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Abstract

We consider a Shannon cipher system for memoryless souncesyich distortion is allowed at the legitimate
decoder. The source is compressed using a rate distortas secured by a shared key, which satisfies a constraint
on the compression rate, as well as a constraint on the erpaheate of the excess-distortion probability at
the legitimate decoder. Secrecy is measured by the expaheatie of the exiguous-distortion probability at the
eavesdropper, rather than by the traditional measure af@cption. We define the perfect secrecy exponent as the
maximal exiguous-distortion exponent achievable whenktherate is unlimited. Under limited key rate, we prove
that the maximal achievable exiguous-distortion exponemqual to the minimum between the average key rate

and the perfect secrecy exponent, for a fairly general aéssriable key rate codes.
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. INTRODUCTION

In his seminal papei [1], Shannon has introduced a matheahdtamework for secret communication. The
cipher system is considergrérfectly securef the cryptogram and the message are statistically inddgetn and
so, an eavesdropper does not gain any information when heassthe cryptogram. To achieve secrecy, the sender
and the legitimate recipient share a secret key, which isl iseencipher and decipher the message. It is rather
apparent from ordinary compression [2] that a necessarysalffitient condition for perfect secrecy is that the
available key rate is larger than the information rate resfito compress the source (the entropy or rate-distortion
function of the source in case of lossless or lossy commessespectively). Usually, the supply of key bits is a

limited resource, as they need to be transferred to the detkmecipient via a completely secure channel. When
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the key rate is less than the information rate, secrecy ditimaally measured in terms aquivocation that is,

the conditional entropy of the message given the cryptogreime use of equivocation as a secrecy measure was
advocated by other models of secrecy systems, which do satresa shared key. Instead, secrecy is achieved by
the fact that the message intercepted by the eavesdroppiloiser quality than the one received by the legitimate
receiver. For example, in the ubiquitous wire-tap modg|l [&], the channel of the wiretapper is degraded (or more
noisy) with respect to (w.r.t.) the channel of the legitimaeceiver. In the model of [5][_[6]/[7] the legitimate
recipient has better quality of side information than theesdropper.

The equivocation is indeed an unambiguous measure fostitati dependence when it is equal to either its
minimal value of zero (the random variables are determinfsinctions of each other), or its maximal value of the
unconditional entropy (the two random variables are inddpat). Nonetheless, fgrartial secrecyi.e., when the
equivocation takes values strictly between these two mdse its operational meaning is disputable. Thus/_in [8],
it was proposed to measure partial secrecy by the expectatharuof spurious messages that explain the given
cryptogram (which is somewhat equivalent to the probabdit correctly decrypting the message). Later, [ih [9],
it was proposed to measure partial secrecy by the minimumageedistortion that an eavesdropper can attain
(this was also considered previously, to some extent, iif).[10 addition, in [9] the possibility that the legitimate
recipient can tolerate a certain distortion level was amwiporated into the system model. [[n [9, Theorems 2 and
3], inner and outer bounds were obtained on the achievatdtkeioff between the coding rate, the key rate, and
distortion levels at the legitimate recipient and eavegper. However, in[[11], it was revealed that this trade-off
is, in fact, degenerated. It was demonstrated there thavrmescases, a negligible key rate can cause maximum
distortion at the eavesdropper. The following simple exianffsom [12, Section I.A]) demonstrates this: Consider
an memoryless sourc€ = (X1,...,X,) € {0,1}" whereP(X; = 1) = § for i = 1,...n, and asinglekey bit U,
shared by the two legitimate parties, wh&@ = 1) = % Suppose that the distortion measure at the eavesdropper
side is the Hamming distortion measure. Then, if the eneyptessage i¥ = (Y1,...,Y,), whereY; = X; & U,
then the distortion at the eavesdropper attains its maxpuoasible value o%, regardless of the estimate of the
eavesdropper. Nonetheless, such a secrecy is severetyiiaséf the eavesdropper becomes aware of just a single
bit of the source, then it can decrypt the entire messageadt terefore proposed to consider models which are
more robust to assumptions concerning the eavesdroppeseTimodels indeed lead to a non-degenerated trade-
off, that requires a positive key rate. In [12], [13] it wasamsed that the eavesdropper’s estimation is performed
sequentially, and at the time it estimates tft symbol, it has noiseless/noisy estimates of all theiptevmessage
symbols and the previous reproduced symbols (at the legfigéimecipient), in addition to the public cryptogram. This
model was termedausal disclosurelt was justified by the scenario in which the sender andilegie recipient
attempt to coordinate actions in a distributed system irelotd maximize a certain payoff, and the eavesdropper
acts in order to minimize the payoff. In a different line of lkd14], the eavesdropper produces a fixed-size list
(of exponential cardinality in the block-length), and thstartion is measured w.r.t. the reproduction word in the

list which attains the minimal distortion.



However, the fact that the trade-off ih][9] is degenerated ba attributed to the way that the distortion is
measured, rather than to the weakness of the eavesdroppea. given strategy of the eavesdropper, the average
distortion, as assumed inl[9], [12], [14], may be large duenessage and key-bit combinations that lead to a very
large distortion, albeit with small probability. A more madid figure of merit would include the probability that the
distortion is less than some level, rather than the aver&iertion. Such a performance criterion is customary in
ordinary rate-distortion theory (e.g. thkefidelity criterion in [15, Chapter 7]). Indeed, in the abasiagle key-bit
example, the eavesdropper can estimate the message eu'mhttyrobability%, irrespective of its length. Thus, for
any positive distortion level, the probability of an exigisadistortion event i%, which is clearly unacceptable for
most applications.

For most source models, good estimation of the message attlesdropper should be a rare event, and finding
its exact probability is difficult. Instead, an asymptoticalysis can be carried in order to find the exponential
decrease rate (i.e. thexponent of the correct decryption probability. The results bf [[1&§n be considered as
a special case of this line of thought, for the restricted<laf instantaneous encoders. [In|[10], the exponent of
decrypting the message by the eavesdropper was found astiofunf the exponent of exiguous-distortion of the
estimation by the eavesdropper. For the same model, thenerpof the minimal probability of correct decryption
by the eavesdropper was found in[[16]. Later,[in|[17] secneayg defined in a large-deviations sense: A system
is considered secure if the exponent of the probability eféavesdropperorrectly decrypting the message is the
same with and without the cryptogram. This, in turn, reciittee analysis of the correct decryption probability. In
[10], [16], [17], it was assumed that the legitimate reaipienust reproduce the message exactly (i.e., with zero
distortion).

In this paper, we adopt a similar large-deviations apprdachmeasuring secrecy, using a distortion measure,
and generalize the results 6f [17]. For a memoryless soweegllow an imperfect reproduction at the legitimate
recipient, and measure distortion both at the legitimatéprent and at the eavesdropper using a large-deviations
measure. Specifically, we will define two exponents. First, d given distortion leveD,, the excess-distortion
exponenis defined in the usual way [15, Chapter 9], as the exponerteoptobability that the distortion between
the legitimate recipient reproduction and the source secpiés larger tharD,. Second, for a given distortion
level Dg, we define theexiguous-distortion exponeas the exponent of the probability that the distortion betwe
the eavesdropper estimate and the source sequenessithan De. We will derive theperfect secrecy exponent
function E*(Dg), which is the exiguous-distortion exponent of the eavgsokeo when it estimates the message
blindly, without the cryptogram (alternatively, for codesth unlimited key rate). It will be assumed that the
secrecy system has a limited coding rBte and that for a given distortion levél , the excess-distortion exponent
must be larger thak, . Our main result is that under mild conditions on t@mpression constraint®k,, D, , E, ),
the maximal achievable exiguous-distortion exponent igaétp the minimum between the key r&@geand £ (Dg),
calculated at distortion level required by the eavesdrofipe Since this maximal exiguous-distortion exponent

does not depend ofR_, D, E,) (in the interesting domain of these parameters), such dt iegplies that as far as



Figure 1. Two cases of ambiguity for the eavesdropper, foingles key bit code. Left side: Assume for simplicity that theurce is
distributed uniformly over the dots encapsulated by thewnbst circle. The two small solid line circles represend twproduction cells,
which are mapped to the same cryptogram by the two possililes/af the key bitu. The dashed larger circle represents all the source
block for which the distortion between the source block dmel lhest estimate of the eavesdropper is less BanAs can be seen, there
is a large exiguous-distortion probability. Right side:dén the same assumptions, in this case the two reproductitmare far apart. The
best estimate of the eavesdropper can ‘cover’ at most onkeofeproduction cells, and the exiguous-distortion praibals %

performance trade-offs are concerned, the compressiorsecr@cy problems are essentially decoupled: The fact
that the message is required to be kept secret does not #feecompression performance. It should be stressed,
however, that this result does not imply a separation thedrem the operational point of view. The rate-distortion
code should be designed in a certain manner in order to mFoséatrecy, in contrast to, e.d./ [9) [7]._[18]. A
concatenation of an arbitrary good rate-distortion codéiodved by encryption using the available key bits, does
not necessarily achieve a good exiguous-distortion expiofer intuition, consider an ordinary rate-distortiordeo
assume that one key bit is available, and that the distortieasures of the legitimate decoder and eavesdropper
are the same. The eavesdropper, in this case, knows thaggheduction of the legitimate decoder is one of two
possible reproductions (of equal probability). If these treproductions are close, then it can approximate them
using a single reproduction, and achieve a distortion winiety be only slightly larger than the distortion of the
legitimate decoder. If, however, the rate-distortion ciglelesigned in such a way that these two reproductions
are sufficiently far apart, then the eavesdropper will hayeoar compromise between them, and will achieve
high distortion. This is illustrated in Figuté 1. More gealgr, unlike ordinary rate-distortion codes, in which the
performance is determined only by the reproduction cefig, the way in which the reproduction cells are mapped
to transmitted bits is immaterial, here, the latter will bedal for the security performance.

To show this result, we will prove both achievability (lowleound on the exiguous-distortion exponent) and a
matching converse (upper bound). In the achievability, paet will demonstrate the existence of a secrecy system

in which the compression constraints are satisfied, andsitahfixed key rat&R. For this secrecy system, the best



strategy of the eavesdropper will be either to (1) guess ¢oees key and reproduce the message as a legitimate
recipient (using the cryptogram), or (2) blindly estimate message. The secrecy system constructed will also be
universalin the following two senses. First, it does not require thevdedge of the source statistics, as long it
is a memoryless source. Second, it is not designed for afgpealiue of Dg, yet the exiguous-distortion exponent
min{R, E}(Dg)} will be achieved for any value dde, by the same sequence of codaes long adD > D,. As a
converse, we will show that even vlariable key rate is allowed, yet with average key rate less tRatthen the
exiguous-distortion exponent cannot be larger than{R, E*(Dg)}. The results of([17] are essentially recovered
from our results, as a special case with = D = 0. We also remark that in our model, the distortion measures
of the legitimate recipient and the eavesdropper can berdiit, as long as they satisfy a certain relationship.

Finally, we briefly mention a related work in which large-@#ions aspects were also incorporated.[In| [19],
the guessingmodel of [20], [21] was relaxed to allow, after a maximum ofspible guesses has passed, a small
probability of large distortion for the eavesdropper. Talgme the asymptotic limits of the system, the excess-
distortion exponent of theavesdroppewas restricted, and the maximal normalized logarithm of rinenber of
guesses was foquHowever, in our model, no testing mechanism is assumed evaikable to the eavesdropper,
which allows it to validate its estimate.

The outline of the rest of the paper is as follows. In Sediibmeé establish notation conventions, and in Section
[M] we formulate the problem. In SectignlV, we present owaimtheorem, and discuss its implications. In Section

[Vl we provide the outline and the main ideas of the proof. Trepof the main theorem appears in Secfion VI.

Il. NOTATION CONVENTIONS

Throughout the paper, random variables will be denoted Ipjtadaletters, specific values they may take will
be denoted by the corresponding lower case letters, and dlhabets will be denoted by calligraphic letters.
Random vectors and their realizations will be denoted,eetdgely, by capital letters and the corresponding lower
case letters, both in the bold face font. Their alphabetsheilsuperscripted by their dimensions. For example, the
random vectoiX = (Xy,...,X,,) (n positive integer), may take a specific vector value- (z1,...,x,) in X",
the nth order Cartesian power of, which is the alphabet of each component of this vector. Rgrgiven vector
x, we will also denotex] = (x;,...,x;) for 1 <i < j <n, and use the shorthand = x/.

We will follow the standard notation conventions for proligp distributions, e.g.,Px(z) will denote the
probability of the letterr € X under the distributionPx. The arguments will be omitted when we address
the entire distribution, e.g.P’x. Similarly, generic distributions will be denoted &y, Q*, and in other forms,
subscripted by the relevant random variables/vectorsiitionings, e.gQx z, Q x|z. Whenever clear from context,

these subscripts will be omitted. An exceptional case véllithe ‘hat’ notation. For this notatioi), will denote

!Reference[[19] is a one page abstract, and contains only aiplésn of the problem. The results were not published, dutetailed
version of [19] can be found in [22]. However, we believe ttra achievability results provided in [22] are not actugdhpven. Specifically,
in the achievability proof, no system is actually constedgtand the claims about the expected number of guesses eavesdropper are
made onany given secrecy system. Obviously, there are, particuladg, lsecrecy systems, in which a single guess suffices to fiad th
message exactly.



the empirical distribution of a vector € X", i.e., the vector of relative frequenci@((:n) of each symbok € X
in x. The type class ok € X", which will be denoted by7,,(Q), is the set of all vectors’ with Q. = Q. The
set of all type classes of vectors of lengthover X’ will be denoted byP, (X), and the set of all possible types
over X will be denoted byP(X) = J22, P,(X). Similar notation for type classes will also be used for giene
typesQx € P(X), i.e., T,(Qx) will denote the set of all vectorg with Ox = Qx. In the same manner, the
empirical distribution of a pair of vectors, z) will be denoted byQx, and the joint type class will be denoted
by 7,,(Qxz). The joint type classes over the Cartesian product alphabetZ will be denoted byP, (X x Z),
andP(X x 2) £ 02, Pn(X x V). For a joint typeQxz € P(X x Z), T.(Qxz) will denote the set of all pairs
of vectors(x, z) with Qx, = Qxz. The conditional type class, namely, the &t : Q,., = Qy,}, will be denoted
by E(Q,dz, z), or more generallyl,,(Q x|z, z) for a generic empirical conditional probability distritan Q /.
The probability simplex forX’ will be denoted byQ(X), and the simplex for the alphabétx Z will be denoted
by Q(X x Z). Similar notations will be used for triplets of random véliss.

For two distributionsPx, Q x over the same finite alphabt, we will denote the variational distancg;( norm)
by

1Px — Qx[[2 ) |Px(z) — Qx(2)]. 1)

reX
When optimizing a function of a distributiof x over the entire probability simple@ ('), the explicit display of the
constraint will be omitted. For example, for a functig(@Q), we will write ming f(Q) instead ofmingeg(x) f(Q)-
The same will hold for optimization of a function of a distiibn @ x, over the probability simplex(X x Z),
and for similar optimizations.

The expectation operator w.r.t. a given distribution, ,e(@x, will be denoted byEq|[-] where, the subscript
Qxz will be omitted if the underlying probability distributiois clear from the context. In general, information-
theoretic quantities will be denoted by the standard nmtal?3], with subscript indicating the distribution of the
relevant random variables, e §o(X|Z2),1o(X; Z),1o(X; Z|W), under@ = Q x zw . For notational convenience,
the entropy ofX under@ will be denoted both byHg(X) and H(Qx ), depending on the context. The binary
entropy function will be denoted big(q) for 0 < ¢ < 1. The information divergence between two distributions,
e.g. Px andQx, will be denoted byD(Px||@x). In all information measures above, the distribution masodie
an empirical distribution, for exampléf (Q), D(Q«||Px) and so on.

We will denote the Hamming distance between two vecters, X" andz € X", by d,(x,z). The length of
a stringb will be denoted by|b|, the concatenation of strinds, b, ... will be denoted by(b;,b,,...), and the
empty string will be denoted by. We will denote the complement of a sdtby .A¢, and its interior byint(.A).
For a finite set4, we will denote its cardinality by.A|. The probability of the eventl will be denoted byP(A),
andI(A) will denote its indicator function.

For two positive sequence$q,} and {b,} the notationa, = b,, will mean asymptotic equivalence in the

exponential scale, that igim,, o = log(#=) = 0. Similarly, a,, < b, will mean limsup,,_,_ ~ log(#=) < 0, and



so on. The ceiling function will be denoted By|. The notation[t]. will stand for max{¢,0}. For two integers,
a,b, we denote by: mod b the modulo ofa w.r.t. b. Logarithms and exponents will be understood to be taken to
the binary base.

Throughout, we will ignore integer code length constraiftts the sake of simplicity, as they do not have
any effect on the results. For example, instead[%R| bits we will write nR bits. For a given finite ordered
set, A = {ay,...,a4}, we will denote byB|a;log|.A[| the binary representation of the index afin A, i.e.
Bla;log|Al] =i if a=a;, fori=1,...|A]|.

In general, the subscript ‘L’ will be used for quantitiesateld to the legitimate decoder, and the subscript ‘E’

will be used for eavesdropper-related quantities.

[1l. PROBLEM STATEMENT

Let the source vectoK = (X;,...,X,) be formed byn independent copies of a random variablec X,
where X is a finite alphabet, and(; is distributed according t®Px(z) = P(X = z). Let W and Z be finite
reproduction alphabets. In addition, Ig;}°, be a sequence of purely random bits (i.e. a Bernoulli proegtss
P(U; = 1) = 3), independent of the sourck.

A secure rate-distortion cod§, = (f,,, ¢, ) of block-lengthn is defined by &ey-lengtifunctionk,, : X" — Z,
which assigns a key length, (x) to everyx € X™, anencoderf, : X™ x {0,1}* — Y,, which generates
a cryptogramy = f,(x,u), whereu = (uy,...,uy, (x)), and wherey, is a finite alphabt and alegitimate
decodery,, : Y, x {0,1}* — W", which generates a reproductien= ¢, (y, u)ld. A sequence of code§S,, },>1,
indexed by the block-length, is denoted byS. The performance of the legitimate decoder is evaluated by a
distortion measurel, : X x W — R., where without loss of generality (w.l.o.g.), it is assuntadt for every
x € X, there existav € W such thatd, (z,w) = 0. Also, with a slight abuse of notation, the distortion betwa

andw is defined as the average,

1 n
dy (x, w) £ EZdL(aji,wi). )
i=1
We say thatS satisfies acompression constrainR_, D, , E, ), if the coding ratesatisfieg

1
lim sup —log|Vu|< Ry, @)

n—oo N

and for any given{Ui};'QE: {u;}2, the excess-distortion exponerst distortion levelD,, is larger thankE, for

the legitimate decoder, i®.

lim inf—%]P’ (X, on(fn(X, 1), 1)) > D] > E.. @)

n—oo
2This alphabet need not be th¢h order Cartesian power of some alphabet
3It is implicit in the definition of the encoder and decoderttbath are aware of the key-length, (x). Specifically, one can define an
inverse-key lengtifunctioni,, : V,, x {0,1}* — Z.., which reproduces the key-length at the decoder sideki,ex) = I, (y, {u:i }i21).

“This constraint can be weakened to a constraint on the nizedaéntropy of the cryptogram. See discussion in Se€fidn IV
®This constraint can be weakened to be only satisfied for aessxdistortion probability averaged oMV, } ;- . See discussion in Section

™



Note that for a zero excess-distortion expon&nt= 0", this requirement implies that aaverage-distortion
constrair‘H E[d (X,W)] < D, is also satisfied. Areavesdroppedecoder is a functiow,, : Y, — Z", where
z = o, (y) is theestimateof the eavesdropper. It is assumed that the eavesdroppéulhlasowledge of all system
properties: The source statistics, the encadgrk,,), and the legitimate decoder,. The set of all eavesdropper
decoders for a block-length is denoted byX,,. In what follows, we also consider genie-aided eavesdnoppe
decoders, which are aware of the type class of the sourcd,blec, ¢, : ), x P, — X™, and in this case, the
estimate of the decoder is= 5n(y,@x). The set of all genie-aided eavesdropper decoders of béoaith» is
denoted byX,,.

The performance of the eavesdropper is evaluated by a titistoneasurel: : X x Z — R, where again, it is
assumed that for every € X, there exists: € Z such thatdg(z, z) = 0. As before, the distortion betweenand

z is defined as

1 n
de(x,2) £ — Z} de (7, 7). (5)
For a givenDe > 0, the exiguous-distortion probabilityfor a given codeS,,, is denoted by
Pa(Sn; De) = max P[de(X,Z) < De]. (6)

The limit inferior exiguous-distortion exponerachieved for a sequence of codgsis defined as
1
£, (S,Dg) £ liminf —— log pg(Sy, De), @)
n—oo n

and thelimit superior exiguous-distortion exponmhievedﬁ’j(s, De), is defined analogously, with limit superior
replacing the limit inferior. While£; (S, De) < £ (S, De), it is guaranteed thaty(s,,, De)> exp [—n&; (S, De)]
for all sufficiently large block-lengths, while,(s,,De) = exp [-n&; (S, De)| may hold only for some sub-
sequence of block-lengths. Thug;, (S, Dg) is less sensitive to the choice of the block-length. For &y x <
P(X), letn; = nol, I = 1,2,..., be the sub-sequence of block-lengths such #Hat)x) is non-empty, where
ngo is the minimal such block-length. We define, with a slight swf notation, theconditional limit inferior
exiguous-distortion exponeas

£(5,De,@x) 2 liminf — —log max P[de(X,Z) < DX € T, (@x)]. ®)

—00 ny On €S,

andEj(S, Dg, @Qx) is defined analogously.

A1

The key rate ofx € A" is defined as,(x) = - |k,(x)|. A code is termed dixed key ratecode of rateRy

®Indeed, suppose thét (d. (X, ¢n(fn(X,u),u)) > D.) decays to zero for al{u;}$2, , but only sub-exponentially. Assuming 2
minyew maxgex do(z, w) < oo, for anyd > 0 and alln sufficiently large
E [d(X, W)] < De - P[dL(X, on(fn(X,u),u)) < Di] +di - PdL(X, @n(fn(X, u),u)) < Di]
S DL + EL -P [dL(X7 Lpn(f”(x7 u)7 u)) S DL]
< Dp +6.



if r,(x) = Rp for all x € X", otherwise, it is called aariable key ratecode and it has amaverage key rate

E[r,(X)]. We define theconditional key rateof Qx € P(X) as

R(S,Qx) 2 Jim Efry, (X)X € T, (Qx)] ©)

whenever the limit exist.

The rate-distortion function of a memoryless souéze, under the distortion measud(-, -) is denoted by

R.(Qx,D,) 2 min Io(X: W 10
H(Qx,Dy) Quwix Eo[dL(X,W)] <Dy o ) (10)

and, similarly, the rate-distortion function 6fx under the distortion measutg(-, -) is denoted byRe(Q x, D).

The main result of this paper, in Theoréim 1, is a singleldéttienula for the largest achievable exiguous-distortion

exponent for codes under a compression const(®ntD, , E,) and limited key rate.

IV. MAIN RESULT

The achievability part will be proved using fixed key rate esdbut in the converse part, we will allow also

variable key rate codes, that satisfy the following assionpt

1)

2)

3)

4)

Upper boundon the keyrate: As k,(x) = nlog|X| key-bits are always sufficient to perfectly encrypt the

source, even without distortion, it will be assumed thatx) < nlog |X| for all x € X™.

Uniform convergenceof the conditional key rate: We assume that for ever@x € P(X’), conditioned on

X € T.(Qx), the key rater,(X) converges in probability td?(S,Qy), and moreover, this convergence is
uniform overP(X). Namely, for anys > 0

o2 P (|7 (X) = R(S,Qx)| > 01X € Ta(@Qx)] —— 0. (11)

It is easy to prove that sinde< r,(X) < log|X’| with probability 1, then uniform convergence in the mean
(£1 norm) is also satisfied, and the limit ip] (9) exists, unifoymlver Q x € P(X).

Admissibleencoders:An encoderf,, will be termedadmissible if u # u’ implies thatf, (x,u) # f.(x,u’)

for all x € X™. We assume thaf,, is an admissible encoder.
In addition, we make two more assumptions. These assunsphigninessential, and are only made in order
to simplify the exposition of our results.

Upper boundon the legitimate excess-distortiomxponentit is well known [15, Theorem 9.5[,[24], that for

a givenD,, if
1
lim inf — log|V,,|> R, (12)
n—oo N

then there exist a sequence of codewhich satisfies the compression constrait, D, E, ) iff

E. < E(Px,D,R) 2 inf D Px), 13
L > L( X L L) Qx:Ri(Qx.DL)>R (QXH X) ( )



10

where E, (Px,D.,R,) is known asMarton’s source coding exponent will be assumed that the required
excess-distortion exponent at the legitimate decoderiglgtpositive and not larger than Marton’s exponent,
|e, O < E|_ S EL(PX7 DL7 RL)

5) Partial ordering betweendistortion measuresThe distortion measurée(-,-) will be termed morelenient

thand, (-,-), if for every w € W", there existz € Z™ such that
{xe X" :d(x,w) <D} C{xe€ X" :de(x,2) <D}, (14)

for everyD > 0. This corresponds to a worst case assumption regardingisertdon measure (and the
reproduction alphabeg) used by the eavesdropper - it is at least not more demandargttie distortion
measure used by the legitimate decoder. In addition, tlis puts, in some sense, the distortion levels at
the legitimate decoder and at the eavesdropper decodeheosaime scale. Therefore, it will be assumed
thatDe > D,, namely, the distortion level allowed by the eavesdroppéaiger than the one allowed by the

legitimate decoder. It is also easily verified that this agstion implies

Re(Qx,D) < Ri(Qx,D) (15)

for everyD > 0.
We denote by
EZ(De) £ rgin {D(Qx||Px) + Re(Qx,De)} (16)

the perfect-secrecy exponeidsing standard method of types, it can be shown that thiseégrtaximal exiguous-
distortion exponent that can be achieved when the eaveseirdyindly estimates the source, i.e. without using the
cryptogram. Alternatively, as evident from TheorEm 1, ikishe maximal exponent for unlimited key rate. We are

now ready to state our main result.

Theorem 1. Let o > 0 be given. Then, there exists a sequence of csdes fixed key rateR, which satisfies a

compression constrainiR, + ¢, D, , E,) and properties 1-5 above,
gd_ (Sv DE) > IHiIl{R, E:(DE)} -0 (17)

for all D > D,. Conversely, for every sequence of codesf average key rat&[r,(x)] < R for all n, which

satisfies a compression constraii®_, D, , E,) and properties 1-5 above,
E1(8,De) < min {R, B} (De)} (18)

for all Dz > D,.

Section[V] is devoted to the proof of Theorém 1, and here weudss its implications. The main implication

of this theorem is that the performance of lossy compresai@hencryption are essentially decoupled. Note that
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in Theorem[lL, the exiguous-distortion exponent of the edregper is determined solely by the key rate and
the distortion levelDe at the eavesdropper, and not by the compression constRinb, ,E,) (as long as the
assumptions hold). Specifically, it holds fOr = 0, which means that increasiriyy does not increasBe. In other
words, reducing the amount of information sent to the legite decoder cannot improve secrecy. Nonetheless, on
a positive note, as long &< E*(Dg), the maximal secrecy can be attained, for ev@ry> D, without affecting

the compression performance. In addition, note that in Téra@l, D has a special stature: A single sequence of
codessS is universalfor all D¢ > D,. This enables the construction of secure rate-distortmoes that are robust

to the choice oDg, which may be unspecified when designing the system.

As previously mentioned, the achievability part of Theofins proved using fixed rate codes. Since fixed rate
codes clearly satisfy the second assumption above, thenmbeixiguous-distortion exponent is fully characterized
for fixed key rate coding. Furthermore, the theorem shows \theable key rate codes, from the class of codes
which satisfy the above assumptions, offer no advantagefows key rate codes in terms of exiguous-distortion
exponent. This is in contrast to similar problems (variatale channel coding with feedback [25], [26], variabléera
Slepian-Wolf coding([2]7]), where the more lenient averaate- constraint allows to increase the error exponent. It
should be mentioned that while the class of variable key caties is restricted to satisfy uniform convergence in
probability of the conditional key rate (see the second mgdion above), the important class tyfpe dependent
variable key ratecodes satisfy this assumption. In a type dependent variablerate code, the key ratg,(x)
depends orx only via its type, namelyQ, = Qx implies r,(x) = r,(X) = p(Qx) for somekey rate function
p(+) : P(X) — R*. Due to the symmetry of source blocks from the same type ctash a key rate allocation is
indeed plausible, and also practically motivated due taiitsplicity. Such codes trivially satisfy the convergence
requirement, and so the converse part of Thedrem 1 is valid.

Theorem[]l essentially generalizés|[17, Theorem 1].CIn [#7}yas assumed that all alphabets are identical
X =W = Z, and thatD: = D_ = 0. Thus, the legitimate decoder need to perfectly reprodheesburce block,
and the eavesdropper performance is measured by its plibpabicorrect estimate, i.e.

pa(Sn, D) = max P(X = Z). (19)

on€X,

Note also that for this specific case, the perfect-secreppment for this case is given by

B2 (De) = min {D(@Qx||Px) + H(Qx)) (20)
= —logmax Px (). (21)
TeX
Indeed, even without using the cryptogram, the eavesdrag@gpechoose = (z*,. .., z*) wherez* = max,cx Px (),

and achievel (D).
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V. OUTLINE OF THE PROOF OFTHEOREM(I]

Since the proof of Theorefd 1 is considerably involved, tleistion is devoted to an informal description of the
structure and the main ideas in this proof. Hopefully, thi facilitate the reading of the formal proof, or at least
give the reader an idea of the main highlights.

To begin, we observe, in Subsectiobn VI-A, that the exigudissartion exponent remains unchanged even if
the eavesdropper is aware of the type of the source bipgkThis enables us to first, consider each type of the
source separately, and only then incorporate all types l&mepusly, both in the achievability and the converse
parts. Next, in Subsectidn VIIB, we provide a technique WwHarxilitates the construction of secure rate-distortion
codes, such that in view of the eavesdropper the cryptogemsymmetric. The idea is tocover a type class
T.(Qx) using an essentially minimal number of permutations of astirent setD,, C 7,(Qx). To wit, if

D,, = {x(0),...,x(|D,|-1)} then for any permutation over {1,...,n}, we define

7T(/Dn) £ {W(X(O)), te 77T(x(’Dn’_1))} ’ (22)

and then find a set of permutatiofs,, ,},~, such that

Kn

U ﬂ'n,t(Dn) = E(QX)a (23)
t=0

wherek,, is asymptotically close to its minimal value “g?f)'. For ordinary rate-distortion, such covering lemma
can be used to show the existence of a good rate-distortide (@g. instead of [15, Lemma 9.1]). Let us define,

the D-coverof w €¢ W™ as
D(w,Qx,D.) £ {xe€Th(Qx) :d(x,w) <D_}. (24)

If we setD,, = ©(w, Qx, D) and find permutationér,, .}, such that[(28) holds, then the ght2 {mn (W)}

is a rate-distortion code such that for evetye 7,(Qx) there existsw < C,, such thatd, (x,w) < D,. Such
permutations can be found for all types of the source, anthubie method of types, it can be verified that Marton’s
source coding exponent can be achieved by such a construgtio the construction of secure rate-distortion codes,
we will use permutations of more complicated sets to covertyipe.

The achievability part (lower bound) is proved in Subsetfid-C| using codes of fixed key ratB. Let us
first focus on a single typé&) . For the legitimate decoder, a source blocke 7, (Qx) is reproduced by some
w € Cyp £ {on(y,u) 1y € Vy,ue{0,1}"R}, which satisfiesd, (x,w) < D, unless no suclw exists. The
compression constraifR,, D , E, ) ensures that large-distortion reproduction occurs witkexgonentially decaying
probability. The eavesdropper, on the other hand, repeglusing only the cryptogram With a slight abuse of

notation of [24), let us define, for a given the D-coverCfC W™ as

D(Cn,Qx,D) 2 | D(w,Qx,Dy). (25)

weC,
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When the eavesdropper obserygst knows that the legitimate decoder will reprodueefrom the setC,(y) =
{on(y,u) : u e {0,1}"R} of size|C,(y)|= 2"R. Furthermore, conditioning on the cryptogramand the typed) x,

the source blockX is distributed uniformly over®(C,(y),@x,D.). The proof of achievability is divided into
three steps. In the first step (Lemia 7), we demonstrate tis¢erge of a good and secure rate-distortion code
conditioned on a single cryptogram, in the second step, wendxthis code for an entire type clags(Qx)
(Lemmal®), and in the third step, we extend it to all types.

In more detail, the first step of the proof (Lemmk 7) shows, bsaadom selection mechanism, that there
exists a set;: of size2"R such that wherX is distributed uniformly ove®(C, Qx,D,), the exiguous-distortion
probability of any eavesdropper is asymptotically not éarthan2—"min{R.e(@x.De)}  Geometrically, this implies
that theD-coversfor w € C,, are distant from each other, undg(-, -). Thus, a secure rate-distortion code satisfying
Cn(y) = C; for some cryptograny, will have a good conditional exiguous-distortion probigpigiven y.

In the second step, we define the code forsale 7,(Qx), using a symmetry argument. Observe that the
distortion measures of both the legitimate and eavesdroggeoders are invariant to permutations (dée (2) and
@)). Thus,D(7(C,),Rx,D.) = 7 (D(C,,Qx,D.)), and the exiguous-distortion probability for an eavesgesp
whenX is distributed uniformly overr (9(C,,, Qx,D.)) is the same as faD(C,,, Qx,D.). In Lemma®, we use a
minimal number of permutations (from Subsection VI-B) of@od D-cover®(C’, Qx,D,) to coverT,(Qx), and
then obtain a good secure rate-distortion code foffall) x). There is a certain subtlety in the proof of Lemma
[@. For an ordinary rate-distortion code, there might be ntbam a singlew < C,, such thatd, (x, w) < D,. From
the excess-distortion probability point of view, there s importance to which one of thedev} will reproduce
x. However, this might result in € C,, for which only a small portion oo (w, Qx,D,) is actually reproduced
by w (asx € ®(w,Qx,D.) might be reproduced by some’ € C,, which also satisfied, (x,w) < D,), which
might be harmful for secrecy purposes. Indeed, the sectieedrstortion code is constructed in Lemifna 9 with
the will that conditioned on any cryptogragn the source is distributed uniformly ov&x(C;, @Qx,D,). But, since
a source block must eventually be reproduced by a simgléhen conditioned on some of the cryptograms
the source block will be distributed on a smaller set tEXc, Qx,D,). For such cryptograms, the conditional
exiguous-distortion probability of the eavesdropper miga large. Lemmal9 shows that if the efficient covering
described above is utilized, then the total effect of suatneyis negligible.

Until this stage, we have constructed a code TgfQ x) with appropriate conditional exiguous-distortion ex-
ponent. As we shall see, in the construction of Lenfiina 7 andnh&i®, the convergence of probabilities to their
asymptotic exponent is not necessarily uniform (cf. Rerf@rkn the third step of the achievability proof, we prove
that uniform convergence is possible, using an elaboratedtauction, built from the previous one. The idea is to
consider a dense grid on the simpleX.X’), and construct a secure rate-distortion code, as in Lemnfar @ach
of the types in the grid. Since the of number of types in thel ggifinite, then uniform convergence is assured
for types in the grid. If the type of the source block belongste grid, then one of the constructed codes is

used, according to its type. Otherwise, the source blockbeilfirst modified, such that the modified source block
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does have type within the grid, which is not very far from tlgpe of the original source block. The modified
source block will then be encoded using one of the codes ofgtlie and thus will have both low legitimate
excess-distortion probability, and large exiguous-di&io probability for the eavesdropper. It will be shown ttha
the overheads required for the legitimate decoder to rem®dhe original source block, rather than the modified
source block are negligible.

In Subsectiof_ VI-D, we prove the converse part in two stexaR that in general, for any given tyfgy €
P(X), we have defined the average r&gS, Qx), but we allow each source bloske 7,(Qx) to have a different
key rater,(x) € [0,log,|X|]. In addition, for a code satisfying the compression coistrdR,, D, , E, ), and type
Qx such thatD(Qx||Px) < E_, the legitimate excess-distortion probability must detmyero exponentially as
2-n[EL-D(@x|IPx)] byt does not need to be strictly zero. In the first step of trefpof the converse, we prove
a lemma that shows that the optimal limit superior exigudissartion exponent is not deteriorated, if we restrict
r,(x) to be a constant withir7,,(Qx), which is less tham?(S,Qx) + §, and also restrict the legitimate excess-
distortion probability to be exactly zero. It will be easier prove a converse for codes with such properties, as
will be done in the second step of the proof. In the second stepassume the structure of the code from the first
step, and evaluate the performance of an eavesdropper wHimbts one of the following two simple strategies:
(1) It can guess the secret key bits, and then decode usisg thies just like the legitimate decoder. (2) It can
ignore the cryptogram altogether and choose an estimateZ”, based on only). Clearly, in the first case, the
probability of success i8~"R, and it is not difficult to show that the exiguous-distortiprobability for the second
strategy is asymptoticallg~"£ (Pe)  This implies the upper boun@{18). We remark that the asgtigpoptimality
of these two simple strategies (sometimes callegrattackandblind guessingrespectively) can also be found to
some extent in related problems [14], [21],][22].

We conclude the outline of the proof with the following conmtse

« Awarenesof key-length:Since the number of possible key-lengthsnitog|X

, it can be compressed and

fully encrypted using negligible coding rate and key rate;lldbg(nlog|)(|) bits, and it can be assumed
that the exiguous-distortion exponent is not deterioratdtie eavesdropper is aware of the key-length (as
in Subsectior_VI-A). Thus, in the converse proof, we couldehdound the exiguous-distortion exponent
conditioned on both the type and the key-length, and themageeover them. The main obstacle in this
approach is proving the second property (full type coveériagsured in LemmBa_13. To show this property
using the methods of Lemniall3, would require showing thatstifesets of the type classes of fixed key-
length, i.e.,7,(Qx,m) £ Th(Qx) N {x: k,(x) = m} for some0 < m < nlog|X|, can cover a type class
by essentially a minimal number of permutations, as in Ler@dh{&ubsectiof VI-B). However, in turn, the
proof of Lemmal# is based on the fact tHhf(Qx) is invariant to permutations, which may not hold for
Tu(@x,m).

« Full type covering:Let Qx € P(X) be given such thaD(Qx||Px) < E.. The method of types and the

expression[(I3) reveal that to satisfy the compressiont@ins(R,, D, E, ), the following condition should
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hold for any given{u;}:°,
P [do(X, on(fn(X, 1), 1)) > D [X € T, (Qx)] = 27 "E-P@xlIPx)] (26)

For ordinary rate-distortion codes, it is well knfﬂvthat if for a givene € (0,1) and for all n sufficiently
large

Pld(X,W)>D]J<1—c¢ (27)
then there exists a rate-distortion code with almost theesete, such that

Thus, to ensure an exponent constrdtntfor ordinary rate-distortion codebook, the type classesypés
which are ‘close’ enough t@x (in the divergence sense) should be almost covered by thedegtion set
(28), but in fact, can béully covered by the reproduction sét{28). Then, the minimal radgiired to satisfy
(29) is the same as the minimal rate to sati§fyl (28), and timepcession rate cannot be decreased due to the
softer requirement in(26). By contrast, in the presencehefdavesdropper, it might happen that the softer
requirement in[(26) can lead to better exiguous-distorégponent: Even if a type class can be fully covered
using the available coding rate, perhaps the exiguousttimt exponent can be improved if some of the
source blocks are reproduced with distortion larger thgnbut this occurs with sufficiently small probability,
as in [26). Lemm&13 shows that thisrist the case.

« Compressiorconstraintconditions: The conditions required to satisfy the coding rate constr@), and the

excess-distortion exponent constraint for the legitintggeoder((4) can be weakened without affecting Theorem
(. First, [3) can be weakened to

1
limsup —H(Y) <R, (29)

n—oo N

where H(Y") is the entropy of the cryptogram. Second, the excess-timtoexponent can be weakened to

apply to the expectation constraint over the key-Bit5}:°,, rather than for every givefu;}°,, i.e.

lim inf—%IP (X, on(fo(X,U),U)) > D] > E.. (30)

n—o0

Obviously, since the achievability part is proved using shenger conditiond (3) andl(4), it also holds under
the weaker condition$ (29) and (30). For the converse, matein Lemmd_IB and in the proof of the converse,
the coding rate is essentially not constrained. The exdissgrtion exponent constraint is used in the converse
proof only in eq. [[25b), which follows directly from the weakcondition [3D). Therefore, the achievability
part holds under the strong conditions, and the converdehpéds under the weak conditions.

« Legitimateexcess-distortioexponentAs is evident from Theorefd 1, there is no improvement in thiguous-

"This can also be easily verified using Lemia 4.
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distortion exponent even E,_ vanishes (to wit, the distortioD, is achieved only on the average). Thus, the
excess-distortion exponent can be set to its maximal valué_ oPx,D,, R, ), as defined in[{13).

« Dependencyn the sourcedistribution: From the proof of the achievability, it is evident that givél, the

operation of the encoder, the legitimate decoder and theseawvpper decoder depend Bg only on whether
R, > RL(QX, D.) or not (equivalently, from the previous comment, wheth¥) x||Px) < E_ or not). Since
it can be assumed th#) is known to all parties, then prior knowledge of the sourcgtritiution Py is

not required to either party. Hence, the secure rate-distocodes constructed atmiversal Of course, the

exponents achieved depend 6% .

VI. PROOF OF THETHEOREM[I]

We remind the reader theeverse Markov inequalit§28, Section 9.3, p. 159], which is a useful tool for the

proof.

Lemma 2. Let X be a positive random variable which satisfiB6X < aE[X]) = 1 for somea > 1. Then, for

anyp <1,
1-p

P(X > BE[X]) > (31)

Q

E.

The proof is based on the ordinary Markov inequality for tlsifive random variablél = aE[X] — X.

A. Type Awareness of the Eavesdropper

Consider the following simple observation, which simpéfiter derivations: The largest achievable exiguous-
distortion exponent is not deteriorated if the eavesdroppaware of the type of the source block, in addition to

the cryptogram.

Proposition 3. For any Qx € P(X)

(S, De. Q) = limnf {—1 max log P[d(X, Z) < DX € mQX)]} . (32)

Ng,e5,

An analogous result holds fcﬁj (S,De, Qx).

Proof: SinceX,, C 3,

5(;(5, De, Qx) > lim inf {—l log max P[de(X,Z) < De|X € E(QX)]} . (33)

=00 n 0,€5,

To show equality, le5* € 3,} be the sequence of decoders which achieve the maximum irighiehand side
of (33). Let us define a sequence of decoders € ¥,,} as follows. Firsto,, produces a random guegse P,

of the type of the source, with the uniform distribution oy, and second, it decodes

on(y) = 7,(y, Q). (34)
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Given Qx € P, the resulting conditional exiguous-distortion probeypiis given by

Plde(X,00(Y)) < DelX € Tn(Qx)] (35)

> P {dE(XﬁZ(Y, Q)) < DefQ = Qx, X € E(QX)] P [Q = Q«|X € T0(Qx) (36)

— P [dL(X,5:(Y,0x0) < DelX € Q)] 750 @7)

and as|P,|< (n + 1)I¥1, equality is achieved ir(33). |

B. Covering a Type Class via Permutations

In this subsection, we discuss the possibility to cover @& tglass by means of permutations of a constituent
subset. The fact that the distortion measure of the eavpgdras invariant to permutations of both arguments hints
on the usefulness of such a covering in the construction oflgecure rate-distortion codes.

Given a typeQx € P(X) andé > 0, the method of types implies that far> n (0, | X|)

Now, consider the subs&,, C 7,,(Qx), where the elements @b, are distinct. We say that a set of permutations
{Tn i}, coverT,(Qx) if
U 7T'n,t(,Z)n) = %(QX)? (39)

=0
wherem, +(D,,) means that the same permutatioy;(-) operates on akk € D,,, as defined in[(22). Let; be the

minimal number of permutations @,, required to covef7,(Qx). By a simple counting argument, we must have

2 Dl (40)

The following lemma guaranteed the existence of a cover lwhgsentially achieves the lower bound.

Lemma 4 ([29, Section 6, Covering Lemma 2]for everyD,, C T,(Qx), Qx € Ppn(X)

K < % ogl T (Qx)- (41)

The main application of this lemma is for a sequence of §Bts}>° ;. Let n; be the sequence of block-lengths

such that7,, (Qx) is non-empty, and leD,,, C 7,,(Qx) such that
Dy, |= 27K, (42)

Then, Lemmd}4 implies that for evefy> 0 andl > Iy(4,|X|) both

omlH(Qx)~]

n; z 2nl(|~?+5) (43)
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from (40) and

2an(QX)
Kpy, < mnl [H(Qx) + 6] (45)
< om [H(Qx)—ﬁ-i-%] (46)

from Lemmd#. Thus, the cover is asymptotically efficieng #ris implies that the permuted sets cannot overlap too
much. To further explore this property, Iét,, t}t be the permutations constructed in Lemma 4 for block-length

n;, and define thexclusive permutations sets

t—1
G t 2 an,t(Dm)\{ U an,S(Dm)} : (47)
s=0

Note thatT,, (Qx) is a disjoint uniong,, ;, and for anyR < R, consider the union of exclusive permutations sets

of small cardinality, namely
HRE U Gue (48)

t:|Gn, +|<27R
A simple aspect of the asymptotic efficiency of the coversthiat under the uniform distribution on the type class,

the probability that the source block belongs to a smallesiee permutations set is also small.
Lemma 5. For anyR < R

P[X € H(R)X € T,(Qx)] < 27 "RR) (49)

Proof: Let an arbitraryd > 0 be given. For alln sufficiently large, if7,,(Qx) is empty then the statement of

the lemma is satisfied by convention. Otherwise,

nR
P[X € H(R)|X € Tn(Qx)] < ‘7(5 ; (50)
[ (Qx)—R+24] . "R
<? (G x) 3] (51)
_ 2n(ﬁ—|~?+36). (52)
|

C. Proof of Achievability Part of Theorep 1
We follow the three steps outlined in Sectioh V. In the firgtpsof the proof, we focus on a single cryptogram,
Cn(y) = {¢n(y,u) : u € {0,1}"R}, which we generically denote by the €&t = {w(0),..., w(2"R—1)} c W".

We begin with some definitions and simple properties. FovargiD,, D¢) andQx € P,(X), let X be uniformly
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distributed over®(C,,Qx,D,) (defined in [(25)). The exiguous-distortion probability e setC,, is defined e&

pa(Cn, Qx, Dy, De) & max P | de(X, 2) < De| . (53)

We have the following simple properties fpg(C,,, @ x,D., Dg).

Proposition 6. LetC,, C W™ and Qx € P,,(X) be given. Then:

1) For every permutationr

pd(CTw QXa DL> DE) = pd(ﬂ-(cn)v QXa DL> DE)7 (54)

wheren(C,,) is as defined in(22).
2) LetX be uniformly distributed oveP,, C ®(C,,, Qx,D.). Then,

X anv ,D
fé%}ﬁP[de(X,z)gDE]§| ( |Z§2n)|< D

) pd(c7h QX; DL7 DE) (55)

Proof:
1) Letz* be the maximizer of(83). Sineg (x, w) = d, (7(x), 7(w)) then® (7 (C,), @x,D.) = 7 (D(Cpn, Qx,D.)).
Since alsade(x,2z) = de(m(x), 7(z)) then

Pa[(Cn), Qx. D, De] = max P | de(w(X), ) < De| (56)
> P [dE(w(X),ﬂ(z*)) < DE} (57)
= pd(CTH QX7 DL7 DE)7 (58)

and the reverse inequality can be obtained similarly, bysictering the inverse permutatior .

2) For everyz € Z™

 [RED,: de(X,7) < D

P [de(X,2) < De] = D, (59)
< IX € @(Cn,QX,||13)L)|: de(X,z) < D] (60)
_ ’:D(CnaQX7 DL)‘ X ’i € :D(CN7QX7 DL) : dE(iaz) S DE‘ (61)
D 1D(Cp, Qx,Dy))|
ny 7DL
L P ,g*"‘ ) pu(Co. @x. D, Do), 62)
|

The next lemma is the first step in the proof, in which we prdwe ¢xistence of a good s€f by a random

selection.

Lemma 7. Letd > 0 and Qx € P(X) be given, and lek; be the sequence of block-lengths such thatQ x)

8Wwith a slight abuse of notation, we also use here the notatign.
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is non-empty. There exists a sequence of Gets {C; } of size|C; |= 2™R such that for alll sufficiently large

1
n_l log’:D(C:LﬂQXJ D> H(@Q@x) +R— R.(Qx,Dy.) — 0, (63)
and
~ L log max P [dE(X,z) < DE] > min {R, Re(Qx, De)} — 6, (64)
ng zEZ™

for all D > D, whereX is distributed uniformly ove®(C;,Qx,D.) .

Proof: Let n be given such tha¥,(Qx) is non-empty. Also, leDe be given, choose an@w < P,(W),
and consider an ensemble of randomly chosen Ggtsvhere each member is selected independently at random,

uniformly within a type clas¥,,(Qw). By definition, for any giverc,

maxzezn [{x € D(Cp,Qx,D.) : de(x,2) < De}
|D(Cp,Qx,Dy)| '

It should be noticed, that unlike the situation in standamdom coding bounds, here the denominator_of (65)

pd(cna QX; DLa DE) =

(65)

is also a random variable. Nonetheless, we will show thatktlesists a sef,, such that both the numerator and
denominator of[(65) are close to their expected values. Tinbéet us analyze the expected value of the size of
the D-cover in the denominator df (65). We first consider thee®R < R (Qx,D,). For a givenC,, and Q xw,

define thetype class enumerator

N(Qxwlx) = HW € Cn: Qxw = QXW}

; (66)

and let

Ey2 H(Qx)+R—R.(Qx,D,). (67)

Note that in the last equation thé-marginal {# -marginal) of(@ is constrained to the given tyfgex (respectively,

Qw). For brevity, here and throughout the sequel, such cansravill be omitted. Then,

E[D(Cn,Qx,D)|=E | Y  I{3weCp:d(x,w)< DL}] (68)
:XGﬂ(QX)

| v ﬂ{ U {N<@wa>>1}}] @
) Qxw:Eq]|

| x€T, (Qx du (X, W)]<D.
=E| > > I{N(Qxw|x) > 1}] (70)
| x€Tn (Qx) QxwEq[dL (X,W)]<DL
= Y > P{N(Qxw|x) > 1} (71)
x€Tn(Qx) Qxw:EqldL (X,W)]<DL
2 > P{N(Qxwlx) > 1} (72)

x€Tn(@x) Qxw:EqldL (X,W)]<Di,Io(X;W)>R
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= > 3 on[R—Io(X;W))] (73)
-

(@x) Qxw:Eq[dL(X,W)]<Dy,Io(X;W)>R
(X

= onHo(X) max on[R—Iq(X;W)] (74)
Qxw EPH (X XW):Eq[dL (X,W)]<Dy,Io(X;W)>R
(©) .
s | Ho(X)+R— Io(X; W 75
eXp{n |: Q( )+ QXWGpn(XXVg)ling[dL(Xvw)]SDL Q( 7 )]} ( )
@) gnPo_ (76)

where in(a) and (c¢) we have used the assumpti@n< R, (Qx,D.), and so, the sefQxw : Eg [d (X, W)] <
Dy, Io(X; W) < R} is empty. In(b), we have used the fact tha¥(Qxw|x) is a binomial random variable
pertaining to2"R trials and probability of success of exponential ordep [—nlg(X;W)]. Passagéd) follows
from the fact thatP(X' x W) is dense inQ(X x W) and Io(X; W) is continuous. In addition, using the union
bound, with probabilityl,

D€, Qx; DIl = 3 [{x € Tal@x) : du(x,w) < D} (77)
wel,

= ' Ho(X|W 78

B P |:n QXW6P7l(XXV\H}§%};[dL(X7W)]SDL Q( | ):| ( )

= onbo, (79)
Next, we upper bound the numerator bf](65). For a giggrandz € 2™, define now the type class enumerator

N(Qzwlz) = HW €Cn: Quw = QZWH : (80)
Then,

Hx € D(Ch,Qx,Dy) : de(x,2) < D¢} (81)

=| |J {x € Ta(@x) : de(x,2) < De,di(x,w) < D} (82)

wel,

U U U {x € T.(Qx1zw,2, W)} (83)

Qzw WETn(Qw|z,2)NCh Qx| zw Eq[de(X,Z)]<Dg,Eq[dL (X,W)]<D.

Z Z Z {x € Tn(@Qx 2w 2, W) }| (84)

Qzw weT,(Qw)z,2)NCrn Qx|zw Eq[de(X,Z)]<Dg,EqldL (X,W)]<DL

- Z Z Z 2nHQ(X\ZW) (85)

QZW WG'TTL(QW‘Z,Z)I'_‘ICTL QX‘ZW:EQ [dE(X,Z)]SDE,EQ [d|_ (X,W)}SDL

= Z Z max orHa(X|ZW) (86)

Qo WETo (O 2)Co Qxzw Eqlde(X,Z)]<Dg,EqldL (X,W)] <DL

Qz: (QZW|Z)QX‘ZW:]EQ[dE(X’Z%aS;EQ[dL(X,W)]SDL o

glza‘i/(QX\ZWiEQ[dE(Xinnﬁaé{EvEQ[dL(XvW)}SDL (QZW|Z) ( )

INE
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= Z N(Qzw|z)2He(XI1ZW) (89)
QxzwEq[de(X,2)]<Dg,Eq[dL(X,W)]<DL

where (a) is the union bound, and in all the above equatiadps.ziw € P, (X x Z x W). Let
J(Di,De) £ {Qxzw € Pp(X x Z2x W) :Eq[de(X, Z)] < De,Eq [d (X, W)] <D, }. (90)

Taking expectation, and using the fact tH@,(X x Z x W)|< (n + 1)I*IZIV e, increases wittm only

polynomially,
E | e |(x € D€, QD) : efx.2) < De} 1)
éE m%x Z N(QZWZ)QnHQ(XZW)] (92)
_ZG Qxzw€J(DL,Dg)
=E | lim Z Z N(Qzw|z)2"HeXI1ZW) (93)
oo z€Z" \QxzweJ(DL,DE)
DI [T NM@awlmteron (o9
Ao z€Z"™ \Qxzw€J(DL,Dg)
Ho (X|ZW) ’
= lim E max )2nie 95
B—00 zeZ" szwEJ(DLDE) N(Qzwlz) %)
= lim E max N(Qzwl|z) BonBHqe(X|ZW) (96)
B—o00 ZEZ” QRxzw€J(DL,Dg)
= lim E Z Z N(Qzw|z)P2rPHa(XIZWV) (©7)
Ao z€EZ" Qxzw €T (DL,Dg)

< lim (Z > E [N(QZW|Z) ] Q”BHQ(XZW)) (98)

oo zEZ" Qxzw €T (DL,DE)
— lim <Z Z E [N(QZW|Z)B} 2 PHaXIZW)
oo z2€Z" Qxzw€J (DL,Dg): 1o (Z;W)<R
1
Py 3 E[N(Qaw )] QnBHQ(XZm) (99)
zZEZ™ QXZWEJ(DLyDE):IQ(Z;W)>R
(2 lim (Z Z 2TLB[R—IQ(Z;W)]2”6HQ(X‘ZW)
oo ZE€EZ" Qy zweJ (DL,De):Qz=Q.,10(Z;W)<R
s
s 5 Qn[R_zQ<z;w>]2nﬁHQ(XZW>> (100)

2E2" Qx zw €T (DL,DE):Qz=Qu, 1o (Z;W)>R
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= lim Z onHq(Z) Z onBIR—Io(Z;W)]gnBHq (X|ZW)
B—00
Qz wa‘zl]EQ[dE(X,Z)}SDEJEQ[dL(X,W)]SDL7IQ(Z;W)SR
1/ﬁ
+ Z onHtq(Z) Z 2n[R—1Q(Z;W)]2nﬁHQ(X|ZW)> (101)
QZ wa‘ZZ]EQ[dE(X,Z)}SDEJEQ[dL(X,W)}SDL7IQ(Z;W)>R

. e gnHa () gnilR=Ta(Z:W)|gnfHa (X|ZW)
B—oo \Q@xzw €T (DL,Dg):Io(Z;W)<R

X
/g
max onHq(Z)gn[R—1q(Z;W)]onSHe(X|ZW) (202)
Qxzw€J (DL,De):q(Z;W)>R
- (maX { max gnHa (2)gnBIR—Io(Z:W)]gnBHo(X|ZW)
B—ro0 Qxzw€eJ(DL,De):Ig(Z;W)<R

s
max onHq(Z)gn[R—Iq(Z;W)|onBSHo(X|ZW) (103)
QRxzw€J(DL,Dg):Io(Z;W)>R

= lim max

{ max o5 Ha(Z)gnR—I(Z;W)]gnHa (X[ ZW)
f—roo QxzweJ(DL,De):Iq(Z;W)<R ’

max 2”%HQ(Z)2né[R_IQ(Z;W)]2HHQ(X|ZW) (104)
Qxzw€J(DL,Dg):Io(Z;W)>R

_ max{ o g [R-Lo(ZW)|gnHa (X|2W).
Qxzw€J(DL,Dg): 1o (Z;W)<R

max oo (X|ZW) (105)
Qxzw€J(DL,Dg): 1o (Z;W)>R

where (a) is by the Lebesgue monotone convergence theorem [30, Tinebie28] and the monotonicity of the
argument inside the expectation operatojrand(b) is by the Jensen inequality. [la), we have used the analysis
in [31, Subsection 6.3] of the moments &(Q zy|z), which is a binomial random variable witt'R trials and
probability of success of the exponential ordereab [—nlg(Z;W)]. Also, note that in all the above equations,
Qxzw € Pn(X x Z x W) but sinceP(X x Z x W) is dense inQ(X x Z x W) and the arguments of the
maximization are continuous functions @fy zy, we can change the maximization to be oY x Z x W).
Thus,

E m%X {x € ©(Cp,Qx,D.) : de(x,2z) < De} § onE1 (De) (106)
Y ASYAL
where
Ei(Dg) & Ho(X|ZW R—Io(Z:W . 107
1(Pe) szw:EQ[de(x,Z)}I&KEQ[dL(X,W)JSDL{ QX|ZW) +[R = Io(Z: W), } (107)

Now, letd > 0 be given. There exists(Qx) such that for alln > n¢(Qx), we have from[{76)
E (19(Ca, Qx, D)) 2 220072, (108)

and from [79)
9(C, Qx, Dy )| < 27 EoF2), (109)
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Define, for the given ensemble of the random sets

Ao 2 {0 19(C, @, D> 2 S E[D(C, Qx. DU (110)

The reverse Markov lemma (Lemrh& 2) implies

127"
P(Ao) > PP > 2720 (111)

where the second inequality is satisfied forsalb n{, for somenj, > ny(Qx).

Now, note that we need to prove that a single&Gesatisfies[(64) for alDe > D,. To show this, we consider a

guantization of the possible values Df. To this end, let an arbitrary > 0 be given, such thaf = % is
integer, and find; sufficiently large such that
RE(QXaBE) < Dlgigloo Re(Qx, De) + . (112)

Let us quantize the intervdlRe(Qx,De), Re(Qx,D.)] to values{R(0),...,R(J)}, whereR(j) = jn and let
De(j) = Rz'(Qx,R(j)), where Rz1(Qx,R) is the inverse function ofR:(Qx,D¢). By (I08), there exists
n1(j, @x) such that for alln > nq(j, Qx)

E [m%x {x € D(Cn, Qx, D) : de(x,2) < De(j)}|| < 2°FPH, (113)
zezZ™
where the expectation is over the random ensemble ofCsetBy defining
Ay 2 {5 max x € DG, QDL s delx.) < De()}| < 2 EC 07 (114)
zezZ"m

the ordinary Markov lemma implies

E [max,ez- [{x € D(Cp,Qx,Dy) : de(x,2) < De(j)}]
9n[E1(De(5))+44]

>1—2799, (116)

P(Ay) 21— (115)

Defining A; £ ﬂjzo Ay; we get

J
P(A) =P (ﬂ Alj) (117)
A

j=0

=1-P (LJJ ffj) (118)
j=0

21-21@( ) (119)

>1-— jJ . 273n9, (120)

°Note that if de(z,z) < oo for all z € X, 2 € Z, thenlimpg .o Re(Qx, De) = 0.
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Thus, sinceJ does not depend on, there exists)| > maxo<j<;ni(j, @x) such that for alln > n}

P(AgNAp) =1—P (AU AS) (121)
>1-P(Af) —P(A]) (122)
>1—(1-2720)— j2 "% (123)
=70 _ J.973n0 (124)
> 0. (125)

Therefore, for all sufficiently large > max{n(,n}, there exist,, € 4y N {ﬂ;-]:o Aij}, ie., C, which satisfies
both

D(Cp, Qx,D)|> 273 E[|D(Cn, Qx, D] (126)
and
max [ {x € D(Ca, Qx, D1) : de(x.2) < De(j)}| < 202" (Pl (127)
zEZ"
forall 0 < j < .J. Thus we get
24n62nE1(DE(j))

Pd [Cn, @x, Dy, De(y)] < Py 9518 on[E1(De(j))~Eo] (128)

If we now defineE (D) £ F;(De) — Ey, then for any giverQy € P,(W)

1

n—oo

Now, choose leQy be thelV-marginal of Q xy which achieves? (Qx,D,). Then,
E(Dg) > min
Qxzw Eqlde(X,Z)]|<Dg,Eq[dL (X, W)]EqldL (X,W)]<Dy,Iq(Z;W)

- min Io(X:W 130
wai]EQ[dL(X,W)}SDL Q( ) ( )

SR{IQ(Z; W)+ Io(X;Z,W)}

—

a

=

> min Io(Z; W)+ 1o(X; Z, W) — Ip(X; W 131
B szw:EQ[dE(X,Z)}SDE,EQ[dL(X,W)}gDL,zQ(z;W)gR{ al )+ 1ol ) — 1ol )} (131)
= min Io(Z,W) + Ip(X; Z|W 132
= min Io(X,W;2) (133)
Qxzw Eqlde(X,Z)]<Dg,Eq[dL (X,W)]<Dy,Iq(Z;W)<R

(®)

> min Io(X; Z 134
T Qxzw:Eolde(X,Z)]<De Q( ) ( )
= RE(QX7 DE) (135)

where(a) is by restricting@ x to be the same in both minimizations 6f (130), gadlis by the data processing
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property of the mutual information. Similarly,

B(De) 2 R+ min Io(X; 2, W)
QxzwEq[de(X,2)]<Dg,Eq[d (X,W)]<Dy,Iq(Z;W)>R
Qxw:Eq[dL (X,W)]<Dr ol ) (136)
>R+ min Io(X; Z|W) (137)
QxzwEq[de(X,Z)]<Dg,Eq[d (X,W)]<Dy,Iq(Z;W)>R
2 R. (138)

by restricting@ xw to be the same in both minimizations 6f (136).

Therefore, [(1209),[{135) and_(1136) imply that
1
linrr_ligf - log pg [Cr, Q@ x, Dy, De(j)] > min { Re(Qx, De(j)), R} (139)

for all 0 < j < J. By takingn | 0, continuity of Re(Qx, De) in De provides the lower bound(64) for dlle > D, .
Then, [63) is obtained front_(1P6) arid (108).

To complete the proof of the lemma, we consider the cade BfR, (Qx,D,). Denote bng’g‘),V a sequence of
distributions such tha@&?&v — Q% asn — oo, whereQ%;, achieves the rate-distortion functid® (Qx, D, ).
For a givenC,, let C, be a subset formed by the first/(@x.DL) members ofC,. The same analysis as before
shows that when randomly drawing a ggtuniformly over thel’/-marginal Ong?t)/v' there exists a sequence of
sets{C,} such that

D(Cp, Qx,Dy)[> 27F00) > onlH(Qx)=0], (140)

Then, forC,,

maxzeczn [{x € D(Cr,Qx,Dy) : de(x,2) < De}

Cn,Qx,D.,Dg) = 141
Pa{Cn,@x, D De) ©(Cr, Qx, Dy (4
< Maxgezn {x € ’D(CTQX, D) : de(x,2z) < D} (142)
N |©(Cn7QX7DL)|
< maxgze zn ’{X S 7:TL(QX) : dE(Xaz) S DE}‘ (143)
B |D(Cr, Qx,Dy)
max,czn [{X € Tp(Qx) : de(x,2) < De}|
< (@)~ (144)
“c Qx|z:Eq[de(X,Z)]|<De
< 27 nH(@x)=0] yyax Z onHq(X|2) (146)
@z Qx| 2:Eolde(X,2)]<De
= exp <—n [HQ(X) - - sz:EQ%c?E&(L?( A HQ(X|Z)}> (147)
< 9—n[Re(Qx,De)—d] (148)

and the proof of the lemma is complete, @ss arbitrary. ]
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Remark8. As mentioned in SectionlV, to show achievability of an exigstalistortion exponent using the method
of types,uniform convergence of—% log pa(C}, Qx,D., De) to the exponeninin {R, Re(Qx, De)} is required (cf.
eq. [23B)). However, the proof of Lemnid 7 is not sufficient bmw this. Specifically, the convergence in the

asymptotic analysis of the type class enumerators, i.erelagions
P{N(Qxw|x) > 1} = 2nR-lo(X:W)] (149)

used in [(7B) and
gn[R—Icz(Z;W)L Io(Z; W) <R
E[N(Qzwln)?] = (150)
MBR=Io(ZWIL - [5(Z; W) > R
used in [(I0OD), are not uniform i€ x.
We continue with the second step of the proof, which consdréirom the seC; a secure rate-distortion code
for all x € 7,,(Qx). The proof of the next lemma is based on the permutationsiged described in Subsection

VI-BI

Lemma 9. For any given@Qx € P(X) Nint Q(X) andé > 0, there exists a sequence of secure rate-distortion

codesS* of fixed key rateR such that

1
nh_)nolo - log|Vn|< RL(Qx,Dy) + 9, (151)
and,
Pld (X, ¢, (fa(X, 1)) = DX € To(@x)] =0 (152)
for everyu € {0,1}"R, as well as
£, (8", De, Qx) > min {R, Re(Qx,De)} — 6 (153)

for all D¢ > D,.

Proof: Assume that) x € [int Q(X')] NPy, (X) for some minimal, € N. Since the statements in the lemma
are only about conditional events given the type, it is clear that the secure rate-distortion codes contdic
S, may only encodex € 7,(Qx), and so only block-lengths mod ny = 0 should be considered, as otherwise
Ta(Qx) is empty.

Let C* = {C} be a sequence of sets of si2&® constructed according to Lemrha 7. So for albufficiently
large
pa(Cl, Qx, Dy, Dg) < 27 "min{RAe(Qx.De)}—o], (154)

and
D(C;, Qx,Dy)| > 2479, (155)
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where

A£min{H(Qx)+R - R (Qx,D.), H(Qx)}- (156)

Now, let {wn,t}fgo be a set of permutations constructed according to Lefmach, that

Kn

U Wn,t(g(c;kw Qx, DL)) = E(QX)a (157)
t=0

where ,, < 2nH(@x)=A+20)] " and let {G,,} be the resulting exclusive permutation sets, as defined ). (4
We construct the following secure rate-distortion cod&s= (f, ") of fixed key rateR, which only encode
x € To(Qx). We utilize the covering of the type class,(Qx) by permutations of a D-cover of the s€t
to encode the source block in the following way. Assume that ¢élements o are arbitrarily ordered, i.e.

C: = {w(0),...,w(2"R —1)}. For a givenx € 7,(Qx), let
t*(x) £ min {t : x € Gn4}, (158)

and

i*(x) £ min{i : w(i) € Gy, -(x), du(x, w(i)) < D} (159)

The encoding is a concatenation of the following two parts f(x,u) = (ty,1y):
« A description of the permutation set, definedtas® B[t*(x); n(H(Qx) — A + 25)].
« An encrypted description of the distortion covering codeWalefined as, = B[i*(x); nR] & u.

It is easily verified that giveru, the legitimate decoder can reproduee= ¢,,(y, u) such thatd (x,w) < D, for

all x € 7,(Qx), and so[(152) is satisfied. Regarding the coding rate, nate th

% log| V| = H(Qx) — A+ 25 +R (160)

< RL(QXa DL) + 30 (161)

for all n sufficiently large, which results in (Ib1).

It remains to prove that for any eavesdroppgr the conditional exiguous-distortion exponent, givert tKac
T.(Qx), is larger thammin {R, Re(Qx, De)} — 6. From Propositiof]3, it may be assumed that the eavesdrigpper
aware of the typ&) x. Moreover, given the cryptograii = y, the source blockX is distributed uniformly over
Gn,t,» and independent af,. Thus, the optimal eavesdropper has the same estimateyfoiograms with the same
t,, and we may denote its estimate &s- o,,(y) £ z(t,). SinceG, o = D(C;,Qx,D,), then conditioned on the

event{t*(X) = 0}, for anyz € Z", LemmalY implies

P [de(X,2) < DelX € Tn(Qx), t*(X) = 0] = P[de(X, z) < De|X € Guo] (162)
< 2—n[min{R,RE(QX,DE)}—5} (163)
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for all n sufficiently large. It then follows that fob < ¢ < k,,,

P[de(X,2z) < De|X € Tn(Qx),t" (X) =t] = P[de(X, z) < De|X € G 4]

(Z) |gn,0|

N ’gn,t‘

< ‘gn,0’2—n(min{R,RE(QX,DE)}_J)7
B |gn,t|

Plde(X,z) < De|X € Gy 0]
(164)

where (a) follows from the fact that for any < ¢ < «,,, there exists a permutatian such thatr (G, ;) C G, 0 =
D(Cr,Qx,D.) and Propositiofil6. Thus, the exiguous-distortion prolitgtsbnditioned ont*(X) = ¢ can be larger
than the same probability conditioned 6 X) = 0, but only up to a factor of%j, which is large if |G, |

is small. Next, we show that the contribution to the exigudissortion probability of these small sets does not
impact its exponential behavior. To this end, for any fixeet » < A + § such thatJ = % is an integer, let
us quantize the interval, A + ¢] to values{Ay,..., A}, whereA; = jn. We will treat separately sets such that

2n4i < |G, 4|< 2m4+1, For all n sufficiently large

P[de(X,2) < DelX € Tn(Qx)] (165)
= ZP [X € Gni|X € Tn(Qx)|P[de(X,2(t)) < DelX € Gy 1, X € Tn(Qx)] (166)
=0
J—1
=> > P[X € GnalX € Tn(Qx)| P[de(X, 2(t)) < DelX € Gny, X € To(Qx)]  (167)
=0 £:2745 <[G,, ,|<2"Ai 1
(@ 2 1Gn,0] o —n(min{R, Re(Qx,De)}—5)
< . P[X € GulX € Tol@x)] (52 Fe(@x.De (168)
=0 2745 <|g,, <2 Ai+1 wt
J-1 on(A+9) .
<> > P[X € Gl X € To(@Qx)] 5z g-n(min{R, Re(Qx De)} o) (169)
J=0 t:2"45 <|G,, ,|<2"Ai+1
o« 27449 —n(min{R,Re(Qx ,De)}—5)
— A2 Re(@xDe > P[X € Gni|X € Tn(Qx)] (170)
=0 #2745 <[G,, (| <2" A5
) 2nA+o) —n(min{R,Re(Qx,De)}—9)
<> ond, 2 ’ ’ P[X € H(4;41)[X € Th(Qx))] (171)
=0
o) 771 on(A+s
@ 2" )2—n(min{R,RE(QX,DE)}—5)2—n(A—Aj+1—5) (172)
- 2TLAJ
7=0
n Aj 1 26
< J- max ug—n(min{R,RE(QmDE)}—& (173)
=7 o<j<d-1 2nd;
< on(n+36) 9—n-min{R,Re(Qx,De)} (174)
(%) 2n(77+45)2—n-min{R,RE(QX,DE)} (175)

where (a) is using [(I64),(b) is using the definition in[{48)(c) is using Lemmal5, andd) is sinceJ = 1. The
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result follows by taking; | 0. ]
Remark10. Note that only the propertie§ (154)-(155) ®f(C;;, Qx,D.) were used in order to prove Lemra 9.
The same proof of Lemmid 9 can be used to show that if some o#téP,sC D(C},Qx,D.) satisfies similar

properties, i.e. if for somé’ > 0

IH%XP de(X,z) < Deg| <27"F (176)
VASKAS

where hereX is distributed uniformly ove®,,, and

|D,,| > 2749 177)

then a secure rate-distortion code can be constructed caitfiitional exiguous-distortion exponefit In this case,
the code is constructed such that only source blockB,jrare mapped to the permutation indéxx) = 0, but not
source blocks fron®(C;, Qx,D.)\D,. In addition, if the coding rate is unconstrained, then thadition (177)
is not required. This fact will be utilized in the sequel irethroof of Lemma_13.

In the third step of the achievability proof, we construat tecure rate-distortion code for all types7i.t’).

We will need the following two lemmas.

Lemma 11. Let Qx, Q’yx € P,(X) and assume tl@ 1Qx — Q||= %= whered* > 0. If x € 7,,(Qx) then

min  dy(x,x") < d*. 178
Lmindy(xx) < a78)
Proof: See the extended version of [27, Lemma 20]. [ |

Lemma 12. Let Qx € P,(X) andx € T,,(Qx). For any givenl < k < n let x’ = x7~%. Then

O k
HQX_QX/H< ’X‘m (179)

Proof: See the extended version of [27, Lemma 21]. |
We are now ready for the third and final step of the proof of tbleievability part of Theorerl1.
Proof of achievability part of Theorem 1tet 0 < € < 1 be given, and findw, sufficiently large such that for
any @'y € P(X) there exist®)x € Pp, (X)Nint Q(X) such that|Qx —Q'y[|< §. We will term P, (X)Nint Q(X)
as thegrid. Also letn; = nge + 2no|X|. We construct the following sequence of secure rate-distocodesS for

all n» > max{ng,n1}. We will use the following definitions and constructions:

o Letn = L%J - no.

« Enumerate the types of the sourBg(X).
« Assume, w.l.o.g., that’ = {1,...,|X|} and letX = {0} U X.

%For two different types i, (X'), the minimal variation distance is.
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e Let
BR(e) £ {x € X" dy(x,0) < %} , (180)

i.e., an Hamming ball of radiu%E and dimensiom.

Construct the codeS; = (f;; o, ¥r.0,) Of key rateR as in LemmaD, for alRx € Pp, (X) Nint Q(X).
For every givenQx € P,(X) find

o (Qx) £ arg min Qx — Q%] (181)
Q'xE€Pny (X)Nint Q(X)

For any givenx € X" andx € X", define thereplacement operato@ : X" x X" — X" which for

x = U(x,X) satisfies

iy, T =0
&= (182)
Ti, T 7é 0
« For a givenx € X", define thereplacement set
K(x,€) 2 {x € Bi(e) : W(x},%) € Ta(@(Qx)} (183)

Note that the size 0k (x, ¢) depends orx only via its typeQx.

The above type enumeration and the codes constructed aeledvo both the encoder and the decoder off-line.
Before we provide the details of the encoding and the legitindecoding, we outline the main ideas. Using the
construction of Lemmal9, we construct secure rate distortimdes for each type in thgrid P, (X) Nint Q(X).
Since this grid has dinite number of types, then for all sufficiently large the normalized logarithm of the
conditional exiguous-distortion probability is close teetexponent (I33)iniformly over all types in the grid. As
mentioned in the outline of the proof in Sectibn] IV, we will dify any given source block so that it can be
encoded using one of the codes in the grid. In order to all@velitimate decoder to be able to reproduce with
the desired distortiod, , the cryptogram will be comprised of (at most) four partgheane of them being encrypted
using key bitsu(® for 1 < i < 4. First, the type of the soura@y is conveyed to the legitimate decoder, and, in
accordance with Propositidd 3, the type information is nutrgpted, and sm(!) is the empty string. This type
will be modified to the typebE(Qx), which is also known to the legitimate decoder and the eavpper. Second,
since ifn mod ng # 0 thenQx may not belong to the grid, we first truncate the source blodke lengthi. The
truncated park}_ ; will be sent to the legitimate decoder losslessly, and falgrypted usingi®. Third, we will
modify x7 to themodified vectown, such that), = <I>€(Qx). This will be done by replacing a small number of the
symbols ofx. The symbols ofx which were replaced in order to createwill be sent to the legitimate decoder
losslessly, and fully encrypted using®). Note, that there might be more than one way to replace thédslgof

x, and in fact, anyg € K(x,¢) can be used for this purpose if we define ¥(x7,x%) using [182) and{183).

For the sake of the analysis, it will be convenient to choosemacement vector randomly froii(x, ¢). This
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will be achieved using key bitg, which in this case, function as common randomness ratlaer fibr encryption.
Fourth, the code;@@x) will be used to encode the modified vectousing the key bita1¥). As we will prove,
the whole modification procedure incurs a negligible costt@compression and secrecy performance, which we
analyze after formally defining the encoder and legitimageadier.
Encoding:Let u = (u™, u® u® u® ). The following cryptogram parts are generated:

« Source block type: Find the type indéx< j* < |P,(X)|—1 of the source block type in the enumeration of

the types, and let
y1 = B[j*; log|Pp(X)]]. (184)

Setu) = ¢, namely, the type information is not encrypted, in accoogawith Propositiorf13.

« Fully encrypted source block tail:
A noo. 5 (2)
y2 = B[xz 4; (n —n)log|X|] & u (185)

» Modification vector: Letx be the Ku-th vector inkC(x, ), whereu is of lengthlog|KC(x, €)| bits, andKy is

integer corresponding ta, i.e.

log| K (x,¢)|
Ee2 Y w2041 (186)
1=1
Also, let
v £ U(x},X) (187)
and letx” € X" where
0, z;=0
2! = : (188)
As clearlyx” € Bfi(e), let i* be the index of" in Bf}(¢) and
ys £ BJi*; log| By(e)]] @ u®. (189)
« Cryptogram of modified vector: Let
st g o, vu?) (190)

whereu® is of lengthnR bits.

The encoding of the source block is separated into two casgending on its typ€)y. If R, < RL(QX, D.) then
y = fa(x,u) =y (191)

Otherwise, ifR, > R (Qx,D,) then
y = fa(x,u) = (Y1,Y2, Y3, Ya)- (192)
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To verify that such coding is possible, notice that from Lemii® and the fact that > n;, we have

Qs — OxlI< (193)

NN e

and by the triangle inequality

HQAx{'L - Qv”g HQAx{'L - QxH—i_HQX - QVHS §+ = €. (194)

N ™

Thus, the definition[(180), and Lemral 11 imply th&tx, €) is indeed non-empty, and an approprigtean always
be found.
Decoding by the legitimate decodddpon observing; = £} (x,u):

« Recover the typ&), from y;, and determineb(Q,) and|K(x, €)|.

o If R < RL(QX, D.) then arbitrarily choose a vector fros € W", and reproduce
w2l (y,u) =W (195)

Otherwise, ifR, > R (Qx,D,) then:

n
— Recoverxj

— Recoverx™” from y3 andu(®, and letw”” € W" be such that, (x”', w"") = 0.

from y, andu®. Let w” € W"=" be such thatl, (x2, ,, w"”) = 0.

— Reproducev from y, andu® as
W//// A @27(2,( (y4’ u(4)) (196)

Reproduce the source block as
w = gy (y,u) = (T(w", W), w"). (197)

Note that the decoder knowk (x, €)| and thus can compute the total lengthwfSo, if multiple source blocks
are encoded in succession, the legitimate decoder canytaprenized with the encoder and use the correct key
bits when deciphering the message.

For the sequence of codés constructed, we need to verify that the compression cansisasatisfied, and to
find the achievable exiguous-distortion exponent for agpgtaware) eavesdropper, as well as the key rate. First,
consider the compression constraint. For the rate, releatl the cryptogram is composed of at most four parts

(1I92). LetY,, be the alphabet of th¢-th part, forl < j < 4, such thafy,|= Hif:l]ynj\. We have,

and
[ Vial= X" (199)
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- 76 n
hal= [Bi(6] = 3 (1)1 (200)

k=0
ne n e

< =\ rae J1X1 (201)
2 [7])

< 2ﬁ[h5(§)+§ 10g|X|] (202)

2 9ng(e) (203)

whereg(e) was implicitly defined, and(e) | 0 ase | 0. For )4, notice that the cryptogram payj is only used
for types@x which satisfyR, > R, (Qx,D.). Thus,

[ Vnal < > onfi(@x.Du) (204)
Qx€PL(Qx):RL>RL(Qx,DL)
< [P (X)]-27R (205)

Therefore, for alln sufficiently large

4
1 1
lim sup — log|V,,| < lim sup Z — log|Vn;| (206)
n—oo T n—00 = n
<R+ g(€) + 34. (207)

Now, as the codes? 0y are constructed according to Lemida 9, it is easily verified thR, > RL(QX, D,) then

for any u

du (%, 7, (f, (%, 1), 1)) < D (208)

(see [I5R)). Thus, AP, (X)|< (n+ 1), for all n sufficiently large

= ) PXeTu(Qx)Pd(X, ¢5(f£5(X,u),u)) > D |X € T,(Qx)] (210)
Qx€EPL(X)

< > P[X € Tn(Qx)] (211)
QxE€PH(X):RL<RL(Qx,Dy)

< Z 9—nD(Qx||Px) (212)
Qx€EPL(X):RL<RL(Qx,DL)

< 9—n[EL(Px,Di,Ru) =] (213)

< 9—n(EL—0) (214)

Second, let us analyze the exiguous-distortion exponeit fufr an arbitrary eavesdropper. Lét be the eaves-

dropper which maximizes the exiguous-distortion prohghbibr the modified source block, given the cryptogram
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y. Then,
— (@) . . .
E(S,De) =1 f P ——1 Plde(X,Z) < Deg|X €T, 215
4 (8,Dg) = limin QX?%?(X){ (Qx[[Px) = 7 log max P[de(X, Z) < Dl (Qx)]} (215)
@ :
> lim inf min min D (Qx||Px) —
n—00 QxEPL(X):RL>RL(Qx,Dr)

%log (|Bﬁ(e)|19> [dE(v,V*) <DV e Tﬁ(fbe(Qx))D},

min P ——10 max P[de(X,Z) < De|X € T, 216
QXEPn(X)IRL<RL(QX7DL){ (Q@x||Px) ganezn [de( ) el (QX)]}} (216)
(¢)
> liminfmin{ min {D(QXHPX)—

n—00 Qx€PL(X):RL>RL(Qx,DL)

L log [|BR(OIP [de(V, V") < DIV € T (®.(@x))]] }

min
QxEP,(X):RL<RL(Qx,Dr)

{D(QxHPx) + Re(Qx, De) — 6}} (217)

:min{liminf min {D(QxHP)()—

n—00 Qx€EPn(X):RL>RL(Qx,DL)

Llog [[BR(OIP [de(V, V%) < DIV € Tr (@ <QX>>H}

g Bt D (Qx||Px) + Re(Qx,De) =6 ¢ o, 218
n—00 QXGP"(X):RL<RL(Q)(,DL){ (QXH X) E(QX E) }} ( )

where the passages are explained as follows:

« Equality (a) is standard method of types, (as, e.g., [0 {214)). Notice tha exiguous-distortion event
{de(X,Z) < De} in this equation is for the cod§,.
« Equality (b) is verified by establishing the following properties:

— Property 1: Due to the permutation invariance of type classes and Hammpheres, given the event
X € To(Qx), V is distributed uniformly overT;(®.(Qx)). Indeed, letv’,v" € T;(®.(Qx)), where

v/ = w(v") for some permutationr. Then, if for somex € 7,(Qx) andX € K(x,€)
v = ¥(x],X) (219)

then
v =W (x(x]), (X)) (220)

where (7(x}),x2 ;) € To(Qx) and(X) € K((w(x]), x2,,), )l The property then follows from the
fact that|K(x, €))| depends orx only via its type, which is identical for botk and (m(x'),x%, ;).

"Notice that/C(x) depends orx only via its firstz components.
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— Property 2: An eavesdropper fov is aware of its type (ag)y = <I>E(Qx), and the cryptogramys is
not relevant for its estimate. Also, singe is fully encrypted (pure random bits) then it is also useless
Thus, an eavesdropper foruses only the type information i, andys;.

— Property 3: Consider the cas® > R, (Qx,D.). The source blockX is distributed uniformly over
7,(Qx) and V is distributed uniformly oveff;(®.(Qx)). Let V* be the eavesdropper which achieves
the maximal exiguous-distortion probability f8, giveny,. Then, for any eavesdropper decoégrwhich

estimatex

,Bﬁ—l(),ﬂ)[dax, 2) < DelX € 7,(Qx)] < P [de(V. V") < DelV € Ta(@(@x))] . (220)
H €

Indeed, sinceXy_ , is fully encrypted then it is easy to verify that
P[de(X,Z) < DX € Tn(Qx)] < P [de(XT, ZT) < De[X € To(Qx)] - (222)

Now, any eavesdroppe£? for X7 can be transformed into an eavesdroppefor V, by a uniformly
distributed guess oK over B}i(b) (see [1817)) and then setting

argmin, ¢z de(X;,2), X; #0
v = ez GelXi 2) (223)

Zi, X; =0
where by assumptionnin. ¢z d:(X;, z) = 0. If the guess ofk is correct (according to the relation (187))

then
dE(V7 ‘A’) S dE(X7 Z). (224)

Since this happens with probability larger thﬁﬁ?ﬁ(e)ﬂ_l , then [222) implies[(221).
Equality (b) then follows from the above considerations.
« Inequality (c) is because in cask, < R (Qx,D,) the eavesdropper has no knowledge beyond the type of
the source block, and so given sughx is distributed uniformly ovef7, (Qx). For any givernz € Z", using

standard method of types

1
P [de(X,z) < DelX € To(Qx)] = xemx%(x,zg% EAGH] (225)
1
B sz:EQ[%(:X,Z)KDE xeTn(ZQiz,z) m (226)
1
N m QXZ:EQ[%X,Z)]SDE W;L(QX‘Z’ Z)‘ (@27
sep{one o Ho2)+HQO]) @29)

2Which is in fact not even required, using Propositidn 3.
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Then,
max P [de(X,z) < De|X € 7,(Qx)] < 27 "Fe(@x.De)=d], (229)

Next, we further bound the first term in the minimization oL as follows

li f min D Px)—
I”Hi)g QRxEPL(X): RL>RL(QX DL){ (QXH X)
1 I 7
~log |IBA(IP [de(V, V") < DelV € Ta(@.(Qx))] } (230)
(a)
> liminf D (Qx||Px) —
n—o0 Qx€EP, (X) RL>R|_(QX DL)
logIF’ [dE(V V) < De|V € T ))] —g(e )} (231)
o). .
= liminf mln D (Qx||Px) —
n—00 Qx€P,(X):RL>RL(Qx,DL)
log]P’ [dE(V V*) <DefV € T (@ (Qx))] —9g(e )} (232)
(Q lim inf D (Qx||Px) + {R,Re(Qx,De)} —0 — g(e) (233)
= lnrgg QxeP (X leI>1RL(QX D) XX min e\ X, Ve gle
2 timint D (@.(Qx)||Px) + min {R Re(Qx. Do)} — 6 —du(e) — g(0) | (234)
= lnrr_l>1£ QxePu (X RL>RL(QX bU) X X min e(Qx,De 1(€ g\€
()
lﬂgf@xep ) RL>RL @x.00 {D (Qx)||Px) +min{R, Re(Qx,Dg)} — 0 — d1(€) — g(e)} (235)
. . . .
L) Jim inf D P R, Re(Qx,De)} — 6 — &1(e) — 236
novoe Qxepno(xf&{{g&@xpu{ (Qx][Px) + min {R, Re(Qx. De)} () g<e>} (236)
D P in {R, Re(Qx,De)} — & — 1 (e) — , 237
QXGPHO(X)H;;LY;RL(QX DL){ (@x|[Px) + min {R, Re(Qx, De)} 1(€) 9(6)} (237)
> lim inf i D P in {R, Re(Qx,De)} — 6 — 61(e) — 238
> limin Qxepn(X)glngRl_(Qx7DL){ (@x||Px) +min{R, Re(Qx, De)} 1(€) 9(6)} (238)

« Inequality (a) follows from the fact that sincé < ¢ < 1, for all n sufficiently large|Bfi(e)| < 279(¢) as in

(203).
« Equality (b) is becausé! — 1 asn — cc.

« Inequality (c) is because there exists sufficiently large, such that for all > ny the error probability of the

any eavesdropper decodef ®.(Qx) satisfies
1 .
— =logP |V #£ VIV € T(2c(Qx))| 2 min {R, Re(Qx, De)} — 6 (239)

uniformly for all Qx € P, (Qx).
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« Inequality (d) is by defining
d1(e) é%iX‘D((I)E(QX)HPX) — D(Qx||Px)| - (240)

Note that sinceD(Qx||Px) is a continuous function af) x in Q(X) (as the support oPx is assumed to be
X), it is also uniformly continuous. S@,(¢) | 0 ase | 0.

« Equalities(e) and(f) are becaus@®.(Qx) € Py, (X) for all Qx € P,(X).
Substituting [(23B) into[(218), and using the fa&t(X) C Q(X) we obtain

E7(S,Dg) > mi i D P in{R, R Dg)l — -0
2, E>_mln{Qxeg(X):rRrggRL(Qx,DL){ (@xI1Px) + min {R, Re(Qx. Do)} ~ o(c) — 1 (0),
' D (Qx||Px) + Re(Qx,D — 241
QXGQ(X):%TRL(QX,DL){ (@x][Px) + Re(@x E)}} (241)
> min{ min {D (Q@x||Px) +R,
Qx€Q(X):RL>R(Qx,DL)
i D P R D —0—90 — 242
erggéx){ (Qx|Px) + Re(Qx, E)}} 1(€) — g(e) (242)
(a)
> min {R, B:(De)} — 6 — d1(e) — g(¢) (243)

where in (a) we have used the definition il {16), and the fact that the agsamE_ > 0 implies thatR, >
RL(—PX7 DL)
Next, we analyze the required key rate.Rf < R, (Qx,D.) then the required key rate is zero. Otherwise, if

R. > R.(Qy,D,) then the total key rate required to encade Qx is given by

[(n — 1) log| X |+ log |[K(x, €)| + log [Bfi(e)| + nR] . (244)

S

Now, for all n sufficiently large

L — ) logla|< T LB 5 (245)
n n
1 1 i
E IOg |IC(X7 6)| < E IOg |BH(€)| < 9(6)7 (246)
Thus, the required key rate is less than
R+ 2¢(€) + 24. (247)

By taking e | 0 we obtaing(e) | 0 andd (¢) | 0, and so we obtain the achievability part of Theoldm 1. m

D. Proof of Converse Part of Theordrh 1

Following the outline of the converse, we begin with a lemntaclv constructs from a given sequence of codes

S a new sequencé™, with constant key rate, which is less thﬁ(S,QX) + 6, and a zero excess-distortion
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probability at the legitimate receiver.

Lemma 13. LetS be an arbitrary sequence of secure rate-distortion codéschvsatisfies a compression constraint
(R.,D,E). Also, letQx € P(X) be given such thaD(Qx||Px) < E.. Then, for everyy > 0, there exists a
sequence of secure rate-distortion cod&ssuch that:

1) For all n and all x € 7,,(Qx), S;: has fixed key rate*(x) = R* whereR* < R(S,Qx) + 6.

2) For all n and {u;}3°,, S; = (f, ;) satisfies
Pld (X, o3 (fn(X,w),0)) > DX € To(@x)] = 0, (248)

and in addition,S* satisfies a compression constraiift’, D, E,) for R} = log|X|.
3) For everyDg > D,.
ET(S,De,Qx) < EF (S, De, Qx) + 0. (249)

Proof: We will prove this lemma by modifying the sequence of codemto the new sequencg*. Assume
that Qx € int (&), andQx € P,,(X) for some minimaln, € N. Since the statements in the lemma are only
about conditional events given the typgy, it is clear that the new secure rate-distortion codes cocsd S}
need only be different frond,, for x € 7,(Qx), and so only block-lengths mod ny = 0 should be considered,
as otherwiseT,, (Qx) is empty. To wit, the limitn — oo should be read as limit — oo for n = ngl, but this
will not be explicitly written, for the sake of brevity. Thughout the proof, quantities that are relatedStowill
be superscripted by. For brevity, we will denote the conditional key rate BfQx) andR (Qx) for S and S*,
respectively .

Letd > 0 be given. For any length < m < nlog|X| andy € ), define theambiguity sets for a given key-length
as

An(y,m) 2 {x € Th(Qx) : kn(x) = m, fu(x,u) =y for someu € {0,1}"}, (250)

and with a slight abuse of notation define #ambiguity s@ as

nlog|X|

Au) 2 | Anly,m). (251)
m=0

For any giveny andx € A, (y), let us denote the reproduction(x,y) = ¢(y, u), whereu satisfiesf, (x,u) = ,

and theambiguity set without excess-distortion

Dy(y) £ {x € An(y) : d.(x,w(x,y)) <D.}. (252)

Bcalledresidue classn the terminology of[[1].
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Also, consider thenodified ambiguity set

n(R(Qx)—9) nlog|X|
As(y) £ {An@)\ U Awm\ U An<y,m>} (D) (253)
m=0 m=n(R(Qx)+6)

For a giveny, the eavesdropper knows that A, (y) and chooses its estimate accordingly. However, conditione
on y, the probability ofX is not uniform overA, (y), sincek,(x) is not the same for atk € A,(y). The proof
of the lemma is divided into two steps and its outline is atote. In the first step, we will identify a sequence
of cryptograms{y;; } which simultaneously satisfies the following properties:
1) The conditional exiguous-distortion exponent of the esavopper wherX is distributed uniformly over
A (yr) is larger than the one faX distributed overA,,(y;) according to the distribution induced I8y, .
2) The conditional exiguous-distortion exponent condid onY = v equals the same exponent without this
conditioning.
In the second step of the proof, we utilize the sEf(y;) to construct the new sequence of cod¥s This is
done by the same technique used in the achievability prodfeofimal® - by an efficient covering of the type
class using permutations of one good gEt(y"). The two properties above of: will be used to show that the
exiguous-distortion exponent &f* may be only slightly less than that &
We begin with the first step. For brevity, let us assume Kats distributed uniformly over the type class
T.(Qx), and probabilities, expectations and entropies will bewated w.r.t. this probability distribution. So, we

only considery such thatA4, (y) is non-empty. If we let
A(y) P [R(Qx) — 6 < m(X) < R(Qx) +6,d (X, W) < DY = y] (254)
then forn sufficiently large

E[A(Y)] =P [R(Qx) — ¢ < a(X) < R(Qx) +0,d (X, W) < D]
>P[R(Qx) — 6 <rp(X) < R(Qx) + 6] —P[d(X, W) > D]

(a)
> 5~ P[d (X, W) > D]
®)

> 06— 9—n[EL—D(Qx||Px)—0] (255)
£ g (256)

where (a) is using the convergence in probability of(X) to R(Qy) (see [(I1)), andb) is sinceS satisfies a

compression constraifiR_, D, , E, ) and the assumptio®(Q x||Px) < E.. Defining for any0 < 8 < 1

Vil & {yeyn:A(y) zﬂ-g}, (257)
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then, since from the definitiol_(2b4) arid (256)

A(y) 2
0< < = (258)
[AY)] — 6
for all y € ), the reverse Markov inequity (Lemr& 2) implies that
p(Yev) >0 269, (259)
2
and choosing somg* < min{1, 2}, we obtain¢*(§) £ ¢(, 3*) > 0. Now, fory > 1, let
V) & {y € Yy : maxP[de(X,2) < De|Y = y] < - max P[de(X,Z) < DE]} . (260)
z Gn€X,
Then the Markov inequality implies
P(Y g VP) =P [maX]P’ [de(X,2) < De|Y] > 7 - max P[de(X,Z) < DE]] (261)
z Gn€X,
(a)
< E [max, P [de(X, z) < De|Y]] (262)
v-max; o5 Plde(X,Z) < D
_1 (263)
Y
where in(a) is should be recalled thatis chosen as a function &f. Hence, by the union bound
P (Y e v n v}L?)) >1-P (Y ¢ v,gU) _Pp (Y ¢ v}L?)) (264)
> ¢(6) - . (265)
Y
Thus, for any givery, there existsy* > 1 sufficiently large (but independent @f such that
P (Y eV n v7<3>) > 0. (266)
Therefore, there exists a sequergé } such that for alln sufficiently large,y’ € ,(11) N fo).
In the second step of the proof, we describe the constructiasj;. Note that by letting
U* 2 {u:3Ix € AL(yr) such thatf,(x,u) =y} (267)
and
Cr = {pn(yn,u) s u e U’} (268)

we have thatd’ (v:) € ©(C},Qx,D.). Now, recall that in Lemmal9 of the achievability proof, weviauitilized
permutations of a D-cove®D(C;, Qx,D,) (of a setC}) which cover the type clasg,(Qx), to construct a secure
rate-distortion code. Following remalk]10, the 3&t(y,,) can also be used as a constituent set in the construction

of a secure rate-distortion code, and the conditional exigtdistortion exponent equal to the exponent achieved
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when the source blocK is distributed uniformly ovetd’ (v*), as in [176). Let us find the exponent achieved

whenX is distributed uniformly ovet4’ (v;). To this end, denote

M(8) 2 [n (B(Qx) — 8) .n (B(Qx) +9)]. (269)

and observe that for an arbitrary eavesdroppeand alln sufficiently large,

max P [de(X,z) < DelY =y7] (270)
> P[de(X,Z) < DelY = yy)] (271)
= PX =x|Y =y;] (272)

x€A, (yz):de(x,z)<Dg

nlog|X|
=¥ > P[X = x|V = y}] (273)

m=0 XEA” (y:wm):dE(xvz)SDE
nlog|X| . .
2om=0  2xed, (ysm)de(xz)<pe F (X =X Y =4p)

) PY = i) &7

o 2meM(3) 2oxe A, (y mydetea)<ne L (X =%V = 5) (275)

- P(Y =y;)

o 2omeM(E) Doxe A lys m)D. () deem)<De F (X =%V = 3) (276)

B P(Y =y;)

W 49 _LmeM) Lxe A, ym)nD,  de(xm<oe P X =% ¥ = 33) e

2 PIR(Qx) -6 <m(X) S R(Qx) +6,d.(X, W) <D, Y = y]

LS 2o meM(8) 2xeAn(y;,m)NDa (3)de(x2)<De L (X = %Y = y7) 278)
2 Do meM(8) 2uxed, (ys,mnDa(yy) (X = %Y =y7)

_50. 2 meM(8) 2oxEAn (v m)Da (ys)de(x2)<De F (X =X,V = 47) (279)
2 2 meM() 2oxeAn(y;m)nDa () (X =%Y =1y5)

_ 50, 2 meM() 2oxeAn (g m)Da (yp)de(x2)<De F (Y = 4n|X = x) (280)
2 Do meM(8) 2oaxe A, (ysm)Dy (yz) £ (Y = yn| X = x)

g0 Dmem 27" H{x € Aulyy,m) N Dulysy,) : de(x,Z) < De}| (281)
2 > mem() 27" Ay, m) N Dn(yy)|

g0 9-n(R(Qx)+0) . ;me Moy 1{X € An(ys, m) N D(y}) : de(x,Z) < De}l 282

o2 27 (RQNI=0) 57 4oy 1An (s m) 0 Dy (5]

PLpp > mems) 11X € An(yn,m) N Da(y;) : de(x,Z) < De}l (283)
2 > mem(s)y Mn (Y m) N Dn(y;)|

= 52 L 2720P [ (X*,Z) < D, (284)

where (a) is because ag; v implies that
P[R(Qx) — 6 < rp(X) < R(Qx) +6,d (X, W) < D.,Y = y;] S B(Y = ), (285)

B3
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and (b) is because for admissible encoders and A, (v}, m)

P(Y =yi[X=x)=2""™ (286)

Thus,
lim_>sup —% log mzaxIP’ [de(X*,z) < De| > lini)sup—% max log P [de(X,z) < DelY =y ] — 30 (287)
@ £+(S,De, Q) — 36 (288)

where (a) is because; € Vr(f). So, by choosing sufficiently small, we can achieve (249) by the permutation
construction of Lemma]9.

Finally, as the legitimate reconstruction(x,y;) of any x € A’ (y’) satisfiesd, (x,w(x,y;)) < D, the
permutation construction assures this property forxalt 7,(Qx). So, it is easy to verify that i§ has excess-
distortion exponenk, at distortion leveD,, thenS* has an even larger exponent. RS = log|X'|, the compression
constraint(R*, D, E, ) is satisfied byS*. [ |

We are now ready for the second and final step of the proof ottmeerse part of Theoren 1.

Proof of converse part of Theorellh 1Let a sequence of secure rate-distortion cofebe given, which
satisfies the compression constraiRt, D, E, ), and leté > 0 be given. From Propositionl 3, it may be assumed
that the eavesdropper is aware of the type of the source IflockMoreover, from Lemm&a13, it may be assumed
that S,, satisfies the three properties in Lemma 13 for@§ such thatD(Qx||Px) < E.. Specifically, the first
property implies that for somete-functionp : P(X) — R, the codeS,, has a fixed rate,(x) = p(Qx) for all
x € To(Qx), andp(Qx) < R(S,Qx) + 4, as long asD(Qx||Px) < E..

Let us first focus on a typ€) x that satisfiesD(Qx||Px) < E., and a specific (type-aware) eavesdropper for
S,.. The eavesdropper first produces a guess the key-bitsu (with a uniform probability ovef0, 1}*(@x), and
then decodesv = ¢, (y, ). Sincedg(-,-) is more lenient tharl, (-,-), andDe > D,, there exists & € Z™ such

that

{xeX":d (x,w) <D } C{xe X" :de(x,2) <D} (289)
g {X S Xn : dE(Xaz) S DE}7 (290)
and so the final eavesdropper estimate is z. For anyn, let us bound the resulting conditional exiguous-distarti
probability.
P [de(X, 2) < DelX € To(Qx)| 2 P |U = UIX € T(Qx)| x
P |de(X,2) < DeX € T(Qx), U = U] (291)

> 277 P [d(X, Z) < DelX € To(@x), U = U] (292)



> 97(Qx) . P[4, (X, W) < De|X € Tn(Qx)]
(g) 9—np(Qx)

where (a) is from the second property assured &in Lemmal13.

We now analyze the exiguous-distortion probability&fSince|P, (X)|< (n + 1)!%

Pa(Sn,De) = Y P[X € Tn(Qx)] max P[de(X,Z) < De[X € To(Qx)]

QxEP.(X) Tn €2
= max e "POXIPY) . max P[de(X,Z) < DX € Th(Qx)]
Qx€EP.(X) Gn€Xn
= exp <—n- min {D(QXHPX)—
QRxEPL(X)

llog max P[de(X,Z) < De|X € %(QX)]})

n Gn€X,

Now, let0 < e < E, be given, and leQ% € P(X) be such that

D (Q%||Px) + limsup {—l log max P[de(X,Z) < De|X € %(Q})]} <

n—00 n Gn€EX,

1
inf D P li ——1 Plde(X,Z) < Dg|lX €Tn
oot {D@xliP) +timsup {1 tog max P ld(X, ) < DeiX € To(@)

n—o00 TnEX,

and letmg be sufficiently large so that

sup {—llog max P[de(X,Z) < De|X € %(Q})]}

n>mo n Gn€X,

e

1
< limsup {—— log max P[de(X,Z) < DX € %(Q})]} + €.

n—00 n Gn€Xn,

Then,

1
5;(8, De) = limsup  min : {D (Qx||Px) — - log max P[deg(X,Z) < Dg|X € T, (Qx)]

n—oo Qx€Pn GnEX,

m—00 n>m QXEIPH(X) On€EXn

@ fim sup inf ){D@XHPX) — L log max P[de(X,Z) < DX € Tn(Qx))
~log

Mm—00 p>m QxEP(X A=

1
< su inf D Px) — —log max P[dg(X,Z) < De|X €T,
< sw it {D(QxlIPx) - Liog max PIL(X.2) < DX € Q)] }

< ot {D@xlIPo) + sup {2 1og max PI(X,2) < DelX € To(Qx)]

Qx€EP(X) n>mo €S,

< {D@xliPe) + sup {-Log max Plac(X.2) < DX € Tu(@3)]}

n>mg Gn€X,

(b)
< inf D P
=5 in X){ (Qx||Px) +

x€P(

lim sup {—l log max P[de(X,Z) < De|X € %(QX)]}} + 2

n—00 n On€Xn

|

= lim sup min {D(QXHPX) - %log max P[de(X,Z) < DelX € Tn(Qx)]

|
|
f
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(293)
(294)

(295)

(296)
(297)

(298)

(299)

(300)

(301)
(302)
(303)
(304)
(305)
(306)
(307)

(308)
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= inf ){D(QXHPXHE;(S, De, Qx)} + 2¢ (309)

QxEP(X
S el e {D(Qx||Px) + & (S,De, Qx)} + 2¢ (310)
< oncr i AD@xIPx) + £ (S.De, @)} +2¢ 49 (311)
s oxepriib e, (P (@xIPX) +p(Qx)} +2e +0 (312)
YRt 2t 10, (313)

where (a) is because, by assumption, 7, (Q x) is empty thenP [de(X,Z) < De|X € T,(Qx)] =0, (b) is from
(299) and [(300), andc) is from the third property ofS promised by Lemm&a13. The passagg follows from
(294), and so it remains to prove). To this end, recall thak[r,(X)] < R for all n was assumed. Define, for

0 < e < E., thetypical set
T(Px,¢) = {Qx € P(X) : D(Qx||Px) < ¢}, (314)

and with a slight abuse of notation, defifig(Px, ¢) £ T (Px,¢) N P.(X). Then, by the law of large numbers
Im ) PXeTu(Qx)]=1 (315)
QXGﬁ(PXﬁ)

Now, assume by contradiction, that for &lx € 7 (Px,¢) we havep(Qx) > R + 3. Since by construction
p(Qx) < R(S,Qx) + 6, the uniform convergence di[r,(X)|X € T,(Qx)] to R(S,Qx) (see [(IL) and the

discussion that follows) implies that there existssuch that for alln > ng

E[r,(X)|X € To(Qx)] = R(S,Qx) — ¢
p(Qx) —20
R+, (316)

Y]

v

forall Qx € 7~;L(PX, €). So, from [[(3Ib), there exists, such that for alh > n; we have thaP | X € ﬁ(PX, €)| >

m, and then for allh > max{ng,n1}
Efrn(X)] = > PXeTu(Qx)] Er(X)X € To(Qx)] (317)
Qx€EPL(X)
> Y PXEeTu(Qx)] Er(X)X € T(Qx)] (318)
QXEﬁL(PX7E)
> < min K[, (X)|X € %(Qx)]) - ) PIXET(Qx)] (319)
QTP Qx €T (Px.0)
YR — (320)

1+ 5/2-10g\/\,’\
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> (R+6) (321)

1+ 9/R
=R, (322)

where (a) follows from (316). However, this is a contradiction to treef thatS,, satisfiesE [r,,(X)] < R for all
n. Thus, there must exigdy € 7(Px,e) C T (Px,E.) such thatp(Qx) < R + 34, which directly leads tde) in
(313). Sinces > 0 and§ > 0 are arbitrary, the first term in the upper bound[ofl (18) is prbv.e.£; (S, De) < R.

To prove the second term in the upper boundlof (18),8}5.(.8, De) < EZ(Dg), note that the eavesdropper can
always ignore the cryptogram ardindly choose its estimate (based only on the typ€x). Thus, by similar

arguments leading t¢_(2R9), it can be shown that fomadiufficiently large

EF(S,De, Qx) < Re(Qx, D). (323)
The method of types, as il (297) and the definitionZ3{De) in (I8), complete the proof. [ |
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