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Success probability of the Babai estimators for
box-constrained integer linear models

Jinming Wen and Xiao-Wen Chang

Abstract—In many applications including communica-
tions, one may encounter a linear model where the parameter
vector x̂ is an integer vector in a box. To estimatex̂, a
typical method is to solve a box-constrained integer least
squares (BILS) problem. However, due to its high complexity,
the box-constrained Babai integer pointxBB is commonly
used as a suboptimal solution. In this paper, we first derive
formulas for the success probability P

BB of x
BB and the

success probabilityP OB of the ordinary Babai integer point
x

OB when x̂ is uniformly distributed over the constraint
box. Some properties ofP BB and P

OB and the relationship
between them are studied. Then, we investigate the effects
of some column permutation strategies onP BB. In addition
to V-BLAST and SQRD, we also consider the permutation
strategy involved in the LLL lattice reduction, to be referr ed
to as LLL-P. On the one hand, we show that when the noise
is relatively small, LLL-P always increasesP BB and argue
why both V-BLAST and SQRD often increaseP BB; and on
the other hand, we show that when the noise is relatively
large, LLL-P always decreasesP BB and argue why both V-
BLAST and SQRD often decreaseP BB. We also derive a
column permutation invariant bound on P

BB, which is an
upper bound and a lower bound under these two opposite
conditions, respectively. Numerical results demonstrateour
findings. Finally, we consider a conjecture concerningxOB

proposed by Ma et al. We first construct an example to
show that the conjecture does not hold in general, and then
show that it does hold under some conditions.

Index Terms—Box-constrained integer least squares es-
timation, Babai integer point, success probability, column
permutations, LLL-P, SQRD, V-BLAST.

I. I NTRODUCTION

SUPPOSE that we have the following box-constrained
linear model:

y = Ax̂+ v, v ∼ N (0, σ2I) (1a)

x̂ ∈ B ≡ {x ∈ Z
n : ℓ ≤ x ≤ u, ℓ,u ∈ Z

n} (1b)

where y ∈ R
m is an observation vector,A ∈ R

m×n

is a deterministic model matrix with full column rank,
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x̂ is an unknown integer parameter vector in the boxB,
v ∈ R

m is a noise vector following the Gaussian distribu-
tion N (0, σ2I) with σ being known. This model arises in
various applications including wireless communications,
see e.g., [1], [2]. In this paper, we assume thatx̂ is random
and uniformly distributed over the boxB. This assumption
is often made for MIMO applications, see, e.g., [3].

A common method to estimate/detectx̂ in (1) is to solve
the following box-constrained integer least squares (BILS)
problem:

min
x∈B

‖y −Ax‖22 (2)

whose solution is the maximum likelihood estima-
tor/detector of̂x. Here we would like to make a comment
on terminology. In communications, it is proper to use
“detect” and “detector” for the constrained case. However,
later in this paper we will use “estimate” and “estimator”
as an extension of the terminology commonly used in
the unconstrained case. A typical approach to solving (2)
is discrete search, which usually consists of two stages:
reduction and search. In the first stage, orthogonal trans-
formations are used to transformA to an upper triangular
matrix R. To make the search process more efficient, a
column permutation strategy is often used in reduction.
Two well-known strategies are V-BLAST [4], [1] and
SQRD [5], [6]. The commonly used search methods are
the so-called sphere decoding methods [1], [7] and [6],
which are the extensions of the Schnorr-Euchner search
method [8], a variation of the Fincke-Pohst search method
[9], for ordinary integer least squares problems to be
mentioned below. There are also some variants of Schnorr-
Euchner search methods, see, e.g., [10].

If the true parameter vector̂x ∈ Z
n in the linear model

(1a) is not subject to any constraint, then we say (1a) is
an ordinary linear model. In this case, to estimatex̂, one
solves an ordinary integer least squares (OILS) problem
(also referred to as the closest vector problem):

min
x∈Zn

‖y −Ax‖22 (3)

and whose solution is referred to as the OILS estimator of
x̂. Algorithms and theory for OILS problems are surveyed
in [11] and [12].

The most widely used reduction strategy in solving (3)
is the LLL reduction [13], which consists of two types of
operations called size reduction and column permutation.
But it is difficult to use it to solve a BILS problem

http://arxiv.org/abs/1410.5040v2
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because after size reductions the box constraint becomes
too complicated to handle in the search process. However,
one can use its permutation strategy, to be referred to
as LLL-P (we referred it to as LLL-permute in [14]).
The LLL-P, SQRD and V-BLAST strategies use only the
information ofA to do the column permutations. Some
column permutation strategies which use not only the
information ofA, but also the information ofy and the
box constraint have also been proposed [15], [6] and [16].

For a fixed constraint boxB in (1b), where all the entries
of ℓ are equal and all the entries ofu are equal, it was
shown in [3] that when the signal-to-noise ratio (SNR) is
fixed the expected complexity of solving (2) by the Fincke-
Pohst search method behaves as an exponential function
of the dimensionn when n is large enough, although
it is dominated by polynomial terms for high SNR and
small n [17] [3]. So for some real-time applications, an
approximate solution, which can be produced quickly, is
computed instead. For the OILS problem, the Babai integer
pointxOB, to be referred to as the ordinary Babai estimator,
which can be obtained by the Babai nearest plane algo-
rithm [18], is an often used approximate solution. Taking
the box constraint into account, one can easily modify
the Babai nearest plane algorithm to get an approximate
solution xBB to the BILS problem (2), to be referred to
as the box-constrained Babai estimator. This estimator is
the first point found by the search methods proposed in
[7], [1] and [6], and it has been used as a suboptimal
solution, see, e.g., [19]. In communications, algorithms
for finding the Babai estimators are often referred to as
successive interference cancellation detectors. There have
been algorithms which find other suboptimal solutions to
the BILS problems in communications, see, e.g., [20]–
[29] etc. In this paper we will focus only on the Babai
estimators.

In order to see how good an estimator is, one needs to
find the probability of the estimator being equal to the true
integer parameter vector, which is referred to as success
probability [30]. The probability of wrong estimation is
referred to as error probability, see, e.g., [26].

For the estimation of̂x in the ordinary linear model (1a),
where x̂ is supposed to be deterministic, the formula of
the success probabilityP OB of the ordinary Babai estimator
xOB was first given in [31], which considers a variant
form of the ILS problem (3). A simple derivation for an
equivalent formula ofP OB was given in [14]. It was shown
in [14] thatP OB increases after applying the LLL reduction
algorithm or only the LLL-P column permutation strategy,
butP OB may strictly decrease after applying the SQRD and
V-BLAST permutation strategies.

The main goal of this paper is to extend the main results
we obtained in [14] for the ordinary case to the box-
constrained case. We will present a formula for the success
probability P BB of the box-constrained Babai estimator
xBB and a formula for the success probabilityP OB of the

ordinary Babai estimatorxOB when x̂ in (1) follows a
uniform distribution over the boxB. Some properties of
P BB andP OB and the relationship between them will also
be given.

Then we will investigate the effect of the LLL-P column
permutation strategy onP BB. We will show that P BB

increases under a condition. Surprisingly, we will also
show thatP BB decreases after LLL-P is applied under an
opposite condition. Roughly speaking, these two opposite
conditions are that the noise standard deviationσ in (1a)
are relatively small and large, respectively. This is different
from the ordinary case, whereP OB always increases after
the LLL-P strategy is applied. Although our theoretical
results for LLL-P cannot be extended to SQRD and V-
BLAST, our numerical tests indicate that under the two
conditions, often (not always)P BB increases and decreases,
respectively, after applying SQRD or V-BLAST. Explana-
tions will be given for these phenomena. These suggest
that before we applying LLL-P, SQRD or V-BLAST we
should check the conditions. Moreover, we will give a
bound onP BB, which is column permutation invariant. It
is interesting that the bound is an upper bound under the
small noise condition we just mentioned and becomes a
lower bound under the opposite condition.

In [32], the authors made a conjecture, based on which
a stopping criterion for the search process was proposed to
reduce the computational cost of solving the BILS prob-
lem. The conjecture is related to the success probability
P OB of the ordinary Babai estimatorxOB. We will first show
that the conjecture does not always hold and then show it
holds under a condition.

The rest of the paper is organized as follows. In Section
II, we introduce the QR reduction and the LLL-P, SQRD
and V-BLAST column recording strategies. In Section
III, we present the formulas forP BB andP OB, study the
properties ofP BB and P OB and the relationship between
them. In Section IV, we investigate the effects of the LLL-
P, SQRD and V-BLAST column permutation strategies
and derive a bound onP BB. In Section V, we investigate
the conjecture made in [32] and obtain some negative
and positive results. Finally, we summarize this paper in
Section VI.

Notation. For matrices, we use bold upper-case letters
and for vectors we use bold lower-case letters. Forx ∈
R

n, we use⌊x⌉ to denote its nearest integer vector, i.e.,
each entry ofx is rounded to its nearest integer (if there
is a tie, the one with smaller magnitude is chosen). For
a vectorx, xi:j denotes the subvector ofx formed by
entriesi, i+1, . . . , j. For a matrixA, Ai:j,i:j denotes the
submatrix ofA formed by rows and columnsi, i+1, . . . , j.
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II. QR FACTORIZATION AND COLUMN REORDERING

Assume that the model matrixA in the linear model
(1a) has the QR factorization

A = [Q1,Q2]

[

R

0

]

(4)

where[Q1
n
, Q2
m−n

] ∈ R
m×m is orthogonal andR ∈ R

n×n

is upper triangular. Without loss of generality, we assume
that the diagonal entries ofR are positive throughout the
paper. Definẽy = QT

1 y and ṽ = QT
1 v. Then, the linear

model (1) is reduced to

ỹ = Rx̂+ ṽ, ṽ ∼ N (0, σ2I), (5a)

x̂ ∈ B ≡ {x ∈ Z
n : ℓ ≤ x ≤ u, ℓ,u ∈ Z

n} (5b)

and the BILS problem (2) is reduced to

min
x∈B

‖ỹ −Rx‖22. (6)

To solve the reduced problem (6), sphere decoding
search algorithms are usually used to find the optimal
solution. For search efficiency, one typically adopts a
column permutation strategy, such as V-BLAST, SQRD
or LLL-P, in the reduction process to obtain a betterR.
For simplicity, we assume that the column permutations
are performed onR in (4) no matter which strategy is
used, i.e.,

Q̄
T
RP = R̄ (7)

whereQ̄ ∈ R
n×n is orthogonal,P ∈ Z

n×n is a permuta-
tion matrix, andR̄ ∈ R

n×n is an upper triangular matrix
satisfying the properties of the corresponding column
permutation strategies. Notice that combining (4) and (7)
result in the following QR factorization of the column
reorderedA:

AP = Q̃

[

R̄

0

]

, Q̃ ≡ Q

[

Q̄ 0

0 Im−n

]

.

The V-BLAST strategy determines the columns ofR̄

from the last to the first. Suppose columnsn, n−1, . . . , k+
1 of R̄ have been determined, this strategy chooses a
column from k remaining columns ofR as the k-th
column such that̄rkk is maximum over all of thek
choices. For more details, including efficient algorithms,
see [1], [4], [33]–[35] etc. One may refer to [36] for the
performance analysis of V-BLAST.

In contrast to V-BLAST, the SQRD strategy determines
the columns ofR̄ from the first to the last by using the
modified Gram-Schmidt algorithm or the Householder QR
algorithm. Suppose columns1, 2, . . . , k − 1 of R̄ have
been determined. In thek-th step of the algorithm, the
k-th column ofR̄ we seek is chosen from the remaining
n − k + 1 columns ofR such thatr̄kk is smallest. For
more details, see [5] and [6] etc.

The LLL-P strategy [14] does the column permutations
of the LLL reduction algorithm and produces̄R satisfying
the Lovász condition:

δ r̄2k−1,k−1 ≤ r̄2k−1,k + r̄2kk, k = 2, 3, . . . , n (8)

whereδ is a parameter satisfying1/4 < δ ≤ 1. Suppose
thatδ r2k−1,k−1 > r2k−1,k+r2k,k for somek. Then we inter-
change columnsk− 1 andk of R. After the permutation,
the upper triangular structure ofR is no longer maintained.
But we can bringR back to an upper triangular matrix by
using the Gram-Schmidt orthogonalization technique (see
[13]) or by a Givens rotation:

R̄ = GT
k−1,kRP k−1,k (9)

whereGk−1,k is an orthogonal matrix andP k−1,k is a
permutation matrix, and̄R satisfies

r̄2k−1,k−1 = r2k−1,k + r2k,k,

r̄2k−1,k + r̄2k,k = r2k−1,k−1,

r̄k−1,k−1r̄kk = rk−1,k−1rkk.

(10)

Note that the above operation guarantees that the inequal-
ity in (8) holds. For simplicity, later when we refer to
a column permutation, we mean the whole process of
a column permutation and triangularization. For readers’
convenience, we describe the LLL-P strategy in Algorithm
1, which can also be called the LLL-P reduction.

Algorithm 1 LLL-P
1: setP = In, k = 2;
2: while k ≤ n do
3: if δ r2k−1,k−1 > r2k−1,k + r2kk then
4: perform a column permutation: R =

GT
k−1,kRP k−1,k;

5: updateP : P = PP k−1,k;
6: k = k − 1, whenk > 2;
7: else
8: k = k + 1;
9: end if

10: end while

Here we give a remark about the LLL-P algorithm.
Note that the LLL-P algorithm is the same as the original
LLL algorithm, except that any operations related to size
reductions are not performed. When the Lovász condition
(8) for two consecutive columnsk − 1 andk of R is not
satisfied, the algorithm interchanges the two columns and
performs triangularization. We have just shown that the
two updated columns satisfy the Lovász condition. The
algorithm terminates when the Lovász condition for any
two consecutive columns is satisfied. The proof for the
convergence of the original LLL algorithm, which does
not use the size reduction condition, can be applied here
to show the convergence of the LLL-P algorithm. We
would like to point out that as the size reduction condition
(|rij | ≤ rii/2) in the LLL reduction is not satisfied any
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more, some properties of the LLL reduction are lost in the
LLL-P reduction.

With the QR factorization (7), we define

ȳ = Q̄
T
ỹ, ẑ = P T x̂, v̄ = Q̄

T
ṽ,

z = P Tx, ℓ̄ = P T ℓ, ū = P Tu.
(11)

Then the linear model (5) is transformed to

ȳ = R̄ẑ + v̄, v̄ ∼ N (0, σ2I), (12a)

ẑ ∈ B̄ = {z ∈ Z
n : ℓ̄ ≤ z ≤ ū, ℓ̄, ū ∈ Z

n} (12b)

and the BILS problem (6) is transformed to

min
z∈B̄

‖ȳ − R̄z‖22 (13)

whose solution is the BILS estimator ofẑ.

III. SUCCESSPROBABILITIES OF THE BABAI

ESTIMATORS

We consider the reduced box-constrained linear model
(5). The same analysis can be applied to the transformed
reduced linear model (12).

The box-constrained Babai estimatorxBB of x̂ in (5), a
suboptimal solution to (6), can be computed as follows:

cBB
i = (ỹi −

n
∑

j=i+1

rijx
BB
j )/rii,

xBB
i =











ℓi, if ⌊cBB
i ⌉ ≤ ℓi

⌊cBB
i ⌉, if ℓi < ⌊cBB

i ⌉ < ui

ui, if ⌊cBB
i ⌉ ≥ ui

(14)

for i = n, n− 1, . . . , 1, where
∑n

n+1 · = 0. If we do not
take the box constraint into account, we get the ordinary
Babai estimatorxOB:

cOB
i = (ỹi −

n
∑

j=i+1

rijx
OB
j )/rii, xOB

i = ⌊cOB
i ⌉ (15)

for i = n, n− 1, . . . , 1.
In the following, we give formulas for the success

probabilities ofxBB andxOB.
Theorem 1: Suppose that in (1)̂x is uniformly dis-

tributed over the constraint boxB, and x̂ and v are in-
dependent. Suppose that (1) is transformed to (5) through
the QR factorization (4). Then the success probabilities of
the box-constrained Babai estimatorxBB and the ordinary
Babai estimatorxOB, which are respectively defined in (14)
and (15), are

P BB ≡ Pr(xBB = x̂)

=

n
∏

i=1

[ 1

ui − ℓi + 1
+

ui − ℓi
ui − ℓi + 1

erf

(

rii

2
√
2σ

)

]

,

(16)

P OB ≡ Pr(xOB = x̂) =
n
∏

i=1

erf

(

rii

2
√
2σ

)

, (17)

where the error function is

erf(ζ) =
2√
π

∫ ζ

0

exp
(

− t2
)

dt.

Proof. To simplify notation, we denote

φσ(ζ) = erf

(

ζ

2
√
2σ

)

(18)

which will be used in this proof and other places.
Since the random vectorŝx andv in (1) are indepen-

dent,x̂ and ṽ in (5) are also independent. From (5a),

ỹi = riix̂i +

n
∑

j=i+1

rij x̂j + ṽi, i = n, n− 1, . . . , 1.

Then from (14), we obtain

cBB
i = x̂i+

n
∑

j=i+1

rij
rii

(x̂j −xBB
j )+

ṽi
rii

, i = n, n−1, . . . , 1.

(19)
Therefore, ifxBB

i+1 = x̂i+1, · · · , xBB
n = x̂n andx̂i is fixed,

we havecBB
i ∼ N (x̂i, σ

2/r2ii). Thus,

(cBB
i − x̂i)rii√

2σ
∼ N

(

0,
1

2

)

. (20)

To simplify notation, we denote events

Ei = (xBB
i = x̂i, . . . , x

BB
n = x̂n), i = 1, . . . , n.

Then, applying the chain rule of conditional probabilities
yields

P BB = Pr(E1) =

n
∏

i=1

Pr(xBB
i = x̂i|Ei+1) (21)

whereEn+1 is the sample spaceΩ leading toPr(xBB
n =

x̂n|En+1) = Pr(xBB
n = x̂n).

Since eventŝxi = ℓi, ℓi < x̂i < ui and x̂i = ui are
independent, by (14), we have

Pr(xBB
i = x̂i |Ei+1)

=Pr ((x̂i = ℓi, c
BB
i ≤ ℓi + 1/2) |Ei+1)

+Pr ((ℓi < x̂i < ui, x̂i − 1/2 ≤ cBB
i < x̂i + 1/2) |Ei+1)

+Pr ((x̂i = ui, c
BB
i ≥ ui − 1/2) |Ei+1) . (22)

In the following we will use this simple result: if̄E1, Ē2

andĒ3 are three events, and̄E2 andĒ3 are independent,
then

Pr((Ē1, Ē2)|Ē3) = Pr(Ē1) Pr(Ē2|(Ē1, Ē3)). (23)

This can easily be proved. In fact,

Pr((Ē1, Ē2)|Ē3) =
Pr(Ē1, Ē2, Ē3)

Pr(Ē3)

= Pr(Ē1)
Pr(Ē1, Ē2, Ē3)

Pr(Ē1, Ē3)

= Pr(Ē1) Pr(Ē2|(Ē1, Ē3)),
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where the second equality follows from the fact thatĒ1

and Ē3 are independent.
Thus, by (22) and (23), we obtain

Pr(xBB
i = x̂i |Ei+1)

= Pr(x̂i = ℓi) Pr (c
BB
i ≤ ℓi + 1/2 | (x̂i = ℓi, Ei+1))

+Pr(ℓi < x̂i < ui)

×Pr (x̂i − 1/2 ≤ cBB
i < x̂i + 1/2 | (ℓi < x̂i < ui, Ei+1))

+Pr(x̂i = ui) Pr (c
BB
i ≥ ui − 1/2 | (x̂i = ui, Ei+1)) .

(24)

Sincex̂ is uniformly distributed over the boxB, for the
first factors of the three terms on the right-hand side of
(24), we have

Pr(x̂i = ℓi) =
1

ui − ℓi + 1
,

Pr(ℓi < x̂i < ui) =
ui − ℓi − 1

ui − ℓi + 1
,

Pr(x̂i = ui) =
1

ui − ℓi + 1
.

By (18) and (20), for the second factors of these three
terms, we have

Pr(cBB
i ≤ ℓi + 1/2 | (x̂i = ℓi, Ei+1))

=Pr

(

(cBB
i − x̂i)rii√

2σ
≤ rii

2
√
2σ

∣

∣ (x̂i = ℓi, Ei+1)

)

=
1√
π

∫

rii

2
√

2σ

−∞
exp

(

− t2
)

dt =
1

2
[1 + φσ(rii)] ,

Pr(x̂i − 1/2 ≤ cBB
i < x̂i + 1/2 | (ℓi < x̂i < ui, Ei+1))

=Pr

(

∣

∣

∣

(cBB
i − x̂i)rii√

2σ

∣

∣

∣
≤ rii

2
√
2σ

∣

∣ (ℓi < x̂i < ui, Ei+1)

)

=
1√
π

∫

rii

2
√

2σ

− rii

2
√

2σ

exp
(

− t2
)

dt = φσ(rii),

Pr(cBB
i ≥ ui − 1/2 | (x̂i = ui, Ei+1))

=Pr

(

(cBB
i − x̂i)rii√

2σ
≥ − rii

2
√
2σ

∣

∣ (x̂i = ui, Ei+1)

)

=
1√
π

∫ ∞

− rii

2
√

2σ

exp
(

− t2
)

dt =
1

2
[1 + φσ(rii)] .

Combining the equalities above with (24) yields

Pr(xBB
i = x̂i |Ei+1)

=
1

2(ui − ℓi + 1)
[1 + φσ(rii)] +

ui − ℓi − 1

ui − ℓi + 1
φσ(rii)

+
1

2(ui − ℓi + 1)
[1 + φσ(rii)]

=
1

ui − ℓi + 1
+

ui − ℓi
ui − ℓi + 1

φσ(rii)

which, with (18) and (21), yields (16).
Now we consider the success probability of the ordi-

nary Babai estimatorxOB. Everything in the first three

paragraphs of this proof still holds if we replace each
superscript BB by OB. But we need to make more
significant changes to the last two paragraphs. We change
(22) and (24) as follows:

Pr(xOB
i = x̂i |Ei+1)

=Pr((ℓi ≤ x̂i ≤ ui, x̂i − 1/2 ≤ cOB
i < x̂i + 1/2) |Ei+1)

=Pr(ℓi ≤ x̂i ≤ ui)

×Pr(x̂i − 1/2 ≤ cOB
i < x̂i + 1/2 | (ℓi ≤ x̂i ≤ ui, Ei+1)).

Here

Pr(ℓi ≤ x̂i ≤ ui) = 1,

Pr(x̂i − 1/2 ≤ cOB
i < x̂i + 1/2 | (ℓi ≤ x̂i ≤ ui, Ei+1))

= φσ(rii).

Thus

Pr(xOB
i = x̂i |Ei+1) = φσ(rii).

Then (17) follows from (18) and (21) with each superscript
BB replaced by OB. �

From the proof of (17), we observe that the formula
holds no matter what distribution of̂x is over the boxB.
Furthermore, the formula is identical to the one for the
success probability of the ordinary Babai estimatorxOB

when x̂ in (1) is deterministic and is not subject to any
box constraint; for more details, see [14].

The following result shows the relationship betweenP BB

andP OB.
Corollary 1: Under the same assumption as in Theorem

1,

P OB < P BB, (25)

lim
all 1≤i≤n,ui−ℓi→∞

P BB = P OB. (26)

Proof. Note that

φσ(rii) = erf(rii/(2
√
2σ)) < 1.

Thus

φσ(rii) =
1

ui − ℓi + 1
φσ(rii) +

ui − ℓi
ui − ℓi + 1

φσ(rii)

<
1

ui − ℓi + 1
+

ui − ℓi
ui − ℓi + 1

φσ(rii).

Then, by Theorem 1, we can conclude that (25) holds, and
we can also see (26) holds.�

Corollary 2: Under the same assumption as in Theorem
1, P BB andP OB increase whenσ decreases and

lim
σ→0

P BB = lim
σ→0

P OB = 1.

Proof. For a givenζ, whenσ decreases erf(rii/(2
√
2σ))

increases andlim
σ→0

erf(rii/(2
√
2σ)) = 1. Then from The-

orem 1, we immediately see that the corollary holds.
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IV. EFFECTS OFLLL-P, SQRDAND V-BLAST ON P BB

Suppose that we perform the QR factorization (7) by
using a column permutation strategy, such as LLL-P,
SQRD or V-BLAST, then we have the reduced box-
constrained linear model (12). For (12) we can define its
corresponding Babai pointzBB, and use it as an estimator
of ẑ, which is equal toP T x̂, or equivalently we usePzBB

as an estimator of̂x.
In this section, we will investigate how LLL-P, SQRD

and V-BLAST column permutation strategies affect the
success probabilityP BB of the box-constrained Babai es-
timator.

A. Effect of LLL-P on P BB

The LLL-P strategy involves a sequence of permutations
of two consecutive columns ofR. To investigate how
LLL-P affectsP BB, we first look at one column permu-
tation. Suppose thatδ r2k−1,k−1 > r2k−1,k + r2kk for some
k for theR in (5). After the permutation of columnsk−1
andk, R becomesR̄ = GT

k−1,kRP k−1,k (see (9)). Then
with the transformations given in (11), wherēQ = Gk−1,k

and P = P k−1,k, (5) is transformed to (12). We will
comparePr(xBB = x̂) andPr(zBB = ẑ).

To prove our main results, we need the following two
lemmas.

Lemma 1: Givenα > 0, define

f(ζ, α) =(1− 2ζ2)
(

1 + α erf(ζ)
)

− 2α√
π
ζ exp(−ζ2)

(27)

for ζ ≥ 0. Then,f(ζ, α) is a strictly decreasing function
of ζ and has a unique zeror(α), i.e.,

f(r(α), α) = 0. (28)

When ζ > r(α), f(ζ, α) < 0 and whenζ < r(α),
f(ζ, α) > 0. Furthermore,0 < r(α) < 1/

√
2, r(α) is

a strictly decreasing function ofα, and lim
α→∞

r(α) = 0.
Proof. By some simple calculations, we obtain

∂f(ζ, α)

∂ζ
= −4ζ

(

1 + α erf(ζ)
)

.

Thus, for anyζ ≥ 0 andα > 0, ∂f(ζ, α)/∂ζ ≤ 0, where
the equality holds if and onlyζ = 0. Therefore,f(ζ, α)
is a strictly decreasing function ofζ.

Note thatf(0, α) = 1 > 0 andf(1/
√
2, α) < 0 for α >

0, by the implicit function theorem, there exists a unique
r(α), which is continuously differentiable with respect to
α, such that (28) holds and0 < r(α) < 1/

√
2. Since

f(ζ, α) is strictly decreasing with respect toζ, whenζ >
r(α), f(ζ, α) < 0 and whenζ < r(α), f(ζ, α) > 0.

In the following, we show thatr(α) is a strictly de-
creasing function ofα. From (28), we have
(

1−2 r2(α)
)(

1+αerf(r(α))
)

=
2α√
π
r(α) exp

(

−r2(α)
)

.

(29)

Taking the derivative for both sides of (29) with respect
to α yields

− 2 r(α) r′(α)
(

1 + α erf(r(α))
)

+
(

1− 2 r2(α)
)

(

erf(r(α)) +
2α√
π
r′(α) exp

(

− r2(α)
)

)

=
2√
π
r(α) exp

(

− r2(α)
)

+
2α√
π
r′(α) exp

(

− r2(α)
)

(

1− 2 r2(α)
)

.

Therefore,

2 r(α) r′(α)
(

1 + α erf(r(α))
)

=(1 − 2 r2(α))erf(r(α)) − 2√
π
r(α) exp

(

− r2(α)
)

=− 1

α
(1 − 2 r2(α)),

where the latter equality follows from (29). Hence

r′(α) = − (1− 2 r2(α))

2α r(α)
(

1 + α erf(r(α))
) < 0.

Finally, we show that lim
α→∞

r(α) = 0. Since r(α) is

continuously differentiable with respect toα andr(α) > 0
for α > 0, lim

α→∞
r(α) exists. Letη = lim

α→∞
r(α), by the

fact thatr(α) is strictly decreasing withα, we obtain that
0 ≤ η ≤ 1/

√
2.

From (29), we have
(

1− 2 r2(α)
)

erf(r(α)) − 2√
π
r(α) exp

(

−r2(α)
)

=
1− 2

(

r(α)
)2

α
.

Then we take limits on both sides of the above equation
asα → ∞, resulting in

(1− 2 η2)erf(η)− 2√
π
η exp(−η2) = 0.

Since0 ≤ η ≤ 1/
√
2, one can conclude from the above

equation that lim
α→+∞

r(α) = η = 0. �

Remark 1: Given α, we can easily solve (28) by a
numerical method, e.g., the Newton method, to findr(α).

Lemma 2: Givenα, β > 0, define

g(ζ, α, β) =
(

1 + α erf(ζ)
)(

1 + α erf(β/ζ)
)

, ζ > 0.
(30)

Then, when

min{
√

β, β/r(α)} ≤ ζ < max{
√

β, β/r(α)} (31)

wherer(α) is defined in Lemma 1,g(ζ, α, β) is a strictly
decreasing function ofζ.

Proof. By the definition ofg, we can easily obtain

∂g(ζ, α, β)

∂ζ
=

2α√
πζ

(

1 + α erf(ζ)
)(

1 + α erf(β/ζ)
)

× [h(ζ, α) − h(β/ζ, α)] ,
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where

h(ζ, α) =
ζ exp(−ζ2)

1 + α erf(ζ)
. (32)

It is easy to see that in order to show the result, we need
only to showh(ζ, α) < h(β/ζ, α) under the condition
(31) with ζ 6= β/ζ.

By some simple calculations and (27), we have

∂h(ζ, α)

∂ζ
=

exp(−ζ2)
(

1 + α erf(ζ)
)2 × f(ζ, α). (33)

Now we assume thatζ satisfies (31) withζ 6= β/ζ. If√
β < β/r(α), by (31), we haveζ > β/ζ > r(α),

and then from Lemma 1, in this case,f(ζ, α) < 0, thus
∂h(ζ, α)/∂ζ < 0, i.e., h(ζ, α) is a strictly deceasing
function ofζ, thush(ζ, α) < h(β/ζ, α). If

√
β > β/r(α),

by (31), we obtainζ < β/ζ < r(α), and then from
Lemma 1, f(ζ, α) > 0, thus ∂h(ζ, α)/∂ζ > 0, i.e.,
h(ζ, α) is a strictly increasing function ofζ, thus again
h(ζ, α) < h(β/ζ, α). �

With the above lemmas, we can show how the success
probability of the box-constrained Babai estimator changes
after two consecutive columns are swapped when the LLL-
P strategy is applied. Specifically, we have the following
theorem.

Theorem 2: Suppose that in (1) the boxB is a cube with
edge length ofd, x̂ is uniformly distributed overB, and
x̂ andv are independent. Suppose that (1) is transformed
to (5) through the QR factorization (4) andδ r2k−1,k−1 >
r2k−1,k + r2kk. After the permutation of columnsk− 1 and
k of R and triangularization (see (9)), (5) is transformed
to (12).

1) If rkk ≥ 2
√
2σ r(d), where r(·) is defined in

Lemma 1, then after the permutation, the success
probability of the box-constrained Babai estimator
increases, i.e.,

Pr(xBB = x̂) ≤ Pr(zBB = ẑ). (34)

2) If rk−1,k−1 ≤ 2
√
2 σ r(d), then after the permuta-

tion, the success probability of the box-constrained
Babai estimator decreases, i.e.,

Pr(xBB = x̂) ≥ Pr(zBB = ẑ). (35)

Furthermore, the equality in each of (34) and (35) holds
if and only if rk−1,k = 0.

Proof. When rk−1,k = 0, by Theorem 1, we see the
equalities in (34) and (35) hold. In the following we
assumerk−1,k 6= 0 and show the strict inequalities in (34)
and (35) hold.

Define

β ≡ rk−1,k−1

2
√
2σ

rkk

2
√
2σ

=
r̄k−1,k−1

2
√
2σ

r̄kk

2
√
2σ

(36)

where for the second equality, see (10). Using
δ r2k−1,k−1 > r2k−1,k + r2kk and the equalities in (10), we
can easily verify that

√

β ≤ max
{ r̄k−1,k−1

2
√
2σ

,
r̄kk

2
√
2σ

}

< max
{rk−1,k−1

2
√
2σ

,
rkk

2
√
2σ

}

=
rk−1,k−1

2
√
2σ

=
β

rkk/(2
√
2σ)

, (37)

β

rk−1,k−1/(2
√
2σ)

=
rkk

2
√
2σ

= min
{rk−1,k−1

2
√
2σ

,
rkk

2
√
2σ

}

< min
{ r̄k−1,k−1

2
√
2σ

,
r̄kk

2
√
2σ

}

≤
√

β.

(38)

Now we prove part 1. Note that after the permutation,
rk−1,k−1 andrkk change, but other diagonal entries ofR

do not change. Then by Theorem 1, we can easily observe
that (34) is equivalent to

[ 1

d+ 1
+

d

d+ 1
erf

(

rk−1,k−1

2
√
2σ

)

]

×
[ 1

d+ 1
+

d

d+ 1
erf

(

rkk

2
√
2σ

)

]

≤
[ 1

d+ 1
+

d

d+ 1
erf

(

r̄k−1,k−1

2
√
2σ

)

]

×
[ 1

d+ 1
+

d

d+ 1
erf

(

r̄kk

2
√
2σ

)

]

. (39)

By (30), we can see that (39) is equivalent to

g
(

max
{rk−1,k−1

2
√
2σ

,
rkk

2
√
2σ

}

, d, β
)

≤g
(

max
{ r̄k−1,k−1

2
√
2σ

,
r̄kk

2
√
2σ

}

, d, β
)

. (40)

If rkk ≥ 2
√
2 σ r(d), then the right-hand side of the last

equality in (37) satisfies

β

rkk/(2
√
2σ)

≤ β

r(d)
. (41)

Then by combining (37) and (41) and applying Lemma 2
we can conclude that the strict inequality in (40) holds.

The proof for part 2 is similar. The inequality (35) is
equivalent to

g
(

min
{rk−1,k−1

2
√
2σ

,
rkk

2
√
2σ

}

, d, β
)

≥g
(

min
{ r̄k−1,k−1

2
√
2σ

,
r̄kk

2
√
2σ

}

, d, β
)

. (42)

If rk−1,k−1 ≤ 2
√
2σ r(d), then the left-hand side of the

first equality in (38) satisfies

β

r(d)
≤ β

rk−1,k−1/(2
√
2σ)

. (43)
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Then by combining (38) and (43) and applying Lemma 2
we can conclude that the strict inequality in (42) holds.
�

We make a few remarks about Theorem 2.
Remark 2: In the theorem,B is assumed to be a cube,

not a more general box. This restriction simplified the
theoretical analysis. Furthermore, in practical applications,
such as communications, indeedB is often a cube.

Remark 3: After the permutation, the larger one of
rk−1,k−1 and rkk becomes smaller (see (37)) and the
smaller one becomes larger (see (38)), so the gap be-
tween rk−1,k−1 and rkk becomes smaller. This makes
P BB increase under the conditionrkk ≥ 2

√
2σ r(d) or

decrease under the conditionrk−1,k−1 ≤ 2
√
2σ r(d). It

is natural to ask for fixedrk−1,k−1 and rkk, when will
P BB increase most or decrease most after the permutation
under the corresponding conditions? From the proof we
observe thatP BB will become maximal when the first
inequality in (37) becomes an equality or minimal when
the last inequality in (38) becomes an equality under
the corresponding conditions. Either of the two equalities
holds if and only if r̄k−1,k−1 = r̄kk, which is equivalent
to r2k−1,k + r2kk = rk−1,k−1rkk by (10).

Remark 4: The case whererkk < 2
√
2 σ r(d) <

rk−1,k−1 is not covered by the theorem. For this case,
P BB may increase or decrease after the permutation, for
more details, see the simulations in Sec. IV-D.

Based on Theorem 2, we can establish the following
general result for the LLL-P strategy.

Theorem 3: Suppose that in (1) the boxB is a cube
with edge length ofd, x̂ is uniformly distributed overB,
and x̂ and v are independent. Suppose that (1) is first
transformed to (5) through the QR factorization (4) and
then to (12) through the QR factorization (7) where the
LLL-P strategy is used for column permutations.

1) If the diagonal entries ofR in (5) satisfies

min
1≤i≤n

rii ≥ 2
√
2σ r(d), (44)

wherer(·) is defined in Lemma 1, then

Pr(xBB = x̂) ≤ Pr(zBB = ẑ). (45)

2) If the diagonal entries ofR in (5) satisfies

max
1≤i≤n

rii ≤ 2
√
2σ r(d), (46)

then
Pr(xBB = x̂) ≥ Pr(zBB = ẑ). (47)

And the equalities in (45) and (47) hold if and only if
no column permutation occurs in the process or whenever
two consecutive columns, sayk − 1 andk, are permuted,
rk−1,k = 0.

Proof. It is easy to show that after each column permu-
tation, the smaller one of the two diagonal entries ofR

involved in the permutation either keeps unchanged (the

involved super-diagonal entry is 0 in this case) or strictly
increases, while the larger one either keeps unchanged or
strictly decreases (see (37) and (38)). Thus, after each
column permutation, the minimum of the diagonal entries
of R either keeps unchanged or strictly increases and the
maximum either keeps unchanged or strictly decreases, so
the diagonal entries of any upper triangularR̄ produced
after a column permutation satisfiesmin

1≤i≤n
rii ≤ r̄kk ≤

max
1≤i≤n

rii for all k = 1, . . . , n. Then the conclusion follows

from Theorem 2. �

We make some remarks about Theorem 3.
Remark 5: The quantityr(d) is involved in the condi-

tions. To get some idea about how large it is, we compute
it for a few differentd = 2k − 1. For k = 1, 2, 3, 4, 5,
the corresponding values ofr are 0.5939, 0.4926, 0.4042,
0.3286, 0.2653. They are decreasing withk as proved in
Lemma 1. Asd → ∞, r(d) → 0. Thus, whend is large
enough, the condition (44) will be satisfied. By Corollary
1, taking the limit asd → ∞ on both sides of (45), we
obtain the following result proved in [14]:

Pr(xOB = x̂) ≤ Pr(zOB = ẑ),

i.e., LLL-P always increases the success probability of the
ordinary Babai estimator.

Remark 6: The two conditions (44) and (46) also in-
volve the noise standard deviationσ. Whenσ is small, (44)
is likely to hold, so applying LLL-P is likely to increase
P BB, and whenσ is large, (46) is likely to hold, so applying
LLL-P is likely to decreaseP BB. It is quite surprising that
when σ is large enough applying LLL-P will decrease
P BB. Thus, before applying LLL-P, one needs to check the
conditions (44) and (46). If (44) holds, one has confidence
to apply LLL-P. If (46) holds, one should not apply it. If
both do not hold, i.e.,min

1≤i≤n
rii < 2

√
2σ r(d) < max

1≤i≤n
rii,

applying LLL-P may increase or decreaseP BB.

B. Effects of SQRD and V-BLAST on P BB

SQRD and V-BLAST have been used to find better
ordinary and box-constrained Babai estimators in the lit-
erature. It has been demonstrated in [14] that unlike LLL-
P, both SQRD and V-BLAST may decrease the success
probabilityP OB of the ordinary Babai estimator when the
parameter vector̂x is deterministic and not subject to any
constraint.

We would like to know how SQRD and V-BLAST affect
P BB. Unlike LLL-P, both SQRD and V-BLAST usually
involve two non-consecutive columns permutations, result-
ing in the changes of all diagonal entries between and
including the two columns. This makes it very difficult to
analyze under what conditionP BB increases or decreases.
We will use numerical test results to show the effects of
SQRD and V-BLAST onP BB with explanations.

In Theorem 2 we showed that if the condition (44)
holds, then applying LLL-P will increaseP BB and if
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(46) holds, then applying LLL-P will decreaseP BB. The
following example shows that both SQRD and V-BLAST
may decreaseP BB even if (44) holds, and they may
increaseP BB even if (46) holds.

Example 1: Let d = 1 and consider two matrices:

R(1) =





3.5 3 0
0 1 −1.5
0 0 1



 , R(2) =





1 −1.5 1.5
0 0.8 −1
0 0 0.42



 .

Applying SQRD, V-BLAST and LLL-P toR(1) and
R(2), we obtain

R(1)
S

=





1.8028 −0.8321 0
0 3.0509 3.4417
0 0 0.6364



 ,

R(1)
V

= R(1)
L

=





3.1623 3.3204 −0.4743
0 1.1068 1.4230
0 0 1



 ,

R(2)
V

=





1.7 −1.7941 −0.8824
0 0.4556 −0.1823
0 0 0.4338



 ,

R(2)
S

= R(2)
L

= R(2).

If σ = 0.2, then it is easy to verify that for bothR(1)

andR(2), (44) holds (note that2
√
2 r(d) = 2

√
2 r(1) =

1.6798). Simple calculations by using (16) give

P BB(R(1)) = 0.9876, P BB(R(2)) = 0.8286,

and

P BB(R(1)
S

) = 0.9442, P BB(R(1)
V

) = P BB(R(1)
L

) = 0.9910,

P BB(R(2)
V

) = 0.7513, P BB(R(2)
S

) = P BB(R(2)
L

) = 0.8286.

Thus, SQRD decreasesP BB, while V-BLAST and LLL-P
increaseP BB for R(1), and V-BLAST decreasesP BB, while
SQRD and LLL-P keepP BB unchanged forR(2).

If σ = 2.2, then it is easy to verify that for bothR(1)

and R(2), (46) holds. Simple calculations by using (16)
give

P BB(R(1)) = 0.2738, P BB(R(2)) = 0.1816.

Then

P BB(R(1)
S

) = 0.2777, P BB(R(1)
V

) = P BB(R(1)
L

) = 0.2700,

P BB(R(2)
V

) = 0.1898, P BB(R(2)
S

) = P BB(R(2)
L

) = 0.1816.

Thus, SQRD increasesP BB, while V-BLAST and LLL-P
decreaseP BB for R(1), and V-BLAST increasesP BB, while
SQRD and LLL-P keepP BB unchanged forR(2).

Although Example 1 indicates that under the condition
(44), unlike LLL-P, both SQRD and V-BLAST may de-
creaseP BB, often they increaseP BB. This is the reason why
SQRD and V-BLAST (especially the latter) have often
been used to increase the accuracy of the Babai estima-
tor in practice. Example 1 also indicates that under the
condition (46), unlike LLL-P, both SQRD and V-BLAST

may increaseP BB, but often they decreaseP BB. This is
the opposite of what we commonly believe. Later we will
give numerical test results to show both phenomena. In
the following we give some explanations.

It is easy to show that like LLL-P, V-BLAST increases
min1≤i≤ rii (not strictly) after each permutation and like
LLL-P, SQRD decreasesmax1≤i≤n rii (not strictly) after
each permutation. The relation between V-BLAST and
SQRD can be found in [34] and [28]. Thus if the con-
dition (44) holds before applying V-BLAST, it will also
hold after applying it; and if the condition (46) holds
before applying SQRD, it will also hold after applying
it. Often applying V-BLAST decreasesmax1≤i≤n rii and
applying SQRD increasesmin1≤i≤ rii (both may not be
true sometimes, see Example 1). Thus often the gaps
between the large diagonal entries and the small ones of
R decrease after applying SQRD or V-BLAST. From the
proof of Theorem 2 we see reducing the gaps will likely
increaseP BB under (44) and decreaseP BB under (46). Thus
it is likely both SQRD and V-BLAST will increaseP BB

under (44) and decrease it under (46). We will give further
explanations in the next subsection.

C. A bound on P BB

In this subsection we give a bound onP BB, which is
an upper bound under (44) and becomes a lower bound
under (46). This bound can help us to understand what a
column permutation strategy should try to achieve.

Theorem 4: Suppose that the assumptions in Theorem
1 hold. Let the boxB in (1b) be a cube with edge length
of d and denoteγ = (det(R))1/n.

1) If the condition (44) holds, then

Pr(xBB = x̂) ≤
[

1

d+ 1
+

d

d+ 1
erf

( γ

2
√
2σ

)

]n

.

(48)
2) If the condition (46) holds, then

Pr(xBB = x̂) ≥
[

1

d+ 1
+

d

d+ 1
erf

( γ

2
√
2σ

)

]n

.

(49)

The equality in either (48) or (49) holds if and only if
rii = γ for i = 1, . . . , n.

Proof. We prove only part 1. Part 2 can be proved
similarly. Note thatγn = Πn

i=1rii. Obviously, if rii = γ
for i = 1, . . . , n, then by (16) the equality in (48) holds. In
the following we assume that there existj andk such that
rjj 6= rkk, we only need to show that the strict inequality
(48) holds.

DenoteF (ζ) = ln(1 + derf
(

exp(ζ)

2
√
2σ

)

), ηi = ln(rii) for

i = 1, 2, . . . , n andη = 1
n

∑n
i=1 ηi, then by (16), (48) is

equivalent to

1

n

n
∑

i=1

F (ηi) < F (η).
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Since min1≤i≤ rii ≥ 2
√
2σ r(d) and rjj 6= rkk, it

suffices to show thatF (ζ) is a strict concave function on
(ln(2

√
2σ r(d)),+∞). Therefore, we only need to show

thatF ′′(ζ) < 0 whenζ > ln(2
√
2σ r(d)).

To simplify notation, denoteξ = exp(ζ)/(2
√
2σ). By

some simple calculations, we obtain

F ′(ζ) =
d ξ exp(−ξ2)

1 + derf(ξ)
= d h(ξ, d)

whereh(·, ·) is defined in (32). Then

F ′′(ζ) = d ξ (∂h(ξ, d)/∂ξ).

By the proof of Lemma 2,∂h(ξ, d)/∂ξ < 0 when ξ >
r(d). Thus, we can conclude thatF ′′(ζ) < 0 when ζ >
ln(2

√
2σ r(d)), completing the proof. �

Now we make some remarks about Theorem 4.
Remark 7: The quantityγ is invariant with respect to

column permutations, i.e., forR and R̄ in (7), we have
the sameγ no matter what the permutation matrixP is.
Thus the bounds in (48) and (49), which are actually the
same quantity, are invariant with respect to column permu-
tations. Although the condition (44) is variant with respect
to column permutations, if it holds before applying LLL-P
or V-BLAST, it will hold afterwards, since the minimum
of the diagonal entries of̄R will not be smaller than
that of R after applying LLL-P or V-BLAST. Similarly,
the condition (46) is also variant with respect to column
permutations. But if it holds before applying LLL-P or
SQRD, it will hold afterwards, since the maximum of the
diagonal entries of̄R will not be larger than that ofR
after applying LLL-P or SQRD.

Remark 8: The equalities in (48) and (49) are reached
if all the diagonal entries ofR are identical. This suggests
that if the gaps between the larger entries and small entries
become smaller after permutations, it is likely thatP BB

increases under the condition (44) or decreases under the
condition (46). As we know, the gap between the largest
one and the smallest one decreases after applying LLL-P.
Numerical tests indicate usually this is also true for both
V-BLAST and SQRD. Thus both V-BLAST and SQRD
will likely bring P BB closer to the bound under the two
opposite conditions, respectively.

Remark 9: Whend → ∞, by Lemma 1,r(d) → 0, thus
the condition in part 1 of Theorem 4 becomesmax

1≤i≤n
rii ≥

0, which always holds. Taking the limit asd → ∞ on both
sides of (48) and using Corollary 1, we obtain

Pr(xOB = x̂) ≤
(

erf(γ/(2
√
2σ))

)n

. (50)

The above result was obtained in [37] and a simple proof
was provided in [14].

D. Numerical tests

We have shown that if (44) holds, then LLL-P increases
P BB and (48) is an upper bound onP BB; and if (46) holds,

then the LLL-P decreasesP BB and (49) is a lower bound on
P BB. Example 1 in Sec. IV-B indicates that this conclusion
does not always hold for SQRD and V-BLAST. To further
understand the effects of LLL-P, SQRD and V-BLAST on
P BB and to see how close they bring their corresponding
P BB to the bounds given by (48) and (49), we performed
some numerical tests by MATLAB . For comparisons, we
also performed tests forP OB.

First we performed tests for the following two cases:

• Case 1.A is an n × n matrix whose entries are
chosen independently and randomly according to a
zero mean Gaussian distribution with variance1/2.

• Case 2.A = UDV T , U ,V are random orthog-
onal matrices obtained by the QR factorization of
matrices whose entries are chosen independently and
andomly according to the standard Gaussian distri-
bution andD is an n × n diagonal matrix with
dii = 103(n/2−i)/(n−1). The condition number ofA
is 1000.

In the tests for each case, we first chosen = 4 and
B = [0, 1]4 and took different noise standard deviationσ
to test different situations according to the conditions (44)
and (46) imposed in Theorems 3 and 4. The edge length
d of B is 1. So in (44) and (46),2

√
2 r(d) = 2

√
2 r(1) =

1.6798. Details about choosingσ will be given later.
We useP BB, P BB

L
, P BB

S
andP BB

V
respectively denote the

success probability of the box-constrained Babai estimator
corresponding to QR factorization (i.e., no permutations
are involved), LLL-P, SQRD and V-BLAST, and useµBB

to denote the right-hand side of (48) or (49), which is an
upper bound if (44) holds and a lower bound if (46) holds.
Similarly, P OB, P OB

L
, P OB

S
and P OB

V
respectively denote

the success probability of the ordinary Babai estimator
corresponding to QR factorization, LLL-P, SQRD and V-
BLAST. We useµOB to denote the right-hand side of (50),
which is an upper bound onP OB, P OB

L
, P OB

S
andP OB

V
. For

each case, we performed 10 runs (notice that for each run
we have differentA, x̂ andv due to randomness) and the
results are displayed in Tables I-VI.

In Tables I and II,σ = σ1 ≡ min
1≤i≤n

rii/1.8. It is easy to

verify that the condition (44) holds. This means thatP BB ≤
P BB

L
by Theorem 3 andP BB, P BB

L
, P BB

V
≤ µBB by Theorem

4 and Remark 7. The numerical results given in Tables
I and II are consistent with the theoretical results. The
numerical results also indicate that SQRD and V-BLAST
usually increase (not strictly)P BB, although there is one
exceptional case for SQRD in Table II. We observe that
the permutation strategies increaseP BB more significantly
for Case 2 than for Case 1. The reason is thatA is more
ill-conditioned for Case 2, resulting in larger gaps between
the diagonal entries ofR, which can usually be reduced
more effectively by the permutation strategies. We also
observe thatP BB

S
≤ µBB in both tables. Although in theory

the inequality may not hold as we cannot guarantee the
condition (44) holds after applying SQRD, usually SQRD
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can makemin1≤i≤n rii larger. Thus if (44) holds before
applying SQRD, it is likely that the condition still holds
after applying it. Thus it is likely thatP BB

S
≤ µBB holds.

Tables III and IV are opposite to Tables I and II. In
both tables,σ = σ2 ≡ max

1≤i≤n
rii/1.6, then the condition

(46) holds. This means thatP BB ≥ P BB
L

by Theorem 3 and
P BB, P BB

L
, P BB

S
≥ µBB by Theorem 4 and Remark 7. The

numerical results given in the two tables are consistent
with the theoretical results. The results in the two tables
also indicate that both SQRD and V-BLAST decrease (not
strictly) P BB, although Example 1 shows that neither is
always true under the condition (46). We also observe that
P BB

V
≥ µBB in both tables. Although in theory the inequality

may not hold as we cannot guarantee the condition (46)
holds after applying V-BLAST, usually V-BLAST can
make max1≤i≤n rii smaller. Thus if (46) holds before
applying V-BLAST, it is likely the condition still holds
after applying it. Thus it is likelyP BB

V
≥ µBB holds.

In Tables V and VI,

σ = σ3 ≡ (0.3 max
1≤i≤n

rii + 0.7 min
1≤i≤n

rii)/1.68.

In this case,

min
1≤i≤n

rii ≤
1.68

1.6798
2
√
2σ r(d) ≤ max

1≤i≤n
rii,

indicating that (46) does not hold and it is very likely that
(44) does not hold either. In theory we do not have results
that cover this situation. The numerical results in the two
tables indicate all of the three permutation strategies can
either increase or decreaseP BB strictly and µBB can be
larger or smaller thanP BB, P BB

L
, P BB

S
andP BB

V
. The reason

we chose 0.3 and 0.7 rather than a more natural choice of
0.5 and 0.5 in definingσ here is that we may not be able
to observe both increasing and decreasing phenomena due
to limited runs.

Now we make comments on the success probability
of ordinary Babai points. From Tables I-VI, we observe
that LLL-P always increases (not strictly)P OB, and SQRD
and V-BLAST almost always increasesP OB (there is one
exceptional case for SQRD in Table II and two exceptional
cases for V-BLAST in Table VI). Thus the ordinary case is
different from the box-constrained case. We also observe
P OB ≤ P BB for the same permutation strategies. Sometimes
the difference between the two is large (see Tables IV and
VI).

Each of Tables I-VI displays the results for only 10 runs
due to space limitation. To make up for this shortcoming,
we give Tables VII and VIII, which display some statistics
for 1000 runs on the data generated exactly the same way
as the data for the 10 runs. Specifically these two tables
display the number of runs, in whichP BB (P OB) strictly
increases, keeps unchanged and strictly decreases after
each of the three permutation strategies is applied for Case
1 and Case 2, respectively. In the two tables,σ1, σ2 and
σ3 are defined in the same as those used in Tables I–VI.

From Tables VII and VIII, we can see that often these
permutation strategies increase or decreaseP BB for the
same data. The numerical results given in all the tables
suggest that if the condition (44) holds, we should have
confidence to use any of these permutation strategies; and
if the condition (46) holds we should not use any of them.

Tables VII and VIII do not show which permutation
strategy increasesP BB most for smallσ. The information
on this given in Tables I-VI are limited. In the following
we give more test results to investigate this.

As the main application of this research is in digit
communications, we used the MIMO model in the new
tests. For a fixed dimension, a fixed type of QAM and a
fixed Eb/N0, we randomly generated 200 complex chan-
nel matrices whose entries independently and identically
follow the standard complex normal distribution, and for
each generated channel matrix, we randomly generated
500 pairs of complex signal vector (whose entries are
uniformly distributed according to the QAM constellation)
and complex noise vector (whose entries are independently
and identically normally distributed), resulting in 10000
instances of a complex linear model. Each complex in-
stance was then transformed to an instance of the real
linear model (1).

Unlike the previous tests, we compare theexperimental
error probabilities of the box-constrained Babai estimators
(i.e., the ratio of the number of runs that the Babai point
is not equal to the true parameter vectorx̂ to 10000)
corresponding to QR, LLL-P, SQRD and V-BLAST, and
the theoretical bound on the error probability of a Babai
estimator (i.e., the difference between 1 and the bound on
its success probability (see (48))).

Figures 1 and 2 respectively display the experimental
error probability corresponding to the QR factorization,
and the three permutation strategies, and the average theo-
retical bound over the 10000 runs versusEb/N0 = 5:5 :30
for the 4 × 4 MIMO system with 16-QAM and 64-
QAM. Similarly, Figures 3 and 4 respectively show the
corresponding results for the8 × 8 MIMO system with
16-QAM and 64-QAM. And Figures 5 and 6 show the
corresponding results for the16× 16 MIMO system with
16-QAM and 64-QAM, respectively.

From Figures 1-6, we can see that on average all of
the three column permutation strategies decrease the error
probability of the Babai point and the error bound is a
lower bound (this is because (44) usually holds, which
ensures (48)). These Figures also show that the effect of V-
BLAST is much more significant than that of LLL-P and
SQRD, which have more or less the same performance.
This phenomenon is similar to that forP OB, as shown in
[14].

V. ON THE CONJECTURE PROPOSED IN[32]

In [32], a conjecture was made on the ordinary Babai
estimator, based on which a stopping criterion was then
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TABLE I
SUCCESS PROBABILITIES AND BOUNDS FORCASE 1,σ = min1≤i≤n rii/1.8

σ P BB P BB
L

P BB
S

P BB
V

µBB P OB P OB
L

P OB
S

P OB
V

µOB

0.0738 0.8159 1.0000 1.0000 1.0000 1.0000 0.6319 1.0000 1.0000 1.0000 1.0000
0.1537 0.7632 0.8423 0.8423 0.8423 0.9083 0.5503 0.6988 0.6988 0.6988 0.8231
0.1575 0.7938 0.9491 0.9491 0.9491 0.9698 0.5977 0.8998 0.8998 0.8998 0.9403
0.2170 0.7235 0.8577 0.8577 0.8577 0.8670 0.4893 0.7300 0.7300 0.7300 0.7477
0.1285 0.8133 0.8534 0.8534 0.8521 0.9882 0.6278 0.7070 0.7070 0.7049 0.9766
0.1676 0.6809 0.7529 0.7529 0.7529 0.8896 0.4255 0.5375 0.5375 0.5375 0.7885
0.3665 0.7039 0.7273 0.7273 0.7273 0.8004 0.4629 0.5093 0.5093 0.5093 0.6324
0.1968 0.6892 0.7320 0.7320 0.7385 0.8073 0.4420 0.5103 0.5103 0.5270 0.6439
0.3322 0.7087 0.7317 0.7317 0.7317 0.7665 0.4718 0.5156 0.5156 0.5156 0.5765
0.5221 0.4754 0.4754 0.4754 0.4754 0.4758 0.1899 0.1899 0.1899 0.1899 0.1910

TABLE II
SUCCESS PROBABILITIES AND BOUNDS FORCASE 2,σ = min1≤i≤n rii/1.8

σ P BB P BB
L

P BB
S

P BB
V

µBB P OB P OB
L

P OB
S

P OB
V

µOB

0.0101 0.8155 0.9452 0.9354 0.9452 1.0000 0.6312 0.8905 0.8708 0.8905 1.0000
0.0130 0.7983 0.9839 0.9839 0.9839 1.0000 0.6045 0.9679 0.9679 0.9679 1.0000
0.0173 0.8159 0.9793 0.9793 0.9793 1.0000 0.6319 0.9586 0.9586 0.9586 1.0000
0.0066 0.8159 0.9913 0.9913 0.9967 1.0000 0.6319 0.9826 0.9826 0.9933 1.0000
0.0177 0.8106 0.9998 0.9998 0.9998 1.0000 0.6236 0.9997 0.9997 0.9997 1.0000
0.0060 0.8159 0.9841 0.9841 0.9998 1.0000 0.6319 0.9681 0.9681 0.9996 1.0000
0.0168 0.7833 0.8098 0.7625 0.8159 1.0000 0.5813 0.6224 0.5250 0.6319 1.0000
0.0150 0.8159 0.9999 0.9999 0.9999 1.0000 0.6319 0.9998 0.9998 0.9998 1.0000
0.0231 0.8159 0.9999 0.9999 0.9999 1.0000 0.6319 0.9999 0.9999 0.9999 1.0000
0.0211 0.7912 0.9696 0.9696 0.9892 1.0000 0.5935 0.9393 0.9393 0.9784 1.0000

TABLE III
SUCCESS PROBABILITIES AND BOUNDS FORCASE 1,σ = max(rii)/1.6

σ P BB P BB
L

P BB
S

P BB
V

µBB P OB P OB
L

P OB
S

P OB
V

µOB

1.1726 0.1557 0.1310 0.1310 0.1380 0.1121 0.0005 0.0006 0.0006 0.0006 0.0006
0.6432 0.2756 0.2756 0.2756 0.2756 0.2731 0.0387 0.0387 0.0387 0.0387 0.0395
0.5962 0.2915 0.2912 0.2912 0.2909 0.2900 0.0472 0.0473 0.0473 0.0475 0.0478
1.2435 0.1875 0.1632 0.1673 0.1632 0.1571 0.0040 0.0044 0.0044 0.0044 0.0045
0.8332 0.1873 0.1769 0.1769 0.1769 0.1750 0.0070 0.0074 0.0074 0.0074 0.0074
0.4875 0.2709 0.2709 0.2709 0.2709 0.2667 0.0356 0.0356 0.0356 0.0356 0.0366
0.9684 0.2769 0.2709 0.2709 0.2709 0.2688 0.0358 0.0369 0.0369 0.0369 0.0375
0.9971 0.1846 0.1665 0.1665 0.1665 0.1588 0.0043 0.0046 0.0046 0.0046 0.0047
1.2791 0.1501 0.1308 0.1308 0.1308 0.1294 0.0015 0.0016 0.0016 0.0016 0.0016
0.6327 0.2641 0.2564 0.2564 0.2564 0.2556 0.0301 0.0316 0.0316 0.0316 0.0318

TABLE IV
SUCCESS PROBABILITIES AND BOUNDS FORCASE 2,σ = max(rii)/1.6

σ P BB P BB
L

P BB
S

P BB
V

µBB P OB P OB
L

P OB
S

P OB
V

µOB

3.9438 0.1064 0.0947 0.0987 0.0947 0.0709 0.0000 0.0000 0.0000 0.0000 0.0000
2.4510 0.1173 0.1173 0.1173 0.1173 0.0764 0.0000 0.0000 0.0000 0.0000 0.0000
0.5790 0.1788 0.1640 0.1640 0.1640 0.1363 0.0019 0.0019 0.0019 0.0019 0.0021
5.3809 0.1011 0.0701 0.0701 0.0701 0.0686 0.0000 0.0000 0.0000 0.0000 0.0000
2.2574 0.1140 0.1023 0.0954 0.0954 0.0777 0.0000 0.0000 0.0000 0.0000 0.0000
3.7623 0.1099 0.0801 0.0801 0.0757 0.0713 0.0000 0.0000 0.0000 0.0000 0.0000
3.9225 0.1063 0.0834 0.0834 0.0834 0.0709 0.0000 0.0000 0.0000 0.0000 0.0000
1.3198 0.1153 0.1153 0.1153 0.1153 0.0900 0.0001 0.0001 0.0001 0.0001 0.0001
1.2416 0.1394 0.1108 0.1108 0.1108 0.0920 0.0001 0.0001 0.0001 0.0001 0.0001
0.8411 0.1719 0.1532 0.1532 0.1532 0.1090 0.0004 0.0004 0.0004 0.0004 0.0005

proposed for the sphere decoding search process for solv-
ing the BILS problem (2). In this section, we first introduce
this conjecture, then give an example to show that this
conjecture may not hold in general, and finally we show
that the conjecture holds under some conditions.

The problem considered in [32] is to estimate the integer

parameter vector̂x in the box-constrained linear model
(1). The method proposed in [32] first ignores the box
constraint (1b). Instead of using the column permutations
in (7), it performs the LLL reduction:

Q̄
T
RZ = R̄ (51)

whereQ̄ is orthogonal,Z is unimodular (i.e,Z ∈ Z
n×n
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TABLE V
SUCCESS PROBABILITIES AND BOUNDS FORCASE 1,σ = (0.3max(rii) + 0.7min1≤i≤n rii)/1.68

σ P BB P BB
L

P BB
S

P BB
V

µBB P OB P OB
L

P OB
S

P OB
V

µOB

0.2848 0.4208 0.4336 0.4336 0.3184 0.2846 0.0154 0.0165 0.0165 0.0252 0.0451
0.6313 0.4720 0.4829 0.4829 0.4829 0.4863 0.1630 0.1932 0.1932 0.1932 0.2017
0.4328 0.4540 0.4599 0.4599 0.4599 0.4623 0.1517 0.1673 0.1673 0.1673 0.1776
0.6105 0.5054 0.5061 0.5061 0.5061 0.5092 0.2123 0.2161 0.2161 0.2161 0.2259
0.3306 0.4268 0.3807 0.3807 0.3805 0.3484 0.0321 0.0539 0.0539 0.0539 0.0829
0.2600 0.5055 0.5103 0.5103 0.5103 0.5252 0.1544 0.1868 0.1868 0.1868 0.2437
0.4743 0.4235 0.4283 0.4283 0.4283 0.4259 0.0631 0.1225 0.1225 0.1225 0.1437
0.5878 0.4104 0.4161 0.4161 0.4161 0.4170 0.1159 0.1304 0.1304 0.1304 0.1359
0.3977 0.4429 0.4431 0.4431 0.4431 0.4477 0.1477 0.1479 0.1479 0.1479 0.1636
0.6273 0.4684 0.4684 0.4684 0.4684 0.4696 0.1792 0.1792 0.1792 0.1792 0.1848

TABLE VI
SUCCESS PROBABILITIES AND BOUNDS FORCASE 2,σ = (0.3max(rii) + 0.7min1≤i≤n rii)/1.68

σ P BB P BB
L

P BB
S

P BB
V

µBB P OB P OB
L

P OB
S

P OB
V

µOB

1.0377 0.1608 0.1324 0.1324 0.1625 0.0987 0.0001 0.0002 0.0002 0.0002 0.0002
0.3648 0.2774 0.2774 0.2774 0.2405 0.1987 0.0034 0.0034 0.0034 0.0025 0.0126
0.7603 0.1681 0.1758 0.1758 0.1758 0.1150 0.0003 0.0005 0.0005 0.0005 0.0007
0.8769 0.1835 0.2062 0.1713 0.2062 0.1067 0.0002 0.0003 0.0004 0.0003 0.0004
0.4708 0.2794 0.2352 0.2352 0.2352 0.1590 0.0010 0.0030 0.0030 0.0030 0.0048
1.1983 0.1572 0.1319 0.1319 0.1319 0.0932 0.0001 0.0001 0.0001 0.0001 0.0001
1.0001 0.1758 0.1596 0.1596 0.1464 0.1003 0.0001 0.0002 0.0002 0.0001 0.0002
0.8523 0.1671 0.1733 0.1733 0.1715 0.1082 0.0002 0.0003 0.0003 0.0003 0.0005
0.2128 0.3478 0.3478 0.3728 0.3478 0.3539 0.0599 0.0599 0.0711 0.0599 0.0866
0.3956 0.2188 0.2117 0.2117 0.1973 0.1844 0.0047 0.0047 0.0047 0.0034 0.0093

TABLE VII
NUMBER OF RUNS OUT OF1000IN WHICH P BB AND P OB CHANGES FORCASE 1

P BB P OB

σ
❳
❳
❳
❳
❳
❳
❳❳

Result
Strategy

LLL-P SQRD V-BLAST LLL-P SQRD V-BLAST

Strict increase 933 928 951 933 922 953
σ1 No change 67 47 42 67 47 42

Strict decrease 0 25 7 0 31 5
Strict increase 0 25 6 942 947 950

σ2 No change 58 40 37 58 40 37
Strict decrease 942 935 957 0 13 13
Strict increase 781 797 740 942 945 952

σ3 No change 58 40 37 58 40 37
Strict decrease 161 163 223 0 15 11

TABLE VIII
NUMBER OF RUNS OUT OF1000IN WHICH P BB AND P OB CHANGES FORCASE 2

P BB P OB

σ
❳
❳
❳
❳
❳
❳
❳❳

Result
Strategy

LLL-P SQRD V-BLAST LLL-P SQRD V-BLAST

Strict increase 858 803 938 858 800 938
σ1 No change 142 76 56 142 76 56

Strict decrease 0 121 6 0 124 6
Strict increase 0 23 69 906 944 831

σ2 No change 94 46 48 94 46 48
Strict decrease 906 931 883 0 10 121
Strict increase 134 189 97 906 943 840

σ3 No change 94 46 48 94 46 48
Strict decrease 772 765 855 0 11 112
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Fig. 1. Error probability of Babai point and bound versusEb/N0 =
5:5:30 for the 4× 4 MIMO system with 16-QAM
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Fig. 2. Error probability of Babai point and bound versusEb/N0 =
5:5:30 for the 4× 4 MIMO system with 64-QAM
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Fig. 3. Error probability of Babai point and bound versusEb/N0 =
5:5:30 for the 8× 8 MIMO system with 16-QAM
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Fig. 4. Error probability of Babai point and bound versusEb/N0 =
5:5:30 for the 8× 8 MIMO system with 64-QAM
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Fig. 5. Error probability of Babai point and bound versusEb/N0 =
5:5:30 for the 16× 16 MIMO system with 16-QAM

10 15 20 25 30

E
b
/N

0
(dB)

10-5

10-4

10-3

10-2

10-1

100

E
rr

or
 p

ro
ba

bi
lit

y

Bound
V-BLAST
SQRD
LLL-P
QR

Fig. 6. Error probability of Babai point and bound versusEb/N0 =
5:5:30 for the 16× 16 MIMO system with 64-QAM
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and det(Z) = ±1 ) and the upper triangular̄R is LLL
reduced, i.e., it satisfies the Lovász condition (8) and the
size-reduce condition:

|r̄ik| ≤
1

2
r̄ii, k = i+1, i+2, . . . , n, i = 1, 2, . . . , n−1.

Then, with ȳ = Q̄
T
ỹ, v̄ = Q̄

T
ṽ and ẑ = Z−1x̂, the

ordinary linear model (5a) becomes

ȳ = R̄ẑ + v̄, v̄ ∼ N (0, σ2I). (52)

For the reduced model, one can find its ordinary Babai
estimatorzOB (c.f. (15)):

cOB
i = (ȳi −

n
∑

j=i+1

r̄ijz
OB
j )/r̄ii, zOB

i = ⌊cOB
i ⌉ (53)

for i = n, n − 1, . . . , 1, where
∑n

j=n+1 · = 0. Define
x̄ = ZzOB. In [32], x̄ is used to estimate the true parameter
vectorx̂. If x̄ 6= x̂, then a vector error (VE) is said to have
occurred. Note that̄x may be outside the constraint boxB
in (1b). If x̄ ∈ B, thenx̄ is called a valid vector, otherwise,
i.e., x̄ /∈ B, x̄ is called an invalid vector. The conjecture
proposed in [32] is: a VE is most likely to occur if̄x is
invalid; conversely, ifx̄ is valid, there is little chance that
the vector is in error.

From the definition of VE, ifx̄ is invalid, then VE
must occur. So in the following, we will only consider the
second part of the conjecture, i.e.,Pr(x̄ 6= x̂|x̄ ∈ B) ≈ 0.

A. The conjecture does not always hold

In this subsection, we first show thatPr(x̄ 6= x̂|x̄ ∈ B)
can be very close to 1, then give a specific example to
show Pr(x̄ 6= x̂|x̄ ∈ B) ≥ 0.9275 and finally perform
some Matlab simulations to illustrate this example.

Theorem 5: For any givenǫ > 0, any fixed dimension
n ≥ 2, any boxB and any standard deviationσ of the
noise vectorv, there always exists a box-constrained linear
model in the form of (5), wherêx is uniformly distributed
over the boxB, such that

Pr(x̄ 6= x̂|x̄ ∈ B) ≥ 1− 1

u1 − ℓ1 + 1
− ǫ. (54)

Proof. Note that

Pr(x̄ 6= x̂|x̄ ∈ B) = Pr(x̄ ∈ B)− Pr(x̄ = x̂, x̄ ∈ B)
Pr(x̄ ∈ B)

= 1− Pr(x̄ = x̂)

Pr(x̄ ∈ B) . (55)

where the second equality is due to the fact thatx̂ ∈ B.
Thus, to prove the theorem, it suffices to show that for any
given ǫ > 0 there exists a box-constrained linear model
such that

Pr(x̄ = x̂)

Pr(x̄ ∈ B) ≤ 1

u1 − ℓ1 + 1
+ ǫ. (56)

For any fixedσ andB, to construct the linear model,
we need only to construct a matrixR ∈ R

m×n. Define

R =

[

r11 0.5r11e
T

0 r22In−1,n−1

]

, 0 < r11 ≤ r22

where e = [1, . . . , 1]T ∈ R
n−1. We will show how to

chooser11 such that (56) holds.
Note thatR is already LLL reduced, thus,̄x = zOB =

xOB and x̂ = ẑ. Then, by (17) and (18),

Pr(x̄ = x̂) = φσ(r11) (φσ(r22))
n−1

. (57)

Obviously, with eventE2 ≡ (xOB
2 = x̂2, . . . , x

OB
n = x̂n),

Pr(x̄ ∈ B) = Pr(xOB ∈ B) ≥ Pr (xOB
1 ∈ [ℓ1, u1], E2)

= Pr(xOB
1 ∈ [ℓ1, u1]|E2) · Pr(E2)

= Pr(xOB
1 ∈ [ℓ1, u1]|E2) (φσ(r22))

n−1 (58)

where the last equality follows from (17) and (18). There-
fore, by (57) and (58), to show (56) it suffices to show
that there exists anr11 > 0 such that

φσ(r11)

Pr(xOB
1 ∈ [ℓ1, u1]|E2)

≤ 1

u1 − ℓ1 + 1
+ ǫ (59)

In the following we derive an expression forPr(xOB
1 ∈

[ℓ1, u1]|E2) and then use it to show that (59) holds for
somer11 > 0. From the proof of Theorem 1, we see that
if xOB

i = x̂i for i = n, n − 1, . . . , 2 and x̂1 is fixed, then
(cf. (20))

(cOB
1 − x̂1)r11√

2σ
∼ N

(

0,
1

2

)

. (60)

SincexOB
1 = ⌊cOB

1 ⌉ andx̂ is uniformly distributed over the
box B,

Pr
(

xOB
1 ∈ [ℓ1, u1]|E2

)

=

u1−ℓ1
∑

i=0

Pr
(

x̂1 = ℓ1 + i, xOB
1 ∈ [ℓ1, u1]|E2

)

=

u1−ℓ1
∑

i=0

Pr(x̂1 = ℓ1 + i)

Pr
(

xOB
1 ∈ [ℓ1, u1]|(x̂1 = ℓ1 + i, E2)

)

=
1

u1 − ℓ1 + 1
×

u1−ℓ1
∑

i=0

Pr
(

cOB
1 ∈ [ℓ1 − 1/2, u1 + 1/2]|(x̂1 = ℓ1 + i, E2)

)

=
1

u1 − ℓ1 + 1

u1−ℓ1
∑

i=0

Pr

(

(cOB
1 − x̂1)r11√

2σ

∈
[−(2i+ 1)r11

2
√
2σ

,
(2u1 − 2ℓ1 − 2i+ 1)r11

2
√
2σ

]
∣

∣

∣
E2

)

=
1

2(u1 − ℓ1 + 1)

u1−ℓ1
∑

i=0

[φσ((2u1 − 2ℓ1 − 2i+ 1)r11)

+φσ((2i+ 1)r11)]
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where the second equality follows from (23), and the last
equality is due to (18) and (60).

It is easy to verify by L’Hôpital’s rule that

lim
r11→0

φσ(r11)

α
=

1

u1 − ℓ1 + 1
,

where

α =
1

2(u1 − ℓ1 + 1)

u1−ℓ1
∑

i=0

[φσ((2u1 − 2ℓ1 − 2i+ 1)r11)

+φσ((2i+ 1)r11)] .

Therefore, for anyǫ > 0, there exists anr11 > 0 such
that (59) holds, completing the proof.�

As u1 − ℓ1 + 1 is at least 2, Theorem 5 shows that
Pr(x̄ 6= x̂|x̄ ∈ B) can be at least1/2 − ǫ. Note that
u1− ℓ1+1 can be arbitrarily large and we can chooseℓ1,
u1 andr11 such thatPr(x̄ 6= x̂|x̄ ∈ B) can be arbitrarily
close to 1. In the following, we give a specific example
to show thatPr(x̄ 6= x̂|x̄ ∈ B) ≥ 0.9275 and give some
simulation results.

Example 2: For any fixedn and σ, let ǫ = 0.01 and
B = [0, 15]n, and define

R =

[

0.04σ 0.02σeT

0 10σIn−1,n−1

]

. (61)

It is easy to verify that this matrixR satisfies the condi-
tions given in the proof of Theorem 5. Then by (54), we
havePr(x̄ 6= x̂|x̄ ∈ B) ≥ 0.9275.

We use MATLAB to do some simulations to illustrate
the probability. In the simulations, for any fixedn andσ,
we generated ann×n matrixR by using (61). After fixing
R, we gave 10000 runs to generate 10000 pairs ofx̂ and
ṽ according to their distributions, producing 10000ỹ’s
according to (5a). For each̃y, we found the Babai point
xOB by using (15). For each pair ofR andσ, we computed
the theoretical probabilityPr(x̄ 6= x̂) denoted byPerr by
using (57) (notice thatPerr = 1−P OB sincex̄ = xOB here)
and the corresponding experimental probabilityPex (i.e.,
the ratio of the number of runs in which̄x 6= x̂ to 10000).
We also computed the experimental probabilityPb of x̄ ∈
B (i.e., the ratio of the number of runs in which̄x ∈ B to
10000) and the experimental probabilityPe corresponding
to Pr(x̄ 6= x̂|x̄ ∈ B), i.e., Pe = 1 − (1 − Pex)/Pb (cf.
(55)).

Tables IX and X respectively display those probabilities
versusn = 5 : 5 : 40 with σ = 0.1 and versusσ = 0.1 :
0.1 : 0.8 with n = 20. From these two tables, we can
see that the values ofPe are larger than 0.9275 except the
case thatn = 40 in Table IX, in whichPe is smaller than
0.9275, but it is close to the latter. Thus the test results
are consistent with the theoretical result. We also observe
thatPth is very small andPex is a good approximation to
Pth. In Tables IX the values ofPerr are actually different,
but very close becauseφσ(r22) is very close to 1 (c.f.
(57)) and in Tables X the values ofPerr are exactly equal

because in (57)φσ(r11) andφσ(r22) are independent of
σ. This experiment confirms that even ifx̄ is valid, there
may be a large chance that it is in error.

TABLE IX
PROBABILITIES VERSUSn = 5 : 5 : 40 WITH σ = 0.1

n Perr Pex Pb Pe

5 0.9840 0.9840 0.2484 0.9356
10 0.9840 0.9850 0.2485 0.9396
15 0.9840 0.9836 0.2469 0.9336
20 0.9840 0.9837 0.2499 0.9348
25 0.9840 0.9827 0.2564 0.9325
30 0.9840 0.9828 0.2500 0.9312
35 0.9840 0.9828 0.2473 0.9304
40 0.9840 0.9818 0.2434 0.9252

TABLE X
PROBABILITIES VERSUSσ = 0.1 : 0.1 : 0.8 WITH n = 20

σ Perr Pex Pb Pe

0.1 0.9840 0.9841 0.2503 0.9365
0.2 0.9840 0.9832 0.2522 0.9334
0.3 0.9840 0.9844 0.2434 0.9359
0.4 0.9840 0.9844 0.2399 0.9350
0.5 0.9840 0.9825 0.2435 0.9281
0.6 0.9840 0.9827 0.2475 0.9301
0.7 0.9840 0.9843 0.2541 0.9382
0.8 0.9840 0.9838 0.2517 0.9356

B. The conjecture holds under some conditions

In this subsection, we will show that the conjecture
holds under some conditions.

Recall thatx̄ = ZzOB andx̂ = Zẑ, thusPr(x̄ = x̂) =
Pr(zOB = ẑ). Then, by (55), we have

Pr(x̄ 6= x̂|x̄ ∈ B) ≤ 1− Pr(zOB = ẑ). (62)

So, if Pr(zOB = ẑ) ≈ 1, then the conjecture holds. From
Corollary 2 we see that whenσ is small enough, we have
Pr(zOB = ẑ) ≈ 1. But the upper bound given in (62) is
not sharp because it was derived from (55) by using the
inequalityPr(x̄ ∈ B) ≤ 1. We will give a sharper upper
bound onPr(x̄ 6= x̂|x̄ ∈ B) based on a sharper upper
bound onPr(x̄ ∈ B).

Since x̄ = ZzOB, x̄ ∈ B if and only if zOB ∈ E ≡
{Z−1s | ∀s ∈ B}. ThusPr(x̄ ∈ B) = Pr(zOB ∈ E). But
the setE is a parallelotope and it is difficult to analyze
Pr(zOB ∈ E). Thus in the following we will give a box
F which containsE , then we analyzePr(zOB ∈ F). Let
U = (uij) = Z−1 and define fori, j = 1, 2, . . . , n,

µij =

{

ℓj, if uij ≥ 0

uj, if uij < 0
, νij =

{

uj, if uij ≥ 0

ℓj, if uij < 0
.

Then definēℓ ∈ Z
n and ū ∈ Z

n as follows:

ℓ̄i =

n
∑

j=1

uijµij , ūi =

n
∑

j=1

uijνij , i = 1, 2, . . . , n.

(63)
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It is easy to observe that

E ⊆ F ≡ {z ∈ Z
n : ℓ̄ ≤ z ≤ ū}. (64)

Actually it is easy to observe thatF is the smallest box
including E .

With the above preparation, we now give the following
result.

Theorem 6: Suppose that the assumptions in Theorem
1 hold and the linear model (5a) is transformed to the
linear model (52) through the LLL reduction (51). Then
the estimator̄x defined as̄x = ZzOB satisfies

Pr(x̄ 6= x̂|x̄ ∈ B)

≤1−
n
∏

i=1

erf
(

r̄ii/(2
√
2σ)

)

erf
(

(ūi − ℓ̄i + 1)r̄ii/(2
√
2σ)

) (65)

whereℓ̄ and ū are defined in (63).
Proof. SincePr(x̄ ∈ B) = Pr(zOB ∈ E), it follows

from (64) that

Pr(x̄ ∈ B) ≤ Pr(zOB ∈ F). (66)

In the following, we will show

Pr(zOB ∈ F) ≤
n
∏

i=1

φσ((ūi − ℓ̄i + 1)r̄ii) (67)

where φσ(·) is defined in (18). Then combining (66),
(67) and the fact thatPr(x̄ = x̂) = Pr(zOB = ẑ) =
∏n

i=1 φσ(r̄ii) (see (17) and (18)), we can conclude that
(65) holds from (55).

To show (67), instead of analyzing the probability of
zOB on its left-hand side, we will analyze an equivalent
probability of v̄ as we know its distribution.

In our proof, we need to use the basic result: given
v ∼ N (0, σ2) andη > 0, for any ζ ∈ R,

Pr(v ∈ [ζ, ζ+η]) ≤ Pr(v ∈ [−η/2, η/2]) = φσ(η). (68)

By (18), the equality in (68) obviously holds. In the
following, we show the inequality holds, i.e., equivalently
show

∫ ζ+η

ζ

exp
(

− t2

2σ2

)

dt ≤
∫ η/2

−η/2

exp
(

− t2

2σ2

)

dt.

For any fixedη > 0, the left-hand side of the above
inequality is a function ofζ. Furthermore, it can be easily
verified that the derivative of this function equal to zero if
ζ = −η/2, and it is positive whenζ < −η/2 and negative
whenζ > −η/2. Thus, this function achieves the maximal
value whenζ = −η/2, so the inequality holds.

From (52) and (53), we observe thatzOB is a function
of v̄. To emphasize this, we write it aszOB(v̄). When v̄

changes,zOB(v̄) may change too. In the following analysis,
we assume that̂z is fixed andv̄ satisfies the model (52).

For later uses, for= n, n− 1, . . . , 1, define

Gi = {wi:n| ȳi:n = R̄i:n,i:nẑi:n +wi:n, wi:n ∈ R
n−i+1,

zOB
k (wk:n) ∈ [ℓ̄k, ūk], k = i, i+ 1, . . . , n}.

(69)

From (69), it is easy to verify thatzOB(v̄) ∈ F if and only
if v̄ ∈ G1. Therefore, (67) is equivalent to

Pr(v̄1:n ∈ G1) ≤
n
∏

i=1

φσ((ūi − ℓ̄i + 1)r̄ii). (70)

We prove (70) by induction. First, we prove the base
case:

Pr(v̄n ∈ Gn) ≤ φσ((ūn − ℓ̄n + 1)r̄nn).

By (53) and (52), we have

cOB
n =

ȳn
r̄nn

=
r̄nnẑn + v̄n

r̄nn
= ẑn +

v̄n
r̄nn

.

SincezOB
n (v̄n) = ⌊cOB

n ⌉, by (69),

Pr(v̄n ∈ Gn)

=Pr
(

ẑn +
v̄n
r̄nn

∈ [ℓ̄n − 1/2, ūn + 1/2]
)

=Pr(v̄n ∈ [(ℓ̄n − ẑn − 1/2)r̄nn, (ūn − ẑn + 1/2)r̄nn])

≤φσ((ūn − ℓ̄n + 1)r̄nn),

where the inequality follows from (68).
Suppose for somei > 1, we have

Pr(v̄i:n ∈ Gi) ≤
n
∏

k=i

φσ((ūk − ℓ̄k + 1)r̄kk). (71)

Now we want to prove

Pr(v̄i−1:n ∈ Gi−1) ≤
n
∏

k=i−1

φσ((ūk − ℓ̄k + 1)r̄kk). (72)

We partition the setGi into a sequence of disjoint
subsets. To do that, fori = n, n− 1, . . . , 1, we first define
the discrete set

Hi =
{

n
∑

j=i

ri−1,j

ri−1,i−1
(ẑj − zOB

j (wj:n))
∣

∣wi:n ∈ Gi

}

.

Then, for anyt ∈ Hi, we define

Gi,t =
{

wi:n|wi:n ∈ Gi such that
n
∑

j=i

ri−1,j

ri−1,i−1
(ẑj − zOB

j (wj:n)) = t
}

.

It is easy to verify that∪t∈Hi
Gi,t = Gi andGi,t1 ∩Gi,t2 =

∅ for t1, t2 ∈ Hi and t1 6= t2. Therefore,

Pr(v̄i:n ∈ Gi) =
∑

t∈Hi

Pr(v̄i:n ∈ Gi,t) (73)
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and

Pr(v̄i−1:n ∈ Gi−1)

=Pr(v̄i:n ∈ Gi, z
OB
i−1(v̄i−1:n) ∈ [ℓ̄i−1, ūi−1])

=
∑

t∈Hi

Pr(v̄i:n ∈ Gi,t, z
OB
i−1(v̄i−1:n) ∈ [ℓ̄i−1, ūi−1])

=
∑

t∈Hi

Pr(v̄i:n ∈ Gi,t)

× Pr
(

zOB
i−1(v̄i−1:n) ∈ [ℓ̄i−1, ūi−1]|v̄i:n ∈ Gi,t

)

. (74)

Now we derive a bound on the second probability of
each term on the right-hand side of (74). By (53) and
(52), we have

cOB
i−1 =

r̄i−1,i−1ẑi−1

r̄i−1,i−1
+

∑n
j=i r̄i−1,j(ẑj − zOB

j (v̄j:n))

r̄i−1,i−1

+
v̄i−1

r̄i−1,i−1

=ẑi−1 + t′ +
v̄i−1

r̄i−1,i−1

where

t′ =
n
∑

j=i

r̄i−1,j

r̄i−1,i−1
(ẑj − zOB

j (v̄j:n)).

If v̄i:n ∈ Gi,t, t′ ∈ Hi. SincezOB
i−1(v̄i−1:n) = ⌊cOB

i−1⌉,

Pr
(

zOB
i−1(v̄i−1:n) ∈ [ℓ̄i−1, ūi−1]|v̄i:n ∈ Gi,t

)

= Pr
(

ẑi−1 + t′ +
v̄i−1

r̄i−1,i−1
∈ [ℓ̄i−1 − 1/2, ūi−1 + 1/2]

)

= Pr
(

v̄i−1 ∈
[

(ℓ̄i−1 − ẑi−1 − t′ − 1/2)r̄i−1,i−1,

(ūi−1 − ẑi−1 − t′ + 1/2)r̄i−1,i−1

])

≤ φσ((ūi−1 − ℓ̄i−1 + 1)r̄i−1,i−1) (75)

where the inequality follows from (68). Thus, from (74)
it follows that

Pr(v̄i−1:n ∈ Gi−1)

≤
∑

t∈Hi

Pr(v̄i:n ∈ Gi,t)φσ((ūi−1 − ℓ̄i−1 + 1)r̄i−1,i−1)

=Pr(v̄i:n ∈ Gi)φσ((ūi−1 − ℓ̄i−1 + 1)r̄i−1,i−1)

where the equality is due to (73). Then the inequality (72)
follows by using the induction hypothesis (71). Therefore,
the inequality (70), or the equivalent inequality (67), holds
for any fixedẑ.

Since (67) holds for any fixed̂z, it is easy to argue that
it holds no matter what distribution of̂z is over the box
F , so the theorem is proved.�

By Theorem 6, if
∏n

i=1
φσ(r̄ii)

φσ((ūi−ℓ̄i+1)r̄ii)
≈ 1, then

Pr(x̄ 6= x̂|x̄ ∈ B) ≈ 0, i.e., the conjecture holds.
Again, the condition will be satisfied when the noise
standard deviationσ is sufficiently small. Simulations
in [32] showed that for practical MIMO systems often
Pr(x̄ 6= x̂|x̄ ∈ B) ≈ 0.

Here we make a comment on the upper bound in (65).
The derivation of (65) was based on the two inequalities
(66) and (67). The inequality (66) was established based
on the fact thatE ⊆ F in (64). If the absolute values of
the entries of the unimodular matrixZ−1 are big, then
it is likely that F is much bigger thanE althoughF is
the smallest box containingE , making the inequality (66)
loose. Otherwise it will be tight; in particular, whenZ =
I, thenE = F and the inequality (66) becomes an equality.
In establishing the inequality (67) we used the inequality
(68) (see (75)), which is simple but may not be tight if
ζ is not close to−η/2. Thus the inequality (67) may not
be tight. Overall, the upper bound in (65) may not be
tight sometimes, but it is always tighter than the upper
bound given by (62). The following example shows that
the former can be significantly tighter than the latter and
can be a sharp bound.

Example 3: We use exactly the same data generated in
Example 2 to compute the upper bounds in (62) and (65),
which are denoted byµeb1 and µeb2, respectively. The
results forn = 5 : 5 : 40 with σ = 0.1 are given in Table
XI. To see how tight they are, the values ofPe given
in Table IX are displayed here again. RecallPe is the
experimental probability corresponding to the theoretical
probabilityPr(x̄ 6= x̂|x̄ ∈ B) in (62) and (65).

From Table XI, we can see the upper boundµeb2 is
obviously tighter than the upper boundµeb1 andµeb2 is
close toPe. Whenn = 10, Pe > µeb2, this is because there
are some deviations between the experimental values and
the theoretical values. The values ofµeb1 are actually not
exactly the same for differentn, but they are very close.
This is also true forµeb2.

TABLE XI
Pe AND BOUNDS VERSUSn = 5 : 5 : 40 WITH σ = 0.1

n Pe µeb1 µeb2

5 0.9356 0.9840 0.9364
10 0.9396 0.9840 0.9364
15 0.9336 0.9840 0.9364
20 0.9348 0.9840 0.9364
25 0.9325 0.9840 0.9364
30 0.9312 0.9840 0.9364
35 0.9304 0.9840 0.9364
40 0.9252 0.9840 0.9364

VI. SUMMARY AND FUTURE WORK

We have presented formulas for the success probability
P BB of the box-constrained Babai estimator and the success
probability P OB of the ordinary Babai estimator for the
linear model where the true integer parameter vectorx̂ is
uniformly distributed over the constraint box and the noise
vector follows a normal distribution. The properties ofP BB

andP OB and the relationship between them were given.
The effects of the column permutations onP BB by

the LLL-P, SQRD and V-BLAST column permutation
strategies have been investigated. When the noise is rel-
atively small, we showed that LLL-P always increases
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P BB and argued why both SQRD and V-BLAST usually
increaseP BB; and when the noise is relatively large, LLL-P
always decreasesP BB and argued why both SQRD and V-
BLAST usually decreaseP BB. The latter contradicts with
what we commonly believed. And it suggests that we
should check the conditions given in the paper before
we apply these strategies. We also provided a column
permutation invariant bound onP BB. This bound helped
us to understand the effects of these column permutation
strategies onP BB. Our theoretical findings were supported
by numerical test results.

We have given an example to show that the conjecture
proposed in [24] does not always hold and imposed a
condition under which the conjecture holds.

LLL-P has better theory than V-BLAST and SQRD in
terms of their effects onP BB. But our numerical exper-
iments indicated often V-BLAST is more effective than
LLL-P and SQRD. Developing a more effective column
permutation strategy with solid theory will be investigated
in the future. These three permutation column permutation
strategies use only the information ofA. The effects of
the column permutation strategies which use all available
information of the model such as those proposed in [15],
[6] and [16] need to be investigated.

Recently the success probability of the BILS estimator
has been given in [38]. We intend to study the relationship
between it andP BB.
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