
ar
X

iv
:1

60
1.

04
46

7v
2 

 [c
s.

IT
]  

23
 D

ec
 2

01
6

1

New MDS Self-Dual Codes from Generalized
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Abstract

Both MDS and Euclidean self-dual codes have theoretical andpractical importance and the study of MDS self-dual codes has

attracted lots of attention in recent years. In particular,determining existence ofq-ary MDS self-dual codes for various lengths

has been investigated extensively. The problem is completely solved for the case whereq is even. The current paper focuses on

the case whereq is odd. We construct a few classes of new MDS self-dual codes through generalized Reed-Solomon codes. More

precisely, we show that for any given even lengthn we have aq-ary MDS code as long asq ≡ 1 mod 4 and q is sufficiently

large (sayq ≥ 4n×n2). Furthermore, we prove that there exists aq-ary MDS self-dual code of lengthn if q = r2 andn satisfies

one of the three conditions: (i)n ≤ r andn is even; (ii)q is odd andn− 1 is an odd divisor ofq − 1; (iii) r ≡ 3 mod 4 and

n = 2tr for any t ≤ (r − 1)/2.

Index Terms

Self-dual codes, MDS codes, Generalized Reed-Solomon codes.

I. I NTRODUCTION

MDS codes and Euclidean self-dual codes belong to two different categories of block codes. Both classes are of practical

and theoretical importance. In recent years, study of MDS self-dual codes (we only consider Euclidean inner product in the

following context) has attracted a lot of attention [1]–[3], [9]–[14]. First of all, MDS codes achieve optimal parameters that

allow correction of maximal number of errors for a given coderate. Study of various properties of MDS codes, such as

classification [15], [20] of MDS codes, non-Reed-Solomon MDS codes [21], balanced MDS codes [6], lowest density MDS

codes [4], [17] and existence of MDS codes [7], has been the center of the area. In addition, MDS codes are closely connected

to combinatorial design and finite geometry [18, Chapters 11and 14]. Furthermore, the generalized Reed-Solomon codes are

a class of MDS codes and have found wide applications in practice. On the other hand, due to their nice structures, self-dual

codes have been attracting attention from both coding theorists, cryptographers and mathematicians. Self-dual codeshave found

various applications in cryptography (in particular secret sharing) [5], [8], [19] and combinatorics [18]. Thus, it isnatural to

consider the intersection of these two classes, namely, MDSself-dual codes.

As the parameters of an MDS self-dual code is completely determined by its length, one of the central problems in this topic

is to determine existence of MDS self-dual codes for variouslengths. The problem is completely solved for the case whereq

is even [10]. The current paper focuses on the case whereq is odd. Our idea is to construct generalized Reed-Solomon code

that are self-dual. Thus, the result is of theoretical interest and practical relevance.
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TABLE I

KNOWN RESULTS ON EXISTENCE OFq-ARY MDS SELF-DUAL CODES OF EVEN LENGTHn

q 2|q 2 6 |q q = rt, t even q = rt, r ≡ 3 mod 4, t odd q = rt, r ≡ 1 mod 4, t odd

n n ≤ q n = q + 1 (n− 1)|(r − 1) n = pm + 1, oddm and primep n = pm + 1, m odd and primep

andp ≡ 3 mod 4 andp ≡ 1 mod 4

Reference [10] [10] [11] [11] [11]

A. Known results

One of the existing constructions of MDS self-dual codes in literature is through constacyclic codes [1], [10], [14] because

the generator polynomial of the dual code of a constacyclic code can be determined by the generator polynomial of the code.

Some other approaches include orthogonal designs [3], [9] and generalized Reed-Solomon codes [1]. We summarize some

known results in the Table I.

Besides the results in Table I, only some sparse lengthsn of MDS self-dual codes have been found (see [1]–[3], [9], [12],

[14]).

B. Our results

We show the following result in this paper.

Theorem 1.1 (Main Theorem):Let q be an odd prime power and letn be an even positive integer. Then there exists aq-ary

MDS self-dual code of lengthn if q andn satisfy one of the following conditions

(i) q ≡ 1 mod 4 andq ≥ 4n × n2 (see Theorem 3.2(ii));

(ii) q = r2 andn ≤ r (see Theorem 3.4(i));

(iii) q = r2 andn− 1 is a divisor ofq − 1 (see Theorem 3.4(ii));

(iv) q = r2, r ≡ 3 mod 4 andn = 2tr for any t ≤ (r − 1)/2 (see Theorem 3.5).

Remark 1.2:Part (i) of Theorem 1.1 says that for any given even lengthn we have aq-ary MDS code as long asq ≡ 1 mod 4

andq is sufficiently large (sayq ≥ 4n×n2), while Part (iii) of Theorem 1.1 extends the result of [11] where a stricter condition

(n− 1)|(r− 1) is required. In addition, we also use our approach to get MDS self-dual codes in [10]. Note that the approach

in [10] is quite different as the main tool for constructing MDS codes in [10] is orthogonal design, while our construction is

through generalized Reed-Solomon codes.

Our techniques

Our idea of constructing MDS self-dual codes is through generalized Reed-Solomon (GRS or generalized RS for short)

codes. In this paper, we present two methods to construct generalized RS codes that are self-dual. The first one is to directly

find elementsα1, α2, . . . , αn such that
∏

1≤j≤n,j 6=i(αi − αj) is a square element inFq. The second method is to find a

sufficient condition under which the homogenous equation systemAxT = 0 with A overFq has a nonzero solution overFr,

whereq = r2 (see (II.4)).

Organization of the paper

In Section 2, we first study generalized Reed-Solomon codes and their duals, and analyze solutions of a system of homogenous

equations. In Section 3, we show that these conditions are satisfied in some cases and consequently we obtain several classes

of MDS self-dual codes.
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II. PRELIMINARIES

Let Fq be the finite field ofq elements and let{α1, α2, . . . , αn} ben distinct elements ofFq. Choosen nonzero elements

v1, v2, . . . , vn of Fq (vi may not be distinct). Putv = (v1, v2, . . . , vn) and a = (α1, α2, . . . , αn). Then the generalized

Reed-Solomon code associated witha andv is defined below.

GRSk(a,v) := {(v1f(α1), v2f(α2), . . . , vnf(αn)) : f(x) ∈ Fq[x], deg(f(x)) ≤ k − 1}. (II.1)

It is well known that the codeGRSk(a,v) is a q-ary [n, k, n− k + 1]-MDS code [18, Theorem 9.1.4] and the corresponding

dual code is also a GRS code.

Furthermore we consider the extended code of the generalized Reed-Solomon codeGRSk(a,v) given by

GRSk(a,v,∞) := {(v1f(α1), v2f(α2), . . . , vnf(αn), fk−1) : f(x) ∈ Fq[x], deg(f(x)) ≤ k − 1}, (II.2)

wherefk−1 stands for the coefficient ofxk−1 in f(x). The following result can be easily derived from [18].

Lemma 2.1:The codeGRSk(a,v,∞) defined in (II.2) is aq-ary [n+ 1, k, n+ 2− k]-MDS code.

For any distinct elementsα1, . . . , αn of Fq, put a = (α1, . . . , αn) and denote byAa the matrix


















1 1 . . . 1

α1 α2 . . . αn

α2
1 α2

2 · · · α2
n

...
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. . .
...

αn−2
1 αn−2

2 · · · αn−2
n



















. (II.3)

Lemma 2.2:The solution space of the equation systemAax
T = 0 has dimension1 and {u = (u1, . . . , un)} is a basis

of this solution space, whereui =
∏

1≤j≤n,j 6=i(αi − αj)
−1. Furthermore, for any two polynomialsf(x), g(x) ∈ Fq[x] with

deg(f) ≤ k − 1 anddeg(g) ≤ n− k − 1, one has
∑n

i=1 f(αi)(uig(αi)) = 0.

Proof: It is easy to see that the rank ofAa is n − 1. Thus, the solution space has dimension1. Furthermore, it is

straightforward to verify thatu is a nonzero solution.

Sinceu is a solution ofAax = 0, it is easy to see that the Euclidean inner product of(αi
1, . . . , α

i
n) and(u1α

j
1, . . . , unα

j
n)

is zero for all0 ≤ i ≤ k − 1 and 0 ≤ j ≤ n − k − 1. This implies that
∑n

i=1 f(αi)(uig(αi)) = 0 for any two polynomials

f(x), g(x) ∈ Fq[x] with deg(f) ≤ k − 1 anddeg(g) ≤ n− k − 1.

Lemma 2.3:Let 1 be all-one word of lengthn. Then one has the following results.

(i) The dual code ofGRSk(a,1) is GRSn−k(a,u), whereu = (u1, u2, . . . , un) with ui =
∏

1≤j≤n,j 6=i(αi − αj)
−1.

(ii) If 1 ≤ k ≤ q − 1, then the dual code ofGRSk(a,1,∞) is GRSq−k+1(a,1,∞).

Proof: By the second statement of Lemma 2.2, we know thatGRSn−k(a,u) is orthogonal toGRSk(a,1). Thus, part (i)

follows from the fact thatdim(GRSk(a,1)) + dim(GRSn−k(a,u)) = k + n− k = n.

For part (ii), we denote

ci =

{

(αi
1, α

i
2, . . . , α

i
q, 0) if i 6= k − 1,

(αi
1, α

i
2, . . . , α

i
q, 1) if i = k − 1;

c̄i =

{

(αi
1, α

i
2, . . . , α

i
q, 0) if i 6= q − k,

(αi
1, α

i
2, . . . , α

i
q, 1) if i = q − k.

Consider the dot product ofcℓ and c̄m with 0 ≤ ℓ ≤ k − 1 and 0 ≤ m ≤ q − k. If ℓ = m = 0, then bothcℓ and cm

are (1, 0), where1 is the all-one word of lengthq. Thus, the dot product〈cℓ, c̄m〉 is 0. If ℓ = k − 1 and m = q − k,

then cℓ = (αℓ
1, α

ℓ
2, . . . , α

ℓ
q, 1) and c̄m = (αm

1 , αm
2 , . . . , αm

q , 1). Thus, 〈cℓ, c̄m〉 = 1 +
∑q

i=1 α
q−1
i = 0. Now assume that

0 < ℓ +m < q − 1. Without loss of generality, letℓ > 0. Thencℓ = (αℓ
1, α

ℓ
2, . . . , α

ℓ
q, 0). Thus,〈cℓ, c̄m〉 = ∑q

i=1 α
ℓ+m
i = 0

since1 ≤ ℓ+m ≤ q − 2. This completes the proof of Part (ii).

The following corollary follows immediately from Lemma 2.3.

Corollary 2.4: Let n be an even number.
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(i) Let λ ∈ F
∗
q . If wi = λ

∏

1≤j≤n,j 6=i(αi − αj)
−1 is equal tov2i for somevi ∈ Fq for all i = 1, 2, . . . , n, then the code

GRSn/2(a,v) is MDS self-dual.

(ii) If q is odd, then the codeGRS(q+1)/2(a,1,∞) is self-dual.

Proof: To prove Part (i), letf(x), g(x) ∈ Fq[x] with deg(f) ≤ n
2 − 1 anddeg(g) ≤ n

2 − 1. By the second statement of

Lemma 2.2, we have
∑n

i=1 f(αi)(uig(αi)) = 0, whereui =
∏

1≤j≤n,j 6=i(αi − αj)
−1 for i = 1, 2, . . . , n. Hence,

0 = λ

n
∑

i=1

f(αi)(uig(αi)) =

n
∑

i=1

f(αi)(λuig(αi)) =

n
∑

i=1

(vif(αi))(vig(αi)).

This implies thatGRS⊥
n/2(a,v) = GRSn/2(a,v).

Part (ii) is a direct result of Lemma 2.3(ii).

For the rest of this section, we provide another sufficient condition under which a GRS code is self-dual. For this purpose,

we assume thatq = r2.

Let us consider a system of equations overFr2 given by

AxT = 0, (II.4)

whereA is an(n− 1)× n matrix of rankn− 1 overFr2 . One knows that (II.4) must have at least one nonzero solution over

Fr2 . However, for our application, we are curious about the question whether (II.4) has a nonzero solution overFr. In this

section, we give some sufficient and necessary conditions under which (II.4) has a nonzero solution overFr.

Lemma 2.5:The equation (II.4) has a nonzero solution inF
n
r if and only if cr is a solution of (II.4) wheneverc is a solution

of (II.4), wherecr is obtained fromc by raising every coordinate to itsrth power.

Proof: If (II.4) has a nonzero solutionb in F
n
r , then the solution space of (II.4) isFr2 · b = {αb : α ∈ Fr2} since the

solution space has dimension1 overFr2 . Thus, for every solutionλb, we have(λb)r = λr
b ∈ Fr2 · b.

Conversely, assume thatcr is a solution of (II.4) for a nonzero solutionc of (II.4). Choose a basis{1, α} of Fr2 overFr.

Consider the two elementsw1 := c+ c
r andw2 := αc+ αr

c
r. It is clear that bothw1 andw2 are solutions of (II.4) inFn

r .

On the other hand, we have
(

c

c
r

)

=

(

1 1

α αr

)−1(

w1

w2

)

.

This implies that one ofw1 andw2 must be nonzero, otherwisec is equal to zero. This completes the proof.

The condition given in Lemma 2.5 can be converted to a condition on the coefficient matrix of the equation (II.4) as shown

below.

Lemma 2.6:Let A be the coefficient matrix of the equation (II.4). Then the equation (II.4) has a nonzero solution inFn
r if

and only ifA(r) andA are row equivalent, whereA(r) is obtained fromA by raising every entry to itsrth power.

Proof: It is easy to see thatcr is a solution ofA(r)
x
T = 0 wheneverc is a solution of (II.4) and vice versa. By Lemma

2.1, this implies that the equation (II.4) has a nonzero solution in F
n
r if and only if the equationA(r)

x
T = 0 and the equation

(II.4) have the same solution space, i.e.,A(r) andA are row equivalent.

Example 2.7:Let m be a divisor ofr2 − 1 and letn = m+1. Let α2, . . . , αn be all themth roots of unity. We claim that

the systemAax = 0 has a nonzero solution inFn
r , wherea = (α1 = 0, α2, . . . , αn). To prove this, it is sufficient to show that

the rows ofA(r)
a are a permutation of the rows ofAa. The first row of the two matrices are identical. Hence, it is sufficient

to show that the lastn− 2 = m− 1 rows ofA(r)
a are a permutation of those ofAa. To see this, we notice that the powers in

the lastm− 1 rows ofA(r)
a consist of{1 · r, 2 · r, . . . , (m− 1) · r}, while the powers in the lastm− 1 rows ofAa consist of

{1, 2 . . . ,m− 1}. Thus, the desired result follows from the fact that the set{1 · r (mod m), 2 · r (mod m), . . . , (m − 1) · r
(mod m)} and the set{1, 2 . . . ,m− 1} are identical.

Example 2.8:Let α1, . . . , αn be all then distinct elements ofFr. ThenAa is a matrix overFr and it is clear that system

Aax = 0 has a nonzero solution inFn
r . On the other hand, if we apply Lemma 2.6, we can also see thatAax = 0 has a

nonzero solution inFn
r sinceAa andA(r)

a are equal and hence row equivalent.
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Lemma 2.9:Let n be an even number and letq = r2. Let α1, α2, . . . , αn be n distinct elements ofFq. If Aax = 0 has a

nonzero solutionw = (w1, . . . , wn) in Fr, then the codeGRSn/2(a,v) is an MDS self-dual code overFq, wherewi = v2i

for all 1 ≤ i ≤ n.

Proof: Sincewi belongs toFr, there exists an elementvi ∈ Fq such thatwi = v2i . As the dimension of the solution space

of Aax = 0 is 1, by Lemma 2.2, we must havewi = λ
∏

1≤j≤n,j 6=i(αi − αj)
−1 6= 0 for someλ ∈ F

∗
r2 . The desired result

follows from Corollary 2.4(i).

III. MDS SELF-DUAL CODES

A. MDS self-dual codes overFq for sufficiently largeq

Let us start with a lemma.

Lemma 3.1:For any givenn, if q ≥ 4n × n2, then there exists a subsetS = {α1, α2, . . . , . . . , αn} of Fq such thatαj −αi

are nonzero square elements for all1 ≤ i < j ≤ n.

Proof: If q is even, it is clearly true as every element ofFq is a square.

Now assume thatq is odd. We prove it by induction onn. For n = 2, we can letS = {0, 1}. Suppose that there exists a

subsetT = {α1, α2, . . . , . . . , αn−1} of Fq of sizen−1 such thatαj−αi are nonzero square elements for all1 ≤ i < j ≤ n−1.

Let α be a primitive element ofFq and letχ be the multiplicative quadratic character defined byχ(αi) = αi(q−1)/2 and

χ(0) = 0. It is clear thati is even if and only ifχ(αi) = 1. Let N denote the number of elementsβ of Fq such that

χ(β − αi) = 1 for all i = 1, 2, . . . , n− 1. Then by [16, Exercise 5.64], one has
∣

∣

∣N − q

2n−1

∣

∣

∣ ≤
(

n− 3

2
+

1

2n−1

)√
q +

n− 1

2
. (III.1)

Thus, by (III.1) and our condition onn andq, we have

N ≥ q

2n−1
−
(

n− 3

2
+

1

2n−1

)√
q − n− 1

2
> 0.

This implies that there exists an elementαn such thatαn − αi are nonzero square elements ofFq for all i = 1, 2, . . . , n− 1.

The proof is completed.

Theorem 3.2:Let n be an even integer. Ifn and q satisfy one of the following three conditions, then there exists aq-ary

[n, n/2, n/2 + 1]-MDS self-dual code.

(i) q is even andn ≤ q;

(ii) q ≡ 1 mod 4, andq ≥ 4n × n2;

(iii) q is odd,n = q + 1.

Proof: If q is even, then every element ofFq is a square. Thus, Case (i) follows from Corollary 2.4(i).

By Lemma 3.1, there exists a subsetS = {α1, α2, . . . , αn} such thatαj − αi are square elements for all1 ≤ i < j ≤ n.

As q ≡ 1 mod 4, −1 is a square since−1 = α(q−1)/2, whereα is a primitive element ofFq. Thus,β − γ is a nonzero

square for any two distinct elementsβ, γ ∈ S. Therefore,
∏

1≤j≤n,j 6=i(αi − αj)
−1 are nonzero square elements ofFq for all

i = 1, 2, . . . , n. Case (ii) follows from Corollary 2.4(i) as well.

Case (iii) is the result of Corollary 2.4(ii).

Remark 3.3: (i) The results of Parts (i) and (iii) of Theorem 3.2 were given in [10]. Here a different proof is given.

(ii) The result of Part (ii) of Theorem 3.2 implies that MDS self-dual code with lengthn always exists when alphabet sizeq

is exponential inn.

B. MDS self-dual codes overFq with q = r2

Theorem 3.4:Let n be an even integer. Ifn and q = r2 satisfy one of the following two conditions, then there exists a

q-ary [n, n/2, n/2 + 1]-MDS self-dual code.

(i) n ≤ r;
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(ii) q is odd andn− 1 is a divisor ofq − 1.

Proof: In case (i), we can choosen distinct elementsα1, α2, . . . , αn of Fr. Then the systemAax = 0 has a nonzero

solution inFn
r , By Lemma 2.9, there exists aq-ary [n, n/2, n/2 + 1]-MDS self-dual code.

As n− 1 is a divisor ofq − 1, by Example 2.7, we can findn distinct elementsα1, α2, . . . , αn of Fq such that the system

Aax = 0 has a nonzero solution inFn
r . Thus, Case (ii) follows from Lemma 2.9. This completes the proof.

Theorem 3.5:Let q = r2 andr ≡ 3 mod 4, then there exists aq-ary [2tr, tr, tr + 1]-MDS self-dual code for any1 ≤ t ≤
(r − 1)/2.

Proof: Label elements ofFr by {a1, a2, . . . , ar}. Assume thatγ is a primitive element ofFq and letβ = γ(r+1)/2.

Put n = 2tr andαℓr+k = aℓβ + ak for all 1 ≤ ℓ ≤ 2t and 1 ≤ k ≤ r. By Corollary 2.4(i), it is sufficient to show that
∏

1≤j≤n,j 6=i(αi − αj)
−1 is a square ofFq for all 1 ≤ i ≤ n.

Write i = ℓ0r + k0 for some1 ≤ ℓ0 ≤ 2t and1 ≤ k0 ≤ r. Then

vℓ0 :=
∏

ℓ0r+1≤j≤ℓ0r+r,j 6=ℓ0r+k0

(αℓ0r+k0
− αj) =

∏

1≤j≤r,j 6=k0

(ak0
− aj) ∈ Fr. (III.2)

Thus,vℓ0 is a square inFq since it is an element ofFr. Furthermore, forℓ 6= ℓ0, we have

vℓ :=
∏

ℓr+1≤j≤ℓr+r

(αℓ0r+k0
−αj) =

∏

1≤j≤r

((aℓ0 − aℓ)β+ ak0
− aj) = ((aℓ0 − aℓ)β)

r − (aℓ0 − aℓ)β = (aℓ0 − aℓ)β(β
r−1 − 1).

(III.3)

This implies thatvℓ is a square inFq as well sinceaℓ0 − aℓ andβr−1 − 1 = −2 are elements ofFr andβ = γ(r+1)/2 is a

square. Our result follows from the fact that
∏

1≤j≤n,j 6=i(αi − αj)
−1 =

∏2t
ℓ=1 v

−1
ℓ .
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