρ2) +N2

)

− log

(

1

1− ρ2

)

+ λp2 log

(

T +N1

a2(1− ρ2) +N1

)

+ λp̄2 log

(

T +N2

a2(1 − ρ2) +N2

)

.

Step(a) follows by plugging inα = a2(1− ρ2)/T in (19). To show step(b) note that the difference between the LHS and
RHS is

p1 log
(a2(1− ρ2) +N1)(b

2(1− ρ2) +N1)

N1(1− ρ2)(a2 + b2 + 2abρ+N1)
+ p̄1 log

(a2(1− ρ2) +N2)(b
2(1 − ρ2) +N2)

N2(1− ρ2)(a2 + b2 + 2abρ+N2)
≥ 0 (20)

because(a2(1 − ρ2) +Nj)(b
2(1 − ρ2) +Nj)−Nj(1− ρ2)(a2 + b2 + 2abρ+Nj) = (ab(1 − ρ2)− ρNj)

2 ≥ 0 for j = 1, 2.
Equality holds for (20) if and only if(ρ, a) = (0, 0) or (ρ, b) = (0, 0). Thus equality in step(b) holds if and only if
max(R1,R2)∈CG

(R1 + λR2) = max(C1, λC2), which is in general not true. Ifmax(R1,R2)∈CG
(R1 + λR2) 6= max(C1, λC2),

it follows that

max
(R1,R2)∈CG

(R1 + λR2) > max
(R1,R2)∈RD

(R1 + λR2).




