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Abstract

In this paper, we study the problem of simulating a discrete memoryless channel (DMC) from
another DMC under an average-case and an exact model. We present several achievability and
infeasibility results, with tight characterizations in special cases. In particular for the exact model,
we fully characterize when a binary symmetric channel (BSC) can be simulated from a binary erasure
channel (BEC) when there is no shared randomness. We also provide infeasibility and achievability
results for simulation of a binary channel from another binary channel in the case of no shared
randomness. To do this, we use properties of Rényi capacity of a given order. We also introduce a
notion of “channel diameter" which is shown to be additive and satisfy a data processing inequality.

Index terms— Channel Simulation, Coordination, Point to Point channel, Broadcast, BIBO, OSRB.

1 Introduction

Characterizing when a stochastic resource, such as a channel, can simulate another stochastic resource
is of theoretical and practical interest. In particular, this general problem relates to the question of how
much randomness one can one distill from an imperfect stochastic resource, or how much randomness
is required to synthesis a given stochastic resource (e.g. see [20, 21]). In this work, we are primarily
interested in channels as stochastic resources, and whether one can use a channel to simulate another
channel. As another example, assume that we have designed an error-correction code for an intended
channel. But, it turns out that the actual channel differs from the intended channel. Then, one may wish
to augment the wrong channel so that the same error-correction code can be utilized for even the wrong
channel.

As a concrete example, consider a scenario in which memoryless copies of a BEC with erasure prob-
ability e from Alice to Bob is available. Alice and Bob aim to use this resource to simulate memoryless
copies of a BSC channel with crossover probability p. We require that the number of consumed BECs
to be equal to the number of generated BSCs. This is clearly possible when p € [5, %], since Bob can
degrade the output of the BEC channel by mapping the erasure symbol to 0 or 1 with equal probabilities
(see Fig. . On the other hand, channel simulation is impossible when p € [0, hil(e)), since the capacity
of the consumed erasure channel should be greater than or equal to the capacity of the simulated BSC
channel. Then, the question is whether channel simulation is possible when p € [hfl(e), %) Moreover,
what would be the answer, if Alice and Bob are additionally provided with shared randomness at a limited
rate? The answer to this question depends whether we want to approximately or exactly simulate a given
channel (the notion of approximate simulation is made precise later). For instance, in the presence of
infinite shared random randomness, any two channels of equal capacity can approximately simulate one
another [I][2]. As a result, in the presence of infinite randomness, approximate BEC to BSC simulation
is possible if and only if p € [A™!(¢), %] . On the other hand, we show in this work that exact simulation
is possible if and only if p € [%, %] in presence of no shared randomness. Thus, the answers to the
above questions depend on the amount of shared randomness and the notion of channel simulation we

are considering.
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Figure 2: Channel simulation in absence of common randomness.

The channel simulation problem can be described as follows: Alice has an x™ sequence, and n memo-
ryless copies of the channel p(g|Z) as a resource. She creates " as a (stochastic) function of 2™, and sends
it to Bob over n copies of the channel p(g|Z). Bob receives "™ and passes it through another stochastic
map to generate y™. Their goal is that the induced channel, which maps =™ to y", to be exactly equal,
or e-close to n copies of a target memoryless channel p(y|x), for some sufficiently small e.

To formally define the simulation problem, one has to specify a model for the input sequences, x™.
Furthermore, one should also specify the simulation error e. Here, we consider two models of worst-
case and average-case for the input sequence, and two models of asymptotically reliable (e — 0) and
exact (¢ = 0) for the error. Briefly speaking, in the worst-case model we demand reliable simulation
for all possible input sequences z™. In the average-case model, on the other hand, we assume that
the input X™ is i.i.d. according to some distribution p(z). We use the total variation distance between
the simulated channel and the desired channel to measure the performance of the simulation protocol.
In an asymptotically reliable simulation, we want the total variation distance to vanish asymptotically,
whereas in the exact simulation we want it to be exactly zero. All in all, three models of channel
simulation emerges:

e average-case with asymptotically vanishing distortion,
e worst-case with asymptotically vanishing distortion,
e exact model.

In the exact model, the zero distortion constraint implies exact simulation for all possible input se-
quences z". The average-case model would require approximate channel simulation for most typical
sequences x". Finally, the worst-case model with asymptotically vanishing distortion requires approxi-
mate channel simulation for all sequences z".

Another aspect of the channel simulation problem is the existence or lack thereof of shared ran-
domness. Thus, any of the models can be conceived when limited share randomness exists between the
transmitter and the receiver. We would like to emphasize that one can also conceive other notions of
channel simulation, which we do not consider in this work, e.g., average distortion (d-distance) measure as
in [18, 19, 20], agreement probability as in [22], the empirical coordination of [23] or the exact simulation
of [5]; see also [6], [7].

While the problem of simulating an arbitrary channel from another one has been formally defined in
the literature, e.g. in [§], but only the following special cases are studied in the literature:
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Figure 3: Simulation of p(y|z) using p(§|Z) using shared randomness. (Top figure) the general channel simulation problem for a
point-to-point channel (Bottom figure) In the average-case model, the input to the channel, i.e., X is assumed to be i.i.d.

Simulation of a noiseless link: Suppose that we would like to simulate a noiseless link from a given
channel p(g|Z). In both the average-case and worst-case asymptotic models, a noiseless link can be
simulated with p(g|Z) only if its rate is less than the Shannon capacity of p(y|Z). Indeed, channel
simulation in this special case, corresponds to the problems of computing the average probability of error
capacity, and maximum probability of error capacity of p(g|Z) which are known to be equal. Similarly,
for exact simulation, the rate of the noiseless link should be less than the zero-error capacity of p(g|z).
Shared randomness does not affect the zero-error and average error capacity of a channel, hence is useless
for simulation of a noiseless link.

Simulation with a noiseless link: Conversely, suppose that we would like to simulate a channel
p(y|z) from a noiseless link as well as limited shared randomness. The reverse Shannon theorem shows
the ability of a noiseless link to simulate a noisy channel of equal capacity in the presence of infinite
shared randomness for the average-case asymptotic model [I]. In other words, a noiseless link whose rate
is equal to the capacity of the channel p(y|x), is sufficient for simulating the channel p(y|z). Therefore,
all channels with the same capacity are equivalent in the presence of infinite shared randomness for the
average-case asymptotic model. However, the assumption of infinite shared randomness is crucial here.
This is demonstrated by the result of Cuff in [2].

In the exact model, we saw above that simulation of a noiseless link from a given channel reduces to the
zero-error capacity of a channel, and the amount of shared randomness is not relevant. Unfortunately
computing the zero-error capacity of a channel is an open problem. Fortunately, the reverse problem has
a clean solution when infinite shared randomness is available, given in [8]. While the authors in [§] do
not explicitly express their solution in terms of the Rényi mutual information, one can observe that their
answer is the Rényi capacity of order infinity of the channel (see [6] for a discussion).

1.1 Main results

In this paper, we only study the two models of exact and asymptotic average-case. We also study the
problem of simulating a broadcast channel with another broadcast channel. The main contributions of
this paper are as follows.

Asymptotic average-case model: The channel simulation problem in the asymptotic average-case
model is essentially a joint source-channel coding problem as we compress and code X™ into the channel
inputs X™. From a mathematical perspective, the problem is complicated due to the following fact:
consider the joint pmf on random variables X ”,X' " ?”,Y" induced by a simulation code of length n.
In the case of no-shared randomness, we have the Markov chain X" — X" — Y™ — Y™ However,
X", X " }7”, Y™ do not necessarily have a joint i.i.d. distribution (even in the average-case model we only
require X" Y to be almost i.i.d.).

For this model, we provide an inner bound for the point-to-point channel simulation problem using
the OSRB technique [9]. This inner bound is based on a “hybrid coding" scheme to perform joint source-
channel coding. We also provide an outer bound. Then, we compare these bounds for simulation of a
BSC channel from a BEC channel in the absence of shared common randomness. We show that in this
example, the degradation strategy is sub-optimal for any non-uniform input distribution.



Exact model: Our main result here are two infeasibility results in the absence of shared common
randomness. Our first result is based on the observation that if channel p(y|z) can be exactly simulated
using p(g|Z), then the channel p(g|%) must have a better error exponent than p(y|x) for all communication
rates. Error exponents are known to have a characterization in terms of Rényi capacity. Our first
infeasibility result is also in terms of Rényi capacity. Our second infeasibility result is in terms a quantity
that we introduce and name the “channel diameter". Just like the Rényi capacity of a channel, this
quantity is shown to be additive and satisfy a data processing inequality. We use these two infeasibility
results to show that the degradation strategy is optimal for simulation of a BSC channel from a BEC
channel in the absence of shared common randomness. We also study when we can simulate a binary
input binary output channel (BIBO) from another BIBO channel.

Broadcast channel simulation: We consider an extension of the point-to-point channel simulation
problem under the asymptotic average-case model. We apply the OSRB technique to the broadcast
channel simulation problem and present an inner bound for it. Simulation of a broadcast network was
stated as an open problem in [10] p.100].

The rest of the paper is organized as follows: In Section [2] we set up the notation. In Section [2.2]
two models for channel simulation are introduced. In Sections and we provide our results for a
point-to-point channel. Section [3.3]contains our results for the broadcast channel. In Section ] our result
for exact channel simulation is presented. The proofs are included in Section

2 Notation and preliminaries

Throughout this paper, we restrict ourselves to discrete random variables, taking values in finite sets. We
generally use ¢(-) to denote the pmf’s induced by a code, and p(-) to denote the desired i.i.d. pmf’s. We
also use w as a random variable to denote shared randomness. To distinguish the uniform distribution
we use the notation p“. The total variation distance between two pmf’s p and ¢ on the same alphabet X,
is denoted by ||p—q|[1. We say that p ~ q if |[p—q|l1 < €. A sequence of random variables X1, Xo,--- , X
is denoted by X[.;) where [1: j] = {1,2,---,j}, and @ = 1 — a. We use H(X) to denote the entropy
of a random variable X and h(p) to denote the binary entropy of a Bernoulli random variable with
parameter p. All the logarithms in this paper are in base 2.

We frequently use the concept of random pmf’s, which we denote by capital letters (e.g., Px). To be
more precise, let A% be the probability simplex over the set X. A random pmf Py is indeed a probability
distribution over A¥. In other words, if we use € to denote some sample space, we may have a random
variable Py (x;w) such that for any w € Q and z € X we have Px(z;w) > 0, and ) Px(z;w) = 1 for
all w. Then, Px(.;w) is a vector of random variables which resembles a random distribution. We denote
such a random pmf by Px.

We can definite random Pxy on a product set X x Y similarly. We note that we can continue to
use the law of total probability with random pmf’s (e.g., to write Px(z) = >_, Px,y (2, y) meaning that
Px(z;w) = >, Px,y(2,y;w) for all w) and conditional probability pmf’s (e.g., to write Py|x(y[z) =

Pxy (z,y) Pxy (z,y;w)

P(z)  Meaning that Py xw(ylz) = Pr(20) for all w).

2.1 Rényi divergence

Definition 1. Rényi divergence of order «, or the a-Rényi divergence, for a € (0,1) U (1,00), between
two pmf’s is defined as

1
Da(pllg) == log (D pla; ).

a—1
We also define

Ha(p) = ~DalpllT) = o (3" p5).

Note that limlDa (pllg) = D(pl|q) as well as limlHa (p) = H(p) which are KL divergence and Shannon
a—> a—

entropy, respectively.



It is known that Rényi divergence satisfies the data processing inequality similar to KL divergence
(see e.g., [17]).

There are several definitions for mutual information of order . Here we use Sibson’s choice [11] as
follows:

I (X;Y) = quinDa(pXY||pX “qy)

1/«
Zaillog Z[Zp p(y|x) ]

The a-capacity of a channel p(y|z) is then defined as (see [12] for a review):

Ca(p(yle)) = max Ia(X; )

1/a
:r,?(ii‘ai1 Z [ZP p(ylx) ] : (1)

In particular, the capacity of order infinity (co-capacity) is equal to

Coo(p(ylz)) = log (Z max p(ylfﬂ)> : (2)
Y

For a =1, we let Ci(p(y|x)) = C(p(y|x)) to be the Shannon’s capacity of the channel.
Interestingly, just like the Shannon capacity, the a-capacity is also additive for product channels.

Theorem 1 ([13]). For a > 0 and product of identical channels p(y™|z™) = [, p(yi|z:) we have
Ca(p(y"|2"™) = nCa(p(ylz)).

Using the data processing property for Rényi divergence, one can easily show the data processing
property for mutual information of order «:

Theorem 2 ([I4]). If X - Y — Z — W and o > 0 we have
1.(Y; Z) < In(X; W).

Lemma 1. C,(p(y|z)) is quasi-convez in p(y|z) for any o > 0.
Proof. The mapping p(y|z) — (o (Io(X;Y)) for any fixed p(z) is convex, where

t

1
a: t—i
G = ——exp(t = —)

is a monotonically increasing function [I2, Theorem 4]. Since the inverse of (, is also a monotonically
increasing function, and the composition of any convex function with an increasing function is quasi-
convex, we conclude that the mapping p(y|z) — I,(X;Y) is quasi-convex for any fixed p(x). This
implies that the mapping p(y|z) — Cy(p(y|z)) is a maximum of quasi-convex functions, and hence
quasi-convex itself. O

2.1.1 Optimal error exponent

Rényi mutual information finds an operational meaning in connection to the optimal error exponent of
(n)

a channel. Given a channel p(y|z) and a fixed transmission rate R, let P;"’ denote the error probability
of the best code with blocklength n. Then, the optimum error exponent E,,)(R), at some fixed

transmission rate R, is the supremum of —% In Pe(n) as n tends to infinity. The optimal error exponent
E(R) is also known as the channel reliability function. The channel reliability function is the same under
average and maximal notions of error probability; this can be proved using the standard argument of
pruning a code with low average probability of error to construct a code with low maximal probability
of error. It is known that FE,,,)(R) is related to capacity of order a:



Theorem 3. [Z], [25] For any rate R less than the channel capacity C, we have that

arg[g](a_l —1) (Ca(p(ylz)) = R) < Epyz)(R) < arg(aoﬁ](a_l — 1) (Calp(ylz)) — R) .

2.2 Two models for channel simulation

Consider the problem of simulating memoryless copies of the channel p(y|z) given memoryless copies of
p(y|Z) as depicted in Fig. 3| Alice’s input is denoted by X™. The shared randomness between Alice and
Bob is denoted by the random variable w, which is independent of X™ and uniformly distributed over
[1:27F]. A simulation code consists of

enc (

e A (stochastic) encoder with conditional pmf ¢**¢(z"|z",w).

dec (

e A (stochastic) decoder with conditional pmf ¢“*“(y"|g", w) .

Thus, the joint distribution induced by the code is as follows:
n
o(@ " . 2") = @) ( [[o@le) ) o™l ). 3
=1

An (n, R) ezact simulation code requires that for every z™ and y"

n

q(y"1a™) = [ [ pvile:), (4)

i=1

where ¢(y"|z™) is the pmf induced by the code.

On the other hand, an average-case simulation code assumes that Alice observesi.i.d. copies of a source
X (taking values in the finite set X and having pmf p(z)). Then an (n, R, €) average-case simulation
code would require that

oty - ﬁpm)p(mazi)
=1

<e.
1

Definition 2. The channel p(y|z) is said to be in the admissible region of the channel-rate pair (p(g]|i), R)
for the exact simulation model if one can find an (n, R) exact simulation code for some n.

The input distribution-channel pair (p(x),p(y|:c)) is said to be in the admissible region of the channel-rate
pair (p(g]]a?), R) for the asymptotic average-case model if one can find a sequence of (n, R, €,) average-case
simulation codes such that lim €, = 0.

n—oo

Clearly, exact channel simulation implies average case simulation for any arbitrary p(z).

3 Average-case model

In this section we state our results on the channel simulation problem in the average-case model. For the
proofs of these results refer to Section
3.1 Point-to-point channel: inner bound

Theorem 4. (Inner Bound) A pair (p(x),p(y|z)) is in the admissible region of the channel-rate pair
(p(glZ), R) if one can find channels p(u, &|z) and p(y|g, w) such that

p(u, T, 9, 2, y) = p(a)p(u, £[x)p(gl2)p(y|y, u), (5)
with the given marginal p(z,y) = p(z)p(y|z), and that

R+I(U;Y) > I(U; XY),
I(U;Y) > I(U; X). (6)



The main idea of the above theorem is to use an encoding scheme similar to hybrid codes, by utilizing
an auxiliary random variable to allow a coupling between the channels, as opposed to simply reducing the
resource channel to a noiseless link according to its channel capacity (see [4] for another uses of hybrid
coding).

Let us examine the following (non-optimal) general strategy for channel simulation and compare
it to the above theorem. We can always convert the channel p(j|Z) to a noiseless link of rate C' =
max,z) [ (X;Y) and then use the achievability part of the result of [2] (described in the introduction) to
simulate the channel p(y|z) from the noiseless link. This strategy is a special case of the above theorem.
Let p(#) denote the pmf that maximizes I(X;Y). Also let U in the above theorem to be of the form
U = (X,U’) where (U’,X,Y) is independent of X and satisfies X — U’ — Y. Then holds and (@)

reduces to
R+C>I(U;XY),
C>IU;X). (7)
This region has appeared in [2]. . )
In the special case of Y = f(X) where Y is a function of X, our inner bound matches (7)), which is

expected due to the converse given in [2]. To see this, take an arbitrary p(u, Z,9, x,y) satisfying . In
this case we have X —UY — Y, i.e., we have X — U’ =Y for U' = (U,Y). As a result,

IUXY)=I(U; XY)+ 1(Y; XY |U)
<I({U;XY)+ H(Y|U)
=I(U;XY) - I(U;Y)+ H(Y)
<R+IUY)-I(U;Y)+ H(Y).

Thus, R+ H(Y) = R+ I(X;Y) > I(U’; XY), and hence R+ C > I(U’; XY). To verify the second
inequality, observe that

(U X) = I(U; X) + I(Y; X|U)
< I(U;X)+ H(Y|U)
=I(U;X) - I(U;Y)+ HY)
<I(U;Y) = I(U;Y) + H(Y)
= H(Y).

This means that C > I(X;Y) = H(Y) > I(U’; X).

While the cardinality of U in the above theorem can be bounded from above by | X||V[|X||Y], it is not
easy to explicitly compute the inner bound for a given arbitrary pair of channels. In particular, it is not
easy to compute the achievable region for the BEC-BSC example that we discussed in the introduction.
Nonetheless, we show that the above inner bound gives a strictly better strategy than the degradation
scheme, for any non-uniform input pmf in the BEC to BSC simulation problem.

Theorem 5. Degradation for simulating a BSC(p) from a BEC(€) in the average-case model with non-
uniform input pmf is suboptimal. In other words, given any € € (0,1) and any non-uniform binary input
pmf p(z), there exists p < €/2 such that (p(x),BSC(p)) is in the admissible region of (BEC(e),0).

3.2 Point-to-point channel: outer bound

Theorem 6 (Outer Bound). If the input distribution-channel pair (p(z),p(y|x)) is in the admissible
region of the channel-rate pair (p(gﬂi), R), then for any non-negative reals B, v, and 8 we have

I(X;Y)+ Jomin [BI(U; XY) +~1(U; X) + 0I(U;Y)] <
max [[(X;Y)+  min _[BI(U; XY) +~7I(U; X) + 01(U;Y)] | + (B +7+20)R.  (8)
p(&) U:X-U-Y

Further, to compute the above minimums one can put the cardinality bounds of U] < |X|-|Y| and

U] < | x| 1Y)



According to [I, 2], when infinite shared randomness is available, C' = C(p(§]%)) > I(X;Y) is a
sufficient and necessary condition for channel simulation. By setting 5 = v = 6 = 0 in the above
theorem, we recover the necessity of this condition.

Corollary 1. (p(z),p(ylz)) is in the admissible region of (p(§|E),00) if and only if C = C(p(ylz)) >
1(X:Y).

A channel p(y|z) is called symmetric if for every permutation mx on X, there is a permutation 7y
on Y such that p(my (y)|rx(z)) = p(y|x). For such channels, the outer bound of the above theorem can
be simplified as the maximum on the right hand side occurs at uniform distribution p“(Z).

Theorem 7 (Outer Bound for Symmetric Channels). Suppose that the channel p(§|Z) is symmetric. If
(p(x), p(yl|z)) is in the admissible region of (p(y|Z),0), then Luz)(X;Y) > 1(X;Y) and S(p(y|E), p"(%)) C
S(p(y|z),p(x)) where

S(p(ylz), p(x)) = U {(a1,a2,a3) : a1 > I(U; XY),a9 > I(U; X),a3 > I1(U;Y)}.
X—U-Y

Remark 1. The minimum value of a; such that (aj,00,00) € S(p(y|z),p(z)) is Wyner’s common
information between X and Y, denoted by C'(X,Y).

As an application of the above theorem, we show that for any 0 < p < 1 and € < 1/2, it is impossible
to simulate a BEC(€) with uniform input distribution from a BSC(p) when there is no shared randomness.
In other words, we show that (p, BEC(¢)) is not admissible for (BSC(p),0). To prove this, observe that
the simple mutual information bound is inadequate as it gives 1 — e < 1 — h(p) which does not exclude
the possibility of simulation for the entire range of 0 < p < 1. Nevertheless, if simulation is possible,
from the above outer bound for symmetric channels, we conclude that the Wyner common information
of BEC(€) with uniform input distribution must be less than or equal to the maximum of the Wyner
common information of BSC(p) over all input distributions. For € < 1/2, the Wyner common information
of a BEC(¢) with uniform input is one [2, IV. A]. On the other hand, for any input distribution p(z) the
Wyner common information C'(X,Y") is strictly less than one, since when p € (0,1), one can write the
BSC(p) channel as the cascade of two non-trivial BSC channels X — U — Y. Then I(U; XY') will be
strictly less than H(U) which is less than one. This concludes our claim. Since the average-case model
is less restrictive than the exact model, we can conclude that simulating a BEC(¢) from a BSC(p) is
impossible under the exact model as well when 0 < p <1 and € < 1/2.

In the following theorem we characterize the set S(p(y|z),p(z)) for BSC and BEC channels with
uniform input distributions.

Theorem 8. (i) S(BEC(e),p") is the set of triples (a1, az,a2) such that for some a € [1—¢,1] we have

a; > —elog(e) +a —alog(a) + (a — 1+ €)log(a — 1 + ¢),
aQZaa
a3 >1—e—elog(e) —alog(a) + (a —1+¢€)log(a — 1 +¢€).

(ii) Assuming Conjecture |1| (stated in Section @_}, the set S(BSC(p),p") consists of triples (a1, az,as)
such that for some 0 < o, 8 < 1 with p = af8 + & we have

a1 > 1+ h(p) — h(a) — h(B),
az > 1—h(a),
az > 1—h(p).

Example 1. Let us use the above theorem as well as Theorem [7 to study the problem of simulating a
BSC' channel from a BEC channel. More precisely, we want to characterize the range of p € [0,1/2]
such that (p*,BSC(p)) is in the admissible region of (BEC(€),0). The degradation scheme (of Fig.|1)) for
this problem gives the achievability of p = €/2. On the other hand, if simulation is possible, the trivial
mutual information bound implies that 1 — € > 1 — h(p), which does not match the achievability bound.
Nevertheless, the above results give a stronger converse.



03s | £

Lower bound on BSC parametar

Figure 4: The value of p* given in (upper curve), and p = h™1(e) € [0,1/2] (lower curve) in terms of the BEC parameter ¢, for
€> € =~ 0.7729.

If simulation is possible, then for any a > 1 — € there exist o and B such that p = o8 + af and

—elog(e) +a —alog(a) + (a — 1+ €)log(a — 1 +¢€) > 1+ h(af + aB) — h(a) — h(B), (9)
a>1—h(a), (10)
1 —e—elog(e) —alog(a) + (a —1+¢€)logla —1+€) >1—h(S). (11)

In other words, simulation is possible only if p > p* with

= i lef v ol

where the minimum is over «, 8 € [0,1] satisfying @-. Observe that without loss of generality we
can restrict to o, B € [0,1/2].
We show that the above converse is stronger than 1 —e > 1 — h(p) for all values of € > €* ~ 0.7729,

where €* € (0, 1] is the unique positive solution of € = h(e*). To prove this, let us choose a =1 — € and
consider the following lower bound on p*:

P = min (af +ap), (12)

over pairs (a, ) satisfying @— with a = 1 —e. We have plotted p* in terms of € in Fig. and
compared it with p = h='(e) € [0,1/2] that one gets from the trivial upper bound. However, to show the
improvement analytically, note that equations and imply that

h(a) > e, h(B) > € — h(e).

Since € > €, we have € — h(e) > 0 and hence h(B) > 0. Thus, B € [3*,1/2] where 8* > 0 is the solution
of h(B*) = € — h(¢). Therefore, aff + aB > af* + ap*. We next have h(a) > €, and thus, a € [a*,1/2]
where o € [0,1/2] is such that h(a*) = €. Hence, after solving the minimization over all (o, 3), one
ends up with

p' 2 min (0 +af) =B +a's,

Since for any a, 8 € (0,1/2] we have h(afB + aB) > h(a), we find that h(p*) > €, which results in a
strictly better bound than h(p) > € that one gets from the trivial upper bound.
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Figure 5: Channel simulation over the Broadcast channel p(g, Z|Z).

3.3 Broadcast channel simulation

Consider the problem of simulating memoryless copies of the channel p(y, z|z) given memoryless copies
of p(y, 2|Z) as depicted in Fig. . In this setting, the input terminal observes i.i.d. copies of a source X
(taking values in finite sets X and having joint pmf p(x)). The three terminals are provided with a shared
randomness at rate R, denoted by random variable w, which is uniformly distributed over [1 : 2"%] and
is independent of X™. An (n, R) code consists of

e An (stochastic) encoder with conditional pmf’s ¢®*°(Z"|z", w),

decy ( decy <

22" w).

e Two (stochastic) decoders with conditional pmf’s ¢9*“! (y"|g§",w) and ¢

Thus, the joint distribution induced by the code is as follows:

n
q(£n7 gn7 ?:,n, yn7 ZTL|w, xTL) — quC(jn’xn,w)(Hp(gz7 gz‘i,l))qde(ll (yn’g’r"L’w)qdeCQ (Z’I’L|§TL’ w) (13)
=1

Definition 3. An input distribution-channel pair (p(a;),p(y, z\x)) is said to be in the admissible region of
the channel-rate triple (p(g], z|z), R) if one can find a sequence of (n, R) simulation codes whose induced
joint distributions have marginal distributions q(x™,y™, 2") that satisfy

=0.
1

n
JLH;OHQ(JC”,Z/”,Z”) - Hp(xi,yi,zi)
We can now state our achievability bound for the broadcast channel simulation problem.

Theorem 9 (Inner Bound). (p(x),p(y, Z|ZL‘)) 18 in the admissible region of the channel-rate pair (p(g, z|2), R)
if there exist p(u, v, w, Z|x), py|§, u,w) and p(z|z,v,w) such that (X,U,V,W,X,Y,Z.Y,Z) is distributed
according to

p(@,u,0,w,2,§,2,y,2) = plx)p(u, v, w, 2|2)p(F, 21Z)p(y|7, u, w)p(z|Z, v, w),

that has the given marginal p(z,y, z), and satisfies

I(WU;Y) > I(UW; X),
R+I(WU;Y) > I(UW; XY Z),
IWV;2) > I(WV; X),
R+IWV;2)>I(WV;XYZ),
IWU;Y)+IWV; Z) > I(UW; X))+ I(WV; X) + I(U; VIWX),
QR+ I(UW;Y)+I(VW;Z) > I(UW; XY Z)+ I(VW; XY Z)

+ I(U;VIWXY Z),
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min{I(W;Y),I(W;Z)} + [(U;Y|W) + [(V; Z|W) > [(W; X) + [(U; X|W) + [(V; X|W)
+ I(U; V|IWX),
R+min{I(W;Y),I(W;2)} + [(U;Y|W) + I(V; Z|W) > [(W; XY Z) + I(U; XY Z|W)
+I(V; XY Z|\W) + I(U; VIWXY Z),
RAIW;YZ|IX)+ I(UW;Y)+I(VW;2Z) > I(UW; XY Z)+ I(VW; XY Z)
+ I(U; VIWXY Z). (14)

4 Exact channel simulation

Recall that we say a channel p(y|x) can be simulated exactly with a channel p(g|Z) if there are n,
encoding map ¢°"°(Z"|z",w), and decoding map ¢4°(y"|§", w) such that the induced distribution given
by satisfies

n

q(y"a") = [ [ p(yil:)- (15)

i=1
In this section we state our results about the channel simulation problem in the exact model.

Theorem 10. A channel p(y|x) can be simulated from p(y|Z) in the exact model with infinite shared
randommness only if for any a > 0 we have

Ca(p(ylz)) < Ca(p(9]2)),
Diamq (p(y|z)) < Diama(p(7]7)),

where C,, denotes the a-capacity defined in , and

Diamg (p(y|z)) £ hax Do (p(y)lla(y))-

Remark 2. To the best of our knowledge, we define the notion of channel diameter Diam, (p(y|x)) for
the first time.
Theorem implies that the exact simulation of p(y|x) with a noiseless link of rate R with infinite shared
randomness is possible only if Coo(p(ylx)) < R. In fact, as shown in [§] (see [6] for a discussion),
Coo(p(ylz)) < R is a sufficient and necessary condition for exact simulation of p(y|x) with a noiseless
link of rate R.

Remark 3. As it becomes clear from the proof of Theorem any function ®(p(y|x)) that satisfies
additivity and data processing properties, namely,

n

®([Ip(ilzi) = n®(p(ylz))

i=1

and

O(p(yle)) > B(p(zlz)),  if  plzle) = p(ylr)p(zly)

can be used instead of C, and Diam, above to write an infeasibility result when there is no shared ran-
domness. Furthermore, if ®(p(y|x)) is quasi-conver in p(y|z), one can claim the infeasibility result even
when there is infinite shared randomness. The above particular choices of ®(p(y|x)) as Cq and Diam,
are shown later to be particularly useful in finding tight bounds for a few examples we consider. But it is
possible to find other choices for ®(p(y|x)): for instance, Ey ) (R), the reliability function of p(y|z) at
a given rate R satisfies the additivity and data processing inequalities by definition, and is quasi-convex
since shared randomness does not increase the optimal error exponent.

Using the above theorem, we show that the degradation strategy of Fig. [I] is optimal in the exact
model for simulating a BSC channel from a BEC channel (for any amount of shared randomness).

11
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Figure 7: The inner bound (union of two parallelogram) and outer bound (convex polygon) for exact channel simulation of BIBO
channel from another BIBO channel when there is no shared randomness. The convex polygon bound is the simulation region when
there is infinite shared randomness.

Theorem 11. For any amount of shared randomness, the BSC(p) channel with parameter p € [0,1/2]
can be exactly simulated from the BEC(€) if and only if p > €/2. In particular, shared randomness is not
helpful in this exact simulation problem.

A channel is called binary-input binary-output (BIBO) if both the input and the output of the
channel are a single bit. A BIBO channel can be characterized with two parameters r = py|x(0|0) and
s = py|x(0[1) as depicted in Fig. @ The following theorem studies BIBO channels that can be exactly
simulated from another BIBO channel.

Theorem 12. Depending on whether we have shared randomness or not, we have

e (Infinite shared randomness): A channel with parameters (r,s) can be simulated exactly from a
channel with parameters (r',s") if and only if (r,s) is in the convexr polygon with siz vertices

(0,0, (1,1), (r",s), (s',r"), (8',7), and (¥',5") where 8 =1 —s" and ¥’ =1 —1' (see Fig.[]).

e (No shared randomness): A BIBO channel with parameters (r,s) can be simulated from another
BIBO channel with parameters (r',s") in the exact model if (r, s) is in the union of two parallelogram
with vertices (0,0), (', s), (7, ),(1,1) and (0,0),(s',7"), (8,7, (1,1) (see Fig.[7). Conversely, if
a channel with parameters (r,s) can be simulated exactly from a channel with parameters (', '),
then (r,s) has to be in the convex polygon with siz vertices (0,0), (1,1),(r,s), (s',r"), (§',7), and
(7',8") depicted in Fig. @ In other words, the outer bound is the convex hull of the given achievable
inner bound.

5 Proofs

This section is devoted to the proofs of the results stated in the previous two sections.
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5.1 Point to point channel: inner bound

Proof of Theorem[f] We apply the OSRB technique of [9] to prove the theorem. Our proof consists of
three parts. In the first part we introduce two protocols, A and B, each of which induces a pmf on a
certain set of random variables. Protocol A has the desired i.i.d. property on X” and Y, but leads to no
concrete coding algorithm. However, Protocol B is suitable for construction of a code, with one exception:
Protocol B is assisted with an extra common randomness that does not really exist in the model. In
the second part of the proof we find conditions on R implying that two certain induced distributions are
almost identical. In the third part of the proof, we eliminate the extra common randomness given to
Protocol B without significantly disturbing the pmf induced on the desired random variables (X", Y ™).
This makes Protocol B useful for code construction.

Part (1): We define two protocols each of which induces a joint pmf on random variables of the corre-
sponding protocol.

Protocol A [Not useful for coding]. Let (U™, X", X™ Y™ Y"™) be n i.i.d. copies of the joint pmf p(u, z, %, 7, y).
Consider the following construction:

e To each u" € Y™ assign two random bin indices g € [1 : Z"R] and w € [1: 2"F).

e Consider a Slepian-Wolf decoder for estimating 4" from (w, g,7"). Here we are considering §" as
side information and w, g as the random bins of the source u" that we want to decode.

The rate constraints on R, R for the success of this decoder will be imposed later, although this
decoder can be conceived even when there is no guarantee of successful decoding. We denoted the
random pmf induced by the random binning and the Slepian-Wolf decoder by @ and Q®", respectively.
We then obtain the following joint distribution:

Q™ u", a", 2", g, y", g, w) = p(a” )p(u”, 2" |2" )p(y"|Z")
X Q(g, wlu™)Q™(@"|g, w, " )p(y"y", u")
= p(e")Q(g, wlz")Q(u", " [2", g, w)p(y"[T")
x Q™(a"g, w, " )p(y" 5", u"). (16)

Note that we have used capital @ for random pmf’s in the above equation.

Protocol B [Useful for coding after removing an extra common randomness/. In this protocol we assume
that Alice and Bob have access to the common randomness w and an extra common randomness G,
where G is mutually independent of X™ and w. We assume that G is distributed uniformly over the set
[1:2"F]. Now we use the following protocol:

e First, Alice having (g,w,z™) generates u™ according to the pmf Q(u", z"|g,w, ™) of Protocol A,
and sends Z" over the channel to Bob. Then Bob receives §". Having (g,w, "), Bob uses the
Slepian-Wolf decoder of protocol A to generate 4" as a estimation of u".

e Having (4", 9"), Bob generates Y™ according to p(y"|g", ") =[]}, Py‘f/U(yi’gi? U;).

The random pmf induced by the protocol, denoted by Q, is equal to

Qa",u", 4" 2", g, y", g,w) = p(w)p (9)p(a")Q(u", g, w, " )p(y"|T")
x Q™ (4" w, g, 5" )p(y"[g", 4"), (17)

where p" denotes the uniform distribution.

Part (2): In this part we put sufficient conditions under which the induced distributions ¢ and Q given
by and are approximately the same. The first step is to observe that g and w are the bin indices
of u™. Substituting T'= 2, X; < U, X9 < U, Z <+ X, b1 + g and bs < w in Theorem 1 of [9], implies
that if

R+ R < HU|X), (18)
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then there exists e(()n) — 0 such that

E[Q(g, w|z™) — p"(w)p"(9) 1 < .

~

Observe that p(w)p“(g) = Q(g,w). This implies that the joint pmf of all random variables, excluding
y", of the two protocols are close in total variation distance, i.e,

E“Q(mn7unaﬁnv‘%n7gnag7w) - Q(xnaunaﬁnw%nagnagaw)”l S 6(()n) (19)

To ensure the above equation with y™ included, we begin by investigating conditions that make the
Slepian-Wolf decoder of Protocol A succeed with high probability. By the Slepian-Wolf theorem as long
as

R+R>H(UJY) (20)
holds, we have

(n)

€

Q(CE?’L,un,an’jn?gn,g,w) %}j Q(xn7un7jn7gn7gaw)1{an = U‘n} (21)

for some vanishing sequence egn). Then using equations and we can apply Lemma 3 of [9] to

write

(n

), (n)
~ +
Q™ u™, i & ", g, w) |~ Qam u, ", g,w)1{i" = u}. (22)

Moreover, the third part of Lemma 3 of [9] implies that

(n

Q" u, @, &, ", g, w)p(y" 8", 5) );él | Q" u", 2", §", g,w)H{a" = u"}p(y"|a", §")
= Q" u", 2", §", g, w)1{a" = u"}p(y"[u", ")
=Q(a",u", 2", §", g, w)p(y"|u", §")1{a" = u"}
=Q(z",u", ", g", y", g,w)1{a" = u"}.

(n)  (n)
Then, by part 1 (second item) of Lemma 3 of [9] we have Q(g,z",y") v Q(g,z",y"™). Note, in
particular, that the marginal pmf on (X", Y™) of Q is equal to p(z™,y") implying that Q(z™,y") is
within eén) + egn) distance of p(z",y").
To summarize, assuming and , and having access to common randomness w, G, Alice and
Bob can simulate the channel p(y|z) using the channel p(g|Z) according to Protocol B. As discussed
above, with high probability @™ generated by Bob would be equal to u", and the final pmf induced on

(X™, Y™) would be close to the desired pmf p(z"™,y™).

Part (3): In the above protocol we assumed that Alice and Bob have access to an extra randomness G
which is not present in the model. To eliminate this extra common randomness, we will fix a particular
instance g of G and show that the same protocol works even if we fix G = g. To prove this note that by
letting G = g, the induced pmf Q(a:”, y™) changes to the conditional pmf Q(x”, y"|g). But if G is almost
independent of (X", Y™), the conditional pmf Q(a:”, y"™|g) would be close to the desired distribution as
well. To obtain the independence, we again use Theorem 1 of [9]. Substituting 7' = 1, X; < U and
Z < XY in Theorem 1 of [9], we find that if

R < H(U|XY), (23)

)
then Q(z™,y", g) & p*(g)p(x™,y"), for some vanishing egn). Thus, by triangular inequality for total

A (n)
variation distance, we have Q(z",y",9) = p (9)p(z™, y"), where ™ = Z?:o egn). From the defini-
tion of total variation distance for random pmf’s, the average of the total variation distance between
G(z™,y", g) and p“(g)p(z"™,y™) over all random binnings is small. Thus, there exists a fixed binning with

14



the corresponding pmf § such that g(z",y", g) m p“(g)p(a™,y™). Next, Lemma 3 of [9] guarantees the
2¢(n )
existence of an instance g such that p(z™, y"|g) 9 p(x™,

be eliminated by fixing it to be G = g.
Finally, observe that the conditions of @ are seen to be equivalent to , and after
eliminating R using Fourier-Motzkin elimination. O

”) Then the extra shared randomness G' can

Proof of Theorem[5 We would like to prove that to simulate a BSC channel with a non-uniform input
pmf from a BEC channel, we can do better than p = § (obtained by a degradation scheme). To be more
precise, let Bern(g) be the Bernoulli distribution with parameter g. We show that (Bern(q), BSC(¥)) is
in the admissible region of (BEC(e),0) for any t € (0, 1] such that

et -0 -h@)+h ()] —e—h@) > 0. (24)

Indeed if ¢ # 1/2, this inequality strictly holds for ¢ = 1. So for any ¢ # 1/2, one can find ¢ < 1 so
that this inequality is still valid. This would demonstrate the sub-optimality of a degradation scheme for
non-uniform input distributions.

We use TheoreNmE| to prove the above claim. For this we need to specify the joint pmf of random
variables X,Y, U, X,Y as follows:

e Let X to be distributed according to Bern(q).

e Assume that X is uniform over {0, 1} and independent of X.

Let W be Bern(t) and independent of (X, X).

Define U as follows: let U = (W, K) where K = (X, X) if W =0, and K = X + X( mod 2) if
W =1.

To specify p(y|y, u) we proceed as follows:

— If W =0, we let Y = X; note that in this case X is a part of U.

— If W =1, we look at Y; if it is the erasure flag, we choose Y uniformly at random. Otherwise,
Y = X, s0 we may let Y = X + K( mod 2) = X.

This procedure induces the following distribution on (X,Y): X is chosen according to Bern(q); with
probability (1 —¢) +¢(1 — €) we have Y = X, and Y with probability te is chosen uniformly at random
(and independent of X). This is equivalent with the BSC(p) channel with Bern(gq) input distribution

where
te

Pzg-

We now need to verify (6) for R =0, i.e., I(U; Y) > I(U; XY) > I(U; X). We have

IU;Y)=(1-eI(U; X) = (1 —€)[1 -t + (1 - h(g))].

e I(U; XY)=I(WK;XY) =I(W; XY) + I(K; XY|W).
Moreover,
IW;XY)=H(XY) - HXY|W)
= H(XY)-(1—-t)H(X) - tH(XY|W = 1)
= h(g) +h(p) = (L= )h(q) =t - h(q) ¢ h(3)
= h(p) = t- h(3)
= h(5) —t-h(S),



and
I(K; XY|W) = (1—t)I(X)~(;XX)—|—tI(X+)~(;XY) =1-t,

where we use the fact that X is independent of (X,Y) if W = 1. Therefore,

IU;Y) - I(U;XY) = (1 —e)[1 =t + t(1 — h(q))] — h(tf) +t- h(%) — 1+t

2
€ te
= tle+ (1- (1= h(@) +h(5)] — e~ h(5),
which is positive by assumption . ]

5.2 Point to point channel: outer bound

enc (

Proof of Theorem[@ Take an encoding map ¢°¢(3"|z",w) and a decoding map ¢%*(y"|j",w) with the
induced distribution ¢(z",y", 2", §",w) as described in (3)) such that

Jat@" v = TTpt@pules)|, < (25)
i=1

We have the Markov chains
X" 5 wX™ 5 wY" 5 Y,
and
w— X" Y™

Moreover, w is independent of X". Therefore, I(X";Y"|w) < {(an Y7"|w). On the other hand,
I(X™MY"w) = I(X™ Y ) > I(X™Y™), and I(X™ Y w) < I(wX™Y™) = I(X™Y™"). As a result,
I(X™Yy™) <I(X™Y").
To proceed let
1 n
fi= - ZI(X[LFUY[L@'A];XﬁQ)-
i=1

Since by the induced distribution on (X™,Y™) by the code is almost i.i.d., f; should be small.
Indeed, Lemma [2| below shows that f; vanishes as € goes to zero. We can then write

Zn: I(X;Y;) = Zn:H(Xi) +H(Y:) — H(X;, Vi)
i=1 i=1

< ZH(Xi) + H(Y:) — H(Xi, Yi| X(1:-1), Y1)
=1

= Z H(Xi| X[1:-17) + H(Yi|Y[i-1) — H(X3, Yil Xsio1), Yisi-1y) + (X5 Xpeimyy) + 1(Yi5 Yoy

i=1

H(X")+H(Y") - HX",Y")+ Z (X5 X)) + (Y Y1)
i=1

<Y I(X;Y;) +2nfi, (26)

where in the last step we used the familiar expansion of mutual information for memoryless channels
used in the converse proof of a point-to-point channel.
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For f(i, }71-, let UZ be the random variable such that Xi — Uz — }7; forms a Markov chain and
/BI(UZ-; Xiﬁ)—k’yl(ffi; Xi)+¢9](0¢; }7,) reaches its minimum. Assume that U; is constructed to be condition-
ally independent of other variables given X'Z-, Y;. T hen, we obtain a random variable Un = ([71, 172, S Un)
such that

X" U - Y",
forms a Markov chain, and that ¢(a"|Z") and ¢(g"|a") are product channels. The joint pmf of all random
variables factorizes as

g(a™,w, @, 0", G y") = pla™)p(w)g™ (T |27, w)q (@ |2 g (5" a") g™ (|5 w) (27)
(™, w, &", ") q (5" @)™ (y"9" w)

q
q(z", w, 2", u")q(y"y"u", w).
This shows that X" X" — U"w — YY" forms a Markov chain. In particular, we conclude that

X" 5 Ulw — Y™,

forms a Markov chain.
Let U; = (U™, w). Then X" — U; — Y™, and hence X; — U; — Y; form Markov chains. Next, we
have

Z I(Ui; X3,Y;) < Z HU;i X (1:-1)Yiei—1); X, Ya)

=1 i=1
= Z I( X Yoy X, Yi) + Z I(Ui; X4, Yil X 1:i-1), Yisie1))
i=1 i1

=nfi+ ZI(U”,W; X, Yil Xp1:i-1)s Ynsie1))
i—1

=nfy + I({U"w; X", V™)
<nfi+HWw)+I{0" X" Y")

<nfi + Hw)+I(0™" X", Y™
<nfi+nR+ HU") - HU"X",Y")

<nfi+nR+ Z H(U;) — H(U| X", Y™, Upi_1))

i=1
an1+nR+ZH(Ui) — H(U;| X, Y;) (28)
i=1
=nfi+nR+Y I(UsX;,Y), (29)
=1

where equation follows from the fact that p(a"|z", ") = [[i=, p(@|Zs,9;). This fact follows from
the factorization

n
p@",a", ") = p(@") [ [ p(, ila:)-

i=1
Further, we have
Y IUsY) <> I(U, Yigi-; Vi)
i=1 =1
= Z I(Yj1p Ya) + Z I(U3; YilY]1:i-1)
=1 =1

<nfi+ ) I(U",w;Yi|Yiy)
=1
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=nf1 + I({U"w;Y™)
< nfi +2H(w) + 107 77) (30)
<nfi+2nR+ HY™) — HY"|[U")

<nfi+2nR+ ZH(ﬁ) - H(}}iﬂ‘]n:)}[l:i—l})
=1

=nfi+2nR+ Y H(Y;) - HYi|U;) (31)
i=1
—nf1+2nR—|—ZI (U3 Y;). (32)
=1
where equation holds because
(07w V") < H(w) + 107 Y w)
< HwW) 4+ I({U%Y"Y"|w)
= H(w) + 10" Y"|w)
I

and equation is due to the fact that p(g™|a") =[]}, p(¥i|%;). Following similar steps, using the fact
that p(a"|z") = [[;; p(@|%;) and
I(U"w; X™) < H(w) + I(U™ X™)
< H(w)+I(U™ X"X")
= H(w)+I1(U™; X")

which holds because of equation , one can show that
Y IU Xi) <nfi+nR+ D> I(U; X5). (33)
i=1 i=1

Let T be a random variable distributed uniformly over [1 : n| and independent of previously defined
random variables. Then, inequalities — can be equivalently written as

I(Xp; Yp|T) < I(Xp; Yr|T) + 2f1,
I(Up; XpY7|T) < I(Ur; XpYr|T) + R+ f1,
I(Up; Xp|T) < I(Up; Xr|T) + R+ fu,
I(Up; Yp|T) < I(Up; Yp|T) + 2R + fi.

Let fo = I(T; X7, Yr). Observe that by Lemma [2| at the end of the proof, fs vanishes as e converges to
zero.. Then the above set of equations imply that

I(Xp;Yr) < I(Xp; Y| T) + 21 + fo,
[(Ur; X7, Yr) < I(Up; Xr¥7|T) + R+ fi + fo,
I({Ur; X7) < I(Up; Xr|T) + R+ f1 + fo.

I(Ur; Yr) < I(Ur; Y7 T) 4+ 2R+ f1 + fo.

Let X = Xp and Y = Yp, and note that X — Up — Y forms a Markov chain. Then by the above
inequalities for non-negative reals (3, v, and 6 we have

ICGY)+ min  [BI(U; XY) +1(U; X) + 01(U;Y)]
< I(X7;Yr|T) + {51(5?; X7Y7|T) + +I(Ur; X7|T) + 01(Ur; }N/T|T)}
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+(B+Yy+20) R+ fi+(fi+ fo)A+B+7+0)
< max (J(XT; Yo T = t) + [51(@; Xo Vo T = ) + ~I(Op; Xp|T = t) + 01(0p; Yoo | T = t)D
+(B+y+20)R+ fi+ (fi+ f) A+ B+~ +0)
= max (I(Xt; V) + [5I(0t§thft) +yI(Uy; Xy) + 0I(Uy; f/t)D
+ B+ +20)R+ fi+ (fi+ o)A+ B+v+0)
— g (106 T0) 4 anin (103 X050 +91(0: X0) + 01(0: 73]
t U:X:—U-Y;
+(B+y+20)R+ fi+ (fi+ f) A+ B+~ +0)
< max [z(;z; V)4 min  [BI0:XV) +~1(0: X) + 01(0; 17)]]
(%) U.X-U-Y
+BH+7+20R+ fi+ (fi+ o)A+ B+v+0).

Recall that both f; and fy converge to zero as e goes to zero. Furthermore, by the joint pmf
of (Xr,Yr) converges to the desired pmf p(z)p(y|x) as € converges to zero. Therefore, to complete the
proof, it remains to show that the expression

I(X;Y)+ Jomin (BI(U; XY) +~I(U; X) + 01(U;Y)]

is a continuous function of the joint distribution on (X,Y). Equivalently, we need to show that the
function

g(e) = znin [BI(U;XY)+7[(U;X)+9[(U;Y)],

a(zy)~p(zy)

for a fixed p(xy), satisfies lim._, g(e) = g(0).

First, observe that g(e€) is a decreasing function of €; in particular, g(0) > g(e) for all ¢ > 0. Thus,
the limit lim._ 0 g(€) exists and is at most g(0). Second, for every € > 0, the minimization over U, can
be restricted to random variables U with cardinality bound |[U| < |X x Y|. Let pe(z,y,u) be an optimal
point in the minimization. Since p¢(z,y,u) belongs to the compact set of the probability simplex on a
finite alphabet set, the set of optimal points has a limit point p*(zyu). We then have

9(0) = lim g(e) = SL-(U; XY) + 71y (Us X) + 0L+ (U3 Y).

Moreover, we have p*(xy) = p(zy), and by the continuity of mutual information, X — U — Y holds for
the limit distribution p*(zyu) as well. Now by definition we have

9(0) = min [BI(U;XY)+4I(U; X) +6I(U:Y)]

< BL+(U; XY) + 1 (U; X) + 01« (U3 Y)
= lim g(¢)
< g(0).
This completes the proof. O

In the above proof we used the following lemma from [15].

Lemma 2 (Entropy and timing information of nearly i.i.d. sequences [15]). For any discrete random
variables W™ whose pmf satisfies

o 1
oo~ Lo, << 4
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for some p1(w), ..., pn(w), we have

- 1
> I(Wi; W) < dne(log W] + log —).

€
t=1

Moreover, for any random variable T € {1,--- ,n} independent of W™,
1
I(Wp; T) < 4ne(log |W| + log ).
€

5.2.1 Equivalent characterization for symmetric channels

Proof of Theorem [T, We claim that, for a symmetric channel, the maximum on the right hand side of
is achieved at the uniform distribution p“(Z). We prove this for binary input channels, and the proof for
general channels is done in a similar way. More specifically, we show that if p = p(X = 0) and we let

glp) =I1(X;Y)+ min [BI({U;XY)+~I(U; X) +01(U;Y)],
U.X-U-Y

then g(p) is maximized at p

= 3. To show this, we first claim that g(p) = g(1 — p). Take some p(Zja)
such that p = p(X =0) and X —

U-Y. Let

X =1-X,Y =7my(Y), U =0,
where 7y is the permutation corresponding to permutation mx(0) = 1,7x(1) = 0 such that
pY|X(7TY(Z/)|7TX(9C)) = pY\X(?J|ZL‘)-

Clearly, all the mutual information terms remain the same for X/, U’,Y”’, and by the symmetry of p(§|%),
the two channels X — Y and X’ — Y’ are the same. On the other hand, p(X; = 0) = 1 — p. This means
that, for every choice of U in the minimization of g(p) there is a choice of U in minimization of g(1—p)
that leads to the same answer. As a result, g(1 —p) = g(p).

Let p(zga) be the distribution with X — U — Y, that achieves the minimum in ¢g(1/2), i.e.,
g(1/2) = I(X;Y) 4+ BI(U; XY) +~I(U; X) + 01(U;Y).

Now, fix the channel p(@|Z), and instead of the uniform distribution on X put the distribution Bern(p)
on X. Denote the resulting distribution by ¢,(Zg%). Then by definition we have

g(p) < qu(f(; 17) + B, (U; }7) + 'qup(ﬁ;X) + Hqu(U; }7) (34)

We similarly have

g(1=p) < Ioy_ (X;Y) + Bl (U; XY) + 41y, (U; X) + 01, (U;Y). (35)

— “4(1-p) (1-p)

Observe that for a fixed p(u,§|Z) the expression
I(X;Y) + BI(U; XY) +~1(U; X) + 01(U;Y),

is a concave function of p(Z); this is because mutual information is concave in input distribution for
a fixed channel implying that the first, third and fourth term are concave; the third term is equal to
I(U; XY)=1(U; X)+1(U;Y|X) which is a concave term plus a linear term. Therefore, by and

and this concavity we obtain
1 1
9(p) = 5(9(p) +9(1 = p)) < 9(5)-

This proves our claim.
Now by Theorem [6] and the above claim, for any non-negative real numbers 3, v, and 6 we have

I(X;Y)+ Jomin (BI(U; XY) +~I(U; X) + 0I(U;Y)] <
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I(X;Y)+ _min _[BI(U; XY) +~I(U; X) + 01(U;Y)], (36)
U:X-U-Y

in which p(z ) is fixed to be the uniform distribution. Since this inequality holds for all 5,7 and 6, we
find that I(X;Y) > I(X;Y) and further

U:erii[?_y[ﬁl(U; XY) —|—’yI(U;X) +01(U;Y)] <
min _[BI(U; XY) +~I1(U; X) + 01(U;Y)).

U:X-U-Y

Then by the definition of S(p(y|z), p(z)), the supporting hyperplane theorem would imply statement of
the theorem, i.e.,

S(p(ylz), p(2)) C S(p(ylz), p(z)),

if we show that S(p(y|z),p(z)) is a convex set.

Here we prove that S(p(y|x), p(x)) is convex. Corresponding to any two points in S(p(y|x), p(z)), one
can find two random variables Uy, Uy such that X — U; — Y and X — Us — Y form Markov chains. Let
T be a uniform random variable on {1,2} and independent of X,Y,U;, and Us. Let U = (T,Ur). We
clearly have I(X;Y|U) = 0 and further I(U; XY) = $(I(Uy; XY) + I(Us; XY)) etc. Therefore, we can
use U to show that the average of the two original points belongs to S(p(y|z),p(z)). O

5.3 Point-to-point channel: BEC vs BSC

Proof of Theorem[8 (i) In this part, we would like to compute S(BEC(e), p*) with uniform input distri-
bution. Take some p(u|azy) such that X — U — Y, and assume without loss of generality that p(u) > 0
for all u € U. Define U’ as a function of U as follows:

0 if U=wand p(X =0/U =u) =1,
U=1q1 if U=wu and p(X = 1|U =u) =1,
e if U=wand p(X =1U =u)>0,P(X =0|U =u) > 0.
Then we claim that X —U’—Y forms a Markov chain. Observe that I(X;Y|U' =0) =I(X;Y|U' =1) =0,

since X is deterministic if U’ = 0 or U’ = 1. Moreover, U’ = e implies that Y = e is deterministic and
hence I(X;Y|U’ = e) = 0; this is because if for instance p(Y = 0|U’ =€) > 0, then

p(Y =0|X =1) > p(U' =e|X = 1)p(Y =0[U’' =¢) >0,

which is a contradiction. Therefore, X — U’ — Y forms a Markov chain.
Since U’ is a function of U we have

I(U; XY) < I(U; XY),
(U X) < I(U; X),
IU:Y) < I(U;Y).

Therefore, in the definition of S(BEC(e),p") without loss of generality we may assume that U has the
form of U’ defined above. This form is depicted in Fig. |8 Here a,b,c,d € [1 —¢, 1] are arbitrary numbers
with € = 1 —ac = 1 —bd. With the latter equations U is indeed determined by the pair (a,b) since ¢ and
d are computed in terms of a,b and e.

We claim that for the uniform input distribution p(z) = p“(z) it suffices to consider the symmetric
case with a = b and ¢ = d. Observe that p(z,y, ) is linear in terms of a and b, e.g.,

ac 1—e
X=0Y=0U=0)=—=
p( 9 9 ) 92 27
a(l—c) a—ac a—1+ce
P(X=0Y = =0) = = =
( 0, e,U =0) 5 5 5
1—
P(X=0Y =e,U=¢) = 2"’.
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Figure 8: The form of X — U — Y in the definition of S(BEC(e), p").

On the other hand I(U; XY) = H(XY) — H(XY|U) is a convex function when we linearly change the

joint pmf of p(x,u,y) while fixing p(zy). Therefore, the value of I(U; XY') at (“T*'b, ‘%H’) is less than or

equal to the average of its values at (a,b) and (b, a). Moreover, by symmetry, the value of I(U; XY') is the
same at (a,b) and (b, a). We conclude that I(U; XY') at (“T‘H’, %rb) is not greater than this value at (a, b).
The same argument works for I(U; X ) and I(U;Y") as well. Therefore, the three terms I(U; XY'), I(U; X)
and I(U;Y) are simultaneously minimized when a = b, and then ¢ = d.

Using the Markov chain condition X — U — Y we have

IU;XY) = H(XY) — HXY|U)
= H(XY) - H(X|U) - H(Y|U)

H(XY) — H(X) - H(Y) + H(X) + H(Y) - H(X|U) - HY|U)
(X Y) + I(X;U) + I(Y; U)

Then, for the BEC channel with parameter € we have
IU; XY)=—-14e+1(X;U)+ 1(Y;U).
Moreover, for a =b > 1— € we have H(X|U) =1 —a, and H(Y|U) = ah(1=¢). Then

1—c¢

I(U; XY) = h(e) + a — ah( )
1(U; X) =
IU;Y) =1~ e+ h(e) — ah(*—)

The result then follows by a straightforward computation.

(ii) We adapt the approach of Wyner to weighted sum calculations to prove our result. Take the channel
BSC(p) with uniform input distribution. Take some arbitrary auxiliary U such that X — U — Y. We
define two random variables as functions of U by

A=p(X =0[|U), B =p(Y =0|U).

Then we have

H(X|U) =E[n(A)l,  HY|U) =E[(B)].

Furthermore,

Also
p(X =0,Y =0U) =p(X =0[U)p(Y =0U) = AB,

and hence p(X = 0,Y = 0) = E[AB]. Therefore, we have

I(U; XY') =1+ h(p) — E[h(A)] — E[h(B)], (37)
I(U; X) = 1—E[h(A)), (38)
I(U;Y) =1 - E[(B)). (39)
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Concavity of f,(p)

Figure 9: Concavity of fy(p) with respect to 0.05 < p < 0.5 and for all 0 < X\ < 1.

Here A, B are real-valued random variables satisfying;:

A, B € [0,1],

E[A] = E[B] = -

E[AB] = 1%”.

By the above equations to compute S(BSC(e),p") we need to characterize the set

UJ {(01,52) : b1 <E[R(A)], b2 <E[W(B)]},
A,B

where we take union over all real-valued random variables A, B satisfying the above constraints. Equiv-
alently, for any A € [0, 1] we need to compute

max AE[h(A)] + AE[h(B)], (40)

over all A, B. We show that here the maximum occurs at two binary random variables A and B that
correspond to X — U and U — Y being BSC channels.

Let X — U be a BSC with parameter «, and let U — Y be another BSC with parameter 8. We need
the induced channel X — Y be a BSC with parameter p € [0,1/2]. This is equivalent to

p=axf=af+ap. (41)
For this special U we get

max ANH(X|U)+ A H(Y|U) = max Ah(a) + Ah(B).
(e «,
axfB=p ax*xf=p

We then make the following conjecture:

Conjecture 1. Let

FA(p) = max () + Ah(5).

axB=p

Then fx(p) is a concave function of p for all \, as plotted in Fig. E
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Using this conjecture, we show that the answer to the maximization is also f)(p) defined above.
From the definitions it is clear that fy\(p) is a lower bound on . To prove inequality in the other
direction, take A, B with the above conditions. Assume that (A, B) = (a4, ;) happens with probability
gij- We have

AE[R(A)] + AE[A(B)] = Y ¢ij[Mi(ai) + Ah(5))]

,J
< Z Gij (i Bj + @i Bj)

,J
< fa ( Z qij (i + @zﬂj)>
= fr(E[A] + E[B] - 2E[AB])
= fa(p)-

Therefore, to compute we may restrict to auxiliary U where X — U and U — Y are BSC channels
with parameters a and (8 respectively, with p = « % 8. In this case, using equations — we have
I(U; XY) = 1+ h(p) — h(a) — h(B),
I(U; X) =1-h(a),
IU;Y) =1 h(B).

These give the desired result. O

5.4 Broadcast channel

Proof of Theorem[9 The structure of the proof of this theorem is similar to that of Theorem [4 and has
three parts.

Part (1): We define two protocols each of which induces a joint distribution on random variables that
will be used in the proof.

Protocol A [Not useful for coding]. Let (W™ U™, V" X" X" Y™ Z" Y™ Z") be n ii.d. repetitions of
the joint pmf p(w,u,v,z,z,9, Z,y, z). Consider the following construction:

e To each sequence w™ € W™ assign two random bin indices gy € [1 : 2”15”0] and w € [1: 275,
e To each pair of sequences (w™,u™), assign a random bin index ¢; € [1 : 2nR1]_
e To each pair of sequences (w™,v™), assign a random bin index go € [1 : Qn}?z]'

e Consider two Slepian-Wolf decoders to estimate (w7, @") and (w5, 0™) from (w, g1,9") and (w, g2, 2"),
respectively. Here we are considering g™ and Z" as side information, and (w, g1) and (w, g2) as ran-
dom bins of the sources (w™,u™) and (w",v™) that we want to decode. Note that w}" and w4 are
reconstructions of w™ by two different Slepian-Wolf decoders.

The constraints on the rates R, Ry, Ry and Ry for the success of the decoders will be imposed later. The
random pmf induced by the random binning, denoted by @), can be expressed as follows:

Q" y", 2", w"u", 0", gjo.2), T, G, 2", W)
= p(a")p(w", u",v", 2"|2")Q(g0, w|w")Q(g1[w", u")
x Q(gz|w™, v"™)p(y", 2"|2") Q> (wy', 4"|g0, 91, " w)
x Q™ (wyz,0"|g0, g2, 2", w)p(y" |w", w", §")p(2" [w", 0", 2")
= p(x")Q(w",u",v", T, gjo.9), w|2")
x p(y", 2" |2") Q™ (W, 4" (go, 91, §", w)
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st(w27 An|907927 gn’w)p(yn‘wn,un7gn)p(zn‘wn,vn’ gn)
:p(l’ )Q(g[oﬂ]’w‘xn)Q(wn’un,Un’jn’$n7g[0:2]’w)p(gn’2n|i.n)
X Q™ (wy, 4" g0, 91, 9", w) Q™ (W3, 0" [go, g2, 2", w)

X p(y"|w”, u, g )p(2" jw", 0", 2")

Protocol B [Useful for coding after removing extra common randomnesses/. In this protocol we assume
that the sender and receivers have access to the extra common randomness (Go, G1, G2) where Go, G1, G2
are mutually independent of X™ and w. It is further assumed that Gy, G1 and G are distributed uniformly
over the sets [1: 27f%0] [1:27%1] and [1 : 2"F2], respectively. Now we use the following protocol:

e First, the sender having (gjo.), w, ") generates (w", u",v", ") according to pmf Q(w", u", v", " |z",
gj0:2),w) of Protocol A, and sends " over the memoryless broadcast channel p(7", 2"(2"). The first
receiver gets §" and the second receiver gets 2" from the channel. Having (go, g1,w,3"), the first
receiver uses the Slepian-Wolf decoder Q% (w7, 4"|w, go, g1, ") to estimate (w",w™). Similarly, the
second receiver uses the Slepian-Wolf decoder Q%" (w¥,v"|w, go, g2, 2") to obtain an estimate of
(w™,v™). Here W} and wy are first and second receiver’s estimate of w™ respectively.

e Having (3", u",w7), the first receiver generates y" using p(y" \y o, wy) = [T p(yilGi, @i, W1s).
Similarly the 5econd receiver generates z" according to p(z™|2", 0", W) = [ i p(zi|Z, s, Wa;).

The random pmf induced by the second protocol, denoted by ]5, is equal to

Q(x",y”,z”,w",u”,’u”,u?ﬁ:ﬂ,ﬁ”,@",g[og],i",g",én,w)
= p"(w)p" (gjo:2)) (") Q(w", u™, 0™, " [z", g[o.9, w)
x p(y" Z"II )@ (@Y, @ Anlwyg[o;u,z?”)
x Q™ (wy, 0" |w, go, g2, 2" )p(y" 5", 4",y )p(2" 2", 0", by).

Part (2): In this part we mention sufficient conditions under which the pmf’s @) and Q induced by the
above protocols are approximately equal. The first step is to observe that gg,w, g1 and gs are bin indices
of w™, w", w™u™ and w™v", respectively. Substituting T'=4, X7 <« W, Xo + W, X5+ WU, Xy < WV
and Z < () in Theorem 1 of [9], we find that if
R+ Ry < HW|X),
R+ Ro+ Ry < HWU|X),
R+ Ry + Ry < HWV|X),
R+ Ro+ Ry + Ry < HWUV|X), (42)

E(n> N
then there exists e(()n) — 0 such that Q(gjo.2), w|z") & pu (w)p“(g)0:2]) = Q(gjo:2),w). This implies that

(n)

~ €,

n n n n AT AT AN AT ~n ~n zn Q\J n n n ~ ~
Q(CE W, U, 7w17u ,w2,v 7g[012]7x Yy, 2 70‘]) ~ Q(x ,Wh,u v ,Uu , Uy g[02} 7y Z OJ)

(43)

Note that we have not yet included y™ and z" in the above pmf’s.
The next step is to find the conditions under which the Slepian-Wolf decoders of Protocol A work
well with high probability. By the Slepian-Wolf theorem we need

Ro+ Ry +R>H(WU|Y)
R, > HU|WY)
Ro+ Ry +R>H(WV|Z),
Ry > H(V|WZ). (44)
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(n)

Then for an asymptotically vanishing sequence €] ’, we have

n,n ,n ,n ~n ~n zn AN AT AT AT
Q(IE W, U, v ,9[0:2],.’E Y »2 W, Wy, U, Wy, U )

(n)
€1 n ~n ~ N o N N
~ Q" w" u" v, gy, T, 9", 2T w) ] = g = w", A" =", 0" = 0"} (45)
Using and and Lemma 3 of [9] we have
Q(xnawn un ’U/\}?,’Un,’LAL w @ 79[02] 7:';”72”7(‘))
<n>+5<1n>
Q($na unv Un7wnag[0:2}71~:n7 gn’ 2n7w)1{w711 = ’LZ);L = wn’ u" = unv’an = ,Un}. (46)

Moreover, the third part of Lemma 3 of [9] implies that

Qa™ w07, gy, B 2 W) " [ 07, @ (" )

(n) 6(n)
no,n ,n ,n BN S ¢ S Y/ MR o)
» 9[0:2]> 7 = ) = > =
oL Q" u™, w", V", go:g), T, ¥, 2" w) H{] = vy = w u, 0" ="}
Xp( |Z /w2) ) (y ’y w17 )
= Q2" u", w", V", gjo., T, ", 2T w) H{] = by = w", 4" = u", 0" = v"}
x p(z"|Z W™ )p(y" g w"u"). (47)
Therefore,
(n), (n)
A(mo, o N AT T ATL AT AT ~n ~n zn ﬁoiel
Q(:C Y 2, WU 7w17v 7w27u , U 79[0:2]71' Yy .2 7w) ~
Q(J;nvynazn’wnvunavnvg[0:2]>jn7gnvZnaw)l{w? = wg = wn,ﬁn = un’{}n = Un}' (48)

Finally, using the second item in part 1 of Lemma 3 of [9] we conclude that

A n o, n _n 6(()”)—’—65”) n o, n _n
Q(g[O:Q]ax Y 4z ) ~ Q(g[O:Q]vm Yy 2 ) (49)

In particular, the marginal pmf of (X", Y™ Z") of the right hand side of this expression is equal to
p(z™, y™, 2™), which is the desired distribution.

Part(3): In the above protocol we assumed that the sender and receivers have access to external random-
nesses ([g.g] which are not present in the model. To eliminate these extra common randomnesses, we will
fix particular instances gjg.g) of G|o.2) and show that the same protocol works even if we fix Go.0) = gjo.2)-

To prove this note that by letting Go.o) = g[o:], the induced pmf Q(a:”,y”,z”) changes to the condi-
tional pmf Q(z™, y", 2| gpo:2))- But if Gjp.g) is almost independent of (X", Y™, Z"), the conditional pmf
Q(x",y”, 2" g[OZQ]) would be close to the desired distribution as well. To obtain the independence, we

again use Theorem 1 of [9]. Substituting 7' = 3, X; «+ W, Xy + WU, X3+ WV, and Z + XY Z in
Theorem 1 of [9], we find that if

Ry < HW|XY Z),
Ro+ Ry < HWU|XY Z),
Ro+ Ry < HWV|XY Z),
Ro+ R+ Ry < HWUV|XY Z), (50)
(n)
then Q(x",y", 2", gjo:2]) % P"(9[0:2))p(z", y", 2"), for some asymptotically vanishing egn). Thus, by
triangular inequality for total variation, we have Q(z™,y", 2", gjo:2)) eg) U(g[o.z]) (", y", 2"), where

e = Z?,O egn). From the definition of total variation distance random pmf’s, the average of the
total variation distance between g(z",y", 2", gjo:9)) and p“(gjo.2])p(x",y", 2") over all random binning is
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small. Thus, there exists a fixed binning with the corresponding pmf ¢ such that ¢(z",y", 2", go.2]) ~
P"(gjo:2))p(2",y", 2"). Next, Lemma 3 of [9] guarantees the existance of an instance gjo.g) such that

. 2¢(1)
Q(xn7 yna Zn‘g[O:Q]) ~ p(‘rna yna Zn)'
Then the extra shared randomness G[O 9] can be eliminated by fixing it to be Gg.9) = gj0.2-
Flnally, observe that the rate region in the theorem is seen to be equivalent to that given by equa-

tions , and (| after eliminating Ro, Ri1, Ro using Fourier-Motzkin elimination.
O

5.5 An infeasibility result for exact channel simulation

Proof of Theorem[I( Let ® be a function that takes in an arbitrary discrete channel and returns a real
number. Assume that ®(p(y|z)) that satisfies additivity and data processing properties, namely,

e ([ ptvilen)) = n@(plyl2))
=1

and

O(p(y|z)) > ®(p(bla)), if p(bla) = Zp bly)p(y|x)p(x|a) for some p(z|a) and p(bly).
Y

We claim that if p(y|z) can be exactly simulated from p(y|Z) with no shared randomness, we have
®(p(y|z)) > ®(p(y|z)). To show this assume that there is n and encoding and decoding maps which
result in a joint pmf ¢(z", y", 2", §") such that holds. We then have

n®(p(ylr)) = (p

where and follow from the additivity of ® for product channels, and follows from the data
processing property of ®.

Next, assume that ®(p(y|z)) is also quasi-convex in p(y|z). We claim that if p(y|z) can be exactly
simulated from p(gy|Z) with infinite shared randomness, we have ®(p(y|z)) > ®(p(g|Z)). Assume that
there is n and encoding and decoding maps which result in a joint pmf ¢(z", y", Z", §",w) such that
holds. Since p(y™|a") = >, p(y"|z",w), by quasi-convexity of ®, there is some choice for w = w* such
that

Q(p(y"[z")) = @(p(y"|2",w")).

Then, using the fact that p(g"|2",w*) = p(g"|z"™), we can similarly write

n®(p(ylz)) = @(p(y"[2")) = S(p(y"|2z",w")) = @(p(5"[2")) = n®(p(y|7)). (54)

Note that ®(p(y|z)) = Ca(p(y|z)) satisfies the additivity by Theorem|[I] data processing by Theorem 2]
and quasi-convexity by Lemma [I] This concludes the proof for capacity of order a.

It remains to show that ®(p(y|x)) = Diam,(p(y|z)) satisfies the additivity, data processing and
quasi-convexity properties:
Data processing: If p(z|x) = Zy p(y|x)p(z|y), then by the data processing property of a-Rényi divergence
we have

Diamq (p(ylz)) = nax Da(p(y)lla(y)) > pér;%)l? o(p(2)]lq(2)) = Diama(p(z|z)).

If p(ylw) = >, p(z|w)p(y|x), then any p(w) and g(w) correspond to some p(x) and g(x). Therefore,

Diam, (p(y|w)) = x| Do (p(y)llg(y)) < s )Da(p(y)IIQ(y)) = Diama(p(y|z))-

p{z),q(T
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Additivity: First, observe that by the quasi-convexity of D, in its arguments (see e.g., [I7]), we have

Diama (p(y|z)) = e Do (p(y)lla(y))

= max Dq (p(ylz1) |[p(ylz2)). (55)

1,72

Therefore,

Diam,(p(y"|z")) = max D, (p(y"\x?)“p(y"\xg))

n Ln
271 ,122

= max Y Do (p(yila1s)||p(yil2:)) (56)
Rl

= 1 max D (p(yl=1) || p(yla2))
= n - Diam,(p(y|x)),

where in we use the fact that p(y"|zT) = [[;_; p(vi|r1;) and similarly for p(y"|z5).
Quasi-convezity: This follows from the quasi-convexity of D,, in its arguments (see e.g., [17]). If p(y|z) =
> wP(ylz,w)p(w), then for every x1,x2, we have

Da(p(yla1)|[p(yle2)) < max Do (p(ylo1, w)|[p(ylz2, w)).
Hence, characterization of channel diameter in , we have

max De,(p(y|1) ||p(y|z2)) < maxmax Dy (p(ylz1, w)||p(y|z2, w)).

T1,T2 w o T1,r2

5.6 Exact simulation of a BSC channel from a BEC channel

Proof of Theorem [I1. By Theorem[L0] BSC(p) can be exactly simulated from BEC(e) with infinite shared
randomness only if

Coo(BEC(e)) > Ca(BSC(p)).
Using equation (2)), it is easy to verify that Co(BEC(€)) = log(2 — €) and

Cso(BSC(p)) = log(2max{p, p}).

Thus, we should have 2 max(p,p) < 2 —e. Since p € [0,1/2], we get 2(1 —p) <2 —¢, or p > €/2. On the
other hand, a degradation strategy shows that any p > €/2 is achievable (without any need for shared
randomness). This completes the proof. O

5.7 Exact simulation of a BIBO channel from a BIBO channel

Proof of Theorem[I3, Acheivability: We first show that any point (r, s) inside any of the two parallelo-
grams is achievable. The parallelogram with vertices {(r, s), (7, 5), (0,0), (1,1)} is achievable as follows:
fix X = X. Then there are decoder strategies for achieving any of these four vertices of the parallel-
ogram if we use Y = Y, Y =1—-Y,Y = 0 and Y = 1. The whole parallelogram is achievable by
time-sharing between these vertices using private randomness at the decoder. The parallelogram with
vertices {(s,r), (3,7), (0,0),(1,1)} is achievable in a similar way if we fix X = 1 — X instead.

Thus, if shared randomness is not available, the union of the two parallelograms is achievable. If
shared randomness is available, the convex hull of the region, which is the convex polygon is achievable.

Conwverse: It suffices to prove the converse for the case of infinite shared randomness. It is clear that

the simulation region when there is no shared randomness cannot exceed that when shared randomness
exists.
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(1,1)

(.5

(0,0) “(1.0)

Figure 10: The boundary of the simulation region for the exact channel simulation of BIBO channel from another BIBO channel.

By ([2)) for a BIBO channel p(y|z) with parameters (r, s) we have

Coo(p(y|z)) = log(max{r, s} + max{7, 5})
= log (max{r +s,s +7}).

Thus, by Theorem the possibility of simulation gives
max{r + 5,5 + 7} < max{r’' + 5, s + 7'},
or max{r — s,s — r} < max{r’ — ¢, s’ —r’}. Equivalently, we have
Ir—s| < |r' =&l (57)
Similarly, using , for such a channel p(y|x) we have
Diamoo (p(yl2)) = max Doo (p(yla1)lla(yla2))

= max { Doo((r, 7)|(5, 5)), Doo((5, 5)II(r, 7)) }

r T s s
=logmax<q—,—,—, = .
s'sr'T

Therefore, again by Theorem [10] the possibility of channel simulation gives

r s T 3 r s r s
maxq—,—, —, — ¢ <max<{ —, —, =, = /. (58)
s'r’'s’'T s'rl’ syt

~

Equations and imply that (r,s) is in the area depicted in Fig. [10| for the given pair (/,s’). In
particular, equation gives the two edges that are parallel to the line r = s, and equation gives

the four side boundaries of the region (see Fig. . This completes the proof.
O
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