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Success probability of the Babai estimators for
box-constrained integer linear models

Jinming Wen and Xiao-Wen Chang

Abstract—In many applications including communica- & is an unknown integer parameter vector in the l#)x
tions, one may encounter a linear model where the parameter 4 ¢ R™ is a noise vector following the Gaussian distribu-
vector & is an integer vector in a box. To estimatex, a tion N(O,O’QI) with o being known. This model arises in

typical method is to solve a box-constrained integer least . licati includi irel icati
squares (BILS) problem. However, due to its high complexity various applications Inciuding wireless communications,

the box-constrained Babai integer pointz® is commonly S€€ €.9., [1], [2]. In this paper, we assume tha random
used as a suboptimal solution. In this paper, we first derive and uniformly distributed over the bdx This assumption

formulas for the success probability P** of =™ and the s often made for MIMO applications, see, e.g., [3].
s%gcess proAbabiIityPOB of the ordinary Babai integer point A common method to estimate/detécin (1) is to solve

x”® when & is uniformly distributed over the constraint the followina b trained int least ILS
box. Some properties of P®® and P°® and the relationship e following box-constrained integer least squares (B

between them are studied. Then, we investigate the effectsproblem:
of some column permutation strategies onP®. In addition min ||y — Az||3 2
to V-BLAST and SQRD, we also consider the permutation z€eB
strategy involved in the LLL lattice reduction, to be referred whose solution is the maximum likelihood estima-
to asl Lt'LL_IP. On :reLOLrliePha?d, we show thathE\;/Bhen (tjhe noise tor/detector oft. Here we would like to make a comment
:/?/h;/el?c;;/he%//-;rf:s’T and Sgggyzﬂ'gﬁr?r?;?ase PB%? ar?(;ggﬁ ?n terr,r’unolo“gy. In C(?,mmunlcatlons, it is proper to use
the other hand, we show that when the noise is relatively ~detect” and “detector” for the constrained case. However,
large, LLL-P always decreasesP®® and argue why both V- later in this paper we will use “estimate” and “estimator”
BLAST and SQRD often decreaseP™. We also derive a as an extension of the terminology commonly used in
column permutation invariant bound on P**, which is an  the unconstrained case. A typical approach to solving (2)
upper bound and a lower bound under these two 0pposite 5 iscrete search, which usually consists of two stages:
conditions, respectively. Numerical results demonstrateur . -
findings. Finally, we consider a conjecture concerningz®® reduction and search. In the first stage, orthogonal trans-
proposed by Ma et al. We first construct an example to formations are used to transfors to an upper triangular
show that the conjecture does not hold in general, and then matrix R. To make the search process more efficient, a
show that it does hold under some conditions. column permutation strategy is often used in reduction.
Index Terms—Box-constrained integer least squares es- Two well-known strategies are V-BLAST [4], [1] and
timation, Babai integer point, success probability, columm SQRD [5], [6]. The commonly used search methods are

permutations, LLL-P, SQRD, V-BLAST. the so-called sphere decoding methods [1], [7] and [6],
which are the extensions of the Schnorr-Euchner search
|. INTRODUCTION method [8], a variation of the Fincke-Pohst search method

], for ordinary integer least squares problems to be
entioned below. There are also some variants of Schnorr-
Euchner search methods, see, e.g., [10].
y=Az+v, v~N(0,) (1a) If the true parameter vectar € Z" in the linear model
teB={xcZ' <z <u Liucl') (1b) (1a) |s.not sgbject to any con;tramt, then we say (1a) is
an ordinary linear model. In this case, to estimateone
wherey € R™ is an observation vectorA € R™*" solves an ordinary integer least squares (OILS) problem
is a deterministic model matrix with full column rank,(also referred to as the closest vector problem):

UPPOSE that we have the following box-constraine
linear model:
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because after size reductions the box constraint beconoedinary Babai estimator°® when z in (1) follows a
too complicated to handle in the search process. Howeveniform distribution over the bo¥. Some properties of
one can use its permutation strategy, to be referred &® and P°® and the relationship between them will also
as LLL-P (we referred it to as LLL-permute in [14]).be given.

The LLL-P, SQRD and V-BLAST strategies use only the
information of A to do the column permutations. Some
column permutation strategies which use not only t

Lr:formatut)n .Oftﬁ’ but lals% the mformat(ljonlé)@ an tgel- creases under a condition. Surprisingly, we will also
ox constraint have also been proposed [15], [6] and [ ow thatP®® decreases after LLL-P is applied under an

For a fixed constraint bog in (_1b), where all the (_antries opposite condition. Roughly speaking, these two opposite
of £ are equal and all the entries of are equal, it was conditions are that the noise standard deviatioim (1a)
shown in [3] that when the signal-to-noise ratio (SNR) igre relatively small and large, respectively. This is défet
fixed the expected complexity of solving (2) by the Finckefrom the ordinary case, whet® always increases after
Pohst search method behaves as an exponential funcigg | [ -p strategy is applied. Although our theoretical
of the dimensionn whenn is large enough, although resylts for LLL-P cannot be extended to SQRD and V-
it is dominated by polynomial terms for high SNR andgs| AST, our numerical tests indicate that under the two
smalln [17] [3]. So for some real-time applications, anongitions, often (not alwaysy® increases and decreases,
approximate solution, which can be produced quickly, i%spectively, after applying SQRD or V-BLAST. Explana-
computed instead. For the OILS problem, the Babai integgsns will be given for these phenomena. These suggest
pointxz®, to be referred to as the ordinary Babai estimatoat pefore we applying LLL-P, SQRD or V-BLAST we
which can be obtained by the Babai nearest plane alggyould check the conditions. Moreover, we will give a
rithm [18], is an often used approximate solution. Takingound onP®, which is column permutation invariant. It
the box constraint into account, one can easily modif¥ jnteresting that the bound is an upper bound under the

the Babai nearest plane algorithm to get an approximaigall noise condition we just mentioned and becomes a

as the box-constrained Babai estimator. This estimator is

the first point found by the search methods proposed in ) _
[7], [1] and [6], and it has been used as a suboptimal In [32], the authors made a conjecture, based on which

solution, see, e.g., [19]. In communications, aIgorithn%StOpping criterion fqr the search process was proposed to
for finding the Babai estimators are often referred to 4duce the computational cost of solving the BILS prob-
successive interference cancellation detectors. There hif™M- The conjecture is related to the success probability
been algorithms which find other suboptimal solutions tb f the ordinary Babai estimatar™®. We will first show
the BILS problems in communications, see, e.g., [Zo;‘bat the conjecture c_zlpes not always hold and then show it
[29] etc. In this paper we will focus only on the Babaf10lds under a condition.

estimators.

In order to see how good an estimator is, one needs tol he rest of the paper is organized as follows. In Section
find the probability of the estimator being equal to the tru, we introduce the QR reduction and the LLL-P, SQRD
integer parameter vector, which is referred to as succes® V-BLAST column recording strategies. In Section
probability [30]. The probability of wrong estimation islll, we present the formulas foP*® and P, study the
referred to as error probability, see, e.g., [26]. properties of P®® and P°® and the relationship between

For the estimation of in the ordinary linear model (1a), them. In Section IV, we investigate the effec_ts of the LL_L-
where is supposed to be deterministic, the formula df» SQRD and V-BLAST column permutation strategies
the success probability°® of the ordinary Babai estimator @hd derive a bound o*. In Section V, we investigate
x° was first given in [31], which considers a varianth® conjecture made in [32] and obtain some negative
form of the ILS problem (3). A simple derivation for anand positive results. Finally, we summarize this paper in
equivalent formula of”°® was given in [14]. It was shown S€ction VL.
in [14] that P°® increases after applying the LLL reduction

algorithm or only the LLL-P column permutation strategy, Notation. For matrices, we use bold upper-case letters
but P°* may strictly decrease after applying the SQRD anghd for vectors we use bold lower-case letters. &oe
V-BLAST permutation strategies. R", we use|x] to denote its nearest integer vector, i.e.,
The main goal of this paper is to extend the main resulégach entry ofr is rounded to its nearest integer (if there

we obtained in [14] for the ordinary case to the boxs a tie, the one with smaller magnitude is chosen). For
constrained case. We will present a formula for the successsectorx, x;.; denotes the subvector af formed by
probability P** of the box-constrained Babai estimatoentriesi,i+1,..., . For a matrixA, A;.;;.; denotes the
™ and a formula for the success probabili®® of the submatrix ofA formed by rows and columrisi+1, ..., .

Then we will investigate the effect of the LLL-P column
ermutation strategy omP®®. We will show that P®®



TO APPEAR IN IEEE TRANSACTIONS ON INFORMATION THEORY 3

Il. QR FACTORIZATION AND COLUMN REORDERING The LLL-P strategy [14] does the column permutations
of the LLL reduction algorithm and producés satisfying

Assume that the model matrid in the linear model the Lovasz condition:

(1a) has the QR factorization
6F1371,k71 < 7:zfl,k +F]%ka k= 2,3,...,71 (8)

R
A=1[Q,Q;)] {0} (4)  wheres is a parameter satisfying/4 < ¢ < 1. Suppose
thatd r_, ;. > 71 7% fOr somek. Then we inter-
where[@Q,, Q,] € R™*™ is orthogonal andR € R"*" change columng — 1 andk of R. After the permutation,

vl w2 : ; Lo
is upper triangular. Without loss of generality, we assunfle upper trlaqgularbstrl;ctureﬂ IS no anger lmalntalr_1e(g.
that the diagonal entries d® are positive throughout the Bu_t wehcaré rlngg hac'd to ar? upperl_trla_ngu arrr]n:_;ltrlx y
paper. Definej — Q7y and® — Q7 v. Then, the linear using the Gram-Schmidt orthogonalization technique (see

model (1) is reduced to [13]) or by a Givens rotation:

R=Gi_, ,RP;_ 9

§=Ri+v, o~N(00), (5a) FoLATE R ©

zeB={xecZ" L<z<u, Liucl") (5b) where Gj_1 1 is an orthogonal matrix and®;_;  is a
N T permutation matrix, and? satisfies

and the BILS problem (2) is reduced to P =T T

=2 =2  _ 2
min ||y — Rx|]3. (6) Ti—1,k T Tl = Th—1,k—1> (10)
Th—1,k—1Tkk = Tk—1,k—1"kk-

To solve the reduced problem (6), sphere decodifgyte that the above operation guarantees that the inequal-
search algorithms are usually used to find the optimg) in (8) holds. For simplicity, later when we refer to
solution. For search efficiency, one typically adopts & colymn permutation, we mean the whole process of
column permutation strategy, such as V-BLAST, SQRI column permutation and triangularization. For readers’
or LLL-P, in the reduction process to obtain a betfer ¢onyenience, we describe the LLL-P strategy in Algorithm
For simplicity, we assume that the column permutations \hich can also be called the LLL-P reduction.
are performed onR in (4) no matter which strategy is
used, i.e., Algorithm 1 LLL-P

Q"RP=R (7) 1setP=1I,,k=2;
_ 2: while £ < n do
where@ € R™"*™ is orthogonal P € Z"*" is a permuta- 3.  jf 512 |, >r2_, +12 then

tion matrix, andR € R™*™ is an upper triangular matrix 4. perform a column permutation: R =
satisfying the properties of the corresponding column Gf,lkRqu,k:
permutation strategies. Notice that combining (4) and (7). updateP: P = PP_1 ;
result in the following QR factorization of the column g. k=k—1, whenk > 2;'
reorderedA: 7. else
IE B ~ 8: k=k+1;
AP—Q{IO%], Q:Q{g IW?J 9. endif

10: end while

The V-BLAST strategy determines the columns Bf
from the last to the first. Suppose columns:—1,. .., k+ Here we give a remark about the LLL-P algorithm.
1 of R have been determined, this strategy choosesNate that the LLL-P algorithm is the same as the original
column from £ remaining columns ofR as thek-th LLL algorithm, except that any operations related to size
column such thatry, is maximum over all of thek reductions are not performed. When the Lovasz condition
choices. For more details, including efficient algorithmg8) for two consecutive columns— 1 andk of R is not
see [1], [4], [33]-[35] etc. One may refer to [36] for thesatisfied, the algorithm interchanges the two columns and
performance analysis of V-BLAST. performs triangularization. We have just shown that the

In contrast to V-BLAST, the SQRD strategy determinesvo updated columns satisfy the Lovasz condition. The
the columns ofR from the first to the last by using thealgorithm terminates when the Lovasz condition for any
modified Gram-Schmidt algorithm or the Householder QRvo consecutive columns is satisfied. The proof for the
algorithm. Suppose columnk2,...,k — 1 of R have convergence of the original LLL algorithm, which does
been determined. In thé-th step of the algorithm, the not use the size reduction condition, can be applied here
k-th column of R we seek is chosen from the remainingo show the convergence of the LLL-P algorithm. We
n — k + 1 columns of R such thatry, is smallest. For would like to point out that as the size reduction condition
more details, see [5] and [6] etc. (755] < 7i:/2) in the LLL reduction is not satisfied any
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more, some properties of the LLL reduction are lost in thehere the error function is
LLL-P reduction. 9 ¢
With the QR factorization (7), we define erf(¢) = —F/ exp (— t2)dt.
0

y=Q'y, 2=P'z v=Q"%,

(11) Proof. To simplify notation, we denote
z = PTw’ { = PTE, i — PTu_

_ ¢
Then the linear model (5) is transformed to o (¢) = erf (2\/50) (18)
y=Rz+v, v~N(0,5I), (12a) which will be used in this proof and other places.

seB={zcZ":0<z<a L wcZ') (12b) Since the random vectots and v in (1) are indepen-
- dent,& andwv in (5) are also independent. From (5a),
and the BILS problem (6) is transformed to

min ||y — Rz|)3 (13) Ui = T + Z rijdi 4+ Ui, i=n,n—1,..., 1.

zeB j=i+1
whose solution is the BILS estimator &f Then from (14), we obtain

[1l. SUCCESSPROBABILITIES OF THE BABAI B =q;+ ﬂ@j_st)Jrﬁ’ i=n,n—1,...,1.
ESTIMATORS St i Tii
We consider the reduced box-constrained linear model ; if o8 . s - di i f_(]'%)
(5). The same analysis can be applied to the transformyaerze ore, | xwer = ZLigt, o ’hxn = &, andz; Is fixed,
reduced linear model (12). we haveci® ~ N(&;,0%/rj;). Thus,
The box-constrained Babai estimate® of z in (5), a (% — 2)ri 1
suboptimal solution to (6), can be computed as follows: T e N (o, 3 (20)
& — (f; — zn: ri %) 1 To simplify notation, we denote events
T ) R 19
j=itl Ei=@Ff=%,...,28=3%,), i=1,...,n.
: if [ ; (14) . . iy .
by it [a®1< b Then, applying the chain rule of conditional probabilities
BB __ BB H BB
v =4 [P 0 4 < [Pl <uw yields
Uj, it |c®] > u; n
BB __ _ BB _ 4. .

fori=n,n—1,...,1, where} ", - = 0. If we do not P =Pr(Ey) = HPY(% =a;|Eip1)  (21)
take the box constraint into account, we get the ordinary =1
Babai estimator®®; where E,, 11 is the sample space leading toPr(z%* =

n Zn|Ep1) = Pr(a = i),).
=i — Y riad)/ri, 2®=[c®]  (15)  Since eventsi; = £;, ; < # < u; and#; = u; are

j=it1 independent, by (14), we have

fOf;i:hn,’rfLﬁl,....,l. - f | f . Pr(IZ‘?B:iHEiJrl)

n the following, we give formulas for the success e, .
probabilities ofx®® and x°®. =Pr((#: = f“ G < Aél +1/2) |E;:1) R

Theorem 1. Suppose that in (L) is uniformly dis- +Pr((6i <& <wi, & —1/2<° <& +1/2)| Eit)
tributed over the constraint bo®, andz andv are in-  +Pr((&; = u;, & > u; —1/2) | Eiyq) . (22)
dependent. Suppose that (1) is transformed to (5) through ) ) o P
the QR factorization (4). Then the success probabilities of ' the following we will use this simple result: i, £
the box-constrained Babai estimate® and the ordinary and£s are three events, anil; and £; are independent,
Babai estimatoz°®, which are respectively defined in (14)I"€"

and (15), are Pr((Ey, E2)|E3) = Pr(Ey) Pr(Es|(Ey, E3)).  (23)
P =Pr(z™ = 2) This can easily be proved. In fact,
n 1 Wi — b [y =, o
B i — i _ __ Pr(Ey, By E
H[ui—eﬁﬁui—éﬁler (2\/50)]’ Pr((El’Ez‘”EB)_W
(16)

— PI‘(El s EQ, E3)

n = ! 1 D E
0B — OB _ 7)) — f i ) ) Pr(El’ E3)
P Pr(x z) Zll:[lel’ (2\/50 a7 — Pr(By) Pr(Es|(Er, E3)),
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where the second equality follows from the fact tlfat paragraphs of this proof still holds if we replace each
and E3 are independent. superscript BB by OB. But we need to make more
Thus, by (22) and (23), we obtain significant changes to the last two paragraphs. We change
. 22) and (24) as follows:
Pr(z?® = 2 | Eit1) (@2) @4

= Pr(; = £;) Pr(c® < £; +1/2[ (i = i, Eit)) Pr(azi® = 2 | Eiy1)
+Pr(l; < & < uy) =Pr((l; <& <wiyd; —1/2< P <i; +1/2)| Eitq)
XPI‘( i—1/2<CBB<ji—|—1/2|(£'<ii7i<ui,Ei+1)) :Pr(&gzﬁzgul)
+Pr(%; = uy) Pr(c® > u; — 1/2| (2 = ui, Eit1)) - XPr(i; —1/2 <P <2 +1/2| (6; < & <y, Eigr)).
(24)
Here

Sincez is uniformly distributed over the bog, for the
first factors of the three terms on the right-hand side of Pr(¢; < #; < ;) =
(

(24) we have Pr i‘l — 1/2 S C?B < ji + 1/2 | (Zl S i‘l S ui,EHl))
1
P AZ =t;) = ———— = ¢O’ (rll)
(2 = ¢;) PRy
(€<A < )711,1—61‘—1 Thus
Tis )= u; — 4+ 17 Pr(z$® = ;| Eix1) = ¢o(rii)-
. 1
Pr(2; = w;) = w1 Then (17) follows from (18) and (21) with each superscript

By (18) and (20), for the second factors of these three BB replaced by OB. U

terms, we have From the proof of (17), we observe that the formula

Be . holds no matter what distribution af is over the box3.
Pr(e” < £ +1/2[(2: = b, Bia)) Furthermore, the formula is identical to the one for the

—Pr ((C — &i)rii < i (2 = gi’EiH)) success probability of the ordinary Babai estimaiGP
V20 2v20 when z in (1) is deterministic and is not subject to any

T 5 box constraint; for more details, see [14].
=7 / exp (—*)dt = [1 + 0o (rid)] The following result shows the relationship betwe@
and P°®,

Pr(i; —1/2 <& <+ 1/2[ (6 < & < ug, Eipa)) corcliary & Lnderfhe same assumplon as i Theore
: 1
B8 _ &\ y
(Cz )i Tii ’ (; < & < uy, Ei+1)>
poe < PBB, (25)

=P
r( REERRETE:
lim P = p°®, (26)

== / exp - tQ)dt G0 (Tii), all 1<i<n,u;—t;—00
\/_ 2%0
Proof. Note that

Pres 2 1~ 1/2 (8 = 5, Biga) o (rii) = erf(ri/(2v20)) <1

BB _ & \oe.. g
—Pr ((CZ xz)'f‘u > T (iz = U, Ei+l))

V20 o 2\/50 Thus
exp (— 1%)dt = [1+¢>g(m>]. S SR S ek
\/_ / 2%0 (ba'(ru) u; — £1 i 1¢U(TH) + u; — £ I 1¢ (’f'“)
Combining the equalities above with (24) yields < — 1. + _ui __ b b (rii)
w, — b +1  u;— 4+ 1
PI‘(ZC?B = jz | Ei+1)
1 w0 —1 Then, by Theorem 1, we can conclude that (25) holds, and
=571 1+ ¢o(ra)] + % b0 (i) we can also see (26) holds!
(ui - 11+ ) + Corollary 2: Under the same assumption as in Theorem
— 1+ ¢y(rii 1, P®® and P°® increase whemw decreases and
s L o)
1 u; — U; lim P®® = lim P®* =1
- ._é._|_1+ '—£'+1¢U(T”) o0 o0
which, with (18) and (21), yields (16). Proof. For a giver(, wheno decreases €fif;; / (2v/20))

Now we consider the success probability of the ordincreases ang_lg}) erf(ri;/(2v/20)) = 1. Then from The-
nary Babai estimatot®. Everything in the first three orem 1, we immediately see that the corollary holds.
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IV. EFFECTS OFLLL-P, SQRDAND V-BLAST ON P®® Taking the derivative for both sides of (29) with respect

Suppose that we perform the QR factorization (7) bip « yields
using a column permutation strategy, such as LLL-P, —2r(a) (@) (1 + aerf(r(a)))+
SQRD or V-BLAST, then we have the reduced box- %
constrained linear model (12). For (12) we can define its(1 — 27%(a)) <erf(r(a)) + =r'(a)exp (- r2(a))>
corresponding Babai poirt®®, and use it as an estimator VT
of z, which is equal taP” %, or equivalently we us#®z®® —_~_ r(a)exp ( — ﬁ(a))
as an estimator aof. VT
In this section, we will investigate how LLL-P, SQRD 2a r(a)exp (—12()) (1 —27%(a)).
and V-BLAST column permutation strategies affect the VT
success probability”®® of the box-constrained Babai es-Therefore,

timator. 27(a)r’ (o) (1 + cerf(r(a)))
2
A. Effect of LLL-P on P*®® =(1 —27%(a)) erf(r(a)) — NG r(a)exp (— 7’2(a))
The LLL-P strategy involves a sequence of permutations 1 )
of two consecutive columns oR. To investigate how = — —(1—2r"(a)),

LLL-P affects P8, we first look at one column permu-
tation. Suppose thatry_, , , > ri_, ; + 7, for some )
k for the R in (5). After the permutation of columris— 1 " (a) = — (1—-27r%(a)) <o.
andk, R becomesR = G|_, ,RP)._1 . (see (9)). Then 2ar(a)(1+ aerf(r(a)))

with the transformations given in (11), whee= G}._1
and P = qu,k, (5) is transformed to (12). We will

where the latter equality follows from (29). Hence

Finally, we show that hm r(a) = 0. Sincer(a) is
continuously differentiable with respectaoandr(a) > 0

comparePr(x®® = ) andPr(z®® = 2).
To prove our main results, we need the following twcf)Or a>0, ahm r(a) exists. Lety = hm r(e), by the
lemmas. fact thatr(«) is strictly decreasing Wltlm “We obtain that
Lemma 1: Givena > 0, define 0<n<1/v2.
( ) 9%, From (29), we have
FG o) =(1=2¢*) (1 + aerf(()) — == Cexp(—¢?) 2
VT 1 —272%(a))erf(r(a)) — —=r(a)exp (=r%(c)
oy ) = r(@)exp (~r*(a)
s a st ing function 1= 2(r())’
for ¢ > 0. Then, f(¢,a) is a strictly decreasing function _ )
of ¢ and has a unique zerda), i.e., o
Then we take limits on both sides of the above equation
f(r(a),a) =0. (28)  asa — oo, resulting in
When ¢ > r(a), f(¢(,a) < 0 and when{ < r(a) 2 2 2
f(¢, @) > 0. Furthermore0 < r(a) < 1/v/2, r(a) is (1=2n7) erf(n) - \/_EneXp(_n )=0.

a strictly decreasing function ef, and lim r(«) = 0.
a—r 00
Proof. By some simple calculations, we obtain

9f (¢ a)
a¢
Thus, for any¢ > 0 anda > 0, 9f(¢,«)/9¢ < 0, where
the equality holds if and only = 0. Therefore,f (¢, @)
is a strictly decreasing function @f 9(¢, e, B) = (L + aerf(Q)) (1 + aerf(8/¢)), ¢ >0.
Note thatf(0,a) =1 > 0 and f(1/v/2,a) < 0 for a > (30)
0, by the implicit function theorem, there exists a un'qu?hen when
r(a), which is continuously differentiable with respect to
a, such that (28) holds and < r(a) < 1/+/2. Since min{\/B, 8/r(a)} < ¢ < max{\/B, B/r(a (31)
(¢, a) is strictly decreasing with respect {o when¢ > \yherer(q) is defined in Lemma 1g(C, o, B) is a strictly
r(@), f((, @) <0 and whenC < r(a), f(¢,a) > 0. decreasing function of.
In the following, we show that(«) is a strictly de-  proof. By the definition ofg, we can easily obtain

creasing function ofv. From (28), we have 99(C. . B) -
o - o efrf aerf
(1-20%@) (1+aerf(r(@) = <= r(@)exp (<)) oC ~ymc L aer(O) (1 +aerf3/0)
(29) [ (Cv Oé) - h’(ﬂ/<7 Oé)] )

Since0 < n < 1/4/2, one can conclude from the above
equation that lirf rla)=n=0. O
a—r+00

= —4((1 +aerf(()). Remark 1. Given a, we can easily solve (28) by a
numerical method, e.g., the Newton method, to fifd).

Lemma 2: Givena, 3 > 0, define
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where where for the second equality, see (10). Using
Cexp(—C?) 0T _1 k=1 > Ti_1 + ix and the equalities in (10), we
h(¢, a) = (32) can easily verify that

1+ aerf(¢)’ ) ) }
Tk—1,k—1 Tkk

It is easy to see that in order to show the result, we need \/E < max{ oo 2v20
only to showh(¢,«) < h(8/¢,a) under the condition

. Tk—1,k—1 Tkk  Tk—1,k—1
(31) with ¢ # 5/C. < max{ N 2\/50} =T
By some simple calculations and (27), we have 3
=—FF7 (37)
Mo o0 o ey i/ (2v/20)
(1 + aerf(())

B TRk {7‘1@—1,1@—1’ Tkk }
Now we assume thaf satisfies (31) withC # B/C. If  Th-15-1/(2V20) 220 2v20 220
VB < B/r(a), by (31), we have¢ > B/¢ > r(a), o fTh—1k—1  Tkk
and then from Lemma 1, in this casg(, «) < 0, thus < mm{ 220 2\/50} < VB
Oh(¢,a)/d¢ < 0, i.e., h(¢,a) is a strictly deceasing (38)

function of ¢, thush(¢, o) < h(B/¢, ). If /B > B/r(a),
by (31), we obtain¢ < /¢ < r(«), and then from
Lemma 1, f(¢,«) > 0, thus Or(¢,a)/0C > 0, i.e.,
h(¢, ) is a strictly increasing function of, thus again

h(¢, @) <h(B/¢ a). O

Now we prove part 1. Note that after the permutation,
rp—1,k—1 andry, change, but other diagonal entries Bf
do not change. Then by Theorem 1, we can easily observe
that (34) is equivalent to

With the above lemmas, we can show how the success [dj— 1 + dj— 1erf (T;\}g;)
probability of the box-constrained Babai estimator change 1 d )
after two consecutive columns are swapped when the LLL- X [ 4 erf ( Tkk )
P strategy is applied. Specifically, we have the following d+1  d+1 2V20 ) -
theorem. <{ 1 . d orf (Tk—m_l) .
Theorem 2: Suppose that in (1) the bdxis a cube with “ld+1  d+1 2v20 )|
edge length ofl,  is uniformly distributed ovei3, and " { 1 n d rf( Tk ) (39)
& andwv are independent. Suppose that (1) is transformed d+1  d+1 220 )1

to (5) through the QR factorization (4) arﬁd’,%_ljk_l >

Th_1 kT T After the permutation of columnis— 1 and By (30), we can see that (39) is equivalent to

k of R and triangularization (see (9)), (5) is transformed Th—1,k—1 Tkk
to (12) g(max{ 2\/50_ 72\/50_}7 75)
1) If re > 2v20r(d), wherer(-) is defined in <g(max {T=LA=L TR Y G og) 4
Lemma 1, then after the permutation, the success B ( { 2v/20 2\/50} )

probability of the box-constrained Babai estimato|rf .
k

increases, i.e., r > 2v/20r(d), then the right-hand side of the last

equality in (37) satisfies
Pr(z® = &) < Pr(z® = 2). (34) B B
P S A
2) If rp—1 -1 < 2v/207(d), then after the permuta- rie/(2v20) T r(d)
tion, the success probability of the box-constrainethen by combining (37) and (41) and applying Lemma 2
Babai estimator decreases, i.e., we can conclude that the strict inequality in (40) holds.
The proof for part 2 is similar. The inequality (35) is

. (41)

Pr(z® = &) > Pr(z” = 2). (35)  equivalent to

Furthermore, the equality in each of (34) and (35) holds . [ Th—1,k—1 Tkk
if and only if r_1 , = 0. g ((min { N 2\/50}’ 9)

Proof. Whenr,_; , = 0, by Theorem 1, we see the > . [ Th—1,k—1 Tkk
equalities in (34) and (35) hold. In the following we —g(mm{ 220 ’2\/50}’d’ﬁ)' (42)
assumer,_1,, # 0 and show the strict inequalities in (34) )
and (35) hold. If 7 141 < 2v/207(d), then the left-hand side of the

Define first equality in (38) satisfies

g ThoLko1 ThE Th-1k-1 Tkk (36) B < B (43)

2V20 2\/50_ 22 2v20 7(d) Tk—l,k—l/@\/iU).
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Then by combining (38) and (43) and applying Lemma wvolved super-diagonal entry is 0O in this case) or strictly
we can conclude that the strict inequality in (42) holdsncreases, while the larger one either keeps unchanged or
O strictly decreases (see (37) and (38)). Thus, after each
column permutation, the minimum of the diagonal entries
of R either keeps unchanged or strictly increases and the
‘maximum either keeps unchanged or strictly decreases, so
fhe diagonal entries of any upper triangulgrproduced
after a column permutation satisfi?%ign rii < Tpe <

We make a few remarks about Theorem 2.

Remark 2: In the theoremp is assumed to be a cube
not a more general box. This restriction simplified th
theoretical analysis. Furthermore, in practical appiaces,
such as communications, indegdis often a cube. <i< _

Remark 3: After the permutation, the larger one ofrélizzxnmi forall k =1,...,n. Then the conclusion follows
rr—1,5—1 and rp, becomes smaller (see (37)) and th@om Theorem 2. [J
smaller one becomes larger (see (38)), so the gap be:

tween r,_1 x—1 and r,; becomes smaller. This makes \éVe mik:_ Sjlf)r?]e rem?trks sbpuf[ Th?orgm fh di
P® increase under the condition,, > 2v207(d) or emark 5. The quantityr(d) is involved in the condi-

- ~ tions. To get some idea about how large it is, we compute
ka1 < . . . '
decrease under the condition_; ;1 < 2v20r(d). It it for a few differentd — 2% — 1. For k — 1.2.3.4.5,

's natural to ask for fixedy ;-1 andri, when wil corresponding values ofare 0.5939, 0.4926, 0.4042,

- t
P® increase most or decrease most after the permutati : . :
under the corresponding conditions? From the proof e§286’ 0.2653. They are decreasing witlas proved in

observe thatP®™ will become maximal when the first -emma 1. Asd — oo, 7(d) — 0. Thus, whend is large
inequality in (37) becomes an equality or minimal whe nough, the condition (44) will be satisfied. By Corollary

the last inequality in (38) becomes an equality und btta.k'r,:ﬁ trfle”hm!t asd _>|too on gqth ildfes of (45), we
the corresponding conditions. Either of the two equalitieqs ain the following resuit proved in [14]:
holds if and only if7,_q -1 = 7k, Which is equivalent Pr(z® = 2) < Pr(2%® = 2),

to r? 2 = a1k by (10). . . .
Tio1k T "k = Th—1k—1Tkk y (10) i.e., LLL-P always increases the success probability of the
Remark 4. The case wherer,, < 2v2o0r(d) < ordinary Babai estimator.

k141 IS not covered by the theorem. For this case, po iy 6 The two conditions (44) and (46) also in-
PP may increase or d_ecrea;e aff[er the permutation, f\%Ive the noise standard deviationWheno is small, (44)
more details, see the simulations in Sec. IV-D. - . S !
is likely to hold, so applying LLL-P is likely to increase

Based on Theorem 2, we can establish the following®®, and whenv is large, (46) is likely to hold, so applying
general result for the LLL-P strategy. LLL-P is likely to decreaseP®®. It is quite surprising that

Theorem 3: Suppose that in (1) the bog is a cube when ¢ is large enough applying LLL-P will decrease
with edge length ofl, & is uniformly distributed ovei3, P*®. Thus, before applying LLL-P, one needs to check the
and & and v are independent. Suppose that (1) is firstonditions (44) and (46). If (44) holds, one has confidence
transformed to (5) through the QR factorization (4) antb apply LLL-P. If (46) holds, one should not apply it. If
then to (12) through the QR factorization (7) where thboth do not hold, i.e.1,1<niii1n ri < 2v/20r(d) < Jax Ty,
LLL-P strategy is used for column permutations. applying LLL-P may increase or decreaB&.

1) If the diagonal entries oR in (5) satisfies

min i > 22 or(d), (44) B. Effects of SORD and V-BLAST on P
1sisn SQRD and V-BLAST have been used to find better
wherer(-) is defined in Lemma 1, then ordinary and box-constrained Babai estimators in the lit-
. N erature. It has been demonstrated in [14] that unlike LLL-
BB — < BB — .
Pr(z ) < Pr(z Z) (45) P, both SQRD and V-BLAST may decrease the success
2) If the diagonal entries oR in (5) satisfies probability P°® of the ordinary Babai estimator when the
parameter vectat is deterministic and not subject to any
(oo T <2V207(d), (46)  onstraint.
then We would like to know how SQRD and V-BLAST affect

PP, Unlike LLL-P, both SQRD and V-BLAST usually
involve two non-consecutive columns permutations, result
And the equalities in (45) and (47) hold if and only ifing in the changes of all diagonal entries between and
no column permutation occurs in the process or whenevacluding the two columns. This makes it very difficult to
two consecutive columns, s&y— 1 andk, are permuted, analyze under what conditiaR® increases or decreases.
Tp—1, = 0. We will use numerical test results to show the effects of
Proof. It is easy to show that after each column permBQRD and V-BLAST onP® with explanations.
tation, the smaller one of the two diagonal entries®f In Theorem 2 we showed that if the condition (44)
involved in the permutation either keeps unchanged (thelds, then applying LLL-P will increaseP®™ and if

Pr(z® = &) > Pr(z" = 2). (47)
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(46) holds, then applying LLL-P will decreade®®. The may increaseP®, but often they decreasE®®. This is
following example shows that both SQRD and V-BLASTthe opposite of what we commonly believe. Later we will
may decreaseP®® even if (44) holds, and they maygive numerical test results to show both phenomena. In

increaseP®® even if (46) holds. the following we give some explanations.
Example 1. Letd = 1 and consider two matrices: It is easy to show that like LLL-P, V-BLAST increases
35 3 0 1 —-15 15 min; << r;; (Not strictly) after each permutation and like
RY—|lo 1 —15 R® — o 08 10 LLL-P, SQRD decreasesax;<;<, r;; (not strictly) after
0 0 1 ’ 0 0 042 each permutation. The relation between V-BLAST and

SQRD can be found in [34] and [28]. Thus if the con-
Applying SQRD, V-BLAST and LLL-P toR” and dition (44) holds before applying V-BLAST, it will also

R® we obtain hold after applying it; and if the condition (46) holds
1.8028 —0.8321 0 before applying SQRD, it will also hold after applying
R(Sl) _ 0 3.0509 3.4417] it. Oft_en applymg V-BLAST decreasesax<;<, r;; and
0 0 0.6364 applying SQRD increasesin; <;< 7;; (both may not be
m 2 true sometimes, see Example 1). Thus often the gaps
R — RO — 3'1(?23 :1))?(2)(6): _104%%)3 between the large diagonal entries and the small ones of
v T St T : : ' R decrease after applying SQRD or V-BLAST. From the
L 0 0 L] proof of Theorem 2 we see reducing the gaps will likely
1.7 —1.7941 —0.8824 increaseP® under (44) and decreag®® under (46). Thus
RP =0 04556 —0.1823], it is likely both SQRD and V-BLAST will increase®®
1 0 0 0.4338 under (44) and decrease it under (46). We will give further
R® =R?® = R®. explanations in the next subsection.

If o = 0.2, then it is easy to verify that for bot®")
and R, (44) holds (note tha2\/2r(d) = 2v/2r(1) = C. Abound on P*

1.6798). Simple calculations by using (16) give In this subsection we give a bound d#®, which is
P*(RM) =0.9876, P**(R?) = 0.8286, an upper bound under (44) and becomes a lower bound
under (46). This bound can help us to understand what a
and column permutation strategy should try to achieve.

P®(RW) =0.9442, P*(RY) = P(RM) = 0.9910, Theorem 4. Suppose that the assumptions in Theorem
° v " 1 hold. Let the box5 in (1b) be a cube with edge length
P*(R{) = 0.7513, P*(R{)) = P*(R{) = 0.8286. of d and denotey = (det(R))"/".

Thus, SORD decreasd?®, while V-BLAST and LLL-P 1) If the condition (44) holds, then

increaseP® for R(Y), and V-BLAST decreaseB®, while r d an
SQRD and LLL-P keepP® unchanged for?. Pr(z®® = z) < + ( v ) )
If o = 2.2, then it is easy to verify that for boti") L[d+1 d+1"\2v20/] (48)
2 . . .
gir\llth , (46) holds. Simple calculations by using (16) 2) If the condition (46) holds, then
[ 1 d 1"
pPee(RMW) =0.2738, P**(R®?) = 0.1816. Pr(z® = &) > () ,
( ) ( ) r(x w)__d+1+d+1er(2\/§g)_
Then (49)
PBB(R(S1)) — 0.2777, PBB(R(Vl)) _ PBB(R(Ll)) — 0.2700, The eq?oarlit‘y in1 either (48) or (49) holds if and only if
Tii =7 1=1,...,N.

Pe(RP) =0.1898, P*®(R?)=P*(R®)=0.1816.  Proof. We prove only part 1. Part 2 can be proved

Thus, SQRD increaseB®, while V-BLAST and LLL-p Similarly. Note thaty™ =TI, ;. Obviously, ifr;; =~

decreasé® for RV and V-BLAST increase®®. while fori =1, R then by (16) the equality in (48) holds. In

SQRD and LLL-P keepP* unchanged folR2. the following we assume that there exjstndk such that
rj; # rie, we only need to show that the strict inequality

Although Example 1 indicates that under the conditio@18) holds.

(44), unlike LLL-P, both SQRD and V-BLAST may de- DenoteF(¢) = In(1 + derf (2L )Y p, = In(ry;) for

creaseP*™, often they increas®®®. This is the reason why . 19 andn — 15 N-idthen by (16) (48) is

SQRD and V-BLAST (especially the latter) have often .25 " M= e s y (16), (48)

been used to increase the accuracy of the Babai estima lvalent to

tor in practice. Example 1 also indicates that under the 1 iF(m‘) < F(n).
condition (46), unlike LLL-P, both SQRD and V-BLAST ni
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Since min; << ry; > 2\/§or(d) and r;j; # 7, it thenthe LLL-P decreasd®™® and (49) is a lower bound on
suffices to show thaf'({) is a strict concave function on P®. Example 1 in Sec. IV-B indicates that this conclusion
(In(2v/2 0 7(d)), +00). Therefore, we only need to showdoes not always hold for SQRD and V-BLAST. To further

that F”/(¢) < 0 when¢ > In(2v/2 o r(d)). understand the effects of LLL-P, SQRD and V-BLAST on
To simplify notation, denotg€ = exp(¢)/(2v20). By P® and to see how close they bring their corresponding
some simple calculations, we obtain P®® to the bounds given by (48) and (49), we performed

d ¢ exp(—€2) some numerical tests by MLAB. For comparisons, we

F'(¢) = m =dh(&,d) also performed tests faP®.

First we performed tests for the following two cases:

whereh(-, ) is defined in (32). Then « Case 1.A is ann x n matrix whose entries are
F"(¢) = d€ (Oh(&,d)/D¢). chosen independently and randomly according to a

zero mean Gaussian distribution with variarge.
By the proof of Lemma 20h(¢,d)/0¢ < 0 when¢ > « Case 2.A = UDV”, U,V are random orthog-

r(d). Thus, we can conclude that”(¢) < 0 when¢ > onal matrices obtained by the QR factorization of
In(2v/2 0 r(d)), completing the proof. O matrices whose entries are chosen independently and
Now we make some remarks about Theorem 4. andomly according to the standard Gaussian distri-

Remark 7: The quantityy is invariant with respect to bution and D is an n x n diagonal matrix with

column permutations, i.e., faR and R in (7), we have dii = 10%(/2=0/(n=1)_ The condition number ofi

the samey no matter what the permutation matrR is. is 1000.

Thus the bounds in (48) and (49), which are actually the In the tests for each case, we first chose= 4 and

same quantity, are invariant with respect to column perm&-= [0, 1]* and took different noise standard deviation

tations. Although the condition (44) is variant with respedo test different situations according to the condition) (4

to column permutations, if it holds before applying LLL-Pand (46) imposed in Theorems 3 and 4. The edge length

or V-BLAST, it will hold afterwards, since the minimumd of B is 1. So in (44) and (46Rv2r(d) = 2v2r(1) =

of the diagonal entries o will not be smaller than 1.6798. Details about choosing will be given later.

that of R after applying LLL-P or V-BLAST. Similarly, = We useP*®, Pr*, P® and P respectively denote the

the condition (46) is also variant with respect to columauccess probability of the box-constrained Babai estimato

permutations. But if it holds before applying LLL-P orcorresponding to QR factorization (i.e., no permutations

SQRD, it will hold afterwards, since the maximum of there involved), LLL-P, SQRD and V-BLAST, and ugé®

diagonal entries of will not be larger than that ol to denote the right-hand side of (48) or (49), which is an

after applying LLL-P or SQRD. upper bound if (44) holds and a lower bound if (46) holds.
Remark 8: The equalities in (48) and (49) are reache&imilarly, P, PP, P2®* and P?® respectively denote

if all the diagonal entries oR? are identical. This suggeststhe success probability of the ordinary Babai estimator

that if the gaps between the larger entries and small entriggresponding to QR factorization, LLL-P, SQRD and V-

become smaller after permutations, it is likely that® BLAST. We useu to denote the right-hand side of (50),

increases under the condition (44) or decreases under Wigch is an upper bound of°®, PP, P2 and P®°. For

condition (46). As we know, the gap between the largegfch case, we performed 10 runs (notice that for each run

one and the smallest one decreases after applying LLLWe have differentd, & andv due to randomness) and the

Numerical tests indicate usually this is also true for bottgsults are displayed in Tables I-VI.

V-BLAST and SQRD. Thus both V-BLAST and SQRD In Tables I and llg =01 = min r:/1.8. Itis easy to

will likely bring P** closer to the bound under the twoyerify that the condition (44) holds. This means tidt <
opposite conditions, respectively. Pe® by Theorem 3 andP®®, P, P2 < 8 by Theorem
Remark 9: Whend — oo, by Lemma 17(d) — 0,thus 4 and Remark 7. The numerical results given in Tables
the condition in part 1 of Theorem 4 becomeswx ;; > | and I are consistent with the theoretical results. The
0, which always holds. Taking the limit as— oo on both numerical results also indicate that SQRD and V-BLAST

sides of (48) and using Corollary 1, we obtain usually increase (not strictly}®®, although there is one
. n exceptional case for SQRD in Table Il. We observe that
Pr(z® = &) < (erf(’Y/(Q\/?U))) : (50) the permutation strategies increa@® more significantly

fqr Case 2 than for Case 1. The reason is thas more

ﬁ)l-conditioned for Case 2, resulting in larger gaps betwee

the diagonal entries oR?, which can usually be reduced

) more effectively by the permutation strategies. We also

D. Numerical tests observe tha® < 1* in both tables. Although in theory
We have shown that if (44) holds, then LLL-P increaseabe inequality may not hold as we cannot guarantee the

PP® and (48) is an upper bound dff®; and if (46) holds, condition (44) holds after applying SQRD, usually SQRD

The above result was obtained in [37] and a simple pro
was provided in [14].
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can makemin; <;<, 7;; larger. Thus if (44) holds before From Tables VII and VIIl, we can see that often these
applying SQRD, it is likely that the condition still holdspermutation strategies increase or decre&8e for the
after applying it. Thus it is likely thaf®® < n*® holds. = same data. The numerical results given in all the tables
Tables Il and IV are opposite to Tables | and Il. Irsuggest that if the condition (44) holds, we should have
both tablesg = 02 = max r; /1.6, then the condition confidence to use any of these permutation strategies; and
1<i<n . ..
(46) holds. This means that® > P by Theorem 3 and if the condition (46) holds we should not_use any of them.
P®, Pe P > ;% by Theorem 4 and Remark 7. The Tables. VII and VIII do not show Whlch_permutgtlon
numerical results given in the two tables are consiste?ifat€gy increase*® most for smallo. The information
with the theoretical results. The results in the two tablé¥! this given in Tables I-VI are limited. In the following
also indicate that both SQRD and V-BLAST decrease (n¥€ 9ive more test results to investigate this.
strictly) P®, although Example 1 shows that neither is As the main application of this research is in digit

always true under the condition (46). We also observe tHe@mmunications, we used the MIMO model in the new
P® > ;# in both tables. Although in theory the inequalit}?StS- For a fixed dimension, a fixed type of QAM and a

may not hold as we cannot guarantee the condition (48j€d £b/No, we randomly generated 200 complex chan-

holds after applying V-BLAST, usually V-BLAST can nel matrices whose entries independently and identically
make max; <;<,, r;; smaller. Thus if (46) holds before follow the standard complex normal distribution, and for

applying V-BLAST, it is likely the condition still holds each generated channel matrix, we randomly generated

after applying it. Thus it is likelyP® > 4 holds. 50_0 pairs pf F:omplex sign.al vector (whose entries_, are
In Tables V and VI, uniformly distributed according to the QAM constellation)
and complex noise vector (whose entries are independently
oc=03= (0'311??<Xn rii + 0.7112_1?” 7;1)/1.68. and identically normally distributed), resulting in 10000
- - instances of a complex linear model. Each complex in-
In this case, stance was then transformed to an instance of the real
. 1.68 linear model (1).
Jin 7y < m%/iar(d) S max 7, Unlike the previous tests, we compare txperimental

o o ) error probabilities of the box-constrained Babai estimsato
indicating that (46) does not hold and it is very likely tha{s

i .e., the ratio of the number of runs that the Babai point
(44) does not hold either. In theory we do not have resug not equal to the true parameter vectarto 10000)

that cover this situation. The numerical results in the tW@orresponding to QR, LLL-P, SQRD and V-BLAST, and
tables indicate all of the three permutation strategies Ca{ ineoretical bound on the error probability of a Babai

either increase or deigeaifﬁ‘ s;glctly arBIS p* can be  ogtimator (i.e., the difference between 1 and the bound on
larger or smaller tha™, P7®?, P¢® and PiP. The reason jiq o ccess probability (see (48))).

we chose 0.3 and 0.7 rather than a more natural choice o igures 1 and 2 respectively display the experimental

0.5 and 0.5 in defining here is that we may not be ableerror probability corresponding to the QR factorization,

o qbs_erve both increasing and decreasing phenomena gy e three permutation strategies, and the average theo-
to limited runs. . retical bound over the 10000 runs verdiiy Ng = 5:5:30

Now we make comments on the success probabilify, ha 4 « 4 MIMO system with 16-QAM and 64-
of ordinary Babai pomts. From Tab_Ies I—;/I, we observ%gAM_ Similarly, Figures 3 and 4 respectively show the
that LLL-P always increases (not strictyf®, and SQRD ;4 resonding results for the x 8 MIMO system with

and V-BLAST almost always increasé¥®® (there is one 16-QAM and 64-QAM. And Figures 5 and 6 show the
exceptional case for SQRD in Table Il and two exception%rresponding results for thi » 16 MIMO system with
cases for V-BLAST in Table VI). Thus the ordinary case i§6-QAM and 64-QAM, respectively.

different from the box-constrained case. We also observeg . Figures 1-6, we can see that on average all of

pes S P> for the same permuta_tion strategies. Sometim‘fﬁe three column permutation strategies decrease the error
the difference between the two is large (see Tables IV aBpobability of the Babai point and the error bound is a
VI). ) lower bound (this is because (44) usually holds, which
Each of Tables I-VI displays the results for only 10 rung g e (48)). These Figures also show that the effect of V-
due to space limitation. To make up for this shortcomln%l_AST is much more significant than that of LLL-P and

we give Tables VIl and VIII, which display some statisticsSQRD which have more or less the same performance
for 1000 runs on the data generated exactly the same wgay:. phenomenon is similar to that fé°®. as shown in
as the data for the 10 runs. Specifically these two tabl&s4]_ ’

display the number of runs, in whick®® (P°®) strictly

increases, keeps unchanged and strictly decreases after
each of the three permutation strategies is applied for Case
1 and Case 2, respectively. In the two tables, oo and In [32], a conjecture was made on the ordinary Babai
o3 are defined in the same as those used in Tables I-\dstimator, based on which a stopping criterion was then

V. ON THE CONJECTURE PROPOSED Ifi32]
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TABLE |
SUCCESS PROBABILITIES AND BOUNDS FOFCASE 1, 0 = minj<;<y, rii/1.8

o PBB PEB PEB P\EB MBB POB PSB PSB P‘C/)B MOB
0.0738 || 0.8159 | 1.0000 | 1.0000 | 1.0000 | 1.0000 || 0.6319 | 1.0000 | 1.0000 | 1.0000 | 1.0000
0.1537 || 0.7632 | 0.8423 | 0.8423 | 0.8423 | 0.9083 || 0.5503 | 0.6988 | 0.6988 | 0.6988 | 0.8231
0.1575 || 0.7938 | 0.9491 | 0.9491 | 0.9491 | 0.9698 || 0.5977 | 0.8998 | 0.8998 | 0.8998 | 0.9403
0.2170 || 0.7235| 0.8577 | 0.8577 | 0.8577 | 0.8670 || 0.4893 | 0.7300| 0.7300 | 0.7300 | 0.7477
0.1285 || 0.8133 | 0.8534 | 0.8534 | 0.8521 | 0.9882 || 0.6278 | 0.7070| 0.7070 | 0.7049 | 0.9766
0.1676 || 0.6809 | 0.7529 | 0.7529 | 0.7529 | 0.8896 || 0.4255| 0.5375| 0.5375| 0.5375| 0.7885
0.3665 || 0.7039 | 0.7273 | 0.7273 | 0.7273 | 0.8004 || 0.4629 | 0.5093 | 0.5093 | 0.5093 | 0.6324
0.1968 || 0.6892 | 0.7320 | 0.7320 | 0.7385 | 0.8073 || 0.4420 | 0.5103 | 0.5103 | 0.5270 | 0.6439
0.3322 || 0.7087 | 0.7317 | 0.7317 | 0.7317 | 0.7665 || 0.4718 | 0.5156 | 0.5156 | 0.5156 | 0.5765
0.5221 || 0.4754 | 0.4754 | 0.4754 | 0.4754 | 0.4758 || 0.1899 | 0.1899 | 0.1899 | 0.1899 | 0.1910

TABLE Il
SUCCESS PROBABILITIES AND BOUNDS FOFCASE 2,0 = minj<;<n, rii/1.8

o PBB PEB PEB P\EB MBB POB PBB PgB P‘(/)B MOB
0.0101 || 0.8155| 0.9452 | 0.9354 | 0.9452 | 1.0000 || 0.6312| 0.8905| 0.8708 | 0.8905 | 1.0000
0.0130 || 0.7983 | 0.9839 | 0.9839 | 0.9839 | 1.0000 || 0.6045| 0.9679| 0.9679 | 0.9679 | 1.0000
0.0173 || 0.8159 | 0.9793 | 0.9793 | 0.9793 | 1.0000 || 0.6319 | 0.9586 | 0.9586 | 0.9586 | 1.0000
0.0066 || 0.8159 | 0.9913 | 0.9913 | 0.9967 | 1.0000 || 0.6319 | 0.9826 | 0.9826 | 0.9933 | 1.0000
0.0177 || 0.8106 | 0.9998 | 0.9998 | 0.9998 | 1.0000 || 0.6236 | 0.9997 | 0.9997 | 0.9997 | 1.0000
0.0060 || 0.8159 | 0.9841 | 0.9841 | 0.9998 | 1.0000 || 0.6319 | 0.9681 | 0.9681 | 0.9996 | 1.0000
0.0168 || 0.7833 | 0.8098 | 0.7625| 0.8159 | 1.0000 || 0.5813 | 0.6224 | 0.5250 | 0.6319 | 1.0000
0.0150 || 0.8159 | 0.9999 | 0.9999 | 0.9999 | 1.0000 || 0.6319 | 0.9998 | 0.9998 | 0.9998 | 1.0000
0.0231 || 0.8159 | 0.9999 | 0.9999 | 0.9999 | 1.0000 || 0.6319 | 0.9999 | 0.9999 | 0.9999 | 1.0000
0.0211 || 0.7912 | 0.9696 | 0.9696 | 0.9892 | 1.0000 || 0.5935 | 0.9393 | 0.9393 | 0.9784 | 1.0000

TABLE IlI
SUCCESS PROBABILITIES AND BOUNDS FORCASE 1, 0 = max(r;;)/1.6

o BB e PTE PEE i OB B OB OB s
1.1726 || 0.1557 | 0.1310| 0.1310] 0.1380 | 0.1121 || 0.0005 | 0.0006 | 0.0006 | 0.0006 | 0.0006
0.6432 || 0.2756 | 0.2756 | 0.2756 | 0.2756 | 0.2731 || 0.0387 | 0.0387 | 0.0387 | 0.0387 | 0.0395
0.5962 || 0.2915| 0.2912| 0.2912 | 0.2909 | 0.2900 || 0.0472 | 0.0473 | 0.0473 | 0.0475 | 0.0478
1.2435] 0.1875| 0.1632 | 0.1673| 0.1632 | 0.1571 || 0.0040 | 0.0044 | 0.0044 | 0.0044 | 0.0045
0.8332 ]| 0.1873 | 0.1769| 0.1769 | 0.1769 | 0.1750 || 0.0070 | 0.0074 | 0.0074 | 0.0074 | 0.0074
0.4875 ]| 0.2709 | 0.2709 | 0.2709 | 0.2709 | 0.2667 || 0.0356 | 0.0356 | 0.0356 | 0.0356 | 0.0366
0.9684 || 0.2769 | 0.2709 | 0.2709 | 0.2709 | 0.2688 || 0.0358 | 0.0369 | 0.0369 | 0.0369 | 0.0375
0.9971 ]| 0.1846 | 0.1665| 0.1665 | 0.1665 | 0.1588 || 0.0043 | 0.0046 | 0.0046 | 0.0046 | 0.0047
1.2791 ] 0.1501 | 0.1308 | 0.1308 | 0.1308 | 0.1294 || 0.0015 | 0.0016 | 0.0016 | 0.0016 | 0.0016
0.6327 || 0.2641 | 0.2564 | 0.2564 | 0.2564 | 0.2556 || 0.0301 | 0.0316 | 0.0316 | 0.0316 | 0.0318

TABLE IV
SUCCESS PROBABILITIES AND BOUNDS FORCASE 2, 0 = max(r;;)/1.6

o PBB PEB PSB P‘E;B MBB POB PI(?B PSOB P‘?B MOB
3.9438 || 0.1064 | 0.0947 | 0.0987 | 0.0947 | 0.0709 || 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
2.4510 || 0.1173| 0.1173| 0.1173 | 0.1173 | 0.0764 || 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.5790 || 0.1788 | 0.1640 | 0.1640 | 0.1640 | 0.1363 || 0.0019 | 0.0019 | 0.0019 | 0.0019 | 0.0021
5.3809 || 0.1011 | 0.0701 | 0.0701 | 0.0701 | 0.0686 || 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
2.2574 || 0.1140 | 0.1023 | 0.0954 | 0.0954 | 0.0777 || 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
3.7623 || 0.1099 | 0.0801 | 0.0801 | 0.0757 | 0.0713 || 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
3.9225 || 0.1063 | 0.0834 | 0.0834 | 0.0834 | 0.0709 || 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
1.3198 || 0.1153 | 0.1153 | 0.1153 | 0.1153 | 0.0900 || 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001
1.2416 || 0.1394 | 0.1108 | 0.1108 | 0.1108 | 0.0920 || 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001
0.8411 || 0.1719| 0.1532| 0.1532 | 0.1532 | 0.1090 || 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0005

proposed for the sphere decoding search process for sg@arameter vectof: in the box-constrained linear model
ing the BILS problem (2). In this section, we first introduc€l). The method proposed in [32] first ignores the box
this conjecture, then give an example to show that tht®nstraint (1b). Instead of using the column permutations
conjecture may not hold in general, and finally we shown (7), it performs the LLL reduction:

that the conjecture holds under some conditions. QTRZ - B (51)

The problem considered in [32] is to estimate the integarhere Q is orthogonal,Z is unimodular (i.e,Z € Z"*"
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TABLE V

SUCCESS PROBABILITIES AND BOUNDS FORCASE 1, 0 = (0.3 max(ry;) + 0.7 miny <;<y, 74;)/1.68

o PBB PEB PEB P\EB BB POB PSB PSB P‘C/)B OB
0.2848 || 0.4208 | 0.4336 | 0.4336 | 0.3184 | 0.2846 || 0.0154 | 0.0165| 0.0165 | 0.0252 | 0.0451
0.6313 || 0.4720 | 0.4829 | 0.4829 | 0.4829 | 0.4863 || 0.1630 | 0.1932| 0.1932 | 0.1932| 0.2017
0.4328 || 0.4540 | 0.4599 | 0.4599 | 0.4599 | 0.4623 || 0.1517| 0.1673| 0.1673 | 0.1673 | 0.1776
0.6105 || 0.5054 | 0.5061 | 0.5061 | 0.5061 | 0.5092 || 0.2123 | 0.2161| 0.2161 | 0.2161 | 0.2259
0.3306 || 0.4268 | 0.3807 | 0.3807 | 0.3805 | 0.3484 || 0.0321 | 0.0539 | 0.0539 | 0.0539 | 0.0829
0.2600 || 0.5055| 0.5103 | 0.5103 | 0.5103 | 0.5252 || 0.1544 | 0.1868 | 0.1868 | 0.1868 | 0.2437
0.4743 || 0.4235| 0.4283 | 0.4283 | 0.4283 | 0.4259 || 0.0631 | 0.1225| 0.1225| 0.1225| 0.1437
0.5878 || 0.4104 | 0.4161| 0.4161 | 0.4161 | 0.4170|| 0.1159| 0.1304 | 0.1304 | 0.1304 | 0.1359
0.3977 || 0.4429| 0.4431| 0.4431 | 0.4431| 0.4477 || 0.1477| 0.1479| 0.1479 | 0.1479| 0.1636
0.6273 || 0.4684 | 0.4684 | 0.4684 | 0.4684 | 0.4696 || 0.1792| 0.1792| 0.1792 | 0.1792| 0.1848

TABLE VI

SUCCESS PROBABILITIES AND BOUNDS FORCASE 2, 0 = (0.3 max(r;) + 0.7 miny <<y, 73;)/1.68

o BB PB8 PE8 PEB i PoB P8 PJB POB 1B
1.0377 || 0.1608 | 0.1324 | 0.1324 | 0.1625 | 0.0987 || 0.0001 | 0.0002 | 0.0002 | 0.0002 | 0.0002
0.3648 || 0.2774 | 0.2774 | 0.2774 | 0.2405| 0.1987 || 0.0034 | 0.0034 | 0.0034 | 0.0025 | 0.0126
0.7603 || 0.1681 | 0.1758 | 0.1758 | 0.1758 | 0.1150 || 0.0003 | 0.0005 | 0.0005 | 0.0005 | 0.0007
0.8769 || 0.1835| 0.2062 | 0.1713 | 0.2062 | 0.1067 || 0.0002 | 0.0003 | 0.0004 | 0.0003 | 0.0004
0.4708 || 0.2794 | 0.2352 | 0.2352 | 0.2352 | 0.1590 || 0.0010 | 0.0030 | 0.0030 | 0.0030 | 0.0048
1.1983 || 0.1572 | 0.1319| 0.1319| 0.1319| 0.0932 || 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001
1.0001 || 0.1758 | 0.1596 | 0.1596 | 0.1464 | 0.1003 || 0.0001 | 0.0002 | 0.0002 | 0.0001 | 0.0002
0.8523 || 0.1671 | 0.1733| 0.1733| 0.1715| 0.1082 || 0.0002 | 0.0003 | 0.0003 | 0.0003 | 0.0005
0.2128 || 0.3478 | 0.3478 | 0.3728 | 0.3478 | 0.3539 || 0.0599 | 0.0599 | 0.0711 | 0.0599 | 0.0866
0.3956 || 0.2188| 0.2117 | 0.2117 | 0.1973 | 0.1844 || 0.0047 | 0.0047 | 0.0047 | 0.0034 | 0.0093
TABLE VI
NUMBER OF RUNS OUT OFL000IN WHICH P88 AND P°® CHANGES FORCASE 1
PBB POB
o || Resur Strategy || ||| .p | SQRD | V-BLAST || LLL-P | SORD | V-BLAST
Strict increase 933 928 951 933 922 953
o1 No change 67 47 42 67 47 42
Strict decrease 0 25 7 0 31 5
Strict increase 0 25 6 942 947 950
o2 No change 58 40 37 58 40 37
Strict decrease 942 935 957 0 13 13
Strict increase 781 797 740 942 945 952
o3 No change 58 40 37 58 40 37
Strict decrease 161 163 223 0 15 11
TABLE VI
NUMBER OF RUNS OUT OFLO00IN WHICH P88 AND P°® CHANGES FORCASE 2
PBB POB
o || Resur Strategy || ||| .p | SQRD | V-BLAST || LLL-P | SORD | V-BLAST
Strict increase 858 803 938 858 800 938
o1 No change 142 76 56 142 76 56
Strict decrease 0 121 6 0 124 6
Strict increase 0 23 69 906 944 831
o2 No change 94 46 48 94 46 48
Strict decrease 906 931 883 0 10 121
Strict increase 134 189 97 906 943 840
o3 No change 94 46 48 94 46 48
Strict decrease 772 765 855 0 11 112
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anddet(Z) = +1 ) and the upper triangulaR is LLL For any fixeds and 3, to construct the linear model,
reduced, i.e., it satisfies the Lovasz condition (8) and tlee need only to construct a matriR € R™*". Define

size-reduce condition: T
T11 0.57’116

1 R = 0 I ;o 0<rp <o
[Pkl < 57,k =itLit2, o, =12, el r22dn—1n-1

o o o A L wheree = [1,...,1]7 € R*~!. We will show how to
Then, withy = Q@ y, v = Q v andz = Z~ &, the chooser;; such that (56) holds.
ordinary linear model (5a) becomes Note thatR is already LLL reduced, thus; = 2% =

B oB Y
§=Ri+v, ©~N(0,I). (52) x°® andx = z. Then, by (17) and (18),

Pr(z = &) = ¢o(r11) (¢o(r22))" " (57)

For the reduced model, one can find its ordinary Babai

estimatorz®® (c.f. (15)): Obviously, with eventFy = (23° = 2o, ...,2%° = I,),
¢ = (¥i — 2": 7ij25°) [Tiiy 20° =[] (53) Pr(@ € B) = Pr(a™ € B) 2 Pr (af” € [0, w], )
j=it1 ! = Pr(z9® € [l1,u1]|E2) - Pr(Ey)
fori = n.n — 1 1, where ", - = 0. Define = Pr(a5" € [(1,u1]|E2) (¢4 (r22)" " (58)
, S i :

x = Zz°. In[32], @ is used to estimate the true parametgfhere the last equality follows from (17) and (18). There-

vectorz. If z # , then a vector error (VE) is said to havefore, by (57) and (58), to show (56) it suffices to show
occurred. Note that may be outside the constraint b8x that there exists an;; > 0 such that

in (1b). If z € B, thenz is called a valid vector, otherwise,

i.e.,z ¢ B, z is called an invalid vector. The conjecture 0o (r11) 1 +e (59)
proposed in [32] is: a VE is most likely to occur if is Pr(z9® € [(y,m]|E2) — ua =l +1
invalid; conversely, ifz is valid, there is little chance that  |n the following we derive an expression f&r(25® €
the vector is in error. [¢1,u1]|E2) and then use it to show that (59) holds for
From the definition of VE, ifz is invalid, then VE somer;; > 0. From the proof of Theorem 1, we see that

must occur. So in the following, we will only consider thef ;5 — i, for i = n,n —1,...,2 and i, is fixed, then
second part of the conjecture, i.€5(z # @[z € B) = 0. (cf. (20))

(C(fB — 571)7’11 ( 1)

—— ~N (0,5 ). (60)
A. The conjecture does not always hold V20 2

In this subsection, we first show thBt(z # &|z € B) Sincex$® = |§°] andz is uniformly distributed over the
can be very close to 1, then give a specific example Rox B,
show Pr(z # :i_c|§c € _B) > 0.9275 and finally perform  p_ (23° € [f1, 1| )
some Matlab simulations to illustrate this example.
Theorem 5: For any givene > 0, any fixed dimension
n > 2, any boxB and any standard deviation of the
noise vectow, there always exists a box-constrained linear UT_ 0
model in the form of (5), wherg is uniformly distributed _ Z Pr(i; = 01 + 1)
over the boxB, such that

uy—£1

= Z Pr(ﬁcl =/l + Z',,TC{B S [él,ul]lEg)

=0
Pr(z® € [¢ 1y =01+, FE
Pr@ 4z eB) >1—- — ¢ (54) r(#f € (bl =l 46, )
up — 1 +1 _ 1 %
Proof. Note that ul_z b+l
Pr(z £ dzcB) = 2B —Pr@=23€B) 3 Pr(e® € [0 — 1/2,u1 + 1/2)|(81 = 6 + i, Es))
Pr(z € B) i=0
PI‘(.’f} = :%) 1 uy—41 e A
=1-==———. (5) __ *+ P (f® —2)rn
Pr(z € B) =l 1 ; r<7\/§a
where the second equality is due to the fact that 5. —(2i4 Dryy (2uy — 201 — 2i + 1)ryy
Thus, to prove the theorem, it suffices to show that for any € { 5 } ’E2>
. ) . . 220 2420
given e > 0 there exists a box-constrained linear model w—t,
such that _ 1 o) o
A _2(U1 — él + 1) Z [¢U((2’U,1 2él 21+ 1)T11)
Pr(z = x) - 1 n (56) i=0
€. .
Pr@eB) ~u— (1 +1 +¢0((20 + 1)r11)]
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where the second equality follows from (23), and the labecause in (579, (r11) and ¢, (r22) are independent of

equality is due to (18) and (60). o. This experiment confirms that evenafis valid, there
It is easy to verify by L'Hpital’s rule that may be a large chance that it is in error.
lim Po(r11) _ 1 TABLE IX
r11—0 o up — 1 + 1’ PROBABILITIESVERSUSn = 5:5: 40 WITH o = 0.1
where n Porr Peow B, P,
5 || 0.9840 | 0.9840 | 0.2484 | 0.9356
1 wu—h 10 || 0.9840 | 0.9850 | 0.2485| 0.9396
o= > [do((2u1 — 201 — 20+ 1)r1y) 15 || 0.9840 | 0.0836 | 0.2469 | 0.9336
2w — b +1) 20 || 0.9840 | 0.9837 | 0.2499 | 0.9348

. 25 [ 0.9840 | 0.9827 | 0.2564 | 0.9375
+¢o((2i + 1)ru)] - 30 [ 0.9840 | 0.9828 | 0.2500 | 0.9312

. 35 || 0.9840 | 0.9828| 0.2473| 0.9304
Therefore, for any > O there exists amy; > 0 such 20 109840 T 0.9818 | 0.2434 1 0.9252
that (59) holds, completing the proof[]

As u; — ¢1 + 1 is at least 2, Theorem 5 shows that

- . B TABLE X
PI‘(.’I) 7& .’13|.’13 € B) Ca.n be at Ieasll/2 € NOte that PROBABILITIESVERSUSo = 0.1 : 0.1 : 0.8 WITHn = 20
uy —¢1 + 1 can be arbitrarily large and we can chodse

_ Al — . - g Per'r Pecv Pb Pe
uy andry; such thatPr(z # &|x € B) can be arbitrarily 0117 09840 | 0.9841 | 03503 | 09365
close to 1. In the following, we give a specific example 0.2 || 0.9840 | 0.9832| 0.2522 | 0.9334
to show thatPr(z # x|z € B) > 0.9275 and give some 0.3 || 0.9840 | 0.9844 | 0.2434 ] 0.9359

0.4 || 0.9840| 0.9844 | 0.2399 | 0.9350

simulation results. 0.5 || 0.0840 | 0.9825 | 0.2435 | 0.9281
Example 2: For any fixedn and o, let e = 0.01 and 0.6 | 0.9840 1 0.9827 | 0.2475 | 0.9301

B = [0,15]™, and define 0.7 | 0.9840 | 0.9843| 0.2541 | 0.9382
0.04 0.020¢" 0.8 || 0.9840 | 0.9838 0.2517 | 0.9356
. g . e

0 100’1—”,17",1

It is easy to verify that this matrixR satisfies the condi- : -
. ; . B. Th ture holds und dit
tions given in the proof of Theorem 5. Then by (54), we © CONJECture nolds under some conditions

R (61)

havePr(z # &|z € B) > 0.9275. In this subsection, we will show that the conjecture
We use MATLAB to do some simulations to illustrateholds under some condmonAs. ) -
the probability. In the simulations, for any fixedands,  Recall thatz = Zz° and& = Z2, thusPr(z = 2) =

we generated anxn matrix R by using (61). After fixing Pr(z*® = 2). Then, by (55), we have

R, we gave 10000 runs to generate 10000 pairg aind Al o8 _ 3

v according to their distributions, producing 1009G& Pri@ 7 2z € B) < 1 - Pr(z = 2). (62)

according to (5a). For eac), we found the Babai point So, if Pr(z°® = 2) ~ 1, then the conjecture holds. From

x® by using (15). For each pair @ ando, we computed Corollary 2 we see that when is small enough, we have

the theoretical probabilityr(z # &) denoted byP.,, by Pr(z°® = %) ~ 1. But the upper bound given in (62) is

using (57) (notice thak.,, = 1— P sincex = x°® here) not sharp because it was derived from (55) by using the

and the corresponding experimental probabifty, (i.e., inequalityPr(z € B) < 1. We will give a sharper upper

the ratio of the number of runs in whigh# & to 10000). bound onPr(z # &|z € B) based on a sharper upper

We also computed the experimental probabiltyof £ €  bound onPr(z € B).

B (i.e., the ratio of the number of runs in whiahe B to Sincex = Zz°, &z € B if and only if 2°® € £ =

10000) and the experimental probability corresponding {Z's|¥s € B}. ThusPr(z € B) = Pr(z*® € £). But

to Pr(z # @z € B), i.e., P. = 1— (1 — P.;)/P, (cf. the setf is a parallelotope and it is difficult to analyze

(55)). Pr(z%® € £). Thus in the following we will give a box
Tables IX and X respectively display those probabilitieg which contains€, then we analyzér(z°® € F). Let

versusn = 5:5: 40 with 0 = 0.1 and versugr = 0.1: U = (u;;) = Z~! and define fori,j = 1,2,...,n,

0.1 : 0.8 with n = 20. From these two tables, we can

see that the values d, are larger than 0.9275 exceptthe ) ¢;, if w; >0 Ju;, if u;; >0

case that = 40 in Table IX, in which P, is smaller than "7 = Yu;, if wy; <0’ "7 V45, if uy <0

0.9275, but it is close to the latter. Thus the test results 7

are consistent with the theoretical result. We also obserygen definef € Z™ andu € Z" as follows:

that P,;, is very small andP,,, is a good approximationto n n

Py,. In Tables IX the values of,,.. are actually different, b = Zuijﬂija Uy = Zuij’/ij’ i=12,...,n

but very close becauseé, (r22) is very close to 1 (c.f. J=1 J=1

(57)) and in Tables X the values &%,.,. are exactly equal (63)
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It is easy to observe that For later uses, fo=n,n —1,...,1, define
ECF={zel":£<z<u}. (64) gz‘={wmlﬂm—Rm:néimtwm, Wi, € RPIHL
L . n Optig], k=1d,i4+1,...,n}.

Actually it is easy to observe thak is the smallest box 2k (Win) € b, ] b n} (69)
including £.

With the above preparation, we now give the followind-rom (69), it is easy to verify that°®(v) € F if and only
result. if v € G;. Therefore, (67) is equivalent to

Theorem 6: Suppose that the assumptions in Theorem n
1 hold and the linear model (5a) is transformed to the  pr(3,., € G;) < H(bg((ﬂi — 0 + 1)Fy). (70)

linear model (52) through the LLL reduction (51). Then

. ST oE e
the estimatorr defined ase = 22" satisfies We prove (70) by induction. First, we prove the base

Pr(z +# &|z € B) case.
n erf (7 /(2v20)) Pr(v, € Gn) < ¢ (T — Ly + 1)Pn).
_1;[ — 0 + )7/ (2V20)) (63)

By (53) and (52), we have
wheref andu are defined in (63). Un TonZn + Un Up,

Proof. SincePr(z € B) = Pr(z*® € &), it follows Cn = Fom Fom =Zint T
from (64) that ]
Sincez%(v,) = | S8], by (69),

Pr(z € B) < Pr(z*® € F). 66
r(Zz € B) < Pr(z® e F) (66) Pr(5, € Go)
In the following, we will show — Py (Z n On o 7 —1/2, 1, + 1/2])
OB S F S H i Zl + 1)?11) (67) = Pr(’D" € [(Zﬂ - ’én - 1/2)fnn7 (ﬂn - én + 1/2)7:71"])

§¢U((ﬁn - Zn + 1)777171)7

where ¢, (-) is defined in (18). Then combining (66).where the inequality follows from (68).
(67) and the fact thaPr(z = @) = Pr(2® = 2) =  suppose for somé> 1, we have
[Ti-, ¢o(7ii) (see (17) and (18)), we can conclude that
(65) holds from (55).

.. D) < ip — 0, Frge ).
To show (67), instead of analyzing the probability of Pr(vin € Gi) < H 9o (T = by + 1)Tin) (71)

z% on its left-hand side, we will analyze an equivalent h=
probability of o as we know its distribution. Now we want to prove
In our proof, we need to use the basic result: given n
v~ N(0,0%) andn > 0, for any( € R, Pr(vi—1m € Gio1) < H bo (g — O, + D)7z). (72)
k=i—1

Pr(v e [¢,(+n]) < Pr(vel-n/2,1n/2]) = ¢(n). (68 N ,
r(v € 6, ¢+) t(v € [=n/2,m/2]) = 6o (n). (68) We partition the setg; into a sequence of disjoint

By (18), the equality in (68) obviously holds. In thesubsets. To do that, far=n,n—1,...,1, we first define
following, we show the inequality holds, i.e., equivalgntl the discrete set

show LA
¢tn 12 n/2 2 Hi= {Z 77,1 . 1’71 (25 — Z?B(wj:n))‘wi:n € gi}-
/c exp ( — F)dt < / exp ( — —)dt. J=i

—-n/2 20° ;
Then, for anyt € H;, we define

For any fixedn > 0, the left-hand side of the above
inequality is a function of. Furthermore, it can be easily ~ Git = {wi:n|wi:n € g; such that
verified that the derivative of this function equal to zero if no
¢ = —n/2, and it is positive wheq < —n/2 and negative —Ld (2, - 2 (wjm)) = t}.
when¢ > —n/2. Thus, this function achieves the maximal g=i i Lim1
value when{ = —n/2, so the inequality holds.

From (52) and (53), we observe th&t® is a function
of v. To emphasize this, we write it a8®(v). Whenv
changesz®®(v) may change too. In the following analysis, Pr(v:., € Gi) = Z Pr(0im € Git) (73)
we assume that is fixed andv satisfies the model (52). (eH,

It is easy to verify thatl;cy,G;+ = G; andG; 1, NG, +, =
@ for t1,t; € H; andty # to. Therefore,
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and Here we make a comment on the upper bound in (65).
~ The derivation of (65) was based on the two inequalities
Pr(vi-1:n € Gi-1) . (66) and (67). The inequality (66) was established based
=Pr(Vin € Gi, 27°1(Vi—1:m) € [lim1,Ui—1]) on the fact that€ C F in (64). If the absolute values of
_ Z Pr(in € Gty 221 (Bio1in) € [lio, Gi1]) the entries of the unimodular matri¥ ' are big, then
hrrl it is likely that F is much bigger thar€ althoughF is
B the smallest box containing, making the inequality (66)
- Z Pr(vin € Git) loose. Otherwise it will be tight; in particular, whefi =
e I, then& = F and the inequality (66) becomes an equality.

X Pr (221 (0i-1:n) € [lim1,@i—1]|0iin € Giit) . (74) |n establishing the inequality (67) we used the inequality

Now we derive a bound on the second probability o§8) (see (75)), which is simple but may not be tight if

each term on the right-hand side of (74). By (53) al
(52), we have

is not close to—n/2. Thus the inequality (67) may not
e tight. Overall, the upper bound in (65) may not be
tight sometimes, but it is always tighter than the upper

oo _TimLiz1Zio1 N dimi Tie1,§ (25 — 23°(0:n)) bound given by (62). The following example shows that
L E Fii1i1 the former can be significantly tighter than the latter and
i1 ' can be a sharp bound.

Example 3: We use exactly the same data generated in

Tio1.4—
et - Example 2 to compute the upper bounds in (62) and (65),
. , Vi—1 p p pp
=Zi1+t + o which are denoted by, and pep2, respectively. The
it results forn = 5 : 5 : 40 with o = 0.1 are given in Table
where . XIl. To see how tight they are, the values 6% given
= Z Ti—1,5 (2 — 2%(®;m)) in Table 1X are displayed here again. Recéll is the
i 7Ty AR experimental probability corresponding to the theorética
' probability Pr(z # x|z € B) in (62) and (65).
If ©ir, € Gig, t' € Hi. SinCe2L® (V5—1:n) = [ 2], From Table XI, we can see the upper boung; is
c i obviously tighter than the upper bound,; and picps is
Pr (2221 (0i-1:n) € [liv1, Uia][Din € Git) close toP,. Whenn = 10, P, > jies2, this is because there
_ (ZZ L+ Vi1 €01 —1/2,u_1 + 1/2]) are some o_leviations between the experimental values and
Ti-1,i-1 the theoretical values. The valuesaf,; are actually not
= Pr(vi—1 € [(lic1 — Zi1 —t' — 1/2)7i1i1, exactly the same for different, but they are very close.
(i1 — Zim1 — ' +1/2)Fi—1,-1]) This is also true fofeps.
< G (U1 — lima + D) Tim1,i-1) (75) TABLE XI
P. AND BOUNDS VERSUSn = 5:5:40WITHo = 0.1
where the inequality follows from (68). Thus, from (74) = 2 o e
it follows that 5 || 0.9356 | 0.9840 | 0.9364
10 || 0.9396 | 0.9840 | 0.9364
Pr(9;_1.n € Gi_1) 15 || 0.9336 | 0.9840 | 0.9364
B _ 20 || 0.9348 | 0.9840 | 0.9364
< Z Pr(vin € Git)do (Wi—1 — li1 + 1)7i1,i-1) 25 || 0.9325 | 0.9840 | 0.9364
feH, 30 || 0.9312 | 0.9840 | 0.9364
_ _ = _ 35 || 0.9304 | 0.9840 | 0.9364
=Pr(vin € Gi)bo (W1 — bim1 + 1)Ti-1,i-1) 40 || 0.9252 | 0.9840 | 0.9364

where the equality is due to (73). Then the inequality (72)
follows by using the induction hypothesis (71). Therefore,

the inequality (70), or the equivalent inequality (67),dw®l VI. SUMMARY AND FUTURE WORK -
for any fixed 2. We have presented formulas for the success probability

Since (67) holds for any fixed, it is easy to argue that P’** of the box-constrained Babai estimator and the success
it holds no matter what distribution of is over the box Probability P°* of the ordinary Babai estimator for the
F, so the theorem is proved] linear model where the true integer parameter vegtis

B uniformly distributed over the constraint box and the noise

By Theorem 6, if [T, % ~ 1, then vector follows a normal distribution. The propertiesi®
Pr(z # x|z € B) = 0, i.e., the conjecture holds.and P°® and the relationship between them were given.
Again, the condition will be satisfied when the noise The effects of the column permutations drf® by
standard deviations is sufficiently small. Simulations the LLL-P, SQRD and V-BLAST column permutation
in [32] showed that for practical MIMO systems ofterstrategies have been investigated. When the noise is rel-
Pr(z # x|z € B) = 0. atively small, we showed that LLL-P always increases
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PP® and argued why both SQRD and V-BLAST usually[g]
increaseP®®; and when the noise is relatively large, LLL-P
always decreaseB® and argued why both SQRD and V- [
BLAST usually decreasé#®®. The latter contradicts with
what we commonly believed. And it suggests that we
should check the conditions given in the paper befof)
we apply these strategies. We also provided a column
permutation invariant bound of®®. This bound helped

us to understand the effects of these column permutatidfl
strategies or”®®. Our theoretical findings were supported
by numerical test results. [12]

We have given an example to show that the conjecture
proposed in [24] does not always hold and imposed a
condition under which the conjecture holds.

LLL-P has better theory than V-BLAST and SQRD in13]
terms of their effects ornP®®. But our numerical exper-
iments indicated often V-BLAST is more effective thar4
LLL-P and SQRD. Developing a more effective column
permutation strategy with solid theory will be investigate
in the future. These three permutation column permutati
strategies use only the information &. The effects of
the column permutation strategies which use all available
information of the model such as those proposed in [1é},6
[6] and [16] need to be investigated.

Recently the success probability of the BILS estimatdt?]
has been given in [38]. We intend to study the relationship
between it andP®*. 18]
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