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Abstract—This paper is about deriving lower bounds on the
error exponents for the two-user interference channel under
the random coding regime for several ensembles. Specifically,
we first analyze the standard random coding ensemble, where
the codebooks are comprised of independently and identically
distributed (i.i.d.) codewords. For this ensemble, we focus on
optimum decoding, which is in contrast to other, suboptimal
decoding rules that have been used in the literature (e.g., joint
typicality decoding, treating interference as noise, etc.). The
fact that the interfering signal is a codeword, rather than an
i.i.d. noise process, complicates the application of conventional
techniques of performance analysis of the optimum decoder.
Also, unfortunately, these conventional techniques result in loose
bounds. Using analytical tools rooted in statistical physics, as well
as advanced union bounds, we derive single-letter formulas for
the random coding error exponents. We compare our results with
the best known lower bound on the error exponent, and show
that our exponents can be strictly better. Then, in the second part
of this paper, we consider more complicated coding ensembles,
and find a lower bound on the error exponent associated with
the celebrated Han-Kobayashi (HK) random coding ensemble,
which is based on superposition coding.

Index Terms—Random coding, error exponent, interference
channels, superposition coding, Han-Kobayashi scheme, statisti-
cal physics, optimal decoding, multiuser communication.

I. INTRODUCTION

THE two-user interference channel (IFC) models a general

scenario of communication between two transmitters and

two receivers (with no cooperation at either side), where each

receiver decodes its intended message from an observed signal,

which is interfered by the other user, and corrupted by channel

noise. The information-theoretic analysis of this model has

begun over more than four decades ago and has recently

witnessed a resurgence of interest. Most of the previous

work on multiuser communication, and specifically on the

IFC, has focused on obtaining inner and outer bounds to

the capacity region (see, for example, [1, Ch. II.7]). In a

nutshell, the study of this kind of channel started in [2] and

continued in [3], where simple inner and outer bounds to

the capacity region were given. Then, in [4], by using the

well-known superposition coding technique, the inner bound

of [3] was strictly improved. In [5], various inner and outer

bounds were obtained by transforming the IFC model into
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some multiple-access or broadcast channel. Unfortunately, the

capacity region for the general interference channel is still

unknown, although it has been solved for some special cases

[6, 7]. The best known inner bound is the Han-Kobayashi (HK)

region, established in [8], and which will also be considered

in this paper.

To our knowledge, [9, 10] are the only previous works

which treat the error exponents for the IFC under optimal

decoding. Specifically, [9] derives lower bounds on error

exponents of random codebooks comprised of i.i.d. codewords

uniformly distributed over a given type class, under maximum

likelihood (ML) decoding at each user, that is, optimal decod-

ing. Contrary to the error exponent analysis of other multiuser

communication systems, such as the multiple access channel

[11], the difficulty in analyzing the error probability of the

optimal decoder for the IFC is due to statistical dependencies

induced by the interfering signal. Indeed, for the IFC, the

marginal channel determining each receiver’s ML decoding

rule is induced also by the codebook of the interfering user.

This extremely complicates the analysis, mostly because the

interfering signal is a codeword and not an i.i.d. process.

Another important observation, which was noticed in [9], is

that the usual bounding techniques (e.g., Gallager’s bounding

technique) on the error probability fail to give tight results.

To alleviate this problem, the authors of [9] combined some

of the ideas from Gallager’s bounding technique [12] to get

an upper bound on the average probability of decoding error

under ML decoding, the method of types [13], and used the

method of type class enumerators, in the spirit of [14], which

allows to avoid the use of Jensen’s inequality in some steps.

The main purpose of this paper is to extend the study of

achievability schemes to the more refined analysis of error

exponents achieved by the two users, similarly as in [9].

Specifically, we derive single-letter expressions for the error

exponents associated with the average error probability, for

the finite-alphabet two-user IFC, under several random coding

ensembles. The main contributions of this paper are as follows:

• Similarly as in recent works (see, e.g., [11, 15-18] and

references therein) on the analysis of error exponents, we

derive single-letter lower bounds for the random coding error

exponents. For the standard random coding ensemble, con-

sidered in Subsection III-B, we analyze the optimal decoder

for each receiver, which is interested solely in its intended

message. This is in contrast to usual decoding techniques
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analyzed for the IFC, in which each receiver decodes, in

addition to its intended message, also part of (or all) the

interfering codeword (that is, the other user’s message), or

other conventional achievability arguments [1, Ch. II.7], which

are based on joint-typicality decoding, with restrictions on the

decoder (such as, “treat interference as noise” or to “decode

the interference”). This enables us to understand whether there

is any significant degradation in performance due to the sub-

optimality of the decoder. Also, since [9] analyzed the optimal

decoder as well, we compare our formulas with those of [9],

and show that our error exponent can be strictly better, which

implies that the bounding technique in [9] is not tight. It is

worthwhile to mention that the analytical formulas of our error

exponents are simpler than the lower bound of [9].

• As was mentioned earlier, in [9] only random codebooks

comprised of i.i.d. codewords (uniformly distributed over a

type class) were considered. These ensembles are much sim-

pler than the superposition codebooks of [8]. Unfortunately,

it is very tedious to analyze superposition codebooks using

the methods of [9]. In this paper, however, the new tools

that we have derived enable us to analyze more involved

random coding ensembles. Indeed, we can consider the coding

ensemble used in the HK achievability scheme [8] and derive

the respective error exponents. We also discuss an ensemble

of hierarchical/tree codes [19].

• The analysis of the error exponents, carried out in this paper,

turns out to be much more difficult than in previous works

on point-to-point and multiuser communication problems, see,

e.g., [11, 15-18]. Specifically, we encounter two main diffi-

culties in our analysis: First, typically, when analyzing the

probability of error, the first step is to apply the union bound.

Usually, for point-to-point systems, under the random coding

regime, the average error probability can be written as a

union of pairwise independent error events. Accordingly, in

this case, it is well known that the truncated union bound is

exponentially tight [20, Lemma A.2]. This is no longer the

case, however, when considering multiuser systems, and in

particular, the IFC. For the IFC, the events comprising the

union are strongly dependent, especially due to the fact that we

are considering the optimal decoder. To alleviate this difficulty,

following the ideas of [11], we derived new upper bounds on

the probability of a union of events, which take into account

the dependencies among the events. The second difficulty that

we have encountered in our analysis is that in contrast to

previous works, applying the type class enumerator method

[14] is not simple, due to the reason mentioned above. Using

some methods from large deviations theory, we were able to

tackle this difficulty.

• Recently, in [21, 22], the authors independently suggested

lower bounds on the error exponents of both standard and cog-

nitive multiple-access channels (MACs), assuming suboptimal

successive decoding scheme, and using the standard random

coding ensemble (considered in Subsection III-B). Although

the motivation in [21] is different, the codebook construction

and the decoding rule are the same as in the first part of

this paper, and thus, essentially, their results apply also for

the IFC. It is important to emphasize that while we believe

that our error exponent analysis is somewhat simpler, at least

conceptually, there is strong resemblance between our analysis

and [21], as they both based on type enumeration techniques.

Note, however, that while in [21] the standard union bound

was used, here, the new upper bounds mentioned above,

provide some potential gain over [21], even for the ordinary

ensemble. Also, as was mentioned above, we consider also

the more complicated ensemble pertaining to the HK scheme.

The derivation of the lower bound on the error exponent of this

ensemble is built upon the derivation of the lower bound on the

error exponent of the standard random coding ensemble, and

thus it makes useful and convenient to start with the analysis

of the latter ensemble. We emphasize that the extension of [21]

to the HK ensemble is non-trivial. Finally, we mention that the

focus in [21] was on achievable rate region, rather than error

exponents, and thus no comparison to [9] was provided.

• We believe that by using the techniques and tools derived

in this paper, other multiuser systems, such as the IFC with

mismatched decoding, the MAC [11], the broadcast channel,

the relay channel, etc., and accordingly, other coding schemes,

such as binning [15], and hierarchical codes [19], can be

analyzed.

The paper is organized as follows. In Section II, we establish

notation conventions. In Section III, we formalize the problem

and assert the main theorems. Specifically, in Subsections

III-B and III-C, we give the resulting error exponents under

the standard random coding ensemble and the HK coding

ensemble, respectively. Finally, Section IV is devoted to the

proofs of our main results.

II. NOTATION CONVENTIONS

Throughout this paper, scalar random variables (RVs) will

be denoted by capital letters, their sample values will be

denoted by the respective lower case letters, and their alphabets

will be denoted by the respective calligraphic letters, e.g. X , x,

and X , respectively. A similar convention will apply to random

vectors of dimension n and their sample values, which will be

denoted with the same symbols in the boldface font. We also

use the notation Xj
i (j > i) to designate the sequence of RVs

(Xi, Xi+1, . . . , Xj). The set of all n-vectors with components

taking values in a certain finite alphabet, will be denoted by the

same alphabet superscripted by n, e.g., Xn. Generic channels

will be usually denoted by the letters P , Q, or W . We shall

mainly consider joint distributions of two RVs (X,Y ) over

the Cartesian product of two finite alphabets X and Y . For

brevity, we will denote any joint distribution, e.g. QXY , simply

by Q, the marginals will be denoted by QX and QY , and

the conditional distributions will be denoted by QX|Y and

QY |X . The joint distribution induced by QX and QY |X will

be denoted by QX × QY |X , and a similar notation will be

used when the roles of X and Y are switched.

The expectation operator will be denoted by E {·}, and when

we wish to make the dependence on the underlying distribution

Q clear, we denote it by EQ {·}. Information measures induced

by the generic joint distribution QXY , will be subscripted

by Q, for example, IQ(X ;Y ) will denote the corresponding

mutual information, etc. The divergence (or, Kullback-Liebler

distance) between two probability measures Q and P will be
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denoted by D(Q||P ). The weighted divergence between two

channels, QY |X and PY |X , with weight PX , is defined as

D(QY |X ||PY |X |PX) ,
∑

x∈X

PX(x)

∑

y∈Y

QY |X(y|x) log
QY |X(y|x)

PY |X(y|x)
. (1)

For a given vector x, let Q̂x denote the empirical distribution,

that is, the vector {Q̂x(x), x ∈ X}, where Q̂x(x) is the

relative frequency of the letter x in the vector x. Let T (PX)
denote the type class associated with PX , that is, the set of

all sequences x for which Q̂x = PX . Similarly, for a pair of

vectors (x,y), the empirical joint distribution will be denoted

by Q̂xy , or simply by Q̂, for short. All previously defined

notation rules for regular distributions will also be used for

empirical distributions.

The cardinality of a finite set A will be denoted by |A|,
its complement will be denoted by Ac. The probability of an

event E will be denoted by Pr {E}. The indicator function of

an event E will be denoted by I {E}. For two sequences of

positive numbers, {an} and {bn}, the notation an
·
= bn means

that {an} and {bn} are of the same exponential order, i.e.,

n−1 log an/bn → 0 as n → ∞, where logarithms are defined

with respect to (w.r.t.) the natural basis, that is, log (·) = ln (·).
Finally, for a real number x, we denote [x]+ , max {0, x}.

III. PROBLEM FORMULATION AND MAIN RESULTS

We divide this section into three subsections. In the first, we

present the model and formulate the problem. In the second,

we present a lower bound on the IFC error exponent, assuming

a simple random coding ensemble where random codebooks

comprised of i.i.d. codewords are uniformly distributed over a

type class. It is well-known [10] that this coding scheme can

be improved by using superposition coding and introducing the

notion of “private” and “common” messages (to be defined in

the sequel). Accordingly, in the third subsection, we consider

the HK coding scheme [8], and derive lower bounds on the

error exponents. Finally, we discuss other ensembles that can

be analyzed using the same methods.

A. The IFC Model

Consider a two-user interference channel of two senders,

two receivers, and a discrete memoryless channel (DMC),

defined by a set of single-letter transition probabili-

ties, WY1Y2|X1X2
(y1, y2|x1, x2), with finite input alphabets,

X1,X2, and finite output alphabets, Y1,Y2. Here, each sender,

k ∈ {1, 2}, communicates an independent message mk ∈
{1, 2, . . . ,Mk , 2nRk} at rate Rk, and each receiver,

l ∈ {1, 2}, decodes its respective message. Specifically, a

(2nR1 , 2nR2 , n) code Cn consists of:

• Two message sets M1 ,
{

0, . . . , 2nR1 − 1
}

and M2 ,
{

0, . . . , 2nR2 − 1
}

for the first and second users, respectively.

• Two encoders, where for each k ∈ {1, 2}, the k-th encoder

assigns a codeword xk,i to each message i ∈ Mk.

• Two decoders, where each decoder l ∈ {1, 2} assigns an

estimate m̂l to ml.

We assume that the message pair (m1,m2) is uniformly

distributed over M1×M2. It is clear that the optimal decoder

of the first user, for this problem, is given by

m̂1 = arg max
i∈M1

P (y1|x1,i) (2)

= arg max
i∈M1

1

M2

M2−1
∑

j=1

P (y1|x1,i,x2,j) (3)

where P (y1|x1,i,x2,j) is the marginal channel defined as

P (y1|x1,i,x2,j) ,

n
∏

k=1

WY1|X1X2
(y1k|x1,i,k, x2,j,k), (4)

and

WY1|X1X2
(y1,k|x1,i,k, x2,j,k)

,
∑

y2,k∈Y2

WY1Y2|X1X2
(y1,k, y2,k|x1,i,k, x2,j,k). (5)

The optimal decoder of the second user is defined similarly.

Since there is no cooperation between the two receivers, the

error probabilities for the code Cn, are defined as

Pe,i (Cn) , 2−n(R1+R2)

·
∑

m̃1,m̃2

Pr {m̂i (Y
n
i ) 6= m̃i|m1 = m̃1,m2 = m̃2} ,

(6)

for i = 1, 2.

B. The Ordinary Random Coding Ensemble

In this subsection, we consider the ordinary random coding

ensemble: For each k ∈ {1, 2}, we select independently Mk

codewords {xk,i}, for i ∈ Mk, under the uniform distribution

across the type class T (PXk
), for a given distribution PXk

on Xk. Our goal is to assess the exponential rate of P̄
(n)
e,1 ,

E {Pe,1 (Cn)}, where the average is over the code ensemble,

that is,

E∗
1 (R1, R2) , lim inf

n→∞
−
1

n
log P̄

(n)
e,1 , (7)

and similarly for the second user. Before stating the main

result, we define some quantities. Given a joint distribution

QX1X2Y1 over X1 ×X2 × Y1, consider the definitions in (8),

shown at the top of the next page. We devote Appendix C for

a discussion on aspects of the computation of (8j). We have

the following result.

Theorem 1 Let R1 and R2 be given, and let E∗(R1, R2) be

defined as in (7). Consider the ensemble of fixed composition

codes of types PX1 and PX2 , for the first and second users,

respectively. For a discrete memoryless two-user IFC, we have

E∗
1 (R1, R2) ≥ Ẽ1(R1, R2), (9)

for any R1, R2 ≥ 0.

Several remarks on Theorem 1 are in order.

• Due to symmetry, the error exponent for the second user,

that is, Ẽ2(R1, R2) is simply obtained from Theorem 1 by
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f (QX1X2Y1) , EQ

[

logWY1|X1X2
(Y1|X1, X2)

]

, (8a)

t0(QX1Y1) , R2 + max
Q̂: Q̂X2=PX2 , Q̂X1Y1=QX1Y1

I
Q̂
(X2;X1,Y1)≤R2

[

f(Q̂)− IQ̂(X2;X1, Y1)
]

, (8b)

E1(Q̃X1X2Y1 , QX1X2Y1) , min
Q̂: Q̂X2=PX2 , Q̂X1Y1=Q̃X1Y1

Q̂∈L(Q̃X1X2Y1 ,QX1X2Y1)

[

IQ̂(X2;X1, Y1)−R2

]

+
, (8c)

E2(Q̃X1X2Y1 , QX1X2Y1) , min
Q̂: Q̂X2=PX2 , Q̂X1Y1=Q̃X1Y1

Q̂∈L̂(Q̃X1X2Y1 ,QX1X2Y1)

[

IQ̂(X2;Y1)−R2

]

+
, (8d)

L(Q̃X1X2Y1 , QX1X2Y1) ,

{

Q̂ : max [t0(QX1X2Y1), f(QX1X2Y1)]

≤ max

[

f(Q̃X1X2Y1), f(Q̂) +
[

R2 − IQ̂(X2;X1, Y1)
]

+

]}

, (8e)

L̂(Q̃X1X2Y1 , QX1X2Y1) ,

{

Q̂ : max [t0(QX1X2Y1), f(QX1X2Y1)]

≤ max

[

f(Q̃X1X2Y1), f(Q̂) +
[

R2 − IQ̂(X2;Y1)
]

+

]}

, (8f)

Ê1(QX1X2Y1 , R2) , min
Q̃: Q̃X1=PX1 , Q̃X2Y1=QX2Y1

[

IQ̃(X1;X2, Y1) + E1(Q̃X1X2Y1 , QX1X2Y1)
]

, (8g)

Ê2(QX1X2Y1 , R2) , min
Q̃: Q̃X1=PX1 , Q̃X2Y1=QX2Y1

E2(Q̃X1X2Y1 , QX1X2Y1), (8h)

E(QX1X2Y1 , R1, R2) , max

{

[

Ê1(QX1X2Y1 , R2)−R1

]

+
, Ê2(QX1X2Y1 , R2)

}

, (8i)

Ẽ1(R1, R2) , min
QY1|X1X2

:
QX1=PX1 ,QX2=PX2

[

D(QY1|X1X2
||WY1|X1X2

|PX1 × PX2) + E(QX1X2Y1 , R1, R2)
]

. (8j)

swapping the roles of X1, Y1, and R1, with those of X2, Y2,

and R2, respectively.

• An immediate byproduct of Theorem 1 is finding the set of

rates (R1, R2) for which Ẽ1(R1, R2) > 0, namely, the rates

for which the probability of error vanishes exponentially as

n → ∞. We show in Appendix D, that this set is given by:

Rordinary,1 = {R1 < I (X1;Y1)}∪

{{R1 +R2 < I (X1, X2;Y1)} ∩ {R1 < I (X1;Y1|X2)}}
(10)

evaluated with PX1X2Y1 = PX1 × PX2 × WY1|X1X2
. Note

that this region can be obtained also by using standard

typicality-based achievability arguments (see, e.g., [23]).

Fig. 1 demonstrates a qualitative description of this re-

gion. The interpretation is as follows: The corner point

(I (X1;Y1|X2) , I (X2;Y1)) is achieved by first decoding the

interference (the second user), canceling it, and then decoding

the first user. The sum-rate constraint can be achieved by

joint decoding the two users (similarly to MAC), and thus,

obviously, also by our optimal decoder. Finally, the region

R1 < I (X1;Y1) and R2 ≥ I (X2;Y1|X1) means that we

decode the first user while treating the interference as noise.

Evidently, from the perspective of the first decoder, which is

interested only in the message transmitted by the first sender,

the second sender can use any rate, and thus there is no bound

on R2 whenever R1 < I (X1;Y1). Now, it was shown in [10]

R1

R2

I(X1;Y1|X2)I(X1;Y1)

I(X2;Y1|X1)

I(X2;Y1)

Rordinary,1

Fig. 1. Rate region Rordinary,1 for which Ẽ1(R1, R2) > 0.

that the error exponent achievable for the first user under the

ordinary random coding regime is zero outside the closure

of Rordinary,1. Whence, this fact and the above conclusion,

characterize the rate region where the attainable exponent with

ordinary random coding is positive. Notice that Rordinary,1 is

well-known to be contained in the HK region [10, 23].

• Existence of a single code: our result holds true on the

average, where the averaging is done over the random choice

of codebooks. It can be shown (see, for example, [24, p. 2924])

that there exists deterministic sequence of fixed composition

codebooks of increasing block length n for which the same
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asymptotic error performance can be achieved for both users

simultaneously.

• About the proof: it is instructive to discuss (in some more

detail than earlier) one of the main difficulties in proving

Theorem 1, which is customary to multiuser systems, such

as the IFC. Without loss of generality, we assume throughout,

that the transmitted codewords are x1,0 and x2,0. Accordingly,

the average probability of error associated with the decoder

(3) is given by (11), shown at the top of the next page, where

F0 , (X1,0,X2,0,Y 1). In contrast to previous works, apply-

ing the type class enumerator1 method [14], is not a simple

task. Since we are interested in the optimal decoder, each

event of the union in (11), depends on the whole codebook

of the second user. One may speculate that this problem can

be tackled by conditioning on the codebook of the second

user, and then (12). However, the cost of this conditioning is a

very complicated (if not intractable) large deviations analysis

of some quantities. The consequence of this situation is that

in order to analyze the probability of error, it is required to

analyze the joint distribution of type class enumerators, and

not just rely on their marginal distributions, as is usually done,

e.g., [15-18].

Another difficulty is handling the union in (11). By the

union bound and Shulman’s inequality [20, Lemma A.2], we

know that for a sequence of pairwise independent events,

{Ai}
N
i=1, the following holds

1

2
min

{

1,

N
∑

i=1

Pr {Ai}

}

≤ Pr

{

N
⋃

i=1

Ai

}

≤ min

{

1,

N
∑

i=1

Pr {Ai}

}

, (12)

which is a useful result when assessing the exponential be-

havior of such probabilities. Equation (12) is one of the

building blocks of tight exponential analysis of previously

considered point-to-point systems (see, e.g., [15-18], and many

references therein). However, in our case the various events are

not pairwise independent, and therefore this result cannot be

applied. To alleviate this problem, following the techniques of

[11], we derive new upper bounds on the probability of a union

of events, which takes into account such dependencies among

the events.

• As was mentioned in the Introduction, in [21], lower

bounds on the error exponents of both standard and cognitive

multiple-access channels (MACs) were suggested. Although

the motivation in [21] is different, their results apply also

for the IFC. Now, while in [21] the standard truncated union

bound was used, here our new upper bound on the probability

of a union of events, provides some potential gain over

[21]. Specifically, the lower bound in [21] is the same as

1For a given yn ∈ Yn, and a given joint probability distribution QXY

on X ×Y , the type class enumerator, N(QXY ), is the number of codewords
{

xn
i

}

in Cn whose conditional empirical joint distribution with yn is QXY ,

namely, N(QXY ) =
∣

∣

∣
xn ∈ Cn : Q̂xnyn = QXY

∣

∣

∣
, where Q̂xnyn is the

empirical joint distribution of xn and yn, and |A| designates the cardinality
of a finite set A. Type class enumeration method refers to the process of
converting a sum of exponentially many terms (usually likelihood functions)
into polynomial number of type class enumerators, which are easier to analyze.

(8j) but without the Ê2(Q,R2) term, i.e., it is given by

minQ

{

D(Q||W )+
[

Ê1(Q,R2)−R1

]

+

}

, and thus, in general,

our result may be tighter. It should be stressed, however, that

we have not identified specific examples where the new term,

namely, Ê2(Q,R2), dominated the maximum in (8i).

• The lower bound in [9] is extremely complicated, and it is

very difficult to compare it analytically to the lower bound in

Theorem 1. Nonetheless, we can still claim (in general) that

our lower bound is at least as good as the lower bound in [9].

Indeed, the first step in the analysis of the error exponent in

both our paper and in [9] is applying the union bound (actually,

here, we employ a tighter union bound). However, it will be

seen that every other passage in our analysis is exponentially

exact, while in [9], some steps are associated with inequalities

that may cause gaps in the exponential scale, and thus in

general, Ẽ(R1, R2) ≥ E[9](R1, R2), for any (R1, R2) ∈ R
2
+,

where E[9](R1, R2) is the lower bound in [9].

• Comparison with [9]: Similarly to [9], we present results for

the following channel: Y1 = X1 ·X2⊕Z and Y2 = X2, where

X1, X2, Y1, Y2 ∈ {0, 1}, Z ∼ Bern(p), “·” is multiplication,

and “⊕” is modulo-2 addition. In the numerical calculations,

we fix p = 0.01. Fig. 2 presents the lower bound on the

error exponent under optimal decoding, derived in this paper,

compared to the lower bound E[9](R1, R2) of [9], as a function

of R1, for different values of PX1 , PX2 , and R2. It can be seen

that our exponents are strictly better than those of [9].

C. The Han-Kobayashi Coding Scheme

Consider the channel model of Subsection III-B. The best

known inner bound on the capacity region is achieved by the

HK coding scheme [8]. The idea of this scheme is to split

the message m1 into “private” and “common” messages, m11

and m12 at rates R11 and R12, respectively, such that R1 =
R11 + R12. Similarly, m2 is split into m21 and m22 at rates

R21 and R22, with R2 = R21 + R22. The intuition behind

this splitting is based on the receiver behavior at low and high

signal-to-noise-ratio (SNR). Specifically, it is well-known [1]

that: (1) when the SNR is low, treating the interference as

noise is an optimal strategy, and (2) when the SNR is high,

decoding and then canceling the interference is the optimal

strategy. Accordingly, the above splitting captures the general

intermediate situation where the first decoder, for example, is

interested only in partial information from the second user, in

addition to its own intended message.

Next, we describe explicitly the coding strategy of [8]. Fix a

distribution PZ11PZ12PZ21PZ22PX1|Z11Z12
PX2|Z21Z22

, where

the latter two conditional distributions represent deterministic

mappings. For each k, k′ ∈ {1, 2}, randomly and conditionally

independently generate a sequence zk,k′ (mk,k′ ) under the

uniform distribution across the type class T (PZkk′ ) for a given

PZk,k′ . To communicate a message pair (m11,m12), sender 1

transmits x1(z11, z12), and analogously for sender 2. All our

results can be extended to the setting in which the codewords

are generated conditionally on a time-sharing sequence q.

However, this leads to more complicated notation. Thus, we

focus primarily on the case without time-sharing.

Let us now describe the operation of each receiver. Receiver

k = 1, 2, recovers its intended message mk and the common
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∑
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M1−1
⋃
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∑
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Fig. 2. Comparison between Ẽ1(R1, R2) and E[9](R1, R2) of [9], as a
function of R1 for two different values of R2 and fixed choices of PX1

and
PX2

.

message from the other sender (although it is not required to).

This scheme is illustrated in Fig. 3. Note that this decoding

operation is the one that was used in [8], but there, the sub-

optimal non-unique simultaneous joint typical decoder [1, Ch.

II.7] was used. Here, by contrast, we use sub-optimal ML

decoding (the sub-optimality is due to the fact that our decoder

recovers also the common message from the other sender).

As will be explained in the sequel, analyzing the optimal ML

decoder is a challenging task, and therefore we will focus on

sub-optimal ML decoding.

We wish to find a lower bound on the error exponent,

achieved by the HK encoding functions, in conjunction with

the above described decoding functions. To this end, note

that by combining the channel and the deterministic map-

pings as indicated by the dashed box in Fig. 3, the chan-

nel (Z11, Z12, Z21, Z22) 7→ (Y1, Y2) is just a four-sender,

two-receiver, DMC interference channel, with virtual inputs.

Note that this formulation induces the Markovian structure

(Z11, Z12, Z21, Z22)−◦ (X1, X2)−◦ (Y1, Y2), where the (vir-

tual) input distributions, i.e., PZk,k′ for k, k′ ∈ {1, 2},

can be optimized. We assume that the message quadruple

(m11,m12,m21,m22) is uniformly distributed over M11 ×
M12 × M21 × M22. Following the above descriptions, our

decoder for this problem is given by

(m̂11, m̂12, m̂21) =

P (Y 2

1
|X2

1
)

X1

X2

M11 7→ Z11

M12 7→ Z12

M21 7→ Z21

M22 7→ Z22

Y1 → (M̂11, M̂12, M̂21)

Y2 → (M̂12, M̂21, M̂22)

Fig. 3. Han-Kobayashi coding scheme.

arg max
(i,j,k)∈M11×M12×M21

P (y1|z11,i, z12,j , z21,k) (13)

= arg max
(i,j,k)∈M11×M12×M21

1

M22

M22−1
∑

l=0

P (y1|z11,i, z12,j , z21,k, z22,l) . (14)

Accordingly, the probability of error for the code Cn and for

the first user, is defined as

Pe,1 (Cn) , Pr {(m̂11, m̂12) 6= (m11,m12)} , (15)

and similarly for the second user. Our goal is to assess the

exponential rate of P̄
(n)
e,1 , E {Pe,1 (Cn)}, where the average

is over the code ensemble, namely,

E∗
HK(R1, R2) , lim inf

n→∞
−
1

n
log P̄

(n)
e,1 , (16)

and similarly for the second user. In order to facilitate the

presentation of the following result, we move the technical

definitions to Appendix A. Our second main result is the

following.

Theorem 2 Let E∗
HK(R1, R2) be defined as in (16). Consider

the HK encoding scheme described above. For a discrete

memoryless two-user IFC, we have:

E∗
HK(R1, R2) ≥ max

(R11,R12,R21,R22):
R11+R12=R1
R21+R22=R2

ẼHK(R11, R12, R21, R22),

(17)

for any R1, R2 ≥ 0, where ẼHK(R11, R12, R21, R22) is given

in (A.30).

Several remarks on Theorem 2 are in order.

• As before, an immediate byproduct of Theorem 2 is

finding the set of rates (R11, R12, R21, R22) for which
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ẼHK(R11, R12, R21, R22) > 0, namely, for which the prob-

ability of error vanishes exponentially as n → ∞. It can be

shown that this set is given by the HK region, that is,

R11 ≤ I(Z1;Y1|Z2, Z3), (18a)

R12 ≤ I(Z2;Y1|Z1, Z3), (18b)

R21 ≤ I(Z3;Y1|Z1, Z2), (18c)

R11 +R12 ≤ I(Z1, Z2;Y1|Z3), (18d)

R11 +R21 ≤ I(Z1, Z3;Y1|Z2), (18e)

R12 +R21 ≤ I(Z2, Z3;Y1|Z1), (18f)

R11 +R12 +R21 ≤ I(Z1, Z2, Z3;Y1), (18g)

evaluated with

PZ4
1Y1

= PZ1PZ2PZ3PZ4PX1|Z1Z2
PX2|Z3Z4

WY1|X1X2

and similarly for the second user, where PX1|Z1Z2
and

PX2|Z3Z4
represent deterministic mappings. As was mentioned

earlier, it is possible to introduce a time-sharing sequence

q, and accordingly, (18) remains almost the same, but with

a time-sharing RV Q (with alphabet size bounded by eight

[8]), appearing at the conditioning of each the above mutual

information terms. Finally, we mention that in [23] it was

shown that by using the optimal ML decoder (given in (20))

instead of the non-unique simultaneous joint typical decoder

[8], we cannot improve the achievable region. This observation

do not for the error exponent.

• It can be shown2 that the error exponent in Theorem 2

is no worse than the error exponent in Theorem 1, namely,

ẼHK(R11, R12, R21, R22) ≥ Ẽ1(R1, R2) for any (R1, R2)
such that R1 = R11+R12 and R2 = R21+R22. Moreover, it is

well-known that upon optimizing the auxiliary RVs, {Zij}, the

HK region in (18) is strictly better than Rordinary,1. Therefore,

this necessarily implies that for a certain region of high rates,

the HK error exponent in Theorem 2 will be positive while

the standard random coding error exponent in Theorem 1 will

be zero. On the other extreme, it is easy to show that for

(R1, R2) = (0, 0) the error exponent in Theorem 2 equals to

the error exponent in Theorem 1, so for small rates there is

no improvement in the error exponents.

• Contrary to the ordinary ensemble, described in Subsection

III-B, the HK ensemble depends on some auxiliary RVs which

should be optimized. For a give pair of rates (R1, R2), our

error exponent formula provides a criterion for the choice of

the optimal auxiliary RVs: maximize the lower bound on the

error exponent in Theorem 2, w.r.t. the auxiliaries, subject to

some relevant constraints. As a matter of fact, for a given pair

of rates (R1, R2), it is very likely that the optimal choice of

these auxiliaries will be different from the optimal choice for

the same pair in the achievable region. Indeed, even in the

single-user case, the capacity achieving distribution is usually

different from the optimal distribution in the error exponent

sense.

2By definition, the ordinary ensemble is a simple instance of the HK
ensemble, and thus the latter is indeed better upon optimization of the auxiliary
RVs {Zij}. To see that the ordinary ensemble is a special case of the HK
ensemble, we take Z11 = X1, Z12 = Z21 = ∅, and Z22 = X2.

• Using the same techniques and tools derived in this pa-

per, we can consider other random coding ensembles. For

example, we can analyze the error exponents resulting from

the hierarchical code ensemble. Specifically, in this ensemble,

the message m1 is split into common and private messages

m11, m12 at rates R11 and R12, respectively, such that

R1 = R11 + R12. Similarly m2 is split into m21, m22 at

rates R21 and R22, respectively, such that R2 = R21 + R22.

Then, we first randomly draw a rate R11 codebook of block

length n according to a given distribution. Then, for each such

codeword, we randomly and conditionally independently gen-

erate a rate R12 codebook of block length n. In other words,

the code has a tree structure with two levels, where the first

serves for “cloud centers”, and the second for the “satellites”.

We do the same for the second user. Under this ensemble,

we can analyze the optimal decoder. Note, however, that this

ensemble is different from the product ensemble considered

in Theorem 2. Indeed, while for the former for each first

stage codeword (cloud center) we independently draw a new

codebook (satellites), for the latter, for each cloud center we

have the same satellite codebook. Loosely speaking, this means

that the product ensemble is “less random”. From the point of

view of achievable region, however, the hierarchical ensemble

is equivalent to the product ensemble used in HK scheme

[1, Ch. II.7]. Nonetheless, the error exponents associated with

these ensembles could be different.

• In Theorem 2 we assumed the sub-optimal decoder given

in (14). Indeed, the optimal decoder for our problem is given

by:

(m̂11, m̂12) = argmax
i,j

P (y1|z11,i, z12,j) (19)

= argmax
i,j

1

M21M22

M21−1
∑

k=0

M22−1
∑

l=0

P (y1|z11,i, z12,j , z21,k, z22,l) . (20)

Unfortunately, it turns out that analyzing the HK scheme (in

conjunction with (20)) is much more difficult, and requires

some more delicate tools from large deviations theory. Specif-

ically, the main difficulty in the derivations, is to analyze the

large deviations behavior of a two-dimensional sum (due to the

double summation in (20)) involving binomial RVs which are

strongly dependent (contrary to the standard one-dimensional

version, see, e.g., [15, p. 6027-6028]). Nonetheless, we note

that for the hierarchical code ensemble described above, the

optimal decoder can be analyzed. Indeed, for this ensemble, it

is clear that the optimal decoder is given by

(m̂11, m̂12) = argmax
i,j

P (y1|x1(i, j)) (21)

= argmax
i,j

1

M21M22

M21−1
∑

k=0

M22−1
∑

l=0

P (y1|x1(i, j),x2(k, l))

(22)

where x1(i, j) , f1(x
′
1(i),x

′′
1(i, j)) and x2(i, j) ,

f2(x
′
2(i),x

′′
2 (i, j)) due to the hierarchical structure. Now,

while here too, we will deal with two-dimensional summation,

the summands will be independent, given the cloud centers

codebook, and the proof can be carried out smoothly.
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IV. PROOFS OF MAIN RESULTS

A. Proof of Theorem 1

Without loss of generality, we assume throughout, that the

transmitted codewords are x1,0 and x2,0, and due to the fact

that we analyze the first decoder, for convenience, we use y

instead of y1. Accordingly, the average probability of error as-

sociated with the optimal decoder (3), is given by (24), shown

at the top of the next page, where F0 , (X1,0,X2,0,Y ). In

the following, we propose new upper bound on the probability

of a union of events, which are suitable for some structured

dependency between the events, as above.

In order to give some motivation for this new bound, we

first rewrite (23) in another (equivalent) form. Specifically, we

express (24) in terms of the joint types of (X1,0,X2,0,Y )
and {(Y ,X1,i,X2,j)}i,j . First, for a given joint distribution

QX1X2Y of (x1,x2,y), let

f (QX1X2Y ) ,
1

n
logP (y|x1,x2) (25)

= EQ

[

logWY |X1X2
(Y |X1X2)

]

. (26)

For a given joint type QX1,0X2,0Y of the random vec-

tors (X1,0,X2,0,Y ), define the set TI

(

QX1,0X2,0Y

)

, given

in (27), shown at the top of the next page. The set

TI(QX1,0X2,0Y ) is the set of all possible types of (X1,i, C2),
where C2 denotes the codebook of the second user, which lead

to a decoding error when (X1,0,X2,0,Y ) ∈ T (QX1,0X2,0Y )
is transmitted. The various marginal constraints in (28) and

(29) arise from the fact that we are assuming constant-

composition random coding and, of course, fixed marginals

due to the given fixed joint distribution QX1,0X2,0Y . Finally,

the constraint

e
nf(Q̃0

X1X2,0Y )
+

M2−1
∑

k=1

[

enf(Q̃
k
X1X2Y ) − enf(Q̂

k
X1X2Y )

]

≥ enf(QX1,0X2,0Y )
(30)

in (27), represents a decoding error event, that is, it holds if

and only if

M2−1
∑

j=0

P (y|x1,i,x2,j) ≥
M2−1
∑

j=0

P (y|x1,0,x2,j) , (31)

or, equivalently,

P (y|x1,i,x2,0) +

M2−1
∑

j=1

[P (y|x1,i,x2,j)− P (y|x1,0,x2,j)]

≥ P (y|x1,0,x2,0) , (32)

for (x1,0,x2,0,y) ∈ T (QX1,0X2,0Y ), (x1,i,x2,0,y) ∈

T (Q̃0
X1X2,0Y

), (x1,i,x2,j ,y) ∈ T (Q̃j
X1X2Y

), and

(x1,0,x2,j,y) ∈ T (Q̂j
X1,0X2Y

), for j = 1, 2, . . . ,M2 − 1.

Now, with these definitions, fixing QX1,0X2,0Y , and letting

(x1,0,x2,0,y) be an arbitrary triplet of sequences such that

(x1,0,x2,0,y) ∈ T (QX1,0X2,0Y ), it follows, by definition,

that the error event

M1−1
⋃

i=1







M2−1
∑

j=0

P (Y |X1,i,X2,j) ≥
M2−1
∑

j=0

P (Y |X1,0,X2,j)







(33)

can be rewritten, in terms of types, as follows

M1−1
⋃

i=1

⋃

{

Q̃j

X1X2Y
,Q̂j

X1X2Y

}

j
∈TI (QX1,0X2,0Y )























(X1,i,x2,0,y) ∈ T (Q̃0
X1X2,0Y

),
{

(X1,i,X2,j ,y) ∈ T (Q̃j
X1X2Y

)
}M2−1

j=1
,

{

(x1,0,X2,j,y) ∈ T (Q̂j
X1,0X2Y

)
}M2−1

j=1























. (34)

We wish to analyze the probability of the event in (34),

conditioned on F0. Note that the inner union in (34) is over

vectors of types (an exponential number of them). Finally, for

the sake of convenience, we simplify the notations of (34),

and write it equivalently as

M1−1
⋃

i=1

⋃

l











X1,i ∈ Al,0,

(X1,i,X2,j) ∈ Al,j , for j = 1, . . . ,M2 − 1,

X2,j ∈ Ãl,j , for j = 1, . . . ,M2 − 1











(35)

where, again, the index “l” in the inner union runs over the

combinations of types (namely, l = {Q̃j
X1X2Y

, Q̂j
X1X2Y

}j)

that belong to TI(QX1,0X2,0Y ), and the various sets

{Al,j , Ãl,j}l,j correspond to the typical sets in (34) (recall

that (x1,0,x2,0,y) are given at this stage). Next, following

the ideas of [11], we provide a new upper bound on a generic

probability which has the form of (35). The proof of this

lemma is relegated to Appendix B.

Lemma 1 Let {V1 (i)}
L1

i=1 , V2, V3, . . . , VK be independent se-

quences of independently and identically distributed (i.i.d.)

RVs on the alphabets V1 × V2 × . . .× VK , respectively, with

V1 (i) ∼ PV1 , V2 ∼ PV2 , . . . , VK ∼ PVK
. Fix a sequence of

sets {Ai,1}
N
i=1 , {Ai,2}

N
i=1 , . . . , {Ai,K−1}

N
i=1, where Ai,j ⊆

V1×Vj+1, for 1 ≤ j ≤ K−1 and for all 1 ≤ i ≤ N . Also, fix a

set {Ai,0}
N
i=1 where Ai,0 ⊆ V1 for all 1 ≤ i ≤ N , and another

sequence of sets {Gi,2}
N
i=1 , {Gi,3}

N
i=1 , . . . , {Gi,K}Ni=1, where

Gi,j ⊆ Vj , for 2 ≤ j ≤ K and for all 1 ≤ i ≤ N . Define

Bm,1,







v1 : v1 ∈ Am,0,

K−1
⋂

j=1

(v1, vj+1) ∈ Am,j ,

K
⋂

j=2

vj ∈ Gm,j for some {vj}
K
j=2







, (36)

and

Bm,2,







{vj}
K
j=2 : v1 ∈ Am,0,

K−1
⋂

j=1

(v1, vj+1) ∈ Am,j ,

K
⋂

j=2

vj ∈ Gm,j for some v1







, (37)

for m = 1, 2, . . . , N . Then, a general upper bound is given in

(38), shown at the top of the next page, with (V1, . . . , VK) ∼
PV1 · · · × PVK

.
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⋃
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M2−1
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j=0

P (Y |X1,i,X2,j) ≥
M2−1
∑

j=0

P (Y |X1,0,X2,j)
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= E







Pr





M1−1
⋃

i=1







M2−1
∑

j=0

P (Y |X1,i,X2,j) ≥
M2−1
∑

j=0

P (Y |X1,0,X2,j)







∣

∣

∣

∣

∣

∣

F0











(24)

TI

(

QX1,0X2,0Y

)

,

{

Q̃0
X1X2,0Y ∈ S0,

(

{

Q̃k
X1X2Y

}M2−1

k=1
,
{

Q̂k
X1,0X2Y

}M2−1

k=1

)

∈ S1 :

e
nf(Q̃0

X1X2,0Y )
+

M2−1
∑

k=1

[

enf(Q̃
k
X1X2Y ) − enf(Q̂

k
X1X2Y )

]

≥ enf(QX1,0X2,0Y )

}

, (27)

S0(QX1,0X2,0Y ) ,
{

Q̃0
X1X2,0Y : Q̃0

X1
= PX1 , Q̃

0
X2

= PX2 , Q̃
0
X2,0Y = QX2,0Y

}

, (28)

S1(QX1,0X2,0Y ) ,

{

{

Q̃k
X1X2Y

}M2−1

k=1
,
{

Q̂k
X1,0X2Y

}M2−1

k=1
: Q̃k

X1
= PX1 , Q̃

k
X2

= PX2 , Q̃
k
Y = QY ,

Q̂k
X1,0

= PX1 , Q̂
k
X2

= PX2 , Q̂
k
X1,0Y = QX1,0Y , ∀1 ≤ k ≤ M2 − 1

Q̃k
X2Y = Q̂k

X2Y , Q̃
k
X1Y = Q̃m

X1Y , ∀k,m

}

. (29)

Pr

{

⋃

i

{

N
⋃

m=1

{

V1(i) ∈ Am,0,
K−1
⋂

k=1

(V1(i), Vk+1) ∈ Am,k,
K
⋂

k=2

Vk ∈ Gm,k

}}}

≤ min

{

1, L1Pr

{

N
⋃

m=1

{V1 ∈ Bm,1}

}

,Pr

{

N
⋃

m=1

{

{Vj}
K
k=2 ∈ Bm,2

}

}

,

L1Pr

{

N
⋃

m=1

{

V1 ∈ Am,0,

K−1
⋂

k=1

(V1, Vk+1) ∈ Am,k,

K
⋂

k=2

Vk ∈ Gm,k

}}}

(38)

Next, we apply Lemma 1 to the problem at hand. To this

end, we choose the following parameters in accordance to the

notations used in Lemma 1. Recall that we deal with

M1−1
⋃

i=1

⋃

l











X1,i ∈ Al,0,

(X1,i,X2,j) ∈ Al,j, for j = 1, . . . ,M2 − 1,

X2,j ∈ Ãl,j, for j = 1, . . . ,M2 − 1











(39)

and in Lemma 1 we have considered:

L1
⋃

i=1

N
⋃

m=1











V1(i) ∈ Am,0,

(V1(i), Vj+1) ∈ Am,j , for j = 1, . . . ,K − 1

V2 ∈ Gm,2, . . . , VK ∈ Gm,K











.

(40)

Thus, comparing (39) and (40), we readily notice the following

parallels:

• The numbers of events in the unions over i is L1 = M1−1.

Also, we have K = M2 independent random vectors V1 (i) =
X1,i and Vl+1 = X2,l, for 1 ≤ i ≤ M1 − 1 and 1 ≤ l ≤
M2 − 1.

• The union over m corresponds to a union over l, which as

was mentioned before, is actually a union over a vector of

types. Accordingly, we have:

1) Am,i = Al,i, for 0 ≤ i ≤ M2 − 1,

2) Gm,i = Ãl,i−1, for 2 ≤ i ≤ M2.

These sets correspond to each of the typical sets T (Q̃0
X1X2,0Y

),

{T (Q̃k
X1X2Y

)}M2−1
k=1 , and {T (Q̂k

X1,0X2Y
)}M2−1

k=1 .

• According to (36) and (37) we need to define

Bm,1 = B1(Q̃
0
X1X2,0Y

, {Q̃j
X1X2Y

, Q̂j
X1X2Y

}j) and

Bm,2 = B2(Q̃
0
X1X2,0Y

, {Q̃j
X1X2Y

, Q̂j
X1X2Y

}j). Using

(36) and (37), we get (41) and (42), given at the top of the

next page.

Thus, invoking Lemma 1, we have (44), where each of

the probabilities at the r.h.s. of (44) are conditioned on F0.

Therefore, we were able to simplify the problematic union

over the codebook of the first user. Note, however, that we

cannot (directly) apply here the method of types due to the

fact that the union is over an exponential number of types, and

thus a more refined analysis is needed. We start by analyzing

the last term at the r.h.s. of (44). To this end, we will invoke

the type enumeration method, but first, the main observation

here is that similarly to the passage from (33) to (34), the last

term at the r.h.s. of (44) can be rewritten as (46), shown at the
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Bm,1 =























(x1,x2,0,y) ∈ T (Q̃0
X1X2,0Y

),

x1 :
{

(x1,x2,j ,y) ∈ T (Q̃j
X1X2Y

)
}M2−1

j=1
,

{

(x1,0,x2,j ,y) ∈ T (Q̂j
X1,0X2Y

)
}M2−1

j=1
for some {x2,j}j























(41)

Bm,2 =























(x1,x2,0,y) ∈ T (Q̃0
X1X2,0Y

),

{x2,j}j≥1 :
{

(x1,x2,j ,y) ∈ T (Q̃j
X1X2Y

)
}M2−1

j=1
,

{

(x1,0,x2,j,y) ∈ T (Q̂j
X1,0X2Y

)
}M2−1

j=1
for some x1























(42)

P̃
(n)
e,1 , Pr





M1−1
⋃

i=1







M2−1
∑

j=0

P (Y |X1,i,X2,j) ≥
M2−1
∑

j=0

P (Y |X1,0,X2,j)







∣

∣

∣

∣

∣

∣

F0



 (43)

≤ min















1,M1 · Pr









⋃

{

Q̃j

X1X2Y
,Q̂j

X1X2Y

}

j
∈TI(QX1,0X2,0Y )

X1,1 ∈ B1

(

Q̃0
X1X2,0Y , (Q̃

j
X1X2Y

, Q̂j
X1X2Y

)j)
)









,

Pr









⋃

{

Q̃j

X1X2Y
,Q̂j

X1X2Y

}

j
∈TI (QX1,0X2,0Y )

{X2,j}j≥1 ∈ B2

(

Q̃0
X1X2,0Y , (Q̃

j
X1X2Y

, Q̂j
X1X2Y

)j)
)









,

M1 · Pr













⋃

{

Q̃j

X1X2Y
,Q̂j

X1X2Y

}

j
∈TI(QX1,0X2,0Y )























(X1,1,x2,0,y) ∈ T (Q̃0
X1X2,0Y

),
{

(X1,1,X2,j ,y) ∈ T (Q̃j
X1X2Y

)
}M2−1

j=1
,

{

(x1,0,X2,j,y) ∈ T (Q̂j
X1,0X2Y

)
}M2−1

j=1

























































(44)

next page. That is, we returned back to the structure of the

original probability in (24), but now, without the union over

the codebook of the first user. Note that the conditioning on

the random vector X1,1 in (46), is due to the fact that X1,1 is

common to all the summands in the inner summation over the

codebook of the second user. We next evaluate the exponential

behavior of the probability in (46). For a given realization of

Y = y, X1,0 = x1,0, X1,1 = x1,1, and X2,0 = x2,0, let us

define

s ,
1

n
logP (y|x1,0,x2,0) , (47)

and

r ,
1

n
logP (y|x1,1,x2,0) . (48)

For a given (y,x1,0,x1,1,x2,0), and a given joint probability

distribution QX1X2Y on X1 × X2 × Y , let N1 (QX1X2Y )
designate the number of codewords {X2,j}j (excluding x2,0)

whose conditional empirical distribution with y and x1,1 is

QX1X2Y , that is,

N1 (QX1X2Y ) ,

M2−1
∑

j=1

I {(x1,1,X2,j ,y) ∈ T (QX1X2Y )} ,

(49)

and let N2 (QX1X2Y ) designate the number of codewords

{X2,j}j (excluding x2,0) whose conditional empirical distri-

bution with y and x1,0 is QX1X2Y , that is

N2 (QX1X2Y ) ,

M2−1
∑

j=1

I {(x1,0,X2,j ,y) ∈ T (QX1X2Y )} .

(50)

Also, recall that

f (QX1X2Y ) =
1

n
logP (y|x1,x2) (51)

= EQ

[

logWY |X1X2
(Y |X1, X2)

]

(52)

where QX1X2Y is understood to be the joint empirical distri-

bution of (x1,x2,y) ∈ Xn
1 ×Xn

2 ×Yn. Thus, in terms of the

above notations, we may write:

M2−1
∑

j=0

P (y|x1,1,X2,j) = enr

+
∑

QX2|X1Y ∈S(QX1Y )

N1 (QX1X2Y ) e
nf(QX1X2Y ) (53)

, enr +N1(QX1Y ). (54)

where for a given QX1Y , S(QX1Y ) is defined as

the set of all distributions
{

QX2|X1Y

}

, such that
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Pr













⋃

{

Q̃j
X1X2Y

,Q̂j
X1X2Y

}

j
∈TI(QX1,0X2,0Y )























(X1,1,x2,0,y) ∈ T (Q̃0
X1X2,0Y

),
{

(X1,1,X2,j ,y) ∈ T (Q̃j
X1X2Y

)
}M2−1

j=1
,

{

(x1,0,X2,j ,y) ∈ T (Q̂j
X1,0X2Y

)
}M2−1

j=1



































= Pr











M2−1
∑

j=0

P (Y |X1,1,X2,j) ≥
M2−1
∑

j=0

P (Y |X1,0,X2,j)







∣

∣

∣

∣

∣

∣

F0



 (45)

= E







Pr











M2−1
∑

j=0

P (Y |X1,1,X2,j) ≥
M2−1
∑

j=0

P (Y |X1,0,X2,j)







∣

∣

∣

∣

∣

∣

F0,X1,1





∣

∣

∣

∣

∣

∣

F0







. (46)

∑

(x1,y)∈X1×Y QX1Y (x1, y)QX2|X1Y (x2|x1, y) = PX2 (x2)
for all x2 ∈ X2, namely,

S(QX1Y ) =
{

Q′
X1X2Y : Q′

X1Y = QX1Y , Q
′
X2

= PX2

}

.
(55)

Similarly,

M2−1
∑

j=0

P (y|x1,0,X2,j) = ens

+
∑

QX2|X1,0Y ∈S(QX1,0Y )

N2

(

QX1,0X2Y

)

enf(QX1,0X2Y )
(56)

, ens +N2(QX1,0Y ). (57)

where for a given QX1,0Y , S(QX1,0Y ) is defined as

the set of all distributions
{

QX2|X1,0Y

}

, such that
∑

(x1,y)∈X1×Y QX1,0Y (x1, y)QX2|X1,0Y (x2|x1, y) =
PX2 (x2) for all x2 ∈ X2 (similarly as in (55)). For simplicity

of notation, in the following, we use Q and Q̃ to denote

QX1X2Y and QX1,0X2Y , respectively. Therefore, with these

definitions in mind, we wish to calculate (given (F0,X1,1))

Pr





M2−1
∑

j=0

P (Y |x1,1,X2,j) ≥
M2−1
∑

j=0

P (Y |x1,0,X2,j)





= Pr
[

N1(QX1Y )−N2(QX1,0Y ) ≥ ens − enr
]

(58)

where s, r, N1(Q) and N2(Q) are given in (47), (48), (54),

and (57), respectively. Let ε > 0 be arbitrarily small, and

define i1 ,
⌊

1
nǫ logP (y|x1,0,x2,0)

⌋

. Then,

Pr
[

N1(QX1Y )−N2(QX1,0Y ) ≥ ens − enr
]

=

⌈R2/ε⌉
∑

i=i1

Pr
{

eniε ≤ N2(QX1,0Y ) ≤ en(i+1)ε,

N1(QX1Y )−N2(QX1,0Y ) ≥ ens − enr
}

≤

⌈R2/ε⌉
∑

i=i1

Pr
{

eniε ≤ N2(QX1,0Y ) ≤ en(i+1)ε,

N1(QX1Y ) ≥ eniε + ens − enr
}

(59)

=

⌈R2/ε⌉
∑

i=i1

Pr
{

eniε ≤ N2(QX1,0Y ) ≤ en(i+1)ε
}

× Pr
{

N1(QX1Y ) ≥ eniε + ens − enr

| eniε ≤ N2(QX1,0Y ) ≤ en(i+1)ε
}

. (60)

It is not difficult to show that (see, e.g., [15, p. 6028])

Pr
{

ent ≤ N2(QX1,0Y ) ≤ en(t+ε)
}

·
=















0 t < t0(QX1,0Y )− ε

1 t0(QX1,0Y )− ε ≤ t ≤ t0(QX1,0Y )

exp
[

−nE(t, QX1,0Y )
]

t > t0(QX1,0Y )

(61)

where

t0(QX1,0Y ) , R2+

max
Q̃∈S(QX1,0Y ): IQ̃(X2;X1,0,Y )≤R2

[

f(Q̃)− IQ̃(X2;X1,0, Y )
]

,

(62)

in which S(Q) is defined in (55), f(Q) is given in (52), and

E(t, QX1,0Y ) , min

{

[

IQ̃(X2;X1,0, Y )−R2

]

+
:

f(Q̃) +
[

R2 − IQ̃(X2;X1,0, Y )
]

+
≥ t

}

. (63)

Now, in the exponential scale, the term at the r.h.s. of

(60) is dominated by one of the summands, and we

claim that the dominant contribution to the sum over i
is due to the first term3, i = t0(QX1,0Y )/ε. Indeed,

let Ak ,
{

enkε ≤ N2(QX1,0Y ) ≤ en(k+1)ε
}

and Bk ,
{

N1(QX1Y ) ≥ enkε + ens − enr
}

, and notice that the sum-

mands in (60) correspond to Pr {Ak ∩ Bk}. According to

(61), Pr {At0} → 1 (the exponent E(kε,QX1,0Y ) vanishes),

and note that Pr {Bk} is monotonically decreasing with k.

Therefore,

Pr {At0 ∩ Bt0} ≤ max
k≥t0

Pr {Ak ∩ Bk}

≤ max
k≥t0

Pr {Bk} = Pr {Bt0} . (64)

3Note that according to (61), Pr{eniε ≤ N2(QX1,0Y ) ≤ en(i+1)ε}
vanishes (in the exponential scale) for i < t0(QX1,0Y )/ε. Thus, to asses
the exponential scale of (60) we consider only the indices correspond to i ≥
t0(QX1,0Y )/ε.
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On the other hand,

Pr {At0 ∩ Bt0} = Pr {Bt0} − Pr
{

A
c
t0 ∩ Bt0

}

≥ Pr {Bt0} − Pr
{

A
c
t0

}

. (65)

Thus, due to the fact that Pr {At0} → 1 super-exponentially

fast [15, p. 6028], we may conclude that

Pr {At0 ∩ Bt0}
·
= Pr {Bt0} . (66)

Combining (60), (64) and (66), and the fact that ε is arbitrarily

small, we get (68) (shown at the top of the next page) by

using standard large deviations techniques (see, e.g., [15, p.

6027]), where N1(Q) and S(Q) are defined in (49) and (55),

respectively, and

L̃ ,

{

Q : max [t0, s]− f(Q) ≤ [R2 − IQ(X2;X1, Y )]+

}

.

(69)

Thus,

Pr
[

N1(QX1Y )−N2(QX1,0Y ) ≥ ens − enr
]

·
= exp

{

−nE1(QX1X2,0Y , QX1,0X2,0Y )
}

(70)

where E1(·, ·) is defined in (8c). Note that when r >
max [t0, s], the r.h.s. term of the inequality in the probability

in (67) is negative, and due to the fact that the enumerator

is nonnegative, the overall probability is unity. Finally, we

average over X1,1 given F0. Using the method of types, we

readily obtain (73), given at the top of the next page, where

Ŝ(QX2Y ) ,
{

Q′
X1X2Y : Q′

X2Y = QX2Y , Q
′
X1

= PX1

}

,
(74)

and Ê1(·, ·) is defined in (8g). This completes the analysis of

the last term at the r.h.s. of (44).

Next, we analyze the second and third terms at the r.h.s.

of (44). Recall that the latter is given by (75). Accordingly,

in the spirit of (46), we note that Pe,3 can be equivalently

rewritten as (78), shown at the top of the next page, where

s, r, N1(Q), N2(Q), and Ŝ(Q), are given in (47), (48),

(54), (57), and (74), respectively, and the second passage

follows by using the method of types. Now, due to the fact

that only N1 (and not N2) in (78) depends on x1,1, and

since the analysis in (58)-(67) is independent of x1,1, it can

be repeated here, and we obtain (79), shown at the top of

page 14, where N1(Q) is given in (49), and we have defined

enγ , en[t0(QX1,0Y )−f(Q)] + en[s−f(Q)] − en[r−f(Q)]. Recall

(49), and let Ñ1(Q) ,
∑M2−1

j=1 I {(X2,j ,y) ∈ T (QX2Y )}.

We claim that (79) can be rewritten as4

Pe,3
·
= max

QX1|X2,0Y ∈Ŝ(QX2,0Y )
max

Q∈S(QX1Y )
Pr

{

Ñ1(Q) ≥ enγ
}

,

(80)

which follows from the fact that the set

{x2 : (x1,1,x2,y) ∈ T (QX1X2Y ), for some x1,1} equals

T (QX2Y ) (see, e.g., [11, eqs. (24)-(25)]). Thus, by using

standard large deviations techniques (see, e.g., [15, p. 6027])

Pe,3
·
= max

QX1|X2,0Y ∈Ŝ(QX2,0Y )
max

Q∈S(QX1Y )
(81)















1 r > max [t0, s]

e−n[IQ(X2;Y )−R2]+ r ≤ max [t0, s] , Q ∈ L̂

0 r ≤ max [t0, s] , Q ∈ L̂c

(82)

where

L̂ ,

{

Q : max [t0, s]− f(Q) ≤ [R2 − IQ(X2;Y )]+

}

.

(83)

Therefore,

Pe,3
·
= exp

{

−nÊ2(QX1,0X2,0Y , R2)
}

(84)

where Ê2(QX1,0X2,0Y , R2) is defined in (8h). This completes

the analysis of the third term at the r.h.s. of (44). Finally, recall

that the second term at the r.h.s. of (44) is given by

A , M1 · Pr





⋃

TI(QX1,0X2,0Y )

X1,1 ∈ B1

(

Q̃0
X1X2,0Y , (Q̃

j
X1X2Y

, Q̂j
X1X2Y

)j)
)



 (85)

and is equivalent to (86), given at the top of page 14. This

term can be analyzed as before, but, we claim that it is

actually larger than the fourth term at the r.h.s. of (44), and

thus, essentially, does not affect the minimum in (44). Indeed,

recall that the fourth term is given by (87), shown at the top

of page 14, and since the factor M1 is common to both A
and B, we just need to compare the probabilities in these

terms. However, it is obvious that the probability term in

B is smaller than the probability in A, due to the fact that

events in the former are contained in the events in the latter.

Indeed, this is equivalent to comparing Pr {(Z1, Z2) ∈ Z}
and Pr {(Z1, z2) ∈ Z, for some z2 ∈ Z2}, where Z1 and Z2

4It is easy to see that (80) is an upper bound on (79). The other direction
follows from:

max
Q,Q̂∈S(Q)

Pr
{

Ñ1(Q̂) ≥ enγ(Q)
}

= max
Q̂∈S(Q∗)

Pr
{

Ñ1(Q̂) ≥ enγ(Q∗)
}

= max
Q̂∈S(Q∗)

Pr
{

N1(Q̂) ≥ enγ(Q∗), for some x1,1 ∈ T (Q∗)
}

≤ max
Q

max
Q̂∈S(Q)

Pr
{

N1(Q̂) ≥ enγ(Q), for some x1,1 ∈ T (Q)
}

,

where in the first equality we designate Q∗ as the maximizer,
and the second equality follows from the fact that T (QX2Y ) =
{

x2 : (x1,1,x2,y) ∈ T (QX1X2Y ), for some x1,1
}

.
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Pr
[

N1(QX1Y )−N2(QX1,0Y ) ≥ ens − enr
] ·
= Pr {Bt0}

= Pr
{

N1(QX1Y ) ≥ ent0(QX1,0Y ) + ens − enr
}

·
= max

Q∈S(QX1Y )
Pr

{

N1(Q) ≥ en[t0(QX1,0Y )−f(Q)] + en[s−f(Q)] − en[r−f(Q)]
}

(67)

·
= max

Q∈S(QX1Y )















1 r > max [t0, s]

e−n[IQ(X2;X1,Y )−R2]+ r ≤ max [t0, s] , Q ∈ L̃

0 r ≤ max [t0, s] , Q ∈ L̃c

(68)

E







Pr











M2−1
∑

j=0

P (Y |X1,1,X2,j) ≥
M2−1
∑

j=0

P (Y |X1,0,X2,j)







∣

∣

∣

∣

∣

∣

F0,X1,1





∣

∣

∣

∣

∣

∣

F0







(71)

·
= exp

{

−n min
QX1|X2,0Y ∈Ŝ(QX2,0Y )

[

IQ(X1;X2,0, Y ) + E1(QX1X2,0Y , QX1,0X2,0Y )
]

}

(72)

, exp
{

−nÊ1(QX1,0X2,0Y , R2)
}

(73)

Pe,3 , Pr









⋃

{

Q̃j

X1X2Y
,Q̂j

X1X2Y

}

j
∈TI (QX1,0X2,0Y )

{X2,j}j≥1 ∈ B2

(

Q̃0
X1X2,0Y , (Q̃

j
X1X2Y

, Q̂j
X1X2Y

)j)
)









. (75)

Pe,3 = Pr





⋃

QX1|X2,0Y

P (y|x1,1,x2,0) +

M2−1
∑

j=1

P (y|x1,1,X2,j) ≥ P (y|x1,0,x2,0)

+

M2−1
∑

j=1

P (y|x1,0,X2,j) , for some x1,1 ∈ T (QX1X2,0Y )

∣

∣

∣

∣

∣

∣

F0



 , (76)

·
= max

QX1|X2,0Y ∈Ŝ(QX2,0Y )
Pr



P (y|x1,1,x2,0) +

M2−1
∑

j=1

P (y|x1,1,X2,j) ≥ P (y|x1,0,x2,0)

+

M2−1
∑

j=1

P (y|x1,0,X2,j) , for some x1,1 ∈ T (QX1X2,0Y )

∣

∣

∣

∣

∣

∣

F0



 (77)

= max
QX1|X2,0Y ∈Ŝ(QX2,0Y )

Pr
[

N1(QX1Y )−N2(QX1,0Y ) ≥ ens − enr, for some x1,1 ∈ T (QX1X2,0Y )|F0

]

(78)

are RVs that are defined over the alphabets Z1 and Z2,

respectively, and Z ⊆ Z1 ×Z2. Let V , Ṽ × Z2, in which

Ṽ , {z1 ∈ Z1 : (z1, z2) ∈ Z, for some z2 ∈ Z2} . (88)

Then, it is obvious that Z ⊆ V , and thus

Pr {(Z1, Z2) ∈ Z} =
∑

(z1,z2)∈Z

P (z1, z2) (89)

≤
∑

(z1,z2)∈V

P (z1, z2) (90)

=
∑

z1∈Ṽ

P (z1) = Pr {(Z1, z2) ∈ Z, for some z2} . (91)

Wrapping up, using (24), (44), and the last results, after

averaging w.r.t. F0, we get (96), shown at the top of the next

page, as required.

B. Proof of Theorem 2

Without loss of generality, we assume throughout, that the

transmitted codewords are x1,0 and x2,0 which correspond
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Pe,3
·
= max

QX1|X2,0Y ∈Ŝ(QX2,0Y )

⌈R2/ε⌉
∑

i=i1

Pr
{

eniε ≤ N2(QX1,0Y ) ≤ en(i+1)ε
}

× Pr







⋃

x1,1

N1(QX1Y ) ≥ eniε + ens − enr

∣

∣

∣

∣

∣

∣

eniε ≤ N2(QX1,0Y ) ≤ en(i+1)ε







·
= max

QX1|X2,0Y ∈Ŝ(QX2,0Y )
Pr

{

N1(QX1Y ) ≥ ent0(QX1,0Y ) + ens − enr, for some x1,1

}

·
= max

QX1|X2,0Y ∈Ŝ(QX2,0Y )
max

Q∈S(QX1Y )
Pr {N1(Q) ≥ enγ , for some x1,1} , (79)

A = M1 · Pr













⋃

TI(QX1,0X2,0Y )























(X1,1,x2,0,y) ∈ T (Q̃0
X1X2,0Y

),
{

(X1,1,x2,j ,y) ∈ T (Q̃j
X1X2Y

)
}M2−1

j=1
, for some {x2,j}

{

(x1,0,x2,j,y) ∈ T (Q̂j
X1,0X2Y

)
}M2−1

j=1



































. (86)

B , M1 · Pr













⋃

TI (QX1,0X2,0Y )























(X1,1,x2,0,y) ∈ T (Q̃0
X1X2,0Y

),
{

(X1,1,X2,j ,y) ∈ T (Q̃j
X1X2Y

)
}M2−1

j=1
,

{

(x1,0,X2,j ,y) ∈ T (Q̂j
X1,0X2Y

)
}M2−1

j=1



































, (87)

P̄
(n)
e,1

·
≤ E

{

min
{

1, e−n(Ê1(QX1,0X2,0Y ,R2)−R1), e−nÊ2(QX1,0X2,0Y ,R2)
}}

(93)

= E

{

min

{

e
−n[Ê1(QX1,0X2,0Y ,R2)−R1]

+ , e−nÊ2(QX1,0X2,0Y ,R2)

}}

(94)

= E

{

exp

[

−nmax

{

[

Ê1(QX1,0X2,0Y , R2)−R1

]

+
, Ê2(QX1,0X2,0Y , R2)

}]}

(95)

·
= exp

{

−n

[

min
QY |X1,0X2,0

[

D(QY |X1,0X2,0
||WY |X1,0X2,0

|PX1,0 × PX2,0) + E(Q,R1, R2)
]

]}

(96)

E(Q,R1, R2) , max

{

[

Ê1(QX1,0X2,0Y , R2)−R1

]

+
, Ê2(QX1,0X2,0Y , R2)

}

. (97)

to z11,0, z12,0, z21,0 and z22,0. Here, we distinguish between

several types of errors. Recall that the overall error probability

is given by

P̄
(n)
e,1 = Pr {(m̂11, m̂12) 6= (0, 0)} , (98)

which can be divided into six possible types of errors: (m̂11 6=
0, m̂12 = 0, m̂21 = 0), (m̂11 = 0, m̂12 6= 0, m̂21 = 0),
(m̂11 6= 0, m̂12 6= 0, m̂21 = 0), (m̂11 6= 0, m̂12 = 0, m̂21 6=
0), (m̂11 = 0, m̂12 6= 0, m̂21 6= 0), and (m̂11 6= 0, m̂12 6=
0, m̂21 6= 0). Note that the event (m̂11 = 0, m̂12 = 0, m̂21 6=
0) will not result in an error, and thus ignored. Obviously,

the exponent of the overall error probability in (98) is given

by the minimum between the error exponents corresponding to

each type of error individually. We start with analyzing the last

error event, which is also the most involved one. For this event,

the average probability of error, associated with the decoder in

(14), is given by (100), given at the top of the next page, where

Z̃ijk , (Z11,i,Z12,j ,Z21,k), Z̃0 , (Z11,0,Z12,0,Z21,0),
and F0 , (Z̃0,Z22,0,Y ). We will assess the exponential

behavior of (100) in the same manner as we did for (24).

Specifically, we start with expressing (100) in terms of types.

First, for a given joint distribution QZ4
1Y

, we let

f(QZ4
1Y

) ,
1

n
logP (y|x1(z1, z2),x2(z3, z4)) . (101)

Now, for a given joint type QZ4
1,0Y

of the random vectors

(Z1,0,Z2,0,Z3,0,Z4,0,Y ), we define the set TI(QZ4
1,0Y

) in

(102) given at the top of the next page. Now, with these

definitions, fixing QZ4
1,0Y

, it follows, by definition, that the
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P (7)
e , Pr





M11−1
⋃

i=1

M12−1
⋃

j=1

M21−1
⋃

k=1

{

M22−1
∑

l=0

P (Y |Z̃ijk,Z22,l) ≥
M22−1
∑

l=0

P (Y |Z̃0,Z22,l)

}



 (99)

= E







Pr





M11−1
⋃

i=1

M12−1
⋃

j=1

M21−1
⋃

k=1

{

M22−1
∑

l=0

P (Y |Z̃ijk,Z22,l) ≥
M22−1
∑

l=0

P (Y |Z̃0,Z22,l)

}

∣

∣

∣

∣

∣

∣

F0











(100)

TI(QZ4
1,0Y

),

{

Q̃0
Z3

1Z4,0Y
∈ S0,

(

{

Q̃l
Z4

1Y

}M22−1

l=1
,
{

Q̂l
Z3

1,0Z4Y

}M22−1

l=1

)

∈ S1 :

e
nf(Q̃0

Z3
1
Z4,0Y

)
+

M22−1
∑

l=1

[

e
nf(Q̃l

Z4
1
Y
)
− e

nf(Q̂l

Z3
1,0

Z4Y
)
]

≥ e
nf(Q

Z4
1,0

Y
)

}

(102)

S0(QZ4
1,0Y

) ,
{

Q̃0
Z3

1Z4,0Y
: Q̃0

Zi
= PZi

, Q̃0
Z4,0Y = QZ4,0Y , ∀1 ≤ i ≤ 4

}

, (103)

S1(QZ4
1,0Y

) ,

{

{

Q̃l
Z4

1Y

}M22−1

l=1
,
{

Q̂l
Z3

1,0Z4Y

}M22−1

l=1
: Q̃l

Zi
= PZi

, Q̃l
Y = QY ,

Q̂l
Zi

= PZi
, Q̂l

Z3
1,0Y

= QZ3
1,0Y

, ∀1 ≤ i ≤ 4, ∀1 ≤ l ≤ M22 − 1

Q̃l
Z4Y = Q̂l

Z4Y , Q̃
l
Z3

1Y
= Q̃m

Z3
1Y

, ∀l,m
}

. (104)

error event

M11−1
⋃

i=1

M12−1
⋃

j=1

M21−1
⋃

k=1
{

M22−1
∑

l=0

P (Y |Z̃ijk,Z4,l) ≥
M22−1
∑

l=0

P (Y |Z̃0,Z4,l)

}

(105)

can be rewritten, in terms of types, as follows

M11−1
⋃

i=1

M12−1
⋃

j=1

M21−1
⋃

k=1

⋃

TI (QZ4
1,0Y

)

(106)



















(Z̃ijk, z4,0,y) ∈ T (Q̃0
Z3

1Z4,0Y
),

{

(Z̃ijk,Z4,l,y) ∈ T (Q̃l
Z4

1Y
)
}M22−1

l=1
,

{

(z̃0,Z4,l,y) ∈ T (Q̂l
Z3

1,0Z4Y
)
}M22−1

l=1



















. (107)

We next analyze the probability of (107), conditioned on F0.

Note that the inner union in (107) is over vectors of types (an

exponential number of them). Finally, as before, we simplify

the notations of (107), and write it equivalently as

M11−1
⋃

i=1

M12−1
⋃

j=1

M21−1
⋃

k=1

⋃

l

(108)











Z̃ijk ∈ Al,0,

(Z̃ijk,Z4,m) ∈ Al,m, for m = 1, . . . ,M22 − 1

Z4,m ∈ Ãl,m, for m = 1, . . . ,M22 − 1











(109)

where, again, the index “l” in the inner union runs over the

combinations of types (namely, l = {Q̃l
Z4

1Y
, Q̂l

Z3
1,0Z4Y

}l) that

belong to TI(QZ4
1,0Y

), and the various sets {Al,j , Ãl,j}l,j

correspond to the typical sets in (107) (recall that

(z1,0, z2,0, z3,0, z4,0,y) are given in this stage). Similarly as

in the proof of Theorem 1, we derive upper bound on a generic

probability which have the form of (109). In the following,

we give a generalization of Lemma 1 to the probability of a

union indexed by K values. The proof is very similar to the

proof of Lemma 1, and thus omitted for brevity. For a given

subset J =
{

j1, . . . , k|J |

}

of {1, . . . , J} we write ZJ as a

shorthand for (Zj1 , . . . , Zj|J|
).

Lemma 2 Let {Z1 (i)}
N1

i=1 , . . . , {ZJ (i)}
NJ

i=1 and

{V1 (i)}
NJ+1

i=1 , {V2 (i)}
NJ+1

i=1 , . . . , {VK (i)}
NJ+1

i=1 be

independent sequences of independently and

identically distributed (i.i.d.) RVs on the alphabets

Z1 × . . . × ZJ × V1 × . . .× VK , respectively, with Z1 (i) ∼
PZ1 , . . . , ZJ (i) ∼ PZJ

, V1 (i) ∼ PV1 , . . . , VK (i) ∼ PVK
. Fix

a sequence of sets {Ai,1}
N
i=1 , {Ai,2}

N
i=1 , . . . , {Ai,K}Ni=1,

where Ai,j ⊆ Z1 × . . . × ZJ × Vj , for 1 ≤ j ≤ K

and for all 1 ≤ i ≤ N . Also, fix a set {Ai,0}
N
i=1 where

Ai,0 ⊆ Z1 × . . . × ZJ for all 1 ≤ i ≤ N , and another

sequence of sets {Gi,1}
N
i=1 , {Gi,2}

N
i=1 , . . . , {Gi,K}Ni=1, where

Gi,j ⊆ Vj , for 1 ≤ j ≤ K and for all 1 ≤ i ≤ N . Let

U = (Z1, Z2, . . . , ZJ , UJ+1) with UJ+1 , (V1, . . . , VK).
Finally, define Bl,J given in (110), for l = 1, 2, . . . , N , and

Z(iJ1 ) = (Z1(i1), . . . , ZJ(iJ)). Then, a general upper bound

is given by (111), shown at the top of the next page.

Applying Lemma 2 on (107) (or, (109)) we obtain (112),

shown at the top of the next page, where N1 = M11, N2 =
M12, N3 = M21, N4 = 1, and

U = (Z11,Z12,Z21,U4) (113)

in which U4 = (Z4,1, . . . ,Z4,M22−1), and Bl,J is given in

(114), also shown at the top of the next page. The various
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Bl,J,







uJ : zJ1 ∈ Al,0,

K
⋂

j=1

(

zJ1 , vj
)

∈ Al,j ,

K
⋂

j=1

vj ∈ Gl,j for some uJ c







, (110)

Pr







⋃

iJ1 ,j

{

N
⋃

l=1

{

Z(iJ1 ) ∈ Al,0,

K
⋂

k=1

(

Z(iJ1 ), Vk(j)
)

∈ Al,k,

K
⋂

k=1

Vk(j) ∈ Gl,k

}}







≤ min







1, min
J⊆{1,...,J+1}J 6=∅





∏

j∈J

Nj



Pr

{

N
⋃

l=1

UJ ∈ Bl,J

}







. (111)

Pr







M11−1
⋃

i=1

M12−1
⋃

j=1

M21−1
⋃

k=1

{

M22−1
∑

l=0

P (Y |Z̃ijk,Z4,l) ≥
M22−1
∑

l=0

P (Y |Z̃0,Z4,l)

}

∣

∣

∣

∣

∣

∣

F0







·
≤ min







1, min
J⊆{1,...,4}J 6=∅





∏

j∈J

Nj



Pr

{

⋃

l

UJ ∈ Bl,J

}







(112)

Bl,J =



















(z̃111, z4,0,y) ∈ T (Q̃0
X1X2,0Y

),

uJ :
{

(z̃111, z4,l,y) ∈ T (Q̃l
Z4

1Y
)
}M22−1

l=1
,

{

(z̃0, z4,l,y) ∈ T (Q̂j
X1,0X2Y

)
}M22−1

l=1
, for some uJ c



















(114)

possibilities for the set J are,


















1; 2; 3; 4;

12; 13; 14; 23; 24; 34;

123; 124; 134; 234;

1234



















, (115)

namely, we have 15 possibilities. We claim that pos-

sibilities {1, 2, 3, 12, 13, 23, 123} do not affect the outer

minimum in (112), and so we left with possibilities

{4, 14, 24, 34, 124, 134, 234, 1234}. This observation follows

from the same arguments used in (86)-(91) for the second term

at the r.h.s. of (44). For example, possibilities {1, 2, 3} do not

affect the outer minimum due to the fact that the probabilities

that correspond to possibilities {14, 24, 34}, respectively, are

smaller. Indeed, the multiplicative factors in (112) for each of

the pairs (1, 14), (2, 24), and (3, 34), are the same, but the

respective probabilities in (112) are smaller for {14, 24, 34}
(due to the same reason used in (91)). Similarly, possibilities

{12, 13, 23, 123} do not affect the outer minimum due to

possibilities {124, 134, 234, 1234}, respectively.

In the following, we analyze the remaining terms. For

example, the term that corresponds to possibility “1234”, is

given by

Pe,1234 , M11M12M21 Pr

{

⋃

l

U ∈ Bl,1234

}

, (116)

which similarly to the passage from (105) to (107), can be

rewritten as in (117), shown at the top of the next page.

Equation (117) has the same form of the probability in (71),

which we already analyzed. Accordingly, we similarly obtain

(120), where E7(·, ·) is defined in (A.4), and S{4}(Q) is given

in (A.1).

The other terms are handled in a similar fash-

ion. Specifically, let Ẑ , {Z1, Z2, Z3}, and define

the sets U = {1, 2, 3, 12, 13, 23, 123}, and Ũ =
{14, 24, 34, 124, 134, 234, 1234}. Then, define for any5 u ∈
{1, 2, . . . , 7}:

P (6)
e,u , MU(u) · Pr

{

⋃

l

U Ũ(u) ∈ Bl,Ũ(u)

}

, (121)

where

MU(1) , M11; MU(2) = M12; MU(3) = M21;

MU(4) = M11M12; MU(5) , M11M21;

MU(6) = M12M21 MU(7) = M11M12M21. (122)

Accordingly, following (49)-(84), we get (123), shown at the

top of the next page, where Eu(·, ·) is defined in (A.4). Note

that the mutual information term in the above exponent is due

to the averaging over ẐU(u), and it is resulted by using the

method of types as in (72). This concludes the analysis for

5Note that P
(6)
e,7 correspond to Pe,1234 in (117).
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Pe,1234 = M11M12M21Pr

{

M22−1
∑

l=0

P (Y |Z̃111,Z4,l) ≥
M22−1
∑

l=0

P (Y |Z̃0,Z4,l)

∣

∣

∣

∣

∣

F0

}

= M11M12M21E

{

Pr

{

M22−1
∑

l=0

P (Y |Z̃111,Z4,l) ≥
M22−1
∑

l=0

P (Y |Z̃0,Z4,l)

∣

∣

∣

∣

∣

F0, Z̃111

}∣

∣

∣

∣

∣

F0

}

(117)

E

{

Pr

{

M22−1
∑

l=0

P (Y |Z̃111,Z4,l) ≥
M22−1
∑

l=0

P (Y |Z̃0,Z4,l)

∣

∣

∣

∣

∣

F0, Z̃111

}∣

∣

∣

∣

∣

F0

}

(118)

·
= exp

{

−n min
Q

Z3
1
|Z4,0Y

∈S{4}(QZ4
1,0

Y
)

[

IQ(Z
3
1 ;Z4,0, Y ) + E7(QZ3

1Z4,0Y , QZ4
1,0Y

)
]

}

(119)

, exp
{

−nÊ
(6)
7 (QZ4

1,0Y
, R22)

}

(120)

P (6)
e,u

·
= exp

{

−n min
Q

Z3
1 |Z4,0Y

∈S{4}(QZ4
1,0Y

)

[

IQ(ẐU(u);Z4,0, Y |Ẑ123\U(u)) + Eu(QZ3
1Z4,0Y , QZ4

1,0Y
)
]

}

, exp
{

−nÊ(6)
u (QZ4

1,0Y
, R22)

}

(123)

possibilities {14, 24, 34, 124, 134, 234, 1234}, and we left with

possibility {4}, which is very similar to (75). Accordingly,

using the same arguments in (78)-(84), we obtain

P
(6)
e,8 , Pr

{

⋃

l

U4 ∈ Bl,4

}

·
= exp

{

−n min
Q

Z3
1
|Z4,0Y

∈S{4}(QZ4
1,0

Y
)
E0(QZ3

1Z4,0Y , QZ4
1,0Y

)

}

, exp
{

−nÊ
(6)
8 (QZ4

1,0Y
, R22)

}

(124)

where E0(·, ·) is, again, defined in (A.4). Wrapping up, using

(100), (112), and the last results, after averaging w.r.t. F0, we

get (129), shown at the top of the next page, where Ru for

u = 1, 2, . . . , 7 is defined in (A.6).

This concludes the analysis of the error event (m̂11 6=
0, m̂12 6= 0, m̂21 6= 0) in (98). The other types of errors

are analyzed in a similar manner. For (m̂11 6= 0, m̂12 =
0, m̂21 = 0), the average probability of error, associated

with the decoder in (14) is given in (131), given at the

top of the next page, where F0 , (Z̃0,Z22,0,Y ). Thus,

due to the fact that (Z12,0,Z21,0) are now fixed, they play

a same role as Y and Z22,0. Accordingly, following the

same steps as in (78)-(84), we get (132), presented at the

top of the next page, where E6(·, ·) and E7(·, ·) are defined

in (A.4), and S{2,3,4}(Q) is given in (A.1). Again, since

(Z12,0,Z21,0), which correspond to (Z2,0, Z3,0)), are fixed,

they are conjugated to (Z4,0, Y ). The error exponent of P
(2)
e

which corresponds to (m̂11 = 0, m̂12 6= 0, m̂21 = 0) can

be derived in the same way. We get that the exponent of

P
(2)
e is obtained by replacing the role of Z1 with Z2 and

R1 with R2, in (132)-(134). Similarly, P
(3)
e , corresponding

to (m̂11 6= 0, m̂12 6= 0, m̂21 = 0), is upper bounded by

(136), presented at the top of the next page, where S{3,4}(Q)
is defined in (A.1).

Finally, the error exponents of P
(4)
e and P

(5)
e , corresponding

to (m̂11 6= 0, m̂12 = 0, m̂21 6= 0) and (m̂11 = 0, m̂12 6=
0, m̂21 6= 0), respectively, are obtained in the same way. The

exponent of P
(4)
e is obtained by replacing the role of Z2 with

Z3, and changing the minimization in (137) to over the indexes

{1, 3, 5}, and the exponent of P
(5)
e is obtained by replacing the

role of Z1 with Z3, and changing the minimization in (137)

to over the indexes {2, 3, 6}.

APPENDIX A

DEFINITIONS FOR THEOREM 2

In this appendix, we give the definitions of the various

parameters appearing in Theorem 2. For simplicity of notation,

in the following, we use the indexes {1, 2, 3, 4} instead of

{11, 12, 21, 22}, respectively. Let Z , (Z1, Z2, Z3), and

U , {1, 2, 3, 12, 13, 23, 123}. For u ∈ {0, 1, 2, . . . , 7}, ZU(u)

is a random vector consisting of the RVs corresponding to the

indexes in U(u), for example, Z1 , ZU(1) = Z1, Z12 ,

ZU(4) = (Z1, Z2), Z123 , ZU(7) = (Z1, Z2, Z3), and so on,

where we define ZU(0) = ∅. Let also Z̃ , {Z1, Z2, Z3, Z4},

I ⊆ {1, 2, 3, 4}, and Z̃I be the restriction of the entries of Z̃

on the set I. Then, let

SI(Q) ,
{

Q̃ : Q̃z̃IY1
= Qz̃IY1

, Q̃Zi
= PZi

, for i ∈ Ic
}

.

(A.1)
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P (6)
e

·
≤ E

{

min

{

1, min
u∈{1:7}

e
−n

[

Ê(6)
u (Q

Z4
1,0

Y
,R22)−n−1 logMŨ(u)

]

, e
−nÊ

(6)
8 (Q

Z4
1,0Y

,R22)

}}

(125)

= E







min







min
u∈{1:7}

e
−n

[

Ê(6)
u (Q

Z4
1,0Y

,R22)−n−1 logMŨ(u)

]

+ , e
−nÊ

(6)
8 (Q

Z4
1,0Y

,R22)













(126)

= E

{

exp

[

−nmax

{

max
u

[

Ê(6)
u (QZ4

1,0Y
, R22)−

1

n
logMŨ(u)

]

+

, Ê
(6)
8 (QZ4

1,0Y
, R22)

}]}

(127)

·
= exp

{

−n

[

min
Q

Y |Z4
1,0

[

D(QY |Z4
1,0
||WY |Z4

1,0
|PZ4

1,0
) + E

(6)
HK (QZ4

1,0Y
)
]

]}

(128)

E
(6)
HK (QZ4

1,0Y
) , max

{

max
u∈{1:7}

[

Ê(6)
u (QZ4

1,0Y
, R22)−Ru

]

+
, Ê

(6)
8 (QZ4

1,0Y
, R22)

}

(129)

P (1)
e = Pr

[

M11−1
⋃

i=1

{

M22−1
∑

l=0

P (Y |Z̃i00,Z22,l) ≥
M22−1
∑

l=0

P (Y |Z̃0,Z22,l)

}]

(130)

= E

{

Pr

[

M11−1
⋃

i=1

{

M22−1
∑

l=0

P (Y |Z̃i00,Z22,l) ≥
M22−1
∑

l=0

P (Y |Z̃0,Z22,l)

}∣

∣

∣

∣

∣

F0

]}

(131)

P (1)
e

·
≤ exp

{

−n

[

min
Q

Y |Z4
1,0

[

D(QY |Z4
1,0

||WY |Z4
1,0
|PZ4

1,0
) + E

(1)
HK (QZ4

1,0Y
)
]

]}

(132)

E
(1)
HK (QZ4

1,0Y
) , max

{

[

Ê(1)(QZ4
1,0Y

, R22)−R1

]

+
, Ê

(1)
8 (QZ4

1,0Y
, R22)

}

(133)

Ê(1)(QZ4
1,0Y

, R22) = min
Q

Z1|Z4
2,0Y

∈S{2,3,4}(QZ4
1,0Y

)

[

IQ(Z1;Z
4
2,0, Y ) + E7(QZ1Z4

2,0Y
, QZ4

1,0Y
)
]

(134)

Ê
(1)
8 (QZ4

1,0Y
, R22) = min

Q
Z1|Z4

2,0Y
∈S{2,3,4}(QZ4

1,0Y
)
E6(QZ1Z4

2,0Y
, QZ4

1,0Y
) (135)

P (3)
e

·
≤ exp

{

−n

[

min
Q

Y |Z4
1,0

[

D(QY |Z4
1,0
||WY |Z4

1,0
|PZ4

1,0
) + E

(3)
HK (QZ4

1,0Y
)
]

]}

(136)

E
(3)
HK (QZ4

1,0Y
) , max

{

max
u∈{1,2,4}

[

Ê(3)
u (QZ4

1,0Y
, R22)−Ru

]

+
, Ê

(3)
8 (QZ4

1,0Y
, R22)

}

(137)

Ê
(3)
1 (QZ4

1,0Y
, R22) = min

Q
Z2
1
|Z4

3,0
Y
∈S{3,4}(QZ4

1,0
Y
)

[

IQ(Z1;Z
4
3,0, Y |Z2) + E5(QZ2

1Z
4
3,0Y

, QZ4
1,0Y

)
]

(138)

Ê
(3)
2 (QZ4

1,0Y
, R22) = min

Q
Z2
1 |Z4

3,0Y
∈S{3,4}(QZ4

1,0Y
)

[

IQ(Z2;Z
4
3,0, Y |Z1) + E6(QZ2

1Z
4
3,0Y

, QZ4
1,0Y

)
]

(139)

Ê
(3)
4 (QZ4

1,0Y
, R22) = min

Q
Z2
1 |Z4

3,0Y
∈S{3,4}(QZ4

1,0Y
)

[

IQ(Z1, Z2;Z
4
3,0, Y ) + E7(QZ2

1Z
4
3,0Y

, QZ4
1,0Y

)
]

(140)

Ê
(3)
8 (QZ4

1,0Y
, R22) = min

Q
Z2
1 |Z4

3,0Y
∈S{3,4}(QZ4

1,0Y
)
E3(QZ2

1Z
4
3,0Y

, QZ4
1,0Y

) (141)

Define

f(QZ4
1Y1

) , EQ

[

logWY1|X1X2
(Y1|X1(Z1, Z2), X2(Z3, Z4))

]

(A.2)

and let

r0(QZ3
1Y1

) , R22 + max
Q̂: Q̂∈S{1,2,3}(Q)

I
Q̂
(Z4;Z

3
1 ,Y1)≤R22

f(Q̂)− IQ̂(Z4;Z
3
1 , Y1).

(A.3)
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For u ∈ {0, 1, 2, . . . , 7}, define

Eu(Q̃Z4
1Y1

, QZ4
1Y1

) ,

min
Q̂: Q̂∈S{1,2,3}(Q̃)

Q̂∈Du(Q̃Z4
1
Y1

,Q
Z4
1
Y1

)

[

IQ̂(Z4;ZU(u), Y1)−R22

]

+
,

(A.4)

where

Du(Q̃Z4
1Y1

, QZ4
1Y1

) ,

{

Q̂ : max
[

r0(QZ4
1Y1

), f(QZ4
1Y1

)
]

≤ max

{

f(Q̃Z4
1Y1

), f(Q̂) +
[

R22 − IQ̂(Z4;ZU(u), Y1)
]

+

}}

(A.5)

Finally, we let

R1 , R11; R2 , R12; R3 , R21; R4 , R11 +R12;

R5 , R11 +R21; R6 , R12 +R21;

R7 , R11 +R12 +R21. (A.6)

Using all the above definition, we define (A.7)-(A.30), shown

at the top of page 20.

APPENDIX B

PROOF OF LEMMA 1

We prove a generalized version of Lemma 1, where we con-

sider random sequences, {V2 (i)}
L2

i=1 , . . . , {VK (i)}L2

i=1, rather

than single RVs V2, . . . , VK . Lemma 1 is then obtained on

substituting L2 = 1. We start with the following result which

can be thought of as an extension of [11, Lemma 2].

Lemma 3 Let {V1 (i)}
L1

i=1 , {V2 (i)}
L2

i=1 , . . . , {VK (i)}L2

i=1

be independent sequences of independently and

identically distributed (i.i.d.) RVs on the alphabets

V1 × V2 × . . . × VK , respectively, with V1 (i) ∼
PV1 , V2 (i) ∼ PV2 , . . . , VK (i) ∼ PVK

. Fix a sequence

of sets {Ai,1}
N
i=1 , {Ai,2}

N
i=1 , . . . , {Ai,K−1}

N
i=1, where

Ai,j ⊆ V1 × Vj+1, for 1 ≤ j ≤ K − 1 and for all

1 ≤ i ≤ N . Also, fix a set {Ai,0}
N
i=1 where Ai,0 ⊆ V1

for all 1 ≤ i ≤ N , and another sequence of sets

{Gi,2}
N
i=1 , {Gi,3}

N
i=1 , . . . , {Gi,K}Ni=1, where Gi,j ⊆ Vj ,

for 2 ≤ j ≤ K and for all 1 ≤ i ≤ N . We have (B.1), shown

at the top of page 21, with (V1, . . . , VK) ∼ PV1 · · · × PVK
.

Proof of Lemma 3: The second term in (B.1) follows by

first applying the union bound over i as in (B.2), shown at the

top of page 21, and then we apply the truncated union bound to

the union over j, and obtain (B.3). The third term is obtained

similarly by applying the union bounds in the opposite order,

and the upper bound of 1 is trivial.

We are now in a position to prove Lemma 1.

Proof of Lemma 1: To obtain (38) we weaken (B.1) as

follows. Let F ,
⋃N

l=1 {V1 ∈ Bl,1}. The second term in (38)

follows from (B.4), shown at the top of page 21, where the

second equality follows from the fact that the inner term in

the expectation vanishes over
⋂N

l=1 {V1 /∈ Bl,1}, and the third

inequality follows from the fact that min {1, x} ≤ 1. The third

term in (38) follows in a similar fashion, and the forth term

follows from the fact that min {1, x} ≤ x, and thus we get

(B.5), which concludes the proof.

APPENDIX C

COMPUTATIONAL ASPECTS OF THE EXPONENTS

In this appendix, we discuss the computation of (8j), sim-

ilarly as in [21]. We start with an alternative formulation of

(8j). Recall that

Ẽ1(R1, R2) = min
Q

{D(Q||W ) + E(Q,R1, R2)} , (C.1)

where

E(Q,R1, R2) = max

{

[

Ê1(Q,R2)−R1

]

+
, Ê2(Q,R2)

}

.

(C.2)

In the following, for a given QY1|X1X2
, we show that

Ê1(Q,R2) and Ê2(Q,R2) can be calculated efficiently. For

brevity, we let Ĩ(Q̃) ≡ IQ̃(X1;X2, Y1) and Î(Q̂) ≡
IQ̂(X2;X1, Y1). Recall that

Ê1(Q,R2) = min
Q̃∈S(Q),Q̂∈Ŝ(Q̃),

Q̂∈L(Q̃,Q)

{

Ĩ(Q̃) +
[

Î(Q̂)−R2

]

+

}

,

(C.3)

Ê2(Q,R2) = min
Q̃∈S(Q),Q̂∈Ŝ(Q̃),

Q̂∈L̂(Q̃,Q)

[

ÎQ̂(X2;Y1)− R2

]

+
, (C.4)

where L and L̂ are defined in (8e) and (8f), respectively,

S(Q) = {Q̃ : Q̃X1 = PX1 , Q̃X2Y1 = QX2Y1}, and

Ŝ(Q̃) = {Q̂ : Q̂X2 = PX2 , Q̂X1Y1 = Q̃X1Y1}. In [21],

it was shown that Ê1(Q,R2) can be equivalently expressed in

terms of the minimum between the following terms:

Ê′
1(Q,R2) , min

Q̃∈S(Q),max[t0(Q),f(Q)]≤f(Q̃)
Ĩ(Q̃), (C.5)

Ê′′
1 (Q,R2) , min

Q̃∈S(Q),Q̂∈Ŝ(Q̃),Î(Q̂)≤R2

max[t0(Q),f(Q)]≤f(Q̂)+R2−Î(Q̂)

Ĩ(Q̃), (C.6)

Ê′′′
1 (Q,R2) , min

Q̃∈S(Q),Q̂∈Ŝ(Q̃)

t0(Q),f(Q)≤f(Q̂)

{

Ĩ(Q̃) +
[

Î(Q̂)−R2

]

+

}

.

(C.7)

Using the same arguments as in [21], it can be shown that

Ê2(Q,R2) can be equivalently be expressed as

Ê′′
2 (Q,R2) , min

Q̃∈S(Q),Q̂∈Ŝ(Q̃)

max[t0(Q),f(Q)]≤f(Q̂)

[

IQ̂(X2;Y1)−R2

]

+
.

(C.8)

Accordingly, from (C.5)-(C.7) and (C.8), we see that (C.3)

and (C.4) can be expressed in terms of convex optimization

problems, namely, for a given QY1|X1X2
, the terms Ê1(Q,R2)

and Ê2(Q,R2) (i.e., the inner terms of the minimization

problem in (C.1)) can be calculated efficiently, as desired.

Finally, we discuss the computation of (C.1). Generally

speaking, the minimization over QY1|X1X2
might not be a
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Ê(1)(QZ4
1Y1

, R22) , min
Q̃: Q̃∈S{2,3,4}(Q)

[

IQ̃(Z1;Z
4
2 , Y1) + E7(Q̃Z4

1Y1
, QZ4

1Y1
)
]

, (A.7)

Ê(2)(QZ4
1Y1

, R22) , min
Q̃: Q̃∈S{1,3,4}(Q)

[

IQ̃(Z2;Z1, Z
4
3 , Y1) + E7(Q̃Z4

1Y1
, QZ4

1Y1
)
]

, (A.8)

Ê
(1)
8 (QZ4

1Y1
, R22) , min

Q̃: Q̃∈S{2,3,4}(Q)
E6(Q̃Z4

1Y
, QZ4

1Y1
), (A.9)

Ê
(2)
8 (QZ4

1Y1
, R22) , min

Q̃: Q̃∈S{1,3,4}(Q)
E5(Q̃Z4

1Y
, QZ4

1Y1
), (A.10)

Ê
(3)
1 (QZ4

1Y1
, R22) , min

Q̃: Q̃∈S{3,4}(Q)

[

IQ̃(ZU(1);Z
4
3 , Y1|Z12\U(1)) + E5(Q̃Z4

1Y1
, QZ4

1Y
)
]

, (A.11)

Ê
(3)
2 (QZ4

1Y1
, R22) , min

Q̃: Q̃∈S{3,4}(Q)

[

IQ̃(ZU(2);Z
4
3 , Y1|Z12\U(2)) + E6(Q̃Z4

1Y1
, QZ4

1Y
)
]

, (A.12)

Ê
(3)
4 (QZ4

1Y1
, R22) , min

Q̃: Q̃∈S{3,4}(Q)

[

IQ̃(ZU(4);Z
4
3 , Y1|Z12\U(4)) + E7(Q̃Z4

1Y1
, QZ4

1Y
)
]

, (A.13)

Ê
(3)
8 (QZ4

1Y1
, R22) , min

Q̃: Q̃∈S{3,4}(Q)
E3(Q̃Z4

1Y
, QZ4

1Y1
), (A.14)

Ê
(4)
1 (QZ4

1Y1
, R22) , min

Q̃: Q̃∈S{2,4}(Q)

[

IQ̃(ZU(1);Z2, Z4, Y1|Z13\U(1)) + E4(Q̃Z4
1Y1

, QZ4
1Y1

)
]

, (A.15)

Ê
(4)
3 (QZ4

1Y1
, R22) , min

Q̃: Q̃∈S{2,4}(Q)

[

IQ̃(ZU(3);Z2, Z4, Y1|Z13\U(3)) + E6(Q̃Z4
1Y1

, QZ4
1Y1

)
]

, (A.16)

Ê
(4)
5 (QZ4

1Y1
, R22) , min

Q̃: Q̃∈S{2,4}(Q)

[

IQ̃(ZU(5);Z2, Z4, Y1|Z13\U(5)) + E7(Q̃Z4
1Y1

, QZ4
1Y1

)
]

, (A.17)

Ê
(4)
8 (QZ4

1Y1
, R22) , min

Q̃: Q̃∈S{2,4}(Q)
E2(Q̃Z4

1Y1
, QZ4

1Y1
), (A.18)

Ê
(5)
2 (QZ4

1Y1
, R22) , min

Q̃: Q̃∈S{1,4}(Q)

[

IQ̃(ZU(2);Z1, Z4, Y1|Z23\U(2)) + E4(Q̃Z4
1Y1

, QZ4
1Y1

)
]

, (A.19)

Ê
(5)
3 (QZ4

1Y1
, R22) , min

Q̃: Q̃∈S{1,4}(Q)

[

IQ̃(ZU(3);Z1, Z4, Y1|Z23\U(3)) + E5(Q̃Z4
1Y1

, QZ4
1Y1

)
]

, (A.20)

Ê
(5)
6 (QZ4

1Y1
, R22) , min

Q̃: Q̃∈S{1,4}(Q)

[

IQ̃(ZU(6);Z1, Z4, Y1|Z23\U(6)) + E7(Q̃Z4
1Y1

, QZ4
1Y1

)
]

, (A.21)

Ê
(5)
8 (QZ4

1Y1
, R22) , min

Q̃: Q̃∈S{1,4}(Q)
E1(Q̃Z4

1Y1
, QZ4

1Y1
), (A.22)

Ê(6)
u (QZ4

1Y1
, R22) , min

Q̃: Q̃∈S{4}(Q)

[

IQ̃(ZU(u);Z4, Y1|Z123\U(u)) + Eu(Q̃Z4
1Y1

, QZ4
1Y1

)
]

, u ∈ {1, . . . , 7} , (A.23)

Ê
(6)
8 (QZ4

1Y1
, R22) , min

Q̃: Q̃∈S{4}(Q)
E0(Q̃Z4

1Y1
, QZ4

1Y1
), (A.24)

E
(u)
HK (QZ4

1Y1
) , max

{

[

Ê(u)(QZ4
1Y1

, R22)−Ru

]

+
, Ê

(u)
8 (QZ4

1Y1
, R22)

}

, u ∈ {1, 2} , (A.25)

E
(3)
HK (QZ4

1Y1
) , max

{

max
u∈{1,2,4}

[

Ê(3)
u (QZ4

1Y1
, R22)−Ru

]

+
, Ê

(3)
8 (QZ4

1Y1
, R22)

}

, (A.26)

E
(4)
HK (QZ4

1Y1
) , max

{

max
u∈{1,3,5}

[

Ê(4)
u (QZ4

1Y1
, R22)−Ru

]

,
Ê

(4)
8 (QZ4

1Y1
, R22)

}

, (A.27)

E
(5)
HK (QZ4

1Y1
) , max

{

max
u∈{2,3,6}

[

Ê(5)
u (QZ4

1Y1
, R22)−Ru

]

+
, Ê

(5)
8 (QZ4

1Y1
, R22)

}

, (A.28)

E
(6)
HK (QZ4

1Y1
) , max

{

max
u∈{1:7}

[

Ê(6)
u (QZ4

1Y1
, R22)−Ru

]

+
, Ê

(6)
8 (QZ4

1Y1
, R22)

}

, (A.29)

ẼHK(R11, R12, R21, R22) , min
Q

Y1|Z4
1
:

QZi
=PZi

, 1≤i≤4

[

D(QY1|Z4
1
||WY1|Z4

1
|PZ4

1
) + min

u∈{1:6}
E

(u)
HK (QZ4

1Y1
)

]

. (A.30)

convex problem, and thus one should resort to global opti- mization methods (e.g., a simple algorithm is an exhaustive
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Pr







⋃

i,j

{

N
⋃

l=1

{

V1(i) ∈ Al,0,

K−1
⋂

k=1

(V1(i), Vk+1(j)) ∈ Al,k,

K
⋂

k=2

Vk(j) ∈ Gl,k

}}







≤ min

{

1, L1E

[

min

{

1, L2Pr

{

N
⋃

l=1

{

V1 ∈ Al,0,
K−1
⋂

k=1

(V1, Vk+1) ∈ Al,k,
K
⋂

k=2

Vk ∈ Gl,k

}∣

∣

∣

∣

∣

V1

}}]

,

L2E

[

min

{

1, L1Pr

{

N
⋃

l=1

{

V1 ∈ Al,0,
K−1
⋂

k=1

(V1, Vk+1) ∈ Al,k,
K
⋂

k=2

Vk ∈ Gl,k

}∣

∣

∣

∣

∣

{Vk}
K
k=2

}}]}

(B.1)

Pr







⋃

i,j

{

N
⋃

l=1

{

V1(i) ∈ Al,0,

K−1
⋂

k=1

(V1(i), Vk+1(j)) ∈ Al,k,

K
⋂

k=2

Vk(j) ∈ Gl,k

}}







≤ L1Pr







⋃

j

{

N
⋃

l=1

{

V1 ∈ Al,0,

K−1
⋂

k=1

(V1, Vk+1(j)) ∈ Al,k,

K
⋂

k=2

Vk(j) ∈ Gl,k

}}







≤ L1E







Pr







⋃

j

{

N
⋃

l=1

{

V1 ∈ Al,0,
K−1
⋂

k=1

(V1, Vk+1(j)) ∈ Al,k,
K
⋂

k=2

Vk(j) ∈ Gl,k

}}

∣

∣

∣

∣

∣

∣

V1













(B.2)

Pr







⋃

i,j

{

N
⋃

l=1

{

V1(i) ∈ Al,0,

K−1
⋂

k=1

(V1(i), Vk+1(j)) ∈ Al,k,

K
⋂

k=2

Vk(j) ∈ Gl,k

}}







≤ L1E

[

min

{

1, L2Pr

{

N
⋃

l=1

{

V1 ∈ Al,0,

K−1
⋂

k=1

(V1, Vk+1) ∈ Al,k,

K
⋂

k=2

Vk ∈ Gl,k

}}∣

∣

∣

∣

∣

V1

}]

(B.3)

min

{

1, L2Pr

{

N
⋃

l=1

{

V1 ∈ Al,0,

K−1
⋂

k=1

(V1, Vk+1) ∈ Al,k,

K
⋂

k=2

Vk ∈ Gl,k

}∣

∣

∣

∣

∣

V1

}}

= I {F}min

{

1, L2Pr

{

N
⋃

l=1

{

V1 ∈ Al,0,

K−1
⋂

k=1

(V1, Vk+1) ∈ Al,k,

K
⋂

k=2

Vk ∈ Gl,k

}∣

∣

∣

∣

∣

V1

}}

+ I {Fc}min

{

1, L2Pr

{

N
⋃

l=1

{

V1 ∈ Al,0,

K−1
⋂

k=1

(V1, Vk+1) ∈ Al,k,

K
⋂

k=2

Vk ∈ Gl,k

}∣

∣

∣

∣

∣

V1

}}

= I {F}min

{

1, L2Pr

{

N
⋃

l=1

{

V1 ∈ Al,0,

K−1
⋂

k=1

(V1, Vk+1) ∈ Al,k,

K
⋂

k=2

Vk ∈ Gl,k

}∣

∣

∣

∣

∣

V1

}}

≤ I {F} (B.4)

L1E

[

min

{

1, L2Pr

{

N
⋃

l=1

{

V1 ∈ Al,0,

K−1
⋂

k=1

(V1, Vk+1) ∈ Al,k,

K
⋂

k=2

Vk ∈ Gl,k

}∣

∣

∣

∣

∣

V1

}}]

≤ L1L2Pr

{

N
⋃

l=1

{

V1 ∈ Al,0,

K−1
⋂

k=1

(V1, Vk+1) ∈ Al,k,

K
⋂

k=2

Vk ∈ Gl,k

}}

(B.5)

search over a fine grid of probability simplex). Nonetheless,

in the following we somewhat simplify these optimizations.

We first see that (C.1) can be rewritten as

Ẽ1(R1, R2) , min
{

Ẽ′
1(R1, R2), Ẽ

′′
1 (R1, R2)

}

(C.9)
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where

Ẽ′
1(R1, R2) = inf

Q: R1<Ê1(Q,R2)−Ê2(Q,R2)
{

D(Q||W ) + Ê1(Q,R2)−R1

}

, (C.10)

and

Ẽ′′
1 (R1, R2) = inf

Q: R1≥Ê1(Q,R2)−Ê2(Q,R2)
{

D(Q||W ) + Ê2(Q,R2)
}

. (C.11)

Let us analyze Ẽ′
1(R1, R2) as a function of R1. For R1 = 0,

we have

Ẽ′
1(0, R2) = inf

Q

{

D(Q||W ) + Ê1(Q,R2)
}

. (C.12)

Now, letting the minimizer be Q∗
Y1|X1X2

∣

∣

∣

R1=0
, and defin-

ing the critical rate R1,crit = Ê1(Q
∗
Y1|X1X2

∣

∣

∣

R1=0
, R2) −

Ê2(Q
∗
Y1|X1X2

∣

∣

∣

R1=0
, R2), it is easily noticed that for R1 ≤

R1,crit, the exponent is an affine function

Ẽ′
1(R1, R2) = Ẽ′

1(0, R2)−R1. (C.13)

Furthermore, for R1 ≤ R1,crit, it is readily seen that

Ẽ1(R1, R2) = Ẽ′
1(R1, R2). (C.14)

For R1 > R1,crit, however, since the optimization of Q is not

convex, the term cannot be simplified anymore.

APPENDIX D

PROOF OF (10)

First, note that the following region:

R1 < IW (X1;Y1|X2), (D.1)

R1 < IW (X1;Y1) + [IW (X2;Y1|X1)−R2]+ , (D.2)

evaluated with PX1X2Y1 = PX1 × PX2 × WY1|X1X2
, is

equivalent to (10). Thus, to show that (10) is achievable, it

suffices to show that the above region is achievable. Now,

recall that the ordinary random coding exponent, in the single-

user setting, is given by

Er(R) = min
Q

{

D(QY |X ||W |PX) + [IQ(X ;Y )−R]+

}

.

From [25, Lemma 9] it can be shown that Er(R) can be

rewritten as

Er(R) = min
(Q,Q̃)∈D:f(Q̃)≤f(Q)

{

D(Q̃Y |X ||W |PX)

+ [IQ(X ;Y )−R]+

}

, (D.3)

where f(Q) = EQ {logW (Y |X)}, and D is the set of (Q, Q̃)
distributions such that QY = Q̃Y , and QX = Q̃X = PX . The

last representation is very similar, in some sense, to the error

exponent formula in Theorem 1. It can be seen that Er(R) is

positive as long as

R < min
Q:QY =WY ,QX=PX ,f(W )≤f(Q)

IQ(X ;Y ). (D.4)

Obviously, we should get that R < IW (X ;Y ), namely,

the minimum in (D.4) should be equal to IW (X ;Y ). To

see that this is indeed the case, note that since the above

optimization problem is convex, the linear constraint is met

with equality, and we note that f(W ) = −HW (Y |X),
f(Q) = −D(Q||W |PX) − HQ(Y |X), and IQ(X ;Y ) =
HW (Y )−HQ(Y |X). Using the last facts, we get

R < min
Q:QY =WY ,QX=PX ,f(W )=f(Q)

IQ(X ;Y )

= min
Q:QY =WY ,QX=PX ,

HW (Y |X)=D(Q||W |PX)+HQ(Y |X)

HW (Y )−HQ(Y |X)

= IW (X ;Y )

+ min
Q:QY =WY ,QX=PX ,

HW (Y |X)=D(Q||W |PX)+HQ(Y |X)

D(Q||W |PX)

= IW (X ;Y ),

as required.

In our case, using the equivalent representation of our error

exponent in (C.5)-(C.7), we readily get that the error exponent

in Theorem 1 is positive if6:

R1 < min
Q̃∈S(W ),max[t0(W ),f(W )]≤f(Q̃)

Ĩ(Q̃), (D.5)

R1 < min
Q̃∈S(W ),Q̂∈Ŝ(Q̃),Î(Q̂)≤R2

max[t0(W ),f(W )]≤f(Q̂)+R2−Î(Q̂)

Ĩ(Q̃), (D.6)

R1 < min
Q̃∈S(W ),Q̂∈Ŝ(Q̃)

max[t0(W ),f(W )]≤f(Q̂)

{

Ĩ(Q̃) +
[

Î(Q̂)−R2

]

+

}

(D.7)

where we recall that Ĩ(Q̃) ≡ IQ̃(X1;X2, Y1) and Î(Q̂) ≡
IQ̂(X2;X1, Y1). In the following, we show that (D.5) and

(D.7) correspond to (D.1) and (D.2), respectively. Finally, we

show that (D.5) is dominated by (D.5) and (D.7), and thus

superfluous. Indeed, for (D.5), we have

min
Q̃∈S(W ),max[t0(W ),f(W )]≤f(Q̃)

Ĩ(Q̃)

= min
Q̃Y |X2

=WY |X2
,max[t0(W ),f(W )]≤f(Q̃)

IQ̃(X1;X2, Y )

≥ min
Q̃Y |X2

=WY |X2
,f(W )≤f(Q̃)

IQ̃(X1;X2, Y ). (D.8)

Now, as before, we note that (using the fact that the minimiza-

tion over Q̃ in (D.8) is such that Q̃Y |X2
= WY |X2

)

IQ̃(X1;X2, Y ) = IQ̃(X1;X2) + IQ̃(X1;Y |X2) (D.9)

= IQ̃(X1;X2) +HW (Y |X2)

−HQ̃(Y |X1, X2), (D.10)

f(W ) = −HW (Y |X1, X2), (D.11)

and

f(Q̃) = −D(Q̃||W |PX)−HQ̃(Y |X1, X2). (D.12)

Thus, we have (D.13), shown at the top of the next page, where

6To show that (10) is achievable, we consider a lower bound
on Ẽ(R1, R2), which ignores the contribution of Ê2(Q,R2), namely,

minQ

{

D(Q||W |PX) +
[

Ê1(Q,R2) −R1

]

+

}

.
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min
Q̃Y |X2

=WY |X2
,f(W )≤f(Q̃)

IQ̃(X1;X2, Y )

= min
Q̃Y |X2

=WY |X2
,

D(Q̃||W |PX)+HQ̃(Y |X1,X2)≤HW (Y |X1,X2)

IQ̃(X1;X2) +HW (Y |X2)−HQ̃(Y |X1, X2)

≥ IW (X1;Y |X2) + min
Q̃Y |X2

=WY |X2
,

D(Q̃||W |PX )+HQ̃(Y |X1,X2)≤HW (Y |X1,X2)

IQ̃(X1;X2) +D(Q̃||W |PX)

= IW (X1;Y |X2) (D.13)

the inequality follows from the fact that −HQ̃(Y |X1, X2) ≥

D(Q̃||W |PX)−HW (Y |X1, X2) induced by the optimization

constraint, and the last equality is achieved by taking Q̃ = W
and Q̃X1,X2 = PX1PX2 . The constraint in (D.7) is handled

in a similar manner. Indeed, using the same manipulations,

we get (D.14), shown at the top of the next page, where

the inequality is due to the fact that −HQ̃(Y |X1, X2) ≥

D(Q̃||W |PX)−HW (Y |X1, X2), the second equality follows

by taking Q̂ = W , and the last equality follows by taking Q̃
such that X2 − Y −X1 is a Markov chain.

Finally, we show that the constraint in (D.6) is superfluous.

To this end, we will show that for R2 < IW (X2;Y |X1),
the r.h.s. of (D.6) reduces to R1 + R2 < I(X1, X2;Y ),
which is dominated by (D.5) and (D.7) (or, equivalently, by

(D.13) and (D.14)), and for R2 ≥ IW (X2;Y |X1), (D.6)

reduces to R1 < IW (X1;Y ), already supported by (D.7)

(see (D.14)). Whence, (D.6) is redundant. Indeed, for R2 ≥
IW (X2;Y |X1), the r.h.s. of (D.6) can be lower bounded

as in (D.15), presented at the top of the next page, where

in (a) we use the definition of t0(W ) in (8b), (b) follows

from the assumption that R2 ≥ IW (X2;Y |X1), (c) is due to

(D.11)-(D.12), (d) follows from the fact that −HQ̃(Y |X1) ≥

D(Q̂||W |PX) + IQ̂(X1;X2) − HW (Y |X1) induced by the

optimization constraint, and (e) is achieved by taking Q̂ = W ,

Q̂X1X2 = Q̂X1Q̂X2 , and Q̃ such that X2 − Y − X1 is a

Markov chain. Thus, for R2 ≥ IW (X2;Y |X1), we obtained

that R1 < IW (X1;Y ), as required. On the other hand,

for R2 < IW (X2;Y |X1), the r.h.s. of (D.6) can be lower

bounded as shown in (D.16), given in the next page, where

(a) is due to (D.11)-(D.12), (b) is because Q̂ ∈ S(Q̃) and

thus HQ̃(Y |X1) = HQ̂(Y |X1), and (c) follows from the

fact that −HQ̂(Y |X1) ≥ D(Q̂||W |PX) + IQ̂(X1;X2) −
HW (Y |X1, X2)−R2 induced by the optimization constraint.

Whence, we obtained that R1 + R2 ≤ IW (X1, X2;Y ), as

required.
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min
Q̃Y |X2

=WY |X2
,Q̂Y |X1

=Q̃Y |X1

D(Q̂||W |PX)+H
Q̂
(Y |X1,X2)≤HW (Y |X1,X2)

{

Ĩ(Q̃) +
[

IQ̂(X1;X2) +HQ̃(Y |X1)−HQ̂(Y |X1, X2)−R2

]

+

}

≥ min
Q̃Y |X2

=WY |X2
,Q̂Y |X1

=Q̃Y |X1

D(Q̂||W |PX)+H
Q̂
(Y |X1,X2)≤HW (Y |X1,X2)

{

Ĩ(Q̃) +
[

IQ̂(X1;X2) +D(Q̂||W |PX) +HQ̃(Y |X1)

−HW (Y |X1, X2)−R2

]

+

}

= min
Q̃Y |X2

=WY |X2
,Q̃Y |X1

=WY |X1

{

IQ̃(X1;Y ) + IQ̃(X1;X2|Y ) +
[

HQ̃(Y |X1)−HW (Y |X1, X2)−R2

]

+

}

= min
Q̃Y |X2

=WY |X2
,Q̃Y |X1

=WY |X1

{

IW (X1;Y ) + IQ̃(X1;X2|Y ) + [HW (Y |X1)−HW (Y |X1, X2)−R2]+

}

= IW (X1;Y ) + [IW (X2;Y |X2)−R2]+ , (D.14)

min
Q̃∈S(W ),Q̂∈Ŝ(Q̃),Î(Q̂)≤R2

max[t0(W ),f(W )]≤f(Q̂)+R2−Î(Q̂)

Ĩ(Q̃) ≥ min
Q̃∈S(W ),Q̂∈Ŝ(Q̃),Î(Q̂)≤R2

t0(W )≤f(Q̂)+R2−Î(Q̂)

Ĩ(Q̃)

(a)
= min

Q̃∈S(W ),Q̂∈Ŝ(Q̃),Î(Q̂)≤R2

max
Q̂: Q̂∈S(W ),Î(Q̂)≤R2

[f(Q̂)−I
Q̂
(X2;X1,Y )]≤f(Q̂)−I

Q̂
(X2;X1,Y )

IQ̃(X1;X2, Y )

(b)

≥ min
Q̃∈S(W ),Q̂∈Ŝ(Q̃),Î(Q̂)≤R2

f(W )−IW (X2;X1,Y )≤f(Q̂)−I
Q̂
(X2;X1,Y )

IQ̃(X1;X2, Y )

(c)
= min

Q̃∈S(W ),Q̂∈Ŝ(Q̃),Î(Q̂)≤R2

−HW (Y |X1)≤−D(Q̂||W |PX)−I
Q̂
(X1;X2)−HQ̃(Y |X1)

HW (Y )−HQ̃(Y |X1) + IQ̃(X1;X2|Y )

(d)

≥ IW (X1;Y ) + min
Q̃∈S(W ),Q̂∈Ŝ(Q̃),Î(Q̂)≤R2

−HW (Y |X1)≤−D(Q̂||W |PX )−I
Q̂
(X1;X2)−HQ̃(Y |X1)

D(Q̂||W |PX) + IQ̂(X1;X2) + IQ̃(X1;X2|Y )

(e)
= IW (X1;Y ) (D.15)

min
Q̃∈S(W ),Q̂∈Ŝ(Q̃),Î(Q̂)≤R2

max[t0(W ),f(W )]≤f(Q̂)+R2−Î(Q̂)

Ĩ(Q̃) ≥ min
Q̃∈S(W ),Q̂∈Ŝ(Q̃),Î(Q̂)≤R2

f(W )≤f(Q̂)+R2−Î(Q̂)

Ĩ(Q̃)

(a)
= min

Q̃∈S(W ),Q̂∈Ŝ(Q̃),Î(Q̂)≤R2

−HW (Y |X1,X2)≤−D(Q̂||W |PX )−H
Q̂
(Y |X1)−I

Q̂
(X1;X2)+R2

HW (Y )−HQ̃(Y |X1) + IQ̃(X1;X2|Y )

(b)
= min

Q̃∈S(W ),Q̂∈Ŝ(Q̃),Î(Q̂)≤R2

−HW (Y |X1,X2)≤−D(Q̂||W |PX)−H
Q̂
(Y |X1)−I

Q̂
(X1;X2)+R2

HW (Y )−HQ̂(Y |X1) + IQ̃(X1;X2|Y )

(c)

≥ IW (X1, X2;Y )−R2

+ min
Q̃∈S(W ),Q̂∈Ŝ(Q̃),Î(Q̂)≤R2

−HW (Y |X1,X2)≤−D(Q̂||W |PX)−H
Q̂
(Y |X1)−I

Q̂
(X1;X2)+R2

D(Q̂||W |PX) + IQ̂(X1;X2) + IQ̃(X1;X2|Y )

≥ IW (X1, X2;Y )−R2 (D.16)
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