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Abstract

We consider a Shannon cipher system for memoryless sources,in which distortion is allowed at the legitimate

decoder. The source is compressed using a rate distortion code secured by a shared key, which satisfies a constraint

on the compression rate, as well as a constraint on the exponential rate of the excess-distortion probability at

the legitimate decoder. Secrecy is measured by the exponential rate of the exiguous-distortion probability at the

eavesdropper, rather than by the traditional measure of equivocation. We define the perfect secrecy exponent as the

maximal exiguous-distortion exponent achievable when thekey rate is unlimited. Under limited key rate, we prove

that the maximal achievable exiguous-distortion exponentis equal to the minimum between the average key rate

and the perfect secrecy exponent, for a fairly general classof variable key rate codes.

Index Terms

Information-theoretic secrecy, Shannon cipher system, secret key, cryptography, lossy compression, rate-distortion

theory, error exponent, large-deviations, covering lemmas.

I. INTRODUCTION

In his seminal paper [1], Shannon has introduced a mathematical framework for secret communication. The

cipher system is consideredperfectly secureif the cryptogram and the message are statistically independent, and

so, an eavesdropper does not gain any information when he observes the cryptogram. To achieve secrecy, the sender

and the legitimate recipient share a secret key, which is used to encipher and decipher the message. It is rather

apparent from ordinary compression [2] that a necessary andsufficient condition for perfect secrecy is that the

available key rate is larger than the information rate required to compress the source (the entropy or rate-distortion

function of the source in case of lossless or lossy compression, respectively). Usually, the supply of key bits is a

limited resource, as they need to be transferred to the intended recipient via a completely secure channel. When
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the key rate is less than the information rate, secrecy is traditionally measured in terms ofequivocation,that is,

the conditional entropy of the message given the cryptogram. The use of equivocation as a secrecy measure was

advocated by other models of secrecy systems, which do not assume a shared key. Instead, secrecy is achieved by

the fact that the message intercepted by the eavesdropper isof lower quality than the one received by the legitimate

receiver. For example, in the ubiquitous wire-tap model [3], [4], the channel of the wiretapper is degraded (or more

noisy) with respect to (w.r.t.) the channel of the legitimate receiver. In the model of [5], [6], [7] the legitimate

recipient has better quality of side information than the eavesdropper.

The equivocation is indeed an unambiguous measure for statistical dependence when it is equal to either its

minimal value of zero (the random variables are deterministic functions of each other), or its maximal value of the

unconditional entropy (the two random variables are independent). Nonetheless, forpartial secrecy, i.e., when the

equivocation takes values strictly between these two extremes, its operational meaning is disputable. Thus, in [8],

it was proposed to measure partial secrecy by the expected number of spurious messages that explain the given

cryptogram (which is somewhat equivalent to the probability of correctly decrypting the message). Later, in [9],

it was proposed to measure partial secrecy by the minimum average distortion that an eavesdropper can attain

(this was also considered previously, to some extent, in [10]). In addition, in [9] the possibility that the legitimate

recipient can tolerate a certain distortion level was also incorporated into the system model. In [9, Theorems 2 and

3], inner and outer bounds were obtained on the achievable trade-off between the coding rate, the key rate, and

distortion levels at the legitimate recipient and eavesdropper. However, in [11], it was revealed that this trade-off

is, in fact, degenerated. It was demonstrated there that in some cases, a negligible key rate can cause maximum

distortion at the eavesdropper. The following simple example (from [12, Section I.A]) demonstrates this: Consider

an memoryless sourceX = (X1, . . . ,Xn) ∈ {0, 1}n whereP(Xi = 1) = 1
2 for i = 1, . . . n, and asinglekey bit U ,

shared by the two legitimate parties, whereP(U = 1) = 1
2 . Suppose that the distortion measure at the eavesdropper

side is the Hamming distortion measure. Then, if the encrypted message isY = (Y1, . . . , Yn), whereYi = Xi⊕U ,

then the distortion at the eavesdropper attains its maximalpossible value of12 , regardless of the estimate of the

eavesdropper. Nonetheless, such a secrecy is severely insecure. If the eavesdropper becomes aware of just a single

bit of the source, then it can decrypt the entire message. It was therefore proposed to consider models which are

more robust to assumptions concerning the eavesdropper. These models indeed lead to a non-degenerated trade-

off, that requires a positive key rate. In [12], [13] it was assumed that the eavesdropper’s estimation is performed

sequentially, and at the time it estimates thei-th symbol, it has noiseless/noisy estimates of all the previous message

symbols and the previous reproduced symbols (at the legitimate recipient), in addition to the public cryptogram. This

model was termedcausal disclosure. It was justified by the scenario in which the sender and legitimate recipient

attempt to coordinate actions in a distributed system in order to maximize a certain payoff, and the eavesdropper

acts in order to minimize the payoff. In a different line of work [14], the eavesdropper produces a fixed-size list

(of exponential cardinality in the block-length), and the distortion is measured w.r.t. the reproduction word in the

list which attains the minimal distortion.
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However, the fact that the trade-off in [9] is degenerated can be attributed to the way that the distortion is

measured, rather than to the weakness of the eavesdropper. For a given strategy of the eavesdropper, the average

distortion, as assumed in [9], [12], [14], may be large due tomessage and key-bit combinations that lead to a very

large distortion, albeit with small probability. A more refined figure of merit would include the probability that the

distortion is less than some level, rather than the average distortion. Such a performance criterion is customary in

ordinary rate-distortion theory (e.g. theǫ-fidelity criterion in [15, Chapter 7]). Indeed, in the abovesingle key-bit

example, the eavesdropper can estimate the message exactlywith probability 1
2 , irrespective of its length. Thus, for

any positive distortion level, the probability of an exiguous-distortion event is12 , which is clearly unacceptable for

most applications.

For most source models, good estimation of the message at theeavesdropper should be a rare event, and finding

its exact probability is difficult. Instead, an asymptotic analysis can be carried in order to find the exponential

decrease rate (i.e. theexponent) of the correct decryption probability. The results of [10]can be considered as

a special case of this line of thought, for the restricted class of instantaneous encoders. In [10], the exponent of

decrypting the message by the eavesdropper was found as a function of the exponent of exiguous-distortion of the

estimation by the eavesdropper. For the same model, the exponent of the minimal probability of correct decryption

by the eavesdropper was found in [16]. Later, in [17] secrecywas defined in a large-deviations sense: A system

is considered secure if the exponent of the probability of the eavesdroppercorrectly decrypting the message is the

same with and without the cryptogram. This, in turn, required the analysis of the correct decryption probability. In

[10], [16], [17], it was assumed that the legitimate recipient must reproduce the message exactly (i.e., with zero

distortion).

In this paper, we adopt a similar large-deviations approachto measuring secrecy, using a distortion measure,

and generalize the results of [17]. For a memoryless source,we allow an imperfect reproduction at the legitimate

recipient, and measure distortion both at the legitimate recipient and at the eavesdropper using a large-deviations

measure. Specifically, we will define two exponents. First, for a given distortion levelDL, the excess-distortion

exponentis defined in the usual way [15, Chapter 9], as the exponent of the probability that the distortion between

the legitimate recipient reproduction and the source sequence is larger thanDL. Second, for a given distortion

level DE, we define theexiguous-distortion exponentas the exponent of the probability that the distortion between

the eavesdropper estimate and the source sequence isless thanDE. We will derive theperfect secrecy exponent

function E∗
e (DE), which is the exiguous-distortion exponent of the eavesdropper when it estimates the message

blindly, without the cryptogram (alternatively, for codeswith unlimited key rate). It will be assumed that the

secrecy system has a limited coding rateRL, and that for a given distortion levelDL, the excess-distortion exponent

must be larger thanEL. Our main result is that under mild conditions on thecompression constraints(RL,DL,EL),

the maximal achievable exiguous-distortion exponent is equal to the minimum between the key rateR, andE∗
e (DE),

calculated at distortion level required by the eavesdropper DE. Since this maximal exiguous-distortion exponent

does not depend on(RL,DL,EL) (in the interesting domain of these parameters), such a result implies that as far as
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Figure 1. Two cases of ambiguity for the eavesdropper, for a single key bit code. Left side: Assume for simplicity that thesource is
distributed uniformly over the dots encapsulated by the outermost circle. The two small solid line circles represent two reproduction cells,
which are mapped to the same cryptogram by the two possible values of the key bitu. The dashed larger circle represents all the source
block for which the distortion between the source block and the best estimate of the eavesdropper is less thanDE. As can be seen, there
is a large exiguous-distortion probability. Right side: Under the same assumptions, in this case the two reproduction cells are far apart. The
best estimate of the eavesdropper can ‘cover’ at most one of the reproduction cells, and the exiguous-distortion probability is 1

2
.

performance trade-offs are concerned, the compression andsecrecy problems are essentially decoupled: The fact

that the message is required to be kept secret does not affectthe compression performance. It should be stressed,

however, that this result does not imply a separation theorem from the operational point of view. The rate-distortion

code should be designed in a certain manner in order to provide secrecy, in contrast to, e.g., [9], [7], [18]. A

concatenation of an arbitrary good rate-distortion code, followed by encryption using the available key bits, does

not necessarily achieve a good exiguous-distortion exponent. For intuition, consider an ordinary rate-distortion code,

assume that one key bit is available, and that the distortionmeasures of the legitimate decoder and eavesdropper

are the same. The eavesdropper, in this case, knows that the reproduction of the legitimate decoder is one of two

possible reproductions (of equal probability). If these two reproductions are close, then it can approximate them

using a single reproduction, and achieve a distortion whichmay be only slightly larger than the distortion of the

legitimate decoder. If, however, the rate-distortion codeis designed in such a way that these two reproductions

are sufficiently far apart, then the eavesdropper will have apoor compromise between them, and will achieve

high distortion. This is illustrated in Figure 1. More generally, unlike ordinary rate-distortion codes, in which the

performance is determined only by the reproduction cells, and the way in which the reproduction cells are mapped

to transmitted bits is immaterial, here, the latter will be crucial for the security performance.

To show this result, we will prove both achievability (lowerbound on the exiguous-distortion exponent) and a

matching converse (upper bound). In the achievability part, we will demonstrate the existence of a secrecy system

in which the compression constraints are satisfied, and it has a fixed key rateR. For this secrecy system, the best
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strategy of the eavesdropper will be either to (1) guess the secret key and reproduce the message as a legitimate

recipient (using the cryptogram), or (2) blindly estimate the message. The secrecy system constructed will also be

universal in the following two senses. First, it does not require the knowledge of the source statistics, as long it

is a memoryless source. Second, it is not designed for a specific value ofDE, yet the exiguous-distortion exponent

min{R, E∗
e (DE)} will be achieved for any value ofDE, by the same sequence of codes, as long asDE ≥ DL. As a

converse, we will show that even ifvariable key rate is allowed, yet with average key rate less thanR, then the

exiguous-distortion exponent cannot be larger thanmin{R, E∗
e (DE)}. The results of [17] are essentially recovered

from our results, as a special case withDL = DE = 0. We also remark that in our model, the distortion measures

of the legitimate recipient and the eavesdropper can be different, as long as they satisfy a certain relationship.

Finally, we briefly mention a related work in which large-deviations aspects were also incorporated. In [19],

the guessingmodel of [20], [21] was relaxed to allow, after a maximum of possible guesses has passed, a small

probability of large distortion for the eavesdropper. To analyze the asymptotic limits of the system, the excess-

distortion exponent of theeavesdropperwas restricted, and the maximal normalized logarithm of thenumber of

guesses was found1. However, in our model, no testing mechanism is assumed to beavailable to the eavesdropper,

which allows it to validate its estimate.

The outline of the rest of the paper is as follows. In Section II, we establish notation conventions, and in Section

III, we formulate the problem. In Section IV, we present our main theorem, and discuss its implications. In Section

V, we provide the outline and the main ideas of the proof. The proof of the main theorem appears in Section VI.

II. N OTATION CONVENTIONS

Throughout the paper, random variables will be denoted by capital letters, specific values they may take will

be denoted by the corresponding lower case letters, and their alphabets will be denoted by calligraphic letters.

Random vectors and their realizations will be denoted, respectively, by capital letters and the corresponding lower

case letters, both in the bold face font. Their alphabets will be superscripted by their dimensions. For example, the

random vectorX = (X1, . . . ,Xn) (n positive integer), may take a specific vector valuex = (x1, . . . , xn) in X n,

thenth order Cartesian power ofX , which is the alphabet of each component of this vector. For any given vector

x, we will also denotexj
i = (xi, . . . , xj) for 1 ≤ i ≤ j ≤ n, and use the shorthandxj

1 = x
j .

We will follow the standard notation conventions for probability distributions, e.g.,PX(x) will denote the

probability of the letterx ∈ X under the distributionPX . The arguments will be omitted when we address

the entire distribution, e.g.,PX . Similarly, generic distributions will be denoted byQ, Q∗, and in other forms,

subscripted by the relevant random variables/vectors/conditionings, e.g.QXZ , QX|Z . Whenever clear from context,

these subscripts will be omitted. An exceptional case will be the ‘hat’ notation. For this notation,̂Qx will denote

1Reference [19] is a one page abstract, and contains only a description of the problem. The results were not published, buta detailed
version of [19] can be found in [22]. However, we believe thatthe achievability results provided in [22] are not actuallyproven. Specifically,
in the achievability proof, no system is actually constructed, and the claims about the expected number of guesses of theeavesdropper are
made onany given secrecy system. Obviously, there are, particularly bad, secrecy systems, in which a single guess suffices to find the
message exactly.
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the empirical distribution of a vectorx ∈ X n, i.e., the vector of relative frequencieŝQx(x) of each symbolx ∈ X

in x. The type class ofx ∈ X n, which will be denoted byTn(Q̂x), is the set of all vectorsx′ with Q̂x′ = Q̂x. The

set of all type classes of vectors of lengthn overX will be denoted byPn(X ), and the set of all possible types

overX will be denoted byP(X ) ,
⋃∞

n=1Pn(X ). Similar notation for type classes will also be used for generic

typesQX ∈ P(X ), i.e., Tn(QX) will denote the set of all vectorsx with Q̂x = QX . In the same manner, the

empirical distribution of a pair of vectors(x, z) will be denoted byQ̂xz and the joint type class will be denoted

by Tn(Q̂xz). The joint type classes over the Cartesian product alphabetX × Z will be denoted byPn(X × Z),

andP(X ×Z) ,
⋃∞

n=1Pn(X ×Y). For a joint typeQXZ ∈ P(X ×Z), Tn(QXZ) will denote the set of all pairs

of vectors(x, z) with Q̂xz = QXZ . The conditional type class, namely, the set{x′ : Q̂x′z = Q̂xz}, will be denoted

by Tn(Q̂x|z, z), or more generallyTn(QX|Z , z) for a generic empirical conditional probability distribution QX|Z .

The probability simplex forX will be denoted byQ(X ), and the simplex for the alphabetX ×Z will be denoted

by Q(X × Z). Similar notations will be used for triplets of random variables.

For two distributionsPX , QX over the same finite alphabetX , we will denote the variational distance (L1 norm)

by

||PX −QX ||,
∑

x∈X

|PX(x)−QX(x)|. (1)

When optimizing a function of a distributionQX over the entire probability simplexQ(X ), the explicit display of the

constraint will be omitted. For example, for a functionf(Q), we will write minQ f(Q) instead ofminQ∈Q(X ) f(Q).

The same will hold for optimization of a function of a distribution QXZ over the probability simplexQ(X × Z),

and for similar optimizations.

The expectation operator w.r.t. a given distribution, e.g., QXZ , will be denoted byEQ[·] where, the subscript

QXZ will be omitted if the underlying probability distributionis clear from the context. In general, information-

theoretic quantities will be denoted by the standard notation [23], with subscript indicating the distribution of the

relevant random variables, e.g.HQ(X|Z), IQ(X;Z), IQ(X;Z|W ), underQ = QXZW . For notational convenience,

the entropy ofX underQ will be denoted both byHQ(X) andH(QX), depending on the context. The binary

entropy function will be denoted byhB(q) for 0 ≤ q ≤ 1. The information divergence between two distributions,

e.g.PX andQX , will be denoted byD(PX ||QX). In all information measures above, the distribution may also be

an empirical distribution, for example,H(Q̂x), D(Q̂x||PX) and so on.

We will denote the Hamming distance between two vectors,x ∈ X n andz ∈ X n, by dH(x, z). The length of

a string b will be denoted by|b|, the concatenation of stringsb1, b2, . . . will be denoted by(b1, b2, . . .), and the

empty string will be denoted byφ. We will denote the complement of a setA by Ac, and its interior byint(A).

For a finite setA, we will denote its cardinality by|A|. The probability of the eventA will be denoted byP(A),

and I(A) will denote its indicator function.

For two positive sequences,{an} and {bn} the notationan
.
= bn, will mean asymptotic equivalence in the

exponential scale, that is,limn→∞
1
n log(an

bn
) = 0. Similarly, an

·
≤ bn will mean lim supn→∞

1
n log(an

bn
) ≤ 0, and
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so on. The ceiling function will be denoted by⌈·⌉. The notation[t]+ will stand for max{t, 0}. For two integers,

a, b, we denote bya mod b the modulo ofa w.r.t. b. Logarithms and exponents will be understood to be taken to

the binary base.

Throughout, we will ignore integer code length constraintsfor the sake of simplicity, as they do not have

any effect on the results. For example, instead of⌈nR⌉ bits we will write nR bits. For a given finite ordered

set,A = {a1, . . . ,a|A|}, we will denote byB[a; log|A|] the binary representation of the index ofa in A, i.e.

B[a; log|A|] = i if a = ai, for i = 1, . . . |A|.

In general, the subscript ‘L’ will be used for quantities related to the legitimate decoder, and the subscript ‘E’

will be used for eavesdropper-related quantities.

III. PROBLEM STATEMENT

Let the source vectorX = (X1, . . . ,Xn) be formed byn independent copies of a random variableX ∈ X ,

whereX is a finite alphabet, andXi is distributed according toPX(x) = P(X = x). Let W and Z be finite

reproduction alphabets. In addition, let{Ui}
∞
i=1 be a sequence of purely random bits (i.e. a Bernoulli processwith

P(Ui = 1) = 1
2 ), independent of the sourceX.

A secure rate-distortion codeSn = (fn, ϕn) of block-lengthn is defined by akey-lengthfunctionkn : X n → Z+,

which assigns a key lengthkn(x) to every x ∈ X n, an encoderfn : X n × {0, 1}∗ → Yn, which generates

a cryptogram,y = fn(x,u), whereu = (u1, . . . , ukn(x)), and whereYn is a finite alphabet2, and a legitimate

decoderϕn : Yn ×{0, 1}∗ → Wn, which generates a reproductionw = ϕn(y,u)
3. A sequence of codes{Sn}n≥1,

indexed by the block-lengthn, is denoted byS. The performance of the legitimate decoder is evaluated by a

distortion measuredL : X × W → R+, where without loss of generality (w.l.o.g.), it is assumedthat for every

x ∈ X , there existsw ∈ W such thatdL(x,w) = 0. Also, with a slight abuse of notation, the distortion betweenx

andw is defined as the average,

dL(x,w) ,
1

n

n
∑

i=1

dL(xi, wi). (2)

We say thatS satisfies acompression constraint(RL,DL,EL), if the coding ratesatisfies4

lim sup
n→∞

1

n
log|Yn|≤ RL, (3)

and for any given{Ui}
∞
i=1 = {ui}

∞
i=1 the excess-distortion exponent, at distortion levelDL, is larger thanEL for

the legitimate decoder, i.e.5

lim inf
n→∞

−
1

n
P [dL(X, ϕn(fn(X,u),u)) ≥ DL] ≥ EL. (4)

2This alphabet need not be thenth order Cartesian power of some alphabetY.
3It is implicit in the definition of the encoder and decoder that both are aware of the key-lengthkn(x). Specifically, one can define an

inverse-key lengthfunction ln : Yn × {0, 1}∗ → Z+, which reproduces the key-length at the decoder side, i.e.kn(x) = ln(y, {ui}
∞
i=1).

4This constraint can be weakened to a constraint on the normalized entropy of the cryptogram. See discussion in Section IV.
5This constraint can be weakened to be only satisfied for an excess-distortion probability averaged over{Ui}

∞

i=1
. See discussion in Section

IV.
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Note that for a zero excess-distortion exponentEL = 0+, this requirement implies that anaverage-distortion

constraint6 E [dL(X,W)] ≤ DL is also satisfied. Aneavesdropperdecoder is a functionσn : Yn → Zn, where

z = σn(y) is theestimateof the eavesdropper. It is assumed that the eavesdropper hasfull knowledge of all system

properties: The source statistics, the encoder(fn, kn), and the legitimate decoderϕn. The set of all eavesdropper

decoders for a block-lengthn is denoted byΣn. In what follows, we also consider genie-aided eavesdropper

decoders, which are aware of the type class of the source block, i.e., σ̃n : Yn × Pn → X n, and in this case, the

estimate of the decoder isz = σ̃n(y, Q̂x). The set of all genie-aided eavesdropper decoders of block-lengthn is

denoted byΣ̃n.

The performance of the eavesdropper is evaluated by a distortion measuredE : X ×Z → R+, where again, it is

assumed that for everyx ∈ X , there existsz ∈ Z such thatdE(x, z) = 0. As before, the distortion betweenx and

z is defined as

dE(x, z) ,
1

n

n
∑

i=1

dE(xi, zi). (5)

For a givenDE ≥ 0, the exiguous-distortion probability, for a given codeSn, is denoted by

pd(Sn,DE) , max
σn∈Σn

P [dE(X,Z) ≤ DE] . (6)

The limit inferior exiguous-distortion exponent, achieved for a sequence of codesS, is defined as

E−
d (S,DE) , lim inf

n→∞
−
1

n
log pd(Sn,DE), (7)

and thelimit superior exiguous-distortion exponentachieved,E+
d (S,DE), is defined analogously, with limit superior

replacing the limit inferior. While,E−
d (S,DE) ≤ E+

d (S,DE), it is guaranteed thatpd(sn,DE)≥̇ exp
[

−nE−
d (S,DE)

]

for all sufficiently large block-lengths, whilepd(sn,DE)
.
= exp

[

−nE+
d (S,DE)

]

may hold only for some sub-

sequence of block-lengths. Thus,E−
d (S,DE) is less sensitive to the choice of the block-length. For a givenQX ∈

P(X ), let nl = n0l, l = 1, 2, . . ., be the sub-sequence of block-lengths such thatTn(QX) is non-empty, where

n0 is the minimal such block-length. We define, with a slight abuse of notation, theconditional limit inferior

exiguous-distortion exponentas

E−
d (S,DE, QX) , lim inf

l→∞
−

1

nl
log max

σnl
∈Σnl

P [dE(X,Z) ≤ DE|X ∈ Tnl
(QX)] , (8)

andE+
d (S,DE, QX) is defined analogously.

The key rate ofx ∈ X n is defined asrn(x) , 1
n |kn(x)|. A code is termed afixed key ratecode of rateR0

6Indeed, suppose thatP (dL(X, ϕn(fn(X,u),u)) ≥ DL) decays to zero for all{ui}
∞
i=1 , but only sub-exponentially. AssumingdL ,

minw∈W maxx∈X dL(x,w) < ∞, for any δ > 0 and alln sufficiently large

E [dL(X,W)] ≤ DL · P [dL(X, ϕn(fn(X,u),u)) ≤ DL] + dL · P [dL(X, ϕn(fn(X,u),u)) ≤ DL]

≤ DL + dL · P [dL(X, ϕn(fn(X,u),u)) ≤ DL]

≤ DL + δ.
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if rn(x) = R0 for all x ∈ X n, otherwise, it is called avariable key ratecode, and it has anaverage key rate

E[rn(X)]. We define theconditional key rateof QX ∈ P(X ) as

R(S, QX) , lim
l→∞

E[rnl
(X)|X ∈ Tnl

(QX)] (9)

whenever the limit exist.

The rate-distortion function of a memoryless sourceQX , under the distortion measuredL(·, ·) is denoted by

RL(QX ,DL) , min
QW |X :EQ[dL(X,W )]≤DL

IQ(X;W ) (10)

and, similarly, the rate-distortion function ofQX under the distortion measuredE(·, ·) is denoted byRE(QX ,DE).

The main result of this paper, in Theorem 1, is a single-letter formula for the largest achievable exiguous-distortion

exponent for codes under a compression constraint(RL,DL,EL) and limited key rate.

IV. M AIN RESULT

The achievability part will be proved using fixed key rate codes, but in the converse part, we will allow also

variable key rate codes, that satisfy the following assumptions:

1) Upper boundon the key rate: As kn(x) = n log |X | key-bits are always sufficient to perfectly encrypt the

source, even without distortion, it will be assumed thatkn(x) ≤ n log |X | for all x ∈ X n.

2) Uniform convergenceof the conditional key rate: We assume that for everyQX ∈ P(X ), conditioned on

X ∈ Tn(QX), the key ratern(X) converges in probability toR(S, QX), and moreover, this convergence is

uniform overP(X ). Namely, for anyδ > 0

max
QX∈Pn(X )

P
[∣

∣rn(X)−R(S, QX)
∣

∣ > δ|X ∈ Tn(QX)
]

−−−→
n→∞

0. (11)

It is easy to prove that since0 ≤ rn(X) ≤ log|X | with probability 1, then uniform convergence in the mean

(L1 norm) is also satisfied, and the limit in (9) exists, uniformly overQX ∈ P(X ).

3) Admissibleencoders:An encoderfn will be termedadmissible, if u 6= u
′ implies thatfn(x,u) 6= fn(x,u

′)

for all x ∈ X n. We assume thatfn is an admissible encoder.

In addition, we make two more assumptions. These assumptions are inessential, and are only made in order

to simplify the exposition of our results.

4) Upper boundon the legitimateexcess-distortionexponent:It is well known [15, Theorem 9.5],[24], that for

a givenDL, if

lim inf
n→∞

1

n
log|Yn|≥ RL (12)

then there exist a sequence of codesS which satisfies the compression constraint(RL,DL,EL) iff

EL ≤ EL(PX ,DL,RL) , inf
QX :RL(QX ,DL)>RL

D(QX ||PX), (13)
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whereEL(PX ,DL,RL) is known asMarton’s source coding exponent. It will be assumed that the required

excess-distortion exponent at the legitimate decoder is strictly positive and not larger than Marton’s exponent,

i.e., 0 < EL ≤ EL(PX ,DL,RL).

5) Partial ordering betweendistortion measures:The distortion measuredE(·, ·) will be termed morelenient

thandL(·, ·), if for every w ∈ Wn, there existsz ∈ Zn such that

{x ∈ X n : dL(x,w) ≤ D} ⊆ {x ∈ X n : dE(x, z) ≤ D} , (14)

for every D ≥ 0. This corresponds to a worst case assumption regarding the distortion measure (and the

reproduction alphabetZ) used by the eavesdropper - it is at least not more demanding than the distortion

measure used by the legitimate decoder. In addition, this also puts, in some sense, the distortion levels at

the legitimate decoder and at the eavesdropper decoder, on the same scale. Therefore, it will be assumed

thatDE ≥ DL, namely, the distortion level allowed by the eavesdropper is larger than the one allowed by the

legitimate decoder. It is also easily verified that this assumption implies

RE(QX ,D) ≤ RL(QX ,D) (15)

for everyD > 0.

We denote by

E∗
e (DE) , min

QX

{D(QX ||PX) +RE(QX ,DE)} (16)

the perfect-secrecy exponent.Using standard method of types, it can be shown that this is the maximal exiguous-

distortion exponent that can be achieved when the eavesdropper blindly estimates the source, i.e. without using the

cryptogram. Alternatively, as evident from Theorem 1, thisis the maximal exponent for unlimited key rate. We are

now ready to state our main result.

Theorem 1. Let δ > 0 be given. Then, there exists a sequence of codesS of fixed key rateR, which satisfies a

compression constraint(RL + δ,DL,EL) and properties 1-5 above,

E−
d (S,DE) ≥ min {R, E∗

e (DE)} − δ (17)

for all DE ≥ DL. Conversely, for every sequence of codesS of average key rateE[rn(x)] ≤ R for all n, which

satisfies a compression constraint(RL,DL,EL) and properties 1-5 above,

E+
d (S,DE) ≤ min {R, E∗

e (DE)} (18)

for all DE ≥ DL.

Section VI is devoted to the proof of Theorem 1, and here we discuss its implications. The main implication

of this theorem is that the performance of lossy compressionand encryption are essentially decoupled. Note that



11

in Theorem 1, the exiguous-distortion exponent of the eavesdropper is determined solely by the key rate and

the distortion levelDE at the eavesdropper, and not by the compression constraint(RL,DL,EL) (as long as the

assumptions hold). Specifically, it holds forDL = 0, which means that increasingDL does not increaseDE. In other

words, reducing the amount of information sent to the legitimate decoder cannot improve secrecy. Nonetheless, on

a positive note, as long asR ≤ E∗
e (DE), the maximal secrecy can be attained, for everyDE ≥ DL, without affecting

the compression performance. In addition, note that in Theorem 1,DE has a special stature: A single sequence of

codesS is universalfor all DE ≥ DL. This enables the construction of secure rate-distortion codes that are robust

to the choice ofDE, which may be unspecified when designing the system.

As previously mentioned, the achievability part of Theorem1 is proved using fixed rate codes. Since fixed rate

codes clearly satisfy the second assumption above, the maximal exiguous-distortion exponent is fully characterized

for fixed key rate coding. Furthermore, the theorem shows that variable key rate codes, from the class of codes

which satisfy the above assumptions, offer no advantage over fixed key rate codes in terms of exiguous-distortion

exponent. This is in contrast to similar problems (variable-rate channel coding with feedback [25], [26], variable-rate

Slepian-Wolf coding [27]), where the more lenient average-rate constraint allows to increase the error exponent. It

should be mentioned that while the class of variable key ratecodes is restricted to satisfy uniform convergence in

probability of the conditional key rate (see the second assumption above), the important class oftype dependent

variable key ratecodes satisfy this assumption. In a type dependent variablekey rate code, the key ratern(x)

depends onx only via its type, namely,̂Qx = Q̂x̃ implies rn(x) = rn(x̃) = ρ(QX) for somekey rate function

ρ(·) : P(X ) → R
+. Due to the symmetry of source blocks from the same type class, such a key rate allocation is

indeed plausible, and also practically motivated due to itssimplicity. Such codes trivially satisfy the convergence

requirement, and so the converse part of Theorem 1 is valid.

Theorem 1 essentially generalizes [17, Theorem 1]. In [17],it was assumed that all alphabets are identical

X = W = Z, and thatDE = DL = 0. Thus, the legitimate decoder need to perfectly reproduce the source block,

and the eavesdropper performance is measured by its probability of correct estimate, i.e.

pd(Sn,DE) = max
σn∈Σn

P(X = Z). (19)

Note also that for this specific case, the perfect-secrecy exponent for this case is given by

E∗
e (DE) = min

QX

{D(QX ||PX) +H(QX)} (20)

= − log max
x∈X

PX(x). (21)

Indeed, even without using the cryptogram, the eavesdropper can choosez = (x∗, . . . , x∗) wherex∗ = maxx∈X PX(x),

and achieveE∗
e (DE).
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V. OUTLINE OF THE PROOF OFTHEOREM 1

Since the proof of Theorem 1 is considerably involved, this section is devoted to an informal description of the

structure and the main ideas in this proof. Hopefully, this will facilitate the reading of the formal proof, or at least

give the reader an idea of the main highlights.

To begin, we observe, in Subsection VI-A, that the exiguous-distortion exponent remains unchanged even if

the eavesdropper is aware of the type of the source blockQ̂x. This enables us to first, consider each type of the

source separately, and only then incorporate all types simultaneously, both in the achievability and the converse

parts. Next, in Subsection VI-B, we provide a technique which facilitates the construction of secure rate-distortion

codes, such that in view of the eavesdropper the cryptogramsare symmetric. The idea is tocover a type class

Tn(QX) using an essentially minimal number of permutations of a constituent setDn ⊆ Tn(QX). To wit, if

Dn , {x(0), . . . ,x(|Dn|−1)} then for any permutationπ over {1, . . . , n}, we define

π(Dn) , {π(x(0)), . . . , π(x(|Dn|−1))} , (22)

and then find a set of permutations{πn,t}
κn

t=0 such that

κn
⋃

t=0

πn,t(Dn) = Tn(QX), (23)

whereκn is asymptotically close to its minimal value of|Tn(QX)|
|Dn|

. For ordinary rate-distortion, such covering lemma

can be used to show the existence of a good rate-distortion code (e.g. instead of [15, Lemma 9.1]). Let us define,

the D-coverof w ∈ Wn as

D(w, QX ,DL) , {x ∈ Tn(QX) : dL(x,w) ≤ DL} . (24)

If we setDn = D(w, QX ,DL) and find permutations{πn,t}
κn

t=0 such that (23) holds, then the setĈn , {πn,t(w)}κn

t=0

is a rate-distortion code such that for everyx ∈ Tn(QX) there existsw ∈ Ĉn such thatdL(x,w) ≤ DL. Such

permutations can be found for all types of the source, and using the method of types, it can be verified that Marton’s

source coding exponent can be achieved by such a construction. For the construction of secure rate-distortion codes,

we will use permutations of more complicated sets to cover the type.

The achievability part (lower bound) is proved in Subsection VI-C using codes of fixed key rateR. Let us

first focus on a single typeQX . For the legitimate decoder, a source blockx ∈ Tn(QX) is reproduced by some

w ∈ Cn ,
{

ϕn(y,u) : y ∈ Yn,u ∈ {0, 1}nR
}

, which satisfiesdL(x,w) ≤ DL, unless no suchw exists. The

compression constraint(RL,DL,EL) ensures that large-distortion reproduction occurs with anexponentially decaying

probability. The eavesdropper, on the other hand, reproduces using only the cryptogramy. With a slight abuse of

notation of (24), let us define, for a given the D-cover ofCn ⊆ Wn as

D(Cn, QX ,DL) ,
⋃

w∈Cn

D(w, QX ,DL). (25)
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When the eavesdropper observesy, it knows that the legitimate decoder will reproducew from the setCn(y) =
{

ϕn(y,u) : u ∈ {0, 1}nR
}

of size |Cn(y)|= 2nR. Furthermore, conditioning on the cryptogramy and the typeQX ,

the source blockX is distributed uniformly overD(Cn(y), QX ,DL). The proof of achievability is divided into

three steps. In the first step (Lemma 7), we demonstrate the existence of a good and secure rate-distortion code

conditioned on a single cryptogram, in the second step, we extend this code for an entire type classTn(QX)

(Lemma 9), and in the third step, we extend it to all types.

In more detail, the first step of the proof (Lemma 7) shows, by arandom selection mechanism, that there

exists a setC∗
n of size2nR such that whenX is distributed uniformly overD(C∗

n, QX ,DL), the exiguous-distortion

probability of any eavesdropper is asymptotically not larger than2−n·min{R,RE(QX ,DE)}. Geometrically, this implies

that theD-coversfor w ∈ Cn are distant from each other, underdE(·, ·). Thus, a secure rate-distortion code satisfying

Cn(y) = C∗
n for some cryptogramy, will have a good conditional exiguous-distortion probability given y.

In the second step, we define the code for allx ∈ Tn(QX), using a symmetry argument. Observe that the

distortion measures of both the legitimate and eavesdropper decoders are invariant to permutations (see (2) and

(5)). Thus,D(π(Cn), QX ,DL) = π (D(Cn, QX ,DL)), and the exiguous-distortion probability for an eavesdropper

whenX is distributed uniformly overπ (D(Cn, QX ,DL)) is the same as forD(Cn, QX ,DL). In Lemma 9, we use a

minimal number of permutations (from Subsection VI-B) of a good D-coverD(C∗
n, QX ,DL) to coverTn(QX), and

then obtain a good secure rate-distortion code for allTn(QX). There is a certain subtlety in the proof of Lemma

9. For an ordinary rate-distortion code, there might be morethan a singlew ∈ Cn such thatdL(x,w) ≤ DL. From

the excess-distortion probability point of view, there is no importance to which one of these{w} will reproduce

x. However, this might result inw ∈ Cn for which only a small portion ofD(w, QX ,DL) is actually reproduced

by w (asx ∈ D(w, QX ,DL) might be reproduced by somew′ ∈ Cn which also satisfiesdL(x,w) ≤ DL), which

might be harmful for secrecy purposes. Indeed, the secure rate-distortion code is constructed in Lemma 9 with

the will that conditioned on any cryptogramy, the source is distributed uniformly overD(C∗
n, QX ,DL). But, since

a source block must eventually be reproduced by a singlew, then conditioned on some of the cryptogramsy,

the source block will be distributed on a smaller set thanD(C∗
n, QX ,DL). For such cryptograms, the conditional

exiguous-distortion probability of the eavesdropper might be large. Lemma 9 shows that if the efficient covering

described above is utilized, then the total effect of such events is negligible.

Until this stage, we have constructed a code forTn(QX) with appropriate conditional exiguous-distortion ex-

ponent. As we shall see, in the construction of Lemma 7 and Lemma 9, the convergence of probabilities to their

asymptotic exponent is not necessarily uniform (cf. Remark8). In the third step of the achievability proof, we prove

that uniform convergence is possible, using an elaborated construction, built from the previous one. The idea is to

consider a dense grid on the simplexQ(X ), and construct a secure rate-distortion code, as in Lemma 9,for each

of the types in the grid. Since the of number of types in the grid is finite, then uniform convergence is assured

for types in the grid. If the type of the source block belongs to the grid, then one of the constructed codes is

used, according to its type. Otherwise, the source block will be first modified, such that the modified source block
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does have type within the grid, which is not very far from the type of the original source block. The modified

source block will then be encoded using one of the codes of thegrid, and thus will have both low legitimate

excess-distortion probability, and large exiguous-distortion probability for the eavesdropper. It will be shown that

the overheads required for the legitimate decoder to reproduce the original source block, rather than the modified

source block are negligible.

In Subsection VI-D, we prove the converse part in two steps. Recall that in general, for any given typeQX ∈

P(X ), we have defined the average rateR(S, QX), but we allow each source blockx ∈ Tn(QX) to have a different

key ratern(x) ∈ [0, logn|X |]. In addition, for a code satisfying the compression constraint (RL,DL,EL), and type

QX such thatD(QX ||PX) ≤ EL, the legitimate excess-distortion probability must decayto zero exponentially as

2−n[EL−D(QX ||PX)] but does not need to be strictly zero. In the first step of the proof of the converse, we prove

a lemma that shows that the optimal limit superior exiguous-distortion exponent is not deteriorated, if we restrict

rn(x) to be a constant withinTn(QX), which is less thanR(S, QX) + δ, and also restrict the legitimate excess-

distortion probability to be exactly zero. It will be easierto prove a converse for codes with such properties, as

will be done in the second step of the proof. In the second step, we assume the structure of the code from the first

step, and evaluate the performance of an eavesdropper whichadopts one of the following two simple strategies:

(1) It can guess the secret key bits, and then decode using these bits just like the legitimate decoder. (2) It can

ignore the cryptogram altogether and choose an estimatez ∈ Zn, based on onlyQ̂x. Clearly, in the first case, the

probability of success is2−nR, and it is not difficult to show that the exiguous-distortionprobability for the second

strategy is asymptotically2−nE∗
e (DE). This implies the upper bound (18). We remark that the asymptotic optimality

of these two simple strategies (sometimes calledkey-attackandblind guessing, respectively) can also be found to

some extent in related problems [14], [21], [22].

We conclude the outline of the proof with the following comments:

• Awarenessof key-length:Since the number of possible key-lengths isn log|X |, it can be compressed and

fully encrypted using negligible coding rate and key rate of1
n log(n log|X |) bits, and it can be assumed

that the exiguous-distortion exponent is not deterioratedif the eavesdropper is aware of the key-length (as

in Subsection VI-A). Thus, in the converse proof, we could have found the exiguous-distortion exponent

conditioned on both the type and the key-length, and then average over them. The main obstacle in this

approach is proving the second property (full type covering) assured in Lemma 13. To show this property

using the methods of Lemma 13, would require showing that thesubsets of the type classes of fixed key-

length, i.e.,T̃n(QX ,m) , Tn(QX) ∩ {x : kn(x) = m} for some0 ≤ m ≤ n log|X |, can cover a type class

by essentially a minimal number of permutations, as in Lemma4 (Subsection VI-B). However, in turn, the

proof of Lemma 4 is based on the fact thatTn(QX) is invariant to permutations, which may not hold for

T̃n(QX ,m).

• Full type covering: Let QX ∈ P(X ) be given such thatD(QX ||PX) < EL. The method of types and the

expression (13) reveal that to satisfy the compression constraint (RL,DL,EL), the following condition should
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hold for any given{ui}∞i=1

P [dL(X, ϕn(fn(X,u),u)) > DL|X ∈ Tn(QX)]
.
= 2−n[EL−D(QX ||PX)]. (26)

For ordinary rate-distortion codes, it is well known7 that if for a givenǫ ∈ (0, 1) and for all n sufficiently

large

P [dL(X,W) > DL] ≤ 1− ǫ (27)

then there exists a rate-distortion code with almost the same rate, such that

P [dL(X,W) > DL] = 0. (28)

Thus, to ensure an exponent constraintEL for ordinary rate-distortion codebook, the type classes oftypes

which are ‘close’ enough toPX (in the divergence sense) should be almost covered by the reproduction set

(26), but in fact, can befully covered by the reproduction set (28). Then, the minimal raterequired to satisfy

(26) is the same as the minimal rate to satisfy (28), and the compression rate cannot be decreased due to the

softer requirement in (26). By contrast, in the presence of the eavesdropper, it might happen that the softer

requirement in (26) can lead to better exiguous-distortionexponent: Even if a type class can be fully covered

using the available coding rate, perhaps the exiguous-distortion exponent can be improved if some of the

source blocks are reproduced with distortion larger thanDL, but this occurs with sufficiently small probability,

as in (26). Lemma 13 shows that this isnot the case.

• Compressionconstraintconditions:The conditions required to satisfy the coding rate constraint (3), and the

excess-distortion exponent constraint for the legitimatedecoder (4) can be weakened without affecting Theorem

1. First, (3) can be weakened to

lim sup
n→∞

1

n
H(Y ) ≤ RL, (29)

whereH(Y ) is the entropy of the cryptogram. Second, the excess-distortion exponent can be weakened to

apply to the expectation constraint over the key-bits{Ui}
∞
i=1, rather than for every given{ui}∞i=1, i.e.

lim inf
n→∞

−
1

n
P [dL(X, ϕn(fn(X,U),U)) ≥ DL] ≥ EL. (30)

Obviously, since the achievability part is proved using thestronger conditions (3) and (4), it also holds under

the weaker conditions (29) and (30). For the converse, note that in Lemma 13 and in the proof of the converse,

the coding rate is essentially not constrained. The excess-distortion exponent constraint is used in the converse

proof only in eq. (255), which follows directly from the weaker condition (30). Therefore, the achievability

part holds under the strong conditions, and the converse part holds under the weak conditions.

• Legitimateexcess-distortionexponent:As is evident from Theorem 1, there is no improvement in the exiguous-

7This can also be easily verified using Lemma 4.
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distortion exponent even ifEL vanishes (to wit, the distortionDL is achieved only on the average). Thus, the

excess-distortion exponent can be set to its maximal value of EL(PX ,DL,RL), as defined in (13).

• Dependencyon the sourcedistribution: From the proof of the achievability, it is evident that given̂Qx, the

operation of the encoder, the legitimate decoder and the eavesdropper decoder depend onPX only on whether

RL > RL(Q̂x,DL) or not (equivalently, from the previous comment, whetherD(QX ||PX) ≤ EL or not). Since

it can be assumed that̂Qx is known to all parties, then prior knowledge of the source distribution PX is

not required to either party. Hence, the secure rate-distortion codes constructed areuniversal. Of course, the

exponents achieved depend onPX .

VI. PROOF OF THETHEOREM 1

We remind the reader thereverse Markov inequality[28, Section 9.3, p. 159], which is a useful tool for the

proof.

Lemma 2. Let X be a positive random variable which satisfiesP(X ≤ αE[X]) = 1 for someα > 1. Then, for

any β < 1,

P (X > βE[X]) ≥
1− β

α− β
. (31)

The proof is based on the ordinary Markov inequality for the positive random variablẽX = αE[X] −X.

A. Type Awareness of the Eavesdropper

Consider the following simple observation, which simplifies later derivations: The largest achievable exiguous-

distortion exponent is not deteriorated if the eavesdropper is aware of the type of the source block, in addition to

the cryptogram.

Proposition 3. For anyQX ∈ P(X )

E−
d (S,DE, QX) = lim inf

n→∞

{

−
1

n
max
σn∈Σ̃n

log P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

}

. (32)

An analogous result holds forE+
d (S,DE, QX).

Proof: SinceΣn ⊂ Σ̃n

E−
d (S,DE, QX) ≥ lim inf

n→∞

{

−
1

n
log max

σn∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

}

. (33)

To show equality, let{σ̃∗
n ∈ Σ̃n} be the sequence of decoders which achieve the maximum in the right hand side

of (33). Let us define a sequence of decoders{σn ∈ Σn} as follows. First,σn produces a random guessQ ∈ Pn

of the type of the source, with the uniform distribution overPn, and second, it decodes

σn(y) = σ̃∗
n(y,Q). (34)



17

GivenQX ∈ P, the resulting conditional exiguous-distortion probability is given by

P [dE(X, σn(Y )) ≤ DE|X ∈ Tn(QX)] (35)

≥ P

[

dE(X, σ̃∗
n(Y,Q)) ≤ DE|Q = Q̂x,X ∈ Tn(QX)

]

· P
[

Q = Q̂x|X ∈ Tn(QX)
]

(36)

= P

[

dE(X, σ̃∗
n(Y, Q̂x)) ≤ DE|X ∈ Tn(QX)

]

·
1

|Pn|
(37)

and as|Pn|≤ (n+ 1)|X |, equality is achieved in (33).

B. Covering a Type Class via Permutations

In this subsection, we discuss the possibility to cover a type class by means of permutations of a constituent

subset. The fact that the distortion measure of the eavesdropper is invariant to permutations of both arguments hints

on the usefulness of such a covering in the construction of good secure rate-distortion codes.

Given a typeQX ∈ P(X ) andδ > 0, the method of types implies that forn > n0(δ, |X |)

2n[H(QX)−δ] ≤ |Tn(QX)|≤ 2nH(QX). (38)

Now, consider the subsetDn ⊂ Tn(QX), where the elements ofDn are distinct. We say that a set of permutations

{πn,t}
κn

t=0 coverTn(QX) if
κn
⋃

t=0

πn,t(Dn) = Tn(QX), (39)

whereπn,t(Dn) means that the same permutationπn,t(·) operates on allx ∈ Dn, as defined in (22). Letκ∗n be the

minimal number of permutations ofDn required to coverTn(QX). By a simple counting argument, we must have

κ∗n ≥
|Tn(QX)|

|Dn|
. (40)

The following lemma guaranteed the existence of a cover which essentially achieves the lower bound.

Lemma 4 ([29, Section 6, Covering Lemma 2]). For everyDn ⊂ Tn(QX), QX ∈ Pn(X )

κ∗n ≤
|Tn(QX)|

|Dn|
· log|Tn(QX)|. (41)

The main application of this lemma is for a sequence of sets{Dn}
∞
n=1. Let nl be the sequence of block-lengths

such thatTnl
(QX) is non-empty, and letDnl

⊂ Tnl
(QX) such that

|Dnl
|
.
= 2nlR̃. (42)

Then, Lemma 4 implies that for everyδ > 0 and l ≥ l0(δ, |X |) both

κ∗nl
≥

2nl[H(QX)−δ]

2nl(R̃+δ)
(43)

= 2nl[H(QX)−R̃−2δ] (44)
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from (40) and

κ∗nl
≤

2nlH(QX)

2nl(R̃−δ)
nl [H(QX) + δ] (45)

≤ 2nl[H(QX)−R̃+2δ] (46)

from Lemma 4. Thus, the cover is asymptotically efficient, and this implies that the permuted sets cannot overlap too

much. To further explore this property, let{πnl,t}
κ∗
nl

t=0 be the permutations constructed in Lemma 4 for block-length

nl, and define theexclusive permutations setsas

Gnl,t , πnl,t(Dnl
)\

{

t−1
⋃

s=0

πnl,s(Dnl
)

}

. (47)

Note thatTnl
(QX) is a disjoint unionGnl,t, and for anyR < R̃, consider the union of exclusive permutations sets

of small cardinality, namely

H(R) ,
⋃

t:|Gnl,t
|≤2nR

Gnl,t. (48)

A simple aspect of the asymptotic efficiency of the covering is that under the uniform distribution on the type class,

the probability that the source block belongs to a small exclusive permutations set is also small.

Lemma 5. For anyR ≤ R̃

P
[

X ∈ H(R)|X ∈ Tn(QX)
] ·
≤ 2−n(R̃−R) (49)

Proof: Let an arbitraryδ > 0 be given. For alln sufficiently large, ifTn(QX) is empty then the statement of

the lemma is satisfied by convention. Otherwise,

P
[

X ∈ H(R)|X ∈ Tn(QX)
]

≤
κ∗n · enR

|Tn(QX)|
(50)

≤
2n[H(QX)−R̃+2δ] · enR

2n[H(QX)−δ]
(51)

= 2n(R−R̃+3δ). (52)

C. Proof of Achievability Part of Theorem 1

We follow the three steps outlined in Section V. In the first step of the proof, we focus on a single cryptogram,

Cn(y) =
{

ϕn(y,u) : u ∈ {0, 1}nR
}

, which we generically denote by the setCn = {w(0), . . . ,w(2nR− 1)} ⊂ Wn.

We begin with some definitions and simple properties. For a given (DL,DE) andQX ∈ Pn(X ), let X̃ be uniformly
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distributed overD(Cn, QX ,DL) (defined in (25)). The exiguous-distortion probability forthe setCn is defined as8

pd(Cn, QX ,DL,DE) , max
z∈Zn

P

[

dE(X̃, z) ≤ DE

]

. (53)

We have the following simple properties forpd(Cn, QX ,DL,DE).

Proposition 6. Let Cn ⊂ Wn andQX ∈ Pn(X ) be given. Then:

1) For every permutationπ

pd(Cn, QX ,DL,DE) = pd(π(Cn), QX ,DL,DE), (54)

whereπ(Cn) is as defined in(22).

2) Let X be uniformly distributed overDn ⊆ D(Cn, QX ,DL). Then,

max
z∈Zn

P
[

dE(X, z) ≤ DE

]

≤
|D(Cn, QX ,DL)|

|Dn|
· pd(Cn, QX ,DL,DE). (55)

Proof:

1) Letz∗ be the maximizer of (53). SincedL(x,w) = dL(π(x), π(w)) thenD(π(Cn), QX ,DL) = π (D(Cn, QX ,DL)).

Since alsodE(x, z) = dE(π(x), π(z)) then

pd [π(Cn), QX ,DL,DE] = max
z∈Zn

P

[

dE(π(X̃), z) ≤ DE

]

(56)

≥ P

[

dE(π(X̃), π(z∗)) ≤ DE

]

(57)

= pd(Cn, QX ,DL,DE), (58)

and the reverse inequality can be obtained similarly, by considering the inverse permutationπ−1.

2) For everyz ∈ Zn

P
[

dE(X, z) ≤ DE

]

=
|x ∈ Dn : dE(x, z) ≤ DE|

|Dn|
(59)

≤
|x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE|

|Dn|
(60)

=
|D(Cn, QX ,DL)|

|Dn|
·
|x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE|

|D(Cn, QX ,DL)|
(61)

≤
|D(Cn, QX ,DL)|

|Dn|
· pd(Cn, QX ,DL,DE). (62)

The next lemma is the first step in the proof, in which we prove the existence of a good setC∗
n by a random

selection.

Lemma 7. Let δ > 0 andQX ∈ P(X ) be given, and letnl be the sequence of block-lengths such thatTnl
(QX)

8With a slight abuse of notation, we also use here the notationpd(·).
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is non-empty. There exists a sequence of setsC∗ = {C∗
nl
} of size|C∗

nl
|= 2nlR such that for alll sufficiently large

1

nl
log|D(C∗

nl
, QX ,DL)|≥ H(QX) + R−RL(QX ,DL)− δ, (63)

and

−
1

nl
log max

z∈Znl

P

[

dE(X̃, z) ≤ DE

]

≥ min {R, RE(QX ,DE)} − δ, (64)

for all DE ≥ DL, whereX̃ is distributed uniformly overD(C∗
n, QX ,DL) .

Proof: Let n be given such thatTn(QX) is non-empty. Also, letDE be given, choose anyQW ∈ Pn(W),

and consider an ensemble of randomly chosen setsCn, where each member is selected independently at random,

uniformly within a type classTn(QW ). By definition, for any givenCn

pd(Cn, QX ,DL,DE) =
maxz∈Zn |{x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE}|

|D(Cn, QX ,DL)|
. (65)

It should be noticed, that unlike the situation in standard random coding bounds, here the denominator of (65)

is also a random variable. Nonetheless, we will show that there exists a setCn such that both the numerator and

denominator of (65) are close to their expected values. To begin, let us analyze the expected value of the size of

the D-cover in the denominator of (65). We first consider the caseR ≤ RL(QX ,DL). For a givenCn andQXW ,

define thetype class enumerator

N(QXW |x) ,
∣

∣

∣

{

w ∈ Cn : Q̂xw = QXW

}∣

∣

∣
, (66)

and let

E0 , H(QX) + R−RL(QX ,DL). (67)

Note that in the last equation theX-marginal (W -marginal) ofQ is constrained to the given typeQX (respectively,

QW ). For brevity, here and throughout the sequel, such constraints will be omitted. Then,

E[|D(Cn, QX ,DL)|] = E





∑

x∈Tn(QX)

I {∃w ∈ Cn : dL(x,w) ≤ DL}



 (68)

= E





∑

x∈Tn(QX)

I







⋃

QXW :EQ[dL(X,W )]≤DL

{N(QXW |x) ≥ 1}









 (69)

.
= E





∑

x∈Tn(QX)

∑

QXW :EQ[dL(X,W )]≤DL

I {N(QXW |x) ≥ 1}



 (70)

=
∑

x∈Tn(QX)

∑

QXW :EQ[dL(X,W )]≤DL

P {N(QXW |x) ≥ 1} (71)

(a)
=

∑

x∈Tn(QX)

∑

QXW :EQ[dL(X,W )]≤DL ,IQ(X;W )>R

P {N(QXW |x) ≥ 1} (72)
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(b).
=

∑

x∈Tn(QX)

∑

QXW :EQ[dL(X,W )]≤DL ,IQ(X;W )>R

2n[R−IQ(X;W )] (73)

.
= 2nHQ(X) max

QXW∈Pn(X×W):EQ[dL(X,W )]≤DL ,IQ(X;W )>R

2n[R−IQ(X;W )] (74)

(c)
= exp

{

n ·

[

HQ(X) + R− min
QXW∈Pn(X×W):EQ[dL(X,W )]≤DL

IQ(X;W )

]}

(75)

(d)
= 2nE0 , (76)

where in(a) and (c) we have used the assumptionR ≤ RL(QX ,DL), and so, the set{QXW : EQ [dL(X,W )] ≤

DL, IQ(X;W ) ≤ R} is empty. In (b), we have used the fact thatN(QXW |x) is a binomial random variable

pertaining to2nR trials and probability of success of exponential orderexp [−nIQ(X;W )]. Passage(d) follows

from the fact thatP(X ×W) is dense inQ(X ×W) and IQ(X;W ) is continuous. In addition, using the union

bound, with probability1,

|D(Cn, QX ,DL)| ≤
∑

w∈Cn

|{x ∈ Tn(QX) : dL(x,w) ≤ DL}| (77)

·
≤ 2nR · exp

[

n · max
QXW∈Pn(X×W):EQ[dL(X,W )]≤DL

HQ(X|W )

]

(78)

= 2nE0 . (79)

Next, we upper bound the numerator of (65). For a givenCn andz ∈ Zn, define now the type class enumerator

N(QZW |z) ,
∣

∣

∣

{

w ∈ Cn : Q̂zw = QZW

}∣

∣

∣
. (80)

Then,

|{x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE}| (81)

=

∣

∣

∣

∣

∣

⋃

w∈Cn

{x ∈ Tn(QX) : dE(x, z) ≤ DE, dL(x,w) ≤ DL}

∣

∣

∣

∣

∣

(82)

=

∣

∣

∣

∣

∣

∣

⋃

QZW

⋃

w∈Tn(QW |Z ,z)∩Cn

⋃

QX|ZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL

{

x ∈ Tn(QX|ZW , z,w)
}

∣

∣

∣

∣

∣

∣

(83)

(a)

≤
∑

QZW

∑

w∈Tn(QW |Z ,z)∩Cn

∑

QX|ZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL

∣

∣

{

x ∈ Tn(QX|ZW , z,w)
}∣

∣ (84)

.
=
∑

QZW

∑

w∈Tn(QW |Z ,z)∩Cn

∑

QX|ZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL

2nHQ(X|ZW ) (85)

.
=
∑

QZW

∑

w∈Tn(QW |Z ,z)∩Cn

max
QX|ZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL

2nHQ(X|ZW ) (86)

=
∑

QZW

N(QZW |z) max
QX|ZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL

2nHQ(X|ZW ) (87)

.
= max

QZW

max
QX|ZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL

N(QZW |z)2nHQ(X|ZW ) (88)
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.
=

∑

QXZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL

N(QZW |z)2nHQ(X|ZW ) (89)

where(a) is the union bound, and in all the above equations,QXZW ∈ Pn(X × Z ×W). Let

J (DL,DE) , {QXZW ∈ Pn(X ×Z ×W) : EQ [dE(X,Z)] ≤ DE,EQ [dL(X,W )] ≤ DL} . (90)

Taking expectation, and using the fact that|Pn(X × Z × W)|≤ (n + 1)|X ||Z||W| i.e., increases withn only

polynomially,

E

[

max
z∈Zn

|{x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE}|

]

(91)

·
≤ E



max
z∈Zn

∑

QXZW∈J (DL ,DE)

N(QZW |z)2nHQ(X|ZW )



 (92)

= E









lim
β→∞











∑

z∈Zn





∑

QXZW∈J (DL ,DE)

N(QZW |z)2nHQ(X|ZW )





β










1/β








(93)

(a)
= lim

β→∞
E



















∑

z∈Zn





∑

QXZW∈J (DL ,DE)

N(QZW |z)2nHQ(X|ZW )





β










1/β








(94)

.
= lim

β→∞
E





{

∑

z∈Zn

(

max
QXZW∈J (DL ,DE)

N(QZW |z)2nHQ(X|ZW )

)β
}1/β



 (95)

= lim
β→∞

E





(

∑

z∈Zn

max
QXZW∈J (DL ,DE)

N(QZW |z)β2nβHQ(X|ZW )

)1/β


 (96)

.
= lim

β→∞
E











∑

z∈Zn

∑

QXZW∈J (DL ,DE)

N(QZW |z)β2nβHQ(X|ZW )





1/β





(97)

(b)

≤ lim
β→∞





∑

z∈Zn

∑

QXZW∈J (DL ,DE)

E

[

N(QZW |z)β
]

2nβHQ(X|ZW )





1/β

(98)

= lim
β→∞

(

∑

z∈Zn

∑

QXZW∈J (DL ,DE):IQ(Z;W )≤R

E

[

N(QZW |z)β
]

2nβHQ(X|ZW )

+
∑

z∈Zn

∑

QXZW∈J (DL ,DE):IQ(Z;W )>R

E

[

N(QZW |z)β
]

2nβHQ(X|ZW )

)1/β

(99)

(c)
.
= lim

β→∞

(

∑

z∈Zn

∑

QXZW∈J (DL ,DE):QZ=Q̂z,IQ(Z;W )≤R

2nβ[R−IQ(Z;W )]2nβHQ(X|ZW )

+
∑

z∈Zn

∑

QXZW∈J (DL ,DE):QZ=Q̂z,IQ(Z;W )>R

2n[R−IQ(Z;W )]2nβHQ(X|ZW )

)1/β

(100)
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.
= lim

β→∞

(

∑

QZ

2nHQ(Z)
∑

QXW |Z :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL ,IQ(Z;W )≤R

2nβ[R−IQ(Z;W )]2nβHQ(X|ZW )

+
∑

QZ

2nHQ(Z)
∑

QXW |Z :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL ,IQ(Z;W )>R

2n[R−IQ(Z;W )]2nβHQ(X|ZW )

)1/β

(101)

.
= lim

β→∞

(

max
QXZW∈J (DL ,DE):IQ(Z;W )≤R

2nHQ(Z)2nβ[R−IQ(Z;W )]2nβHQ(X|ZW )

+ max
QXZW∈J (DL ,DE):IQ(Z;W )>R

2nHQ(Z)2n[R−IQ(Z;W )]2nβHQ(X|ZW )

)1/β

(102)

.
= lim

β→∞

(

max

{

max
QXZW∈J (DL ,DE):IQ(Z;W )≤R

2nHQ(Z)2nβ[R−IQ(Z;W )]2nβHQ(X|ZW ),

max
QXZW∈J (DL ,DE):IQ(Z;W )>R

2nHQ(Z)2n[R−IQ(Z;W )]2nβHQ(X|ZW )

})1/β

(103)

= lim
β→∞

max

{

max
QXZW∈J (DL ,DE):IQ(Z;W )≤R

2n
1

β
HQ(Z)2n[R−IQ(Z;W )]2nHQ(X|ZW ),

max
QXZW∈J (DL ,DE):IQ(Z;W )>R

2n
1

β
HQ(Z)2n

1

β
[R−IQ(Z;W )]2nHQ(X|ZW )

}

(104)

= max

{

max
QXZW∈J (DL ,DE):IQ(Z;W )≤R

2n[R−IQ(Z;W )]2nHQ(X|ZW ),

max
QXZW∈J (DL ,DE):IQ(Z;W )>R

2nHQ(X|ZW )

}

(105)

where(a) is by the Lebesgue monotone convergence theorem [30, Theorem 11.28] and the monotonicity of the

argument inside the expectation operator inβ, and(b) is by the Jensen inequality. In(c), we have used the analysis

in [31, Subsection 6.3] of the moments ofN(QZW |z), which is a binomial random variable with2nR trials and

probability of success of the exponential order ofexp [−nIQ(Z;W )]. Also, note that in all the above equations,

QXZW ∈ Pn(X × Z × W) but sinceP(X × Z × W) is dense inQ(X × Z × W) and the arguments of the

maximization are continuous functions ofQXZW , we can change the maximization to be overQ(X × Z ×W).

Thus,

E

[

max
z∈Zn

|{x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE}|

]

·
≤ 2nE1(DE) (106)

where

E1(DE) , max
QXZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL

{

HQ(X|ZW ) + [R− IQ(Z;W )]+
}

. (107)

Now, let δ > 0 be given. There existsn0(QX) such that for alln ≥ n0(QX), we have from (76)

E (|D(Cn, QX ,DL)|) ≥ 2n(E0−
δ

2
), (108)

and from (79)

|D(Cn, QX ,DL)|≤ 2n(E0+
δ

2
). (109)
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Define, for the given ensemble of the random sets

A0 ,

{

Cn : |D(Cn, QX ,DL)|> 2−n δ

2E[|D(Cn, QX ,DL)|]
}

. (110)

The reverse Markov lemma (Lemma 2) implies

P (A0) ≥
1− 2−n δ

2

2nδ − 2−n δ

2

≥ 2−2nδ (111)

where the second inequality is satisfied for alln ≥ n′
0 for somen′

0 ≥ n0(QX).

Now, note that we need to prove that a single setC∗
n satisfies (64) for allDE ≥ DL. To show this, we consider a

quantization of the possible values ofDE. To this end, let an arbitraryη > 0 be given, such thatJ = RE(QX ,DL)
η is

integer, and findDE sufficiently large such that9

RE(QX ,DE) ≤ lim
DE→∞

RE(QX ,DE) + η. (112)

Let us quantize the interval[RE(QX ,DE), RE(QX ,DL)] to values{R(0), . . . ,R(J)}, whereR(j) = jη and let

DE(j) = R−1
E (QX ,R(j)), where R−1

E (QX ,R) is the inverse function ofRE(QX ,DE). By (105), there exists

n1(j,QX ) such that for alln ≥ n1(j,QX)

E

[

max
z∈Zn

|{x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE(j)}|

]

≤ 2n[E1(DE(j))+δ], (113)

where the expectation is over the random ensemble of setsCn. By defining

A1j ,

{

Cn : max
z∈Zn

|{x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE(j)}| ≤ 2n[E1(DE(j))+4δ]

}

(114)

the ordinary Markov lemma implies

P (A1j) ≥ 1−
E [maxz∈Zn |{x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE(j)}|]

2n[E1(DE(j))+4δ]
(115)

≥ 1− 2−3nδ. (116)

DefiningA1 ,
⋂J

j=0A1j we get

P (A1) = P





J
⋂

j=0

A1j



 (117)

= 1− P





J
⋃

j=0

Ac
1j



 (118)

≥ 1−

J
∑

j=0

P
(

Ac
1j

)

(119)

≥ 1− J · 2−3nδ. (120)

9Note that ifdE(x, z) < ∞ for all x ∈ X , z ∈ Z, then limDE→∞ RE(QX ,DE) = 0.
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Thus, sinceJ does not depend onn, there existsn′
1 ≥ max0≤j≤J n1(j,QX) such that for alln ≥ n′

1

P (A0 ∩ A1) = 1− P (Ac
0 ∪ Ac

1) (121)

≥ 1− P (Ac
0)− P (Ac

1) (122)

≥ 1− (1− 2−2nδ)− J2−n 5δ

2 (123)

= 2−2nδ − J · 2−3nδ (124)

> 0. (125)

Therefore, for all sufficiently largen > max{n′
0, n

′
1}, there existsCn ∈ A0 ∩ {

⋂J
j=0A1j}, i.e., Cn which satisfies

both

|D(Cn, QX ,DL)|> 2−n δ

2E[|D(Cn, QX ,DL)|] (126)

and

max
z∈Zn

|{x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE(j)}| ≤ 24nδ2nE1(DE(j)) (127)

for all 0 ≤ j ≤ J . Thus we get

pd [Cn, QX ,DL,DE(j)] ≤
24nδ2nE1(DE(j))

2−n δ

2 2n(E0−n δ

2
)
= 25nδ · 2n[E1(DE(j))−E0]. (128)

If we now defineE(DE) , E1(DE)− E0, then for any givenQW ∈ Pn(W)

lim inf
n→∞

−
1

n
log pd [Cn, QX ,DL,DE(j)] ≥ E(DE). (129)

Now, choose letQW be theW -marginal ofQXW which achievesRL(QX ,DL). Then,

E(DE) ≥ min
QXZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]EQ[dL(X,W )]≤DL ,IQ(Z;W )≤R

{IQ(Z;W ) + IQ(X;Z,W )}

− min
QXW :EQ[dL(X,W )]≤DL

IQ(X;W ) (130)

(a)

≥ min
QXZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL ,IQ(Z;W )≤R

{IQ(Z;W ) + IQ(X;Z,W ) − IQ(X;W )} (131)

= min
QXZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL ,IQ(Z;W )≤R

{IQ(Z;W ) + IQ(X;Z|W )} (132)

= min
QXZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL ,IQ(Z;W )≤R

IQ(X,W ;Z) (133)

(b)

≥ min
QXZW :EQ[dE(X,Z)]≤DE

IQ(X;Z) (134)

= RE(QX ,DE) (135)

where(a) is by restrictingQXW to be the same in both minimizations of (130), and(b) is by the data processing
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property of the mutual information. Similarly,

E(DE) ≥ R+ min
QXZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL ,IQ(Z;W )>R

IQ(X;Z,W )

− min
QXW :EQ[dL(X,W )]≤DL

IQ(X;W ) (136)

≥ R+ min
QXZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL ,IQ(Z;W )>R

IQ(X;Z|W ) (137)

≥ R. (138)

by restrictingQXW to be the same in both minimizations of (136).

Therefore, (129), (135) and (136) imply that

lim inf
n→∞

−
1

n
log pd [Cn, QX ,DL,DE(j)] ≥ min {RE(QX ,DE(j)),R} (139)

for all 0 ≤ j ≤ J . By takingη ↓ 0, continuity ofRE(QX ,DE) in DE provides the lower bound (64) for allDE ≥ DL.

Then, (63) is obtained from (126) and (108).

To complete the proof of the lemma, we consider the case ofR ≥ RL(QX ,DL). Denote byQ(n)
XW a sequence of

distributions such thatQ(n)
XW → Q∗

XW asn → ∞, whereQ∗
XW achieves the rate-distortion functionRL(QX ,DL).

For a givenCn, let C̃n be a subset formed by the firstenRL(QX ,DL) members ofCn. The same analysis as before

shows that when randomly drawing a setCn uniformly over theW -marginal ofQ(n)
XW , there exists a sequence of

sets{Cn} such that

|D(C̃n, QX ,DL)|≥ 2n(E0−δ) ≥ 2n[H(QX)−δ]. (140)

Then, forCn

pd(Cn, QX ,DL,DE) =
maxz∈Zn |{x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE}|

|D(Cn, QX ,DL)|
(141)

≤
maxz∈Zn |{x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE}|

|D(C̃n, QX ,DL)|
(142)

≤
maxz∈Zn |{x ∈ Tn(QX) : dE(x, z) ≤ DE}|

|D(C̃n, QX ,DL)|
(143)

≤
maxz∈Zn |{x ∈ Tn(QX) : dE(x, z) ≤ DE}|

2n[H(QX)−δ]
(144)

= 2−n[H(QX)−δ] max
z∈Zn

∑

QX|Z :EQ[dE(X,Z)]≤DE

∣

∣Tn(QX|Z , z)
∣

∣ (145)

≤ 2−n[H(QX)−δ] max
QZ

∑

QX|Z :EQ[dE(X,Z)]≤DE

2nHQ(X|Z) (146)

.
= exp

(

−n

[

HQ(X)− δ − max
QXZ :EQ[dE(X,Z)]≤DE

HQ(X|Z)

])

(147)

≤ 2−n[RE(QX ,DE)−δ] (148)

and the proof of the lemma is complete, asδ is arbitrary.
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Remark8. As mentioned in Section V, to show achievability of an exiguous-distortion exponent using the method

of types,uniform convergence of− 1
n log pd(C

∗
n, QX ,DL,DE) to the exponentmin {R, RE(QX ,DE)} is required (cf.

eq. (233)). However, the proof of Lemma 7 is not sufficient to show this. Specifically, the convergence in the

asymptotic analysis of the type class enumerators, i.e. therelations

P {N(QXW |x) ≥ 1}
.
= 2n[R−IQ(X;W )] (149)

used in (73) and

E

[

N(QZW |z)β
]

.
=











2n[R−IQ(Z;W )], IQ(Z;W ) ≤ R

2nβ[R−IQ(Z;W )], IQ(Z;W ) > R

(150)

used in (100), are not uniform inQX .

We continue with the second step of the proof, which constructs from the setC∗
n a secure rate-distortion code

for all x ∈ Tn(QX). The proof of the next lemma is based on the permutations technique described in Subsection

VI-B.

Lemma 9. For any givenQX ∈ P(X ) ∩ intQ(X ) and δ > 0, there exists a sequence of secure rate-distortion

codesS∗ of fixed key rateR such that

lim
n→∞

1

n
log|Yn|≤ RL(QX ,DL) + δ, (151)

and,

P [dL(X, ϕ∗
n(f

∗
n(X,u))) ≥ DL|X ∈ Tn(QX)] = 0 (152)

for everyu ∈ {0, 1}nR, as well as

E−
d (S∗,DE, QX) ≥ min {R, RE(QX ,DE)} − δ (153)

for all DE ≥ DL.

Proof: Assume thatQX ∈ [intQ(X )]∩Pn0
(X ) for some minimaln0 ∈ N. Since the statements in the lemma

are only about conditional events given the typeQX , it is clear that the secure rate-distortion codes constructed

S∗
n, may only encodex ∈ Tn(QX), and so only block-lengthsn mod n0 = 0 should be considered, as otherwise

Tn(QX) is empty.

Let C∗ = {C∗
n} be a sequence of sets of size2nR constructed according to Lemma 7. So for alln sufficiently

large

pd(C
∗
n, QX ,DL,DE) ≤ 2−n[min{R,RE(QX ,DE)}−δ], (154)

and

|D(C∗
n, QX ,DL)| ≥ 2n(A−δ), (155)
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where

A , min {H(QX) + R−RL(QX ,DL),H(QX)} . (156)

Now, let {πn,t}
κn

t=0 be a set of permutations constructed according to Lemma 4, such that

κn
⋃

t=0

πn,t(D(C∗
n, QX ,DL)) = Tn(QX), (157)

where κn ≤ 2n[H(QX)−A+2δ)], and let {Gn,t} be the resulting exclusive permutation sets, as defined in (47).

We construct the following secure rate-distortion codesS∗
n = (f∗

n, ϕ
∗
n) of fixed key rateR, which only encode

x ∈ Tn(QX). We utilize the covering of the type classTn(QX) by permutations of a D-cover of the setC∗
n

to encode the source block in the following way. Assume that the elements ofC∗
n are arbitrarily ordered, i.e.

C∗
n = {w(0), . . . ,w(2nR − 1)}. For a givenx ∈ Tn(QX), let

t∗(x) , min {t : x ∈ Gn,t} , (158)

and

i∗(x) , min{i : w(i) ∈ Gn,t∗(x), dL(x,w(i)) ≤ DL} (159)

The encoding is a concatenation of the following two partsy = f∗
n(x,u) = (ty, iy):

• A description of the permutation set, defined asty , B[t∗(x);n(H(QX )−A+ 2δ)].

• An encrypted description of the distortion covering codeword, defined asiy , B[i∗(x);nR]⊕ u.

It is easily verified that givenu, the legitimate decoder can reproducew = ϕn(y,u) such thatdL(x,w) ≤ DL, for

all x ∈ Tn(QX), and so (152) is satisfied. Regarding the coding rate, note that

1

n
log|Yn| = H(QX)−A+ 2δ + R (160)

≤ RL(QX ,DL) + 3δ (161)

for all n sufficiently large, which results in (151).

It remains to prove that for any eavesdropperσn, the conditional exiguous-distortion exponent, given that X ∈

Tn(QX), is larger thanmin {R, RE(QX ,DE)} − δ. From Proposition 3, it may be assumed that the eavesdropperis

aware of the typeQX . Moreover, given the cryptogramY = y, the source blockX is distributed uniformly over

Gn,ty , and independent ofiy. Thus, the optimal eavesdropper has the same estimate for cryptograms with the same

ty, and we may denote its estimate asz = σn(y) , z(ty). SinceGn,0 = D(C∗
n, QX ,DL), then conditioned on the

event{t∗(X) = 0}, for anyz ∈ Zn, Lemma 7 implies

P [dE(X, z) ≤ DE|X ∈ Tn(QX), t∗(X) = 0] = P [dE(X, z) ≤ DE|X ∈ Gn,0] (162)

≤ 2−n[min{R,RE(QX ,DE)}−δ] (163)
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for all n sufficiently large. It then follows that for0 < t ≤ κn,

P [dE(X, z) ≤ DE|X ∈ Tn(QX), t∗(X) = t] = P [dE(X, z) ≤ DE|X ∈ Gn,t]

(a)

≤
|Gn,0|

|Gn,t|
P [dE(X, z) ≤ DE|X ∈ Gn,0]

≤
|Gn,0|

|Gn,t|
2−n(min{R,RE(QX ,DE)}−δ), (164)

where(a) follows from the fact that for any0 < t ≤ κn, there exists a permutationπ such thatπ (Gn,t) ⊂ Gn,0 =

D(C∗
n, QX ,DL) and Proposition 6. Thus, the exiguous-distortion probability conditioned ont∗(X) = t can be larger

than the same probability conditioned ont∗(X) = 0, but only up to a factor of|Gn,0|
|Gn,t|

, which is large if |Gn,t|

is small. Next, we show that the contribution to the exiguous-distortion probability of these small sets does not

impact its exponential behavior. To this end, for any fixed0 < η < A + δ such thatJ = A+δ
η is an integer, let

us quantize the interval[0, A+ δ] to values{A0, . . . , AJ}, whereAj = jη. We will treat separately sets such that

2nAj ≤ |Gn,t|≤ 2nAj+1 . For all n sufficiently large

P [dE(X, z) ≤ DE|X ∈ Tn(QX)] (165)

=

κn
∑

t=0

P [X ∈ Gn,t|X ∈ Tn(QX)]P [dE(X, z(t)) ≤ DE|X ∈ Gn,t,X ∈ Tn(QX)] (166)

=

J−1
∑

j=0

∑

t:2nAj≤|Gn,t|≤2nAj+1

P [X ∈ Gn,t|X ∈ Tn(QX)]P [dE(X, z(t)) ≤ DE|X ∈ Gn,t,X ∈ Tn(QX)] (167)

(a)

≤

J−1
∑

j=0

∑

t:2nAj≤|Gn,t|≤2nAj+1

P [X ∈ Gn,t|X ∈ Tn(QX)]
|Gn,0|

|Gn,t|
2−n(min{R,RE(QX ,DE)}−δ) (168)

≤

J−1
∑

j=0

∑

t:2nAj≤|Gn,t|≤2nAj+1

P [X ∈ Gn,t|X ∈ Tn(QX)]
2n(A+δ)

2nAj
2−n(min{R,RE(QX ,DE)}−δ) (169)

=

J−1
∑

j=0

2n(A+δ)

2nAj
2−n(min{R,RE(QX ,DE)}−δ)

∑

t:2nAj≤|Gn,t|≤2nAj+1

P [X ∈ Gn,t|X ∈ Tn(QX)] (170)

(b)

≤

J−1
∑

j=0

2n(A+δ)

2nAj
2−n(min{R,RE(QX ,DE)}−δ)

P [X ∈ H(Aj+1)|X ∈ Tn(QX)] (171)

(c)

≤

J−1
∑

j=0

2n(A+δ)

2nAj
2−n(min{R,RE(QX ,DE)}−δ)2−n(A−Aj+1−δ) (172)

≤ J · max
0≤j≤J−1

2n(Aj+1+2δ)

2nAj
2−n(min{R,RE(QX ,DE)}−δ) (173)

≤ 2n(η+3δ)2−n·min{R,RE(QX ,DE)} (174)

(d)

≤ 2n(η+4δ)2−n·min{R,RE(QX ,DE)} (175)

where(a) is using (164),(b) is using the definition in (48),(c) is using Lemma 5, and(d) is sinceJ
.
= 1. The
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result follows by takingη ↓ 0.

Remark10. Note that only the properties (154)-(155) ofD(C∗
n, QX ,DL) were used in order to prove Lemma 9.

The same proof of Lemma 9 can be used to show that if some other set Dn ⊂ D(C∗
n, QX ,DL) satisfies similar

properties, i.e. if for someE > 0

max
z∈Zn

P

[

dE(X̃, z) ≤ DE

]

≤ 2−nE , (176)

where hereX̃ is distributed uniformly overDn, and

|Dn| ≥ 2n(A−δ) (177)

then a secure rate-distortion code can be constructed, withconditional exiguous-distortion exponentE. In this case,

the code is constructed such that only source blocks inDn are mapped to the permutation indext∗(x) = 0, but not

source blocks fromD(C∗
n, QX ,DL)\Dn. In addition, if the coding rate is unconstrained, then the condition (177)

is not required. This fact will be utilized in the sequel in the proof of Lemma 13.

In the third step of the achievability proof, we construct the secure rate-distortion code for all types inP(X ).

We will need the following two lemmas.

Lemma 11. Let QX , Q′
X ∈ Pn(X ) and assume that10 ||QX −Q′

X ||= 2d∗

n whered∗ > 0. If x ∈ Tn(QX) then

min
x′∈Tn(Q′

X)
dH(x,x

′) ≤ d∗. (178)

Proof: See the extended version of [27, Lemma 20].

Lemma 12. Let QX ∈ Pn(X ) andx ∈ Tn(QX). For any given1 ≤ k < n let x′ = x
n−k
1 . Then

||Q̂x − Q̂x′ ||< |X |·
k

n− k
. (179)

Proof: See the extended version of [27, Lemma 21].

We are now ready for the third and final step of the proof of the achievability part of Theorem 1.

Proof of achievability part of Theorem 1:Let 0 < ǫ < 1 be given, and findn0 sufficiently large such that for

anyQ′
X ∈ P(X ) there existsQX ∈ Pn0

(X )∩intQ(X ) such that||QX−Q′
X ||≤ ǫ

2 . We will termPn0
(X )∩intQ(X )

as thegrid. Also letn1 = n0ǫ+2n0|X |. We construct the following sequence of secure rate-distortion codesS for

all n > max{n0, n1}. We will use the following definitions and constructions:

• Let ñ =
⌊

n
n0

⌋

· n0.

• Enumerate the types of the sourcePn(X ).

• Assume, w.l.o.g., thatX = {1, . . . , |X |} and letX , {0} ∪ X .

10For two different types inPn(X ), the minimal variation distance is2
n

.
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• Let

Bn
H(ǫ) ,

{

x ∈ X
n
: dH(x,0) ≤

nǫ

2

}

, (180)

i.e., an Hamming ball of radiusnǫ2 and dimensionn.

• Construct the codesS∗
ñ,QX

= (f∗
ñ,QX

, ϕ∗
ñ,QX

) of key rateR as in Lemma 9, for allQX ∈ Pn0
(X )∩ intQ(X ).

• For every givenQX ∈ Pn(X ) find

Φǫ(QX) , argmin
Q′

X∈Pn0
(X )∩intQ(X )

||QX −Q′
X ||. (181)

• For any givenx ∈ X n and x ∈ X
n
, define thereplacement operatorΨ : X n × X

n
→ X

n
which for

x̃ = Ψ(x,x) satisfies

x̃i =











xi, xi = 0

xi, xi 6= 0

(182)

• For a givenx ∈ X n, define thereplacement set

K(x, ǫ) ,
{

x ∈ Bñ
H(ǫ) : Ψ(xñ

1 ,x) ∈ Tñ(Φǫ(Q̂x))
}

. (183)

Note that the size ofK(x, ǫ) depends onx only via its typeQ̂x.

The above type enumeration and the codes constructed are revealed to both the encoder and the decoder off-line.

Before we provide the details of the encoding and the legitimate decoding, we outline the main ideas. Using the

construction of Lemma 9, we construct secure rate distortion codes for each type in thegrid Pn0
(X ) ∩ intQ(X ).

Since this grid has afinite number of types, then for all sufficiently largen, the normalized logarithm of the

conditional exiguous-distortion probability is close to the exponent (153)uniformly over all types in the grid. As

mentioned in the outline of the proof in Section IV, we will modify any given source block so that it can be

encoded using one of the codes in the grid. In order to allow the legitimate decoder to be able to reproduce with

the desired distortionDL, the cryptogram will be comprised of (at most) four parts, each one of them being encrypted

using key bitsu(i) for 1 ≤ i ≤ 4. First, the type of the sourcêQx is conveyed to the legitimate decoder, and, in

accordance with Proposition 3, the type information is not encrypted, and sou(1) is the empty string. This type

will be modified to the typeΦǫ(Q̂x), which is also known to the legitimate decoder and the eavesdropper. Second,

since ifn mod n0 6= 0 thenQ̂x may not belong to the grid, we first truncate the source block to the length̃n. The

truncated partxn
ñ+1 will be sent to the legitimate decoder losslessly, and fullyencrypted usingu(2). Third, we will

modify x
ñ
1 to themodified vectorv, such thatQ̂v = Φǫ(Q̂x). This will be done by replacing a small number of the

symbols ofx. The symbols ofx which were replaced in order to createv will be sent to the legitimate decoder

losslessly, and fully encrypted usingu(3). Note, that there might be more than one way to replace the symbols of

x, and in fact, anyx ∈ K(x, ǫ) can be used for this purpose if we definev , Ψ(xñ
1 ,x) using (182) and (183).

For the sake of the analysis, it will be convenient to choose areplacement vector randomly fromK(x, ǫ). This
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will be achieved using key bitsu, which in this case, function as common randomness rather than for encryption.

Fourth, the codes∗
ñ,Φǫ(Q̂x)

will be used to encode the modified vectorv using the key bitsu(4). As we will prove,

the whole modification procedure incurs a negligible cost onthe compression and secrecy performance, which we

analyze after formally defining the encoder and legitimate decoder.

Encoding:Let u = (u(1),u(2),u(3),u(4),u). The following cryptogram parts are generated:

• Source block type: Find the type index0 ≤ j∗ ≤ |Pn(X )|−1 of the source block type in the enumeration of

the types, and let

y1 , B[j∗; log|Pn(X )|]. (184)

Setu(1) = φ, namely, the type information is not encrypted, in accordance with Proposition 3.

• Fully encrypted source block tail:

y2 , B[xn
ñ+1; (n − ñ) log|X |]⊕ u

(2) (185)

• Modification vector: Letx be theKu-th vector inK(x, ǫ), whereu is of lengthlog|K(x, ǫ)| bits, andKu is

integer corresponding tou, i.e.

Ku ,

log|K(x,ǫ)|
∑

l=1

ul · 2
(l−1) + 1. (186)

Also, let

v , Ψ(xñ
1 ,x) (187)

and letx′′′ ∈ X
n

where

x′′′i =











0, xi = 0

xi, xi 6= 0

. (188)

As clearlyx′′′ ∈ Bñ
H(ǫ), let i∗ be the index ofx′′′ in Bñ

H(ǫ) and

y3 , B[i∗; log|Bñ
H(ǫ)|]⊕ u

(3). (189)

• Cryptogram of modified vector: Let

y4 , s∗
ñ,Φǫ(Q̂x)

(v,u(4)) (190)

whereu(4) is of lengthnR bits.

The encoding of the source block is separated into two cases,depending on its typêQx. If RL < RL(Q̂x,DL) then

y = f∗
n(x,u) = y1. (191)

Otherwise, ifRL ≥ RL(Q̂x,DL) then

y = f∗
n(x,u) = (y1, y2, y3, y4). (192)
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To verify that such coding is possible, notice that from Lemma 12 and the fact thatn > n1, we have

||Q̂xñ
1
− Q̂x||≤

ǫ

2
(193)

and by the triangle inequality

||Q̂xñ
1
− Q̂v||≤ ||Q̂xñ

1
− Q̂x||+||Q̂x − Q̂v||≤

ǫ

2
+

ǫ

2
= ǫ. (194)

Thus, the definition (180), and Lemma 11 imply thatK(x, ǫ) is indeed non-empty, and an appropriatex can always

be found.

Decoding by the legitimate decoder:Upon observingy = f∗
n(x,u):

• Recover the typêQx from y1, and determineΦǫ(Q̂x) and |K(x, ǫ)|.

• If RL < RL(Q̂x,DL) then arbitrarily choose a vector from̃w ∈ Wn, and reproduce

w , ϕ∗
n(y,u) = w̃. (195)

Otherwise, ifRL ≥ RL(Q̂x,DL) then:

– Recoverxn
ñ+1 from y2 andu(2). Let w′′ ∈ Wn−ñ be such thatdL(x

n
ñ+1,w

′′) = 0.

– Recoverx′′′ from y3 andu(3), and letw′′′ ∈ W ñ be such thatdL(x
′′′,w′′′) = 0.

– Reproducev from y4 andu(4) as

w
′′′′ , ϕ∗

ñ,Q̂x

(y4,u
(4)) (196)

– Reproduce the source block as

w , ϕ∗
n(y,u) = (Ψ(w′′′′,w′′′),w′′). (197)

Note that the decoder knows|K(x, ǫ)| and thus can compute the total length ofu. So, if multiple source blocks

are encoded in succession, the legitimate decoder can stay synchronized with the encoder and use the correct key

bits when deciphering the message.

For the sequence of codesS∗ constructed, we need to verify that the compression constraint is satisfied, and to

find the achievable exiguous-distortion exponent for any (type aware) eavesdropper, as well as the key rate. First,

consider the compression constraint. For the rate, recall that the cryptogram is composed of at most four parts

(192). LetYnj be the alphabet of thej-th part, for1 ≤ j ≤ 4, such that|Yn|=
∏4

j=1|Ynj|. We have,

|Yn1|= |Pn(X )|≤ (n+ 1)|X |, (198)

and

|Yn2|= |X |n−ñ. (199)
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For Yn3,

|Yn3|=
∣

∣Bñ
H(ǫ)

∣

∣ =

ñǫ

2
∑

k=0

(

ñ

k

)

|X |k (200)

≤
ñǫ

2
·

(

ñ
⌈

ñǫ
2

⌉

)

|X |
ñǫ

2 (201)

≤ 2ñ[hB(
ǫ

2
)+ ǫ

2
log|X |] (202)

, 2ñg(ǫ) (203)

whereg(ǫ) was implicitly defined, andg(ǫ) ↓ 0 as ǫ ↓ 0. For Yn4, notice that the cryptogram party4 is only used

for typesQX which satisfyRL ≥ RL(QX ,DL). Thus,

|Yn4| ≤
∑

QX∈Pn(QX):RL≥RL(QX ,DL)

2nRL(QX ,DL) (204)

≤ |Pn(X )|·2nRL (205)

Therefore, for alln sufficiently large

lim sup
n→∞

1

n
log|Yn| ≤ lim sup

n→∞

4
∑

j=1

1

n
log|Ynj | (206)

≤ RL + g(ǫ) + 3δ. (207)

Now, as the codesS∗
ñ,QX

are constructed according to Lemma 9, it is easily verified that if RL ≥ RL(Q̂x,DL) then

for anyu

dL(x, ϕ
∗
n(f

∗
n(x,u),u)) ≤ DL (208)

(see (152)). Thus, as|Pn(X )|≤ (n+ 1)|X |, for all n sufficiently large

P [dL(X, ϕ∗
n(f

∗
n(X,u),u)) ≥ DL] (209)

=
∑

QX∈Pn(X )

P [X ∈ Tn(QX)]P [dL(X, ϕ∗
n(f

∗
n(X,u),u)) ≥ DL|X ∈ Tn(QX)] (210)

≤
∑

QX∈Pn(X ):RL<RL(QX ,DL)

P [X ∈ Tn(QX)] (211)

≤
∑

QX∈Pn(X ):RL<RL(QX ,DL)

2−nD(QX ||PX) (212)

≤ 2−n[EL(PX ,DL ,RL)−δ] (213)

≤ 2−n(EL−δ). (214)

Second, let us analyze the exiguous-distortion exponent ofS for an arbitrary eavesdropper. Letv̂∗ be the eaves-

dropper which maximizes the exiguous-distortion probability for the modified source blockv, given the cryptogram
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y. Then,

E−
d (S,DE)

(a)
= lim inf

n→∞
min

QX∈Pn(X )

{

D (QX ||PX )−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

}

(215)

(b)

≥ lim inf
n→∞

min

{

min
QX∈Pn(X ):RL≥RL(QX ,DL)

{

D (QX ||PX)−

1

n
log
(

|Bñ
H(ǫ)|P

[

dE(V, V̂∗) ≤ DE|V ∈ Tñ(Φǫ(QX))
])

}

,

min
QX∈Pn(X ):RL<RL(QX ,DL)

{

D (QX ||PX)−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

}}

(216)

(c)

≥ lim inf
n→∞

min

{

min
QX∈Pn(X ):RL≥RL(QX ,DL)

{

D (QX ||PX)−

1

n
log
[

|Bñ
H(ǫ)|P

[

dE(V, V̂∗) ≤ DE|V ∈ Tñ(Φǫ(QX))
]]

}

,

min
QX∈Pn(X ):RL<RL(QX ,DL)

{

D (QX ||PX) +RE(QX ,DE)− δ

}}

(217)

= min

{

lim inf
n→∞

min
QX∈Pn(X ):RL≥RL(QX ,DL)

{

D (QX ||PX)−

1

n
log
[

|Bñ
H(ǫ)|P

[

dE(V, V̂∗) ≤ DE|V ∈ Tñ(Φǫ(QX))
]]

}

,

lim inf
n→∞

min
QX∈Pn(X ):RL<RL(QX ,DL)

{

D (QX ||PX) +RE(QX ,DE)− δ

}}

, (218)

where the passages are explained as follows:

• Equality (a) is standard method of types, (as, e.g., in (214)). Notice that the exiguous-distortion event

{dE(X,Z) ≤ DE} in this equation is for the codeSn.

• Equality (b) is verified by establishing the following properties:

– Property 1: Due to the permutation invariance of type classes and Hamming spheres, given the event

X ∈ Tn(QX), V is distributed uniformly overTñ(Φǫ(QX)). Indeed, letv′,v′′ ∈ Tñ(Φǫ(QX)), where

v
′ = π(v′′) for some permutationπ. Then, if for somex ∈ Tn(QX) andx ∈ K(x, ǫ)

v
′ = Ψ(xñ

1 ,x) (219)

then

v
′′ = Ψ(π(xñ

1 ), π(x)) (220)

where(π(xñ
1 ),x

n
ñ+1) ∈ Tn(QX) andπ(x) ∈ K((π(xñ

1 ),x
n
ñ+1), ǫ)

11. The property then follows from the

fact that|K(x, ǫ))| depends onx only via its type, which is identical for bothx and (π(xñ
1 ),x

n
ñ+1).

11Notice thatK(x) depends onx only via its first ñ components.
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– Property 2: An eavesdropper forv is aware of its type (aŝQv = Φǫ(Q̂x))12, and the cryptogramy2 is

not relevant for its estimate. Also, sincey3 is fully encrypted (pure random bits) then it is also useless.

Thus, an eavesdropper forv uses only the type information iny1 andy4.

– Property 3: Consider the caseRL ≥ RL(QX ,DL). The source blockX is distributed uniformly over

Tn(QX) andV is distributed uniformly overTñ(Φǫ(QX)). Let V̂∗ be the eavesdropper which achieves

the maximal exiguous-distortion probability forV, giveny4. Then, for any eavesdropper decoderσ̃n which

estimatesz

1

|Bñ
H(ǫ)|

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)] ≤ P

[

dE(V, V̂∗) ≤ DE|V ∈ Tñ(Φǫ(QX))
]

. (221)

Indeed, sinceXn
ñ+1 is fully encrypted then it is easy to verify that

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)] ≤ P
[

dE(X
ñ
1 ,Z

ñ
1 ) ≤ DE|X ∈ Tn(QX)

]

. (222)

Now, any eavesdropperZñ
1 for X

ñ
1 can be transformed into an eavesdropperV̂ for V, by a uniformly

distributed guess ofX overBñ
H(b) (see (187)) and then setting

v̂ =











argminz∈Z dE(xi, z), xi 6= 0

zi, xi = 0

(223)

where by assumption,minz∈Z dE(xi, z) = 0. If the guess ofx is correct (according to the relation (187))

then

dE(v, v̂) ≤ dE(x, z). (224)

Since this happens with probability larger than
[

|Bñ
H(ǫ)|

]−1
, then (222) implies (221).

Equality (b) then follows from the above considerations.

• Inequality (c) is because in caseRL < RL(QX ,DL) the eavesdropper has no knowledge beyond the type of

the source block, and so given suchy, x is distributed uniformly overTn(QX). For any givenz ∈ Zn, using

standard method of types

P [dE(X, z) ≤ DE|X ∈ Tn(QX)] =
∑

x∈Tn(QX):dE(x,z)≤DE

1

|Tn(QX)|
(225)

=
∑

QX|Z :EQ[dE(X,Z)]≤DE

∑

x∈Tn(QX|Z ,z)

1

|Tn(QX)|
(226)

=
1

|Tn(QX)|

∑

QX|Z :EQ[dE(X,Z)]≤DE

∣

∣Tn(QX|Z , z)
∣

∣ (227)

.
= exp

{

−n · min
QX|Z :EQ[dE(X,Z)]≤DE

[−HQ(X|Z) +H(QX)]

}

(228)

12Which is in fact not even required, using Proposition 3.
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Then,

max
z

P [dE(X, z) ≤ DE|X ∈ Tn(QX)] ≤ 2−n[RE(QX ,DE)−δ]. (229)

Next, we further bound the first term in the minimization of (218) as follows

lim inf
n→∞

min
QX∈Pn(X ):RL≥RL(QX ,DL)

{

D (QX ||PX)−

1

n
log
[

|Bñ
H(ǫ)|P

[

dE(V, V̂∗) ≤ DE|V ∈ Tñ(Φǫ(QX))
]]

}

(230)

(a)

≥ lim inf
n→∞

min
QX∈Pn(X ):RL≥RL(QX ,DL)

{

D (QX ||PX)−

1

n
log P

[

dE(V, V̂∗) ≤ DE|V ∈ Tñ(Φǫ(QX))
]

− g(ǫ)

}

(231)

(b)
= lim inf

n→∞
min

QX∈Pn(X ):RL≥RL(QX ,DL)

{

D (QX ||PX )−

1

ñ
log P

[

dE(V, V̂∗) ≤ DE|V ∈ Tñ(Φǫ(QX))
]

− g(ǫ)

}

(232)

(c)

≥ lim inf
n→∞

min
QX∈Pn(X ):RL≥RL(QX ,DL)

{

D (QX ||PX) + min {R, RE(QX ,DE)} − δ − g(ǫ)

}

(233)

(d)

≥ lim inf
n→∞

min
QX∈Pn(X ):RL≥RL(QX ,DL)

{

D (Φǫ(QX)||PX ) + min {R, RE(QX ,DE)} − δ − δ1(ǫ)− g(ǫ)

}

(234)

(e)
= lim inf

n→∞
min

QX∈Pn0
(X ):RL≥RL(QX ,DL)

{

D (Φǫ(QX)||PX ) + min {R, RE(QX ,DE)} − δ − δ1(ǫ)− g(ǫ)

}

(235)

(f)
= lim inf

n→∞
min

QX∈Pn0
(X ):RL≥RL(QX ,DL)

{

D (QX ||PX) + min {R, RE(QX ,DE)} − δ − δ1(ǫ)− g(ǫ)

}

(236)

= min
QX∈Pn0

(X ):RL≥RL(QX ,DL)

{

D (QX ||PX) + min {R, RE(QX ,DE)} − δ − δ1(ǫ)− g(ǫ)

}

, (237)

≥ lim inf
n→∞

min
QX∈Pn(X ):RL≥RL(QX ,DL)

{

D (QX ||PX) + min {R, RE(QX ,DE)} − δ − δ1(ǫ)− g(ǫ)

}

(238)

• Inequality (a) follows from the fact that since0 < ǫ < 1, for all n sufficiently large
∣

∣Bñ
H(ǫ)

∣

∣ ≤ 2ñg(ǫ) as in

(203).

• Equality (b) is becauseñn → 1 asn → ∞.

• Inequality(c) is because there existsn2 sufficiently large, such that for alln > n2 the error probability of the

any eavesdropper decoderσ∗
ñ,Φǫ(QX) satisfies

−
1

ñ
log P

[

V̂ 6= V|V ∈ Tñ(Φǫ(QX))
]

≥ min {R, RE(QX ,DE)} − δ (239)

uniformly for all QX ∈ Pn0
(QX).
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• Inequality (d) is by defining

δ1(ǫ) , max
QX

|D (Φǫ(QX)||PX)−D(QX ||PX)| . (240)

Note that sinceD(QX ||PX) is a continuous function ofQX in Q(X ) (as the support ofPX is assumed to be

X ), it is also uniformly continuous. So,δ1(ǫ) ↓ 0 as ǫ ↓ 0.

• Equalities(e) and(f) are becauseΦǫ(QX) ∈ Pn0
(X ) for all QX ∈ Pn(X ).

Substituting (238) into (218), and using the factPn(X ) ⊂ Q(X ) we obtain

E−
d (S,DE) ≥ min

{

min
QX∈Q(X ):RL≥RL(QX ,DL)

{

D (QX ||PX) + min {R, RE(QX ,DE)} − g(ǫ) − δ1(ǫ),

min
QX∈Q(X ):RL<RL(QX ,DL)

{

D (QX ||PX ) +RE(QX ,DE)

}}

− δ (241)

≥ min

{

min
QX∈Q(X ):RL≥RL(QX ,DL)

{

D (QX ||PX) + R,

min
QX∈P(X )

{

D (QX ||PX) +RE(QX ,DE)

}}

− δ − δ1(ǫ)− g(ǫ) (242)

(a)

≥ min {R, E∗
e (DE)} − δ − δ1(ǫ)− g(ǫ) (243)

where in (a) we have used the definition in (16), and the fact that the assumption EL > 0 implies thatRL ≥

RL(PX ,DL).

Next, we analyze the required key rate. IfRL < RL(Q̂x,DL) then the required key rate is zero. Otherwise, if

RL ≥ RL(Q̂x,DL) then the total key rate required to encodex ∈ QX is given by

1

n

[

(n− ñ) log|X |+ log |K(x, ǫ)| + log
∣

∣Bñ
H(ǫ)

∣

∣+ nR
]

. (244)

Now, for all n sufficiently large
1

n
(n− ñ) log|X |≤

n0 log|X |+1

n
≤ δ, (245)

1

n
log |K(x, ǫ)| ≤

1

n
log
∣

∣Bñ
H(ǫ)

∣

∣ ≤ g(ǫ), (246)

Thus, the required key rate is less than

R+ 2g(ǫ) + 2δ. (247)

By taking ǫ ↓ 0 we obtaing(ǫ) ↓ 0 andδ1(ǫ) ↓ 0, and so we obtain the achievability part of Theorem 1.

D. Proof of Converse Part of Theorem 1

Following the outline of the converse, we begin with a lemma which constructs from a given sequence of codes

S a new sequenceS∗, with constant key rate, which is less thanR(S, QX) + δ, and a zero excess-distortion
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probability at the legitimate receiver.

Lemma 13. LetS be an arbitrary sequence of secure rate-distortion codes, which satisfies a compression constraint

(RL,DL,EL). Also, letQX ∈ P(X ) be given such thatD(QX ||PX) < EL. Then, for everyδ > 0, there exists a

sequence of secure rate-distortion codesS∗ such that:

1) For all n and all x ∈ Tn(QX), S∗
n has fixed key rater∗(x) = R

∗ whereR∗ ≤ R(S, QX) + δ.

2) For all n and {ui}
∞
i=1, S

∗
n = (f∗

n, ϕ
∗
n) satisfies

P [dL(X, ϕ∗
n(f

∗
n(X,u),u)) > DL|X ∈ Tn(QX)] = 0, (248)

and in addition,S∗ satisfies a compression constraint(R∗
L ,DL,EL) for R∗

L = log|X |.

3) For everyDE ≥ DL.

E+
d (S,DE, QX) ≤ E+

d (S∗,DE, QX) + δ. (249)

Proof: We will prove this lemma by modifying the sequence of codesS into the new sequenceS∗. Assume

that QX ∈ intQ(X ), andQX ∈ Pn0
(X ) for some minimaln0 ∈ N. Since the statements in the lemma are only

about conditional events given the typeQX , it is clear that the new secure rate-distortion codes constructedS∗
n

need only be different fromSn for x ∈ Tn(QX), and so only block-lengthsn mod n0 = 0 should be considered,

as otherwiseTn(QX) is empty. To wit, the limitn → ∞ should be read as limitl → ∞ for n = n0l, but this

will not be explicitly written, for the sake of brevity. Throughout the proof, quantities that are related toS∗ will

be superscripted by∗. For brevity, we will denote the conditional key rate byR(QX) andR
∗
(QX) for S andS∗,

respectively .

Let δ > 0 be given. For any length0 ≤ m ≤ n log|X | andy ∈ Yn define theambiguity sets for a given key-length

as

An(y,m) , {x ∈ Tn(QX) : kn(x) = m, fn(x,u) = y for someu ∈ {0, 1}m} , (250)

and with a slight abuse of notation define theambiguity set13 as

An(y) ,

n log|X |
⋃

m=0

An(y,m). (251)

For any giveny andx ∈ An(y), let us denote the reproductionw(x, y) , ϕ(y,u), whereu satisfiesfn(x,u) = y,

and theambiguity set without excess-distortion

Dn(y) , {x ∈ An(y) : dL(x,w(x, y)) ≤ DL} . (252)

13Called residue classin the terminology of [1].
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Also, consider themodified ambiguity set

A∗
n(y) ,







An(y)\

n(R(QX)−δ)
⋃

m=0

An(y,m)\

n log|X |
⋃

m=n(R(QX)+δ)

An(y,m)







⋂

Dn(y). (253)

For a giveny, the eavesdropper knows thatx ∈ An(y) and chooses its estimate accordingly. However, conditioned

on y, the probability ofX is not uniform overAn(y), sincekn(x) is not the same for allx ∈ An(y). The proof

of the lemma is divided into two steps and its outline is as follows. In the first step, we will identify a sequence

of cryptograms{y∗n} which simultaneously satisfies the following properties:

1) The conditional exiguous-distortion exponent of the eavesdropper whenX is distributeduniformly over

A∗
n(y

∗
n) is larger than the one forX distributed overAn(y

∗
n) according to the distribution induced bySn.

2) The conditional exiguous-distortion exponent conditioned onY = y∗n equals the same exponent without this

conditioning.

In the second step of the proof, we utilize the setA∗
n(y

∗
n) to construct the new sequence of codesS∗. This is

done by the same technique used in the achievability proof ofLemma 9 - by an efficient covering of the type

class using permutations of one good setA∗
n(y

∗
n). The two properties above ofy∗n will be used to show that the

exiguous-distortion exponent ofS∗ may be only slightly less than that ofS.

We begin with the first step. For brevity, let us assume thatX is distributed uniformly over the type class

Tn(QX), and probabilities, expectations and entropies will be calculated w.r.t. this probability distribution. So, we

only considery such thatAn(y) is non-empty. If we let

A(y) , P
[

R(QX)− δ ≤ rn(X) ≤ R(QX) + δ, dL(X,W) ≤ DL|Y = y
]

(254)

then forn sufficiently large

E [A(Y )] = P
[

R(QX)− δ ≤ rn(X) ≤ R(QX) + δ, dL(X,W) ≤ DL

]

≥ P
[

R(QX)− δ ≤ rn(X) ≤ R(QX) + δ
]

− P [dL(X,W) > DL]

(a)

≥ δ − P [dL(X,W) > DL]

(b)

≥ δ − 2−n[EL−D(QX ||PX)−δ] (255)

,
δ

2
(256)

where (a) is using the convergence in probability ofrn(X) to R(QX) (see (11)), and(b) is sinceS satisfies a

compression constraint(RL,DL,EL) and the assumptionD(QX ||PX ) < EL. Defining for any0 < β < 1

V(1)
n ,

{

y ∈ Yn : A(y) ≥ β ·
δ

2

}

, (257)
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then, since from the definition (254) and (256)

0 ≤
A(y)

E [A(Y )]
≤

2

δ
(258)

for all y ∈ Yn, the reverse Markov inequity (Lemma 2) implies that

P

(

Y ∈ V(1)
n

)

≥
1− β
2
δ − β

, ζ(δ, β), (259)

and choosing someβ∗ < min{1, 2δ}, we obtainζ∗(δ) , ζ(δ, β∗) > 0. Now, for γ > 1, let

V(2)
n ,

{

y ∈ Yn : max
z

P [dE(X, z) ≤ DE|Y = y] < γ · max
σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE]

}

. (260)

Then the Markov inequality implies

P(Y 6∈ V(2)
n ) = P

[

max
z

P [dE(X, z) ≤ DE|Y ] ≥ γ · max
σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE]

]

(261)

(a)

≤
E [maxz P [dE(X, z) ≤ DE|Y ]]

γ ·maxσ̃n∈Σ̃n
P [dE(X,Z) ≤ DE]

(262)

=
1

γ
(263)

where in(a) is should be recalled thatz is chosen as a function ofY . Hence, by the union bound

P

(

Y ∈ V(1)
n ∩ V(2)

n

)

≥ 1− P

(

Y 6∈ V(1)
n

)

− P

(

Y 6∈ V(2)
n

)

(264)

≥ ζ∗(δ) −
1

γ
. (265)

Thus, for any givenδ, there existsγ∗ > 1 sufficiently large (but independent ofn) such that

P

(

Y ∈ V(1)
n ∩ V(2)

n

)

> 0. (266)

Therefore, there exists a sequence{y∗n} such that for alln sufficiently large,y∗n ∈ V
(1)
n ∩ V

(2)
n .

In the second step of the proof, we describe the constructionof S∗
n. Note that by letting

U∗ , {u : ∃x ∈ A∗
n(y

∗
n) such thatfn(x,u) = y∗n} (267)

and

C∗
n , {ϕn(y

∗
n,u) : u ∈ U∗} (268)

we have thatA∗
n(y

∗
n) ⊆ D(C∗

n, QX ,DL). Now, recall that in Lemma 9 of the achievability proof, we have utilized

permutations of a D-coverD(C∗
n, QX ,DL) (of a setC∗

n) which cover the type classTn(QX), to construct a secure

rate-distortion code. Following remark 10, the setA∗
n(yn) can also be used as a constituent set in the construction

of a secure rate-distortion code, and the conditional exiguous-distortion exponent equal to the exponent achieved



42

when the source blockX is distributed uniformly overA∗
n(y

∗
n), as in (176). Let us find the exponent achieved

whenX is distributed uniformly overA∗
n(y

∗
n). To this end, denote

M(δ) ,
[

n
(

R(QX)− δ
)

, n
(

R(QX) + δ
)]

. (269)

and observe that for an arbitrary eavesdropperz, and alln sufficiently large,

max
z

P [dE(X, z) ≤ DE|Y = y∗n] (270)

≥ P [dE(X, z) ≤ DE|Y = y∗n] (271)

=
∑

x∈An(y∗
n):dE(x,z)≤DE

P [X = x|Y = y∗n] (272)

=

n log|X |
∑

m=0

∑

x∈An(y∗
n,m):dE(x,z)≤DE

P [X = x|Y = y∗n] (273)

=

∑n log|X |
m=0

∑

x∈An(y∗
n,m):dE(x,z)≤DE

P (X = x, Y = y∗n)

P (Y = y∗n)
(274)

≥

∑

m∈M(δ)

∑

x∈An(y∗
n,m):dE(x,z)≤DE

P (X = x, Y = y∗n)

P (Y = y∗n)
(275)

≥

∑

m∈M(δ)

∑

x∈An(y∗
n,m)∩Dn(y∗

n):dE(x,z)≤DE
P (X = x, Y = y∗n)

P (Y = y∗n)
(276)

(a)

≥ β
δ

2
·

∑

m∈M(δ)

∑

x∈An(y∗
n,m)∩Dn(y∗

n):dE(x,z)≤DE
P (X = x, Y = y∗n)

P
[

R(QX)− δ ≤ rn(X) ≤ R(QX) + δ, dL(X,W) ≤ DL, Y = y∗n
] (277)

= β
δ

2
·

∑

m∈M(δ)

∑

x∈An(y∗
n,m)∩Dn(y∗

n):dE(x,z)≤DE
P (X = x, Y = y∗n)

∑

m∈M(δ)

∑

x∈An(y∗
n,m)∩Dn(y∗

n)
P (X = x, Y = y∗n)

(278)

= β
δ

2
·

∑

m∈M(δ)

∑

x∈An(y∗
n,m)∩Dn(y∗

n):dE(x,z)≤DE
P (X = x, Y = y∗n)

∑

m∈M(δ)

∑

x∈An(y∗
n,m)∩Dn(y∗

n)
P (X = x, Y = y∗n)

(279)

= β
δ

2
·

∑

m∈M(δ)

∑

x∈An(y∗
n,m)∩Dn(y∗

n):dE(x,z)≤DE
P (Y = y∗n|X = x)

∑

m∈M(δ)

∑

x∈An(y∗
n,m)∩Dn(y∗

n)
P (Y = y∗n|X = x)

(280)

(b)
= β

δ

2
·

∑

m∈M(δ) 2
−m · |{x ∈ An(y

∗
n,m) ∩ Dn(y

∗
n) : dE(x, z) ≤ DE}|

∑

m∈M(δ) 2
−m · |An(y∗n,m) ∩ Dn(y∗n)|

(281)

≥ β ·
δ

2

2−n(R(QX)+δ) ·
∑

m∈M(δ) |{x ∈ An(y
∗
n,m) ∩ Dn(y

∗
n) : dE(x, z) ≤ DE}|

2−n(R(QX)−δ) ·
∑

m∈M(δ) |An(y∗n,m) ∩ Dn(y∗n)|
(282)

= β
δ

2
· 2−2nδ

∑

m∈M(δ) |{x ∈ An(y
∗
n,m) ∩ Dn(y

∗
n) : dE(x, z) ≤ DE}|

∑

m∈M(δ) |An(y∗n,m) ∩Dn(y∗n)|
(283)

, β
δ

2
· 2−2nδ

P [dE(X
∗, z) ≤ DE] , (284)

where(a) is because asy∗n ∈ V
(1)
n implies that

P
[

R(QX)− δ ≤ rn(X) ≤ R(QX) + δ, dL(X,W) ≤ DL, Y = y∗n
]

β δ
2

≥ P(Y = y∗n), (285)
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and (b) is because for admissible encoders andx ∈ An(y
∗
n,m)

P (Y = y∗n|X = x) = 2−m. (286)

Thus,

lim sup
n→∞

−
1

n
logmax

z
P [dE(X

∗, z) ≤ DE] ≥ lim sup
n→∞

−
1

n
max

z
logP [dE(X, z) ≤ DE|Y = y∗n]− 3δ (287)

(a)
= E+

d (S,DE, QX)− 3δ (288)

where (a) is becausey∗n ∈ V
(2)
n . So, by choosingδ sufficiently small, we can achieve (249) by the permutation

construction of Lemma 9.

Finally, as the legitimate reconstructionw(x, y∗n) of any x ∈ A∗
n(y

∗
n) satisfiesdL(x,w(x, y∗n)) ≤ DL, the

permutation construction assures this property for allx ∈ Tn(QX). So, it is easy to verify that ifS has excess-

distortion exponentEL at distortion levelDL, thenS∗ has an even larger exponent. AsR
∗
L = log|X |, the compression

constraint(R∗
L ,DL,EL) is satisfied byS∗.

We are now ready for the second and final step of the proof of theconverse part of Theorem 1.

Proof of converse part of Theorem 1:Let a sequence of secure rate-distortion codesS be given, which

satisfies the compression constraint(RL,DL,EL), and letδ > 0 be given. From Proposition 3, it may be assumed

that the eavesdropper is aware of the type of the source blockQX . Moreover, from Lemma 13, it may be assumed

that Sn satisfies the three properties in Lemma 13 for allQX such thatD(QX ||PX) < EL. Specifically, the first

property implies that for somerate-functionρ : P(X ) → R+ the codeSn has a fixed ratern(x) = ρ(QX) for all

x ∈ Tn(QX), andρ(QX) ≤ R(S, QX) + δ, as long asD(QX ||PX) < EL.

Let us first focus on a typeQX that satisfiesD(QX ||PX) < EL, and a specific (type-aware) eavesdropper for

Sn. The eavesdropper first produces a guessû of the key-bitsu (with a uniform probability over{0, 1}nρ(QX ), and

then decodeŝw = ϕn(y, û). SincedE(·, ·) is more lenient thandL(·, ·), andDE ≥ DL, there exists âz ∈ Zn such

that

{x ∈ X n : dL(x, ŵ) ≤ DL} ⊆ {x ∈ X n : dE(x, ẑ) ≤ DL} (289)

⊆ {x ∈ X n : dE(x, ẑ) ≤ DE} , (290)

and so the final eavesdropper estimate isz = ẑ. For anyn, let us bound the resulting conditional exiguous-distortion

probability.

P

[

dE(X, Ẑ) ≤ DE|X ∈ Tn(QX)
]

≥ P

[

Û = U|X ∈ Tn(QX)
]

×

P

[

dE(X, Ẑ) ≤ DE|X ∈ Tn(QX), Û = U

]

(291)

≥ 2−nρ(QX) · P
[

dE(X, Ẑ) ≤ DE|X ∈ Tn(QX), Û = U

]

(292)
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≥ 2−nρ(QX) · P [dL(X,W) ≤ DE|X ∈ Tn(QX)] (293)

(a)
= 2−nρ(QX) (294)

where(a) is from the second property assured forS in Lemma 13.

We now analyze the exiguous-distortion probability ofS. Since|Pn(X )|≤ (n+ 1)|X |

pd(Sn,DE) =
∑

QX∈Pn(X )

P [X ∈ Tn(QX)] max
σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)] (295)

.
= max

QX∈Pn(X )
e−nD(QX ||PX) · max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)] (296)

= exp

(

−n · min
QX∈Pn(X )

{

D (QX ||PX )− (297)

1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

})

(298)

Now, let 0 < ǫ < EL be given, and letQ∗
X ∈ P(X ) be such that

D (Q∗
X ||PX) + lim sup

n→∞

{

−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(Q
∗
X)]

}

≤

inf
QX∈P(X )

{

D (QX ||PX) + lim sup
n→∞

{

−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

}}

+ ǫ (299)

and letm0 be sufficiently large so that

sup
n>m0

{

−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(Q
∗
X)]

}

≤ lim sup
n→∞

{

−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(Q
∗
X)]

}

+ ǫ. (300)

Then,

E+
d (S,DE) = lim sup

n→∞
min

QX∈Pn(X )

{

D (QX ||PX)−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

}

(301)

= lim
m→∞

sup
n≥m

min
QX∈Pn(X )

{

D (QX ||PX )−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

}

(302)

(a)
= lim

m→∞
sup
n≥m

inf
QX∈P(X )

{

D (QX ||PX)−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

}

(303)

≤ sup
n≥m0

inf
QX∈P(X )

{

D (QX ||PX)−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

}

(304)

≤ inf
QX∈P(X )

{

D (QX ||PX) + sup
n≥m0

{

−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

}}

(305)

≤

{

D (Q∗
X ||PX) + sup

n>m0

{

−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(Q
∗
X)]

}}

(306)

(b)

≤ inf
QX∈P(X )

{

D (QX ||PX) + (307)

lim sup
n→∞

{

−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

}}

+ 2ǫ (308)
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= inf
QX∈P(X )

{

D (QX ||PX) + E+
d (S,DE, QX)

}

+ 2ǫ (309)

≤ inf
QX∈P(X ):D(QX ||PX)<EL

{

D (QX ||PX) + E+
d (S,DE, QX)

}

+ 2ǫ (310)

(c)

≤ inf
QX∈P(X ):D(QX ||PX)<EL

{

D (QX ||PX ) + E+
d (S,DE, QX)

}

+ 2ǫ+ δ (311)

(d)

≤ inf
QX∈P(X ):D(QX ||PX)<EL

{D (QX ||PX) + ρ(QX)}+ 2ǫ+ δ (312)

(e)

≤ R+ 2ǫ+ 4δ, (313)

where(a) is because, by assumption, ifTn(QX) is empty thenP [dE(X,Z) ≤ DE|X ∈ Tn(QX)] = 0 , (b) is from

(299) and (300), and(c) is from the third property ofS promised by Lemma 13. The passage(d) follows from

(294), and so it remains to prove(e). To this end, recall thatE[rn(X)] ≤ R for all n was assumed. Define, for

0 < ǫ < EL, the typical set

T̃ (PX , ǫ) , {QX ∈ P(X ) : D(QX ||PX) ≤ ǫ} , (314)

and with a slight abuse of notation, defineT̃n(PX , ǫ) , T̃ (PX , ǫ) ∩ Pn(X ). Then, by the law of large numbers

lim
n→∞

∑

QX∈T̃n(PX ,ǫ)

P [X ∈ Tn(QX)] = 1. (315)

Now, assume by contradiction, that for allQX ∈ T̃ (PX , ǫ) we haveρ(QX) ≥ R + 3δ. Since by construction

ρ(QX) ≤ R(S, QX) + δ, the uniform convergence ofE[rn(X)|X ∈ Tn(QX)] to R(S, QX) (see (11) and the

discussion that follows) implies that there existsn0 such that for alln > n0

E[rn(X)|X ∈ Tn(QX)] ≥ R(S, QX)− δ

≥ ρ(QX)− 2δ

≥ R+ δ, (316)

for all QX ∈ T̃n(PX , ǫ). So, from (315), there existsn1, such that for alln > n1 we have thatP
[

X ∈ T̃n(PX , ǫ)
]

≥

1
1+δ/2·log|X |

, and then for alln > max{n0, n1}

E [rn(X)] =
∑

QX∈Pn(X )

P [X ∈ Tn(QX)] · E[rn(X)|X ∈ Tn(QX)] (317)

≥
∑

QX∈T̃n(PX ,ǫ)

P [X ∈ Tn(QX)] · E[rn(X)|X ∈ Tn(QX)] (318)

≥

(

min
QX∈T̃n(PX ,ǫ)

E[rn(X)|X ∈ Tn(QX)]

)

·
∑

QX∈T̃n(PX ,ǫ)

P [X ∈ Tn(QX)] (319)

(a)

≥ (R+ δ)
1

1 + δ/2·log|X |
(320)
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> (R+ δ)
1

1 + δ/R
(321)

= R, (322)

where(a) follows from (316). However, this is a contradiction to the fact thatSn satisfiesE [rn(X)] ≤ R for all

n. Thus, there must existQX ∈ T̃ (PX , ǫ) ⊂ T̃ (PX ,EL) such thatρ(QX) < R+ 3δ, which directly leads to(e) in

(313). Sinceǫ > 0 andδ > 0 are arbitrary, the first term in the upper bound of (18) is proved, i.e.E+
d (S,DE) ≤ R.

To prove the second term in the upper bound of (18), i.e.E+
d (S,DE) ≤ E∗

e (DE), note that the eavesdropper can

always ignore the cryptogram andblindly choose its estimatez (based only on the typeQX). Thus, by similar

arguments leading to (229), it can be shown that for alln sufficiently large

E+
d (S,DE, QX) ≤ RE(QX ,DE). (323)

The method of types, as in (297) and the definition ofE∗
e (DE) in (16), complete the proof.

REFERENCES

[1] C. E. Shannon, “Communication theory of secrecy systems,” Bell system technical journal, vol. 28, no. 4, pp. 656–715, 1949.

[2] ——, “A mathematical theory of communication,”Bell System Technical Journal, vol. 27, pp. 379–423,623–656, 1948.

[3] A. Wyner, “The wire-tap channel,”Bell System Technical Journal, The, vol. 54, no. 8, pp. 1355–1387, October 1975.

[4] I. Csiszar and J. Korner, “Broadcast channels with confidential messages,”Information Theory, IEEE Transactions on, vol. 24, no. 3,

pp. 339–348, May 1978.

[5] D. Gunduz, E. Erkip, and H. Poor, “Secure lossless compression with side information,” inInformation Theory Workshop, 2008. ITW

’08. IEEE, May 2008, pp. 169–173.

[6] ——, “Lossless compression with security constraints,”in Information Theory, 2008. ISIT 2008. IEEE International Symposium on,

July 2008, pp. 111–115.

[7] N. Merhav, “Shannon’s secrecy system with informed receivers and its application to systematic coding for wiretapped channels,”

Information Theory, IEEE Transactions on, vol. 54, no. 6, pp. 2723–2734, June 2008.

[8] M. Hellman, “An extension of the Shannon theory approachto cryptography,”Information Theory, IEEE Transactions on, vol. 23,

no. 3, pp. 289–294, May 1977.

[9] H. Yamamoto, “Rate-distortion theory for the Shannon cipher system,”Information Theory, IEEE Transactions on, vol. 43, no. 3, pp.

827–835, May 1997.

[10] S. C. Lu, “Random ciphering bounds on a class of secrecy systems and discrete message sources,”Information Theory, IEEE Transactions

on, vol. 25, no. 4, pp. 405–414, July 1979.

[11] C. Schieler and P. Cuff, “Secrecy is cheap if the adversary must reconstruct,” inInformation Theory Proceedings (ISIT), 2012 IEEE

International Symposium on, July 2012, pp. 66–70.

[12] ——, “Rate-distortion theory for secrecy systems,”Information Theory, IEEE Transactions on, vol. 60, no. 12, pp. 7584–7605, December

2014.

[13] P. Cuff, “Using a secret key to foil an eavesdropper,” inCommunication, Control, and Computing (Allerton), 2010 48th Annual Allerton

Conference on, September 2010, pp. 1405–1411.

[14] C. Schieler and P. Cuff, “The henchman problem: Measuring secrecy by the minimum distortion in a list,” inInformation Theory (ISIT),

2014 IEEE International Symposium on, June 2014, pp. 596–600.

[15] I. Csiszár and J. Körner,Information Theory: Coding Theorems for Discrete Memoryless Systems. Cambridge University Press, 2011.



47

[16] R. Ahlswede and G. Dueck, “Bad codes are good ciphers,”Problems of Control and Information Theory, vol. 11, no. 5, 1982.

[17] N. Merhav, “A large-deviations notion of perfect secrecy,” Information Theory, IEEE Transactions on, vol. 49, no. 2, pp. 506–508,

February 2003.

[18] ——, “On the Shannon cipher system with a capacity-limited key-distribution channel,”Information Theory, IEEE Transactions on,

vol. 52, no. 3, pp. 1269–1273, March 2006.

[19] E. Haroutunian and A. Ghazaryan, “On the Shannon ciphersystem with a wiretapper guessing subject to distortion andreliability

requirements,” inInformation Theory, 2002. Proceedings. 2002 IEEE International Symposium on, June-July 2002, pp. 324–.

[20] E. Arikan and N. Merhav, “Guessing subject to distortion,” Information Theory, IEEE Transactions on, vol. 44, no. 3, pp. 1041–1056,

May 1998.

[21] N. Merhav and E. Arikan, “The Shannon cipher system witha guessing wiretapper,”Information Theory, IEEE Transactions on, vol. 45,

no. 6, pp. 1860–1866, September 1999.

[22] E. Haroutunian, “On the Shannon cipher system with a wiretapper guessing subject to distortion and reliability requirements,” August

2010, available online: http://arxiv.org/pdf/1008.0961.pdf.

[23] T. M. Cover and J. A. Thomas,Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing). Wiley-

Interscience, 2006.

[24] K. Marton, “Error exponent for source coding with a fidelity criterion,” Information Theory, IEEE Transactions on, vol. 20, no. 2, pp.

197–199, March 1974.

[25] M. V. Burnashev, “Data transmission over a discrete channel with feedback: Random transmission time,”Problems of Information

transmission, pp. 250–265, 1976.

[26] B. Nakiboglu and L. Zheng, “Errors-and-erasures decoding for block codes with feedback,”Information Theory, IEEE Transactions

on, vol. 58, no. 1, pp. 24–49, January 2012.

[27] N. Weinberger and N. Merhav, “Optimum trade-offs between the error exponent and the excess-rate exponent of variable-rate Slepian-

Wolf coding,” Information Theory, IEEE Transactions on, vol. 61, no. 4, pp. 2165–2190, April 2015, extended versionavailable online:

http://arxiv.org/pdf/1401.0892v3.pdf.

[28] M. Loève,Probability Theory I. Springer, 1977.

[29] R. Ahlswede, “Coloring hypergraphs: A new approach to multi-user source coding, part II,”Journal of Combinatorics, vol. 5, pp.

220–268, 1980.

[30] W. Rudin,Principles of mathematical analysis, 3rd ed. McGraw-Hill New York, 1976.

[31] N. Merhav, “Statistical physics and information theory,” Foundations and Trends in Communications and Information Theory, vol. 6,

no. 1-2, pp. 1–212, 2009.

http://arxiv.org/pdf/1008.0961.pdf
http://arxiv.org/pdf/1401.0892v3.pdf

	I Introduction
	II Notation Conventions
	III Problem Statement
	IV Main Result
	V Outline of the Proof of Theorem 1
	VI Proof of the Theorem 1
	VI-A Type Awareness of the Eavesdropper
	VI-B Covering a Type Class via Permutations
	VI-C Proof of Achievability Part of Theorem 1 
	VI-D Proof of Converse Part of Theorem 1 

	References

