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On Secrecy Capacity of Minimum Storage Regenerating Codes ⋆

Kun Huang1, Udaya Parampalli2, and Ming Xian1

Abstract. In this paper, we revisit the problem of characterizing the secrecy capacity of minimum
storage regenerating (MSR) codes under the passive (l1, l2)-eavesdropper model, where the eaves-
dropper has access to data stored on l1 nodes and the repair data for an additional l2 nodes. We
study it from the information-theoretic perspective. First, some general properties of MSR codes
as well as a simple and generally applicable upper bound on secrecy capacity are given. Second, a
new concept of stable MSR codes is introduced, where the stable property is shown to be closely
linked with secrecy capacity. Finally, a comprehensive and explicit result on secrecy capacity in the
linear MSR scenario is present, which generalizes all related works in the literature and also predicts
certain results for some unexplored linear MSR codes.
Key Words: MSR Codes, Repair Data, Secrecy Capacity, Upper Bounds.

1 INTRODUCTION

Distributed storage systems (DSSs) are an essential part of large scale data storage systems required for
many new emerging distributed networking applications such as social networking, video sharing, peer
to peer networking and large scale data centres. As is common in such storage systems, redundancy is
indispensably introduced to ensure reliability and availability owing to frequent node failures. The main
approaches to introduce redundancy in DSSs are through replication, erasure codes, and more recently
using regenerating codes [7]. Erasure codes in general can achieve higher reliability for the same level of
redundancy when compared to the schemes that provide replication [6]. Regenerating codes are a recent
innovation of erasure codes that has efficient performance on repair of failed nodes in DSSs [8].

1.1 Regenerating Codes.

Regenerating codes [7] are a family of maximal distance separable (MDS) codes determined by a tradeoff
between the amount of storage per node and the repair bandwidth. In the framework of regenerating
codes, an encoded data file is split into nα symbols and then dispersed across n nodes, where all the
symbols are drawn from a finite field Fq and each node stores a collection of α symbols. The dispersing
manner requires that any data collector can retrieve the original data message by connecting to any k
out of n nodes. The node repair can be accomplished by permitting a new node to connect to any d
helper nodes from the surviving (n − 1) nodes by downloading β ≤ α symbols from each node. In the
literature, a regenerating code is represented by a parameter set {n, k, d, α, β,B}, where B is the size of
original data message and dβ is the total amount of data transferred for node repair that is termed repair
bandwidth.

The cut-set bound based on the concept of information flow [4] requires that the parameters of a
regenerating code must necessarily satisfy:

B ≤
k∑

i=1

min{α, (d− i+ 1)β}. (1)
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In [7], Dimakis et al derive the above tradeoff between the per node storage α at each node and repair
bandwidth dβ. The codes that can achieve this tradeoff curve are called optimal regenerating codes. Two
extreme points on this tradeoff curve are of particular concern, namely, minimum bandwidth regenerating
(MBR) point and minimum storage regenerating (MSR) point, respectively representing codes with the
least repair bandwidth and ones with the least per node storage. As shown in [7], the parameters of MBR
and MSR codes are given by:







(αMSR, βMSR) = (
B

k
,

B

k(d− k + 1)
)

(αMBR, βMBR) = (
2dB

k(2d− k + 1)
,

2B

k(2d− k + 1)
)

(2)

In the literature, three repair models are considered: functional repair, exact repair, and exact repair of
systematic nodes [8]. Exact repair can regenerate the exact replicas of the lost data in the failed nodes
and thus is preferred in practical systems [5]. In the exact repair scenario, Shah et al in [9] demonstrate
that most interior points on the storage-bandwidth tradeoff curve are not achievable. For those possibly
reachable interior points, constructions of codes are rare [12,13]. In addition, Duursma in [10,11] derive
some new outer bounds for regenerating codes with exact repair.

Up to now, several constructions with the exact repair property for MBR and MSR codes have
been proposed. In [15], Rashmi et al employ product matrix to construct MBR codes for all parameters
and MSR codes with {d ≥ 2k − 2}. In the MSR scenario, significant progress have been made. From
the overall perspective, there are two classes of MSR codes, i.e., the scalar MSR codes with {β = 1}
[15,16,17,18,19,20] and vector MSR codes with {β = (n− k)x} where x ≥ 1 [21,22,23,24,25,26,27,28,29].
Many of these constructions are established on interference alignment. As explained in [20], interference
alignment is the necessity of constructing linear scalar MSR codes and these linear scalar MSR codes
only exist when d ≥ 2k − 2. From another point of view, this existing restriction exactly corresponds to
the low rate regime, i.e., k

n
≤ 1

2n + 1
2 . As for the high rate codes with { k

n
> 1

2}, vector MSR codes are
available as they are free from the parameter constraints of (n, k). However, many of these vector codes
only allow efficient repair of systematic nodes [23,24,25,26,27,28,29], such as Zigzag codes [23]. In [21,22],
the authors present vector MSR codes allowing efficient repair for parity nodes as well, where the code
given in [21] is a variant of Zigzag code.

In addition to repair efficiency, there are many other design features required by DSSs such as security
[30,31,32,33,34,35], local-repairability [33,38,39,40], optimality of updating [23,28,29], etc. Our concern in
this paper is on securing DSSs against eavesdroppers attempting to obtain any knowledge of the original
data.

1.2 Secure Regenerating Codes.

Since the nodes of DSSs are widely spread across the network, individual nodes may be compromised and
as a result the data stored is vulnerable to eavesdropping. There are mainly two kinds of attacker models
considered in the literature: passive eavesdropper model and active eavesdropper model [3]. Compared
to the former, active eavesdropper can modify the data or even inject new data into the compromised
nodes. Our eavesdropper model considered in this paper is the passive one as given in [31]. In this model,
eavesdropper has access to the data stored on l1 nodes as well as the repair data for an additional l2
nodes. Here, we only consider the situation of exact repair1.

Related work: The issue of designing secure regenerating codes against eavesdropping was firstly
addressed in [30] and [31]. The authors in [30] considered the initial setting that an eavesdropper observes
the contents of l < k nodes of the storage system, and analyzed the regenerating code’s secrecy capacity

1 Functional repair scheme requires ceaselessly updating the data stored in nodes undergoing repair, which
may leak substantial linear combinations of data to eavesdroppers and enable the eavesdroppers to retrieve
the original data just by solving the linear equations. This is another reason why exact repair is superior to
functional repair.
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(i.e., the maximal file size that can be securely stored). An upper bound of the secrecy capacity and a
secure MBR code that can attain this bound are proposed in [30]. Extending the initial eavesdropper
setting [30], authors in [31] modeled the eavesdropper as one obtaining access to the data stored on l1
nodes as well as the repair data for an additional l2 nodes, with l1 + l2 < k. The secure product-matrix-
based MBR coding scheme proposed in [31] can achieve the bound derived in [30] with l = l1 + l2.
Achievability of the bound for secure product-matrix-based MBR codes in [31] can be attributed to the
fact that the repair bandwidth dβ equals to per node storage α in the MBR scenario. In other words, the
(l1, l2)-eavesdropper cannot obtain any extra information other than the contents of l = l1 + l2 nodes in
the MBR scenario. Hence, under the (l1, l2)-eavesdropper model, the upper bound in [30] still holds for
the secure file size B(s) of MBR codes:

B(s) ≤
k∑

i=l+1

min{α, (d− i+ 1)β}, (3)

where l = l1 + l2. Authors in [31] further considered the design of secure MSR codes based on product-
matrix codes, but the secure MSR coding scheme is only capable of storing (k − l1 − l2)(α − l2β)-sized
secure files, which reaches the bound (3) only when l2 = 0. The intuition here indicates that the (l1, l2)-
eavesdropper can obtain more information than the contents of (l1 + l2) nodes in the MSR scenario, as
the repair bandwidth dβ is larger than α = (d − k + 1)β that is the amount of data stored on each of
those l2 nodes. As mentioned in [31], it was unknown yet whether such a secure MSR code is still optimal
when l2 ≥ 1. Since then, characterization of the secrecy capacity for MSR codes is considered to be open
under (l1, l2 > 0)-eavesdropper model.

Recently, the authors in [32] and [33] employ the technique of linear subspace intersection and then
derive new upper bounds on secrecy capacity for linear MSR codes. Zigzag code [23] and its variant [21]
are shown to achieve these bounds through pre-coding of maximum rank distance (MRD) code [36,37].
The bound given in [33] auxiliarily implies that the product-matrix-based secure MSR code proposed in
[31] is also optimal for l2 = 1. Regarding the bound given in [32], it is actually an extension of the one in
[33], since the bound in [32] matches to that in [33] when l2 ≤ 2.

In another parallel research area, towards two separate eavesdropper models with (l1, l2 = 0) and (l1 =
0, l2), the authors in [34] study the secure storage-vs-repair-bandwidth tradeoff, where they respectively
derive new outer bounds on secrecy capacity for a general parameter set and some specific parameter sets.
Therein, they show that in the presence of (l1 = 0, l2)-eavesdropper, these new bounds strictly improve
upon the existing cutset-based bounds presented in [30] and the MBR point is the only efficient point that
can achieve these specific-parameter-based bounds. Under the above background of (l1, l2)-eavesdropper
model, our focus herein is dedicated to studying the secrecy capacity solely at the MSR point2.

Contributions: In this work, we first carefully review the method of determining regenerating codes
considered in [7] and the information-theoretic technique used in [9]. Therein, we find that the α symbols
stored in any node or the β symbols contained in any single set of repair data for the optimal regenerating
codes are in fact mutually independent and uniformly distributed inside themselves. It not only indicates
that entropy of any symbol involved reaches the maximal value 1, but also signifies that entropy of the
α symbols in any node and entropy of the β symbols in any single repair data all attain the maximal-
integer-value α and β respectively. Thereafter, we recognize that the concepts of uniform distribution
and independence between symbols in information theory [1] exactly correspond to those of permutation
polynomial and orthogonal system in finite fields [2] respectively. Using these two theories in finite fields,

2 It is shown in [34] that for certain parameters, secure codes operating at the MBR points actually have better
“storage” (i.e., the maximal file size that can be securely stored, or just termed secrecy capacity) rate than
codes operating at the MSR points. In this sense, it appears that secure MSR codes lose the feature of optimal
storage, while the original notion of MSR codes under the non-secure setting shall be optimal in storage rate
as displayed in [7]. Throughout this paper, we still use the term MSR points (or codes) to only signify the fact
that α and β satisfy the relationship α = (d− k+1)β like the MBR points termed in [34] that require α = dβ.
Essentially, each node in the secure MSR codes still stores αMSR symbols and transmits βMSR symbols for
repairing failed nodes, which just need to replace with some randomness.
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we demonstrate that the joint entropy of symbols included in multiple sets of repair data in the nonlinear
context may be a non-integer value while it must be an integer in the linear context, which will be used
to investigate the secrecy capacity of linear MSR codes.

Then, we turn to study the inherent features of MSR codes from the information-theoretic perspective,
where the data stored in storage nodes and transferred by helper nodes during repair are considered as
random variables. Based on the basic reconstruction and regeneration properties of MSR codes with
{n = d+1, k, d, α, β}, we derive two useful properties: (i) the repair data sent from disjoint sets of nodes
to a failed node are mutually independent, and (ii) given the contents of a node and the repair data from
any k − 1 nodes, the repair data from the remaining d − k + 1 nodes are deterministic. Combining the
two new properties with a universal upper bound on secrecy capacity for any optimal regenerating code
with {n = d+1, k, d, α, β}, we derive a simple and generally applicable upper bound on secrecy capacity
for any MSR code with {n = d + 1, k, d, α, β}. As for the MSR codes with {n > d + 1, k, d, α, β}, we
introduce a new concept of “stable” MSR codes, which require that repair data transmitted from any
node i to any failed node j is independent of the choice of the set of helper nodes including the same
node i. Therein, we show this stable property is the equivalent condition of secrecy capacity between any
MSR code with {n > d + 1, k, d, α, β} and its truncated one with {n = d + 1, k, d, α, β}. It should be
noted that the product-matrix-based MSR code given in [15] is a stable MSR code.

Finally, we converge back to the linear MSR codes with parameter set {n = d + 1, k, d, α, β}, where
those aforementioned upper bounds on secrecy capacity actually can always be achieved through the
pre-coding of maximum rank distance (MRD) code [36,37] as applied in [33,35]. Based on the fact that
joint entropy of multiple sets of repair data is an integer, we fully characterize the secrecy capacity of
linear MSR codes in the category where 1 ≤ β < d−k+1

l2−1 . A consequence of this result when β = 1
naturally establishes the optimality of product-matrix-based secure MSR codes whenever l1 + l2 ≤ k − 1
and l2 ≤ min{k− 1, d− k+ 1}, which completely resolves the question raised in [31]. Note that product-
matrix-based MSR code given in [15] is a scalar MSR code, i.e., it is built on β = 1. In the other
category where β ≥ d−k+1

l2−1 , we give new upper bounds on secrecy capacity, which are in fact improved
generalization of the results given in [32,33]. Thereafter, we find that all the aforementioned results also
apply to systematic MSR codes with only repair data of systematic nodes eavesdropped. By putting all
together, we eventually present a comprehensive and explicit result on secrecy capacity for linear MSR
codes, which closely depends on the value of β. This final outcome also predicts certain results on secrecy
capacity for some unexplored linear MSR codes. As an illustration and comparison, Table 1 summaries
the study progresses on secrecy capacity for linear MSR codes, wherein it should be noted that the bound
in [34] cannot be reached for MSR codes.

Table 1. Secrecy Capacity of Linear MSR Codes under (l1, l2)-Eavesdropper Model

Citation Corresponding Results

Pawar et al[30] B(s)
≤ (k − l1 − l2)α, optimal only when l2 = 0

Tandon et al [34] B(s)
≤ (k − l2)(1−

1
d
)α, for n = d+ 1, l1 = 0 and 1 ≤ l2 < k

Shah et al [31] B(s) = (k − l1 − l2)(α− l2β), for product-matrix-based MSR codes

Rawat et al[33] B(s)
≤ (k − l1 − l2)

(
α− θ(β, l2)

)
, where θ(β, l2) =







β, for l2 = 1

2β −
β

d+ 1− k
, for l2 = 2

Goparaju et al[32] B(s)
≤ (k − l1 − l2)(1−

1
n−k

)l2α, where n = d+ 1

B
(s) = (k − l1 − l2)

(
α− π(β, l2)

)

︸ ︷︷ ︸
, wherein

This paper π(β, l2):

{
= l2β, if l2 ≤ t, β < d−k+1

t−1
;

≥ tβ + β(d− k − t+ 1)
[
1− ( d−k

d−k+1
)e
]
, if l2 = t+ e, d−k+1

t
≤ β < d−k+1

t−1
,

where 1 ≤ t ≤ d− k + 1 and e ≥ 1. This also can be referenced from our formula (71)
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Organization: Section 2 gives preliminaries consisting of some basic definitions in information theory,
notation used in this paper, some results from theory of finite field and a universal upper bound under the
(l1, l2)-eavesdropper model. Section 3 presents some new results for general MSR codes mainly including
some general properties, some generally applicable upper bounds on secrecy capacity and the new concept
of stable MSR codes. Section 4 exhibits the comprehensive and explicit result on secrecy capacity for linear
MSR codes. Section 5 concludes this paper.

2 PRELIMINARIES

In this section, some basic concepts related to information theory are quoted, which will be used in
high frequency later. Then, we describe the system model of MSR codes from the information-theoretic
perspective. Subsequently, we introduce the theory on permutation polynomial in finite fields, which can
be regarded as a new way to understand the construction of optimal regenerating codes. At last, we
present a universal upper bound on secrecy capacity under the (l1, l2)-eavesdropper model.

2.1 Information Entropy

Definition 1. [1](Entropy of A Random Variable X): The entropy of a discrete random variable X with
probability distribution pX(x) is

H(X) = −
∑

x

p(x) log p(x). (4)

The entropy measures the expected uncertainty in X. It must be that H(X) ≥ 0, meaning entropy is
always non-negative and H(X) = 0 iff X is deterministic. In addition, when X is uniformly distributed
(i.e., p(x) = 1

q
where q is the total number of the events of X), H(X) achieves the maximum value

log q. Normally, the base of logarithm can be specified to q. In this case, it must be that H(X) ≤ 1 and
H(X) = 1 iff X is uniformly distributed.

Definition 2. [1](Joint Entropy and Conditional Entropy): Joint entropy between two random variables
X and Y , and conditional entropy of Y given a random variable X are respectively







H(X,Y ) = −Ep(x,y)[log p(X,Y )] = −
∑

x

∑

y

p(x, y) log p(x, y)

H(Y |X) = −Ep(x,y)[logp(Y |X)] = −
∑

x

p(x)H(Y |X = x)
(5)

Besides, joint and conditional entropy provide a natural calculus: H(X,Y ) = H(X) +H(Y |X).

Definition 3. [1](Mutual Information and Conditional Mutual Information): The mutual information
between X and Y , and the conditional mutual information between X and Y given another random
variable Z are respectively given by:

{

I(X ;Y ) = H(X)−H(X |Y )

I(X ;Y |Z) = H(X |Z)−H(X |Y, Z)
(6)

Definition 4. [1](Chain Rules): Chain rules for entropy and mutual information are:






H(X1, · · · , Xn) =

n∑

i=1

H(Xi|Xi−1, · · · , X1)

I(X1, · · · , Xn;Y ) =

n∑

i=1

I(Xi;Y |Xi−1, Xi−2, · · · , X1)

(7)

Lemma 1. Based on these definitions of information entropy, we naturally have

I(X ;Y |Z) = I(Y ;X |Z) ≤ min{H(X), H(Y )}. (8)
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2.2 Notation

We follow the information-theoretic approach introduced in [9] and accordingly treat all data symbols
including data stored at the storage nodes and those transferred by helper nodes during the repair
operations as random variables.

Note 1 Throughout the paper, we mainly consider the situation of MSR code with parameter set {n = d+
1, k, d, α, β}, because any upper bound on the data file that can be securely stored for any secure MSR code
with {n = d+ 1, k, d, α, β} also holds for the corresponding secure MSR code with {n > d+ 1, k, d, α, β}.
In Section 3.3, we will establish the equivalent condition of secrecy capacity between any MSR code with
{n > d+ 1, k, d, α, β} and its truncated one with {n = d+ 1, k, d, α, β}.

We represent nodes using indices 1 to n and denote the sequence of nodes [i, i + 1, · · · , j] by [i, j],
where i < j. We use symbols for a set {. . .} and a sequence [. . .] interchangeably. For any regenerating
code with parameter set {n = d+ 1, k, d, α, β}, we let

� (1). Wi, i ∈ [1, d+1] denote the random variable corresponding to the content of node i. As proved
in [9], it must be that H(Wi) = α for any optimal regenerating code including MSR codes.

� (2). {WA, A ⊆ [1, d + 1]} denote the set of random variables corresponding to the nodes in the
subset A. Throughout the paper, subscripts of W can represent either a node index or a set of nodes
which will be clear from the context.

� (3). Sj
i , {i, j} ∈ [1, d+1], i 6= j denote the random variable corresponding to the data symbols sent

by the helper node i to the replacement of the failed node j. It must be that H(Sj
i ) = β for any optimal

regenerating code including MSR codes, following from [9].
� (4). SB

A denote the set {Sj
i |i ∈ A, j ∈ B, i 6= j, A ⊆ [1, d + 1], B ⊆ [1, d+ 1]}, and particularly SB

substitutes for SB
[1,d+1].

According to the above notation, reconstruction as well as regeneration property of any regenerating
code can be expressed as

{

H(Wi1 ,Wi2 , · · · ,Wik) = kα, ij ∈ [1, d+ 1], j ∈ {1, . . . , k}

H(Wi|S
i
{[1,d+1]\i}) = 0, i ∈ [1, d+ 1]

(9)

2.3 Permutation Polynomials

As shown in [7], α represents the number of symbols stored in each node and β corresponds to the
number of symbols downloaded from a surviving node to repair a failed node. Note that the entropy of
each symbol cannot be greater than 1 and may not be an integer. Thus, it can only be that H(Wi) ≤ α
and H(Sj

i ) ≤ β. Subsequently, under the context of optimal regenerating codes, Shah et al in [9] employ

information theory to derive that H(Wi) = α and H(Sj
i ) = β, which implies that each symbol contained

in each node and repair data actually reaches the maximum entropy 1, i.e., each symbol is uniformly
distributed inside itself. Besides, it also means that the symbols included in the same node i and same
repair data Sj

i are mutually independent respectively. Although each symbol included in any repair data

Sj
i has the uniform distribution and Sj

i also has the maximal entropy β, the joint entropy H(Sj1
i , Sj2

i )
may not be an integer where j1 6= j2 as illustrated in the following.

We let (yi1, y
i
2, · · · , y

i
α) denote the α symbols stored in node i, where H(yil) = 1 for any l ∈ [1, α]. In

addition, we let (z
(i,j1)
1 , z

(i,j1)
2 , · · · , z

(i,j1)
β ) and (z

(i,j2)
1 , z

(i,j2)
2 , · · · , z

(i,j2)
β ) be the β symbols contained in

the repair data Sj1
i and Sj2

i respectively, where H(z
(i,j1)
l ) = H(z

(i,j2)
l ) = 1 for l ∈ [1, β]. Now consider the

joint entropy

H(Sj1
i , Sj2

i ) = H
(
z
(i,j1)
1 , z

(i,j1)
2 , · · · , z

(i,j1)
β , z

(i,j2)
1 , z

(i,j2)
2 , · · · , z

(i,j2)
β

)
. (10)

In a finite field Fq, any mapping τ : Fn
q → Fq can be represented by a polynomial over Fq of degree

< q in each “indeterminate” through Lagrange Interpolation [2]. Since all the symbols contained in
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node i are uniformly distributed inside themselves and mutually independent, they can be regarded as
“indeterminates”. So, we let







z
(i,j1)
1 = ḟ1(y

i
1, y

i
2, · · · , y

i
α)

z
(i,j1)
2 = ḟ2(y

i
1, y

i
2, · · · , y

i
α)

...

z
(i,j1)
β = ḟβ(y

i
1, y

i
2, · · · , y

i
α)

(11)

and 





z
(i,j2)
1 = f̈1(y

i
1, y

i
2, · · · , y

i
α)

z
(i,j2)
2 = f̈2(y

i
1, y

i
2, · · · , y

i
α)

...

z
(i,j2)
β = f̈β(y

i
1, y

i
2, · · · , y

i
α),

(12)

where (ḟ1, ḟ2, · · · , ḟβ) and (f̈1, f̈2, · · · , f̈β) represent the polynomials induced by the symbols contained

in repair data Sj1
i and Sj2

i respectively. In [2], there are two special concepts introduced as follows.

Definition 5. [2](Permutation Polynomial): A polynomial f ∈ Fq[x1, · · · , xn] is called a permutation
polynomial in n indeterminates over Fq if the equation f(x1, · · · , xn) = a has qn−1 solutions in F

n
q for

each a ∈ Fq.

According to Definition 5, we know that each value a ∈ Fq will be taken in the same probability

( q
n−1

qn
= 1

q
) by a permutation polynomial. From this point, permutation polynomial exactly corresponds

to uniform distribution in information theory (Definition 1). Due to that H(z
(i,j1)
l ) = H(z

(i,j2)
l ) = 1

for any l ∈ [1, β], we know that (ḟ1, ḟ2, · · · , ḟβ , f̈1, f̈2, · · · , f̈β) all are permutation polynomials. Here, it
should be noted that permutation polynomials are not necessarily linear polynomials in finite fields while
linear polynomials apparently are permutation polynomials.

Definition 6. [2](Orthogonal System): A system of polynomials f1, · · · , fm ∈ Fq[x1, · · · , xn] where 1 ≤
m ≤ n is said to be orthogonal in Fq, if the system of equations







f1(x1, · · · , xn) = a1

...

fm(x1, · · · , xn) = am

(13)

has qn−m solutions in F
n
q for each (a1, · · · , am) ∈ F

m
q .

According to Definition 6 and Definition 2, we know that (ḟ1, ḟ2, · · · , ḟβ) and (f̈1, f̈2, · · · , f̈β) re-

spectively constitute two orthogonal systems, since H(Sj1
i ) = H(Sj2

i ) = β. Similarly, it follows that

H(Sj1
i , Sj2

i ) = 2β if and only if the 2β polynomials (ḟ1, ḟ2, · · · , ḟβ , f̈1, f̈2, · · · , f̈β) can form an orthogonal
system.

However, if there exist two different polynomials ḟl1 and f̈l2 for some l1, l2 ∈ [1, β] that cannot form an

orthogonal system, the joint entropy of the corresponding symbols H(z
(i,j1)
l1

, z
(i,j2)
l2

) will be a non-integer,

which may result in that all the symbols of repair data S
{j1,j2}
i also have the non-integer joint entropy.

Note that multiple permutation polynomials may not form an orthogonal system while each polynomial
in an orthogonal system must be a permutation polynomial.

Nevertheless, in the linear context, the joint entropy of the symbols contained in SA
i must be an

integer, where i /∈ A and A is any subset of [1, d+ 1].

7



Lemma 2. In the scenario of linear optimal regenerating codes, the symbols contained in SA
i must have

integer-value entropy, where i ∈ [1, d+ 1], A ⊂ [1, d+ 1] and i /∈ A.

Proof. Assume all the m = |A| · β symbols in SA
i can be represented as

{f1(x1, x2, · · · , xα), f2(x1, x2, · · · , xα), · · · , fm(x1, x2, · · · , xα)}, (14)

where (x1, x2, · · · , xα) are the α symbols stored in node i and fl denotes the linear polynomial for
l ∈ [1,m]. Then, we let







f1(x1, x2, · · · , xα) = a11x1 + a12x2 + · · ·+ a1αxα

f2(x1, x2, · · · , xα) = a21x1 + a22x2 + · · ·+ a2αxα

...

fm(x1, x2, · · · , xα) = am1x1 + am2x2 + · · ·+ amαxα,

(15)

where all the coefficients are drawn from Fq. Equation (15) can be alternatively expressed as

(f1, f2, · · · , fm)T = C · (x1, x2, · · · , xα)
T , (16)

where T indicates the transpose operation and C denotes the generator matrix.

Since (f1, f2, · · · , fm) are linear combinations of a set of uniformly distributed random variables,
then they all are uniformly distributed and they are either mutually independent, or some of them are
determined by the remaining of them. In fact, the value of H(SA

i ) is equal to the rank of C, which we
denote by r(C).

1. When m ≤ α and r(C) = m, the row vectors of C are linearly independent. Then, for each
vector value (b1, b2, · · · , bm) ∈ F

m
q , equation (15) has qα−m solutions in F

α
q . Thus, each vector value

(b1, b2, · · · , bm) will occur in equally probability qα−m

qα
= 1

qm
. So, the polynomials (15) form an orthogonal

system. In this case, we can calculate that H(SA
i ) = m = r(C) according to Definition 2.

2. When r(C) < m, the row vectors of C are not linearly independent, which implies r(C) chosen
linearly independent polynomials fl will determine the values of the remaining m − r(C) polynomials.
Although the whole polynomials (15) cannot form the orthogonal system, the r(C) linearly independent
polynomials still forms an orthogonal system. Similar to the above case, entropy of these r(C) linearly
independent polynomials is equal to r(C). Thereby, we have

H(SA
i ) = H(f1, f2, · · · , fm) = H(fl1 , fl2 , · · · , flr(C)

) = r(C), (17)

where
{
fl1 , fl2 , · · · , flr(C)

}
are the r(C) chosen linearly independent polynomials.

Hence, both cases indicate that H(SA
i ) = r(C), while r(C) must be an integer since it represents the

rank of C.

Remark 1 In this lemma, theories of permutation polynomial and orthogonal system are used to demon-
strate that the joint entropy of symbols included in multiple sets of repair data in the nonlinear context
may be a non-integer value while their joint entropy has to be an integer in the linear context, which is
important for the later discussion on secrecy capacity of linear MSR codes.

Additionally, it is of independent interest that these two theories in finite fields are also applicable to
the nonlinear context, because they may be utilized to explore the case of constructing nonlinear optimal
regenerating codes. That is beyond the scope of this paper though. In this paper, we mainly study the
secrecy capacity of linear MSR codes, while some new insights on general MSR codes are also present.
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2.4 A Universal Upper Bound

◮Eavesdropper Model: Let E be a set of l1 nodes which the eavesdropper has access to, and F be
another disjoint set of l2 nodes whose repair data can be observed by the eavesdropper. In other words,
the eavesdropper is assumed to have the knowledge of {WE , S

F }. Furthermore, we assume l1 + l2 < k,
otherwise the eavesdropper can retrieve all the data message. Due to this eavesdropper model, we set G
to be another subset G ⊆

{
[1, d + 1] \ (E ∪ F )

}
of size (k − l1 − l2). Based on this model, a universal

upper bound on the secrecy capacity of any optimal regenerating code is given as follows.

Lemma 3. For any secure optimal regenerating code with {n = d+ 1, k, d, α, β}, we have







B(s)

≤ H(WE ,WF ,WG|WE , S
F )

= H(WG|WE ,WF )−H(SF |WE ,WF )

=

k∑

i=l1+l2+1

min{α, (d− i+ 1)β} −H(SF |WE ,WF )

(18)

Proof. First, in secure regenerating codes [31,32,33], the random variables associated with the message
can be viewed as the tuple (D,R), where D corresponds to the actual data file and R corresponds to
the randomness added. The secure file size is B(s) = H(D) and the secrecy condition requires that
I(D;WE , S

F ) = 0. Thus, it must be that







H(D)

= H(D)− I(D;WE , S
F )

= H(D|WE , S
F )

≤ H(D,R|WE , S
F )

= H(WE ,WF ,WG|WE , S
F ),

(19)

where the equation in the last step follows from the reconstruction property.
Second, we have







H(WG|WE ,WF )−H(WE ,WF ,WG|WE , S
F )

= H(WG|WE ,WF )−H(WE ,WF ,WG|WE ,WF , S
F )

= H(WG|WE ,WF )−H(WG|WE ,WF , S
F )

= I(WG;S
F |WE ,WF )

= H(SF |WE ,WF )−H(SF |WE ,WF ,WG)

= H(SF |WE ,WF ),

(20)

where the regeneration property leads to H(SF ) = H(SF ,WF ) that is used in the first step.
At last, for the optimal regenerating codes, it follows from the proof of property 1 in [9] that

H(WG|WE ,WF ) =

k∑

i=l1+l2+1

min{α, (d− i+ 1)β}. (21)

Remark 2 In the context of linear regenerating codes, MRD (Maximum Rank Distance) codes [36] (e.g.
Gabidulin code [37]) can be used to pre-code the original data of size {B = kα}, which is required to
consist of {B −H(WE , S

F )}-sized actual data file D and H(WE , S
F )-sized random data R. It should be

noted that H(WE , S
F ) is also an integer as derived in Lemma 2, because {WE , S

F} are obtained by the
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linear combinations of the original data message of size B. As shown in [33,35], this kind of secure code
construction always can meet the secrecy condition that I(D;WE , S

F ) = 0. It exactly means the maximal
file size that can be securely stored is

B(s) = B −H(WE , S
F ) = H(WE ,WF ,WG|WE , S

F ). (22)

In the MSR scenario, it is obvious that H(WG|WE ,WF ) = H(WG) = (k − l1 − l2)α, following from
property 2 in [9]. Thus, we only need to concentrate on the term H(SF |WE ,WF ) in this paper.

3 DATA SECRECY FOR GENERAL MSR CODES

In this section, we give some general properties of MSR codes and a simple expression of upper bound on
secrecy capacity, which will be leveraged throughout this paper. Afterwards, stable MSR code as a new
concept is introduced, where the stable property will be shown to be closely linked with secrecy capacity.

3.1 Properties of General MSR Codes

Here, we proceed to provide some new properties of general MSR codes (including the nonlinear context),
which actually stem from the reconstruction and regeneration properties of MSR codes. With these
properties, we can further simplify the formulation H(SF |WE ,WF ) mentioned above.

Lemma 4. In the scenario of MSR codes with parameter set {n = d+ 1, k, d, α, β}, for any node i with
efficient repair, consider two arbitrary subsets A′ and B′ such that {|A′| = k−1, |B′| = d−k+1, A′∩B′ =
∅, A′ ∪B′ = [1, d+ 1] \ i}, it must be that

{
H(Si

A′∪B′) = dβ
H(Si

B′ |Wi, S
i
A′) = 0.

(23)

Proof. Without loss of generality, we assume i = 1. The proof is given in two steps as follows.
1. According to the Property 2 in [9], it is trivial that I(W1;WA′) = 0 in the MSR scenario, which

leads to H(W1|S1
A′) = α.

2. We set B′ = (b1, b2, · · · , bd−k+1). Due to the repair property, it must be that H(W1|S1
A′ , S1

B′) = 0.
Next, some key inequalities are present from Lemma 1:







H(W1|S
1
A′)−H(W1|S

1
A′ , S1

b1
)

= I(W1;S
1
b1
|S1

A′)

= H(S1
b1
|S1

A′)−H(S1
b1
|W1, S

1
A′)

≤ β;

H(W1|S
1
A′ , S1

b1
)−H(W1|S

1
A′ , S1

b1
, S1

b2
)

= I(W1;S
1
b2
|S1

A′ , S1
b1
)

= H(S1
b2
|S1

A′ , S1
b1
)−H(S1

b2
|W1, S

1
A′ , S1

b1
)

≤ β;

...

H(W1|S
1
A′ , S1

b1
, S1

b2
, · · · , S1

bd−k
)−H(W1|S

1
A′ , S1

B′)

= I(W1;S
1
bd−k+1

|S1
A′ , S1

{B′\bd−k+1}
)

= H(S1
bd−k+1

|S1
A′ , S1

{B′\bd−k+1}
)−H(S1

bd−k+1
|W1, S

1
A′ , S1

{B′\bd−k+1}
)

≤ β.

(24)
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By summing up the left side of the inequalities, we derive

α = H(W1|S
1
A′)−H(W1|S

1
A′ , S1

B′) ≤ (d− k + 1)β. (25)

Because α = (d− k+ 1)β, it is mandatory that all the inequalities (24) actually are equations. Thus, for
any j ∈ [1, d− k + 1], we have

{

H(S1
bj
|S1

A′ , S1
{b1,··· ,bj−1}

) = β

H(S1
bj
|W1, S

1
A′ , S1

{b1,··· ,bj−1}
) = 0,

(26)

from which we can derive






H(S1
A′∪B′)

= H(S1
A′) +H(S1

B′ |S1
A′)

= (k − 1)β +

j=d−k+1
∑

j=1

H(S1
bj
|S1

A′ , S1
{b1,··· ,bj−1}

)

= (k − 1)β + (d− k + 1)β

= dβ

(27)

and 





H(S1
B′ |W1, S

1
A′)

=

j=d−k+1
∑

j=1

H(S1
bj
|W1, S

1
A′ , S1

{b1,··· ,bj−1}
)

= 0

(28)

Remark 3 This lemma exhibits the special properties of MSR codes. H(Si
A′∪B′) = dβ means any repair

data from disjoint sets of nodes upon failure of node i are mutually independent. H(Si
B′ |Wi, S

i
A′) = 0

implies that given the contents of node i and the repair data from any k − 1 nodes, the repair data from
the remaining d− k + 1 nodes are deterministic.

Lemma 5. In the MSR scenario with {n = d+ 1, k, d, α, β}, we have

H(SF |WE ,WF ) = H(SF
G), (29)

where E, F and G are pairwise disjoint sets as defined in Section 2.4 and |E ∪F ∪G| = k. Furthermore,
when E = ∅, we still have H(SF |WF ) = H(SF

G), where |F ∪G| = k.

Proof. Assume all the d+1 nodes are comprised of E,F,G and T , where |E∪F∪G| = k and |T | = d−k+1.
Thereby, we have







H(SF |W{E,F})

= H(SF
{E,F,G,T}|W{E,F})

= H(SF
{G,T}|W{E,F})

= H(SF
G |W{E,F}) +H(SF

T |W{E,F}, S
F
G).

(30)

Then, due to the condition |(E,F,G) \ i| = k − 1, Lemma 4 leads to that for any i ∈ F ,






H(Si
T |W{E,F}, S

F
G)

≤ H(Si
T |W{E,F}, S

i
G)

= H(Si
T |Wi,W{(E,F )\i}, S

i
G)

≤ H(Si
T |Wi, S

i
{(E,F )\i}, S

i
G)

= H(Si
T |Wi, S

i
{(E,F,G)\i})

= 0,

(31)
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from which we derive H(SF
T |W{E,F}, S

F
G) = 0.

Still by the Property 2 in [9], it has to be that H(SF
G |WE ,WF ) = H(SF

G), since |E ∪ F ∪ G| = k.
Hence, we obtain the proof. In addition, the above deduction is obviously applicable to the situation
when E = ∅.

Remark 4 Combining this lemma with Lemma 3, we have

B(s) ≤ (k − l1 − l2)α−H(SF
G). (32)

In particular, for the linear MSR codes, this upper bound can always be achieved (as in Remark 2).
Moreover, the equation H(SF |WF ) = H(SF

G) promotes the next result.

Lemma 6. In the MSR scenario with {n = d+1, k, d, α, β}, for any subset F such that |F | ≤ k− 1, and
arbitrary different i1, i2 where i1, i2 /∈ F , we have H(SF

i1
) = H(SF

i2
).

Proof. According to Lemma 5, we obtain







H(SF )

= H(SF ,WF )

= H(WF ) +H(SF |WF )

= H(WF ) +H(SF
G′ |WF )

= H(WF ) +H(SF
G′),

(33)

where G′ is any subset of [1, d + 1] such that |G′| + |F | = k and G′ ∩ F = Ø. Based on the condition
|F | ≤ k − 1, then it has to be that |G′| ≥ 1.

1. When |G′| = 1, for any two different g1 and g2 where g1, g2 ∈ {[1, d+ 1] \ F},

H(SF ) = H(WF ) +H(SF
g1
) = H(WF ) +H(SF

g2
), (34)

which indicates H(SF
g1
) = H(SF

g2
).

2. When |G′| ≥ 2, we set G′ = {g′, G1} and G′′ = {g′′, G1} such that {g′ 6= g′′, |G′| = |G′′| =
k− |F |, G′ ∩F = G′′ ∩F = ∅}, where G′′ plays the same role of G′ in the following statement. Similarly,
we derive 





H(SF )

= H(WF ) +H(SF
G′)

= H(WF ) +H(SF
g′) +H(SF

G1
);

H(SF )

= H(WF ) +H(SF
G′′)

= H(WF ) +H(SF
g′′) +H(SF

G1
),

(35)

which implies H(SF
g′) = H(SF

g′′ ).

Because the choice of (g1, g2) and (g′, g′′) are arbitrary, then for arbitrary different i1, i2 where i1, i2 /∈
F , we have H(SF

i1
) = H(SF

i2
).

Remark 5 Lemma 6 shows that the entropy of repair data from any two nodes assisting in repairing the
same subsets of nodes are identical. Combining this lemma with Remark 4, we further obtain the following
result on upper bound.
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3.2 A Simple Expression of Upper Bound

Incorporating Lemma 3, Lemma 5 and Lemma 6, we consequently derive a simple and generally applicable
result on secrecy capacity as follows.

Theorem 1. In the scenario of MSR codes with parameter set {n = d+ 1, k, d, α, β}, we have

B(s) ≤ (k − l1 − l2)
(
α−H(SF

g )
)
, (36)

where g ∈ G, |G| = k − l1 − l2, and |F | = l2.

Remark 6 This can be viewed as a simple and generally applicable upper bound of B(s), since we only
need to calculate or estimate the joint entropy of repair data transmitted from any single node H(SF

g ).
Still by Remark 2, this upper bound can be reached in the scenario of linear MSR codes.

3.3 Stable MSR Codes

Given an MSR code with {n = d+1, k, d, α, β}, since our focus is the exact repair, the random variables
Wj are invariant with time, i.e., they remain constant irrespective of the sequence of failures and repairs
that occur in the storage system. Once construction of such an MSR code with {n = d + 1} is present,
content of Sj

i sent from a node i to repair another node j also keeps invariant. However, for the MSR

code with {n > d+1, k, d, α, β}, the repair data Sj
i technically need not keep constant and may vary with

different sets of helper nodes including the same node i, only needing to satisfy that per node storage
Wj stays unchanged. For instance, when node j is failed, node i is assigned to assist in repairing node j.

Thus, there totally exists
(
d−1
n−2

)
possible sets of helper nodes including node i.

Assume repair data of node j is captured by the eavesdropper3. If content of repair data Sj
i is not

independent of the choice of the set of helper nodes and varies with them, after multiple repair epochs
with different sets of helper nodes including node i, different information regarding repair data Sj

i will be
exposed to the eavesdropper. Thus, the eavesdropper is supposed to observe more information regarding
repair data of node j, when compared to the case of invariant content of repair data. In the following, we
will use an example to illustrate this security issue.

Example 1 Assume E = ∅ and F = {1}, i.e., only the repair data of node 1 is eavesdropped. Consider
two truncated MSR codes M and M

′ comprised of nodes set [1, d+1] and [1, 3, · · · , d+2] respectively from
an MSR code with {n > d+ 1, k, d, α, β}.

Since they still are MSR codes, they necessarily retain the properties in Section 3.1. Thus, we have

{

H
(
S1(M)

)
= H(W1) + (k − 1)H

(
S1
3(M)

)
= α+ (k − 1)β = dβ

H
(
S1(M′)

)
= H(W1) + (k − 1)H

(
S1
3(M

′)
)
= α+ (k − 1)β = dβ,

(37)

where H
(
S1(M)

)
and H

(
S1(M′)

)
respectively represent the repair data of node 1 under different con-

texts of truncated MSR codes. Besides, it follows from Lemma 6 that H
(
S1
i1
(M)

)
= H

(
S1
3(M)

)
and

H
(
S1
i2
(M′)

)
= H

(
S1
3(M

′)
)
for any i1 ∈ M and i2 ∈ M

′.

3 It would be reasonable to assume here that the identity of node j can be recognized by eavesdropper, although
node j when failed will be replaced by newcomer nodes. In this case, the eavesdropper will gain access to all
repair data via sitting on the same node j undergoing different repair epochs.
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Furthermore, similar to the deduction of properties given in Section 3.1, we derive






H
(
S1(M), S1(M′)

)

= H
(
W1, S

1(M), S1(M′)
)

= H(W1) +H
(
S1(M), S1(M′)|W1

)

= H(W1) +H
(
S1
[2,d+1](M), S1

[3,d+2](M
′)|W1

)

= H(W1) +H
(
S1
[3,k+1](M,M′)|W1

)
+H

(
S1
[2,k+2,··· ,d+1](M), S1

[k+2,d+2](M
′)|W1, S

1
[3,k+1](M,M′)

)

= H(W1) +H
(
S1
[3,k+1](M,M′)|W1

)

= H(W1) +H
(
S1
[3,k+1](M,M′)

)

= H(W1) + (k − 1)H
(
S1
3(M,M′)

)
,

(38)
where H

(
S1
[2,k+2,··· ,d+1](M), S1

[k+2,d+2](M
′)|W1, S

1
[3,k+1](M,M′)

)
= 0 results from Lemma 4.

If S1
3(M) does not share the same information with S1

3(M
′), it has to be that H

(
S1
3(M,M′)

)
> β,

which leads to that H
(
S1(M,M′)

)
> dβ. It means that eavesdropper will inevitably obtain different data

information after multiple repair epochs with different sets of helper nodes. When traversing all possible
truncated MSR codes corresponding to repair epochs with all possible sets of helper nodes, it even may
render the storage system unable to maintain any data secrecy.

Based on the above security concern, we define a special MSR code as follows.

Definition 7. (Stable MSR Code): A stable MSR code with {n > d+ 1, k, d, α, β} is an MSR code with
the “stable” repair property, i.e., the data transmitted from any node i to repair node j is independent of
the set of helper nodes including the same node i. In other words, content of Sj

i remains invariant under
different sets of helper nodes including the same node i.

One can check that the product-matrix-based MSR code [15] is a stable MSR code. The following
theorem will show that this stable property in fact is the equivalent condition of secrecy capacity between
any MSR code with {n > d+ 1, k, d, α, β} and its truncated one with {n = d+ 1, k, d, α, β}.

Lemma 7. Let N be a stable MSR code with the parameter set {n > d+1, k, d, α, β} and N
′ be the stable

MSR code with {n = d+ 1, k, d, α, β} truncated from N, then the secrecy capacity of N is same as that of
N

′.

Proof. Without loss of generality, assume N
′ is comprised of the nodes set [1, d + 1] truncated from N.

We set the same subsets E,F,G for N and N
′, where E,F,G are three disjoint subsets of [1, d + 1] as

defined in section 2.4.
Lemma 3 indicates, for any secure regenerating code with {n = d+ 1, k, d, α, β},

B(s) ≤ H(WG|WE ,WF )−H(SF |WE ,WF ). (39)

Although this universal upper bound is established on regenerating codes with length equaling to {d+1},
it actually is also applicable to those extended regenerating codes with {n > d+ 1} since they still have
the reconstruction and regeneration properties. Nevertheless, in order to avoid confusion, we let SF (N)
and SF (N′) respectively represent the repair data of the nodes set F under the contexts of N and N

′.
Accordingly, we have

{

B(s)(N) ≤ H(WG|WE ,WF )−H
(
SF (N)|WE ,WF

)

B(s)(N′) ≤ H(WG|WE ,WF )−H
(
SF (N′)|WE ,WF

)
,

(40)

with which we only need to prove that H
(
SF (N)|WE ,WF

)
= H

(
SF (N′)|WE ,WF

)
. Since N and N

′ both
are stable MSR codes, we can unambiguously substitute SF (N) = SF

[1,n] and SF (N′) = SF
[1,d+1]. Thus, it

follows by showing that
H(SF

[1,n]|WE ,WF ) = H(SF
[1,d+1]|WE ,WF ), (41)
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with which it is sufficient to prove that H(SF
[1,n]|S

F
[1,d+1]) = 0. To this end, it is equivalent to prove that

H(Si
[1,n]|S

i
[1,d+1]) = H(Si

[d+2,n]|S
i
[1,d+1]) = 0 for any i ∈ F .

Without any loss of generality, we consider the situation when i = 1. Thus, we have







H(S1
[d+2,n]|S

1
[1,d+1])

= H(S1
[d+2,n]|S

1
[2,d+1])

= H(S1
[d+2,n]|W1, S

1
[2,d+1])

≤ H(S1
[d+2,n]|W1, S

1
[2,k]).

(42)

1. When n − d − 1 ≥ d − k + 1, we set Q is any subset of [d + 2, n] of size d − k + 1. Because
N’s any truncated code with {d + 1, k, d, α, β} still is an MSR code, the nodes set {[2, k] ∪ Q} can be
viewed as a truncated MSR code. Due to the second term of equation (23) in Lemma 4, we further derive
H(S1

Q|W1, S
1
[2,k]) = 0. Since Q is a random subset of [d+2, n], it is obvious that H(S1

[d+2,n]|W1, S
1
[2,k]) = 0.

2. When n−d−1 < d−k+1, we set Q is any d−k+1-sized set such that [d+2, n] ⊂ Q and [1, k]∩Q = ∅.
Similarly, we have H(S1

Q|W1, S
1
[2,k]) = 0, from which we can also derive H(S1

[d+2,n]|W1, S
1
[2,k]) = 0.

Combined with formula (42), both cases imply that H(S1
[d+2,n]|S

1
[1,d+1]) = 0.

Remark 7 Lemma 7 indicates that secrecy capacity of stable MSR codes does not depend on the param-
eter n but the remaining parameters {k, d, α, β,B}. One example of stable MSR codes with {n > d+1} is
the product-matrix-based MSR code given by Rashmi et al [15]. In another aspect, it is an interesting ques-
tion to design an MSR code with unstable property. However, for any unstable MSR code with {n > d+1},
its secrecy capacity is strictly less than that of the corresponding truncated one with {n = d+1}, as shown
in Example 1. Thus, this stable property is highly advantageous in constructing secure MSR codes.

Note 2 In subsequent discussion, we focus on the secrecy capacity of linear MSR codes with {n = d +
1, k, d, α, β}.

4 SECRECY CAPACITY OF LINEAR MSR CODES

In this section, we will give a comprehensive and explicit result on secrecy capacity for linear MSR
codes with {n = d + 1, k, d, α, β}, which is divided into two categories. In the first category, the secrecy
capacity is fully characterized, which applies to all linear scalar MSR codes, i.e., β = 1. In the second
category, upper bounds on secrecy capacity are present, which apply to all known vector codes with
{β = (d−k+1)x} where x ≥ 1 such as Zigzag code [23]. Furthermore, these two categories will be shown
to also apply to those unexplored linear vector MSR codes with {1 < β < d − k + 1}. Before these, we
first give a lemma that will be used in the subsequent proofs.

Lemma 8. Given any regenerating code with {n = d + 1, k, d, α, β}, for any set J = (j1, j2, · · · , jm) ⊆
[1, d+ 1], we have

H(SJ) = H(Sj1
{[1,d+1]\j1}

, Sj2
{[1,d+1]\(j1,j2)}

, · · · , Sjm
{[1,d+1]\(j1,j2,··· ,jm)}). (43)

Proof. The proof can be obtained from two directions.

First, it is clear that

{

H(Sj1
{[1,d+1]\j1}

, Sj2
{[1,d+1]\(j1,j2)}

, · · · , Sjm
{[1,d+1]\(j1,j2,··· ,jm)})

≤ H(SJ).
(44)

15



Second, we can deduce that







H(Sj1
{[1,d+1]\j1}

︸ ︷︷ ︸

, Sj2
{[1,d+1]\(j1,j2)}

, · · · , Sjm
{[1,d+1]\(j1,j2,··· ,jm)})

= H(Sj1
{[1,d+1]\j1}

,Wj1
︸ ︷︷ ︸

, Sj2
{[1,d+1]\(j1,j2)}

, · · · , Sjm
{[1,d+1]\(j1,j2,··· ,jm)})

= H(Sj1
{[1,d+1]\j1}

,Wj1 , S
{j2,··· ,jm}
j1

︸ ︷︷ ︸

, Sj2
{[1,d+1]\(j1,j2)}

, · · · , Sjm
{[1,d+1]\(j1,j2,··· ,jm)})

= H(Sj1
{[1,d+1]\j1}

,Wj1 , S
j2
{[1,d+1]\j2}

, · · · , Sjm
{[1,d+1]\(j2,··· ,jm)})

...

= H(Sj1
{[1,d+1]\j1}

,Wj1 , S
j2
{[1,d+1]\j2}

,Wj2 , · · · , S
jm
{[1,d+1]\jm},Wjm)

≥ H(Sj1
{[1,d+1]\j1}

, Sj2
{[1,d+1]\j2}

, · · · , Sjm
{[1,d+1]\jm})

= H(SJ),

(45)

where the formulas in the braces follow from that, for any l ∈ [1,m],






H(Sjl
{[1,d+1]\jl}

) = H(Sjl
{[1,d+1]\jl}

,Wjl)

H(S
{jl+1,··· ,jm}
jl

,Wjl) = H(Wjl ).
(46)

Remark 8 This lemma indicates that there exist much dependence among repair data of multiple sets
of nodes. With it, we can reduce the amount of helper nodes for some failed nodes. Thereby, we can
derivatively obtain

H(Sjm
{[1,d+1]\(j1,j2,··· ,jm)}|S

{j1,j2,··· ,jm−1}) = H(S{j1,j2,··· ,jm})−H(S{j1,j2,··· ,jm−1}), (47)

which will be used in the proofs later.

4.1 Category 1: Precise Value of Secrecy Capacity

Here, we will give the precise value of secrecy capacity for linear MSR codes with {1 ≤ β < d−k+1
l2−1 } and

as a result prove the optimality of the secure product-matrix-based MSR codes given in [31].

4.1.1 The situation when β = 1.

Theorem 2. In the linear MSR scenario, for any subsets P and T with {|P | = k, |T | = d−k+1, P ∩T =
∅}, any F such that F ⊆ T and |F | ≤ k − 1, and arbitrary i /∈ F , we have H(SF

i ) = |F |β = |F | when
β = 1.

Proof. Assume P = [1, k] and T = [k+1, d+1]. Without loss of generality, also assume F = [k+1, k+ c],
where c ≥ 2 (as it is trivial when c = 1). In the linear MSR scenario, Lemma 2 indicates that H(SA

i ) has
to be an integer for any subset A ⊆ F and i /∈ A.

By proof of contradiction, under the condition β = 1, we assume c is the smallest value satisfying

that H(S
[k+1,k+c−1]
1 ) = H(S

[k+1,k+c]
1 ) = (c − 1)β. Based on Lemma 6, we know that for any i /∈ [k +

1, k + c], it must be that H(S
[k+1,k+c−1]
i ) = H(S

[k+1,k+c]
i ) = (c − 1)β, from which we further derive

H(Sk+c
i |S

[k+1,k+c−1]
i ) = 0. Then, following from Lemma 8, we have that for any j ∈ [1, d− k + 1],







H(S[k+1,k+j]) = H(Sk+1
[1,k]∪[k+2,d+1], S

k+2
[1,k]∪[k+3,d+1], · · · , S

k+j

[1,k]∪[k+j+1,d+1])

H(Sk+j

[1,k]∪[k+j+1,d+1]|S
[k+1,k+j−1]) = H(S[k+1,k+j])−H(S[k+1,k+j−1])

(48)
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In one way, since we haveH(Sk+c
i |S

[k+1,k+c−1]
i ) = 0 for any i /∈ [k+1, k+c] from the above assumption,

we have 





H(Sk+c
[1,k]∪[k+c+1,d+1]|S

[k+1,k+c−1])

= H(Sk+c
[1,k]∪[k+c+1,d+1]|S

k+1
[1,k]∪[k+2,d+1], S

k+2
[1,k]∪[k+3,d+1], · · · , S

k+c−1
[1,k]∪[k+c,d+1])

≤ H(Sk+c
[1,k]∪[k+c+1,d+1]|S

[k+1,k+c−1]
[1,k]∪[k+c+1,d+1])

= 0.

(49)

In another way, we derive







H(Sk+c
[1,k]∪[k+c+1,d+1]|S

[k+1,k+c−1])

= H(S[k+1,k+c])−H(S[k+1,k+c−1])

= {H(W[k+1,k+c]) +H(S
[k+1,k+c]
G′ )} − {H(W[k+1,k+c−1]) +H(S

[k+1,k+c−1]
G′′ )}

= {cα+ (k − c)(c− 1)β} − {(c− 1)α+ (k − c+ 1)(c− 1)β}

= α− (c− 1)β

= (d− k − c+ 2)β,

(50)

where {

H(S[k+1,k+c]) = H(W[k+1,k+c]) +H(S
[k+1,k+c]
G′ )

H(S[k+1,k+c−1]) = H(W[k+1,k+c−1]) +H(S
[k+1,k+c−1]
G′′ )

(51)

result from Lemma 5 and G′, G′′ are defined as in Lemma 6 with |G′| = k − c and |G′′| = k − c+ 1.
Now, we are to make comparison between equation (49) and (50), when c ≤ min{d − k + 1, k − 1}.

Equation (50) is a monotone decreasing function in the variable c, thus there are two cases as follows.

1. If d − k + 1 ≥ k − 1, when c = k − 1, equation (50) takes minimum value {d − 2k + 3}β that is
strictly greater than 0.

2. If d−k+1 ≤ k−1, when c = d−k+1, equation (50) reaches minimum value β that is still positive.

To this end, both cases indicate that equation (50) contradicts formula (49), when c ≤ min{d−k+1, k−

1}, i.e., the assumption that H(S
[k+1,k+c−1]
i ) = H(S

[k+1,k+c]
i ) cannot hold. In other words, there does

not exist such value c that H(S
[k+1,k+c−1]
i ) = H(S

[k+1,k+c]
i ), when β = 1 and c ≤ min{d− k + 1, k − 1}.

Therefore, we can claim that, for any F such that F ⊆ T and |F | ≤ k− 1, H(SF
i ) = H(S

[k+1,k+c]
i ) = cβ.

Corollary 1. In the linear MSR scenario, when β = 1, we have

B(s) = (k − l1 − l2)(α − l2β), (52)

where l1 + l2 ≤ k − 1 and l2 ≤ d− k + 1.

Proof. Remark 6 implies that B(s) = (k− l1 − l2)
(
α−H(SF

g )
)
in the linear MSR scenario, where g /∈ F .

Combining it with Theorem 2, we obtain this corollary.

Corollary 2. The product-matrix-based secure MSR code given in [31] is optimal for any l1 + l2 ≤ k− 1
and l2 ≤ d− k + 1.

Proof. First, the product-matrix-based MSR codes constructed in [15] is established on β = 1 and is a
stable MSR code as stated in Remark 7. Then, according to the construction of secure MSR codes in [31],
the (l1, l2)-secure MSR code achieves

B(s) = (k − l1 − l2)(α − l2β). (53)

Thus, the secrecy capacity of secure MSR codes in [31] exactly complies with that given in Corollary 1.
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Remark 9 Actually, Corollary 1 is applicable to all linear scalar MSR codes, i.e., linear MSR codes with
β = 1. In other words, by MRD code’s pre-coding as stated in Remark 2, all linear scalar secure MSR
codes can offer this secrecy capacity with precise value given in Corollary 1.

4.1.2 The situations when 1 ≤ β < d−k+1

l2−1
.

Theorem 3. In the linear MSR scenario, for any subsets P and T where {|P | = k, |T | = d−k+1, P∩T =
∅}, any F such that F ⊆ T and |F | ≤ k − 1, and arbitrary i /∈ F , when β < d−k+1

|F |−1 or |F | < 1 + d−k+1
β

,

we have H(SF
i ) = |F |β where β > 1.

Proof. Similar to Theorem 2, we assume P = [1, k], T = [k+ 1, d+1] and F = [k+ 1, k+ c] where c ≥ 2.

By proof of contradiction, we assume c is the smallest value such that H(S
[k+1,k+c−1]
1 ) = (c − 1)β

and H(S
[k+1,k+c]
1 ) = (c − 1)β + θ, where θ ∈ [0, β − 1] and θ must be an integer following from Lemma

2, when β > 1. From Lemma 6, we know H(S
[k+1,k+c−1]
i ) = (c − 1)β and H(S

[k+1,k+c]
i ) = (c− 1)β + θ,

where θ ∈ Z ∩ [0, β − 1] for any i /∈ [k + 1, k + c], from which we further have H(Sk+c
i |S

[k+1,k+c−1]
i ) = θ.

Due to the similar way of Lemma 8 used in the proof of Theorem 2, we first have






H(Sk+c
[1,k]∪[k+c+1,d+1]|S

[k+1,k+c−1])

= H(S[k+1,k+c])−H(S[k+1,k+c−1])

= {H(W[k+1,k+c]) +H(S
[k+1,k+c]
G′ )} − {H(W[k+1,k+c−1]) +H(S

[k+1,k+c−1]
G′′ )}

= {cα+ (k − c)[(c− 1)β + θ]} − {(c− 1)α+ (k − c+ 1)(c− 1)β}

= (d− k − c+ 2)β + (k − c)θ.

(54)

In another way, we obtain






H(Sk+c
[1,k]∪[k+c+1,d+1]|S

[k+1,k+c−1])

= H(Sk+c
1 |S[k+1,k+c−1]) +H(Sk+c

2 |S[k+1,k+c−1], Sk+c
1 ) + · · ·+H(Sk+c

d+1 |S
[k+1,k+c−1], Sk+c

[1,k]∪[k+c+1,d])

≤ H(Sk+c
1 |S

[k+1,k+c−1]
1 ) +H(Sk+c

2 |S
[k+1,k+c−1]
2 ) + · · ·+H(Sk+c

d+1 |S
[k+1,k+c−1]
d+1 )

= (d− c+ 1)θ.
(55)

Thus, if (d− c+ 1)θ < (d− k − c+ 2)β + (k − c)θ, i.e., (d+ 1− k)θ < (d− k− c+ 2)β, contradiction
arises. Particularly, when θ = β − 1, (d+1− k)θ reaches maximum (d+1− k)(β − 1). By simplification,
we obtain that, when β < d−k+1

c−1 or c < 1+ d−k+1
β

, equations (54) contradicts formula (55), which means

the assumption that H(S
[k+1,k+c−1]
1 ) = (c − 1)β and H(S

[k+1,k+c]
1 ) = (c − 1)β + θ cannot hold, when

θ ∈ Z ∩ [0, β − 1]. That is to say, the value of θ here can only be exactly taken by β.
Therefore, for any F such that F ⊆ T and |F | ≤ k − 1, when β < d−k+1

c−1 or c < 1 + d−k+1
β

, we have

H(SF
i ) = H(S

[k+1,k+c]
i ) = cβ.

Corollary 3. In the linear MSR scenario, when β ≥ 1, we still have

B(s) = (k − l1 − l2)(α− l2β), (56)

when l1 + l2 ≤ k − 1 and l2 < 1 + d−k+1
β

or β < d−k+1
l2−1 .

Proof. Combining Theorem 2 and Theorem 3, this corollary can be derived as Corollary 1.

Remark 10 In this category, achievablity can be attributed to that H(SF
g ) exactly reaches the maximal

value l2β, when l2 < 1+ d−k+1
β

. In other words, there does not exist the intersection pattern (dependence)

within SF
g in this category, i.e., all repair data included in SF

g are mutually independent. However,

sometimes H(SF
g ) cannot be exactly calculated and only can be estimated, which will be shown next.
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4.2 Category 2: Upper Bounds on Secrecy Capacity

In the other situations when β ≥ d−k+1
l2−1 , we cannot exactly calculate the value of H(SF

g ). Instead, we

can only estimate the range of value that H(SF
g ) can be taken from.

4.2.1 The situations when l2 = t+ 1, d−k+1

t
≤ β < d−k+1

t−1
.

Theorem 4. Given a linear MSR code, for l1 + l2 ≤ k− 1 and l2 = t+1, when d−k+1
t

≤ β < d−k+1
t−1 , we

have
B(s) = (k − l1 − l2)

(
α− π(β, l2)

)
, (57)

where π(β, l2) = H(SF
g ) ≥ tβ + d−k−t+1

d−k+1 β and t ≤ d− k + 1.

Proof. It basically follows from formulas (54) and (55) in Theorem 3.
When d−k+1

t
≤ β < d−k+1

t−1 , Corollary 3 leads to that π(β, t) = tβ. According to the proof of Theorem
3, for any i /∈ [k + 1, k + t+ 1], we have

{

H(S
[k+1,k+t]
i ) = tβ

H(S
[k+1,k+t+1]
i ) = tβ + θ,

(58)

where θ ∈ Z∩[0, β]. Because β ≥ d−k+1
t

, when setting θ = β−1, we have (d+1−k)(β−1) ≥ (d−k−t+1)β,
from which we cannot obtain contradiction by formula (54) and (55). With them, we can only derive that
d−k−t+1
d−k+1 β ≤ θ ≤ β. Thus, we obtain







B(s)

= (k − l1 − l2)
(
α− π(β, l2)

)

≤ (k − l1 − l2){α− (tβ +
d− k − t+ 1

d− k + 1
β)},

(59)

where the equation of the first step follows from Remark 6 and the inequality in the second step results
from that π(β, l2) = tβ + θ ≥ tβ + d−k−t+1

d−k+1 β.

Remark 11 Our focus in this paper is studying the secrecy capacity of MSR codes that can efficiently
repair all nodes under the eavesdropper model with F ∈ [1, d+1]. Unlike Category 1, tightness of the bounds
in Theorem 4 stays unclear. In [33], the authors considered using Zigzag code [23] to construct secure
MSR code that can attain the upper bound B(s) ≤ (k− l1 − l2)

(
α− (2β− β

n−k
)
)
, where α = (n− k)k and

|F | = l2 = 2. However, Zigzag code [23] is a systematic MSR code allowing efficient repair of systematic
nodes only and the secure Zigzag code designed in [33] is established on the premise that the eavesdropper
gains access to the repair data of l2 systematic nodes, i.e., F ∈ [1, k].

Nevertheless, the simple and generally applicable upper bound B(s) ≤ (k− l1− l2)
(
α−H(SF

g )
)
given in

our Theorem 1 in fact also applies to systematic MSR codes, only requiring that F ∈ [1, k]. First, it is clear
that the universal upper bound on secrecy capacity for any regenerating code B(s) ≤ H(WG|WE ,WF ) −
H(SF |WE ,WF ) in Lemma 3 is applicable to systematic MSR codes, since they still have the reconstruction
property and regeneration property of systematic nodes [1, k]. Further due to their minimum storage
feature, it can be similarly derived that H(WG|WE ,WF ) = H(WG) = (k− l1− l2)α. Second, based on the
fact that systematic MSR codes have the same parameter setting α = (d − k + 1)β, one can check that
Lemma 4, Lemma 5 and Lemma 6 all apply to systematic MSR codes as well. Thus, Theorem 1 can be
applied to systematic MSR codes wherein F ∈ [1, k].

In the linear MSR scenario, although we assume F = [k+1, k+ l2] in the proof of Theorem 2, Theorem
3 and Theorem 4, they actually all are applicable to linear systematic MSR codes, because there does not
restrict F to be necessarily included in [k + 1, d + 1] in their conditions. To this end, systematic MSR
codes are supposed to formally share the same secrecy capacity with MSR codes that efficiently repair all
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nodes. Consequently, the bound in Theorem 4 also applies to linear systematic MSR codes and actually
is consistent with the bound given in [33] for certain situation.

The secure Zigzag code present in [33] is designed by MRD code’s pre-coding (Gabidulin code [37])
and is built on α = (n−k)k and l2 = 2. For Zigzag codes, when a systematic node is failed, the remaining
k − 1 systematic nodes and all the n− k parity nodes are required to participate in repair, which implies
that d = n− 1. Thus, we have that α = (d− k+1)k and β = (d− k+1)k−1 ≥ d− k+1. According to our
Theorem 4, we find t = 1 satisfies the condition as β = (d− k + 1)k−1 ≥ d− k + 1, which results in that
π(β, 2) ≥ β + d−k

d−k+1β = 2β − β
d−k+1 . It exactly equals to 2β− β

n−k
, the corresponding result of Corollary

16 given in [33]. Furthermore, Corollary 16 in [33] is apparently included in our Theorem 4, since it is
not only applicable to the situation t = 1.

4.2.2 The situations when l2 = t + e, e ≥ 1, d−k+1

t
≤ β < d−k+1

t−1
.

Theorem 5. Given a linear MSR code, for l1 + l2 ≤ k− 1 and l2 = t+ e, when d−k+1
t

≤ β < d−k+1
t−1 , we

have
B(s) = (k − l1 − l2)(α− π(β, l2)), (60)

where π(β, l2) = H(SF
g ) ≥ tβ + β(d− k − t+ 1)

[
1− ( d−k

d−k+1 )
e
]
with t ≤ d− k + 1 and e ≥ 1.

Proof. Without loss of any generality, we assume the set F is [1, t+e], where t+e+ l1 ≤ k−1. According

to Lemma 6, we know that for any i /∈ [1, t+ e], H(S
[1,t+e]
i ) is invariant.

Due to d−k+1
t

≤ β < d−k+1
t−1 and Corollary 3, we have







H(S
[1,t+e]
i )

= tβ +H(St+1
i |S

[1,t]
i ) + · · ·+H(St+e

i |S
[1,t+e−1]
i )

= tβ + θ1 + · · ·+ θe,

(61)

where H(St+j
i |S

[1,t+j−1]
i ) = θj and θj ∈ Z ∩ [0, β], for j ∈ [1, e]. Still by Lemma 8, H(S[1,t+e]) can be

expressed as
H(S[1,t+e]) = H(S1

[2,d+1], S
2
[3,d+1], · · · , S

t+e
[t+e+1,d+1]). (62)

First, with the method similar to the proof of Theorem 2 and 3, we have







H(St+e
[t+e+1,d+1]|S

[1,t+e−1])

= H(S[1,t+e])−H(S[1,t+e−1])

= {(t+ e)α+ (k − t− e)
[
tβ + θ1 + · · ·+ θe

]
} − {(t+ e− 1)α+ (k − t− e+ 1)

[
tβ + θ1 + · · ·+ θe−1

]
}

= α−
[
tβ + θ1 + · · ·+ θe−1

]
+ (k − t− e)θe.

(63)
Second, we obtain

{

H(St+e
[t+e+1,d+1]|S

[1,t+e−1])

≤ (d− t− e+ 1)θe,
(64)

which can be derived as inequality (55).

Then, combining equation (63) with (64), we derive (d− k + 1)θe ≥ α−
[
tβ + θ1 + · · ·+ θe−1

]
, from

which we further have

θe ≥
(d− k − t+ 1)β

d− k + 1
−

θ1 + · · ·+ θe−1

d− k + 1
. (65)

Through rearrangement, it can be changed to

θ1 + · · ·+ θe ≥
(d− k − t+ 1)β

d− k + 1
+

(d− k)(θ1 + · · ·+ θe−1)

d− k + 1
. (66)
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By setting ω(e) = θ1 + · · ·+ θe, we obtain

ω(e) ≥
d− k

d− k + 1
ω(e− 1) +

(d− k − t+ 1)β

d− k + 1
. (67)

From Theorem 4, we know θ1 ≥ d−k−t+1
d−k+1 β. Hence, by the method of recursion and induction, we have

ω(e) ≥ β(d− k − t+ 1)
[
1− (

d− k

d− k + 1
)e
]
. (68)

To this end, we have π(β, l2) = H(S
[1,t+e]
i ) = tβ + ω(e) ≥ tβ + β(d − k − t+ 1)

[
1− ( d−k

d−k+1 )
e
]
.

Remark 12 Theorem 5 is the supplementary of Theorem 4, which expands the range of values that l2
can be taken from. In Theorem 4, e only can be taken by 1, while Theorem 5 takes e by any value only
needing to satisfy l1 + t+ e ≤ k − 1 and t ≤ d− k + 1. As stated in Remark 11, Theorem 5 basically also
applies to systematic MSR codes for F ∈ [1, k].

In fact, the upper bound given in [32] is also a special case of our Theorem 5. Zigzag codes [23] by
pre-coding of MRD codes are shown to be able to achieve this bound on secrecy capacity in [32]. Since
α = (d + 1 − k)k, we know β = (d + 1 − k)k−1 > d + 1 − k, which similarly indicates that only t = 1
conforms the constraints on β required by our Theorem 5. Thereby, we have l2 = e + 1, from which we
derive π(β, l2) ≥ β + β(d− k)

[
1− ( d−k

d−k+1 )
l2−1

]
. By simplification, we further have







π(β, l2)

≥ β + β(d− k)
[
1− (

d− k

d− k + 1
)l2−1

]

= α− β(d− k)(
d− k

d− k + 1
)l2−1

= α− α(1 −
1

d− k + 1
)l2 ,

(69)

which leads to that B(s) ≤ (k − l1 − l2)
(
1 − 1

d−k+1

)l2
α. It is exactly consistent with the bound given in

[32], i.e., B(s) ≤ (k − l1 − l2)
(
1− 1

n−k

)l2
α.

Although some upper bounds (limited to t = 1 or β > d − k + 1) in this category are achievable
for the Zigzag codes considered in [32,33], they are not generally achievable for all other MSR codes
with {β > d − k + 1}. For example, for those vector MSR codes with {β > d − k + 1} designed by
concatenating m same scalar MSR codes where m > d − k + 1, their secrecy capacity is exactly equal
to (k − l1 − l2)(α − l2β) following from Corollary 1 where β = m, since each scalar MSR code within
a vector MSR code shares the same code construction and can be designed to be mutually independent.

It is obvious4 that (k − l1 − l2)(α − l2β) < (k − l1 − l2)
(
1 − 1

d−k+1

)l2
α, which means that those vector

MSR codes cannot reach the bounds in Theorem 5. Therefore, unlike Category 1, the value of H(SF
g ) or

π(β, l2) in Category 2 cannot be determined, i.e. its precise value may vary with different MSR codes’
constructions.

4.3 Putting Together

Now combining the two categorizes on secrecy capacity of linear MSR codes, we give the following
comprehensive and explicit result on secrecy capacity for any linear MSR codes with {n = d+ 1}.

4 In the category where l2 = t+e and d−k+1
t

≤ β < d−k+1
t−1

, we have B(s)
≤ (k−l1−l2)

{
α−tβ−β(d−k−t+1)

[
1−

( d−k

d−k+1
)e
]}

. Through analysis, one can check the term β(d− k− t+1)
[
1− ( d−k

d−k+1
)e
]
< β(d− k− t+ 1)

[
e(1−

d−k

d−k+1
)
]
= eβ(1− t

d−k+1
) = eβ −

etβ

d−k+1
≤ eβ − e < eβ. So, we derive tβ + β(d − k − t + 1)

[
1− ( d−k

d−k+1
)e
]
<

(t+ e)β = l2β, which leads to that (k − l1 − l2)(α− l2β) < (k − l1 − l2)
(
1− 1

d−k+1

)l2α when t = 1.
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Theorem 6. Given a linear MSR code with {n = d+ 1, k, d, α, β}, for l1 + l2 ≤ k − 1, we have

B(s) = (k − l1 − l2)
(
α− π(β, l2)

)
, (70)

where π(β, l2)

{
= l2β, if l2 ≤ t, β < d−k+1

t−1 ;

≥ tβ + β(d− k − t+ 1)
[
1− ( d−k

d−k+1 )
e
]
, if l2 = t+ e, d−k+1

t
≤ β < d−k+1

t−1 ,
(71)

where 1 ≤ t ≤ d− k + 1 and e ≥ 1.

Remark 13 In the literature, the known linear MSR codes are comprised of the scalar MSR codes
with {β = 1} [15,16,17,18,19,20] and the vector MSR codes with {β = (d − k + 1)x} where x ≥ 1
[21,22,23,24,25,26,27,28,29]. It should be noted that these vector MSR codes are not designed from con-
catenation of scalar MSR codes. Similar to Zigzag codes [23], they share the same intersection pattern,
i.e. there exist the same dependence within disjoint sets of repair data transmitted from any one node
(e.g. SF

g where g /∈ F ). Thus, the second item in formula (71) also applies to them.

4.4 Further Discussions

Theorem 6 exhibits a comprehensive and explicit result on secrecy capacity for any linear MSR code
given the parameter set {n = d + 1, k, d, α, β} and the (l1, l2)-eavesdropper model. In retrospect, all
constructions of linear MSR codes are based on the scalar case β = 1 or partial vector cases where β is
required to be exponential in d−k+1. Thus, designing linear vector MSR codes with {1 < β < d−k+1}
by no concatenation remains open. Nevertheless, our Theorem 6 still presents certain results on secrecy
capacity for these unexplored MSR codes. Thereby, we put forward two questions as follows.

Question 1. Do there exist the linear MSR codes with {1 < β < d− k + 1} by no concatenation? If so,
how can we construct them?

Question 2. Given such a construction with {1 < β < d− k+1}, is it achievable for the bounds given in
formula (71) when l2 ≥ 1 + d−k+1

β
?

Remark 14 According to formula (71), for the linear MSR codes with {1 < β < d − k + 1} by no
concatenation, when l2 < 1 + d−k+1

β
, it must be that

B(s) = (k − l1 − l2)(α− l2β). (72)

However, when l2 ≥ 1 + d−k+1
β

, formula (71) leads to that

B(s) ≤ (k − l1 − l2)
(
α− tβ − β(d − k − t+ 1)

[
1− (

d− k

d− k + 1
)l2−t

])
, (73)

where t = d−k+1
β

if β divides d− k + 1, and t = ⌊1 + d−k+1
β

⌋ if β does not divide d− k+ 1. Hence, as in

Question 2, we ask whether it is achievable for the upper bound (73) given such a code.
Overall, Theorem 6 predicts certain results on secrecy capacity for these unexplored MSR codes, which

consist of the precise value of secrecy capacity (72) and the upper bound on secrecy capacity (73).

5 CONCLUSION

In this paper, we carry out research on the secrecy capacity of MSR codes. We assume the passive
adversarial model where the eavesdropper can observe the contents of certain nodes and the repair data
of some other nodes. Although the secrecy capacity of MBR codes has been characterized completely [30],
it is a challenging task to analyze the secrecy capacity of MSR codes [31,32,33]. The additional difficulty
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comes from the fact that the amount of data transmitted for a failed node in MSR codes, is not entirely
stored on the node undergoing repair, making it challenging to compute the joint entropy of the repair
data. With such a system model, we focus on investigating the repair data in the MSR scenario from the
information-theoretic perspective.

We first obtain some information-theoretic properties and some upper bounds on secrecy capacity for
general MSR codes, in addition to which we introduce a new concept named by stable MSR codes. For
the unstable MSR codes, we assume the eavesdropper could identify the nodes with repair data captured
and demonstrate that its secrecy capacity is strictly less than that of stable MSR code. In the linear MSR
scenario, we utilize permutation polynomial and orthogonal system in finite fields to explain the fact that
entropy of multiple sets of repair data is an integer and ultimately derive a comprehensive and explicit
result on secrecy capacity which closely depends on the value of β. This outcome not only explains and
generalizes the previous results in [31,32,33], but also predicts certain results for some unexplored linear
MSR codes. After that, we put forward two related questions. On the other hand, we find that all of
these results also apply to systematic MSR codes with repair data of systematic nodes captured.
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