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Linear Degrees of Freedom of MIMO Broadcast
Channels with Reconfigurable Antennas in the

Absence of CSIT
Minho Yang, Student Member, IEEE, Sang-Woon Jeon, Member, IEEE, and Dong Ku Kim, Member, IEEE

Abstract

The K-user multiple-input and multiple-output (MIMO) broadcast channel (BC) with no channel state information at the
transmitter (CSIT) is considered, where each receiver is assumed to be equipped with reconfigurable antennas capable of choosing
a subset of receiving modes from several preset modes. Under general antenna configurations, the sum linear degrees of freedom
(LDoF) of the K-user MIMO BC with reconfigurable antennas is completely characterized, which corresponds to the maximum
sum DoF achievable by linear coding strategies. The LDoF region is further characterized for a class of antenna configurations.
Similar analysis is extended to the K-user MIMO interference channels with reconfigurable antennas and the sum LDoF is
characterized for a class of antenna configurations.

Index Terms

Blind interference alignment, broadcast channels, degrees of freedom (DoF), multiple-input and multiple-output (MIMO),
reconfigurable antennas.

I. INTRODUCTION

Recently, there have been considerable researches on characterizing the degrees of freedom (DoF) of wireless networks. As
current wireless networks become very complicated, exact capacity characterization is so difficult that many researchers have
actively studied approximate capacity characterizations in the shape of DoF. The DoF is the prelog factor of capacity, providing
an intuitive metric for the number of interference-free communication channels that wireless networks can attain at the high
signal-to-noise ratio (SNR) regime. Hence, it is regarded as a primary performance metric for multiantenna and/or multiuser
communication systems. Cadambe and Jafar recently made a remarkable progress on understanding DoF of multiuser wireless
networks showing that the sum DoF of the K-user interference channel (IC) is given by K/2 [1]. An innovative methodology
called interference alignment (IA) has been proposed to obtain K/2 DoF, which aligns multiple interfering signals into the same
signal space at each receiver. The concept of such signal space alignment has been successfully adapted to various network
environments, e.g., see [2]–[8] and the references therein. More recently, different strategies of IA were further developed in
terms of ergodic IA [9]–[12] and real IA [13], [14].

Note that most of the previous researches including the aforementioned IA techniques have focused on DoF of wireless
networks under the assumption that each transmitter perfectly knows global channel state information (CSI). However, for
many practical communication systems, acquiring the exact CSI value at transmitters is very challenging due to channel
feedback delay, system overhead, and so on. Motivated by these practical restrictions, implementing IA under a more relaxed
CSI condition has been actively studied in the literature. Maddah-Ali and Tse made a breakthrough in [15] demonstrating
that completely outdated CSI is still useful to improve DoF of the K-user multiple-input and single-output (MISO) broadcast
channel (BC). Preceded by [15], there have been a series of researches for studying IA techniques exploiting outdated or
delayed CSI at transmitters [16]–[20]. In [16]–[18], similar DoF gains were shown in MIMO BC under delayed CSIT and, in
particular, the DoF region of the two-user MIMO BC with delayed CSIT was completely characterized in [18]. In the context
of IC, it has been first shown in [21] that IA can achieve more than one DoF in the three-user SISO IC under delayed CSIT,
which is then extended to the K-user case in [19], [20].

Although there is still a practical demand for further relaxing CSI requirements at the transmitter side, it has been proved
in [22] that the DoF of the K-user MISO BC collapses to one for isotropic fading if the transmitter cannot acquire any
information about CSI. In terms of isotropic fading and no CSIT, similar DoF degradation was further shown in MIMO BC
and IC [23]–[26]. On the other hand, IA without CSIT, called blind IA, has been recently proposed in [27] for a class of
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heterogeneous block fading models1 achieving larger DoF than that achievable for the isotropic fading model. In addition, it
was shown that blind IA obtains similar DoF gain for a class of homogeneous block fading models2 [28]–[30].

In [31], [32], Gou, Wang, and Jafar have first proposed a blind IA technique exploiting reconfigurable antennas. As shown
in Fig. 1, reconfigurable antennas are capable of dynamically adjusting their radiation patterns in a controlled and reversible
manner through various technologies such as solid state switches or microelectromechanical switches (MEMS), which can
be conceptually modeled as antenna selection that each RF-chain of reconfigurable antennas chooses one of receiving mode
among several preset modes at each time instant, see also [32, Section I] for the concept of reconfigurable antennas. Based on
a remarkable observation that even for time-invariant channels, reconfigurable antenna can artificially create channel matrices
correlated across time in some specific structure, the authors in [32] show that the optimal sum DoF of the K-user M × 1
MISO BC is given by MK

M+K−1 when each user is equipped with a reconfigurable antenna whose RF-chain can choose one
receiving mode from M preset modes. Subsequently, in [33], the achievability result in [32] is generalized to the K-user
M ×N MIMO BC where each user is equipped with a set of reconfigurable antennas whose RF-chains are able to choose N
receiving modes from M preset modes, showing that the sum DoF of MNK

M+NK−N is achievable. The idea of blind IA using
reconfigurable antennas is further extended to ICs consisting of receivers with reconfigurable antennas [34]–[38].

In this paper, we consider the K-user MIMO BC assuming a general reconfigurable antenna environment. In particular, the
transmitter is equipped with M antennas and user k, k = 1, · · · ,K, is equipped with a set of reconfigurable antennas whose RF-
chains can choose Lk receiving modes from Nk preset modes (Nk ≥ Lk), which includes the conventional non-reconfigurable
antenna model (Nk = Lk for this case). We focus on the linear DoF (LDoF) with no CSIT, i.e., the maximum DoF achievable
by linear coding strategies with no CSIT, see also [39]–[41] for the definition of LDoF. For general antenna configurations,
we completely characterize the sum LDoF of the K-user MIMO BC with reconfigurable antennas in the absence of CSIT.
We further characterize the LDoF region for a specific class of antenna configurations. Therefore, the main contributions of
this paper are two-folds: 1) we generalize the previous achievability results in [32], [33] assuming a certain class of antenna
configurations to general antenna configurations, 2) we show the converse of our achievable DoF in the LDoF sense, which
implies that the achievability result in [33] is also optimal in the LDoF sense. Our analysis is further applied to a class of
K-user MIMO IC with reconfigurable antennas and the sum LDoF is characterized for a class of antenna configurations, which
generalizes the achievable sum DoF result in [36].

The rest of this paper is organized as follows. In Section II, we introduce the K-user MIMO BC with reconfigurable antennas.
In Section III, we first define the LDoF and state the main result of this paper, the sum LDoF and LDoF region of the K-user
MIMO BC with reconfigurable antennas. We present the converse and achievability of the main results in Section IV and V,
respectively and finally conclude in Section VI.

II. SYSTEM MODEL

A. Notation

For integer values a and b, a \ b and a|b denote the quotient and the remainder respectively when dividing a by b. For a
set A, |A| is the cardinality of A. For a vector space V , dim(V) is the dimension of V . For a matrix A, AT , |A|, rank(A),
and R(A) are the transpose, determinant, rank, and column space of A respectively. For matrices A and B, A ⊗ B is the
Kronecker product of A and B. For a set of matrices {Ai}i=1,··· ,n, diag(A1, · · · ,An) denotes the block-diagonal matrix
consisting of {Ai}. Also Ia, 1a×b, and 0a×b denote the a× a identity matrix, the a× b all-one matrix, and the a× b all-zero
matrix respectively and let 0a = 0a×a.

B. K-user MIMO BC with Reconfigurable Antennas

Consider the K-user MIMO BC depicted in Fig. 2 in which the transmitter is equipped with M antennas and user k ∈ K =
{1, · · · ,K} is equipped with a set of reconfigurable antennas whose RF-chains are able to choose Lk receiving modes from
Nk preset modes at every time instant, where Nk ≥ Lk. Note that, if Nk = Lk, then user k is equivalent to be equipped with
Lk conventional (non-reconfigurable) antennas.

The received signal vector of user k at time t is given by

yk(t) = Γk(t)Hk(t)x(t) + zk(t) (1)

where Hk(t) ∈ CNk×M is the channel matrix from the transmitter to Nk preset modes of user k at time t, x(t) ∈ CM is the
transmit signal vector at time t, zk(t) ∈ CLk is the additive noise vector of user k at time t, and Γk(t) ∈ {0, 1}Lk×Nk is the
selection matrix of user k at time t. In particular, each row vector of Γk(t) consists of zero values except for a single element
of one value and is different from each other. That is, Γk(t) extracts Lk elements out of the Nk elements in Hk(t)x(t) and
if user k is equipped with conventional antennas, i.e., Lk = Nk, then Γk(t) = INk

so that Γk(t) can be omitted in (1). The

1Certain users experience smaller coherence time/bandwidth than others (See [27] for more details).
2All users experience independent block fading with the same coherence time, but different offsets (See [28] for more details).
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Fig. 1. Conceptual illustration of reconfigurable antennas, where each of L RF-chains chooses one receiving mode from N preset modes.

Fig. 2. K-user MIMO BC with reconfigurable antennas.

transmitter should satisfy the average power constraint P , i.e., limn→∞
1
n

∑n
t=1 ‖x(t)‖2 ≤ P , where ‖ · ‖ denote the norm of

a vector. The elements of zk(t) are independent and identically distributed (i.i.d.) drawn from CN (0, 1).
We assume that channel coefficients are i.i.d. drawn from a continuous distribution and remain constant across time, i.e.,

Hk(t) = Hk for all t ∈ N. Global channel state information (CSI) is assumed to be available only at the users, but not at
the transmitter. i.e., no CSIT. Furthermore, we assume that each user selects its receiving modes in a predetermined pattern
independent of channel realization, which are revealed to the transmitter. That is, Γk(t) is not a function of {Hj}j∈K for all
k ∈ K and t ∈ N.

For notational convenience, from (1), we define the n time-extended input–output relation as

ynk = ΓnkHn
kxn + znk (2)

where

Γnk = diag (Γk(1), · · · ,Γk(n)) ,

Hn
k = In ⊗Hk,

ynk =
[
yTk (1) · · ·yTk (n)

]T
,

xnk =
[
xTk (1) · · ·xTk (n)

]T
,

znk =
[
zTk (1) · · · zTk (n)

]T
.

III. LINEAR DEGREES OF FREEDOM AND MAIN RESULTS

A. Linear Degrees of Freedom

In this paper, we confine the transmitter to use linear precoding techniques, in which DoF represents the dimension of the
linear subspace of transmitted signals [40]. Consider a linear precoding scheme with block length n, in which the transmitter
sends the information symbols of user k, denoted by sk ∈ Cmk(n), through the n time-extended beamforming matrix Vn

k ∈
CnM×mk(n). Hence, the n time-extended transmit signal vector is given by

xn =

K∑
j=1

Vn
j sj

and, from (2), the n time-extended received signal vector of user k is given by

ynk =

K∑
j=1

ΓnkHn
kVn

j sj + znk .
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Fig. 3. Sum LDoF dΣ with respect to K when M = 4 and L = 1.

Based on such a linear precoding scheme, we define the linear degrees of freedom as the follow, see also [40] for more
details.

Definition 1: The linear degrees of freedom (LDoF) of K-tuple (d1, · · · , dK) is said to be achievable if there exist a set of
beamforming matrices Vn

j and selection matrices Γnj for j = 1, · · · ,K almost surely satisfying

dim
(

ProjIcj R(Γnj Hn
j Vn

j )
)

= mj(n),

dj = lim
n→∞

mj(n)

n

where Ij = R(Γnj Hn
j [Vn

1 · · ·Vn
j−1V

n
j+1 · · ·Vn

K ]) and ProjAc B denotes the vector space induced by projecting the vector
space B onto the orthogonal complement of the vector space A.

The LDoF region D is the closure of the set of all achievable LDoF tuples satisfying Definition 1 and the sum LDoF is
then given by

dΣ = max
(d1,··· ,dK)∈D

{
K∑
k=1

dk

}
.

B. Main Results

For convenience of representation, the following parameters are defined.

Lmax = max
k∈K
{Lk},

Tk = min(M,Nk) for k ∈ K,
Λ = {k ∈ K : Tk > Lmax},

η =

∑
i∈Λ

TiLi

Ti−Li

1 +
∑
i∈Λ

Li

Ti−Li

. (3)

In the following, we completely characterize the sum LDoF of the K-user MIMO BC with reconfigurable antennas.
Theorem 1: For the K-user MIMO BC with reconfigurable antennas defined in Section II, the sum LDoF is given by

dΣ = min(M,max(Lmax, η)). (4)

Proof: We refer to Section IV-A for the converse proof and Section V-A for the achievability proof.
Remark 1: From Theorem 1, Nk greater than M cannot further increase dΣ. Therefore, the number of preset modes Nk for

maximizing dΣ is enough to set Nk = M for k ∈ K. Note that this remark is valid only in MIMO BC with reconfigurable
antennas and it is shown in [37] that the number of preset modes greater than that of transmit antennas can increase sum DoF
in MIMO IC with reconfigurable antennas.
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Fig. 4. LDoF region D for the 2-user MIMO BC with reconfigurable antennas, where M,N1, N2 > max(L1, L2).

Fig. 5. LDoF region D when K = 2, M = 4, L1 = 2, and L2 = 1.

Example 1: Consider the symmetric K-user MIMO BC with reconfigurable antennas in Section II in which Nk = N and
Lk = L for all k ∈ K. For this case,

dΣ = min

(
M,max

(
L,

KLmin(M,N)

KL+ min(M,N)− L

))
(5)

from Theorem 1. To figure out the impact of reconfigurable antennas, let us focus on the limiting case where K tends to
infinity. Then

lim
K→∞

dΣ = min(M,max(L,min(M,N))) = min(M,N) (6)

regardless of L. Note that dΣ = min(M,L) for the symmetric K-user MIMO BC without reconfigurable antennas, which
corresponds to the case where N = L. Therefore, reconfigurable antennas can significantly improve the sum LDoF as both M
and N increase. Figure 3 plots dΣ with respect to K when M = 4 and L = 1. As the number of preset modes N increases,
the DoF gain from reconfigurable antennas increases compared to the conventional (nonreconfigurable) antenna model, i.e.,
N = L.

We further derive the LDoF region D for a class of antenna configurations in the following theorem.
Theorem 2: Consider the K-user MIMO BC with reconfigurable antennas defined in Section II. If M > Lmax and

Nk > Lmax for all k ∈ K, then the LDoF region D consists of all K-tuples (d1, · · · , dK) satisfying

dk
Lk

+

K∑
j=1,j 6=k

dj
Tj
≤ 1 (7)

for all k ∈ K.
Proof: We refer to Section IV-B for the converse proof and Section V-B for the achievability proof.

Example 2: Consider the 2-user MIMO BC with reconfigurable antennas in Section II in which M,N1, N2 > max(L1, L2).
From Theorem 2, the LDoF region D is then given as in Fig. 4. For the conventional (nonreconfigurable) antenna model,
where N1 = L1 and N2 = L2, D is given by the time-sharing region between (L1, 0) and (0, L2). Hence D enlarges as N1
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Fig. 6. K-user MIMO IC with reconfigurable antennas.

and N2 increase, which demonstrate the benefit of reconfigurable antennas. Figure 5 plots D when K = 2, M = 4, L1 = 2,
and L2 = 1.

From Theorem 1, the sum LDoF is derived for a class of the K-user MIMO IC with reconfigurable antennas in the following.
We omit the formal definition of LDoF for the K-user MIMO IC with reconfigurable antennas, which can be straightforwardly
defined in the same manner as in Definition 1.

Corollary 1: Consider the K-user MIMO IC with reconfigurable antennas depicted in Fig. 6 in which transmitter k ∈ K is
equipped with Mk antennas and user k is equipped with a set of reconfigurable antennas whose RF-chains are able to choose
Lk receiving mode from Nk preset modes, where Nk ≥ Lk. If Mk ≥ Nk for all k ∈ K, then the sum LDoF is given by

dΣ,IC = max(Lmax, ηIC) (8)

where ηIC is defined as η with Λ = {k ∈ K : Nk > Lmax} and Tk = Nk for all k ∈ Λ
Proof: Obviously, the achievable LDoF of the K-user MIMO IC with reconfigurable antennas defined in Corollary 1 is

upper bounded by dΣ of the K-user MIMO BC with reconfigurable antennas where the transmitter is equipped with
∑K
k=1Mk

antennas and user k ∈ K is equipped with a set of reconfigurable antennas whose RF-chains are able to choose Lk receiving
modes from Nk preset modes. Hence, from Theorem 1, the LDoF of the considered K-user MIMO IC is upper bounded by
(8), which completes the converse proof of Corollary 1. We refer to Section V-C for the achievability proof.

Example 3: Consider the symmetric MIMO IC with reconfigurable antennas in Fig. 6 in which Nk = N and Lk = L for
all k ∈ K ,where N ≥ L. If M ≥ N , then from Corollary 1,

dΣ,IC = max

(
L,

KLN

KL+N − L

)
, (9)

which attains limK→∞ dΣ,IC = N . Note that the symmetric K-user MIMO IC without reconfigurable antennas is given
by dΣ,IC = L, which corresponds to the case where M ≥ N = L. Therefore, similar to the symmetric MIMO BC case,
reconfigurable antenna can significantly improve the sum LDoF as both M and N increase with M ≥ N .

The following two remarks summarize the contributions of Theorem 1 and Corollary 1, compared with the previous results
in [33], [36].

Remark 2: Consider the K-user MIMO BC with reconfigurable antennas defined in Section II. If M = Nk and Lk = L
for all k ∈ K where M > L, then

dΣ =
MLK

M + LK − L
from Theorem 1, which coincides with the previous achievability result in [33]. Hence, Theorem 1 not only generalizes the
result in [33] but it also shows the converse in the LDoF sense for general M , {Nk}k∈K, and {Lk}k∈K.

Remark 3: Consider the K-user MIMO IC with reconfigurable antennas defined in Corollary 1. If Mk = Nk > 1 and
Lk = 1 for all k ∈ K, then

dΣ,IC =

K∑
k=1

Nk

Nk−1

1 +
K∑
k=1

1
Nk−1
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from Corollary 1, which coincides with the previous achievability result in [36]. Hence, Corollary 1 not only generalizes the
result in [36] but it also shows the converse in the LDoF sense for a broader class of antenna configurations.

IV. CONVERSE

In this section, we prove the converse of Theorem 1, 2.

A. Converse of Theorem 1

First divide the entire parameter space into three cases as follows:
• Case 1: M ≤ Lmax.
• Case 2: M > Lmax and Nk ≤ Lmax for all k ∈ K.
• Case 3: M > Lmax and Nk > Lmax for some k ∈ K.

Then the right hand side of (4) is given by

min(M,max(Lmax, η)) =


M for Case 1,
Lmax for Case 2,
max(Lmax, η) for Case 3.

(10)

For Case 1, an achievable sum LDoF is trivially upper bounded by the number of transmit antennas. Consequently, we have

dΣ ≤M for Case 1. (11)

For Case 2, consider the extended K-user MIMO BC by substituting Nk = Lmax and Lk = Lmax for all k ∈ K from the
original K-user MIMO BC with reconfigurable antennas. That is, for the extended K-user MIMO BC, all users are equipped
with Lmax conventional antennas. Obviously, the sum DoF of the extended K-user MIMO BC provides an upper bound on dΣ.
From the fact that the received signals of all the user are statistically equivalent in the extended K-user MIMO BC so that any
receiver can decode all messages from the transmitter, dΣ is further bounded by the sum DoF of point-to-point MIMO BC where
transmitter and receiver are equipped with M and Lmax conventional antennas respectively, given by min(M,Lmax) = Lmax.
Therefore, we have

dΣ ≤ Lmax for Case 2. (12)

Hence, for the rest of this subsection, we prove that

dΣ ≤ max(Lmax, η)

by assuming that M > Lmax and Nk > Lmax for some k ∈ K, which is Case 3. Suppose that user k satisfies the condition
Tk > Lmax (equivalently k ∈ Λ). Then, consider the extended K-user MIMO BC with reconfigurable antennas at user k by
substituting Ni = Lmax and Li = Lmax for all i ∈ K\Λ and Li = Ni for all i ∈ Λ\{k} from the original K-user MIMO BC
with reconfigurable antennas. Hence, users in K\Λ have Lmax conventional antennas and user i ∈ Λ\{k} has Ni conventional
antennas. Only user k is equipped with reconfigurable antennas in this extended model. Again, the sum DoF of this model
provides an upper bound on dΣ. Then, the received signal vector of user i is given by

yi(t) =

{
Γk(t)Hkx(t) + zk(t) if i = k,

Gix(t) + zi(t) otherwise
(13)

where Gi ∈ Cmax(Ni,Lmax)×M for i ∈ K \ {k} satisfies the channel assumption in Section II.
For convenience, we rearrange the users in ascending order of Li and denote the new index of user i as σ(i). We assume

that σ(k) = 1 without loss of generality. From now on, we denote the index i as the rearranged user index. Fig. 7 illustrates
the extended model based on the rearranged user index. Hence, the n time-extended received signal vector of user i with linear
precoding is given by

yni =


K∑
j=1

Γni Hn
i Vn

j sj + zni if i = 1,

K∑
j=1

Gn
i Vn

j sj + zni otherwise
(14)

where Gn
i = In ⊗Gi for i ∈ K \ {1}. Also, we define an increasing sequence ∆i for i ∈ K as

∆i =


Lk if σ−1(i) = k,

Lmax if σ−1(i) ∈ K \ Λ,

Tσ−1(i) otherwise.
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Fig. 7. Extended K-user MIMO BC with reconfigurable antennas based on the rearranged user index, where we assume that if |Λ| = 1, then the set of user
K − |Λ|+ 2 through user K is empty and if |Λ| = K, then the set of user 2 through K − |Λ|+ 1 is empty.

Note that ∆i is the rank of Γ1(t)H1 for i = 1 and the rank of Gi for i = 2, · · · ,K, almost surely.
In the following, we introduce three key lemmas used for proving the converse of Theorem 1. The first lemma provides an

equivalent condition for decodability of messages [40].
Lemma 1 (Lashgari–Avestimehr–Suh): For two matrices A, B with the same row size,

dim(ProjR(A)c R(B)) = rank ([A B])− rank (A) .

Proof: We refer to [40, Lemma 1] for the proof.
The second lemma states that mode switching does not decrease the dimension of the interference space of user 1 almost

surely.
Lemma 2: Consider the extended K-user MIMO BC with reconfigurable antennas at user 1 depicted in Fig. 7. Let G1 ∈

CL1×M denote the matrix consisting of the first through the L1th row vectors of H1 and Gn
1 = In ⊗ G1. For any mode

switching pattern Γn1 , the following relation holds almost surely:

rank (Γn1 Hn
1 [Vn

2 · · ·Vn
K ]) ≥ rank (Gn

1 [Vn
2 · · ·Vn

K ]) . (15)

Proof: We refer to Appendix I-A for the proof.
Although the definition of Gn

1 in Lemma 2 is not consistent with those of Gn
i for i = 2, · · · ,K in (14), we adopt this notation

for easy presentation of the converse proof. The third lemma shows the relation of the dimensions of the interference space
between user i and user i− 1.

Lemma 3: Consider the extended K-user MIMO BC with reconfigurable antennas at user 1 depicted in Fig. 7. The following
relations hold almost surely:

1

∆i−1
rank

(
Gn
i−1[Vn

i · · ·Vn
K ]
)
≥ 1

∆i
rank

(
Gn
i [Vn

i+1 · · ·Vn
K ]
)

+
1

∆i
dim(ProjIci R(Gn

i Vn
i )), (16)

for i = 2, · · · ,K − 1 and

1

∆K−1
rank

(
Gn
K−1V

n
K

)
≥ 1

∆K
dim(ProjIcK R(Gn

KVn
K)). (17)

Proof: We refer to Appendix I-B for the proof.
We are now ready to prove the converse of Theorem 1. From the definition of m1(n), we have

m1(n) = dim(ProjIc1 R(Γn1 Hn
1 Vn

1 ))

= rank (Γn1 Hn
1 [Vn

1 · · ·Vn
K ])− rank (Γn1 Hn

1 [Vn
2 · · ·Vn

K ]) (18a)
≤ n∆1 − rank (Γn1 Hn

1 [Vn
2 · · ·Vn

K ])
a.s.
≤ n∆1 − rank (Gn

1 [Vn
2 · · ·Vn

K ]) (18b)

a.s.
≤ n∆1 −

K∑
i=2

∆1

∆i
dim(ProjIci R(Gn

i Vn
i )) (18c)

= n∆1 −
K∑
i=2

∆1

∆i
mi(n) (18d)
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where (18a), (18b), (18c), and (18d) follow from Lemma 1, 2, 3, and Definition 1 respectively. Then, by dividing both sides
by n and letting n to infinity, we have

K∑
i=1

1

∆i
di ≤ 1. (19)

Rearranging (19) with respect to the original index, i.e., σ−1(i) provides

1

Lk
dk +

∑
i∈Λ\{k}

1

Ti
di +

∑
i/∈Λ

1

Lmax
di ≤ 1. (20)

Since (20) holds for all k ∈ Λ, we have total |Λ| inequalities composing the outer region of D. Then, we obtain an upper
bound on dΣ by solving the linear programming in the following lemma.

Lemma 4: Consider the following optimization problem assuming that M > Lmax and Nk > Lmax for some k ∈ K:

maximize

K∑
i=1

di

subject to
1

Lk
dk +

∑
i∈Λ\{k}

1

Ti
di +

∑
i/∈Λ

1

Lmax
di ≤ 1, ∀k ∈ Λ,

di ≥ 0, ∀i ∈ K.

Then
K∑
i=1

di ≤ max (η, Lmax) .

Proof: We refer to Appendix I-C for the proof.
Therefore, combining (10), (11), (12) and the result in Lemma 4 provides

dΣ ≤ min(M,max(Lmax, η)),

which completes the converse proof of Theorem 1.

B. Converse of Theorem 2

Notice that the condition M > Lmax and Nk > Lmax in Theorem 2 is a special class of Case 3 defined in Section IV-A
satisfying that Λ = K. Therefore, in the same manner in Section IV-A, we have (20) with Λ = K. Therefore,

dk
Lk

+

K∑
i=1,i6=k

di
Ti
≤ 1, ∀k ∈ K,

which completes the converse proof of Theorem 2.

V. ACHIEVABILITY

In this section, we prove achievability of Theorems 1, 2, and Corollary 1. The proposed blind IA scheme generalizes those
in [31]–[33], but it cannot be straightforwardly obtained from [31]–[33] due to general antenna configurations of M , {Nk}k∈K,
and {Lk}k∈K considered in this paper. For better understanding, we also provide an example for the proposed blind IA scheme
based on the two-user case in Appendix II.

A. Achievability of Theorem 1

First divide the entire parameter space into four cases as follows:
• Case 1: M ≤ Lmax.
• Case 2: M > Lmax and Nk ≤ Lmax for all k ∈ K.
• Case 3-1: M > Lmax, Nk > Lmax for some k ∈ K, and η ≤ Lmax,
• Case 3-2: M > Lmax, Nk > Lmax for some k ∈ K, and η > Lmax,
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where Cases 1 and 2 are identical to those in Section IV-A and Case 3-1 and Case 3-2 are two partitions of Case 3 in Section
IV-A. The right side of (4) is then given by

min(M,max(Lmax, η)) =


M for Case 1,
Lmax for Case 2 or Case 3-1,
η for Case 3-2.

(21)

For Cases 1, 2, and 3-1, the sum DoF is trivially achievable by only supporting the user having the maximum number of
RF-chains. Hence,

dΣ =

{
M for Case 1,
Lmax for Case 2 or Case 3-1

(22)

is achievable. For the rest of this subsection, we prove that

dΣ = η =

∑
k∈Λ

TkLk

Tk−Lk

1 +
∑
k∈Λ

Lk

Tk−Lk

(23)

is achievable by assuming that M > Lmax, Ni > Lmax for some i ∈ K, and η > Lmax, which is Case 3-2. For this case, only
the users in Λ are supported, i.e., di = 0 for all i /∈ Λ. Suppose that Λ = {1, 2, · · · , |Λ|} without loss of generality. For easy
representation, let us define Si, Ui, and Wi for i ∈ Λ and define U and W as

Si =

{
Ti

Li
− 1 if Ti|Li = 0,

Ti \ Li otherwise,

Ui = Si
∏

p∈Λ\{i}

(Tp − Lp),

Wi =
∏

p∈Λ\{i}

Sp,

U =
∏
p∈Λ

(Tp − Lp),

W =
∏
p∈Λ

Sp. (24)

1) Transmit beamforming design: To construct transmit beamforming, we adopt a bottom-up approach as in the following
steps.

Step 1 (Alignment block): As the first step, we construct alignment blocks, which will be used for building alignment units in
the next step. The basic concept of alignment block in this paper is similar to those in [32], [33]. Define IM,Ti

= [ITi
0Ti,M−Ti

]T

and the jth information vectors of user i as s
[i]
j ∈ CLiTi , which consists of LiTi independent information symbols, where

j = 1, · · · , UiWi. Then the jth alignment block of user i, denoted by v
[i]
j ∈ CMTi , is defined as

v
[i]
j =

[
(v

[i]
j,1)T (v

[i]
j,2)T · · · (v[i]

j,Si+1)T
]T

where for k = 1, · · · , Si + 1,

v
[i]
j,k =

{
(Φ⊗ IM,Ti

)s
[i]
j ∈ C(Ti|Li)M if Ti|Li 6= 0 and k = 1,

(ILi
⊗ IM,Ti

)s
[i]
j ∈ CLiM otherwise.

(25)

Here Φ ∈ CTi|Li×Li is a random matrix whose entries are i.i.d. drawn from a continuous distribution. From (25), the following
relation holds:

v
[i]
j,k =

{
(Φ⊗ IM )v

[i]
j,Si+1 if Ti|Li 6= 0 and k = 1,

v
[i]
j,Si+1 otherwise.

(26)

Step 2 (Alignment unit): Next, we build an alignment unit using Ui alignment blocks. Specifically, v
[i]
1+(j−1)Ui

through v
[i]
jUi

are used for building the jth alignment unit of user i, denoted by u
[i]
j ∈ CMTiUi where j = 1, · · · ,Wi, which is given as

u
[i]
j =

[
(u

[i]
j,1)T (u

[i]
j,2)T · · · (u[i]

j,Si+1)T
]T

(27)
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where

u
[i]
j,k =


v

[i]
1+(j−1)Ui,(1−k)|Si+1

v
[i]
2+(j−1)Ui,(2−k)|Si+1

...
v

[i]
jUi,(Ui−k)|Si+1

 ∈ CMU

for k = 1, · · · , Si and

u
[i]
j,Si+1 =


v

[i]
1+(j−1)Ui,Si+1

v
[i]
2+(j−1)Ui,Si+1

...
v

[i]
jUi,Si+1

 ∈ CLiMUi .

From (26), the following relations hold for k = 1, · · · , Si:

u
[i]
j,k =

{
u

[i]
j,Si+1 if Ti|Li = 0,

(IUi/Si
⊗Q

[i]
k ⊗ IM )u

[i]
j,Si+1 otherwise

(28)

where Q
[i]
k ∈ C(Ti−Li)×LiSi is the block-diagonal matrix consisting of Si blocks whose blocks are all ILi

except that the kth
block is Φ. For convenience, let us call u

[i]
j,k as the kth sub-unit of u

[i]
j .

Step 3 (Transmit signal vector for user i): We then construct the transmit signal vector for user i using u
[i]
1 through u

[i]
Wi

.
The transmit signal for user i, denoted by xi ∈ CMUW+M

∑
i∈Λ LiUiWi , is defined as

xi =
[
xTi,1 0TC1,i−1×1 xTi,2 0TCi+1,|Λ|×1

]T
(29)

where Cl,m =
∑m
p=l LpMUpWp and xi,1 consists of {u[i]

j,k}
j=1,··· ,Wi

k=1,··· ,Si
, total W sub-units, and xi,2 consists of {u[i]

j,k}
j=1,··· ,Wi

k=Si+1 ,
total Wi sub-units, defined as in the followings.

xi,1 =


u

[i]

f [i](1)

u
[i]

f [i](2)

...
u

[i]

f [i](W )

 ∈ CMUW , xi,2 =


u

[i]
1,Si+1

u
[i]
2,Si+1

...
u

[i]
Wi,Si+1

 ∈ CLiMUiWi (30)

Here, f [i] for i ∈ Λ is a function on {l ∈ N : 1 ≤ l ≤ W} to {(j, k) ∈ N2 : 1 ≤ j ≤ Wi, 1 ≤ k ≤ Si}, defined by
f [i](l) = (f

[i]
1 (l), f

[i]
2 (l)) such that

f
[i]
1 (l) = ((l − 1) \

i∏
p=1

Sp)

i−1∏
p=1

Sp + 1 + (l − 1)|
i−1∏
p=1

Sp,

f
[i]
2 (l) = ((l − 1)|

i∏
p=1

Sp) \
i−1∏
p=1

Sp + 1. (31)

The following lemma shows that every element of {u[i]
j,k}

j=1,··· ,Wi

k=1,··· ,Si
appears once in xi,1.

Lemma 5: Let A = {l ∈ N : 1 ≤ l ≤ W}, B = {(j, k) ∈ N2 : 1 ≤ j ≤ Wi, 1 ≤ k ≤ Si}. Let f [i] for i ∈ Λ be a function
on A to B defined in (31) and let g[i] for i ∈ Λ be a function on B to A defined by

g[i](j, k) = 1 + ((j − 1) \
i−1∏
p=1

Sp)

i∏
p=1

Sp + (j − 1)|
i−1∏
p=1

Sp + (k − 1)

i−1∏
p=1

Sp. (32)

Then g[i] is the inverse function of f [i].
Proof: We refer to Appendix I-D for the proof.

Step 4 (Transmit signal vector): Finally, transmit signal vector xn is the sum of the transmit signal vector for each user as

xn =
∑
i∈Λ

xi (33)
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where

n = UW +
∑
i∈Λ

LiUiWi (34)

because xi ∈ CMUW+M
∑

i∈Λ LiUiWi . That is, at time t = 1, · · · , UW +
∑
i∈Λ LiUiWi, the transmitter sends from the

((t− 1)M + 1)th to the (tM)th elements of
∑
i∈Λ xi through M antennas.

2) Mode switching patterns at receivers: Based on the proposed transmit beamforming stated above, we design the mode
switching patterns at receivers, which is fixed regardless of channel realizations. From (29) and (33), we have

xn = [(
∑
i∈Λ

xi,1)T︸ ︷︷ ︸
block 1

xT1,2 xT2,2 · · · xT|Λ|,2︸ ︷︷ ︸
block 2

]T . (35)

Let us denote
∑
i∈Λ xi,1 and [xT1,2 xT2,2 · · · xT|Λ|,2]T in xn as block 1 and block 2 respectively. Subsequently, the received

signal vector of user i is divided as

yni =
[
yTi,0 yTi,1 · · ·yTi,|Λ|

]T
where yi,0 and yi,j for j = 1, · · · , |Λ| are the received signal vectors induced by

∑
i∈Λ xi,1 and xj,2 respectively. Now, we

design each user’s mode switching pattern during blocks 1 and 2 in the following. For convenience, we simply call a selection
pattern (of user i at time t) to denote a specific selection matrix Γi(t). We omit rigorous description of selection patterns,
nonetheless one can infer them from associated channel matrices induced by selection matrices, i.e., Γi(t)Hi.

Mode switching pattern during block 1: From (30), block 1 is divided as

∑
i∈Λ

xi,1 =


∑
i∈Λ

u
[i]

f [i](1)

...∑
i∈Λ

u
[i]

f [i](W )

 . (36)

Note that the time interval for transmitting block 1 is

1 ≤ t ≤ UW. (37)

During block 1, user i exploits a set of Si selection patterns repeatedly over the entire time interval in (37). The channel matrix
associated with the jth selection pattern, denoted by Hi,j ∈ CLi×M , is given by

Hi,j =


hi,1+(j−1)Li

hi,2+(j−1)Li

...
hi,jLi

 j = 1, · · · , Si

where hk,l ∈ C1×M is the lth row vector of Hk for k ∈ Λ and l = 1, · · · , Nk. For this case, at each time instant, each
user chooses the selection pattern of which index is same as that of the currently transmitted sub-unit of his transmit signal
vector. One can see from (36) that the sub-unit of user i transmitted at time t = 1, · · · , UW is given by u

[i]

f [i](l(t))
where

l(t) = 1 + (t − 1) \ U . Then, at time t = 1, · · · , UW , the user i receives the transmit signal vector using the f [i]
2 (l(t))th

selection pattern, associated with H
i,f

[i]
2 (l(t))

. As a result, the received signal vector of user i during t = 1, · · · , UW is given
by

yi,0 =



(IU ⊗H
i,f

[i]
2 (1)

)
∑
j∈Λ

u
[j]

f [j](1)

(IU ⊗H
i,f

[i]
2 (2)

)
∑
j∈Λ

u
[j]

f [j](2)

...
(IU ⊗H

i,f
[i]
2 (W )

)
∑
j∈Λ

u
[j]

f [j](W )


. (38)

Mode switching pattern during block 2: We divide block 2 into desired signal and interference signal parts of user i, in
which desired signal part is xi,2 and interference signal part is the rest of block 2 except xi,2. Note that the time interval for
transmitting xi,2 is

ai + 1 ≤ t ≤ ai+1 (39)
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where ai = UW +
∑i−1
p=1 LpUpWp. Let us define Hi,Si+1 ∈ C(Ti−LiSi)×M and Hi,j,k ∈ C(Li−Ti|Li)×M as

Hi,Si+1 =


hi,LiSi+1

hi,LiSi+2

...
hi,Ti

 (40)

and

Hi,j,k =


hi,(j−1)Li+(k−1)|Li+1

hi,(j−1)Li+k|Li+1

...
hi,(j−1)Li+(k−2+Li−(Ti|Li))|Li+1

 (41)

for j = 1, · · · , Si and k = 1, · · · , Li.
First consider the desired signal part of user i during block 2. For the transmission of xi,2, the mode switching pattern of

user i differs according to the value of Ti|Li. If Ti|Li = 0, then user i exploits a single selection pattern repeatedly over the
entire time interval in (39). The channel matrix associated with the selection pattern is given by (40), where Hi,Si+1 ∈ CLi×M

in this case. If Ti|Li 6= 0, then user i exploits a set of LiSi selection patterns repeatedly over the entire time interval in (39),
i.e., the number of LiUiWi/(LiSi) =

∏
p∈Λ\{i} Sp(Tp−Lp) repetitions. The channel matrix associated with the jth selection

pattern, denoted by Hi,Si+1,j ∈ CLi×M for j = 1, · · · , LiSi which can be constructed from (40) and (41), is given by

Hi,Si+1,j =

[
Hi,Si+1

Hi,(j−1)\Li+1,(j−1)|Li+1

]
. (42)

Then, at time t = ai + 1, · · · , ai+1, user i receives the transmit signal vector using the selection pattern corresponding to
Hi,Si+1,li(t) where li(t) = 1 + (t−ai−1)|(LiSi). As a result, the received signal vector of user i during t = ai+ 1, · · · , ai+1

is given by

yi,i =


(IUi/Si

⊗H′i,Si+1)u
[i]
1,Si+1

(IUi/Si
⊗H′i,Si+1)u

[i]
2,Si+1

...
(IUi/Si

⊗H′i,Si+1)u
[i]
Wi,Si+1

 (43)

where

H′i,Si+1 =

{
ILiSi

⊗Hi,Si+1 if Ti|Li = 0,

diag (Hi,Si+1,1,Hi,Si+1,2, · · · ,Hi,Si+1,LiSi
) otherwise.

Now consider the interference signal part of user i during block 2. From (39), the time interval for transmitting xi′,2, where
i′ ∈ Λ \ {i}, is given by

ai′ + 1 ≤ t ≤ ai′+1. (44)

For the transmission of xi′,2, user i exploits the same set of Si selection patterns used for block 1 again over the entire time
interval in (44). For this case, at each time instant, each user chooses the selection pattern of which index is the same as that used
to receive the first sub-unit of the alignment unit to which the currently transmitted sub-unit belongs. Specifically, from (30),
the sub-unit of user i′ transmitted at time t = ai′+1, · · · , ai′+1 is given by u

[i′]
l(t),Si′+1 where l(t) = 1+(t−1−ai′)\ (Li′Ui′).

Since u
[i′]
l(t),1 = u

[i′]

f [i′](g[i′](l(t),1))
from Lemma 5, u

[i′]
l(t),1 is a summand of

∑
j∈Λ u

[j]

f [j](g[i′](l(t),1))
, which means from (36) that

u
[i′]
l(t),1 is transmitted simultaneously with u

[i]

f [i](g[i′](l(t),1))
in block 1. That is, user i exploits the f [i]

2 (g[i′](l(t), 1))th selection

pattern to receive u
[i]

f [i](g[i′](l(t),1))
so that, at time t = ai′ + 1, · · · , ai′+1, user i receives the transmit signal vector using the

f
[i]
2 (g[i′](l(t), 1))th selection pattern, associated with H

i,f
[i]
2 (g[i′](l(t),1))

. As a result, the received signal vector of user i induced
by xi′,2 is

yi,i′ =


(ILiUi

⊗H
i,f

[i]
2 (g[i′](1,1))

)u
[i′]
1,Si′+1

(ILiUi
⊗H

i,f
[i]
2 (g[i′](2,1))

)u
[i′]
2,Si′+1

...
(ILiUi

⊗H
i,f

[i]
2 (g[i′](Wi′ ,1))

)u
[i′]
Wi′ ,Si′+1

 . (45)
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3) Interference cancellation at receivers: In the following, we show that user i can eliminate all interference signals contained
in yi,0 in (38) using the received interference signal parts during block 2, i.e., yi,i′ in (45) for all i′ ∈ Λ \ {i}. First, we
introduce the following lemma, which plays a key role to verify such interference cancellation.

Lemma 6: Let A = {l ∈ N : 1 ≤ l ≤ W}, B = {(j, k) ∈ N2 : 1 ≤ j ≤ Wi, 1 ≤ k ≤ Si}. Let f [i] for i ∈ Λ be a function
on A to B defined in (31) and let g[i] for i ∈ Λ be a function on B to A defined in (32). For i, i′ ∈ Λ where i 6= i′ and
(j, k), (j, k′) ∈ B, the following relation holds:

f
[i]
2 (g[i′](j, k)) = f

[i]
2 (g[i′](j, k′))

Proof: We refer to Appendix I-E for the proof.
Consider (IU ⊗H

i,f
[i]
2 (l)

)u
[i′]

f [i′](l)
for i′ ∈ Λ \ {i} and 1 ≤ l ≤W , which is an interference vector in yi,0. We have

(IU ⊗H
i,f

[i]
2 (l)

)u
[i′]

f [i′](l)
= (IU ⊗H

i,f
[i]
2 (g[i′](f [i′](l)))

)u
[i′]

f [i′](l)

= (IU ⊗H
i,f

[i]
2 (g[i′](f

[i′]
1 (l),1))

)u
[i′]

f [i′](l)
(46)

where the first and second equalities follow from Lemma 5 and Lemma 6 respectively. If Ti′ |Li′ = 0, then, substituting (28)
into (46), we have

(IU ⊗H
i,f

[i]
2 (l)

)u
[i′]

f [i′](l)
= (ILiUi

⊗H
i,f

[i]
2 (g[i′](f

[i′]
1 (l),1))

)u
[i′]

f
[i′]
1 (l),Si′+1

(47)

where U = LiUi for this case. If Ti′ |Li′ 6= 0, then, substituting (28) into (46), we have

(IU ⊗H
i,f

[i]
2 (l)

)u
[i′]

f [i′](l)
= (IU ⊗H

i,f
[i]
2 (g[i′](f

[i′]
1 (l),1))

)(IUi/Si
⊗Q

[i′]

f
[i′]
2 (l)

⊗ IM )u
[i′]

f
[i′]
1 (l),Si′+1

= (IUi/Si
⊗Q

[i′]

f
[i′]
2 (l)

⊗ ILi)(ILiUi ⊗H
i,f

[i]
2 (g[i′](f

[i′]
1 (l),1))

)u
[i′]

f
[i′]
1 (l),Si′+1

. (48)

Here (48) comes from the following relation:

(IU ⊗H
i,f

[i]
2 (g[i′](f

[i′]
1 (l),1))

)(IUi/Si
⊗Q

[i′]

f
[i′]
2 (l)

⊗ IM )

= (IUi/Si
⊗Q

[i′]

f
[i′]
2 (l)

⊗H
i,f

[i]
2 (g[i′](f

[i′]
1 (l),1))

)

= ((IUi/Si
⊗Q

[i′]

f
[i′]
2 (l)

)ILiUi
)⊗ (ILi

H
i,f

[i]
2 (g[i′](f

[i′]
1 (l),1))

)

= (IUi/Si
⊗Q

[i′]

f
[i′]
2 (l)

⊗ ILi)(ILiUi ⊗H
i,f

[i]
2 (g[i′](f

[i′]
1 (l),1))

) (49)

where (49) follows from the mixed-product property that for matrices A, B, C, and D in which the matrix products AC and
BD can be defined, (A⊗B)(C⊗D) = AC⊗BD, see [42, Lemma 4.2.10].

From (45), user i is able to extract the following vector from yi,i′ :

(ILiUi
⊗H

i,f
[i]
2 (g[i′](f

[i′]
1 (l),1))

)u
[i′]

f
[i′]
1 (l),Si′+1

. (50)

Then, user i constructs (IU ⊗H
i,f

[i]
2 (l)

)u
[i′]

f [i′](l)
using (50) from the relations in (47) and (48) and subtracts it from yi,0. In

the same manner, user i can remove all interference vectors in yi,0.
4) Achievable LDoF: Let us denote the remaining signal vector after cancelling all interference vectors in yi,0 as y′i,0.

Combining y′i,0 with yi,i, user i has

[
y′i,0
yi,i

]
=



(IU ⊗H
i,f

[i]
2 (1)

)u
[i]

f [i](1)

...
(IU ⊗H

i,f
[i]
2 (

∏
p∈Λ Sp)

)u
[i]

f [i](
∏

p∈Λ Sp)

(IUi/Si
⊗H′i,Si+1)u

[i]
1,Si+1

...
(IUi/Si

⊗H′i,Si+1)u
[i]
Wi,Si+1


. (51)

By classifying (51) by alignment units, (52) is decomposed into Wi segments as follows:
(IU ⊗Hi,1)u

[i]
j,1

...
(IU ⊗Hi,Si

)u
[i]
j,Si

(IUi/Si
⊗H′i,Si+1)u

[i]
j,Si+1

 j = 1, · · · ,Wi. (52)
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By classifying (52) by alignment blocks, (51) is further decomposed into UiWi segments as follows:

(INi ⊗Hi,(j−1)|Si+1)v
[i]
j,1

(INi
⊗Hi,(j−2)|Si+1)v

[i]
j,2

...
(INi

⊗Hi,(j−Si)|Si+1)v
[i]
j,Si

H′i,Si+1,jv
[i]
j,Si+1


j = 1, · · · , UiWi (53)

where

H′i,Si+1,j =

{
ILi
⊗Hi,Si+1 if Ti|Li = 0,

diag
(
Hi,Si+1,((j−1)|Si)Li+1,Hi,Si+1,((j−1)|Si)Li+2, · · · ,Hi,Si+1,((j−1)|Si+1)Li

)
otherwise.

If Ti|Li = 0, then, substituting (25) into (53) and switching the rows, we have

(ILi
⊗Hi)(ILi

⊗ IM,Ti
)s

[i]
j = (ILi

⊗ [Hi]Ti
)s

[i]
j (54)

where [Hi]Ti
is the leading principal minor of Hi of order Ti. Since (ILi

⊗ [Hi]Ti
) is non-singular almost surely, user i can

obtain s
[i]
j from (54) almost surely.

If Ti|Li 6= 0, then, substituting (25) into (53), we have
Φ⊗Hi,(j−1)|Si+1

INi
⊗Hi,(j−2)|Si+1

...
INi
⊗Hi,(j−Si)|Si+1

H′i,Si+1,j


︸ ︷︷ ︸

B
[i]
j

(ILi ⊗ IM,Ti)s
[i]
j . (55)

It can be easily verified that B
[i]
j = C

[i]
j (ILi

⊗ [Hi]Ti
) where C

[i]
j ∈ CLiTi×LiTi for j = 1, · · · , UiWi is a non-singular matrix

almost surely so that user i can obtain s
[i]
j from (55) almost surely. Consequently, user i is able to s

[i]
1 through s

[i]
UiWi

almost
surely.

Since total LiTiUiWi independent information symbols are delivered almost surely to user i during the period given in (34),
the achievable LDoF of user i is given by

di =

TiLi

Ti−Li

∏
p∈Λ

Sp(Tp − Lp)∏
p∈Λ

Sp(Tp − Lp) +
∑
p∈Λ

Lp

Tp−Lp

∏
q∈Λ

Sq(Tq − Lq)
(56)

=
TiLi

Ti−Li

1 +
∑
p∈Λ

Lp

Tp−Lp

. (57)

Therefore,

dΣ =

K∑
i=1

di =

∑
i∈Λ

TiLi

Ti−Li

1 +
∑
i∈Λ

Li

Ti−Li

(58)

is achievable for Case 3-2. In conclusion, from (21), (22), and (58), dΣ = min(M,max(Lmax, η)) is achievable, which
completes the achievability proof of Theorem 1.

B. Achievability of Theorem 2

For notational convenience, we define the inequality in (7) as I1k and the inequality dk ≥ 0 as I2k in the rest of this
subsection. Since the LDoF region D in Theorem 2 is a polyhedron, it suffices to show that all vertices of D are achievable.
Hence, our achievability proof begins with characterizing vertices of D. The following lemma establishes a condition for a
K-tuple in RK to be a vertex of D.

Lemma 7: Consider the LDoF region D in Theorem 2. If d ∈ RK is a vertex of D, then only K inequalities among
{I1k, I2k}k∈K should be active 3 at d while I1k and I2k for k ∈ K cannot be active simultaneously at d.

3An inequality f(x) ≤ 0 is said to be active at x∗ if f(x∗) = 0 [43, Definition 20.1].
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Proof: Assume that I11 and I21 are active at d = (d1, · · · , dK) ∈ D. Combining I11 and I21, it is followed by
K∑
i=1

di
Ti

= 1.

Hence, d must not be a zero vector and we can find an index k∗ ∈ K such that I2k∗ is not active at d, i.e., dk∗ > 0. Then,
we have

dk∗

Lk∗
+

K∑
i=1,i6=k∗

di
Ti

= 1 + (
1

Lk∗
− 1

Tk∗
)dk∗ > 1,

which means that d does not satisfy I1k∗ so that d /∈ D. Contradicting the assumption, I1k and I2k for k ∈ K cannot be active
simultaneously at d and, as a result, for d ∈ D, at most K inequalities among {I1k, I2k}k∈K are active at d. Furthermore, if
d is a vertex of D, then at least K inequalities among {I1k, I2k}k∈K should be active on d because a vertex of a polyhedron
is expressed as an intersection of at least K faces of the polyhedron. Therefore, only K inequalities among {I1k, I2k}k∈K
should be active at d, which completes the proof of Lemma 7.

Consider a K-tuple d = (d1, · · · , dK) ∈ RK such that K inequalities among {I1k, I2k}k∈K are active at d while I1k and
I2k for k ∈ K are not active simultaneously at d and let Λi = {k ∈ K : Iik is active at d} for i = 1, 2. Note that, from Lemma
7, {Λ1, Λ2} is a partition of K. Assume Λ1 = {1, · · · , J} and Λ2 = {J + 1, · · · ,K} without loss of generality. Composing
the K inequalities active at d, we have

A1[d1 · · · dJ ]T +

[
1

TJ+1
1J×1 · · ·

1

TK
1J×1

]
[dJ+1 · · · dK ]T = 1J×1

[dJ+1 · · · dK ]T = 0(K−J)×1 (59)

where

A1 =


1
N1

1
T2

1
T3
· · · 1

TJ
1
T1

1
N2

1
T3
· · · 1

TJ

...
...

...
. . .

...
1
T1

1
T2

1
T3
· · · 1

NJ

 .

Since A1 is non-singular from Lemma 10 in Appendix I-C, from (59), we have

d = [(A−1
1 1J×1)T 0T(K−J)×1]T

From (69), A−1
1 1J×1 can be calculated easily, which results that

di =


TiNi

Ti−Ni

1+
∑

k∈Λ1

Nk
Tk−Nk

if i ∈ Λ1,

0 otherwise.
(60)

Since (60) is achievable by supporting users in Λ1 with the scheme proposed in Case 3-2 of Section V-A, all the vertices of
D are achievable, which completes the achievability proof of Theorem 2.

C. Achievability of Corollary 1

If Lmax ≥ ηIC , then it is achievable by supporting an user with the maximum number of RF-chains. For the rest of this
section we prove that dΣ,IC = ηIC assuming Lmax < ηIC . It can be shown that (8) is achievable by modifying the achievable
scheme derived for Case 3-2 in Section V-A as follows. Transmitter k ∈ {k ∈ K : Nk > Lmax} constructs transmit signal
vector for user k in accordance with Step 1 through Step 3 in Section V-A1 by setting M = Mk and Tk = Nk and sends it
as in Step 4 in Section V-A1. Note that since the beamforming strategy in Section V-A1 does not require cooperation among
transmitters, it can be directly applied to interference channels. Then each user receives and decodes the transmitted signal in
accordance with the procedure in Section V-A2. Note that it can be easily shown that (8) is achievable, which completes the
achievability proof of Corollary 1.
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VI. CONCLUDING REMARKS

In this paper, the DoF of the K-user MIMO BC with reconfigurable antennas under no CSIT has been studied. We completely
characterized the sum LDoF of the K-user MIMO BC with reconfigurable antennas under general antenna configurations and
further characterized the LDoF region for a class of antenna configurations. Our results provide a comprehensive understanding
of reconfigurable antennas on the LDoF of the K-user MIMO BC, which demonstrates that reconfigurable antennas are
beneficial for a broad class of antenna configurations. In particular, the DoF gain from reconfigurable antennas enlarges as
both the number of transmit antennas and the number of preset modes increase. Our analysis has been further extended to
characterizing the sum LDoF of the K-user MIMO IC with reconfigurable antennas for a class of antenna configuration, which
leads to similar argument for the K-user MIMO BC with reconfigurable antennas.

APPENDIX I
PROOF OF TECHNICAL LEMMAS

A. Proof of Lemma 2

Let us define Gc
1 ∈ C(N1−L1)×M as the submatrix consisting of the (L1 + 1)th through the N1th rows of H1. We will

prove Lemma 2 for given realization of G1 and [Vn
2 · · ·Vn

K ]. That is, ‘almost sure’ in the rest of the proof is due to the
randomness of Gc

1. Since Lemma 2 trivially holds if Γn1 Hn
1 = Gn

1 or Gn
1 [Vn

2 · · ·Vn
K ] = 0 , we assume Γn1 Hn

1 6= Gn
1 and

Gn
1 [Vn

2 · · ·Vn
K ] 6= 0 from now on.

For convenience, denote rank(Gn
1 [Vn

2 · · ·Vn
K ]) = r ≥ 1. Define the set of column indices consisting of r linearly

independent columns of Gn
1 [Vn

2 · · ·Vn
K ] as I. Then construct A1 ∈ CnL1×r by choosing r column vectors of Gn

1 [Vn
2 · · ·Vn

K ]
whose indexes are in I and construct A2 ∈ CnL1×r by choosing r column vectors of Γn1 Hn

1 [Vn
2 · · ·Vn

K ] whose indexes
are in I. Clearly, A1 is of full-rank. There exist

(
nL1

r

)
choices of constructing r × r submatrices from A1 (or A2) and the

determinant of each of these submatrices can be expressed as a polynomial with respect to the entries of Gc
1.

Suppose that all r× r submatrix of A2 of which determinant is a zero polynomial with respect to the entries of Gc
1, i.e., a

constant polynomial whose coefficients are all equal to zero. In this case, A2 is not of full-rank regardless of the entries of Gc
1.

Hence, any matrix constructed from A2 by substituting the entries of Gc
1 with arbitrary values is not of full-rank either. Let us

now define A3 constructed from A2 by substituting Gc
1 with PG1, where P ∈ C(N1−L1)×L1 , which is not of full-rank from

the above argument. Then, we can represent A3 as A3 = QA1 for some matrix Q ∈ CnLi×nLi . If all square submatrices of
P are non-singular, Q becomes invertible so that A1 and A3 have the same rank. We can easily find such P, for example,
Vandermonde matrix or Cauchy matrix [44]. However, from the fact that A3 is not of full-rank, the result that A3 and A1

have the same rank contradicts the assumption that A1 is of full-rank. Consequently, there exists at least one r× r submatrix
of A2 of which determinant is not a zero polynomial with respect to the entries of Gc

1.
Then now consider some r × r submatrix of A2 of which determinant is not a zero polynomial with respect to the entries

of Gc
1. Since the entries of Gc

1 are i.i.d drawn from a continuous distribution, for given G1 and [Vn
2 · · ·Vn

K ], the determinant
of the considered submatrix of A2 is non-zero almost surely. Hence, A2 is of full-rank almost surely. Since A2 is a submatrix
of Γn1 Hn

1 [Vn
2 · · ·Vn

K ], the rank of Γn1 Hn
1 [Vn

2 · · ·Vn
K ] is grater than or equal to that of Gn

1 [Vn
2 · · ·Vn

K ] almost surely, which
complete the proof of Lemma 2.

B. Proof of Lemma 3

In order to prove Lemma 3, we need the following lemmas. The first lemma comes from the submodularity property for
rank of matrices [40], [45].

Lemma 8 (Lovász): For matrices A, B, and C with the same number of rows,

rank[AC]− rank[C] ≥ rank[ABC]− rank[BC].

Proof: We refer to [45] for the proof.
The second lemma is one of the key properties for multantenna systems without CSIT, which means that there is no spatial

preference in the received signal space without CSIT.
Lemma 9: Let Ai,m be the submatrix consisting of arbitrary m row vectors of Gi and Bj,m be the submatrix consisting

of arbitrary m row vectors of Gj . Then, for all i, j, k ∈ K, the following property holds almost surely:

rank(An
i,m[Vn

k · · ·Vn
K ]) = rank(Bn

j,m[Vn
k · · ·Vn

K ])

where An
i,m = In ⊗Ai,m and Bn

j,m = In ⊗Bj,m.4

Proof: For i = j, it can be straightforwardly derived from the proof in Lemma 2. Hence, we assume i 6= j in the rest of
the proof. We first prove that

rank(An
i,m[Vn

k · · ·Vn
K ])

a.s.
≤ rank(Bn

j,m[Vn
k · · ·Vn

K ]) (61)

4The maximum value of m depends on i and j, see the definition of {Gl}l∈K.
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for given realizations of Ai,m and [Vn
k · · ·Vn

K ]. Note that, for given Ai,m and [Vn
k · · ·Vn

K ], An
i,m[Vn

k · · ·Vn
K ] is deterministic

but Bn
j,m[Vn

k · · ·Vn
K ] is random induced by Bj,m.

If An
i,m[Vn

k · · ·Vn
K ] = 0, then (61) trivially holds. Then now consider the case where An

i,m[Vn
k · · ·Vn

K ] 6= 0. For
convenience, denote rank(An

i,m[Vn
k · · ·Vn

K ]) = r ≥ 1. Define the set of column indices consisting of r linearly independent
columns of An

i,m[Vn
k · · ·Vn

K ] as I. Then construct C1 ∈ Cnm×r by choosing r column vectors of An
i,m[Vn

k · · ·Vn
K ] whose

indexes are in I and C2 ∈ Cnm×r by choosing r column vectors of Bn
j,m[Vn

k · · ·Vn
K ] whose indexes are in I. Clearly, C1

is of full-rank.
There exist

(
nm
r

)
r× r choices of constructing r× r submatrices from C2 and the determinant of each of these submatrices

can be expressed as a polynomial with respect to the entries of Bj,m. Then from the same argument in the proof of Lemma 2,
we can show that there exists at least one r × r submatrix of C2 of which determinant is not a zero polynomial with respect
to the entries of Bj,m. Now consider one of such r × r submatrices of C2. Since the entries of Bj,m are i.i.d drawn from a
continuous distribution, for given Ai,m and [Vn

k · · ·Vn
K ], its determinant is non-zero almost surely. Hence, C2 is of full-rank

almost surely and, as a result, (61) holds. Similarly, we can also prove rank(An
i,m[Vn

k · · ·Vn
K ])

a.s.
≥ rank(Bn

j,m[Vn
k · · ·Vn

K ]).
In conclusion, Lemma 9 holds.

We are now ready to prove Lemma 3. Let us define Zi,j = (Gn
i [Vn

j · · ·Vn
K ])T and Zi,jk = (gni,k[Vn

j · · ·Vn
K ])T , where gi,k

is the kth row vector of Gi and gni,k = In ⊗ gi,k. Then, for i = 2, · · · ,K,

rank
(
Zi−1,i

) a.s.
= rank

[
Zi−1,i

∆i−1
· · ·Zi−1,i

1

]
(62a)

= rank
(
Zi−1,i

1

)
+

∆i−1∑
k=2

(
rank

[
Zi−1,i
k · · ·Zi−1,i

1

]
− rank

[
Zi−1,i
k−1 · · ·Z

i−1,i
1

])
a.s.
= rank

(
Zi−1,i

∆i−1

)
+

∆i−1∑
k=2

(
rank

[
Zi−1,i

∆i−1
Zi−1,i
k−1 · · ·Z

i−1,i
1

]
− rank

[
Zi−1,i
k−1 · · ·Z

i−1,i
1

])
(62b)

≥
∆i−1∑
k=1

(
rank

[
Zi−1,i

∆i−1
· · ·Zi,i1

]
− rank

[
Zi−1,i

∆i−1−1 · · ·Z
i−1,i
1

])
(62c)

a.s.
= ∆i−1

(
rank

[
Zi,i∆i−1

· · ·Zi,i1

]
− rank

[
Zi,i∆i−1−1 · · ·Z

i,i
1

])
(62d)

a.s.
=

∆i−1

(∆i −∆i−1)

∆i−∆i−1∑
k=1

(
rank

[
Zi,i∆i−1+kZ

i,i
∆i−1−1 · · ·Z

i,i
1

]
− rank

[
Zi,i∆i−1−1 · · ·Z

i,i
1

])
(62e)

≥ ∆i−1

(∆i −∆i−1)

∆i−∆i−1∑
k=1

(
rank

[
Zi,i∆i−1+k · · ·Z

i,i
1

]
− rank

[
Zi,i∆i−1+k−1 · · ·Z

i,i
1

])
(62f)

=
∆i−1

(∆i −∆i−1)

(
rank

[
Zi,i∆i
· · ·Zi,i1

]
− rank

[
Zi,i∆i−1

· · ·Zi,i1

])
a.s.
=

∆i−1

(∆i −∆i−1)

(
rank

[
Zi,i∆i
· · ·Zi,i1

]
− rank

[
Zi−1,i

∆i−1
· · ·Zi−1,i

1

])
(62g)

a.s.
=

∆i−1

(∆i −∆i−1)

(
rank

(
Zi,i
)
− rank

(
Zi−1,i

))
. (62h)

Here (62a) holds since [Zi−1,i
∆i−1

· · ·Zi−1,i
1 ] is a submatrix of Zi−1,i and Zi−1,i = [Zi−1,i

∆i−1
· · ·Zi−1,i

1 ]F almost surely for a matrix
F such that

F =

 In ⊗
[
IT∆i−1

(
([Gi−1]

T
∆i−1

)−1([Gi−1]
c
∆i−1

)T
)T]T

if Gi−1 is a tall matrix,

In∆i−1
otherwise

(63)

where [Gi−1]∆i−1 is the leading principal minor of Gi−1 of order ∆i−1, [Gi−1]c∆i−1
is the remainder part of Gi−1 except

[Gi−1]∆i−1
. Lemma 9 is used for (62b), (62d), (62e), and (62g) and Lemma 8 is used for (62c) and (62f). Also, (62h) follows

since rank
[
Zi,i∆i
· · ·Zi,i1

]
a.s.
= rank

(
Zi,i
)

and rank
[
Zi−1,i

∆i−1
· · ·Zi−1,i

1

]
a.s.
= rank

(
Zi−1,i

)
. From the fact that rank A = rank AT

for a matrix A whose elements are complex numbers [46], (62) becomes

1

∆i−1
rank

(
Gn
i−1[Vn

i · · ·Vn
K ]
) a.s.
≥ 1

∆i
rank (Gn

i [Vn
i · · ·Vn

K ]) .
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Then, for i = 2, · · · ,K, we have

1

∆i−1
rank

(
Gn
i−1[Vn

i · · ·Vn
K ]
) a.s.
≥ 1

∆i
rank (Gn

i [Vn
i · · ·Vn

K ])

=
1

∆i

(
rank(Gn

i [Vn
i+1 · · ·Vn

K ]) + dim(Proj(I′i)c R(Gn
i Vn

i ))
)

(64a)

≥ 1

∆i

(
rank

(
Gn
i [Vn

i+1 · · ·Vn
K ]
)

+ dim(ProjIci R(Gn
i Vn

i ))
)

(64b)

where I ′i = R(Gn
i [Vn

i+1 · · ·Vn
K ]). Here (64a) follows from Lemma 1 and (64b) follows since I ′i ⊆ Ii, which is given by

Ii = R(Gn
i [Vn

1 · · ·Vn
i−1,V

n
i+1, · · · ,Vn

K ]) from Definition 1. Therefore (16) holds. In the same manner, we can proof (17),
which completes the proof of Lemma 3.

C. Proof of Lemma 4

Let us assume that M > Lmax and Nk > Lmax for some k ∈ K, i.e., Λ 6= ∅. Let Λ = {1, · · · , |Λ|} without loss of generality
and A = [A1A2] such that

A1 =


1
L1

1
T2

1
T3
· · · 1

T|Λ|
1
T1

1
L2

1
T3
· · · 1

T|Λ|
...

...
...

. . .
...

1
T1

1
T2

1
T3
· · · 1

L|Λ|

 (65)

and A2 = 1
Lmax

1|Λ|×(K−|Λ|). Then the optimization problem in Lemma 4 is rewritten as

maximize
K∑
i=1

di

subject to Ad + x = 1|Λ|×1, (66)
d ≥ 0,x ≥ 0

where d = [d1 · · · dK ]T , x = [x1 · · ·x|Λ|]T , see also [43].
The following lemma provides non-singularity of A1.
Lemma 10: For the matrix A1 defined in (65), the determinant of A1 is given by

|A1| =
∏
k∈Λ

Tk − Lk
TkLk

(
1 +

∑
k∈Λ

Lj
Tj − Lj

)
. (67)

Consequently, since Ti > Li for i ∈ Λ, A1 is non-singular.
Proof: It can be easily verified by mathematical induction.

Notice the the optimal d should satisfy (66). Then, subtracting x from both sides of (66) and multiplying them by 11×|Λ|A
−1
1 ,

which is possible from Lemma 10, we have

|Λ|∑
i=1

di +
11×|Λ|A

−1
1 1|Λ|×1

Lmax

K∑
i=|Λ|+1

di = 11×|Λ|A
−1
1 1|Λ|×1 − 11×|Λ|A

−1
1 x. (68)

Note that

11×|Λ|A
−1
1 1|Λ|×1 =

∑
i∈Λ

[11×|Λ|A
−1
1 ]i

=
∑
i∈Λ

|A1|Ti=Li=1

|A1|

=
∑
i∈Λ

∏
k∈Λ,k 6=i

Tk−Lk

TkLk

∏
k∈Λ

Tk−Lk

TkLk

(
1 +

∑
j∈Λ

Lj

Tj−Lj

)

=

∑
i∈Λ

TiLi

Ti−Li

1 +
∑
i∈Λ

Li

Ti−Li

= η. (69)
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Here the third and fourth equalities follow from Cramer’s rule [47, Lemma 176] and Lemma 10 respectively. Substituting (69)
into (68), we have

|Λ|∑
i=1

di +
η

Lmax

K∑
i=|Λ|+1

di = η − 11×|Λ|A
−1
1 x. (70)

Therefore,

K∑
i=1

di ≤ max(η, Lmax)

1

η

|Λ|∑
i=1

di +
1

Lmax

K∑
i=|Λ|+1

di


= max(η, Lmax)

1

η

(
η − 11×|Λ|A

−1
1 x

)
(71)

≤ max(η, Lmax) (72)

where (71) follows from (70) and (72) follows since 11×|Λ|A
−1
1 x ≥ 0. In conclusion, Lemma 4 holds.

D. Proof of Lemma 5

We have

g[i](f [i](l)) = ((l − 1) \
i∏

p=1

Sp)

i∏
p=1

Sp + (l − 1)|
i−1∏
p=1

Sp + (((l − 1)|
i∏

p=1

Sp) \
i−1∏
p=1

Sp)

i−1∏
p=1

Sp + 1

= ((l − 1) \
i∏

p=1

Sp)

i∏
p=1

Sp + (l − 1)|
i∏

p=1

Sp + 1 (73)

= l.

Here (73) follows that (l − 1)|
∏i−1
p=1 Sp = ((l − 1)|

∏i
p=1 Sp)|

∏i−1
p=1 Sp. In conclusion, Lemma 5 holds.

E. Proof of Lemma 6

We now prove that, for i, i′ ∈ K where i 6= i′,

f
[i]
2 (g[i′](j, k)) =


((j − 1)|

i′−1∏
p=1

Sp) \
i−1∏
p=1

Sp + 1 if i < i′,

((j − 1) \
i′−1∏
p=1

Sp)|
i∏

p=i′+1

Sp) \
i−1∏

p=i′+1

Sp + 1 if i > i′.

(74)

From the definition of f [i] and g[i′], (74) holds trivially for i < i′. Hence, assume i > i′ in the rest of this section.
For easy representation of the proof, for i > i′, denote,

a0 = (j − 1) \
i′−1∏
p=1

Sp

a1 = a0 \
i∏

p=i′+1

Sp, b1 = a0|
i∏

p=i′+1

Sp

a2 = b1 \
i−1∏

p=i′+1

Sp, b2 = b1|
i−1∏

p=i′+1

Sp

From the definition of g[i′], the following relation holds for j ∈ A, k ∈ B, and i > i′:

g[i′](j, k)− 1 = a0

i′∏
p=1

Sp + c

= a1

i∏
p=1

Sp + b1

i′∏
p=1

Sp + c (75)
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where c = (j − 1)|
∏i′−1
p=1 Sp + (k − 1)

∏i′−1
p=1 Sp and the second equality follows since a0 = a1

∏i
p=i′+1 Sp + b1. From the

fact that b1 ≤
∏i
p=i′+1 Sp − 1 and c <

∏i′

p=1 Sp, one can see that b1
∏i′

p=1 Sp + c <
∏i
p=1 Sp, which results from (75) that

(g[i′](j, k)− 1)|
i∏

p=1

Sp = b1

i′∏
p=1

Sp + c

= a2

i−1∏
p=1

Sp + b2

i′∏
p=1

Sp + c (76)

where the second equality follows that b1 = a2

∏i−1
p=i′+1 Sp + b2. Since b2 ≤

∏i−1
p=i′+1 Sp − 1 and c <

∏i′

p=1 Sp, one can see

that b2
∏i′

p=1 Sp + c <
∏i−1
p=1 Sp, which results from (76) that

f
[i]
2 (g[i′](j, k)) = ((g[i′](j, k)− 1)|

i∏
p=1

Sp) \
i−1∏
p=1

Sp + 1

= a2 + 1,

which completes the proof of Lemma 6.

APPENDIX II
BLIND IA FOR A TWO-USER EXAMPLE

For better understanding of the proposed blind IA stated in Section V-A, we provide a two-user example here. Consider the
two-user MIMO BC with reconfigurable antennas defined in Section II where M = N1 = N2 = 3, L1 = 1, and L2 = 2. From
(24), T1 = T2 = 3, S2 = W1 = 1, and S2 = U1 = U2 = U = W2 = W = 2.

1) Transmit beamforming design: In Step 1, user 1 needs two information vectors (U1W1 = 2) of which size is three
(T1L1 = 3) and user 2 needs four information vectors (U2W2 = 4) of which size is six (T2L2 = 6). Let us denote the
information vectors of user 1 as s

[1]
1 and s

[1]
2 ∈ C3 and denote the information vectors of user 2 as s

[2]
1 , s

[2]
2 , s

[2]
3 , and s

[2]
4 ∈ C6.

Then, from (25), the alignment block of user 1 v
[1]
j for j = 1, 2 is given by

v
[1]
j =

 v
[1]
j,1

v
[1]
j,2

v
[1]
j,3

 =

 (I1 ⊗ I3)s
[1]
j

(I1 ⊗ I3)s
[1]
j

(I1 ⊗ I3)s
[1]
j

 =

 I3

I3

I3

 s
[1]
j ∈ C9, j = 1, 2

and from (25), the alignment block of user 2 v
[2]
j for j = 1, 2, 3, 4 are given by

v
[2]
j =

[
v

[1]
j,1

v
[1]
j,2

]
=

[
(Φ⊗ I3)s

[2]
j

(I2 ⊗ I3)s
[2]
j

]
=

[
Φ⊗ I3

I6

]
s

[2]
j ∈ C9, j = 1, 2, 3, 4

where Φ = [φ11 φ12] ∈ C1×2 is a random matrix of which entries are i.i.d. continuous random variables.
In Step 2, we construct one (W1 = 1) alignment unit of user 1 and two (W2 = 2) alignment units of user 2. Then, from

(27), alignment unit of user 1 u
[1]
1 is given by

u
[1]
1 =

 u
[1]
1,1

u
[1]
1,2

u
[1]
1,3

 =



v
[1]
1,1

v
[1]
2,2

v
[1]
1,2

v
[1]
2,1

v
[1]
1,3

v
[1]
2,3


=

 I6

I6

I6

[ s
[1]
1

s
[1]
2

]
∈ C18

and the alignment unit of user 2 u
[2]
j for j = 1, 2 is given by

u
[2]
j =

[
u

[2]
j,1

u
[2]
j,2

]
=


v

[2]
2j−1,1

v
[2]
2j,1

v
[2]
2j−1,2

v
[2]
2j,2

 =


Φ⊗ I3 03×6

03×6 Φ⊗ I3

I6 06

06 I6


[

s
[2]
2j−1

s
[2]
2j

]
∈ C18.
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In Step 3, we construct the transmit signal vector for each user. For this case, f [i] for i = 1, 2 is given by[
f [1](1) f [1](2)

]
= [(1, 1) (1, 2)] ,

[
f [2](1) f [2](2)

]
= [(1, 1) (2, 1)]

Then, from (30), we have

x1,1 =
[
(u

[1]
1,1)T (u

[1]
1,2)T

]T
, x1,2 = u

[1]
1,3,

x2,1 =
[
(u

[2]
1,1)T (u

[2]
2,1)T

]T
, x2,2 =

[
(u

[2]
1,2)T (u

[2]
2,2)T

]T
.

Subsequently, from (29), the transmit signal vector for user 1 is given by

x1 =

 x1,1

x1,2

024×1

 =


u

[1]
1,1

u
[1]
1,2

u
[1]
1,3

024×6

 =


I6

I6

I6

024×6


[

s
[1]
1

s
[1]
2

]
∈ C42

and the transmit signal vector for user 2 is given by

x2 =

 x2,1

06×1

x2,2

 =


u

[2]
1,1

u
[2]
2,1

06×1

u
[2]
1,2

u
[2]
2,2

 =



Φ⊗ I3 03×6 03×6 03×6

03×6 Φ⊗ I3 03×6 03×6

03×6 03×6 Φ⊗ I3 03×6

03×6 03×6 03×6 Φ⊗ I3

06 06 06 06

I6 06 06 06

06 I6 06 06

06 06 I6 06

06 06 06 I6




s

[2]
1

s
[2]
2

s
[2]
3

s
[2]
4

 ∈ C42.

In Step 4, the overall transmit signal vector is given by

xn = x1 + x2

where n = 14.
2) Mode switching patterns at receivers: From (37), the time interval for transmitting block 1 is given by 1 ≤ t ≤ 4. For

this case, user 1 has two selection patterns and user 2 has one selection pattern, in which the associated channel matrices are
given by

H1,j = h1,j ∈ C1×3, j = 1, 2, (77)

H2,1 =
[
hT2,1 hT2,2

]T ∈ C2×3

respectively. As explained in Section V-A, when block 1 is transmitted, each user chooses the selection pattern of which index
is the same as that of the currently transmitted sub-unit of his transmit signal vector. Since the indexes of the transmitted
sub-unit of users 1 and 2 are 1, 1, 2, 2 and 1, 1, 1, 1 respectively for 1 ≤ t ≤ 4, from (38), the received signal vectors of
users 1 and 2 during 1 ≤ t ≤ 4 are given by

y1,0 =


H1,1 01×3

01×3 H1,1

H1,2 01×3

01×3 H1,2


[

s
[1]
1

s
[1]
2

]
+


Φ⊗H1,1 01×6 01×6 01×6

01×6 Φ⊗H1,1 01×6 01×6

01×6 01×6 Φ⊗H1,2 01×6

01×6 01×6 01×6 Φ⊗H1,2




s
[2]
1

s
[2]
2

s
[2]
3

s
[2]
4

 , (78)

y2,0 =


H2,1 02×3

02×3 H2,1

H2,1 02×3

02×3 H2,1


[

s
[1]
1

s
[1]
2

]
+


Φ⊗H2,1 02×6 02×6 02×6

02×6 Φ⊗H2,1 02×6 02×6

02×6 02×6 Φ⊗H2,1 02×6

02×6 02×6 02×6 Φ⊗H2,1




s
[2]
1

s
[2]
2

s
[2]
3

s
[2]
4

 (79)

respectively.
The time interval for transmitting block 2 is given by 5 ≤ t ≤ 14. First, we consider the time interval for transmitting x1,2,

given by 5 ≤ t ≤ 6. Note that this part corresponds to the desired signal part of block 2 for user 1 and the interference signal
part of block 2 for user 2. Since T1|L1 = 0, user 1 exploits one selection pattern repeatedly over the time interval 5 ≤ t ≤ 6,
in which the associated channel matrix is given by

H1,3 = h1,3 ∈ C1×3.
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On the other hands, user 2 exploits the same selection pattern used for receiving during block 1 over the time interval 5 ≤ t ≤ 6,
in which there is one selection pattern associated with H2,1 for this case. Then, user 2 receives the transmit signal for 5 ≤ t ≤ 6
using the selection pattern associated with H2,1. As a result, from (43) and (45), the received signal vectors of users 1 and 2
during 5 ≤ t ≤ 6 are given by

y1,1 =

[
H1,3 01×3

01×3 H1,3

] [
s

[1]
1

s
[1]
2

]
, y2,1 =

[
H2,1 02×3

02×3 H2,1

][
s

[1]
1

s
[1]
2

]
(80)

respectively. Next, we consider the time interval for transmitting x2,2, given by 7 ≤ t ≤ 14. This part corresponds to the
desired signal part of block 2 for user 2 and the interference signal part of block 2 for user 1. Since T2|L2 6= 0, user 2 exploits
two (L2S2 = 2) selection patterns, which repeat four (S1(T1 −L1) = 4) times periodically over the time interval 7 ≤ t ≤ 14.
The associated channel matrices are given by

H1,2,1 =
[
hT2,3 hT2,1

]T ∈ C2×3, H1,2,2 =
[
hT2,3 hT2,2

]T ∈ C2×3.

On the other hands, user 1 exploits the same selection pattern used for receiving block 1 over the time interval 7 ≤ t ≤ 14,
in which the associated channel matrices are given in (77). When the interference signal part of block 2 is transmitted, user
2 chooses the selection pattern of which index is the same as that used to receive the first sub-unit of the alignment unit to
which the currently transmitted sub-unit belongs. One can see that the sub-units transmitted for 7 ≤ t ≤ 10 and 11 ≤ t ≤ 14

is u
[2]
1,3 and u

[2]
2,3 respectively and user 1 exploits the selection pattern associated with H1,1 to receive u

[2]
1,1 and the selection

pattern associated with H1,2 to receive u
[2]
2,1 in block 1. Hence, user 1 exploits the selection pattern associated with H1,1 for

7 ≤ t ≤ 10 and the selection pattern associated with H1,2 for 11 ≤ t ≤ 14. As a result, from (43) and (45), the received signal
vectors of user 1 and 2 during 7 ≤ t ≤ 14 are given by

y1,2 =


I2 ⊗H1,1 02×6 02×6 02×6

02×6 I2 ⊗H1,1 02×6 02×6

02×6 02×6 I2 ⊗H1,2 02×6

02×6 02×6 02×6 I2 ⊗H1,2




s
[2]
1

s
[2]
2

s
[2]
3

s
[2]
4

 , (81)

y2,2 =


H′2,2 04×6 04×6 04×6

04×6 H′2,2 04×6 04×6

04×6 04×6 H′2,2 04×6

04×6 04×6 04×6 H′2,2




s
[2]
1

s
[2]
2

s
[2]
3

s
[2]
4

 (82)

respectively, where H′2,2 = diag(H2,2,1,H2,2,2) ∈ C4×6.
3) Interference cancellation and achievable LDoF: From (51), after cancelling all interference vectors in y1,0, user 1 has

[
y1,0 − (I4 ⊗Φ)y1,2

y1,1

]
=


H1,1 01×3

01×3 H1,1

H1,2 01×3

01×3 H1,2

H1,3 01×3

01×3 H1,3


[

s
[1]
1

s
[1]
2

]
(83)

Sorting the rows in (83), we have [
H1 03

03 H1

] [
s

[1]
1

s
[1]
2

]
(84)

Obviously, user 1 can obtain s
[1]
1 and s

[1]
2 from (84) almost surely.

Similarly, from (51), after cancelling all interference vectors in y2,0, user 2 has

[
y2,0 − 12×1 ⊗ y2,1

y2,2

]
=



Φ⊗H2,1 02×6 02×6 02×6

02×6 Φ⊗H2,1 02×6 02×6

02×6 02×6 Φ⊗H2,1 02×6

02×6 02×6 02×6 Φ⊗H2,1

H′2,2 04×6 04×6 04×6

04×6 H′2,2 04×6 04×6

04×6 04×6 H′2,2 04×6

04×6 04×6 04×6 H′2,2




s

[2]
1

s
[2]
2

s
[2]
3

s
[2]
4

 (85)
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Then, (85) can be decomposed into four segments as in the following.

[
Φ⊗H2,1

H′2,2

]
s

[2]
i =


φ11h2,1 φ12h2,1

φ11h2,2 φ12h2,2

h2,3 01×3

h2,1 01×3

01×3 h2,3

01×3 h2,2

 s
[2]
i , i = 1, 2, 3, 4 (86)

It can be easily shown that user 2 can obtain s
[2]
i for all i from (86) almost surely.

As a result, the transmitter delivers 6 information symbols to user 1 and 24 information symbols to user 2 during 14 time
slots. Consequently, the achievable sum LDoF is given by 15

7 .
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