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SEMIPARAMETRIC ESTIMATION OF MUTUAL INFORMATION AND

RELATED CRITERIA : OPTIMAL TEST OF INDEPENDENCE

AMOR KEZIOU1 AND PHILIPPE REGNAULT2

Abstract. We derive independence tests by means of dependence measures thresholding in

a semiparametric context. Precisely, estimates of ϕ-mutual informations, associated to ϕ-

divergences between a joint distribution and the product distribution of its margins, are derived

through the dual representation of ϕ-divergences. The asymptotic properties of the proposed

estimates are established, including consistency, asymptotic distributions and large deviations

principle. The obtained tests of independence are compared via their relative asymptotic

Bahadur efficiency and numerical simulations. It follows that the proposed semiparametric

Kullback-Leibler Mutual information test is the optimal one. On the other hand, the proposed

approach provides a new method for estimating the Kullback-Leibler mutual information in

a semiparametric setting, as well as a model selection procedure in large class of dependency

models including semiparametric copulas.

Keywords : Mutual informations, ϕ-divergences, Fenchel Duality, Tests of independence, semi-

parametric inference.
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1. Introduction and notations

Measuring the dependence between random variables has been a central aim of probability the-

ory since its earliest developments. Classical examples of dependence measures are correlation

measures of Pearson, Kendall or Spearman. While the first one focuses on linear relationship

between real random variables, the two second ones measure the monotonic relationship be-

tween variables taking values in ordered sets. Pure-independence measures, between variables

X and Y taking values in general measurable spaces (X ,AX ) and (Y ,AY), can be defined by

considering any divergence between the joint distribution P of (X, Y ) and the product distribu-

tion of its margins P⊥ := P1⊗P2, where P1 and P2 are, respectively, the marginal distributions

of X and Y . The most outstanding and widely used example of such dependence measures is

the χ2-divergence between P and P
⊥ defined by

χ2(P,P⊥) :=
1

2

∫

X×Y

(
dP

dP⊥
(x, y)− 1

)2

dP⊥(x, y), (1)

where dP

dP⊥
denotes the density of P with respect to (w.r.t.) P

⊥. Note that, if P is a discrete

distribution, i.e., if its support X × Y := supp(P) is discrete (finite or countably infinite) set,

then the above divergence writes

χ2(P,P⊥) =
1

2

∑

(x,y)∈X×Y

(px,y − pxpy)
2

pxpy
,

where P := (px,y)(x,y), P
⊥ = (pxpy)(x,y), with px :=

∑
y px,y and py :=

∑
x px,y. Another classical

example, associated to the Kullback-Leibler (KL) divergence between P and P
⊥, is the well-

known mutual information (MI) defined by (see e.g. Cover and Thomas (2006))

IKL(P) := K(P,P⊥) :=

∫

X×Y

dP

dP⊥
(x, y) log

dP

dP⊥
(x, y) dP⊥(x, y), (2)
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which, in the case of discrete distributions, can be written under the form

IKL(P) =
∑

(x,y)∈X×Y

px,y log
px,y
pxpy

.

We will call the above classical measures of dependence (1) and (2), respectively, χ2-mutual in-

formation (χ2-MI) and KL-mutual information (KL-MI). When dealing with i.i.d. observations

(X1, Y1), . . . , (Xn, Yn), of two random variables (X, Y ), we may test the null hypothesis, that

the variables X and Y are independent, by means of estimating such dependence measure and

deciding to reject the null hypothesis of independence if the estimate is sufficiently far from

zero; the classical χ2-independence test is such a procedure : the corresponding test statistic

(in the discrete-distribution case) is

2nχ2
(
P̂, P̂⊥

)
= n

∑

(x,y)∈X×Y

(p̂x,y − p̂xp̂y)
2

p̂xp̂y
, (3)

where P̂ := (p̂x,y)(x,y) and P̂
⊥ := (p̂x p̂y)(x,y) are, respectively, the empirical versions of P =

(px,y)(x,y) and P
⊥ = (pxpy)(x,y). Likewise, to test the independence, we can consider as depen-

dence measure the KL-MI and use the test statistic

2n IKL(P̂) = 2n
∑

(x,y)∈X×Y

p̂x,y log
p̂x,y
p̂xp̂y

. (4)

The dependence measure can also be any other ϕ-divergence between P and P
⊥. The tests

based on such dependence measures, including the χ2-MI and KL-MI ones, have been exten-

sively studied in the case of finite-discrete distributions; see e.g. Pardo (2006) Chapter 8, and

the references therein. When dealing with continuous distributions (or continuous random vari-

ables), obviously, the above direct plug-in estimates (3) and (4), of the dependence measures

(1) and (2), are not well defined. Moreover, for countably-infinite discrete distributions, al-

though the above estimates (3) and (4) remain well defined, their limiting distributions are not

accessible. Therefore, in the case of non finite-discrete distributions, particularly, for the widely

used KL-MI, other kind of estimates have been proposed and studied in the literature; see e.g.

Moon et al. (1995) for a kernel density estimate, Kraskov et al. (2004) for a k-nearest-neighbor

estimate extending those of Shannon entropy in one dimension based on m-spacing; see e.g.

Tsybakov and van der Meulen (1996), Dudewicz and van der Meulen (1981) and Beirlant et al.

(1997) among others. Van Hulle (2005) derive an estimate using Edgeworth approximation of

Shannon entropy. Darbellay and Vajda (1999), Wang et al. (2005) and Cellucci et al. (2005)

propose estimates based on adaptative partitioning of X × Y . See also Khan et al. (2007)

for an overview and numerical comparisons of these estimates. Based on the Kullback-Leibler

importance estimation procedure, see Sugiyama et al. (2008), Suzuki et al. (2008) obtain an
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estimate of KL-MI called maximum likelihood mutual information, see also Sugiyama et al.

(2012) Chapter 11. Unfortunately, their (asymptotic) distributions remain inaccessible. Hence,

testing independence from these estimates requires Monte-Carlo or Bootstrap approximations

of the related p-values. On the other hand, the above nonparametric estimates suffer from loss

of efficiency, due to smoothing or partitioning, and suffer also from the difficulty of conveniently

choosing the classes, the number of classes or the smoothing parameters (the bandwidths and

the kernels). The present paper introduces new efficient semiparametric estimates of ϕ-mutual

information (ϕ-MI), i.e., dependence measures associated to ϕ-divergence functionals, includ-

ing the well known KL-MI and χ2-MI. These estimates are obtained by making use of a dual

representation of ϕ-MI, presented in Section 2, without using any smoothing nor partitioning.

The obtained estimates are defined in the same way for both finite-discrete or non-discrete

distributions, and coincide with the direct plug-in ones in the case of finite-discrete distribu-

tions. Their asymptotic properties are presented in Section 3. Particularly, the consistency is

stated for a large variety of semiparametric models for dP/dP⊥; the asymptotic distribution

is obtained for the KL-MI estimate in a special setting. The present approach leads to new

independence tests, whose Bahadur efficiency are compared in Section 4 ; the most efficient test

is shown to be the one based on the proposed estimate of the particular KL-MI criterion. It can

be used also in order to build a large variety of dependence models, through for instance a cross

validation-type model selection procedure based on the proposed estimate of ϕ-MI measure

of dependence; see Section 2.4. The powers of ϕ-MI based tests are compared numerically to

classical noncorrelation tests in Section 5. The results in the present paper have the advantage

(unlike the classical noncorrelation tests) to remain valid in the case of multisample problem

(estimating ϕ-mutual informations of a multidimensional random variable as well as testing

simultaneous independence of its components), but for simplicity, the results will be presented

only for the two-sample case. The same results hold for the multisample problem. All proofs

are postponed to the Appendix.

2. ϕ-mutual informations, Dual representations and Estimation strategy

Given an i.i.d. sample, (X1, Y1), . . . , (Xn, Yn), of a random vector (X, Y ) taking values in a

measurable space (X × Y ,AX ⊗AY), we aim at testing the null hypothesis H0 of independence

of the margins X and Y ; formally

H0 : X and Y are independent, against H1 : X and Y are dependent. (5)

We derive such tests by estimating and thresholding ϕ-mutual informations between X and

Y in a semiparametric context. Sections 2.1, 2.2 and 2.3 to follow, respectively, define ϕ-

mutual informations, present the semiparametric model under study, and introduce estimates
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of ϕ-MI used as test statistics for the test problem (5). Section 2.4 defines a cross-validation

procedure for model selection among L candidate models for the ratio dP/dP⊥, using the

proposed estimate of ϕ-MI.

2.1. Introducing ϕ-mutual informations. Denote by M1(X × Y) the set of all prob-

ability distributions on the product measurable space (X × Y ,AX ⊗AY). Let ϕ : R →
[0,+∞] be some nonnegative closed proper convex function such that its domain domϕ :=

{x ∈ R;ϕ(x) <∞} =: (aϕ, bϕ) is an interval, with endpoints aϕ < 1 < bϕ, and ϕ(1) = 0. The

interval (aϕ, bϕ) may be bounded or unbounded, open or not. The ϕ-divergence between any

probability distributions Q,P ∈ M1(X × Y), if Q is absolutely continuous with respect to

(a.c.w.r.t.) P , is defined by

Dϕ(Q,P ) :=

∫

X×Y

ϕ

(
dQ

dP
(x, y)

)
dP (x, y).

If Q is not a.c.w.r.t. P , we set Dϕ(Q,P ) = +∞. Note that Dϕ(Q,P ) ≥ 0, for any Q and P .

Moreover, if ϕ is strictly convex on some neighborhood of 1, we have the fundamental property

Dϕ(Q,P ) ≥ 0, with equality if and only if Q = P.

In the following, we assume that the function ϕ is strictly convex and two times continuously

differentiable on the interior of its domain (aϕ, bϕ). We have then ϕ′(1) = 0, and without loss of

generality, we can assume that ϕ′′(1) = 1. The well-known Kullback-Leibler divergence K(·, ·) is
obtained for ϕ(x) = ϕ1(x) := x log x−x+1, the “modified” Kullback-Leibler divergence Km(·, ·)
is obtained for ϕ(x) = ϕ0(x) := − log x+ x− 1. The χ2 and modified-χ2 divergences, denoted

χ2(·, ·) and χ2
m(·, ·), are associated, respectively, to the convex functions ϕ(x) = ϕ2(x) :=

(x − 1)2/2 and ϕ(x) = ϕ−1(x) := (x − 1)2/(2x). The so-called Hellinger distance H(·, ·) is

obtained for ϕ(x) = ϕ1/2(x) := 2(
√
x− 1)2; see Table 1. All these divergences are members of

the so-called “power-divergences” Dϕγ
(·, ·) associated to the convex functions ϕγ(·) defined by

ϕγ(·) : x ∈ R
∗
+ 7→ ϕγ(x) :=

xγ − γx+ γ − 1

γ(γ − 1)
(6)

if γ ∈ R \ {0, 1}, ϕ0(x) := − log x + x − 1 and ϕ1(x) := x log x − x + 1. The standard

divergences K(·, ·), Km(·, ·), χ2(·, ·), χ2
m(·, ·) and H(·, ·) are then associated, respectively, to

the real convex functions ϕ1(·), ϕ0(·), ϕ2(·), ϕ−1(·) and ϕ1/2(·). Note that the divergences are

generally not symmetric; particularly, we have for any Q,P ∈ M1(X×Y), Km(Q,P ) = K(P,Q)

and χ2
m(Q,P ) = χ2(P,Q). For more details and proofs, we can refer to Liese and Vajda (1987)

and Broniatowski and Keziou (2006). For any probability distribution P ∈ M1(X ×Y), let P⊥

denotes the product distribution P⊥ := P1 ⊗ P2 of the margins P1 and P2 of P . The ϕ-mutual
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information of P , associated to the divergence Dϕ(·, ·), is defined as

Iϕ(P ) := Dϕ(P, P
⊥).

For any random vector (X, Y ) defined on a probability space (Ω,A,P) and taking its values in

(X × Y ,AX ⊗AY), with joint distribution P ∈ M1 (X × Y), the ϕ-mutual information (ϕ-MI)

of (X, Y ) is defined to be

Iϕ(X, Y ) := Iϕ(P) = Dϕ(P,P
⊥) =

∫

X×Y

ϕ

(
dP

dP⊥
(x, y)

)
dP⊥(x, y). (7)

Since Dϕ(P,P
⊥) ≥ 0, with equality if and only if P = P

⊥, i.e., if and only if X and Y are

independent, ϕ-MI measures then the dependence between the random variables X and Y . In

contrast to the correlation coefficients of Pearson, Kendall or Spearman, the ϕ-MI does not

focus on the linear or monotonic relationship between random variables; it constitutes a proper

dependency measure. Note that Iϕ1 and Iϕ2 , with ϕ1 and ϕ2 given in Table 1, are, respectively,

the KL-MI and χ2-MI, given by (2) and (1). Thus, the test problem (5) is equivalent, in the

context of Iϕ criteria, to testing

Iϕ(P) = 0 against Iϕ(P) > 0.

Hence, we can use as test statistic an estimate of Iϕ(P), and reject the null hypothesis H0 when

the estimate takes large values. A natural attempt to estimate the ϕ-MI of (X, Y ) consists in

considering the plug-in estimate of Iϕ(P) obtained by replacing P(·) by its empirical counterpart

P̂(·) = 1

n

n∑

i=1

δ(Xi,Yi)(·), (8)

associated to the i.i.d. sample (X1, Y1), . . . , (Xn, Yn) of (X, Y ). Here, δ(x,y)(·) denotes the

Dirac measure at (x, y) for all (x, y) ∈ X × Y . Unfortunately, by doing so, we only measure

dependence of the contingency table associated to the sample. When dealing with variables X

and Y absolutely continuous with respect to Lebesgue measure, the contingency table is almost

surely an n × n table with all coefficients except diagonal ones equal to zero ; particularly,

variables X and Y appear (misleadingly) purely dependent, yielding to reject systematically

the null hypothesis. A second, less crude, approach consists in gathering the values Xi and

Yi into classes and testing independence between the induced finite-discrete variables X̃ and

Ỹ , by empirically estimating the ϕ-MI of (X̃, Ỹ ). This widespread approach suffers from the

difficulty of conveniently choosing the classes. Moreover, an important amount of information

carried by the sample is lost during this process, yielding to poor efficiency – or power – of

these tests. An other approach, is to use kernel nonparametric estimates of the joint density

and the marginal ones, but as it is well known this provides less efficient estimates and leads
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to the difficulty of choosing the optimal smoothing parameters. As an alternative, we propose

in the present paper semiparametric modeling of the ratio dP/dP⊥, and the use of duality

to obtain well-defined estimates of ϕ-MI without smoothing nor partitioning. The present

approach applies for both continuous or discrete distributions, or mixtures of continuous and

discrete distirubtions.

2.2. Semiparametric modeling of the ratio dP/dP⊥. Assume that the joint distribution

P of the random vector (X, Y ) belongs to the semiparametric model

MΘ :=

{
P ∈ M1(X × Y) such that

dP

dP⊥
(·, ·) =: hθ(·, ·); θ ∈ Θ

}
, (9)

where Θ ⊂ R
1+d is the parameter space, and hθ(·, ·) : (x, y) ∈ X × Y 7→ hθ(x, y) ∈ R is some

specified real-valued function, indexed by the parameter θ. In the sequel, we will consider the

following assumptions on the model MΘ.

(A.1) (hθ(x, y) = hθ′(x, y), ∀(x, y) ∈ X × Y) ⇒ (θ = θ′) (identifiability);

(A.2) there exists (a unique) θ0 ∈ int(Θ) satisfying hθ0(x, y) = 1, ∀(x, y) ∈ X × Y .

Assumption (A.1) is a natural identifiability condition for dP/dP⊥. Assumption (A.2) ensures

independence is covered by the model MΘ. The uniqueness of θ0 follows from Assumption

(A.1). Denote by θT the “true” unknown value of the parameter, namely, the unique value

satisfying
dP

dP⊥
(x, y) = hθT (x, y), ∀(x, y) ∈ X × Y ,

which is assumed to be an interior point of Θ. Then, we have θT = θ0 if and only if X and Y

are independent. Below are listed some relevant examples of the model (9).

Example 2.1. Let (X, Y ) ∈ R
2 be a centered Gaussian random vector with correlation coeffi-

cient ρ ∈]−1, 1[ and centered normal margins with the same variance σ2 > 0. A straightforward

computation shows that the ratio dP/dP⊥ can be written under the form of the model (9) where

hθ(x, y) = exp
{
α + β1(x

2 + y2) + β2xy
}
, (10)

θ := (α, β1, β2)
⊤ ∈ R

3, with α = − log(1− ρ2)/2, β1 = −ρ2/(2σ2(1 − ρ2)) and β2 = ρ/(σ2(1 −
ρ2)). Note that the parameter value, corresponding to the independence hypothesis, is θ0 =

(0, 0, 0)⊤.Moreover, if the distribution of (X, Y ) is Gaussian with unknown mean µ := (µ1, µ2)⊤
and unknown variance matrix Γ, then we can show that the ratio dP/dP⊥ can be written under

the form of the model (9) with

hθ(x, y) = exp
{
α + β1x+ β2y + β3x

2 + β4y
2 + β5xy

}
, (11)
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and θ := (α, β1, β2, β3, β4, β5)
⊤. Note that the number of free parameters in θT is d = 5, and that

αT is considered as a normalizing parameter due to the constraint
∫
X×Y

hθT (x, y) dP
⊥(x, y) =∫

X×Y
dP(x, y) = 1 since P is a probability distribution. Moreover, we have θ0 = (0, . . . , 0)⊤ ∈ R

6.

Example 2.2. Let ψ0(·, ·) := 1X×Y(·, ·), ψ1(·, ·), ψ2(·, ·), . . . , be some basis functions of the

space L2(X ×Y ,P⊥), and assume that log(dP/dP⊥(·, ·)) ∈ L2
(
X × Y ,P⊥

)
. We can then build

increasing models of the form (9) developing the function

(x, y) ∈ X × Y 7→ log
dP

dP⊥
(x, y)

according to the above basis functions. Using for instance the first (1 + d)-basis functions, we

obtain the following model for dP/dP⊥(·, ·)

hθ : (x, y) ∈ X × Y 7→ hθ(x, y) = exp (α + β1ψ1(x, y) + · · ·+ βdψd(x, y)) ,

where θ = (α, β1, . . . , βd)
⊤ ∈ Θ ⊂ R

1+d. Then, the independence parameter value is θ0 =

(0, . . . , 0)⊤ ∈ R
1+d.

Example 2.3. Assume that the support of P, supp(P) =: X ×Y, is a known finite-discrete set

of size K1K2; denote by (P(x, y))(x,y)∈X×Y := (px,y)(x,y)∈X×Y the density of P with respect to the

counting measure on X × Y. Then we have

dP

dP⊥
(x, y) = exp


 ∑

(a,b)∈X×Y

θa,b 1{a}(x)1{b}(y)


 , (12)

where

θa,b = log
pa,b
papb

, (a, b) ∈ X × Y .

If we denote for instance the elements of X and Y as follows

X := {a1, . . . , aK1} and Y := {b1, . . . , bK2} ,

then we can see that P belongs to the model (9) taking

hθ(x, y) = exp


α+

∑

(i,j)6=(1,1)

βi,j 1{ai}(x)1{bj}(y)


 , (13)

with the parametrization θ = (α, β⊤)⊤ ∈ R
K1K2, where α is a scalar and β = (βi,j)(i,j)6=(1,1)

is the (K1K2 − 1)-dimensional vector obtained from the K1 × K2-matrix of real entries (βi,j)

removing the first entry β1,1. Moreover, we have for the true value θT

αT = log
pa1,b1
pa1pb1

, and βi,jT = log
pai,bj
paipbj

− log
pa1,b1
pa1pb1

,
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for all (i, j) ∈ {1, . . . , K1} × {1, . . . , K2} \ {(1, 1)}, and that the number of free-parameters in

θT is equal to (K1 − 1)(K2 − 1). Moreover, we have θ0 = (0, . . . , 0)⊤ ∈ R
K1K2.

Example 2.4. Assume that the distribution P of the random vector (X, Y ) ∈ R
2 is of con-

tinuous margins. The copula C(·, ·) of the vector (X, Y ), see e.g. Nelsen (2006), is defined,

∀(u, v) ∈]0, 1[2, by
C(u, v) := F (F−1

1 (u), F−1
2 (v)),

where F (·, ·) is the cumulative distribution function of the vector (X, Y ), and F1 and F2 are

the (marginal) cumulative distribution functions of X and Y , respectively. The copula C(·, ·)
is in itself a distribution function on ]0, 1[2. If F (·, ·) is absolutely continuous with respect to

the Lebesgue measure on R
2, then we have the relation

dP

dP⊥
(x, y) =

f(x, y)

f1(x)f2(y)
= c (F1(x), F2(y)),

where f(·, ·) is the joint density of (X, Y ), f1 and f2 are the marginal densities of X and Y , and

c(·, ·) the copula density. Numerous parametric examples of the model (9) can then be obtained

taking the function

hθ(x, y) = cβ(F1,γ1(x), F2,γ2(y)) (14)

where {cβ(·, ·); β ∈ D ⊂ R
m} is some parametric copula density model, see e.g. Nelsen (2006)

or Joe (1997) for examples of such models, and {F1,γ1 ; γ1 ∈ Γ1} and {F2,γ2 ; γ2 ∈ Γ2} are some

parametric models for the marginal distribution functions. Here, the parameter of interest is

θ := (γ1, γ2, β) ∈ Θ := Γ1 × Γ2 ×D. Note that the assumption (A.2) is generally not satisfied

for this particular model. In fact, if we denote β0 the particular value corresponding to the

copula of independence, then we have h(γ1,γ2,β0)(·, ·) = 1 for any (γ1, γ2) ∈ Γ1 × Γ2. Although

assumption (A.2) is generally not satisfied, models (14) can be used in estimating ϕ-MI under

the assumption that the margins are dependent.

Example 2.5. We can also deal with semiparametric models induced by semiparametric models

of copula densities, with nonparametric unknown continuous marginal distribution functions

F1(·) and F2(·), taking
hθ(x, y) = cθ(F1(x), F2(y)); θ ∈ Θ ⊂ R

d.

2.3. Dual representation and dual estimation of ϕ-MI. We define estimates of ϕ-MI by

taking advantage of the modeling (9) and the dual representation of ϕ-divergences obtained in

Keziou (2003) and Broniatowski and Keziou (2006). Denote ϕ∗(·) the convex conjugate of the

convex function ϕ(·), namely, the function defined by

ϕ∗ : t ∈ R 7→ ϕ∗(t) := sup
x∈R

{tx− ϕ(x)} ∈ R ∪ {+∞}.
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Note that ϕ∗(·) is, in turn, a proper closed convex function, in particular, ϕ∗(0) = 0. Assume

that ϕ(·) is essentially smooth, i.e., differentiable on ]aϕ, bϕ[ with limx↓aϕ ϕ
′(x) = −∞ if aϕ >

−∞ and limx↑bϕ ϕ
′(x) = +∞ if bϕ < +∞. This is equivalent to the condition that ϕ∗(·) is

strictly convex on its domain. Provided that

(A.3) the ϕ-mutual information Iϕ(P) <∞,

see its definition (7), it can be rewritten under the form

Iϕ(P) = sup
f∈F

{∫

X×Y

f(x, y) dP(x, y)−
∫

X×Y

ϕ∗ (f(x, y)) dP⊥(x, y)

}
, (15)

where F is any class, of measurable real-valued functions f : X × Y → R, that contains the

particular function ϕ′(dP/dP⊥) and satisfies the condition
∫
X×Y

|f | dP < ∞, for all f ∈ F .

Note that, for all x ∈ (aϕ, bϕ), we have

ϕ∗(ϕ′(x)) = xϕ′(x)− ϕ(x).

In Table 1 are given explicit formulas of convex conjugates of some standard divergences. From

Dϕ(·, ·) ϕ(·) domϕ domϕ∗ ϕ∗(·)
Km(·, ·) ϕ0(x) := − log x+ x− 1 ]0,+∞[ ]−∞, 1[ − log(1− t)

K(·, ·) ϕ1(x) := x log x− x+ 1 [0,+∞[ R et − 1

χ2
m(·, ·) ϕ−1(x) :=

1
2
(x−1)2

x
]0,+∞[

]
−∞, 1

2

]
1−

√
1− 2t

χ2(·, ·) ϕ2(x) :=
1
2
(x− 1)2 R R

1
2
t2 + t

H(·, ·) ϕ1/2(x) := 2(
√
x− 1)2 [0,+∞[ ]−∞, 2[ 2t

2−t

Table 1. Convex conjugates for some standard divergences.

(15), taking into account the model (9) by specifying

F = {ϕ′(hθ); θ ∈ Θ},

and assuming in addition that

(A.4) for all θ ∈ Θ, we have
∫
X×Y

|ϕ′(hθ(x, y))| dP(x, y) <∞,

we obtain

Iϕ(P) = sup
θ∈Θ

{∫

X×Y

ϕ′(hθ(x, y)) dP(x, y)−
∫

X×Y

ϕ∗ (ϕ′(hθ(x, y))) dP
⊥(x, y)

}
. (16)

Moreover, the supremum is unique and achieved in θ = θT . The uniqueness of the supremum θT

follows from the strict convexity of ϕ∗(·) and the identifiability assumption (A.1). We propose
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then the following “dual” estimate of Iϕ(P)

Îϕ := sup
θ∈Θ

{∫

X×Y

ϕ′ (hθ(x, y)) dP̂(x, y)−
∫

X×Y

ϕ∗ (ϕ′(hθ(x, y))) dP̂1 ⊗ P̂2(x, y)

}

= sup
θ∈Θ

{
1

n

n∑

i=1

ϕ′ (hθ(Xi, Yi))−
1

n2

n∑

i=1

n∑

j=1

ϕ∗ (ϕ′ (hθ(Xi, Yj)))

}
, (17)

and the following “dual” estimate of the parameter θT

θ̂ϕ := arg sup
θ∈Θ

{∫

X×Y

ϕ′ (hθ(x, y)) dP̂(x, y)−
∫

X×Y

ϕ∗ (ϕ′(hθ(x, y))) dP̂1 ⊗ P̂2(x, y)

}

= arg sup
θ∈Θ

{
1

n

n∑

i=1

ϕ′ (hθ(Xi, Yi))−
1

n2

n∑

i=1

n∑

j=1

ϕ∗ (ϕ′ (hθ(Xi, Yj)))

}
, (18)

where P̂(·) is the empirical distribution, associated to the sample, given by (8). For ease of

presentation, define, ∀θ ∈ Θ and ∀(x, y) ∈ X × Y , the functions

fθ(x, y) := ϕ′(hθ(x, y)), (19)

gθ(x, y) := ϕ∗ (ϕ′(hθ(x, y))) = hθ(x, y)ϕ
′ (hθ(x, y))− ϕ (hθ(x, y)), (20)

which we assume to be continuous, in θ, on the set Θ,

M : θ ∈ Θ 7→ M(θ) :=

∫

X×Y

fθ(x, y) dP(x, y)−
∫

X×Y

gθ(x, y) dP1 ⊗ P2(x, y) (21)

and its empirical version

Mn : θ ∈ Θ 7→Mn(θ) :=

∫

X×Y

fθ(x, y) dP̂(x, y)−
∫

X×Y

gθ(x, y) dP̂1 ⊗ P̂2(x, y). (22)

Therefore, the formula (16) becomes

Iϕ(P) = sup
θ∈Θ

M(θ) =M(θT ), and θT = arg sup
θ∈Θ

M(θ). (23)

The estimates (17) and (18), in turn, can be written as

Îϕ = sup
θ∈Θ

Mn(θ) =Mn(θ̂ϕ) (24)

and

θ̂ϕ = arg sup
θ∈Θ

Mn(θ). (25)

Note that the functions fθ(·, ·), gθ(·, ·), M(·) and Mn(·) all depend on ϕ(·), but the subscript ϕ
is omitted for simplicity.
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Example 2.6. In the context of finite-discrete distributions, using the exponential model de-

scribed in Example 2.3, we show that the proposed dual estimate (17) of Iϕ(P), obtained by the

above “duality” technique, equals the direct plug-in one

Îemp

ϕ := Iϕ(P̂) =
∑

(x,y)∈X×Y

ϕ

(
p̂x,y
p̂xp̂y

)
p̂xp̂y. (26)

Indeed, we have by its proper definition

Îϕ = sup
θ∈Θ

Mn(θ), where Mn(θ) =
∑

(x,y)∈X×Y

[
ϕ′(eθx,y)p̂x,y − eθx,yϕ′(eθx,y)p̂xp̂y + ϕ(eθx,y)p̂xp̂y

]
.

(27)

Differentiating (27) with respect to θx,y for (x, y) ∈ X × Y yields

∂

∂θx,y
Mn(θ) = ϕ′′(eθx,y)

(
eθx,y p̂x,y − e2θx,y p̂xp̂y

)
.

Canceling derivatives ∂
∂θx,y

Mn(θ) yields

θ̂x,y = log
p̂x,y
p̂xp̂y

, (x, y) ∈ X × Y ,

which is independent from the choice of ϕ for this particular model. Finally, straightforward

simplifications yield

Îϕ =Mn(θ̂) =
∑

(x,y)∈X×Y

ϕ

(
p̂x,y
p̂xp̂y

)
p̂xp̂y = Îemp

ϕ .

Particularly, for ϕ(x) = ϕ2(x) := (x − 1)2/2, the estimate Îϕ2 of the χ2-mutual information

– or χ2 measure of independence – obtained by the duality technique is shown to equal (up to

the factor 2n) the classical χ2 statistics. Hence, in the context of finite-discrete distributions,

using the exponential model described in Example 2.3, we see that the proposed approach, via

duality technique, recovers the classical direct plug-in one, in particular, the well-known classical

χ2-independence test.

Remark 2.7. For finite discrete distributions (with known support, of size say K, see Example

2.3), as in plug-in estimation of Shannon entropy (see e.g. Chao and Shen (2003)), the direct

plug-in estimates Îemp
ϕ are valid with small bias if the sample size n >> K. If the sample size

n is not sufficiently large compared to the space size K, models hθ(·) other than (12) should be

used (through e.g. the model selection procedure described in Section 2.4), with small parameter

dimension, and the corresponding dual estimate Îϕ, if the model hθ(·) is correctly specified, could

be more promising than the direct plug-in one Îemp
ϕ .
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Example 2.8. Note that when dealing with semiparametric copula models

hθ(x, y) = cθ(F1(x), F2(y)),

with unknown nonparametric cumulative distribution functions F1 and F2, it is necessary to

estimate them, using for example their empirical counterparts. Denote by F̂1(·) and F̂2(·) the

empirical cumulative distribution functions associated, respectively, to the samples X1 . . . , Xn

and Y1, . . . , Yn, i.e.,

F̂1(x) :=
1

n

n∑

i=1

1]−∞,x](Xi) and F̂2(y) :=
1

n

n∑

i=1

1]−∞,y](Yi).

So that Îϕ and θ̂ϕ become

Îϕ = sup
θ∈Θ

{
1

n

n∑

i=1

ϕ′
(
cθ

(
F̂1(Xi), F̂2(Yi)

))
− 1

n2

n∑

i=1

n∑

j=1

ϕ∗
(
ϕ′
(
cθ

(
F̂1(Xi), F̂2(Yj)

)))}

θ̂ϕ = arg sup
θ∈Θ

{
1

n

n∑

i=1

ϕ′
(
cθ

(
F̂1(Xi), F̂2(Yi)

))
− 1

n2

n∑

i=1

n∑

j=1

ϕ∗
(
ϕ′
(
cθ

(
F̂1(Xi), F̂2(Yj)

)))}
.

Note that nF̂1(Xi) is the rank of Xi in the sample X1, . . . , Xn and nF̂2(Xj) is the rank of Yj in

the sample Y1, . . . , Yn. For some copula models, the copula density cθ(u1, u2) may be unbounded

when either u1 or u2 tends to 1; see e.g. Genest et al. (1995). In this case, to avoid this

difficulty, the “rescaled” empirical cumulative distribution functions

F̃1(·) :=
n

n+ 1
F̂1(·), F̃2(·) :=

n

n+ 1
F̂2(·)

should be used instead of the standard ones F̂1(·) and F̂2(·).

2.4. A model selection procedure for the ratio dP/dP⊥ through ϕ-MI criterion. Let

MΘ1 :=
{
hθ1,1(·, ·); θ1 ∈ Θ1 ⊂ R

d1
}
, . . . ,MΘL

:=
{
hθL,L(·, ·); θL ∈ ΘL ⊂ R

dL
}
be L candidate

models for the ratio dP/dP⊥. For any model MΘℓ
, denote by θ̂ℓ the estimate of θT given by

θ̂ℓ := arg sup
θℓ∈Θℓ

Mn(θℓ).

The corresponding “expected” criterion is

M(θ̂ℓ) =

∫

X×Y

fθ̂ℓ(x, y) dP(x, y)−
∫

X×Y

gθ̂ℓ(x, y) dP(x, y)
⊥.

From the representation (23), we can see that the larger the expected criterion M(θ̂ℓ) of the

model is, the closer the model is to the true one. We propose then the following k-fold cross-

validation procedure for model selection using the proposed estimate (24) of ϕ-MI.
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(1) Partition the sample (X1, Y1), . . . , (Xn, Yn) into k equal size (nk) subsamples. (Denote

the i-th subsample (X(i−1)nk+1, Y(i−1)nk+1), . . . , (Xink
, Yink

), for all i = 1, . . . , k);

(2) Consider a candidate model MΘℓ
;

(3) From the sample (X1, Y1), . . . , (Xn, Yn) remove the i-th subsample; compute the estimate

θ̂
(−i)
ℓ given by (25) using the remaining n− nk observations, i.e.,

θ̂
(−i)
ℓ = arg sup

θℓ∈Θℓ

Mn−nk
(θℓ);

(4) Repeat steps (2) and (3) for all i = 1, . . . , k, and obtain the following “estimate”

CV (MΘℓ
) :=

1

k

k∑

i=1


 1

nk

ink∑

j=(i−1)nk+1

f
θ̂
(−i)
ℓ

(Xj , Yj)−
1

n2
k

ink∑

j,m=(i−1)nk+1

g
θ̂
(−i)
ℓ

(Xj, Ym)




of the expected criterion M(θ̂ℓ), i.e.,

M(θ̂ℓ) =

∫

X×Y

fθ̂ℓ(x, y) dP(x, y)−
∫

X×Y

gθ̂ℓ(x, y) dP(x, y)
⊥;

(5) Repeat steps (2-4) for all ℓ = 1, . . . , L, and select the “optimal” model MΘℓ∗
that

maximizes CV (MΘℓ
) over ℓ = 1, . . . , L, i.e., the model MΘℓ∗

with

ℓ∗ := arg sup
ℓ∈{1,...,L}

CV (MΘℓ
).

Other model selection-type procedures can be investigated, through e.g. correcting the bias of

Mn(θ̂ℓ) as an estimate of the expected criterion M(θ̂ℓ), and selecting the model that maximizes

the obtained information criterion corrected from bias. The correction can be made e.g. by

asymptotic evaluation of the bias as in classical AIC criterion, or using bootstrap; see e.g.

Konishi and Kitagawa (2008) and Shao and Tu (1995).

3. Asymptotic properties of the estimates

We state in Section 3.1 the consistency of both estimates Îϕ and θ̂ϕ, of the ϕ-MI and the param-

eter θT . Section 3.2 gives, under the null hypothesis of independence, the limiting distribution

of the estimate Îϕ1 of the KL-MI, as well as the corresponding estimate θ̂ϕ1 of the parame-

ter θT , for some specific forms of the model {hθ(·, ·); θ ∈ Θ}. Section 3.3 provides bootstrap

calibration of the critical value of any Îϕ-based test statistic for general forms of the model

{hθ(·, ·); θ ∈ Θ} .
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3.1. Consistency. In this section, we state consistency of the estimate Îϕ, of the ϕ-MI, defined

by (17), as well as the consistency of the estimates θ̂ϕ of θT . We will use classical techniques

from M-estimation theory. We will make use of the following conditions.

(A.5) The parameter space Θ is a compact subset of R× R
d ;

(A.6)
∫
X×Y

supθ∈Θ |fθ(x, y)| dP(x, y) <∞;

(A.7)
∫
X×Y

supθ∈Θ gθ(x, y)
2 dP⊥(x, y) <∞,

where fθ and gθ are defined respectively by (19) and (20). Note that assumptions (A.6-7) imply

(A.3-4).

Proposition 3.1. Assume that conditions (A.1, 5-7) hold. Then, the estimates Îϕ of Iϕ(P)

defined by (17) and the estimates θ̂ϕ of θT defined by (18) are consistent. Precisely, as n→ ∞,

the following convergences in probability hold

Îϕ → Iϕ(P) and θ̂ϕ → θT .

Remark 3.2. Since in practice, all models are generally “misspecified”, the true parame-

ter value θT may not exist, it can however be replaced by the “pseudo-true” value θ∗T :=

arg supθ∈ΘM(θ), and the results of consistency in the above proposition remain valid.

3.2. The limiting distribution of the estimate Îϕ1 of KL-MI. We will give now the

limiting distribution of the particular statistical test based on the estimate Îϕ1 of classical

KL-MI, for specific forms of the model hθ(·, ·), under the null hypothesis of independence

H0 : P = P
⊥. Consider the following specific form of the model hθ(·, ·)

hθ(x, y) = exp (α+mβ(x, y)) with mβ(x, y) :=
d∑

k=1

βkξk(x)ζk(y), (28)

for some specified measurable real valued functions ξk and ζk, k = 1, . . . , d, defined, respectively,

on X and Y . The parameter θ is the vector θ := (α, β1, . . . , βd)
⊤ ∈ Θ ⊂ R × R

d. In this case,

the functions (19) and (20) become

fθ(x, y) = α +

d∑

k=1

βkξk(x)ζk(y)

and

gθ(x, y) = exp

(
α +

d∑

k=1

βkξk(x)ζk(y)

)
− 1.

The value θ0, corresponding to the independence, here is θ0 = 0 := (0, . . . , 0)⊤ ∈ R
1+d. We

will give the limiting distributions of θ̂ϕ1 and Îϕ1 , under the null hypothesis of independence

P = P
⊥, i.e., when θT = θ0 = 0. We will consider the following assumptions.
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(A.8) There exists a neighborhood N(θT ) of θT such that the third order partial derivative

functions {(x, y) 7→ (∂3/∂3θ)fθ(x, y); θ ∈ N(θT )}
(resp. {(x, y) 7→ (∂3/∂3θ)gθ(x, y); θ ∈ N(θT )}) are dominated by some functions P-

integrable (resp. some function P
⊥-square-integrable);

(A.9) The integrals P
∥∥f ′

θT

∥∥2, P⊥
∥∥g′θT

∥∥2, P
∥∥f ′′

θT

∥∥, P⊥
∥∥g′′θT

∥∥2 exist, and the matrix

Σ1 := −
(
Pf ′′

θT
− P

⊥g′′θT
)

(29)

is nonsingular.

Theorem 3.3. Assume that conditions (A.1-2,5-9) hold and that P = P
⊥ (i.e., θT = 0). Then,

(a)
√
n θ̂ϕ1 converges in distribution to a centered multivariate normal random variable with

covariance matrix Σ = Σ−1
1 Σ2Σ

−1
1 , where Σ1 and Σ2 are given respectively by (29)

and (40);

(b) 2n Îϕ1 converges in distribution to the random variable Z⊤Z, where Z is a centered

multivariate normal random variable with covariance matrix

C = Σ
−1/2
1 Σ2Σ

−1/2
1 .

Remark 3.4. For the finite-discrete case, using the modeling (13) in Example 2.3, we can see

that the corresponding matrix Σ2 is of rank (K1 − 1)(K2 − 1) and that the limiting distribution

of 2nÎϕ = 2nÎemp
ϕ is a χ2-distribution with (K1−1)(K2−1) degrees of freedom, in particular, we

recover the classical χ2-independence test theorem (for the case of finite-discrete distributions).

3.3. Bootstrap calibration. In the general context of model (9), for a given ϕ-MI, we pro-

pose the following bootstrap procedure to calibrate the critical value of the corresponding test

statistic. The critical value, denote it bα, is the upper α-quantile of the distribution of the test

statistic Sn := 2nÎϕ, under the null hypothesis H0 of independence.

(1) Generate bootstrap sample (X∗
1 , Y

∗
1 ), . . . , (X

∗
n, Y

∗
n ) from the product empirical distribu-

tion P̂
⊥ = P̂1 ⊗ P̂2 of the original sample (X1, Y1), . . . , (Xn, Yn);

(2) Compute the value of the statistic S∗
n := 2nÎ∗ϕ from the bootstrap sample;

(3) Repeat steps (1) and (2) B = 1000 times, independently, to obtain the realizations{
S∗
n,1, S

∗
n,2, . . . , S

∗
n,B

}
;

(4) Estimate bα by b̃α := the (1− α)th quantile of the sequence
{
S∗
n,1, S

∗
n,2, . . . , S

∗
n,B

}
.

4. Large deviations principle and Bahadur asymptotic efficiency

In this section, we compare Bahadur asymptotic efficiency of ϕ-MI based independence tests

and show that the test based on classical Kullback-Leibler mutual information is the most

efficient. Given (Îϕ1)n and (Îϕ2)n two sequences of statistics, for the test problem (5), numbers



SEMIPARAMETRIC ESTIMATION OF MUTUAL INFORMATION AND RELATED CRITERIA 17

α ∈ (0, 1), γ ∈ (0, 1) and an alternative hypothesis P 6= P
⊥, we define ni(α, γ,P), for i ∈ {1, 2},

respectively, as the minimal number of observations needed for the test based on Îϕi
to have

signification level α and power level γ. Then, Bahadur asymptotic relative efficiency of (Îϕ1)n

with respect to (Îϕ2)n is defined as (if the limit exists)

lim
α→0

n2(α, γ,P)

n1(α, γ,P)
.

It is well known, see for example Nikitin (1995) and van der Vaart (1998) Chapter 14, that if

both sequences (Îϕ1)n and (Îϕ2)n satisfy a large deviation principle under the null hypothesis

(with good rate functions eϕ1(·) and eϕ2(·)) and also a law of large number under a given

alternative hypothesis H1 : P 6= P
⊥, with asymptotic means µϕ1(P) and µϕ2(P), respectively,

then the Bahadur asymptotic relative efficiency equals eϕ1(µϕ1(P))/eϕ2(µϕ2(P)). Particularly,

the most efficient test maximizes Bahadur slope eϕ(µϕ(P)). A law of large number under the

alternative hypothesis is given for the sequence (Îϕ)n in Proposition 3.1 above; the excepted

value µϕ(P) being µϕ(P) = Iϕ(P) = Dϕ(P,P
⊥). The following theorem establishes a large

deviation principle under the null hypothesis of independence. It relies on some generalization

due to Eichelsbacher and Schmock (2002) of classical Sanov theorem to finer topologies and

the contraction principle. Let G be the set of measurable functions, from X × Y into R, given

by

G := B ∪ {ϕ′(hθ); θ ∈ Θ} ∪ {ϕ∗(ϕ′(hθ)); θ ∈ Θ},

where B is the set of all measurable bounded functions from X × Y into R. Recall that

M1 = M1(X × Y) is the set of all probability measures on X × Y , and let us introduce the

subset

MG := MG(X×Y) :=

{
P ∈ M1 :

∫

X×Y

|ϕ′(hθ)| dP <∞,

∫

X×Y

|ϕ∗(ϕ′(hθ))| dP⊥ <∞, ∀θ ∈ Θ

}
.

Define on MG the τG-topology as the coarsest one that makes applications P ∈ MG 7→∫
X×Y

ϕ′(hθ) dP , P ∈ MG 7→
∫
X×Y

f dP , P ∈ MG 7→
∫
X×Y

ϕ∗(ϕ′(hθ)) dP
⊥ and P ∈ MG 7→∫

X×Y
f dP⊥ continuous, for all θ ∈ Θ and all f ∈ B. Finally, define, for all Q ∈ MG, the

“pseudo-divergence”

Dϕ(Q,Q
⊥) := sup

θ∈Θ

{∫

X×Y

ϕ′(hθ(x, y)) dQ(x, y)−
∫

X×Y

ϕ∗ (ϕ′(hθ(x, y)))dQ
⊥(x, y)

}
.

Obviously, Dϕ(Q,Q
⊥) ≤ Dϕ(Q,Q

⊥) =: Iϕ(Q) with equality for probability distributions such

that dQ/dQ⊥ = hθ for some θ ∈ Θ. Note also that Q ∈ MG 7→ Dϕ(Q,Q
⊥) is continuous with

respect to the τG-topology as the supremum over the compact set Θ of continuous functions.
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The large deviation principle for the sequence (P̂(·))n of empirical measures defined by (8), es-

tablished by Eichelsbacher and Schmock (2002), requires the existence of exponential moments;

in the context of the model (9), we thus assume

(A.10) for all f ∈ G, for all a > 0,
∫

X×Y

exp(a|f |) dP <∞.

Note that the strong assumption (A.10) implies (A.3-4) if P = P
⊥. In the context of the

models described in Examples 2.1 to 2.5, assumption (A.10) may not be satisfied for some

ϕ-divergences ; particularly, it does not generally hold for power-divergences (except for finite-

discrete distribution models described in Example 2.3). A sufficient condition for (A.10) is

(A.11) there exist real numbers m,M ∈ (aϕ, bϕ) such that m < hθ(x, y) < M , ∀(x, y) ∈
X × Y , ∀θ ∈ Θ.

Indeed, for all a > 0, the functions exp(a|ϕ′(hθ)|) and exp(a|ϕ∗(ϕ′(hθ))|) are bounded and

therefore integrable with respect to both P and P
⊥. Again, (A.11) is not generally satisfied

for models described in the previous examples for power-divergences, but it may be artificially

verified by truncating the distributions in the models. Let us also point out that Theorems 4.1

and 4.2 below may remain true with some alternative assumptions on the distribution queues,

lighter than (A.10). Particularly, simulations performed in Section 5 for bivariate Gaussian

distributions tend to show that Theorem 4.2 holds for the Gaussian model described in Exam-

ple 2.1. For getting a closed form for the LDP of (Îϕ)n, we will establish the right-continuity

of the rate function, making use of one of the following assumptions:

(A.12.a) (X, Y ) is finite-discrete, supported by X × Y ;

(A.12.b) The model
{
hθ(·, ·); θ = (α, β⊤)⊤ ∈ Θ

}
is of the from hθ(x, y) = exp (α +mβ(x, y)) with

the condition that, for any constant c and any β, we have P
⊥ (mβ(X, Y ) = c) 6= 0 iff

β = (0, . . . , 0)⊤ and c = 0.

Theorem 4.1. Let (X, Y ) be a couple of independent random variables with joint distribution

P = P
⊥ ∈ MΘ ∩MG.

(1) Suppose that conditions (A.1-2, 5-7, 10 and 12.b) are satisfied. Then, the sequence (Îϕ)n

of estimates, of Iϕ(P) = 0, given by (17), satisfies the following large deviation principle

1

n
log P⊥

(
Îϕ > d

)
n→∞−→ −eϕ(d), d > 0, (30)

where the good rate function eϕ(·) is

eϕ(d) := inf
Q∈Ωd

K(Q,P⊥) with Ωd :=
{
Q ∈ MG such that Dϕ(Q,Q

⊥) ≥ d
}
. (31)
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(2) Assume that conditions (A.1-2, 5 and 12.a) are satisfied. Then the above statement holds

if MG is replaced by the set of all discrete-finite distributions with the same finite support

X × Y.

In view of Proposition 3.1 and Theorem 4.1 above, the Bahadur slope of the independence test

based on Îϕ, for any ϕ, is given then by

sϕ := eϕ(Iϕ(P))

= inf{K(Q,P⊥) : Dϕ(Q,Q
⊥) ≥ Dϕ(P,P

⊥)}.

Since Dϕ(P,P
⊥) = Dϕ(P,P

⊥), we have P ∈ {Q : Dϕ(Q,Q
⊥) ≥ Dϕ(P,P

⊥)}, so that, for any ϕ,

sϕ ≤ K(P,P⊥) = IKL(P) = Iϕ1(P). (32)

Equality is achieved in (32) for the divergence Dϕ = K. Indeed,

sKL = inf{K(Q,P⊥) : DKL(Q,Q
⊥) ≥ K(P,P⊥)}.

Straightforward computations yield

K(Q,P⊥) = K(Q,Q⊥) +K(Q1,P1) +K(Q2,P2),

for any Q ∈ MG. Particularly, for any Q such that DKL(Q,Q
⊥) ≥ K(P,P⊥), we have

K(Q,Q⊥) ≥ DKL(Q,Q
⊥) ≥ K(P,P⊥), hence,

K(Q,P⊥) ≥ K(Q,Q⊥) ≥ K(P,P⊥),

so that

sKL ≥ K(P,P⊥). (33)

Combining (32) and (33), we obtain

Theorem 4.2. Let (X, Y ) be a couple of random variables with joint distribution P ∈ MΘ∩MG.

Suppose that either conditions (A.1-2, 5-7, 10 and 12.b) or (A.1-2, 5 and 12.a) are satisfied.

For the test problem (5), the test based on the estimate Îϕ1, see (17), of the Kullback-Leibler

mutual information, is uniformly (i.e., whatever be the alternative P 6= P
⊥) the most efficient

test, in Bahadur sense, among all Îϕ-based tests, including the classical χ2-independence one.

Remark 4.3. Assume that P is a finite-discrete distribution. We obtain then that KL-MI based

independence test is more efficient than the classical χ2 independence one. This result was

already stated, in goodness-of-fit testing for finite-discrete distributions, see e.g. van der Vaart

(1998) Chapter 17 Section 17.6. The above theorem extends it to testing independence, for

more general probability distributions, not necessarily finite-discrete.
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5. Simulations

This Section aims at numerically comparing through simulations ϕ-MI based tests with other

independence or non-correlation tests. Precisely, Section 5.1 focuses on finite-discrete random

vectors, for which the optimal KL-MI test is compared to the very popular (but not optimal)

χ2-independence test. Section 5.2 compares KL-MI and χ2 tests to classical non-correlation

tests of Pearson, Kendall and Spearman. Finally, Section 5.3 deals with the example of the

copula density model of Farlie-Gumbel-Morgenstern (FGM), for which the critical values of

KL-MI and χ2-MI tests are derived through the bootstrap procedure described in Section 3.3.

5.1. Testing independence of finite-discrete random variables. As stated in Exam-

ple 2.6, the dual estimates Îϕ given by (17) equal the direct empirical ones (26). Their prop-

erties and asymptotic behavior are well-known; see e.g. Pardo (2006). They are recovered

by Propositions 3.1, Theorem 3.3 and Theorem 4.2. We illustrate these properties through

simulations, by comparing the power of KL-MI and χ2-MI tests, for various sample sizes and

finite-discrete supports X = Y = {1, . . . , K}, and for alternatives P ∈ M1(X ×Y) of the form

Pθ := (px,y;θ)(x,y), with

px,y;θ = (1− θ)
1

K2
+ θ

1

K
1{x=y}, (x, y) ∈ X × Y , (34)

where K = |X | = |Y| and θ ∈ (0, 1), i.e., the random variables X and Y are uniformly

distributed on the set {1, . . . , K}, and the conditional distribution PY |X=x(·), of Y knowing

X = x, is the mixture of the uniform distribution on {1, . . . , K} with weight (1 − θ) and the

Dirac measure δx(·) with weight θ, for all x ∈ {1, . . . , K} . Hence, for θ = θ0 = 0, X and Y are

independent, while for θ = 1, we have Y = X . The level of the tests has been set to α = 0.01.

The asymptotic distribution of 2nÎϕ is χ2 ((K − 1)(K − 1)), a χ2-distribution with (K − 1)2

degrees of freedom, for both KL-MI or χ2-MI. The critical value b0.01 of both test statistics

is taken then to be the upper 0.01-quantile of the χ2 ((K − 1)(K − 1))-distribution. Then,

we have estimated their respective powers, by means of Monte-Carlo procedure from 10000

samples drawn according to Pθ given by (34), for various mixture parameter values θ ∈ (0, 1).

The results are presented in Table 2, Figure 1 and Figure 2. We can see that the KL-MI test

outperforms the classical χ2 one. The nominal levels of both KL-MI and χ2-MI test statistics

are both close to the test level α = 0.01.

5.2. Comparison of ϕ-MI based and noncorrelation tests in the Gaussian setting.

For bidimensional normally distributed random vectors, the corresponding model hθ(·, ·), see
Example 2.1, is of the form (28), so that the asymptotic distribution of the dual KL-MI based

test statistic 2nÎϕ1 is explicit. Hence, explicit (asymptotic) critical value can be obtained for
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K = |X | = |Y| = 2 θ = 0 0.08 0.18 0.28 0.38 0.48 0.58 0.68

n = 30
KL-MI test power 0.0123 0.0242 0.0647 0.1681 0.3343 0.5690 0.7981 0.9415

χ2 test power 0.0102 0.0200 0.0550 0.1433 0.2968 0.5330 0.7703 0.9288

n = 40
KL-MI test power 0.0119 0.0213 0.0764 0.2176 0.4502 0.7180 0.9046 0.9850

χ2 test power 0.0100 0.0184 0.0694 0.2006 0.4272 0.6970 0.8957 0.9839

K = |X | = |Y| = 3 θ = 0 0.07 0.15 0.23 0.31 0.39 0.47 0.55

n = 35
KL-MI test power 0.0192 0.0261 0.0604 0.1503 0.3162 0.5267 0.7476 0.8952

χ2 test power 0.0081 0.0118 0.0371 0.1157 0.2708 0.4878 0.7259 0.8895

n = 50
KL-MI test power 0.0152 0.0261 0.0782 0.2152 0.4369 0.7150 0.9039 0.9816

χ2 test power 0.0088 0.0167 0.0648 0.1929 0.4283 0.7124 0.9057 0.9832

Table 2. Comparison of powers of KL-MI and χ2-MI tests. The number of cells

K is indicated at the top left of each block. The sample sizes n are given by the

first column while the mixture parameter values θ, see its definition in (34), are

given by the first row.

Figure 1. Comparison of KL-MI and χ2-MI based tests for finite-discrete ran-

dom variables taking values in {1, 2}, with n = 30.
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Figure 2. Comparison of KL-MI and χ2-MI based tests for finite-discrete ran-

dom variables taking values in {1, 2, 3}, with n = 35.

the test statistic 2nÎϕ1 . Although assumption (A.10) may not be satisfied without restricting

the support of (X, Y ) to a bounded subset of R2, we can compare numerically the powers of the

ϕ-MI based tests. Precisely, in this Section we manage to compare the powers of KL-MI and

χ2-MI independence tests with noncorrelation tests for samples of size n = 50 drawn according

to bivariate normal distributions. We have fixed the level α = 0.05 and computed the critical

value of KL-MI based test by means of Monte-Carlo simulations of the asymptotic distribution

of 2nÎϕ1 given by Theorem 3.3 (10000 samples of the variable Z in Theorem 3.3 have been

simulated; the critical value has been obtained as the 0.95-quantile of the linearly interpolated

empirical cumulative density function). The critical value for the χ2-MI based test have been

estimated directly by simulating 10000 samples of size 50 of a bivariate Gaussian random

vector with independent centered and reduced distribution and computing the 0.95-quantile

of the corresponding tes statistic 2nÎϕ2 . Then we have estimated the power of these tests as

well as noncorrelation tests of Pearson, Spearman and Kendall, still by Monte-Carlo methods:
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for any correlation value ρ ∈ {0, 1/20, 2/20, . . . , 1}, we have considered N = 1000 samples,

with size n = 50, of centered bivariate Gaussian couples with marginal variances equal to 1

and covariance ρ varying from 0 to 1. Recall that the noncorrelation test of Pearson, for this

particular Gaussian model, is the most uniformly powerful test, among all tests with the same

level α. Figure 3 presents the power curves for KL-MI (plain black curve), χ2-MI (dotted black

curve) independence tests, and Pearson (dashed red curve), Kendall and Spearman (mixed

dashed and dotted red and blue curves) correlation tests, obtained from N = 1000 samples of

size n = 50 of bivariate Gaussian distributions. For this setting, we can see form Figure 3, that

our poposed KL-MI independence test is almost as powerful as the most uniformly powerful

independence test of Pearson. χ2-MI, Spearman and Kendall tests have comparable powers,

lower than KL-MI and Pearson’s ones.
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Figure 3. Comparison of powers of KL-MI and χ2-MI tests with noncorrelation

tests of Pearson, Spearman and Kendall.
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5.3. Comparison of ϕ-MI based tests for a copula density model. This Section aims

at comparing numerically the ϕ-MI based independence tests in the context of semiparamet-

ric copula-type model, as described in Example 2.5. We consider here the Farlie-Gumbel-

Morgenstern (FGM) copula model

CFGM(u, v; θ) = uv(1 + θ(1− u)(1− v)), (u, v) ∈ [0, 1]2, θ ∈ Θ = [−1, 1],

with θ0 = 0. We compare the powers of KL-MI and χ2-MI based tests of independence to

noncorrelation ones. We consider the alternative hypothesis that X and Y are uniformly

distributed on [0, 1] and copulated by a FGM copula. We consider values of the parameter θ of

the form θ = k/16, with k ∈ {0, . . . , 16}. We have estimated the critical values of the KL-MI

and χ2-MI tests using the bootstrap procedure presented in Section 3.3, from an original sample

of size n = 50 resampled 10 000 times. The powers are computed by Monte-Carlo method from

N = 5000 samples of size n = 50. The results are presented in Table 3. We can see again

that KL-MI based test still outperforms the others. We can see also that the nominal levels (of

KL-MI and χ2-MI test statistics) are sufficiently close to the test levels evaluated through the

bootstrap procedure described in Section 3.3, with α = 0.05.

θ 0 1/16 2/16 3/16 4/16 5/16 6/16 7/16

KL-MI 0.062 0.061 0.064 0.076 0.093 0.120 0.142 0.171

χ2 0.054 0.055 0.057 0.066 0.084 0.108 0.129 0.160

Pearson 0.052 0.057 0.061 0.072 0.089 0.113 0.135 0.170

Spearman 0.055 0.058 0.060 0.069 0.086 0.110 0.133 0.164

Kendall 0.056 0.057 0.057 0.069 0.086 0.111 0.130 0.161

θ 8/16 9/16 10/16 11/16 12/16 13/16 14/16 15/16 1

KL-MI 0.219 0.261 0.312 0.382 0.431 0.498 0.565 0.622 0.691

χ2 0.202 0.244 0.296 0.362 0.404 0.472 0.527 0.589 0.659

Pearson 0.213 0.257 0.309 0.375 0.427 0.493 0.549 0.611 0.677

Spearman 0.207 0.249 0.300 0.369 0.410 0.478 0.533 0.596 0.663

Kendall 0.203 0.243 0.293 0.356 0.405 0.467 0.527 0.584 0.647

Table 3. Power functions of KL-MI and χ2-MI tests compared to noncorrelation

tests obtained from N = 5000 samples of size n = 50 of the FGM copula with

parameter θ varying from 0 to 1 by step of 1/16.

6. Concluding remarks and discussion

In this paper, we have defined and studied estimates of ϕ-mutual informations, based on the dual

representation of ϕ-divergences and a semiparametric modeling of the density ratio between the

joint distribution of the couple and the product distribution of its margins. The consistency
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of these estimates – named dual-estimates – has been established assuming some classical

regularity conditions on the model; the asymptotic normality has been established for classical

Kullback-Leibler mutual information and specific models by means of classical M-estimation

theory arguments. The asymptotic normality of other ϕ-mutual information dual-estimates

may be derived similarly, for specific models depending on the considered ϕ-divergence. For

example, when dealing with the power divergence associated to ϕγ functions given by (6),

the asymptotic normality of the corresponding ϕγ-mutual-information dual-estimates may be

derived in a similar way when focusing on the so-called γ-exponential semiparametric model

P ∈
{
P ∈ M1(X × Y) such that

dP

dP⊥
(x, y) = expγ

(
d∑

k=0

θkξk(x)ζk(y)

)
, θ = (θ0, . . . , θd) ∈ Θ

}
,

where expγ(t) := ((γ − 1)t + 1)
1

γ−1

+ , with (·)+ = max(0, ·). Our semiparametric approach for

estimating mutual informations constitutes a promising alternative to classical nonparametric

procedures based on kernel density estimation or adaptive partitioning. No parameters such as

bandwidth or kernel type has to be adjusted. The asymptotic normality of dual-estimates is also

of significative importance, particularly, for hypothesis-testing purpose. For the sake of both

completeness and accessibility, we are developing a package for the R software providing user-

ready procedures, including the k-fold cross validation procedure described in Section 2.4, for

selecting the model that best matches the data. We also aim at comparing the dual-estimates

of mutual informations to nonparametric estimates. As an application of dual-estimation of

mutual informations, we have derived a class of independence tests, recovering as a particular

case, the classical χ2-independence test. For a large variety of situations including finite-discrete

random couples, the most efficient test is based on the KL-MI estimates, outperforming the

classical χ2-independence one. Motivated by the simulation experiments presented in this

paper, we guess that the optimality of KL-MI independence test can be extended to a larger

family of models.

7. Appendix

Proof of Proposition 3.1. Using continuity of gθ(x, y) in θ on the compact set Θ, and condition

(A.7), we can state, by Bienaymé-Tchebychev inequality, the uniform convergence in probability

An := sup
θ∈Θ

∣∣∣∣
∫
gθ(x, y) dP̂

⊥(x, y)−
∫
gθ(x, y) dP

⊥(x, y)

∣∣∣∣→ 0. (35)



26 AMOR KEZIOU
1
AND PHILIPPE REGNAULT

2

Under condition (A.6), using continuity of fθ(x, y) in θ over the compact set Θ, we have by

uniform weak law of large numbers the convergence in probability

Bn := sup
θ∈Θ

∣∣∣∣
∫
fθ(x, y) dP̂(x, y)−

∫
fθ(x, y) dP(x, y)

∣∣∣∣→ 0. (36)

Now, we have
∣∣∣Îϕ − Iϕ(P)

∣∣∣ =

∣∣∣∣sup
θ∈Θ

Mn(θ)− sup
θ∈Θ

M(θ)

∣∣∣∣

=
∣∣∣Mn(θ̂ϕ)−M(θT )

∣∣∣ := |Cn| (37)

with

Cn,L :=Mn(θT )−M(θT ) ≤ Cn ≤Mn(θ̂ϕ)−M(θ̂ϕ) =: Cn,R.

We can see that both sides converge in probability to zero, since

|Cn,L| ≤ An +Bn and |Cn,R| ≤ An + Bn

and the use of convergences (35) and (36). We conclude that Îϕ → Iϕ(P) in probability. The

convergence of θ̂ϕ to θT holds by direct application of Theorem 5.7 in van der Vaart (1998),

using the uniform convergence in probability

sup
θ∈Θ

|Mn(θ)−M(θ)| → 0

and the well-separability of the supremum θT ; it is unique and interior point of Θ. �

Proof of Theorem 3.3. (a) Direct calculus gives

Pf ′
0
− P

⊥g′
0
= 0 (38)

and

Pf ′′
0
− P

⊥g′′
0
= −P

⊥
(
h′
0
h′⊤
0

)
= −Σ1. (39)

Observe that the above matrix Σ1 is symmetric and positive.

For any θ ∈ Θ, we have M ′
n(θ) = P̂f ′

θ − P̂
⊥g′θ. Note that

f ′
0
(x, y) = g′

0
(x, y) = (1, ξ1(x)ζ1(y), . . . , ξd(x)ζd(y))

⊤ .

We will state the asymptotic normality of
√
nM ′

n(0) using the multivariate Delta method. So

consider the random column vector in R
1+3d

V (X, Y ) := (1, ξ1(X), . . . , ξd(X), ζ1(Y ), . . . , ζd(Y ), ξ1(X)ζ1(Y ), . . . , ξd(X)ζd(Y ))
⊤ .

Denote by

µ := E(V (X, Y )) = (1,P1ξ1, . . . ,P1ξd,P2ζ1, . . . ,P2ζd,P1ξ1P2ζ1, . . . ,P1ξdP2ζd)
⊤
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which is a column vector in R
1+3d. Then we have, by multivariate central limit theorem, the

convergence in distribution

√
n

(
1

n

n∑

i=1

V (Xi, Yi)− µ

)
→ N1+3d (0,Σ) ,

with Σ = E
(
(V (X, Y )− µ)(V (X, Y )− µ)⊤

)
, from which we obtain, by multivariate Delta

method, √
n (M ′

n(0)− ψ(µ)) → N1+d

(
0,Σ2 := ψ′(µ)Σψ′(µ)⊤

)
, (40)

where ψ(·) is the function defined on R
1+3d into R

1+d by

ψ(x0, x1, . . . , xd, y1, . . . , yd, z1, . . . , zd) = (0, x1y1 − z1, . . . , xdyd − zd)
⊤

which is of class C1. Note that ψ(µ) = 0, the first component of M ′
n(0) is equal to zero for all

n and that the first column and row of the limiting covariance matrix Σ2 are equal both to 0.

Whence we have the convergence in distribution
√
nM ′

n(0) → N1+d (0,Σ2) . (41)

By Taylor expansion of Un(θ̂ϕ1) in θ̂ϕ1 around θT = 0, using condition (A.8) and the convergence

in probability of θ̂ϕ1 to θT = 0, we obtain

0 =M ′
n(θ̂ϕ1) =M ′

n(0) +M ′′
n(0)θ̂ϕ1 + oP(1)θ̂ϕ1 . (42)

On the other hand, by (A.9), we can write

M ′′
n(0) = Pf ′′

0
− P

⊥g′′
0
+ oP(1) = −Σ1 + oP(1).

Combining the last two displays, leads to

M ′
n(0) = (Σ1 + oP(1)) θ̂ϕ1 . (43)

We have, from (41), that
√
nM ′

n(0) = OP(1), which by (43) implies that
√
nθ̂ϕ1 = OP(1).

Combining this last result with the relation (42), we obtain
√
nθ̂ϕ1 = Σ−1

1

√
nM ′

n(0) + oP(1). (44)

Use this last relation and (41) to conclude the proof of part (a).

(b) By Taylor expansion of Îϕ1 =Mn(θ̂ϕ1), in θ̂ϕ1 around θT = 0, using the fact thatMn(0) = 0

and some of the above statements, we obtain

Îϕ1 := Mn(θ̂ϕ1)

= M ′
n(0)θ̂ϕ1 −

1

2
θ̂⊤ϕ1

Σ1θ̂ϕ1 + oP(1/n)



28 AMOR KEZIOU
1
AND PHILIPPE REGNAULT

2

which by (44) leads to

2n Îϕ1 =
(√

nM ′
n(0)

)⊤
Σ−1

1

√
nM ′

n(0) + oP(1) (45)

=
(√

nΣ
−1/2
1 M ′

n(0)
)⊤

Σ
−1/2
1

√
nM ′

n(0) + oP(1). (46)

This proves the convergence in distribution of 2n Îϕ1 to the random variable Z⊤Z, where Z

is a centered multivariate normal random variable with covariance matrix C = Σ
−1/2
1 Σ2Σ

−1/2
1 . �

Proof of Theorem 4.1. First, under assumption (A.10), Eichelsbacher and Schmock (2002)

yields the following large deviations principle for the sequence (P̂)n of empirical measures : we

have for all measurable subset B of MG,

lim inf
n→∞

1

n
log P⊥

(
P̂ ∈ B

)
≥ − inf

Q∈ IntτG (B)
K(Q,P⊥), (47)

and

lim sup
n→∞

1

n
log P⊥

(
P̂ ∈ B

)
≤ − inf

Q∈ ClτG (B)
K(Q,P⊥), (48)

where IntτG (B) and ClτG(B) denote, respectively, the interior and closure of B, with respect to

the τG-topology. Since Q ∈ MG 7→ Dϕ(Q,Q
⊥) is continuous, we obtain by contraction principle

from (47) and (48), for all d > 0,

lim inf
n→∞

1

n
logP⊥

(
Îϕ > d

)
≥ − inf

{
K(Q,P⊥); Q ∈ MG and Dϕ(Q,Q

⊥) > d
}

(49)

and

lim sup
n→∞

1

n
logP⊥

(
Îϕ > d

)
≤ − inf

{
K(Q,P⊥); Q ∈ MG and Dϕ(Q,Q

⊥) ≥ d
}
. (50)

We now prove that the function eϕ(·) : d ∈ R
∗
+ 7→ inf{K(Q,P⊥); Q ∈ MG and Dϕ(Q,Q

⊥) ≥
d} ∈ [0,+∞] is right-continuous so that infima in (49) and (50) are equal, yielding (30). So, let

d > 0 be any positive real number, and show that eϕ(·) is right-continuous at d. If no Q ∈ Ωd

exists such that K(Q,P⊥) < +∞, obviously, since for any d′ ∈ R
∗
+ such that d ≤ d′, we have

Ωd′ ⊆ Ωd, then both eϕ(d) and eϕ(d
′) equal ∞, which implies that eϕ is right-continuous at d

in this case. Now, assume that some Q ∈ Ωd exists such that K(Q,P⊥) < ∞. Two cases can

be handled separately. First, assume that the infimum (31) is achieved for some Q such that

Dϕ(Q,Q
⊥) =: d′ > d. Then, for all d′′ satisfying d ≤ d′′ ≤ d′, the equality eϕ(d

′′) = eϕ(d) holds,

yielding the right-continuity of eϕ at d. Second, assume that the infimum (31) is achieved for

Q such that Dϕ(Q,Q
⊥) = d. Let us prove that there exists a sequence (Qn)n of elements of

{Q : Dϕ(Q,Q
⊥) > d} such that K(Qn,P

⊥)
n→∞−→ K(Q,P⊥) yielding right-continuity of eϕ(·) at
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d. We build such a sequence (Qn)n such that Qn has the same marginal distributions as Q, i.e.,

Qn,1 = Q1 and Qn,2 = Q2. We have then Q⊥
n = Q⊥. Let

θ := arg sup
θ∈Θ

{∫
ϕ′(hθ) dQ−

∫
ϕ∗(ϕ′(hθ)) dQ

⊥

}
,

so that ∫
ϕ′(hθ) dQ−

∫
ϕ∗ (ϕ′(hθ)) dQ

⊥ = Dϕ(Q,Q
⊥) = d > 0. (51)

Denote Q̃ the image distribution on the Borel σ-field (R,B(R)) of Q by the function ϕ′(hθ). Let

us prove by contradiction that Q̃ can not be Dirac measure, by making use of either (A.12.a)

or (A.12.b). If Q̃ was a Dirac measure, necessarily ϕ′(hθ) would be Q-a.s. constant, i.e., hθ
would be Q-a.s. constant

hθ(·, ·) = c, Q-a.s. (52)

Now, if (A.12.a) holds, we can consider the set of all finite-discrete distributions with the same

finite support X × Y , instead of the set MG. Hence, Q and Q⊥ have same support, so that

(52) implies that

hθ(·, ·) = c, Q⊤-a.s. (53)

Combining (52), (53) and (51), we obtain

ϕ(c) + ϕ′(c)(1− c) = d > 0. (54)

On the other hand, by convexity of ϕ(·) and the fact that ϕ(1) = 0, we get

0 = ϕ(1) ≥ ϕ(c) + ϕ′(c)(1− c) = d,

which contradicts the fact that d > 0. Alternatively, assume that (A.12.b) holds. Note that,

under this assumption in connection with (A.2), we can see that the value θ0 (of the parameter

corresponding to independence) is necessarly θ0 := (α0, β
⊤
0 )

⊤ = (0, 0, . . . , 0)⊤. We can see also,

by contradiction as above, that θ can not be of the form (α, 0, . . . , 0)⊤ with α 6= 0. Hence, it

can be written as

θ = (α, β
⊤
)⊤ with β 6= (0, . . . , 0)⊤. (55)

Now, by (52), using the fact that hθ(·, ·) is of the form exp (α +mβ(·, ·)), we get that

mβ(·, ·) = cte, Q-a.s. (56)

Note that the support of Q⊥ is included in that of P⊥ (if not, Q would not be a.c.w.r.t. P
⊥

and K(Q,P⊥) would not be finite). Hence, (56) implies that P⊥(mβ(X, Y ) = cte) 6= 0, which

in turn implies that β = (0, . . . , 0)⊤ by assumption (A.12.b). This contradicts (55). We have

proven then that Q̃ is not a Dirac measure. So, there exist A, B two measurable subsets of
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(aϕ∗ , bϕ∗) = Im(ϕ′) such that Q̃(A) > 0, Q̃(B) > 0 and a := inf A > b := sup(B). Denoting

g := dQ/dQ⊥ the density of Q with respect to the product of its marginal distributions, set

gn :=
(
1 +

c1
n

)
g1{ϕ′(h

θ
)∈A} +

(
1− c2

n

)
g1{ϕ′(h

θ
)∈B} + g1{ϕ′(h

θ
)∈A∪B}

= g +
c1
n
g1{ϕ′(h

θ
)∈A} −

c2
n
g1{ϕ′(h

θ
)∈B},

where c1 := Q̃(B) and c2 := Q̃(A). Note that gn is nonnegative for n sufficiently large, and

that
∫
X×Y

gn(x, y) dQ
⊥(x, y) = 1. Then, let Qn be the probability distribution on X × Y such

that Qn,1 = Q1, Qn,2 = Q2 and dQn/dQ
⊥ = gn. We have

∫

X×Y

ϕ′(hθ) dQn =

∫

X×Y

ϕ′(hθ)gn dQ
⊥

=

∫
ϕ′(hθ) dQ+

c1
n
EQ̃(Id.1A)−

c2
n
EQ̃(Id.1B)

≥
∫
ϕ′(hθ) dQ+

c1
n
aQ̃(A)− c2

n
bQ̃(B)

=

∫
ϕ′(hθ) dQ+

c1c2
n

(a− b)

>

∫
ϕ′(hθ) dQ,

where Id(x) := x, for all x ∈ (aϕ∗ , bϕ∗). Then,

Dϕ(Qn, Q
⊥
n ) =

∫
ϕ′(hθ) dQn −

∫
ϕ∗(ϕ′(hθ)) dQ

⊥

>

∫
ϕ′(hθ) dQ−

∫
ϕ∗(ϕ′(hθ)) dQ

⊥

= d.

Finally, the convergence of K(Qn,P
⊥) to K(Q,P⊥) can be proved using the decompositions

K(Qn,P
⊥) = K(Qn, Q

⊥) +K(Q⊤,P⊥), K(Q,P⊥) = K(Q,Q⊥) +K(Q⊤,P⊥),

and Lebesgue’s dominated convergence theorem. �
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Kraskov, A., Stögbauer, H., and Grassberger, P. (2004). Estimating mutual information. Phys.

Rev. E, 69, 066138.

Liese, F. and Vajda, I. (1987). Convex statistical distances, volume 95 of Teubner-Texte zur

Mathematik [Teubner Texts in Mathematics]. BSB B. G. Teubner Verlagsgesellschaft, Leipzig.

With German, French and Russian summaries.

Moon, Y.-I., Rajagopalan, B., and Lall, U. (1995). Estimation of mutual information using

kernel density estimators. Phys. Rev. E, 52, 2318–2321.

Nelsen, R. B. (2006). An introduction to copulas. Springer Series in Statistics. Springer, New

York, second edition.

Nikitin, Y. (1995). Asymptotic efficiency of nonparametric tests. Cambridge University Press,

Cambridge.



32 AMOR KEZIOU
1
AND PHILIPPE REGNAULT

2

Pardo, L. (2006). Statistical inference based on divergence measures, volume 185 of Statistics:

Textbooks and Monographs. Chapman & Hall/CRC, Boca Raton, FL.

Shao, J. and Tu, D. S. (1995). The jackknife and bootstrap. Springer Series in Statistics.

Springer-Verlag, New York.

Sugiyama, M., Suzuki, T., Nakajima, S., Kashima, H., von Bünau, P., and Kawanabe, M.

(2008). Direct importance estimation for covariate shift adaptation. Ann. Inst. Statist.

Math., 60(4), 699–746.

Sugiyama, M., Suzuki, T., and Kanamori, T. (2012). Density ratio estimation in machine

learning. Cambridge University Press, Cambridge. With a foreword by Thomas G. Dietterich.

Suzuki, T., Sugiyama, M., Sese, J., and Kanamori, T. (2008). Approximating mutual informa-

tion by maximum likelihood density ratio estimation. Proceedings of ECML-PKDD2008, 4,

5–20.

Tsybakov, A. B. and van der Meulen, E. C. (1996). Root-n consistent estimators of entropy

for densities with unbounded support. Scand. J. Statist., 23(1), 75–83.

van der Vaart, A. W. (1998). Asymptotic statistics. Cambridge Series in Statistical and Prob-

abilistic Mathematics. Cambridge University Press, Cambridge.

Van Hulle, M. M. (2005). Edgeworth approximation of multivariate differential entropy. Neural

Computation, 17, 1903–1910.
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