arXiv:1509.04335v1 [cs.IT] 14 Sep 2015

1

Capacity Theorems for Broadcast Channels with
Two Channel State Components Known at the
Receivers

Hyeji Kim and Abbas ElI Gamal
Department of Electrical Engineering
Stanford University
Email: hyejikim@stanford.edu, abbas@ee.stanford.edu

Abstract

We establish the capacity region of several classes of bashadtchannels with random state in which the channel to each
user is selected from two possible channel state comporsentsthe state is known only at the receivers. When the channel
components are deterministic, we show that the capacitipmeig achieved via Marton coding. This channel model does no
belong to any class of broadcast channels for which the @gpagion was previously known and is useful in studyingeiéss
communication channels when the fading state is known ontheareceivers. We then establish the capacity region when t
channel components are ordered, e.g., degraded. In partiwe show that the capacity region for the broadcast cHanitk
degraded Gaussian vector channel components is attaiadsavissian input distribution. Finally, we extend the rssoih ordered
channels to two broadcast channel examples with more tharciyannel components, but show that these extensions dmhibt h
in general.

I. INTRODUCTION

Consider the discrete memoryless broadcast channel (DWMB@ random (IID) statg X’ x S, p(y1, y2|x, $)p(s), Y1 X Va)
with the stateS known only at the receivers. Assume the setup in which thelesewishes to transmit a common message
My € [1 : 2] to both receivers and private messagés < [1 : 2"%] to receiverj € {1,2} as depicted in Figure 1.

It is well known that this broadcast channel with state setaip be viewed as a general DM-BC with inpkitand outputs
(Y1,9) and(Yz, S). Hence the definitions of g@nfo 2nfi 2nRz2) code, achievability and the capacity regi@rare the same
as for the general broadcast channels [1]. Moreover, thaaigpregion for this broadcast channel with state setupois n
known in general. The Marton inner bound and the outer bound on the general broadcast channel hold for tragare
and they coincide when the channgl — (Y7, .5), (Y2, S) falls into any of the classes of the broadcast channel fockvhi
the capacity region is known (see [2] for examples of theassas). Beyond these classes, there have been some efforts o
evaluating inner bounds on the capacity region of the Gandsiding BC model, including superposition coding by Jafar
and Vishwanath [3], time division with power control by Lgand Goldsmith [4], and superposition of binary inputs wattd
by a capacity achieving strategy for a layered erasure basdadthannel by Tse and Yates [5].

Yr N .
' | Decoder 1}—— Moy, M
T
X”IL Sn
My, My, My — Encoder (Y1, y2|x, 5) p(s)
Y"L L
g N
» Decoder 2——> My, M,

Fig. 1: Broadcast channel with state known only at the recsiv

In this paper we focus on the special class of the broadcasingh with state in Figure 1 in which there are only two
channel state components as depicted in Figure 2. In thisihattich we refer to as theroadcast channel with two channel
states(BC-TCS), the stateS = (51, 52) € {1,2}? with ps, (1) = p1,ps,(2) =1 —p1 = p1 andpg, (1) = p2,ps,(2) = P,

This work was partially supported by Air Force grant FA95BD1-0124. This paper was presented in pafP@tc. IEEE Int. Symp. Inf. Theory, Hawaii,
2014


http://arxiv.org/abs/1509.04335v1

and the two possible channel components are denotéd by p(jj:|z) andY; ~ p(§|z). The outputs of the BC-TCS is

le{zi/l if §) =1,

Y, if S5 =2,

Y: ifSy=1 M
Y, = ‘1 | 2 =1,

Y, |fS2:2.

Without loss of generality, we assume throughout fhat p», and that receivej = 1,2 knows the state sequens€ but the
sender does not.

pyyx(ilz) —> N1 > pyxilz) > N

X — X —
Py x (y2lz) [ Y2 > Py, x(y2lr) > Y2
(@) (S1,52) = (1,1),ps, (1) = p1,ps, (1) = p2 () (S1,82) = (1,2),ps, (1) = p1,ps,(2) = P2
Py, x(ilz) > N1 > pyx(yilz) > N

X — x —|
Py x (p2lz) [—> Y2 > Py, x(y2lr) > Y2
() (S1,52) =(2,1),ps,(2) = P1,ps. (1) = p2 (d) (S1,82) = (2,2),ps,(2) = P1,Ps,(2) = P2

Fig. 2: Broadcast channel with two channel state components

In [6], we established the private message capacity regipthe special case of the BC-TCS in which the state compsnent
are deterministic functions, i.e¥; = f1(X) andY, = f»(X). Achievability is established using Marton coding [7]. The
key observation is that the auxiliary random variables i@ ktarton region characterizatiob; and U,, are always set to
f1, f2, X, or 0. In particular if the channeb(y;|z) is more likely to bef; than the channed(yz|z), then(Uy,Us) are set to
(X,0),(0,X), or (f1, f2). The converse is established by showing that the Martonribnand with these extreme choices
of auxiliary random variables coincides with th#/ outer bound [8]. It is important to note that this class of datocast
channels with two deterministic channel components (BGZEPdoes not belong to any class of broadcast channels fahwhi
the capacity region is known. It also provides yet anothas<lof broadcast channels for which Marton coding is optimal
Moreover, the BC-TDCS model can be used to approximateinefdding broadcast channels in high SNR (see Example 2
in Section II).

In this paper we provide a complete proof for the result in §Jd extend it to the case with common message (see
Section II). In addition, we include several new results be tapacity region of the BC-TCS. In Section Ill, we study the
case when the channel components are ordered, which mémtedssample, a wireless downlink channel in which the channe
to each user can be either “strong” or “weak”. We show thah& BC p(71, §2|2) is degraded, less noisy, more capable, or
dominantly c-symmetric, then the corresponding BC-T&%, y2, s|z) is degraded, less noisy, more capable, or dominantly
c-symmetric, and the capacity region is achieved via sugsgtipn coding. This is surprising (and as we will show does n
extend to more than two components in general) because tlieisdoes not know the state, hence does not know which of
the two channel®(y, s|x) or p(ys, s|x) is stronger. We further show that the capacity region of tieTECS with degraded
Gaussian vector channel components, which is a specialbédlse BC-TCS with degraded channel components, is attdiged
Gaussian channel input. This is again unexpected becausesfgeneral degraded fading Gaussian BC (where we know that
one channel is always a degraded version of the other), thimiamg input distribution is not Gaussian [9]. In Sectitv,
we present results on the broadcast channel with more tharchannel components. We establish the capacity region when

1since the capacity region of the broadcast channel depemigson its marginal distributions [1], we only need to spgdifie marginal pmfs of5; and
S2. Moreover, it suffices to assume that receiyet 1,2 knows only its state sequencﬁejﬂ.



there are three BEC or BSC channel components and show #rat ihia gap between the Marton inner bound and the UV
outer bound when there are four BSC channel components.eHamcresults for the two channel state components do not
extend to more than two state components in general.

II. DETERMINISTIC CHANNEL STATE COMPONENTS
In this section, we consider the BC-TCS with two determiaishannel componenlé = f1(X) andYs; = f2(X), henceforth
referred to as BC-TDCS. We show that the capacity region ®B&-TDCS is achieved using Marton coding.

Theorem 1 (private message capacity region for BC-TDCS [6]The private message capacity region of the BC-TDCS
(X x S, p(s)p(y1, 2|z, s), V1 x Vo) with the state known only at the receivers is

€ = co{R1 U {(C1,0)} U {(0,C2)}}, )
whereC; = max,(,) I(X;Y;|S) for j = 1,2, and

Ri ={(R1,R2): R < I(f1;Y1]9),
Ry + Ry < I(f1;Y1|S) + I(f2; Y21S) — I(f1; f2) for somep(x) € P},

where

P = {argmax (I(f1;Y1|S) + AT (f2; Ya|S) — I(f1; f2))) for p1/p2 < A <1,

p(x)

arg(m)ax (I(f1;Y1|S) — I(f1; f2) + vI(f2;Y5]|S)) for 1 < v < py/pa}.
p(x

Proof: For achievability we use Marton coding which achieves theo§eate pairs(R;, R2) such that
Ry < I(U; Y119),
Ry < I(U; Y2|5), 3)
Ry + Ry < I(U1;Y1|S) + 1(Uz; Y2|S) — I(U; U2)
for some pmfp(uy,us, x).

Note that the rate paiiC1, 0) satisfies the inequalities (3) fez) = arg max I(X;Y1|S) and(Uy, Uz) = (X, 0). Similarly,
the rate pair(0, C;) satisfies the inequalities (3) for(z) = argmax I(X;Y5|S) and (U1, Us) = (0, X). Thus(Cy,0) and
(0,C>) are achievable. Now leR] be the set of rate pairs that satisfy (3) for sopie) and (U1, Us) = (f1, f2). We can
easily see tha®; C R}. Thus@ is achievable via Marton coding and time-sharing.

To establish the converse, we show tlatoincides with theJV outer bound. Th&V outer bound for the broadcast channel
with state known at the receivers states that if a rate (@it R2) is achievable, then it must satisfy the inequalities

Ry < I(U7YI|S)7

Ry < I(V;Y215),
Ry + Ry < I(U;Y1[5) + 1(X; Y2 |U, S),
Ry + Ry < I(V;Y2|9) + I(X; Y1 |V, S)

(4)

for some pmfp(u, v, ). Let this outer bound be denoted By Clearly @ C R. We now show that every supporting hyperplane
of R intersectse, i.e., for all\ > 0,

max _(R1+ AR2) < max (r1 + Ara). (5)
(Rl,RQ)GR (7‘1,7‘2)66

We first show that inequality (5) holds for< A < 1. Consider
max _(R; 4+ AR2) < max (I(U;Y1|S) + AH(Y2|U, S))

(R1,R2)ER p(u,r)
— max (H(Yl 1)+ max (\H (Y| U, 8) ~ H(Yi|U, 5)))
p(u|x

p(z)

= max (le(fl) +p1H(f2) —1—;{1;1)()(()\]52 —p1)H(f2|U) + (Ap2 —Pl)H(f1|U)))-

u|x
We now consider different ranges 0f< A < 1.
e For0 <\ < p1/pP2, (Ap2 — p1)H(f2|U) + (Ap2 — p1)H(f1|U) < 0 for any fixedp(x) with equality if U = X. Thus,

max 7(R1 + /\Rg) < max(le(fl) -‘rﬁlH(fg))
(R1,R2)eR p()



Since(C1,0) = (max,, (p1H(f1) +p1H(f2)),0) € €. the inequality (5) holds.
e Forp;/ps < A <1, consider
(Ap2 = p1)H(f2|U) + (Ap2 = p1) H(f1|U) = (A = DH(f1|U) + (Ap2 — p1)(H (f2| /1, U) — H(f1]f2,U))
< (Ap2 — p1)H(f2] /1)
for any fixedp(x) with equality if U = f;. Thus,
max (Ry + AR) < max(p1H(f1) +prH(f2) + (Ap2 — p1)H(f2] f1))
(R1,R2)€ER p(x)
= r;ﬁ)){([(fl;}ﬂé’) + A (f2;Y2|5) — I(f13 f2)))

= max (I(f1:Yi18) + M1 (f2: 2] $) = 1(fs; f2)))
p(x
Finally since(I(f1;Y115),I(f2;Y2|S) — I(f1; f2)) € € for p(x) € P, the inequality (5) holds.
We now prove the inequality (5) fox > 1. We consider the equivalent maximization problemx(Rl,Rz)egz(/\—lRl +Rs).
Consider

max (A'Ry + Ry) < max A TH(Y1|V, S) 4+ I(V;Y2|9))
(R1,R2)ER p(v,z)

= max (H(V]9) + max (A H(Yi[V,5) ~ H(Y3| V. s))
p(v|z

p(z

= max (p2H (1) + P2H(f2) & max (V5 = B2)H(B V) + (A1 = p)H(AIV))).

v|x)
We now consider different ranges af> 1.
e For A > pi/pa, (A "1p1 — Po)H(f2|V) + (A "tp1 — po)H(f1|V) < 0 for any fixedp(z) with equality if V = X. Thus,

max (Ry + AR2) < max (A\p2H (f1) + Ap2H (f2))-
(R1,R2)ER p(x)

Since (0, Ca) = (0, max, ) (p2H (f1) + p2H(f2))) € €. the inequality (5) holds.
e Forl < A < p;/p2, consider

A = P)H(f2|V) + (A pr = p2) H(f1|V) = (A = DH(f2|V) + (A1 = p2)(H(f1] f2, V) = H(f2| f1, V)
< (A 'p1—p2)H(f1] f2)
for any fixedp(z) with equality if V = f,. Thus,

max (Ry + ARz) < max (Ap2H(f1) + Ap2H (f2) + (p1 — Ap2)H(f1|f2))
(R1,R2)eR p(z)
= r&?)((l(fl;YHS) — I(f1; f2) + M (f2; Y2|9))

= max (I(f1;Y1|S) — I(f1; f2) + M (f2; Y215)).

p(x)EP
Finally since(I(f1;Y11S) — I(f1; f2), I(f2;Y2]S)) € € for p(x) € P, the inequality (5) holds.
The proof of the converse is completed using the followingre. ]

Lemma 1. [10] Let R € R? be convex andR; C R, be two bounded convex subsets ®f closed relative taR. If every
supporting hyperplane dR, intersectsR;, thenR; = Rs.

As an example of a BC-TDCS, consider the following.

Example 1 (Blackwell channel with state [11])The functionsf; and f, for this example are depicted in Figure 3.

0 0 0 0
X 2 f1(X) X 2 f2(X)
1 1 1 1

Fig. 3: The deterministic components of the Blackwell ctenamith state.

The private message capacity region of the Blackwell chlanite state known only to the receivers is the convex hull of

:Rll = {(RlaRZ): R, < H(CYQ) _ﬁlle(ao/dl),



Ry < H(on) — p2avoH (0 /),
Ri+ Ry < H(aw) — pran H(ao/an) + padvoH (01 /)
for someag, a1 > 0,0 + a1 < 1}.

whereH (a), a € [0, 1] is the binary entropy function. Note th&f, defined in the proof of Theorem 1, is the Marton rate region
with (Ul, Ug) = (fl,fg) andX € {0, 1,2} for px(O) = ao,px(l) = Oél,px(2) =1—-qy— for ag,a1 > 0,0+ < 1.

Also, since the rate pair&1,0) = (1,0) € R} and (0,C:) = (0,1) € R}, C is the convex hull ofR]. The capacity region
with state for(p;,p2) = (0.5,0.5), (0.7,0.3), and (1, 0) is plotted in Figure 4. Fo(p1,p2) = (0.5,0.5), the two channels
are statistically identical, hence the capacity regiomcioies with the time-division region. F@p;, p2) = (1,0), the channel
reduces to the Blackwell channel with no state [12]. Bar, p2) in between these two extreme cases, the capacity region is
established by our theorem.

Fig. 4. Capacity region of the Blackwell channel with thetasta

Next consider the following example which is motivated byedministic approximations of wireless channels.

Example 2 (Finite-field BC-TDCS) Consider the BC-TDCS with the state known only at the recsiwgth X = [X1 XQ]T'
v — hii X1+ hi2Xe  if 51 =1,
e ho1 X1 + hooXo if S1 =2,

(6)

Vo — hii X1+ hi2Xe  if So =1,
T ho1 X1 + hooXo  if S5 =2,

where the channel matrix is full-rang)y = V> = X3 = X, = [0 : K — 1], and the arithmetic is over the finite field.
To compute the private message capacity region, note(that log K and Cy = log K. To evaluateR,, we computep.

p1rH(f1) + D1l (f1; f2) + Ap2H(f2] f1) = prH (f1) + p1H(f2) + (Ap2 — p1)H (f2| f1)
< (p1 + Ap2) log K
for p1/p2 < A <1 with equality if X ~ Unif([0 : K — 1]?). Similarly,
p1H(f1) +p1d(f1; f2) + Ap2H(f2| f1) = prH (f1) + prH(f2) + (Ap2 — p1)H (f2| f1)
< (p1 + Ap2) log K

for 1 < A < p1/p2 with equality if X ~ Unif([0 : K — 1]?). Thus,P = {Unif([0 : K — 1]?)}. Note that whenX is uniform,
H(f1) = H(f2) = H(f1|f2) = H(f2|f1) = log K. Hence,

Ri ={(R1,R2): R1 <p1log K, Ry < palog K},
and the capacity region is

C =co{R; U{(log K,0)} U{(0,log K)}} = co{(0,0) U (log K,0) U (0,1log K) U (p1 log K, p2 log K)}.



Figure 5 plots the capacity region f¢p,,p2) = (0.5,0.5), (0.7,0.4), and(1,0). For (p1,p2) = (0.5,0.5), the two channels
are statistically identical and the capacity region caiesi with the time-division region. Fdp,p2) = (1,0), the capacity
region is{(R1, R2): Ry <logK, Rs < log K} because the chahnnel matrix is full-rank. Fpi, p2) in between these two
extreme cases, the capacity region is established by oaretime

Ry/log K

A

(1,0)
1
(0.7,0.4)
06 - ‘
(05,05)
0 0.7 1~ Bi/logK

Fig. 5: Capacity region of the Finite Field BC-TDCS.

Remark 1. Connection to wireless channelSonsider the following fading broadcast channel
Y; =HIX + Z; for j = 1,2, (7)
where{ denotes the conjugate-transpoXe—= [Xl XQ}T € C**L EX'X] < P, Z; ~ CN(0,1) and the noise sequences
Zji, j =1,2andi € [1: n], are i.i.d. In addition, forj = 1,2,
HT _ [hll hlg] if Sj =1 W.p. pj,
J [hgl hgg] if Sj =2 w.p. Pj,
where the channel matrix is i62*2 and is full rank.
We now show that the degrees of freedom (DoF) of this fadingsSian broadcast channel, obtained by dividing the
maximum sum-rate bjog P and taking the limit, igp; + pa.

Since the variance of the noisg is bounded, the DoF of channel in (7) is equal to that of theTBXGS withY; = H;X
for j = 1,2 [13]. We show that the DoF is achieved wh€n = f; andU; = f> are independent and Gaussian with variances

aP and P for somea, 8 > 0 such that
[ 1] [hll th] ) [ 1]
Xo ha1  hao Us

satisfy the power constraint. First note that {dt;, R2) € C,

max lim m
P—oo  log P
= max lim pLH(f1) + p2H(f2) + (P1 — p2)I(f1; f2)_ (8)
p(X) P—oo 1ng

Now we show that each term in (8) is maximized with the choseput. First, limp_, . p1H(f1)/logP =
limp_, o p1 log(aP)/log P = p;. Now we show thap; = maxlimp_,. p1 H(f1)/log P. Since Var(f1) = Var(h11 X7 +
h12X2) = |h11*vP + |h12*AP + (hi1hi2 + hishi1)p/A7P for some0 < v,p < 1 due to the power constraint,
H(f1) < log(|h11]?y + [hi2|*Y + (hj1hi2 + hish11)py/77) + log P. Hence,limp_.oo p1H(f1)/log P < p;. Similarly,
limp_, 00 P2 H (f2)/ log P is maximized and is equal 8, andlimp_, (p1 — p2)I(f1; f2)/log P is maximized and is equal
to 0. Thus, the following holds:

max lim p1H(f1) +p2H(f2) + (P1 — p2)I(f1; f2)
p(X) P—oo lOgP



= p1 + P2,
and the DoF of the fading Gaussian BC in (7)pis+ ps.
The capacity region result can be readily extended to the wéth common messageif # 0).

Theorem 2. The capacity region of a BC-TDCEY x S, p(s)p(y1, y2|z, s), V1 x Vo) with the state known only at the receivers
is the convex hull of the set of all rate paifRo, R1, R2) such that

Ry < min{I(Up; Y1|5), I(Up; Y2|S)}

Ro + Ry < I(Uo; Y1|S) + 1(U; Y1 |Uo, S)

Ro + Ry < I(Uoy; Y2|S) + I(Ua; Y2 | Uy, S)
R0+R1+R2§min{I(Uo;}/1|S) (UO,}/2|S)}+I(U1,1/1|UO,S)+I(U2,}/2|U0,S)—I(Ul,U2|U0)

for somep(ug, ) and either(Uy, Us) = (X, 0), (U1, Us) = (f1, f2), or (U1, Usz) = (0, X).
The proof is in Appendix A.

I1l. ORDERED CHANNEL STATE COMPONENTS
Recall the definitions of the following classes of BC for whisuperposition coding was shown to be optimal.

Definition 1 (Degraded BC [14]) For a DM—BC(X,p(gl,g2|x),J71 x V) receiverY is said to be a degraded versionl:qf
if there existsZ such thatZ|{X = z} ~ py, x(2[z), i.e., Z has the same conditional pmf &8 (given X), andX — Z — Y
form a Markov chain.

Definition 2 (Less noisy BC [15]) For a DM-BC (X, p(jj1,7j2|7), Y1 x Vs) receiverY; is said to be less noisy thary
I(U; Y1) > I(U;Yz) for all p(u, z).

Van-Dijk [16] showed that receivér; is less noisy than receivé if I(X Y1)— I(X; Y,) is concave ip(z), or equivalently,
I(X;Y)) — I(X:Y,) is equal to its upper concave envelopfd (X; Y1) — I(X;Y5)] (the smallest concave function that is
greater than or equal th(X;Y;) — I(X;Y2)).

Definition 3 (More capable BC [15]) For a DM-BC (X,p(yjl,?jzlx),j)l X 372) receiverY; is said to be more capable than
Yo if I(X;Y1) > I(X;Ys) for all p(z).

The more capable condition can also be recast in terms ofdheave envelope: Receiv&f is more capable thai if
CI(X;Ys) — I(X;Y1)] = 0 for everyp(z).

Definition 4 (Dominantly c-symmetric BC [17])A DMC with input alphabett’ = {0, 1, ..., m—1} and output alphabe¥ of
sizen is said to bec-symmetrigf, for eachj = 0,...,m—1, there is a permutation; (-) of ¥ such thapy | x (m; (y)[(i+j)m) =
py|x (yli) for all 4, where(i + j)m = (i +j) modm. A DM-BC (X, p(71, §2|z), V1 x I%) is said to be c-symmetric if both
channel component to Y; and X to Y5 are c-symmetric. A c-symmetric DM-BC is said to Beminantly c-symmetrid

I(X; Y1), — I(X;Ya), < I(X; Y1)y — I(X; V2 9)

for everyp(x), whereu(z) is the uniform pmf and (X; Y1), denotes the mutual information betwe&nandY; for X ~ p(z).

In the following we show the surprising fact that if the DM-B@tisfies any of the above definitions, then the correspgndin
BC-TCS with the state known at the receivers also satisfiessdime condition. Hence, the capacity regions for these
corresponding BC-TCS are achieved using superpositioingod

Theorem 3. The DM-BC (X, p(y1, y2, s|z), Qh,S) x (I, S)) with state known only at the receivers is
(i) degraded if the DM-BCGo(71, §2|z) is degraded,

(i) less noisy if the DM-BCp(¢1, §2|x) is less noisy,

(iii) more capable if the DM-BCp(71, §2|x) is more capable,

(iv) dominantly c-symmetric if the DM-BG (31, =2|z) is dominantly c-symmetric.

Proof: We prove (i). The proof of the rest of this theorem is in Appierisl.

(i) For a degraded DM-BG(71, §2|x), there eX|stsZ such thatZ|{X = z} ~ py, |y (z]z) and X — Z — Y, forms a
Markov chain. We show that there exigs/, S7,.55) such that(Yy, S7, S5){X = z} ~ py,,s,,5,x (1, 51, s5|z) and
X — (v{,51,5%) — (Ya, 51, S2) forms a Markov chain.



Let (S7,S5) be distributed according to

q1 if (s7,s2)=(1,1),
Psy15,5, (81181,82) = S pr—qu 0f (s],82) = (1,2),
L—p1  if (s,52)

Il
—
N

[\

andpg;|s;,s,,5,(55[51, 51, 82) = Psys, (s5[81). Thus(S7, S3)[{X = a2} ~ ps, s,x (51, s5|z) and
p(51,82|y£,8/1,5/2,17):p(81752|y/1,8/1,8/2). (10)

Let Y{ be distributed according to

yr = )Y 1 (51,52) = (1,1) or (2,2),
YUz i (S),8,) = (1,2)

whereX — Z — Ys.
ThenY{[{(57, 55, X) = (51, 85, )} ~ Pvy|5,.5,,x (Y1151, 85, ) and

p(y27 |Sla S?ayia 8378/21‘%) :p(y2|51, S?ayia 8/178/2)' (11)

By (10) and (11), It follows thatYy, 57, S5)[{X = =} ~ py, s, 5.1 x (1, 51, sh|x) and X — (Y, S, 95) — (Y2, 51,50)
forms a Markov chain.

Remark 2. The DM-BC (X, p(y1, y2, s|z), (V1,S) x ()%, S)) is degraded, less noisy, or more capabénd only if the DM-BC
p(91,=2|x) is degraded, less noisy, or more capable, respectivelyitasgp; > p2). If the DM-BC (X, p(y1, yo, s|x), (D1, S) x
(32,8)) is degraded, there existd’y, S7,S5) such that(Y{,S],S5){X = x} ~ py, g 5x¥1, 51, 85]z) and X —
(Y{,51,8) — (Y2,51,52) forms a Markov chain. LeZ be distributed according tpz|x(z|z) = py;s;,x(2|1,z) and
Pyzx (212, 7) = Prajsaspyvrx (2121, 2,2). Then Z{X = @} ~ py, x(zle) and a[{X = @} ~ py, x(iale). Also
X5 Z-oY, becausey,|s,.s;.v;.x (9212, 1, 2, %) = py,|s,,51,v; (U2]2, 1, 2). Therefore the DM-BGp(71, 92|x) is degraded.
The proofs for less noisy and more capable DM-BC follow disefrom the proof of part (ii) and (iii) of Theorem 3. We do
not know however if the DM-BQ X, p(y1, y2, s|z), (1,S) x (I2,S)) is dominantly c-symmetric if and only if the DM-BC
p(71, J2|2) is dominantly c-symmetric.

It follows from Theorem 3 that the capacity region of the BCH satisfying the conditions in Theorem 3 is the set of rate
pairs (R1, Rs) such that

R, <I(X;11|U,S),
Ry < I(U; Y2 9), (12)
Ri + Ry < I(X;Y1|S)

for somep(u, x).

Remark 3. Using superposition coding, receivEr can recover receivér,’s message. Hence when there is common message
(Ro # 0), the capacity region is obtained by replaciRg with Ry + R;.

As an example of BC-TCS with more capable or dominantly c+sgtnic components, consider the following.

Example 3 (A BC-TCS with a BSC and a BEC channel componentsBC-TCS with a BSC and a BEC channel components
has inputX = {0,1} and channel components B§E@nd BECE). Without loss of generality, we assurfie< p < 1/2 and
0 <e<1.In[17], it is shown that for the DM-BG (41, g2|x),

1) Y; is a degraded version df, if and only if 0 < e < 2p.
2) Y, is less noisy tharY; if and only if 0 < e < 4p(1 — p).
3) Y, is more capable thahi; if and only if 0 < e < H(p).
4) Yy is dominantly c-symmetric iff (p) <e < 1.

Hence, by Theorem 3, the corresponding BC-TCS with B$@0d BEC¢) channel components is degraded, less noisy, more
capable, or dominantly c-symmetric for the above channemater ranges.



A. A product of reversely more capable channel components

Another class of broadcast channel for which superposgiating is shown to be optimal for each component is the produc
of reversely more capable broadcast channels [2].

Definition 5 (Product of reversely more capable BC¢) DM-BC (?{,p(g1,?j~2|$),~3}1 X )72) is said to be a product of
reversely more capable DM-BC it = (X1, X3), Y1 = (V1i1,Vi2), Vo = (o1, V22), and p(gi1, J12, Jo1, Y22/ 71, 72) =
p(§11,§12|x1)p(gj21,g]22|172), andI(Xl;YH) > I(Xl,}/gl) for all p(Il) andI(XQ;}/lg) < I(XQ,YQQ) for all p(ZCQ)

We extend this definition to the broadcast channel with twandliel state components as follows.

Definition 6 (A product BC-TCS) A 2-receiverproduct broadcast channel with two channel state compaisrea DM-BC
with random satéX’ x S, p(s)p(y1, ya|z, s), V1 x V2), where X = [X;, Xo] and S = (S, Sz) for

Yj = [le’Yj?]a
S; = [Sj1,Sj2],
Yji = Y ff Sin=1,
o1 i Sj =2
Yjo = Y2 ff Siz =1,
Yoo if Sja =2

for j = 1,2 andp(g11, J12|x1)p(J21, Go2|r2).
Let ps;, (1) = pj1 andps,,(1) = p;o for j = 1,2. Without loss of generality, we assume; > p12 andpz; > poo. In the
following we establish the capacity region of BC-TCS witlvaesely more capable components.

Theorem 4. A 2-receiver product BC-TCX' x S,p(s)p(y1, y2|z, s), Y1 x V2) is more capable if the product DM-BC

(X, p(§1,G2|x), V1 x Va) for X = (X1, A2), Y1 = (Y11, V12), Yo = (Va1, Vo) is reversely more capable.

Proof: We show that the product DM-BCY, p(y1,y2|z), Y1 x Va) for X = (X1, Xs), Y1 = (D11, S11), V12, S12)),
Vo = ((V21,821), Va2, S22)) is reversely more capable if the product DM-B@', p(71, §2|z), V1 x V2) for X = (&, &),
Vi = (VMh1,V12), Yo = (Y21, Va2) is reversely more capable. Consider
I(X1; Y11, 811) = pinl (X1 Yi1) + pual (X1; Yar)
> p12l (X1;Y11) + pr2l (Xq;Ya1)
= I(X1;Y21,591).
Slmllarly we can show tha‘t.(XQ; Yio, 512) < I(XQ; Yoo, 522). |

An immediate consequence of Theorem 4 is that superpositiding for each component is optimal. The capacity region
is the region shown in Theorem 3 of [2] by replacifig with (Y};,.S) for j,i € [1: 2].

B. Gaussian vector channel components
Consider the BC-TCS with degraded vector Gaussian chammabonents

Y, = GX + Z4,
! ! (13)
Ys = GX + Zo,

where X,Z,Z; € R’ and X and Z; are independent foj = 1,2. The channel gain matrix i$&F € R*!, and

Zy ~ N(0,Ny), and Zy ~ N(0,N3) for some N, — N; = 0. Assume the average transmission power constraint
S XTI (ma,ma, i)X(my, ma, i) < nP for (my,mg) € [1:27] x [1: 2nf2],

By Theorem 3, the BC-TCS with degraded vector Gaussian elaromponents is degraded and its capacity region is
achieved via superposition coding. In the following, wewslthat it suffices to consider only Gaussiélii, X).

Proposition 1. The capacity region of a BC-TCS with degraded vector Ganssianponents is the set of rate paifg;, Rs)
such that

|GK1GT + Nq| + |GK1GT + No|
—|N1| p1log —|N2| )
|GKGT + Ny | |IGKGT + Ny
IGE1GT + Ny 8 1GK.GT + Ny

for someK = 0 for tr(K) < P and K » K; > 0.

Ry < pylog
(14)

RQ S P2 10g “+ ]32 10
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Proof: By Theorem 3, the capacity region is set of rate pais, R2) such that

Rl S I(X,YllU,S),

Ry < I(U; Y3 5) (15)

for some pmfp(u, x).

Let Cq denote the set of rate paifRR;, R2) that satisfy the inequalities in (15) for somé ~ AN(0,K;) andV ~
N(0, K — K1), independent of each other, add= U + V for someK » K; = 0 and t(K) < P. It can be easily shown
that Cq is the set of rate pairs that satisfy inequalities in (14)sfiow thatC¢ is the capacity region, we show the following.

Lemma 2. For all A > 0,

max (Ry + AR2) > max (I(X;Y1]U,S) + AMI(U;Y2[9)).
(R1,R2)€Cq p(u,x): E[XTX]<P
The proof of this lemma is in Appendix C. The proof of Propiasitl is completed using Lemma 1. [ ]

Remark 4. Recall that Gaussian superposition coding and dirty papding both achieve the capacity region of Gaussian
BC-TCS when(p1,p2) = (1,0), i.e., when the channel gain is fixed. For gendgal, p2), Gaussian superposition coding
achieves the capacity region, but dirty paper coding doésSee Appendix D for the proof.

IV. MORE THAN TWO CHANNEL STATE COMPONENTS

In this section we consider the BC with more than two chantetescomponents. Consider a DM-BC with random state,
where the stateS = (S1,52) € [1: k]?, ps, (i) = p; andps, (i) = ¢;, channel components(i;|z) for i € [1 : k], and outputs
Y, =Y if S; =i andY, =Y if Sy =i forie[l:kl]

In the following we establish several results whiep- 2.

A. Binary erasure broadcast channel withchannel components

Consider a BC withk state components where the chanpgl;|z) is a BEC¢;), 0 <¢; <1, fori € [1 : k]. We show that
this channel is always less noisy.

Theorem 5. The binary erasure broadcast channel viitbhannel state components with the state known only at thevess
is always less noisy.

Proof: Without loss of generality, assume that the capacity of nkbp(y, s|x), C1, is larger than the capacity of the
channelp(ys, s|z), Cs. Then for anyp(u, z),

k

I(U;Y1,8) = HU) =Y _pi(eHU) + (1 - &)H(U| X))
=CI{U )6
> CoI(U X)

[ |
An immediate consequence of this theorem is that the capaegion is achieved via superposition coding. Since
I(U;11|S) = ChI(U; X) and I (X;Y2|S) = H(X) — ZlepieiH(X) = CoH(X), superposition coding inner bound in (12)
is equivalent to the set of rate pairs that satisfy

Rl S Clj(U;X),
Ry < CRH(X|U),
Ri+ Ry < CQH(X)

for somep(u, x). It can be easily seen that any achievable rate @it R») satisfiesR;/C1 + Ry /Cy < H(X) < 1, and the
rate pairs(Cy,0) and (0, Cs) are achievable. Thus capacity region is the set of rate p&irsR2) such that
Ri R

e e
o te S
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B. Binary symmetric broadcast channel with three channetponents

Consider a BC with three channel state components wherehtwenelp(g;|z) is a BSCf;), 0 < o; <1, fori e [1: 3].
We can show that superposition coding is optimal for thisncieh

Theorem 6. The BC with three binary symmetric channel state componiemntsore capable or dominantly c-symmetric.
Proof: Let D(z) = I(X;Y1]S) — I(X; Y3|S) for X ~ Bern(z), i.e.,

3 3 3 3
=Y peH(axon) = Y piH (o) — (Y H(wxa) = Yl (o).

wherea b = a(1 — b) + b(1 — a) for a,b € [0, 1]. Without loss of generality, we assuni&0.5) = C; — C3 > 0.

The DM-BC (X, p(y1, 2, slz), (D1,S) x (V2,S)) is dominantly c-symmetric ifX — (Y1,S) and X — (Y3, S) are c-
symmetric and/ (X; Y1|5), — I(X;Y2|S), < I(X;Y1]S), — I(X;Y2|S).,.

Note that the proof of part (iv) of Theorem 3 which shows that— (Y;,S) are c-symmetric ifX — Y are symmetric
for j = 1,2 does not rely on the cardinality &. Thus the proof can be extended to show tiat> (Y}, S5) for j=1,2are
c-symmetric for BC with three channel state components.rtteoto show the DM-BQ X, p(y1, y2, s|z), (V1,S) X (yg, S))
is more capable or dominantly c-symmetric, we now show #B&1.5) > D(z) for everyx € [0,1] or D(z) > 0 for every
x € [0, 1]. After some computation, we obtain

D(x) = (1 = g1)((1 = 205)%aran — (1 = 2an)®a3ds) | (p2 = 2)((1 = 2a3)°asdy — (1 — 203)*asdy)
(xxa1)(1—x*ar)(z*az)(l —xx*as) (xxa)(l —x*xaz)(x*xaz)(l —z*as)
Note thatD”(z) = 0 if

(p1 — @)((1 = 203)*cna1 — (1 = 201 )>a3a3) n (P2 — @2)((1 = 203)?cva iz — (1 = 2002)v3¥3)
(xxa1)(1—x*aq) (x*ag)(1 —x*asg)

Since D”(x) = 0 has at most two solutions if0, 1), D'(z) = 0 has at most three solutions {f, 1). SinceD’(0.5) = 0 and
D(z) = D(1-x), i.e., symmetric with respect to= 0.5, D’(x) = 0 has one solution or three solutions. If it has one solution,
D(x) is concave (see Figure 6-(a) for an example). If it has thodetisns, D(z) > 0 or D(0.5) > D(z) for z € [0,1] as
illustrated in Figure 6-(b) and 6-(c).

=0.

0.04 ‘ g 2107 ‘ g x10"
8
7
0.03
6
5
D(I) 0.02 4
3
2
0.01
1
0
0 s -1 s -1 s
0 0.5 1 0 0.5 1 0 0.5 1
x x x
(@) (b) (©

Fig. 6: Examples ofD(z) vs z for a« = [0.2,0.3,0.4], p = [1/3,1/3,1/3] and (a)q = [0.2,0.3,0.5] (b) ¢ = [0.2,0.7,0.1] (c) ¢ = [0.45, 0, 0.55].

|
An immediate consequence of this theorem is that the capeegion of the BC with three BSC state components when
the state is known only at the receivers is the set of rates p&ir, R-) that satisfy the inequalities in (12). We now show that
this region is reduced to the set of rate pdifs, R2) such that

3

< Zpi 277 *041 H(ai) 5

R2<1—ZQZZ% ﬁj*az (16)

RBi+Ry <1~ ZpiH(ai)

=1
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for some0 < ;,8; <1 for j € [1: 2] such thaty; + 2 = 1.
Suppose a rate pafi?;, Ro) satisfies the inequalities in (12) for someu, x) such thati/| = 3. Then, this rate pair is also
achievable with the followindU’, X’) such thatl’ € {-3,-2,—1,1,2,3} and
1
bu’ (’LL) = pU/(—’LL) = §pU(U),’LL € {17 27 3}7
pX’|U’(I|u) = pX’\U/(l - ZC| - u) = pX\U('r|u)a (U,ZC) € {17 2a 3} X {07 1}

Further let(Y{,Y;) be the output when the input iX’. It can be easily seen that (Y{|U’,S) = H(}1|U,S) and
H(Y;|U',S) = H(Y2|U,S). Also note thatH (Y/|S) = H(Y3|S) = 1 becauseX’ ~ Bern(1/2). Thus, I(U;Y1]S) <
I(U;Y/|S), I(X;Ys|U,S) < I(X;Y5|U’, S), and I (X;Y5|S) < I(X';Y5]S).

Therefore, it suffices to evaluate the superposition rajmnewith the above symmetric input pmgéu’, =), and the capacity
region is the set of rate pai(s?;, R2) that satisfy

3
Ri+ Ry < 1—ZPiH(Oé)
i1

for some0 < ~v;,8; <1 for j € [1: 3] such thaty; + 2 + v3 = 1. Note that this rate region can be written as an intersection
of two rate regionsR; N Ry, whereRy = {(R1,R2): R1 + Ry <1 — Zl 1\ piH (a;)} and

3

i=1 =1 j=1

ngz pi (H(B * i) = H(a))

for some0 < 3 < 1. Note that sinceR, is a convex set in 2-dimension, all rate pairsig is a convex combination of two
rate pairs included iR,. Thus,

3
9_22:{(}217R2 SZ Z’y] *Oéz)—H(Oéi) ,
i=1 j=1
2
Rggl—ZqZZ% (Bj * a;) for some0 < v;,8; <1 s.t. Z%_lje[l 2]}

=1 j=1 7j=1

Note that this rate region is a subset®f, soR, C R,. Also it can be easily seen th& C R,, and soR, = R,. Therefore,
the capacity region for BC-TCS with three BSC channel coreptsisR; N R,, the region shown in (16).

In the following we show that superposition coding is not iengral optimal for BC with more than three BSC state
components.

C. Binary symmetric broadcast channel with four channel ponents

Consider a BC-TCS with BSC components with = 0.28, as = 0.04, a3 = 0.02, a4 = 0.18, andp = [0.38,0.62, 0, 0] and
q =10,0,0.38,0.62]. ThusC; = 0.5247, Cy = 0.5246, and the maximum sum rate for superposition codingis(C1, Cs) =
0.5247.
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Now we consider the Marton inner bound. In [18], Geng, Jogir dad Wang showed that for binary input broadcast
channels, Marton’s inner bound reduces to the set of rats p&i, R2) such that

k
Ry < I(W;Y1) + ) BiI(X; V4| W = j),

Jj=1

5
Ry <I(W;Ya)+ Y BiI(X;Ya|W =), (17)
j=k+1
k 5
Ry + Ry < min{I(W; Y1), [(W;Ya)} + Y BiI(XVi[W =) + D BiI(X;Ya|W = )
j=1 j=k+1
for somepw (j) = 55, j € [1 : 5], andp(z|w). This region is achieved usingndomized time-divisiofil9]. This ingenious
insight helps simplify the computation of Marton’s inneruoal for BC-TCS with BSC components. In this case, the maximum
sum rate is0.5250 and is strictly greater than maximum sum rate for superositoding. Thus, superposition coding is
suboptimal. It is not known whether Marton coding is optinfedwever, because there is a gap between the Marton maximum
sum rate and the sum rate for th®/ outer bound, which in this case is at least 0.5256.

V. CONCLUSION

We established the capacity region of several classes of B€-channel when the state is known only at the receivers.
When the channel state components are deterministic, fhecitg region is achieved via Marton coding. This is an ieséing
result because this channel model does not belong to any efdsroadcast channels for which the capacity was prewousl
known. When the channel state components are ordered, thE(RCis also ordered and the capacity region is achieved
via superposition coding. We showed that when the BC-TCSdegsaded vector Gaussian channel components, the capacity
region is attained via Gaussian input and auxiliary randamiables. We extended our results on ordered channel ceenpon
to two example channels with more than two channel compenént showed that this extension does not hold in general.
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APPENDIXA
PROOF OF THEOREMZ2

Let C, denote the region shown in Theorem 2. Achievability followsnediately sinceC, is included in Marton’s inner
bound with common message.

To establish the converse, we show that the capacity regiortides with theUVW outer bound. Thé&JVW outer bound
for the broadcast channel with state known at the receivatsssthat if a rate tupléRy, R, R2) is achievable, then it must
satisfy the inequalities

RO S min{I(Uo; Yi |S), U(Uo; }/2|S)},
Ro + Ry < I(U1; Y1|Uo, S) + min{I(Up; Y1|S),U(Uo; Y2|5)},
Ro + Re < I(Us; Y2|Up, S) + min{I(Uy; Y1|5),U(Up; Y2|S)},
Ro + Ry + Ry < min{I(Uo; Y115), U(Uo; Y2|9)} + I1(U1; Y1| Uz, Uo, S) + 1(Uz; Y2| Uy, 5),
Ry + Ry + Ry < min{I(Uo; Y1185), U(Uo; Y2|S)} + I(Uy; Y1|Uo, S) + I(Uz; Yo |Uy, Uy, S)

for some pmfp(ug, u1,usz, 2). Let this outer bound be denoted By. We now show that every supporting hyperplaneRgf
intersects,, i.e.

max (/\QRO + MR+ )\QRQ) < max ()\07”0 + Ay + )\27‘2). (18)
(Ro,Rl,R2)€RO (T07T1;T2)€Go

We consider different ranges 0i¢, A1, \2) and show that the inequality (18) always holds.
(1) If Ao < Ao < A Or \g < Az < Aq, note that for any(Ry, Ry, R2) € R,

XoRo 4+ AMRi+ ARy < Ai(Ro+ Ri) + A2 Ro.
Thus

max ()\ORO + MR+ /\QRQ) < max 7()\17"1 + )\27’2)
(Ro,R1,R2)ER, (r1,m2)ER

< max (/\QT‘O + A7y + /\27‘2),

" (ro,r1,m2)€C,

whereR denotes th&JV outer bound in (4). The last inequality follows beca@sdncludes the private message capacity
region C. -
(2) If Ay < Ao < Ay or g <)\ < )\g, note that for any Ry, R1, Ra) € R,

XoRo 4+ AMRi+ ARy < MRy + Aa(Ro + Ra).
Thus

max ()\ORO + MR+ /\QRQ) < max 7()\17"1 + )\27’2)
(Ro,R1,R2)€ER, (r1,m2)ER

< max (Ao’l’o + Al’l’l + AQTQ),

" (ro,r1,r2)€C,

whereR denotes th&JV outer bound in (4). The last inequality follows beca@sdncludes the private message capacity
region C. -
(3) If A1 < A2 < A, note that for any( Ry, R1, R2) € R,
AoRo + AaRo + A R1 < Agmin{I(Up; Y1|5), I(Up; Y2|5)} + A2l (Us; Y2 |Uo, S) + MI(X;Y1|Us, Uy, S)
= Ao min{I(Up; Y1|5), I(Up; Y2|S)} + A2 I(Us; Y2 |Up, S) + M1 H(Y1|Us, Uy, S)
= Ao min{I(Uo; Y115), I(Uo; Y2|.S) } + A2 H(Y2| Uy, S5)
+ MH((Y1|Usz, Uy, S) — Mo H (Y2|Usz, Up, S)
= Ao min{I(Uo; Y115), I(Uo; Y2|S) } + Aap2 H (f1|Uo) + A2p2H (f2|Uo)
+ (1M1 — D2 A2)H(f2|Us, Up) + (p121 — p2eA2)H(f1]Usz, Up)
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For a fixedp(uo, z), only the last two terms depend @ifuz |ug, ). We now consider different ranges 0f;, A2).
o If Ay > p1A1/p2, then for any fixedo(ug, x),
(P1A1 = P2A2) H (f2| Uz, Uo) + (p1ar — peA2) H(f1|Uz, Up) < 0
with equality if Us = X. Thus,
AoRo + A2 Ry + A1 Ry < Ao min{I(Uo; Y1|S), I(Uo; Y2|5)} + Aap2H(f1|Uo) + A2p2H (f2|Uo)
< max (/\QT‘O + Aorg + /\17‘1).

(ro,r1,72)EC,
o If X2 < p1A1/pe, then for any fixedv(ug, x),
(P1A1 = P2A2) H (f2|U2,Uo) + (p1A1 — p2A2) H(f1|Uz2, Up)
= (A1 = X2)H(f2|Uz2,Ug) + (p1 A1 — p2ra){H (f1|Uz, Uo) — H(f2|Us, Up)}
= (M — A)H(f2|U2,Uo) + (pr1Ar — p2 ) {H(f1] f2, U2, Uo) — H(f2| f1,U2,Uo)}
< (p1A1 = p2A2) H(f1] f2, Uo)
with equality if Us = f,. Thus,

ARy + A2 Ry + MRy < Ao min{I(Uo; Y1|S), I(Uo; Y2|S)} + Ao H (Y2|Uo, S) + (p1A1 — p2re) H(f1] f2, Up)
= Ao min{I(Uo; Y1(S), I(Uo; Y2|S)} + Aap2 H (f1|Uo) + A2p2H (f2|Uo) + (P11 — p2A2) H(f1] f2, Uo)
= Ao min{I(Uo; Y1|5), I(Uo; Y2|S)} + A2l(fa; Y2|Uo, S) + Mp1 H(f1| f2, Uo)
= Ao min{I(Uo; Y1|5), I(Uo; Y2|S)} + Aol (f2; Y2|Uo, S) + M (I(f1;Y1|Uo, S) — I(f1; f2|Uo, S))
< max  (Agro + Aare + Ai7).

 (ro,r1,m2)€C,
(4) If A2 < A1 < ), Note that for any(Ry, Ry, R2) € R,
XoRo + MRy + ARy < Mo min{I(Uy; Y1|9), I(Up; Y2|S)} + MI(Uy; Y1|Uo, S) + Ao I(X; Ya| Uy, Up, S)
= Aomin{I(Up; Y1 |S), I(Up; Ya|S)} + M I(Ur; Y1|Us, S) + Mo H (Y2 |Uy, Uy, S)
= Ao min{I(Uo; Y115), I(Up; Y2|.S) } + A1 H(Y1|Up, 5)
+ Mo H(Ya|Uy, Ug, S) — A H (Y1 |Ur, U, S)
= Ao min{I(Uo; Y115), I(Uo; Y2|.S)} + Mip1 H (f1|Uo) + p1H (f2|Uo)
+ (p2A2 — p1 A1) H(f1|Ur, Uo) + (P22 — p1Aa)H(f2|Us, Uo)
For a fixedp(uo, z), only the last two terms depend @i |ug, 2). We now consider different ranges ©0f;, A2).
o If Ay > p2)a/P1, then for any fixedo(ug, x),
(P22 = p1A)H(f1|Ur, Uo) + (p2A2 — prA1)H(f2|Ur, Up) <0
with equality if U; = X. Thus,
MoRo 4+ MRy + ARy < Ao min{I(Uo; Y11S), I1(Uo; Y2|S)} + Mip1t H(f1|Uo) + p1H(f2]|Uo)
< max  (Agro + Aare + Ai71).

(ro,r1,72)€C,
o If \y < p2)A2/P1, then for any fixedo(ug, x),
(p2A2 — p1 A1) H(f1|Ur,Uo) + (P2A2 — p1A1) H(f2|Us, Up)
= (A2 = A)H(f1|U1,Uo) + ((p2A2 — prM){H (f2|Ur, Up) — H(f1|U1,Uo)}
= (A2 = A)H(f1|U1,Uo) + ((p2A2 — prA){H (f2| f1, U1, Uo) — H(f1]f2, U1, Uo)}
< (P2A2 — p1A)H(f2] f1, Uo)
with equality if U; = f1. Thus,
MoRo + AMR1 4 ARy < Aomin{I(Up; Y1185),I(Up; Y2|S)} + M H(Y1|Uo, S) + (P22 — prA)H(f2] f1, Uo)
= Ao min{/(Uop; Y1|5), I(Uo; Y2|5)}
+ MiprH(f1|Uo) + Mp1H(f2|Uo) + (P22 — prA) H(f2] f1, Uo)
= Ao min{I(Uo; Y115), I(Uo; Y2|S)} + MI(f1;Y1|Uo, S) + Xep2H (f2|f1,Uo)
= Ao min{I(Uo; Y1|S), I(Uo; Y2|S)} + M I(f1;Y1|Uo, S) + X2 I(X; Yz | f1, Uo, S)
< max  (AoTo + Aar2 + A\i71).

" (ro,r1,m2)€C,

The proof of the converse is completed using Lemma 1.
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APPENDIXB
PROOF OF(Il) - (IV) OF THEOREM 3

We show that if a DM-BC(X, p(91, gg),fil X 372) is less noisy, more capable, or dominantly c-symmetria) the DM-BC
(X, p(y1,y2,slx), (V1,S) x (V2,8)) is also less noisy, more capable, or dominantly c-symmaegpectively.

(i) For a less noisy DM-BGp(71, 2|), 1(U; Y1) > I(U;Yz) for everyp(u, ). Consider
I(U; Y1, 8) = I(U; Y, 5) = I(U; Y1|S) — I(U; Y2|S5)
= pu (U Y1) + 51l (U; V) = p2I (Us V) = p21(Us Ya)
= (p1 —p2)(I(Us Y1) — I(U;Y2))
> 0.
Thus the DM-BC(X, p(y1, 51, Y2, s2|z), (V1,S) x (I, S)) is less noisy. Note that jf; > po, I(U;Y1,S)—1(U; Y2, S) >
Oifand only if I(U;Y1) — I(U;Y2) >0 ) )
(iii) For a more capable DM-BG) (71, 92|x), I(X;Y1) > I(X;Y>) for everyp(u,x). Consider
I(X;Y1,8) = I(X;Y2,5) = I(X;Y1|S) — I(X; Y2[5)
= pil(X; Y1) + piI(X;V2) — pal (X5 Y1) — pol (X Vo)
= (p1 — p2)(I(X; Y1) — I[(X;Y2))
> 0.
Thus the DM-BC (X, p(y1, 51,92, s2|7), (V1,S) x (D2,S)) is more capable. Note that jf; > ps, I(X;Y1,5) —
I1(X;Ys,8) >0ifand only if I(X;Yy) — I(X;Y2) > 0.
(iv) For a dominantly c-symmetric DM-B@ (71, 72|2), let 7 (y) and 3 (y) be functions that satisfy
Py ix (7 ()1 (0 + §)m) = py, x (G ]1),
Py, ix (M2 (2) | (i 4 §)m) = Py, x (5217)
for ¢ € [0:m — 1], where(i + j),, denotes(i + j) modm. To show that the DM-BG X, p(y1, 1, y2, s2|x), (V1,S) x
(V2,8)) is dominantly c-symmetric, we first show that — (Y1,.5) and X — (Y2, .S) are c-symmetric channels. Let

S

mi(y, s) = (75 (y), s).
Consider

P, x (4, 8)]1) = ps(s)pyi|x,5 (Y4, 5)

= ps(s)py, |x (Y1)

=ps(s)py, | x (75" (W + 5)m)

= ps($)pvy x5 (75 (W) (i + F)m, 5)
=DP(v1,8 )\X(( ]() 8)| (i + 5)m)
=P8 )\X(Wy(y, $)| (@ + 7)m)-

Thus X — (Y1, S) is c-symmetric. Similarly we can show that — (Y2, .5) is c-symmetric. To complete the proof we
show that the inequality in (9) holds. Consider

I(X;Y1,8), — I(X;Y2,5), = I(X;Y1]S), — [(X;Y2|S),

= (= p2) (X3 Y2, — 1(X3V2),)
< (= pa) (T Vi)u = 1(X3 Va)a)
I

(X,Yl,S)u—I(X,YQ,S)u.

Thus the DM-BC(X, p(y1, 1, Y2, s2|x), (W1, S) x (Y2, S)) is dominantly c-symmetric.

APPENDIXC
PROOF OFLEMMA 2

We first prove the lemma fok > 1. For A > 1, consider

max  (I(X:Y1[U.S)+ M(Ui Yal9) = max (M(X: Yal$) + €lL(X: Y118)  M(X: Ya| )
EXTX]<P E[):Txxjgp
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= max - max (M(X;Y2|S) + €[I(X;Y1]S) — M(X;Y2]5)])
tr(K)<P E[XI))?;‘];K
= M(X;Y2|S I(X;Y1]S) - M(X;Y,|S
e (VOYAIS)  EOYAS) - MK YalS)
= max max Aol (X: Y1) + Aol (X; Y2) + €[(p1 — Ap2) [(X: Y1) + (b1 — Ap2) I(X; Y
. p(x):E[XXT]:K( P2l (X5 Y1) + A2l (X; Y2) + €[(p1 — Ap2) [(X; Y1) + (51 — Ap2) (XY 2)))
< max (( max /\pQI(X;?l)—l- max AﬁQI(X_;?z)
P

K0: . T1— . T—
S x):E[XXT]=K p(x):E[XXT]=K

- Ap2)I(X;Y p1 — Ap2)1(X; Y
o, oy = Ap2) 10X Y1) + (91— Apa) (X V)

(@) IGKGT + N1| . |GKGT + N,|
= Applogm———— = — 4 A\pplog————— — =
tfr(%?gp < p2 log A + Apz log A
GK,\GT + N GK,G” + N.
+ mpax ((pl —Ap2) IOgM + (p1 — Ap2) log M)
o< K < | V1] | V2|
A1
wx max [ ostog JGEGT M|\ |GEGT 4 Ny|
= X X B - @@=
R 0l \ PR GE GT | T P R GKGGT + N
o log [IGEIGT M| |GEAGT + No|
PN T TN

= max (Ry+ ARs).
(Rl,Rz)EeG

To show stepa) for A > p;/p2, note thatp; — Ap2 < 0 andpy — A\p2 < 0, and thus
max  €[(p1 — Ap2)1(X; Y1) + (b1 — Ap2)I(X; Y2)] = 0.

p(x):
EXXT =K

To show stef{a) for 1 < A < p1/ps, note that(py —Apa) 1 (X; Y1)+ (51— Ap2) I (X; Y32) = (p1—Apo) (I(X; Y1) — I (X; Y3))
wherep =1+ (A —1)/(p1 — Ap2) > 1, and forpu > 1,

p o IGK,GT + Ny [GEAGT + Ny
E[xii(cljjik Q[I(X’ Yl) MI(X, Y2)] B Klmf%)i(Kl (10g |N1| prios |N2| '

We now prove the lemma fok < 1. Sincel(U;Y2|S) < I(U;Y]|S) for any p(u,x), it follows that
X (I(X;Y1|U,S8) + AI(U; Y2 9)) < max I(X;Y1]9)

EXTx|<P ExXTX]<P

ma.
p(u,x

|GKGT + Ny |

|GKGT + N2|)
| N1

+ p1 log ]

= max (pl lo
K0: tr(K)<P

< max (R + AR2).

(Rl,Rz)EeG

APPENDIXD
SUBOPTIMALITY OF DIRTY PAPER CODING

Consider a BC-TCS with scalar Gaussian channel componieats; = 1 in (13). LetU; ~ N(0,1),Us ~ N(0,1), and
E[U Uz = p, X = alU, + bUs, where(a, b, p) satisfies the power constraifi[X?] = a2 + b? + 2abp = T < P. Using dirty
paper coding( R, R2) is achievable if

(a+bp)* _ (a+bp)°
Ea-2) ) T T ra o e, )
(b + ap)? _ (b+ap)?
R 1 14+ ——5—— 1 1+ ——F——
2= b Og( Tea-p ) TP\ M Ea s W)
(a + bp)? _ (a + bp)?
-~ @ 1 1 -~ @7 @
RO- 2+ N) Pe U TR AW

(b+ ap)? ~ (b+ ap)? 1
1 1+ ——+7+—— 1 1+ ——-+—— | -1 .
+P2 og< +a2(1—p2)+N1 +palog +a2(1—p2)+N2 °8 1—p?

R1 < pilog (1+

Ri+ Ro <p110g<1+
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Let this region be denoted tRp. To show that dirty paper coding is suboptimal, we show thak(,, ,,yex,, (11 + Ar2) <
max(g, r,)ee (21 + AR2) for someX > 1. Note that for\ > 1,

T+ N _ T + Ny 1
Ry + AR ( log| =—=——— log| ==——— 1
(Rl,Ilr%lr?))észD( 1 ARz) = a,b,p: a2+117121+)2(abp r<p \I! ©8 <b2(1—p2)+N1) +P1log <b2(1— )—i—N) og< )

1—p2?
T+ N T+N
+ Ap2 log <—a2 ! ) + Ap2 10%( 21— - ))

1-p%)+ N 2)+ Ny
ol + Ny _ ol + Ny
Ri 4+ AR3) = ( 1 - 1 —_- =
(Rl,nz-}t;a)xeec( L+ AR:) aeﬁj’f’}gp n Og< N )+p1 Og< No )
T+N T + No
Consider

max (R; + AR»)
(Rl,Rz)EeG

(a) a2(1—p2)—|—]\71 a2(1—p2)—|—N2 T+N1 T+N2
Splog (TP TN L S e (TP TRy tog (L ) 4 aplog (2
2 prtos (U ) o (R ) owatos (G )+ e (o)
) T+ N, T+ N, 1
Spilog(—— 20 ) L piog (=2 ) e [
=P Og<b2(1—p2)+Nl>+pl Og(b?(l—p2)+N2 B T2
T+ N, ) T+ N,
Apglog [ ——— 0 ) L apylog [ T2 )
v Og(a?(l— 2>+N)+ & Og(a?(l— 2)+N2)

Step(a) follows by plugging ina = a?(1 — p?)/T in (19). To show steggb) note that the difference between the LHS and
RHS is

p1 log

_ 201 _ 2 201 _ 2 201 2

(@0 =)+ M) =)+ N) | (@20 p?) + M) )+ Vo) 0)
N1(1 — p?)(a® 4 b% + 2abp + N1) Na(1 — p?)(a® + b% + 2abp + Na)

becausga®(1 — p?) + N;)(b*(1 — p?) + N;) — N;j(1 — p®)(a® + b* + 2abp + Nj) = (ab(1 — p?) — pIN;)* > 0 for j = 1,2.
Equality holds for (20) if and only if(p,a) = (0,0) or (p,b) = (0,0). Thus equality in stefd) holds if and only if

max(g, r,)ees (1 + AR2) = max(C1, ACz), which is in general not true. tfhax g, r,)ce.(R1 + ARz2) # max(Cy, A\Cy),
it follows that

max (Rl + /\Rg) > max (Rl + /\Rg)
(Rl,Rz)EGG (Rl,Rz)EIRD





