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On Gaussian Channels with Feedback under
Expected Power Constraints and with

Non-Vanishing Error Probabilities
Lan V. Truong Silas L. Fong Vincent Y. F. Tan

Abstract

In this paper, we consider single- and multi-user Gaussian channels with feedback under expected power constraints and
with non-vanishing error probabilities. In the first of two contributions, we study asymptotic expansions for the additive white
Gaussian noise (AWGN) channel with feedback under the average error probability formalism. By drawing ideas from Gallager
and Nakiboğlu’s work for the direct part and the meta-converse for the converse part, we establish the ε-capacity and show
that it depends on ε in general and so the strong converse fails to hold. Furthermore, we provide bounds on the second-order
term in the asymptotic expansion. We show that for any positive integer L, the second-order term is bounded between a term
proportional to − ln(L) n (where ln(L)(·) is the L-fold nested logarithm function) and a term proportional to +

√
n lnn where n

is the blocklength. The lower bound on the second-order term shows that feedback does provide an improvement in the maximal
achievable rate over the case where no feedback is available. In our second contribution, we establish the ε-capacity region for the
AWGN multiple access channel (MAC) with feedback under the expected power constraint by combining ideas from hypothesis
testing, information spectrum analysis, Ozarow’s coding scheme, and power control.

Index Terms

Feedback, AWGN channel, Multiple access channel, Expected power constraint, Strong converse, Second-order coding rate,
Finite blocklength regime

I. INTRODUCTION

Shannon showed that feedback does not increase the capacity of a discrete memoryless channel (DMC) [3]. It is known,
however, that feedback can improve the error probability performance [4] and also simplify coding schemes [5]. As an example,
Polyanskiy, Poor and Verdú showed that variable-length feedback [6] improves on the capacity term if a non-vanishing error
probability is allowed. Altuğ and Wagner [7] showed that full-output feedback can, in some scenarios, improve on the second-
order asymptotics of a DMC even if the first-order capacity term is not improved. Although there has been some progress to
evaluate the second-order asymptotics for the DMC or the AWGN channel with fixed-length full-output feedback, all the results
derived thus far are mainly for weakly input-symmetric DMCs [6] or the AWGN channel under peak power constraint [8],
where the distribution of the relevant information density (between the channel and the capacity-achieving output distribution)
is invariant to all channel input symbols that undergo a random transformation. See [6, Sec. V.A] for details.

In this paper, we provide two main contributions. First, we derive the so-called ε-capacity of the AWGN channel with full-
output feedback [5], [9], [10] under an expected power constraint and the average error probability formalism. The ε-capacity
is the supremum of all rates for which it is guaranteed that there exists a sequence of codes whose asymptotic error probability
is upper bounded by ε. By expected power constraint, we mean that for a given message set W , all the inputs to the channel
{xk(w, Y k−1) : k = 1, . . . , n, w ∈ W} must satisfy

1

|W|
∑
w∈W

1

n

n∑
k=1

E[x2k(w, Y k−1)] ≤ P (1)

for some constant power P > 0. Notice that in addition to averaging over the time slots k = 1, . . . , n, we average over the
entire codebook (or messages in the message set W). The latter averaging is also known in the wireless communications
community as a long-term power constraint [11], [12]. The capacity of this channel is clearly

C(P ) =
1

2
ln(1 + P ), nats per channel use. (2)

This is the maximal achievable rate when the error probability is required to vanish. If the average error probability does not
vanish and is bounded above by some ε ∈ [0, 1) asymptotically, the corresponding quantity one seeks is the ε-capacity.

The authors (Emails: lantruong@u.nus.edu, silas fong@nus.edu.sg, vtan@nus.edu.sg) are with the Department of Electrical and Computer Engineering,
National University of Singapore (NUS). V. Y. F. Tan is also with the Department of Mathematics, NUS.

The authors are supported by an NUS grant (R-263-000-B37-113) and by a Singapore Ministry of Education (MOE) Tier 2 grant (R-263-000-B61-112).
This paper was presented in part at SPCOM 2016 [1] and ISIT 2016 [2].

ar
X

iv
:1

51
2.

05
08

8v
3 

 [
cs

.I
T

] 
 2

1 
Se

p 
20

16



2

In the second contribution, we establish the ε-capacity region for the AWGN-MAC with feedback under an expected
power constraint similar to (1). The capacity region in which the error probability is required to vanish was established by
Ozarow [10]. We generalize Ozarow’s seminal capacity result to the case where the error probability need not vanish. Our
investigations are motivated by the recent interest in the practicality of establishing finite blocklength fundamental limits [13]
of various channel and source models. Finding the ε-capacity region is a first step in making progress to understanding the
non-asymptotic fundamental limits of any network channel model. Estimating the second-order behavior provides a refinement
to this understanding.

A. Elaborations on the Main Contributions

We now elaborate on our two main contributions.
First, by combining the posterior matching [9] arguments by Schalkwijk and Kailath (SK) [5], Ozarow [10], Gallager and

Nakiboğlu [14] and Ihara [15] with a power control argument [12], we show that the ε-capacity under the constraint in (1) is
C(P/(1−ε)) and so the strong converse does not hold (as is expected). Nevertheless, the ε-capacity is unchanged as compared
to the case without feedback [12] so feedback apparently does not help to improve (increase) the first-order term. One then
wonders about the effect of feedback on the second- and higher-order asymptotics [13], [16], [17]. We show that under the
constraint in (1), for all positive integers L, the maximum number of messages transmissible through n uses of the AWGN
channel with average error probability no larger than ε, namely M∗fb(n, P, ε), satisfies

nC

(
P

1− ε

)
−O

(
ln(L)(n)

)
+O(1) ≤ lnM∗fb(n, P, ε) (3)

≤ nC
(

P

1− ε

)
+Bε

√
n lnn+O(

√
n), (4)

where ln(L)(·) is the L-fold nested logarithm function (defined in (14) to follow) and Bε > 0 is some positive constant defined
in (9) in the sequel. See Table I. As we shall see, the implication of the lower bound in (3) is that feedback greatly improves
the second-order term in the asymptotic expansion under the expected power constraint, compared to the no feedback case in
the analogous long-term power constraint where the codewords {xn(w) : w ∈ W} are required to satisfy

1

|W|
∑
w∈W

1

n

n∑
k=1

x2k(w) ≤ P. (5)

To obtain the nested logarithm in the lower bound in (3), we appeal to a modification of the SK coding scheme [5] by Gallager
and Nakiboğlu [14] and Ihara [15] that guarantees that for all rates below capacity, the probability of error for an AWGN
channel with feedback decays multiply-exponentially fast. Also see the works by Pinsker [18], Kramer [19] and Zigangirov [20]
which all show that for fixed rates below capacity, the error probability decreases faster than an exponential of any order.

Second, we generalize and strengthen a seminal result by Ozarow [10] concerning AWGN-MACs with feedback under an
expected power constraint. In his seminal paper, Ozarow showed that the capacity region of the AWGN-MAC with feedback
is the set of rate pairs (R1, R2) such that

R1 ≤ C((1− ρ2)P1) (6)

R2 ≤ C((1− ρ2)P2) (7)

R1 +R2 ≤ C(P1 + P2 + 2ρ
√
P1P2) (8)

for some ρ ∈ [0, 1] and where Pj (for j = 1, 2) is the signal-to-noise ratio of receiver j. If one allows the average error
probability to be non-vanishing, say bounded above by ε ∈ [0, 1), then one wonders whether the region in (6)–(8) is enlarged
and if so, by how much? We provide a complete answer to this question and show that the signal-to-noise ratios Pj are
modified to be Pj/(1− ε). We also provide bounds on the second-order terms. The techniques in this paper leverage several
ideas from the literature including the meta-converse [13], information spectrum analysis [21] for channels with feedback [22],
[23] and Ozarow’s achievability and weak converse [10]. In particular, an important “single-letterization” lemma (Lemma 7)
is developed to introduce the single parameter ρ in (6)–(8) in order to facilitate the outer bounding. This non-standard lemma
forms the crux of our converse proof.

B. Related Works

Table I lists all the previous results and references for the second-order term in the asymptotic expansions for AWGN
channels with and without feedback under both error formalisms. In the table, we use the abbreviations

Aε :=
√
V(P )Φ−1(ε) and Bε :=

√
V

(
P

1− ε

)
, (9)
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Second-Order Term
Average Error Probability Maximum Error Probability

No Feedback Feedback No Feedback Feedback
Peak Power Aε

√
n Aε

√
n Aε

√
n Aε

√
n

References [13], [17] [8], [18], [24] [13], [17] [8], [18], [24]
Expected Power −Bε

√
n lnn [−O(ln(L) n), Bε

√
n lnn] Aε

√
n [−O(ln(L) n), Bε

√
n lnn]

References [12] Theorem 1 [25, Thm. 73] Theorem 1

TABLE I
SECOND-ORDER TERMS IN ASYMPTOTIC EXPANSIONS FOR THE AWGN CHANNEL UNDER DIFFERENT CONSTRAINTS. NOTE THAT WHEN THE

SECOND-ORDER TERM IS Aε
√
n (RESP. −Bε

√
n lnn), THE FIRST-ORDER TERM IS nC(P ) (RESP. nC(P/(1− ε))).
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Fig. 1. The behavior of the optimal asymptotic error probability as a function of the rate under the peak [8] and the long-term power constraints in (5) as
well as with feedback in (1). See Theorem 1.

where the Gaussian dispersion function is

V(x) :=
x(x+ 2)

2(x+ 1)2
nats2 per channel use (10)

and the Gaussian cumulative distribution function (cdf) is

Φ(u) :=
1√
2π

∫ u

−∞
exp

(
− t

2

2

)
dt. (11)

We note that when the second-order term is Aε
√
n, the first-order term is nC(P ). In the case where the second-order term is

−Bε
√
n lnn, the first-order term is nC(P/(1−ε)). Also see Fig. 1. In some scenarios, the third-order term may be determined.

For example, under the average error probability formalism in the no feedback case and peak power constraints, the third-order
term is known to be 1

2 lnn [26] and [25, Thm. 73].
Note that for the AWGN channel without feedback under a long-term (expected) power constraint in (5), Yang et al. [12]

showed that

lnM∗(n, P, ε) = nC

(
P

1− ε

)
−Bε

√
n lnn+o

(√
n
)
. (12)

Comparing this to (3), we see that even though the first-order term is unchanged, the achievable second-order term have
derived is much improved in the presence of full-output noiseless feedback. In particular, the backoff proportional to

√
n lnn

is replaced by a backoff of ln(L)(n) as n grows.
For the Gaussian MAC with feedback, to the best of the authors’ knowledge, there has been no work that attempts to

establish the ε-capacity region or the second-order asymptotics. Without feedback, inner bounds for the second-order coding
rates for the Gaussian MAC were independently established by Scarlett, Martinez, and Guillén i Fàbregas [27] and MolavianJazi
and Laneman [28]. The strong converse, together with (non-matching) outer bounds for the second-order coding rates, was
established by Fong and Tan [29]. For the Gaussian MAC with degraded message sets, the complete second-order asymptotics
was derived by Scarlett and Tan [30].
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C. Paper Organization

The rest of this paper is organized as follows: We state and prove our results concerning the AWGN channel with feedback
in Section II. We do the same for the AWGN-MAC with feedback in Section III. We conclude our discussion in Section IV.
Proofs that are more technical are deferred to the appendices.

II. AWGN CHANNEL WITH FEEDBACK

A. Notation, Channel Model, and Definitions

1) Notation: We use lnx to denote the natural logarithm so information units throughout are in nats. We set ln+(x) := lnx
for x > 0 and ln+(x) := −∞ if x ≤ 0. Define

exp(k)(t) := exp(exp(. . . exp(t)))︸ ︷︷ ︸
k times

, ∀ t ∈ R (13)

to be the multiple (nested) exponential function. For any L ∈ N and every k = 1, 2, . . . , L, we define the multiple (nested)
logarithm function ln(k)(n) for every n ≥ exp(L)(1) in a recursive way as follows:

ln(k)(n) :=

{
lnn if k = 1,
ln ln(k−1)(n) otherwise.

(14)

Random variables and information-theoretic quantities are standard and mainly follow the text by El Gamal and Kim [31]. We
also use asymptotic notation such as O(·) in the standard manner; f(n) = O(g(n)) holds if and only if the implied constant
lim supn→∞ |f(n)/g(n)| <∞.

2) Channel Model: We consider the standard AWGN channel model

Yk = Xk + Zk, k = 1, . . . , n (15)

where Zk is independent and identically distributed Gaussian noise with zero mean and unit variance. Thus, for a single-channel
use, the channel from X to Y can be written as

V (y|x) =
1√
2π

exp

(
−1

2
(y − x)2

)
. (16)

The channel is used n times in a memoryless channel with feedback. The input to the channel Xn = (X1, . . . , Xn) is power
constrained (to be stated precisely in (20) in Definition 1).

3) Basic Definitions: Now we state some important definitions for the AWGN channel with feedback. Please refer to [31,
Fig. 3.4] for an illustration of the setup of the problem.

Definition 1. An (n,M,P )-feedback code under the expected power constraint consists of the following:
• A message set

W := {1, 2, ...,M}. (17)

Message W is uniformly distributed on W .
• A collection of encoding functions

fk :W × Rk−1 → R (18)

for each k ∈ {1, 2, ..., n}, where fk is the encoding function at node s for encoding Xk such that

Xk = fk(W,Y k−1) (19)

and

1

n

n∑
k=1

E[X2
k ] ≤ P. (20)

• A decoding function

φn : Rn →W, (21)

where W is the decoding function for W such that

Ŵ = φn(Y n). (22)

The expectation in (20) is over both the message W and the channel outputs Y k−1, thus (20) is identical to (1).
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Definition 2. For an (n,M,P )-feedback code defined on AWGN channel with feedback, we can calculate the average probability
of error

Pavg := Pr(Ŵ 6= W ). (23)

We call an (n,M,P )-feedback code with average probability of decoding error no larger than ε an (n,M,P, ε)-feedback
code. We may also define the maximum number of messages

M∗fb(n, P, ε) := max {M : ∃ an (n,M,P, ε)-feedback code} . (24)

Similarly, we can calculate the maximal probability of error

Pmax := max
w∈W

Pr(Ŵ 6= w|W = w). (25)

The average probability of error in the above definition is defined over the randomness of the message W , the channel
outputs Y k−1, k = 1, . . . , n (in the expected power constraint in (1)) and the channel noise Zn ∼ N (0n, In×n). Naturally, for
the maximum probability of error in (25), we may also define M∗fb similarly to (24). We note, however (cf. Table I), that it will
become apparent that the results do not depend on whether the maximum or average error probability formalism is employed
so we do not distinguish between M∗fb for both error probability formalisms.

B. Main Result

Our main contribution in this section is the following theorem.

Theorem 1. Let C(·) be the Gaussian capacity function defined in (2) and recall the definition of Bε in (9). For any 0 < ε < 1
and any L ∈ N, the following expressions for the AWGN channel with feedback subject to an expected power constraint hold

lnM∗fb(n, P, ε) ≥ nC
(

P

1− ε

)
− 2L−2 ln(L)(n) +O(1), (26)

lnM∗fb(n, P, ε) ≤ nC
(

P

1− ε

)
+Bε

√
n lnn+O(

√
n). (27)

These bounds imply that the ε-capacity

lim
n→∞

1

n
lnM∗fb(n, P, ε) = C

(
P

1− ε

)
. (28)

The achievability and converse parts are proved in Sections II-C and II-D respectively. The following remarks are now in
order.

First, (28) means that the strong converse does not hold for the AWGN channel with feedback under the expected power
constraint. Second, the implication of Theorem 1 is that the first-order term C (P/(1− ε)) does not improve when feedback
is present but the second-order term, which is at least −2L−2 ln(L)(n)n+O(1) as shown in (26), does improve (cf. [12] and
Table I). We note that one is free to choose the value of L in (26) but the implied constant in the O(1) term depends on L.
Third, our achievability also holds under the maximal error formalism (cf. (25) and Table I), because the encoder can relabel
the message according to the uniform distribution.

C. Proof of Achievability

Proposition 2. For an AWGN channel with feedback subject to an expected power constraint P , the maximum number of
transmissible messages M∗fb(n, P, ε) satisfies (26).

Proof: To prove this proposition, we show that for each n, there exists a coding scheme such that the aforementioned
expression holds true. Specifically, we show that a combination of the two-phase coding scheme [15] and power control ideas
[25, Sec. 4.3.3] can provide the required achievable asymptotic expansion.

1) Coding Scheme: For each fixed finite n, we choose1

Mn =

(
1− εn
1− ε

)(
1 +

P

1− ε+ 1
n

)n/2
, (29)

for some εn < ε to be determined later. In fact, we will choose the parameters of our code so that εn ≤ 1
n so this constraint

(εn < ε) is clearly satisfied for n large enough. See (43) to follow. Note that the ratio 1−εn
1−ε = Θ(1), which is essential in the

arguments to follow. We perform the following tasks:

1We ignore integer constraints on the number of codewords Mn in (29). We simply set Mn to the nearest integer to the number on the right-hand-side
of (29).
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• We divide the set of Mn messages into two subsets. The first subset consists of

Mn =

(
1− ε
1− εn

)
Mn =

(
1 +

P

1− ε+ 1
n

)n/2
(30)

messages called A1 ⊂ W and the second subset consists of Mn −Mn messages called A2 =W \A1.
• For messages w in the first message subset A1 we use the Gallager-Nakiboğlu (GN) two-phase coding scheme [14] (which

is itself based on the Schalkwijk-Kailath [5] coding scheme and a result of Elias [32] concerning the minimum mean-square
distortion achievable in transmitting a single Gaussian random variable over multiple uses of the same Gaussian channel)
and transmit all “codewords” {Xk(w, Y k−1) : k = 1, . . . , n} with expected power less than or equal to P/(1− ε+ 1/n)
with average error probability that is bounded above by some εn (to be computed).

• For messages w in the second message subset A2, we encode all of them by the all-zero codeword.
2) Analysis: By the above feedback coding scheme, it is obvious that the expected transmission power is

Pavg ≤
Mn

Mn

(
P

1− ε+ 1
n

)
=

(
1− ε
1− εn

)(
P

1− ε+ 1
n

)
. (31)

Since the messages are uniformly distributed, the overall average error probability of the proposed coding scheme (combination
of Gallager-Nakiboğlu [14], [15] and a power control idea [25]) is upper bounded as

P (n)
e ≤ εn ·

Mn

Mn
+ 1 · Mn −Mn

Mn
= ε. (32)

Now, we will show that the error probability of the GN scheme εn = P
(n)
GN is upper bounded by 1/n, the average power

Pavg is upper bounded by P , and the maximum number of messages Mn that can be transmitted through the channel satisfies
lnMn = nC

(
P

1−ε

)
−O

(
ln(L)(n)

)
for any fixed L ∈ N.

a) GN-Scheme Error Probability Analysis: Fix an L ∈ N and n ≥ exp(L)(1) (so ln(L)(n) is well-defined per (14)).
Define

δn :=
L

n
, (33)

choose n1 := b(1− δn)nc+ 1. Let the rate of the code be

Rn :=
1

n
lnMn (34)

= C

(
P

1− ε+ 1/n

)
(1− δn)−

2L ln(L+1)(n)

2n
. (35)

In addition, noting that
n− n1 + 1 = n− b(1− δn)nc ∈ {L,L+ 1}, (36)

we define for each k = 0, 1, 2, . . . , n− n1 + 1,

Dk :=
ln(L+1)(n

3L−k−1

)

2n
(37)

and

D̃k :=
ln(L+1)(n

3L−k/2)

2n
(38)

such that

0 < D̃n−n1+1 < Dn−n1
< D̃n−n1

< · · · < D0 < D̃0 < C

(
P

1− ε+ 1/n

)
(1− δn)−Rn =

2L ln(L+1)(n)

2n
. (39)

At this point, we leverage a useful non-asymptotic estimate on the average error probability of the GN scheme provided by
Ihara [15, Theorem 1] who analyzed the error probability for Gaussian channels with stationary but possibly non-memoryless
(non-white) feedback. This estimate says that for n sufficiently large (Dk and D̃k have been carefully chosen so that [15,
Eq. (25)] and the last two chains of inequalities in [15, proof of Theorem 1] are satisfied), the average probability of error of
the GN scheme P (n)

GN satisfies

P
(n)
GN ≤ exp

(
− exp(n−n1+1)(2Dn−n1−1n)

)
(40)

≤ exp
(
− exp(L)(2DL−1n)

)
(41)

= e− lnn (42)

=
1

n
. (43)
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b) Power Consumption Analysis: It follows from (43) that

Pavg =
P (1− ε)

1− ε+ 1
n − εn

(
1− ε+ 1

n

) ≤ P, (44)

since we have

εn

(
1− ε+

1

n

)
=

1

n

(
1− ε+

1

n

)
≤ 1

n
. (45)

c) Message Set Size Analysis: From (30), (31) and (35), we have for all sufficiently large n

lnMn = lnMn + ln

(
1− εn
1− ε

)
(46)

= nC

(
P

1− ε+ 1/n

)
(1− δn)− 2L−1 ln(L+1)(n) + ln

(
1− εn
1− ε

)
(47)

= nC

(
P

1− ε+ 1/n

)
(1− δn)− 2L−1 ln(L+1)(n) +O(1). (48)

Recalling that δn = L
n , we have

lnMn = nC

(
P

1− ε

)
− 2L−1 ln(L+1)(n) +O(1). (49)

This completes the proof of the direct part by relabeling L+ 1 as L.

Remark 1. In the conference version of our paper [2], the achievable second-order term in (26) was stated to be − ln lnn+
O(1). We used the standard SK coding scheme [5] therein. Here, the achievable second-order term is improved to −O

(
ln(L)(n)

)
for any L ∈ N. To recover − ln lnn+O(1) in [2], we simply set L = 1 in (49). We thank a reviewer for pointing out that the
results of [14], [15] may be used to improve on the lower bound in (26).

D. Proof of Converse

Proposition 3. For an AWGN channel with feedback and an expected power constraint, and any ε ∈ (0, 1), we have (27).

Proof: Our converse proof is based on the following observation. If there exists a code with M∗fb(n, P, ε) messages, then
we can find another code with the same number of messages with average error probability upper bounded by 1− γ/

√
n for

some γ > 0 and satisfying the following property:

n∑
k=1

(X ′k)2 ≤ nP

1− ε− γ√
n

, almost surely. (50)

Indeed, given a feedback code with M∗fb(n, P, ε) messages and with encoders Xk = fk(W,Y k−1), k = 1, 2, . . . , n and a
decoder Ŵ = φ(Y n) under the expected power constraint

n∑
k=1

E[X2
k ] ≤ nP, (51)

we may construct a new feedback code with the same message size M∗fb(n, P, ε) as follows.

• New encoding functions for each k = 1, 2, . . . , n, i.e.,

X ′k := fk(W,Y k−1)1

{
k−1∑
i=1

f2i (W,Y i−1) ≤ nP

1− ε− γ√
n

}
, (52)

where 1{·} is the indicator function.
• The decoding function is kept unchanged, i.e.,

Ŵ = φ(Y n). (53)
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Observe that with this new feedback encoding scheme, the average error probability is upper bounded as

Pr(Ŵ 6= φ(Y n))

≤ Pr

({
Ŵ 6= φ(Y n)

}
∩

{
n∑
k=1

f2k (W,Y k−1) ≤ nP

1− ε− γ√
n

})
+ Pr

(
n∑
k=1

f2k (W,Y k−1) >
nP

1− ε− γ√
n

)
(54)

= Pr
({
Ŵ 6= φ(Y n)

}
∩ {X ′k = Xk, k = 1, . . . , n}

)
+ Pr

(
n∑
k=1

f2k (W,Y k−1) >
nP

1− ε− γ/
√
n

)
(55)

(a)

≤ ε+

∑n
k=1 E[X2

k ]
nP

1−ε−γ/
√
n

(56)

(b)

≤ ε+
nP
nP

1−ε−γ/
√
n

(57)

= 1− γ√
n
. (58)

Here, (a) follows by Markov’s inequality [16, Prop. 1.1] and (b) follows from the power constraint of the original feedback
code in (51).

Furthermore, it is easy to see that the new feedback code satisfies the input (peak) power constraint in (50). From the above
observation, we can convert the problem of finding an upper bound for the maximum number of messages M∗fb(n, P, ε) under
the expected power constraint to the problem of finding an upper bound for M∗fb,pp (n, P/(1− ε− γ/

√
n), 1− γ/

√
n) under

the peak power constraint [8]. Here M∗fb,pp(n,Q, η) is the maximum number of messages that can be transmitted over n
channel uses with peak power Q > 0 and average (and hence, also maximum) error probability upper bounded by η ∈ (0, 1).
Therefore, using the bound in [8, Eq. (29)], under the expected power constraint (of our setting), we obtain for any ζn > 0
that

lnM∗fb(n− 1, P, ε)

≤ ln ζn − ln

[
Pr

( n∑
k=1

1

2(1 + qn,ε)

(
− qn,εZ2

k + 2
√
qn,εZk + qn,ε

)
< ln ζn −

n

2
ln (1 + qn,ε)

)
−
(

1− γ√
n

)]
, (59)

where, for brevity, we denote

qn,ε :=
P

1− ε− γ√
n

. (60)

The bound in (59) is an information spectrum-style relaxation [33, Lemma 4] of the meta-converse [13, Section III.E]. Also
see Appendix C. By the Berry-Essen theorem [34] (see also [16, Thm. 1.6]) for independent and identically distributed random
variables, we have for all a ∈ R, n ∈ N that∣∣∣∣∣Pr

(
1

σ
√
n

n∑
k=1

1

2(1 + qn,ε)

(
− qn,εZ2

k + 2
√
qn,εZk + qn,ε

)
≤ a

)
− Φ(a)

∣∣∣∣∣ ≤ T

σ3
√
n

(61)

where the relevant statistics are

µ := E
[

1

2(1 + qn,ε)

(
−qn,εZ2

1 + 2
√
qn,εZ1 + qn,ε

)]
= 0, (62)

σ :=

√
Var

[
1

2(1 + qn,ε)

(
−qn,εZ2

1 + 2
√
qn,εZ1 + qn,ε

)]

=

√
qn,ε(qn,ε + 2)

2(1 + qn,ε)2
=
√
V(qn,ε), (63)

T := E

[∣∣∣∣ 1

2(1 + qn,ε)

(
−qn,εZ2

1 + 2
√
qn,εZ1 + qn,ε

)∣∣∣∣3
]

(a)

≤
(

1

2(1 + qn,ε)

(
qn,ε(E[Z6

1 ])1/3 + 2
√
qn,ε(E|Z1|3)1/3 + qn,ε

))3

<∞. (64)

Here, (a) follows from Minkowski inequality (or triangle inequality) for the `3 norm of random variables. This implies by
choosing

a = Φ−1
(

1− γ√
n

+
2T

σ3
√
n

)
(65)
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that

Pr

(
1

σ
√
n

n∑
k=1

1

2(1 + qn,ε)

(
−qn,εZ2

k + 2
√
qn,εZk + qn,ε

)
≤ Φ−1

(
1− γ√

n
+

2T

σ3
√
n

))
> 1− γ√

n
+

T

σ3
√
n
. (66)

Now, put

γ :=
2T

σ3
+ 1. (67)

From (66), we obtain

Pr

(
1

σ
√
n

n∑
k=1

1

2(1 + qn,ε)

(
−qn,εZ2

k + 2
√
qn,εZk + qn,ε

)
≤ Φ−1

(
1− γ√

n
+

2T

σ3
√
n

))
> 1− 1√

n
− T

σ3
√
n
. (68)

Finally, we set

ln ζn = nC

(
P

1−ε− γ√
n

)
+σ
√
nΦ−1

(
1− γ√

n
+

2T

σ3
√
n

)
(69)

= nC

(
P

1− ε− γ√
n

)
+ σ
√
nΦ−1

(
1− 1√

n

)
, (70)

then from (59) we obtain

lnM∗fb(n− 1, P, ε)

≤ nC

(
P

1− ε− γ√
n

)
+ σ
√
nΦ−1

(
1− 1√

n

)
− ln

(
1− 1√

n
− T

σ3
√
n
−
(

1− γ√
n

))
(71)

=nC

(
P

1− ε− γ√
n

)
+σ
√
nΦ−1

(
1− 1√

n

)
−ln

(
T

σ3
√
n

)
. (72)

In addition, let τn := Φ−1
(
1− 1√

n

)
, then we have

1√
n

= 1− Φ(τn)
(a)

≤ e−τ
2
n/2. (73)

Here, (a) follows from the Chernoff bound. It follows that

τn ≤
√

lnn. (74)

From (72) and (74) we obtain

lnM∗fb(n− 1, P, ε) ≤ nC

(
nP

1− ε− γ√
n

)
+ σ
√
n lnn+

1

2
lnn+O(

√
n). (75)

Using Taylor’s expansion, the definition of the Gaussian dispersion in (10), of σ in (63), and the bound in (75), we obtain the
converse bound in (27) as desired.

III. AWGN MULTIPLE ACCESS CHANNEL WITH FEEDBACK

A. Channel Model and Definitions

1) Channel Model: The channel model is given by

Y = X1 +X2 + Z, (76)

where X1 and X2 represent the inputs to the channel, Z ∼ N (0, 1) is an additive Gaussian noise with zero mean and unit
variance, and Y is the output of the channel. Thus, the channel from (X1, X2) to Y can be written as

W (y|x1, x2) =
1√
2π

exp

(
−1

2
(y − x1 − x2)2

)
. (77)

The channel is used n times in a memoryless channel with feedback. This means that across a block of length n, we have

Yk = X1k +X2k + Zk, k = 1, 2 . . . , n, (78)

where the Zk’s are independent and standard normal, i.e., Zk ∼ N (0, 1).
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2) Definitions: Now we state some important definitions for the AWGN-MAC with feedback. Please refer to [31, Fig. 17.4]
for an illustration of the setup of the problem.

Definition 3. An (n,M1n,M2n, εn)-code for the AWGN-MAC with feedback and expected power constraints consists of two
message sets W1 := {1, . . . ,M1n}, W2 = {1, . . . ,M2n}, encoders f1n : W1 × Rn−1 → Rn, f2n : W2 × Rn−1 → Rn and a
decoder ϕn : Rn →W1 ×W2 satisfying the power constraints

P (1)
avg :=

1

n

n∑
k=1

E[X2
1k] =

1

n

n∑
k=1

E[f21k(W1, Y
k−1)] ≤ P1, (79)

P (2)
avg :=

1

n

n∑
k=1

E[X2
2k] =

1

n

n∑
k=1

E[f22k(W2, Y
k−1)] ≤ P2, (80)

and the error probability constraint

Pr((Ŵ1, Ŵ2) 6= (W1,W2)) ≤ εn, (81)

where the messages W1 and W2 are uniformly distributed on W1 and W2 respectively, and (Ŵ1, Ŵ2) = ϕn(Y n) is the
decoded message pair.

Note that we use W in (77) to denote the Gaussian MAC and W1 and W2 to denote the random messages.

Definition 4. Let C(ρ;P1, P2, ε) be the set of all rate pairs (R1, R2) ∈ R2
+ such that

R1 ≤ C

(
P1(1− ρ2)

1− ε

)
(82)

R2 ≤ C

(
P2(1− ρ2)

1− ε

)
(83)

R1 +R2 ≤ C

(
P1 + P2 + 2ρ

√
P1P2

1− ε

)
. (84)

The information ε-capacity region C∗fb(P1, P2, ε) ⊂ R2
+ is defined to be the set

C∗fb(P1, P2, ε) :=
⋃

0≤ρ≤1

C(ρ;P1, P2, ε). (85)

The information capacity region is defined as

C∗fb(P1, P2) :=
⋂
ε>0

C∗fb(P1, P2, ε) = lim
ε→0
C∗fb(P1, P2, ε), (86)

where the limit exists because of the monotonicity of C∗fb(P1, P2, ε).

Definition 5. A pair of non-negative numbers (R1, R2) is ε-achievable if there exists a sequence of (n,M1n,M2n, P1, P2, εn)-
feedback codes such that

lim inf
n→∞

1

n
lnMjn ≥ Rj , j = 1, 2, and lim sup

n→∞
εn ≤ ε. (87)

The ε-capacity region C∗fb(P1, P2, ε) ⊂ R2
+ is defined to be the closure of the set of all ε-achievable rate pairs (R1, R2). The

capacity region is defined as

C∗fb(P1, P2) :=
⋂
ε>0

C∗fb(P1, P2, ε) = lim
ε→0
C∗fb(P1, P2, ε), (88)

where the limit exists because of the monotonicity of C∗fb(P1, P2, ε).

B. Main Results
Theorem 4. For any ρ ∈ [0, 1], there exists a sequence of (n,M1n,M2n, ε)-codes for the AWGN channel with feedback under
the expected power constraint such that

lnM1n ≥ nC
(
P1(1− ρ2)

1− ε

)
+O(ln lnn), (89)

lnM2n ≥ nC
(
P2(1− ρ2)

1− ε

)
+O(ln lnn), (90)

ln(M1nM2n) ≥ nC
(
P1 + P2 + 2ρ

√
P1P2

1− ε

)
+O(ln lnn). (91)
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Conversely, for every sequence of (n,M1n,M2n, ε)-codes for the AWGN channel with feedback under the expected power
constraint, the following inequalities hold for some ρ ∈ [0, 1]

lnM1n ≤ nC
(
P1(1− ρ2)

1− ε

)
+O(n2/3), (92)

lnM2n ≤ nC
(
P2(1− ρ2)

1− ε

)
+O(n2/3), (93)

ln(M1nM2n) ≤ nC
(
P1 + P2 + 2ρ

√
P1P2

1− ε

)
+O(n2/3). (94)

As a consequence, the ε-capacity region is equal to the information ε-capacity region, i.e.,

C∗fb(P1, P2, ε) = C∗fb(P1, P2, ε), (95)

and the capacity region is also equal to the information capacity region [10], i.e.,

C∗fb(P1, P2) = C∗fb(P1, P2). (96)

Proof: The proof of Theorem 4 directly follows from achievability statement in Proposition 6 in Subsection III-C and
converse statement in Proposition 12 in Subsection III-D. We note that the equality in (96) is exactly Ozarow’s result [10] so
Theorem 4 is a generalization of [10].

We remark that the ε-capacity region (for positive ε) is indeed enlarged compared to the case when ε = 0, i.e., the strong
converse again fails to hold as expected. Indeed the powers Pj are replaced by Pj/(1 − ε) similarly to the single-user case.
However, the proofs are substantially more involved. The proof of the inner bound (achievability) modifies Ozarow’s coding
scheme [10] with a simple randomization argument so that the error probability is asymptotically bounded above by ε instead
of being required to vanish. The proof of the outer bound (converse) requires non-trivial combinations of ideas from the
meta-converse [13] (see Appendix C), information spectrum analysis [21]–[23] (see Lemma 10) and Ozarow’s original weak
converse proof [10].

We also note that bounds on the scaling of the second-order terms are established—the second-order terms scale as O(ln lnn)
for the achievability part (see (89)–(91)). In fact for the achievability part, a simple inspection of the proofs shows that the
second-order terms are lower bounded by − 1

2 ln lnn+O(1) for the marginal rates and − ln lnn+O(1) for the sum rate (see
(121), (122) and (125) in the proof of Proposition 6). The second-order terms are upper bounded by O(n2/3) for the converse
part (see (92)–(94)). Tightening the orders of the bounds and finding the constants (second-order coding rate region) appear
to be challenging tasks, but may be achieved by leveraging ideas from the single-user case in Section II, e.g., the conversion
of a code with expected power constraints to a code with peak power constraints. We defer this to future work.

Similar to the single-user case, our achievability also holds under the maximal error formalism, because the encoders can
always utilize the common randomness obtained from one use of the feedback to relabel the message pairs according to the
uniform distribution.

C. Proof of Achievability

We start with a preliminary lemma.

Lemma 5. Consider the quartic equations
4∑
j=0

ajz
j = 0, and (97)

4∑
j=0

bjz
j = 0. (98)

where the coefficients {(aj , bj) : j = 0, 1, . . . , 4} satisfy

|bj − aj | ≤
d

n
, (99)

for some finite constant d ≥ 0. Let z∗ be a real solution to (97) assuming a real solution exists. Then, for all n large enough,
there exists a real solution to (98), namely z∗n, such that

|z∗n − z∗| ≤
c

n
(100)

for some finite constant c ≥ 0.

Proof: The proof of Lemma 5 is provided in Appendix A.
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Proposition 6. There exists a sequence of (n,M1n,M2n, ε)-codes for the AWGN channel with feedback under the expected
power constraint satisfying (89)–(91) for any ρ ∈ [0, 1]. As a result, the ε-capacity region for the AWGN-MAC with feedback
under an expected power constraint contains the information ε-capacity region, i.e.,

C∗fb(P1, P2, ε) ⊃ C
∗
fb(P1, P2, ε). (101)

Proof: Let ρ∗ be the largest real solution in (0, 1) of the following equation

1 +
P1

1− ε
+

P2

1− ε
+ 2x

√
P1

1− ε

√
P2

1− ε

=

[
1 +

P1(1− x2)

1− ε

] [
1 +

P2(1− x2)

1− ε

]
. (102)

Then by Lemma 5, the equation

1 +
P1

1− ε+ 1/n
+

P2

1− ε+ 1/n
+ 2x

√
P1

1− ε+ 1/n

√
P2

1− ε+ 1/n

=

[
1 +

P1(1− x2)

1− ε+ 1/n

] [
1 +

P2(1− x2)

1− ε+ 1/n

]
(103)

has a real solution ρ∗n such that |ρ∗n − ρ∗| ≤ c(P1, P2, ε)/n for n large enough. This is because (102) and (103) are quartic
equations and each of their coefficients differ by no more than a constant of 1/n. Note that since ρ∗ ∈ (0, 1), we also have
ρ∗n ∈ (0, 1) for n large enough.

Similarly to the standard achievability proof (e.g., [10] and [31, Sec. 17.2.4]) for the vanishing error probability formalism,
for each fixed n we will first show that (89)–(91) hold for ρ = ρ∗n, where ρ∗n ∈ (0, 1) is the solution of (103).

As usual |W1| = M1n, and |W2| = M2n. At a high-level, we combine Ozarow’s coding scheme [10] and power control
ideas from Yang et al. [12] with some modifications. More specifically, for each pair (w1, w2) ∈ W1×W2, the coding scheme
is as follows:

1) Encoding:
• In the first transmission, the two transmitters send zero symbols, i.e., X11 = 0, X21 = 0. They receive the first feedback

signals which are equal to the first channel noise symbol via the feedback links, i.e., Y1 = Z1.
• For the next n transmissions, we first define the rates

R1n :=
1

n
lnM1n, (104)

R2n :=
1

n
lnM2n. (105)

As in Ozarow’s paper [10, pp. 625], at time k = 1, 2 the receiver adds to his received outputs a random variable
W ∼ N (0, σ2

W ). The “degraded” outputs are fed back to the transmitters and used at both ends to form estimates. Define
a sequence ρk, k = 2, 3, ..., n as [10, Equation (4)]. Then, if we choose σ2

W such that

E
[

Z1+W√
12P1/(1−ε+1/n)

Z2+W√
12P2/(1−ε+1/n)

]
√(

1+σ2
W

12P1/(1−ε+1/n)

)(
1+σ2

W

12P2(1−ε+1/n)

) = ρ∗n, (106)

we will have ρ2 = ρ∗n. Note that the equation (106) is equivalent to

σ2
W

1 + σ2
W

= ρ∗n, (107)

or

σ2
W =

ρ∗n
1− ρ∗n

. (108)

Since ρ2 = ρ∗n, similarly to the argument leading to [10, Equation (11)] we have ρk = (−1)kρ∗n for all k = 2, 3 . . . , n.
Therefore, an upper bound on the average error probability associated to the Ozarow scheme [10, Equation (13)] is

κn : = 2Q

 1

2
√
v1n

(
1 +

P1[1−(ρ∗n)2]
1−ε+1/n

) exp

[
n

(
C

(
1 +

P1[1− (ρ∗n)2]

1− ε+ 1/n

)
−R1n

)]
+ 2Q

 1

2
√
v2n

(
1 +

P2[1−(ρ∗n)2]
1−ε+1/n

) exp

[
n

(
C

(
1 +

P2[1− (ρ∗n)2]

1− ε+ 1/n

)
−R2n

)] (109)
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where v1n = (1− ε + 1/n)/(12P1), v2n = (1− ε + 1/n)/(12P2), the complementary Gaussian cdf Q(u) := 1− Φ(u).
Now using the Chernoff bound on Q(·) to upper bound (109) (similarly to (73)), we obtain

κn ≤ exp

 −1

8v1n

(
1 +

P1[1−(ρ∗n)2]
1−ε+1/n

)2 exp

[
2n

(
C

(
1 +

P1[1− (ρ∗n)2]

1− ε+ 1/n

)
−R1n

)]
+ exp

 −1

8v2n

(
1 +

P2[1−(ρ∗n)2]
1−ε+1/n

)2 exp

[
2n

(
C

(
1 +

P2[1− (ρ∗n)2]

1− ε+ 1/n

)
−R2n

)] . (110)

In the following, we will design the parameters of the code so that κn → 0. Henceforth, we assume that n is sufficiently
large so that κn < ε and 1

n < ε (so subsequent expressions make sense).
Now we also adopt the following strategy:

– If

Y1 ≤ Φ−1
(
ε− κn
1− κn

)
, (111)

then both the encoders send zero symbols for all the n transmission, i.e., {X1k}n+1
k=2 = {X2k}n+1

k=2 = (0, . . . , 0).
– If

Y1 > Φ−1
(
ε− κn
1− κn

)
, (112)

then encoder j for j ∈ {1, 2} sends the next n transmission symbols following Ozarow’s coding scheme with expected
power constraint Pj/(1− ε+ 1/n).

2) Decoding:

• For the first received signal symbols Y1 = Z1, the receiver feed backs this signal to transmitters via the feedback links.
• For the next n received signals, Yk = X1k + X2k + Zk, k = 2, 3, ..., n + 1, the receiver feed backs the received signals

to the transmitters via feedback links and performs decoding as Ozarow’s decoding algorithm.

Here, we remark that the first noise variable Z1 = Y1 is used as a “biased coin flip” to either transmit (if (112) is true)
or not (if instead (111) is true). This ensures that all encoders fk are deterministic. Furthermore, as we shall see in the error
probability analysis to follow, the choices of various parameters ensure that power constraints and error probability bound are
simultaneously satisfied.

3) Error Probability Analysis: First define the event Eε,κn
:=
{
Y1 ≤ Φ−1( ε−κn

1−κn
)
}

, i.e., this event implies both encoders
transmit zero symbols over times k = 2, 3, . . . , n+ 1 according to (111). Since Y1 is standard Gaussian, we have Pr(Eε,κn

) =
ε−κn

1−κn
and Pr(Ecε,κn

) = 1−ε
1−κn

. By Ozarow’s analysis [10], we have

Pr
(
{Ŵ1 6= W1} ∪ {Ŵ2 6= W2}

∣∣∣ Ecε,κn

)
≤ κn. (113)

It follows that

Pr
(
{Ŵ1 6= W1} ∪ {Ŵ2 6= W2}

)
(114)

≤ Pr
(
{Ŵ1 6= W1} ∪ {Ŵ2 6= W2}

∣∣∣ Ecε,κn

)
Pr
(
Ecε,κn

)
+ Pr (Eε,κn

) , (115)

= κn

(
1− ε

1− κn

)
+
ε− κn
1− κn

(116)

= ε (117)

where (116) follows from the bounds on the probability of Eε,κn and its complement, and the fact that the average error
probability of the Ozarow scheme is upper bounded by κn in (110). Hence, the average error probability of the coding scheme
is upper bounded by ε.

Following (110), we can show by using Taylor expansion that

C

(
P1[1− (ρ∗n)2]

1− ε+ 1/n

)
= C

(
P1[1− (ρ∗n)2]

1− ε

)
+O

(
1

n

)
, (118)

C

(
P2[1− (ρ∗n)2]

1− ε+ 1/n

)
= C

(
P2[1− (ρ∗n)2]

1− ε

)
+O

(
1

n

)
, (119)
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and

C

(
P1

1− ε+ 1/n
+

P2

1− ε+ 1/n
+ 2ρ∗n

√(
P1

1− ε+ 1/n

)(
P2

1− ε+ 1/n

))

= C

(
P1

1− ε
+

P2

1− ε
+ 2ρ∗n

√(
P1

1− ε

)(
P2

1− ε

))
+O

(
1

n

)
. (120)

Now we choose ϑn = O(1) (to be determined later) and

lnM1n = nC

(
P1[1− (ρ∗n)2]

1− ε+ 1/n

)
− 1

2
ln(ϑn lnn), (121)

lnM2n = nC

(
P2[1− (ρ∗n)2]

1− ε+ 1/n

)
− 1

2
ln(ϑn lnn), (122)

where ρ∗n is the solution of (103). Using (103), (121) and (122), we have

ln(M1nM2n) = lnM1n + lnM2n (123)

= nC

(
P1[1− (ρ∗n)2]

1− ε+ 1/n

)
+ nC

(
P2[1− (ρ∗n)2]

1− ε+ 1/n

)
− ln(ϑn lnn) (124)

= nC

(
P1 + P2 + 2ρ∗n

√
P1P2

1− ε+ 1/n

)
− ln(ϑn lnn). (125)

Since |ρ∗n − ρ∗| ≤ c(P1, P2, ε)/n for n large enough, by Taylor expansions, we have

lnM1n = nC

(
P1[1− (ρ∗)2]

1− ε

)
− 1

2
ln lnn+O(1), (126)

lnM2n = nC

(
P2[1− (ρ∗)2]

1− ε

)
− 1

2
ln lnn+O(1), (127)

ln(M1nM2n) = nC

(
P1 + P2 + 2ρ∗

√
P1P2

1− ε

)
− ln lnn+O(1). (128)

In addition, by our choices of the various parameters, we note that (cf. the definition of the rates in (104)–(105))

C

(
P1[1− (ρ∗n)2]

1− ε+ 1/n

)
−R1n =

ln(ϑn lnn)

2n
, (129)

C

(
P2[1− (ρ∗n)2]

1− ε+ 1/n

)
−R2n =

ln(ϑn lnn)

2n
, (130)

so by (110) we have

κn ≤ exp

 −ϑn lnn

8v1n

(
1 +

P1[1−(ρ∗n)2]
1−ε+1/n

)2
+ exp

 −ϑn lnn

8v2n

(
1 +

P2[1−(ρ∗n)2]
1−ε+1/n

)2
 . (131)

Let

ϑn := 2 max

{
8v1n

(
1 +

P1[1− (ρ∗n)2]

1− ε+ 1/n

)2

, 8v2n

(
1 +

P2[1− (ρ∗n)2]

1− ε+ 1/n

)2
}
. (132)

Note that this parameter behaves as ϑn = O(1). We then obtain

κn ≤ 2 exp (−2 lnn) (133)

=
2

n2
. (134)

It follows that

κn

(
1− ε+

1

n

)
≤ 1

n
. (135)
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With regard to the input power constraints, we may conclude from (135) that the average transmitted powers at encoders 1
and 2 satisfy

P (1)
avg ≤

1− ε
1− κn

(
P1

1− ε+ 1/n

)
(136)

≤ P1, (137)

P (2)
avg ≤

1− ε
1− κn

(
P2

1− ε+ 1/n

)
(138)

≤ P2. (139)

Hence, the input power constraints are satisfied. Consequently, there exists an (n,M1n,M2n, ε)-code for the AWGN-MAC
with feedback satisfying (89)–(91) for ρ = ρ∗ for large enough n. Following standard arguments (e.g., [10] and [31, Sec.
17.2.4]) which involve partitioning one of the message sets and using successive cancellation decoding, we can conclude that
for each ρ ∈ [0, 1], there exists an (n,M1n,M2n, ε)-code for the AWGN-MAC with feedback satisfying (89)–(91) for large
enough n. This means that the ε-capacity region satisfies the following inclusion

C∗fb(P1, P2, ε) ⊃ C
∗
fb(P1, P2, ε), (140)

completing the proof of Proposition 6 (i.e., the achievability part of Theorem 4).

D. Proof of Converse

Outline: To establish an outer bound for the ε-capacity region, we use Lemmas 7 to 11 to establish Proposition 12. In
particular, Lemma 7 is an important “single-letterization” lemma that allows us to amalgamate all the different correlation
parameters ρk (the correlation coefficients between the input symbols X1k and X2k) and to introduce a single parameter
ρ whose magnitude does not exceed 1. The idea behind Lemma 7 is partly inspired by the weak converse proof for the
AWGN-MAC with feedback by Ozarow [10]. Lemma 8 allows us to bound the probabilities of certain atypical events given
power constraints on the inputs. Lemma 9 provides computations of the moments of certain important statistics. In particular, it
shows that the second moments of certain important information density random variables scales as O(n). Lemma 10 provides
important information spectrum-type upper bounds on the maximum number of codewords transmissible with ε error. Lemma
11 bounds the probabilities within the information spectrum-type upper bound by using the moment calculations in Lemma 9.
Finally Proposition 12 puts the preceding calculations together to establish the outer bound on the ε-capacity region.

Lemma 7. Consider a feedback code for the AWGN-MAC of length n with encoders {(f1k, f2k)}nk=1 that yields input symbols
X1k = f1k(W1, Y

k−1) and X2k = f2k(W2, Y
k−1) which have second moments

P1k := E[X2
1k], and P2k := E[X2

2k]. (141)

Define

ρ :=

∑n
k=1 ρk

√
P1kP2k

n
√
P1P2

, (142)

where the ρk’s are correlation coefficients defined by

ρk :=
E[X1kX2k]√
P1kP2k

, k = 1, 2, . . . , n. (143)

Then,

|ρ| ≤ 1. (144)

Furthermore,
n∑
k=1

P1k(1− ρ2k) ≤ nP1(1− ρ2), (145)

n∑
k=1

P2k(1− ρ2k) ≤ nP2(1− ρ2), (146)

n∑
k=1

P1k + P2k + 2ρk
√
P1kP2k ≤ n(P1 + P2 + 2ρ

√
P1P2). (147)
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Proof: Observe that

|ρ| =
∣∣∣∣∑n

k=1 ρk
√
P1kP2k

n
√
P1P2

∣∣∣∣ (148)

(a)

≤ 1

n

∑n
k=1

√
P1kP2k√

P1P2

(149)

=
1

n

n∑
k=1

√
P1kP2k

P1P2
(150)

(b)

≤ 1

2n

n∑
k=1

[
P1k

P1
+
P2k

P2

]
(151)

=

n∑
k=1

1

2n

P1k

P1
+

1

2n

n∑
k=1

P2k

P2
(152)

(c)

≤ 1

2n
· nP1

P1
+

1

2n
· nP2

P2
(153)

= 1. (154)

Here, (a) follows from the fact that |ρk| ≤ 1 (by the Cauchy-Schwarz inequality), (b) follows from the arithmetic mean-
geometric mean inequality (

√
ab ≤ a+b

2 ), and (c) follows from the input power constraints (79) and (80). This verifies (144).
In addition, from the definition of ρ in (142) we also have

n∑
k=1

P1k + P2k + 2ρk
√
P1kP2k ≤ nP1 + nP2 + 2

n∑
k=1

ρk
√
P1kP2k (155)

= n(P1 + P2 + 2ρ
√
P1P2), (156)

verifying (147). Moreover, we see that

(nρ
√
P1P2)2 =

(
n∑
k=1

ρk
√
P1kP2k

)2

(157)

(a)

≤

(
n∑
k=1

P1kρ
2
k

)(
n∑
k=1

P2k

)
(158)

(b)

≤

(
n∑
k=1

P1kρ
2
k

)
nP2 (159)

Here, (a) follows from the Cauchy–Schwarz inequality, (b) follows from the input power constraint (80). Therefore, we obtain
n∑
k=1

P1kρ
2
k ≥ nP1ρ

2. (160)

It follows that
n∑
k=1

P1k(1− ρ2k) =

n∑
k=1

P1k −
n∑
k=1

P1kρ
2
k (161)

(a)

≤ nP1 −
n∑
k=1

P1kρ
2
k (162)

(b)

≤ nP1 − nP1ρ
2 (163)

= nP1(1− ρ2), (164)

where (a) is due to the input power constraint (79) and (b) follows from (160). This verifies (145). Using the same arguments,
we also show that

n∑
k=1

P2k(1− ρ2k) ≤ nP2(1− ρ2). (165)

This completes the proof.
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Lemma 8. Assume that all parameters are defined as Lemma 7. Define the events

U1n :=


n∑
k=1

(
X1k −X2kρk

√
P1k

P2k

)2

− nP1T (1− ρ2) < 0

 , (166)

U2n :=


n∑
k=1

(
X2k −X1kρk

√
P2k

P1k

)2

− nP2T (1− ρ2) < 0

 , (167)

U3n :=

{
n∑
k=1

(X1k +X2k)2 − n(P1T + P2T + 2ρ
√
P1TP2T ) < 0

}
, (168)

for some positive real number T . Then, the following inequalities hold:

Pr(Ucjn) ≤ 1

T
, j = 1, 2, 3. (169)

Proof: Observe that

Pr(Uc1n)
(a)

≤
E
[∑n

k=1

(
X1k −X2kρk

√
P1k

P2k

)2]
nP1T (1− ρ2)

(170)

=

∑n
k=1 P1k(1− ρ2k)

nP1T (1− ρ2)
(171)

(b)

≤ nP1(1− ρ2)

nP1T (1− ρ2)
(172)

=
1

T
, (173)

where (a) follows from Markov’s inequality [16, Prop. 1.1] and (b) follows from (145). Similarly, we also have

Pr(Uc2n) ≤ 1

T
. (174)

In addition, we see that

Pr(Uc3n)
(a)

≤
∑n
k=1 E[(X1k +X2k)2]

nT (P1 + P2 + 2ρ
√
P1P2)

(175)

=

∑n
k=1 P1k + P2k + 2ρk

√
P1kP2k

nT (P1 + P2 + 2ρ
√
P1P2)

(176)

(b)

≤
nP1 + nP2 + 2

∑n
k=1 ρk

√
P1kP2k

nT (P1 + P2 + 2ρ
√
P1P2)

(177)

(c)
=

n(P1 + P2 + 2ρ
√
P1P2)

nT (P1 + P2 + 2ρ
√
P1P2)

(178)

=
1

T
. (179)

where (a) follows from Markov’s inequality [16, Prop. 1.1], (b) follows from the input power constraints (79), (80), and (c)
follows from (147).

Lemma 9. Consider the parameters as defined as Lemma 7. Define the random variables.

V1n := −P1T (1− ρ)2
n∑
k=1

Z2
k + 2

n∑
k=1

Zk

(
X1k − ρkX2k

√
P1k

P2k

)
+ nP1T (1− ρ2), (180)

V2n := −P2T (1− ρ)2
n∑
k=1

Z2
k + 2

n∑
k=1

Zk

(
X2k − ρkX1k

√
P2k

P1k

)
+ nP2T (1− ρ2), (181)

V3n := 2

n∑
k=1

(X1k +X2k)Zk − (P1T + P2T + 2ρT
√
P1P2)

n∑
k=1

Z2
k + n(P1T + P2T + 2ρT

√
P1P2). (182)
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Then their moments are given as

E[Vjn] = 0, j = 1, 2, 3, (183)

E[V 2
1n] = 2nP 2

1 T
2(1− ρ2)2 + 4

n∑
k=1

P1k(1− ρ2k), (184)

E[V 2
2n] = 2nP 2

2 T
2(1− ρ2)2 + 4

n∑
k=1

P2k(1− ρ2k), (185)

E[V 2
3n] = 4

n∑
k=1

(P1k + P2k + 2ρk
√
P1kP2k) + 2n(P1T + P2T + 2ρT

√
P1P2)2. (186)

Proof: Since the proof is straightforward but tedious, we defer it to Appendix B.
Now we state an information spectrum-type lemma that is similar to [35, Lemma 4] and [23, Proposition 1] but adapted to

suit the needs of the problem at hand.

Lemma 10. Consider any length-n code for the stationary memoryless MAC PY n|Xn
1 X

n
2

(yn|xn1 , xn2 ) = Wn(yn|xn1 , xn2 ) =∏n
k=1W (yk|x1k, x2k) with feedback (cf. Definition 3). This induces a code distribution PW1W2Xn

1 X
n
2
×Wn defined in terms

of the encoders {f1k, f2k}nk=1. Then for any positive real numbers γ1n, γ2n, γ3n and any collection of (output) distributions
{(QYk|X1k

, QYk|X2k
, QYk

)}nk=1, the following bounds hold:

lnM1n ≤ ln γ1n − ln+

(
1− ε− Pr

[
n∑
k=1

ln
W (Yk|X1kX2k)

QYk|X2k
(Yk|X2k)

≥ ln γ1n

])
, (187)

lnM2n ≤ ln γ2n − ln+

(
1− ε− Pr

[
n∑
k=1

ln
W (Yk|X1kX2k)

QYk|X1k
(Yk|X1k)

≥ ln γ2n

])
, (188)

ln (M1nM2n) ≤ ln γ3n − ln+

(
1− ε− Pr

[
n∑
k=1

ln
W (Yk|X1kX2k)

QYk
(Yk)

≥ ln γ3n

])
. (189)

Proof: See Appendix C.

Lemma 11. Given a positive real number 1/(1− ε) ≤ T ≤ 2/(1− ε) and ρ as defined in Lemma 7, the following inequalities
hold for some choice of (output) distributions {(QYk|X1k

, QYk|X2k
, QYk

)}nk=1:

Pr

[
n∑
k=1

ln
W (Yk|X1kX2k)

QYk|X2k
(Yk|X2k)

≥ ln γ1n

]
≤ 1

T
+O(n−1/3) (190)

Pr

[
n∑
k=1

ln
W (Yk|X1kX2k)

QYk|X1k
(Yk|X1k)

≥ ln γ1n

]
≤ 1

T
+O(n−1/3) (191)

Pr

[
n∑
k=1

ln
W (Yk|X1kX2k)

QYk
(Yk)

≥ ln γ3n

]
≤ 1

T
+O(n−1/3), (192)

where γ1n, γ2n and γ3n are defined as

ln γ1n =
n

2
ln
[
1 + P1T (1− ρ2)

]
+ n2/3, (193)

ln γ2n =
n

2
ln
[
1 + P2T (1− ρ2)

]
+ n2/3, (194)

ln γ3n =
n

2
ln
[
1 + P1T + P2T + 2ρT

√
P1P2

]
+ n2/3. (195)

The implied constants in the O(·) notation in (190)–(192) depend only on P1, P2 and ε.

Proof: Firstly, we choose the auxiliary conditional output distributions in the statement of Lemma 10 to be

QYk|X2k
(yk|x2k) := N

(
yk; 0, x2k

(
1 + ρk

√
P1k

P2k

)
, 1 + P1T (1− ρ2)

)
, (196)

QYk|X1k
(yk|x1k) := N

(
yk; 0, x1k

(
1 + ρk

√
P2k

P1k

)
, 1 + P2T (1− ρ2)

)
, (197)

QYk
(yk) := N

(
yk; 0, 1 + P1T + P2T + 2ρT

√
P1P2

)
, (198)
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for all k = 1, 2, . . . , n. Here, ρk and ρ were defined in (143) and (142) respectively and we also use the notation N (y;µ, σ) :=
(2πσ2)−1/2 exp

(
− (y − µ)2/(2σ)

)
for the normal distribution.

Observe that
n∑
k=1

ln
W (Yk|X1kX2k)

QYk|X2k
(Yk|X2k)

=
n

2
ln
[
1 + P1T (1− ρ2)

]
+
−[1 + P1T (1− ρ2)]

∑n
k=1 Z

2
k +

∑n
k=1

[
Yk −X2k

(
1 + ρk

√
P1k

P2k

)]2
2[1 + P1T (1− ρ2)]

, (199)

=
n

2
ln
[
1 + P1T (1− ρ2)

]
+

[∑n
k=1

(
X1k −X2kρk

√
P1k

P2k

)2
− nP1T (1− ρ2)

]
2(1 + P1T (1− ρ2))

+

[
−P1T (1− ρ)2

∑n
k=1 Z

2
k + 2

∑n
k=1 Zk

(
X1k − ρkX2k

√
P1k

P2k

)
+ nP1T (1− ρ2)

]
2(1 + P1T (1− ρ2))

. (200)

Similarly, we also have
n∑
k=1

ln
W (Yk|X1kX2k)

QYk|X1k
(Yk|X1k)

=
n

2
ln
[
1 + P2T (1− ρ2)

]
+

[∑n
k=1

(
X2k −X1kρk

√
P2k

P1k

)2
− nP2T (1− ρ2)

]
2(1 + P2T (1− ρ2))

+

[
−P2T (1− ρ)2

∑n
k=1 Z

2
k + 2

∑n
k=1 Zk

(
X2k − ρkX1k

√
P2k

P1k

)
+ nP2T (1− ρ2)

]
2(1 + P2T (1− ρ2))

, (201)

and
n∑
k=1

ln
W (Yk|X1kX2k)

QYk
(Yk)

=
1

2
ln(1 + P1T + P2T + 2ρ

√
P1TP2T ) +

∑n
k=1 Y

2
k − (1 + P1T + P2T + 2ρT

√
P1P2)

∑n
k=1 Z

2
k

2(1 + P1T + P2T + 2ρT
√
P1P2)

=
1

2
ln(1 + P1T + P2T + 2ρT

√
P1P2) +

[
∑n
k=1(X1k +X2k)2 − n(P1T + P2T + 2ρT

√
P1P2)]

2(1 + P1T + P2T + 2ρT
√
P1P2)

+
[2
∑n
k=1(X1k +X2k)Zk − (P1T + P2T + 2ρT

√
P1P2)

∑n
k=1 Z

2
k + n(P1T + P2T + 2ρT

√
P1P2)]

2(1 + P1T + P2T + 2ρT
√
P1P2)

. (202)

Hence, we have

Pr

[
n∑
k=1

ln
W (Yk|X1kX2k)

QYk|X2k
(Yk|X2k)

≥ ln γ1n

]

= Pr

[
n∑
k=1

ln
W (Yk|X1kX2k)

QYk|X2k
(Yk|X2k)

≥ ln γ1n

∣∣∣Uc1n
]

Pr(Uc1n) + Pr

[
n∑
k=1

ln
W (Yk|X1kX2k)

QYk|X2k
(Yk|X2k)

≥ ln γ1n

∣∣∣U1n]Pr(U1n) (203)

≤ Pr(Uc1n) + Pr

[
n∑
k=1

ln
W (Yk|X1kX2k)

QYk|X2k
(Yk|X2k)

≥ ln γ1n

∣∣∣U1n]Pr(U1n) (204)

= Pr(Uc1n) + Pr

[
V1n

2(1 + P1T (1− ρ2))
≥ ln γ1n −

n

2
ln
[
1 + P1T (1− ρ2)

]]
(205)

= Pr(Uc1n) + Pr

[
V1n

2(1 + P1T (1− ρ2))
≥ n2/3

]
(206)

(a)

≤ Pr(Uc1n) +
E[V 2

1n]

[2(1 + P1T (1− ρ2))]2n4/3
(207)

(b)

≤ 1

T
+

2nP 2
1 T

2(1− ρ2)2 + 4
∑n
k=1 P1k(1− ρ2k)

[2(1 + P1T (1− ρ2))]2n4/3
(208)

(c)

≤ 1

T
+

2nP 2
1 T

2(1− ρ2)2 + 4nP1(1− ρ2)

[2(1 + P1T (1− ρ2))]2n4/3
(209)
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=
1

T
+O(n−1/3). (210)

Here, (a) follows from Chebyshev’s inequality [16, Prop. 1.2], (b) follows from (169) and (184), and (c) follows from (145).
Note that the implied constant in the O(·) notation in (210) depends only on (P1, P2, ε) since 1/(1− ε) ≤ T ≤ 2/(1− ε) and
|ρ| ≤ 1.

Using the same arguments, we can show that

Pr

[
n∑
k=1

ln
W (Yk|X1kX2k)

QYk|X1k
(Yk|X1k)

≥ ln γ2n

]
≤ 1

T
+O(n−1/3). (211)

Finally, observe that

Pr

[
n∑
k=1

ln
W (Yk|X1kX2k)

QYk
(Yk)

≥ ln γ3n

]

= Pr

[
n∑
k=1

ln
W (Yk|X1kX2k)

QYk
(Yk)

≥ ln γ3n

∣∣∣Uc3n
]

Pr(Uc3n) + Pr

[
n∑
k=1

ln
W (Yk|X1kX2k)

QYk
(Yk)

≥ ln γ3n

∣∣∣U3n]Pr(U3n) (212)

≤ Pr(Uc3n) + Pr

[
V3n

1 + P1T + P2T + 2ρ
√
P1P2

≥ ln γ3n −
n

2
ln(1 + P1 + P2 + 2ρ

√
P1P2)

]
(213)

= Pr(Uc3n) + Pr

[
V3n

1 + P1T + P2T + 2ρ
√
P1P2

≥ n2/3
]

(214)

(a)

≤ 1

T
+

E[V 2
3n](

1 + P1T + P2T + 2ρ
√
P1P2

)2
n4/3

(215)

(b)
=

1

T
+

4
∑n
k=1(P1k + P2k + 2ρk

√
P1kP2k) + 2n(P1T + P2T + 2ρT

√
P1P2)2(

1 + P1T + P2T + 2ρ
√
P1P2

)2
n4/3

(216)

(c)

≤ 1

T
+

4n(P1 + P2 + 2ρ
√
P1P2) + 2n(P1T + P2T + 2ρT

√
P1P2)2(

1 + P1T + P2T + 2ρ
√
P1P2

)2
n4/3

(217)

=
1

T
+O(n−1/3). (218)

Here, (a) follows from Chebyshev’s inequality [16, Prop. 1.2] and (169), (b) follows from (186), and (c) follows from (147).

Proposition 12. For every sequence of (n,M1n,M2n, ε)-codes for the AWGN-MAC with feedback under the expected power
constraint, the constraints in (92)–(94) hold for some ρ ∈ [0, 1]. As a result, the information ε-capacity region for the AWGN-
MAC with feedback under an expected power constraint contains the ε-capacity region, i.e.,

C∗fb(P1, P2, ε) ⊂ C
∗
fb(P1, P2, ε). (219)

Proof: Let the implied constants in the O(·) notation in (190)–(192) be c1 = c1(P1, P2, ε), c2 = c2(P1, P2, ε), and
c12 = c12(P1, P2, ε) respectively. From Lemmas 10 and 11, we have the following inequalities for any (n,M1n,M2n, ε)-code
for the AWGN-MAC with feedback:

lnM1n ≤
n

2
ln
[
1 + P1T (1− ρ2)

]
+ n2/3 − ln+

(
1− ε− 1

T
− c1n−1/3

)
, (220)

lnM2n ≤
n

2
ln
[
1 + P2T (1− ρ2)

]
+ n2/3 − ln+

(
1− ε− 1

T
− c2n−1/3

)
, (221)

ln(M1nM2n) ≤ n

2
ln
[
1 + P1T + P2T + 2ρT

√
P1P2

]
+ n2/3 − ln+

(
1− ε− 1

T
− c12n−1/3

)
. (222)

for any positive real number 1/(1− ε) ≤ T ≤ 2/(1− ε).
Let cmax := max{c1, c2, c12}. Now we set

T :=
1

1− ε− (cmax + 1)n−1/3
. (223)

Note that the value of T is in [1/(1− ε), 2/(1− ε)] for n sufficiently large (depending only on P1, P2 and ε) so Lemma 11
readily applies. With this choice of T , all the ln+(·) terms in (220)–(222) are O(lnn).
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Thus from (220)–(222), we have

lnM1n ≤
n

2
ln

[
1 +

P1(1− ρ2)

1− ε− (cmax + 1)n−1/3

]
+O(n2/3), (224)

(a)
=

n

2
ln

[
1 +

P1(1− ρ2)

1− ε

]
+O(n2/3). (225)

Here, (a) follows from Taylor’s expansion.
Similarly, we can show that

lnM2n ≤ ln

[
1 +

P2(1− ρ2)

1− ε

]
+O(n2/3), (226)

and

ln(M1nM2n) ≤ n

2
ln

[
1 +

P1 + P2 + 2ρ
√
P1P2

1− ε

]
+O(n2/3) (227)

Since |ρ| ≤ 1 (by Lemma 7), it follows that the ε-capacity region satisfies

C∗fb(P1, P2, ε) ⊂
⋃

−1≤ρ≤1

C(ρ;P1, P2, ε) =
⋃

0≤ρ≤1

C(ρ;P1, P2, ε) = C∗fb(P1, P2, ε) (228)

completing the proof of Proposition 12, and hence the converse proof of Theorem 4.

IV. CONCLUSION

In this paper, we have made some progress in bounding the maximum rate of transmission over an AWGN channel with
feedback and an expected power constraint and with a non-vanishing error probability. We have also found the ε-capacity
region for the AWGN-MAC with feedback under the same settings (constraints) as the AWGN channel. For both channel
models, we have established bounds on the second-order asymptotics.

It would be fruitful, though challenging, to derive the exact second-order coding region for both problems. A less challenging
endeavor is to tighten the order of the second-order remainder terms for the direct and converse parts. Another interesting
direction is to establish the ε-capacity regions for other multi-terminal channel models with feedback such as the Gaussian
broadcast channel [31, Example 17.3], the relay channel [31, Section 17.4], or the two-way channel [31, Section 17.5].

APPENDIX A
PROOF OF LEMMA 5

By (99), each of the coefficients bj differs from aj by no more than d/n, where 0 < d <∞ is a constant. The solutions to
any quartic equation are known in closed-form [36, Sec. 3.8.3] and are continuously differentiable functions of the coefficients
(containing surds, polynomials, etc.). Thus, the solutions to (97) and (98) are continuously differentiable functions of the
coefficients. Let us call the function that maps the coefficients a = (a0, a1, . . . , a4) as to the root z∗ as f(a). Now we employ
a Taylor expansion which asserts that for any continuously differentiable function f(a), we have

f

(
a +O

( 1

n

)
1

)
= f(a) +O

(
1

n

)
, (229)

where 1 is the all-ones vector. Now we note that the left-hand-side f(a+O(1/n)1) produces the solution to the quartic with
perturbed coefficients in (98). From (229), we see that there exists a solution to (98), namely z∗n, that is of the order 1/n away
from the solution to (97), namely z∗.

APPENDIX B
PROOF OF LEMMA 9

Observe that

E[V1n] = −P1T (1− ρ)2
n∑
k=1

E[Z2
k ] + 2

n∑
k=1

E[Zk]E

[(
X1k − ρkX2k

√
P1k

P2k

)]
+ nP1T (1− ρ2) = 0. (230)
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Moreover, we also have

E[V 2
1n] = [P1T (1− ρ2)]2E

( n∑
k=1

Z2
k

)2
+ 4E

[
n∑
k=1

Zk

(
X1k − ρkX2k

√
P1k

P2k

)]2
+ [nP1T (1− ρ2)]2

− 4P1T (1− ρ2)E

[(
n∑
k=1

Z2
k

)(
n∑
k=1

Zk(X1k − ρkX2k

√
P1k

P2k

)]
− 2nP 2

1 T
2(1− ρ2)2E

[
n∑
k=1

Z2
k

]

+ 2nP1T (1− ρ2)

n∑
k=1

E

[
Zk

(
X1k − ρkX2k

√
P1k

P2k

)]
. (231)

Now, observe that

E

( n∑
k=1

Z2
k

)2
 = E

 n∑
k=1

Z4
k + 2

∑
1≤i<j≤n

Z2
i Z

2
j

 (232)

=

n∑
k=1

E[Z4
k ] + 2

∑
1≤i<j≤n

E[Z2
i ]E[Z2

j ] (233)

= 3n+ n(n− 1) = n2 + 2n. (234)

Furthermore,

E

[
n∑
k=1

Zk

(
X1k − ρkX2k

√
P1k

P2k

)]2

= E

 n∑
k=1

Z2
k

(
X1k − ρkX2k

√
P1k

P2k

)2
+ 2E

 ∑
1≤i<j≤n

Zi

(
X1i − ρiX2i

√
P1i

P2i

)
Zj

(
X1j − ρjX2j

√
P1j

P2j

) (235)

(a)
=

n∑
k=1

E[Z2
k ]E

(X1k − ρkX2k

√
P1k

P2k

)2


+ 2
∑

1≤i<j≤n

E

[
Zi

(
X1i − ρiX2i

√
P1i

P2i

)(
X1j − ρjX2j

√
P1j

P2j

)]
E[Zj ] (236)

=

n∑
k=1

E

(X1k − ρkX2k

√
P1k

P2k

)2
 (237)

=

n∑
k=1

P1k(1− ρ2k), (238)

where (a) follows from the fact that Zj is independent of (X1i, X2i, Zi) for j > i.
Next, we have

E

[(
n∑
k=1

Z2
k

)(
n∑
k=1

Zk(X1k − ρkX2k

√
P1k

P2k

)]

= E

[
n∑
k=1

Z3
k

(
X1k − ρkX2k

√
P1k

P2k

)]

+
∑

1≤i<j≤n

E

[
Z2
i Zj

(
X1j − ρjX2j

√
P1j

P2j

)]

+
∑

1≤j<i≤n

E

[
Z2
i Zj

(
X1j − ρjX2j

√
P1j

P2j

)]
(239)
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(a)
=

n∑
k=1

E[Z3
k ]E

(
X1k − ρkX2k

√
P1k

P2k

)

+
∑

1≤i<j≤n

E

[
Z2
i

(
X1j − ρjX2j

√
P1j

P2j

)]
E[Zj ]

+
∑

1≤j<i≤n

E

[
Zj

(
X1j − ρjX2j

√
P1j

P2j

)]
E[Z2

i ] (240)

(b)
=

n∑
k=1

E[Z3
k ]E

(
X1k − ρkX2k

√
P1k

P2k

)

+
∑

1≤i<j≤n

E

[
Z2
i

(
X1j − ρjX2j

√
P1j

P2j

)]
E[Zj ]

+
∑

1≤j<i≤n

E[Zj ]E

[(
X1j − ρjX2j

√
P1j

P2j

)]
E[Z2

i ] (241)

= 0 + 0 + 0 = 0. (242)

Here, (a) follows from the fact that Zj is independent of (X1i, X2i, Zi) for j > i, and (b) follows from the fact that Zj is
independent of

(
X1j − ρjX2j

√
P1j

P2j

)
.

Now consider

E

[
n∑
k=1

Z2
k

]
=

n∑
k=1

E[Z2
k ] = n, (243)

E

[
Zk

(
X1k − ρkX2k

√
P1k

P2k

)]
= E[Zk]E

[(
X1k − ρkX2k

√
P1k

P2k

)]
= 0. (244)

Substituting (234), (238), (242), (243), (244) into (231) we obtain

E[V 2
1n] = [P1T (1− ρ2)]2(n2 + 2n) + 4

n∑
k=1

P1k(1− ρ2k) + [nP1T (1− ρ2)]2

− 4P1T (1− ρ2)× 0− 2n2P 2
1 T

2(1− ρ2)2 + 2nP1T (1− ρ2)× 0

= 2nP 2
1 T

2(1− ρ2)2 + 4

n∑
k=1

P1k(1− ρ2k). (245)

Similarly, we have

E[V2n] = 0, (246)

E[V 2
2n] = 2nP 2

2 T
2(1− ρ2)2 + 4

n∑
k=1

P2k(1− ρ2k). (247)

Finally, note that

E[V3n] = 2

n∑
k=1

E[X1k +X2k]E[Zk]− (P1T + P2T + 2ρT
√
P1P2)

n∑
k=1

E[Z2
k ] + n(P1T + P2T + 2ρT

√
P1P2) = 0, (248)

E[V 2
3n] = 4E

[
n∑
k=1

(X1k +X2k)Zk

]2
+ (P1T + P2T + 2ρT

√
P1P2)2E

[
n∑
k=1

Z2
k

]2

+ n2(P1T + P2T + 2ρT
√
P1P2)2 − 4(P1T + P2T + 2ρ

√
P1P2)E

[(
n∑
k=1

(X1k +X2k)Zk

)(
n∑
k=1

Z2
k

)]

+ 4n(P1T + P2T + 2ρT
√
P1P2)E

[
n∑
k=1

(X1k +X2k)Zk

]

− 2n(P1T + P2T + 2ρT
√
P1P2)2E

[
n∑
k=1

Z2
k

]
. (249)
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Now, we see that

E

[
n∑
k=1

(X1k +X2k)Zk

]2

=

n∑
k=1

E[(X1k +X2k)2]E[Z2
k ] + 2

∑
1≤i<j≤n

E[(X1i +X2i)Zi(X1j +X2j)Zj ] (250)

=

n∑
k=1

E[(X1k +X2k)2] + 2
∑

1≤i<j≤n

E[(X1i +X2i)Zi(X1j +X2j)]E[Zj ] (251)

=

n∑
k=1

P1k + P2k + 2ρk
√
P1kP2k, (252)

and

E

( n∑
k=1

Z2
k

)2
 = n2 + 2n. (253)

In addition,

E

[(
n∑
k=1

(X1k +X2k)Zk

)(
n∑
k=1

Z2
k

)]

=

n∑
k=1

E [(X1k +X2k)]E[Z3
k ]

+
∑

1≤i<j≤n

E[(X1i +X2i)ZiZ
2
j ] +

∑
1≤i<j≤n

E[(X1j +X2j)ZjZ
2
i ] (254)

=

n∑
k=1

E [(X1k +X2k)]E[Z3
k ]

+
∑

1≤i<j≤n

E[(X1i +X2i)]E[Zi]E[Z2
j ] +

∑
1≤i<j≤n

E[(X1j +X2j)Z
2
i ]E[Zj ] (255)

= 0 + 0 + 0 = 0. (256)

Substituting (252), (253), (256) into (249) we obtain

E[V 2
3n] = 4

n∑
k=1

(P1k + P2k + 2ρk
√
P1kP2k) + (P1T + P2T + 2ρT

√
P1P2)2(n2 + 2n)

+ n2(P1T + P2T + 2ρT
√
P1P2)2 − 2n2(P1T + P2T + 2ρT

√
P1P2)2

= 4

n∑
k=1

(P1k + P2k + 2ρk
√
P1kP2k) + 2n(P1T + P2T + 2ρT

√
P1P2)2 (257)

as desired.

C PROOF OF LEMMA 10

In the proof of Lemma 10, we use the following result concerning the non-asymptotic fundamental limits of binary hypothesis
testing.

Lemma 13. Consider a set X and two distributions P and Q on X . Let βα(P,Q) be the smallest type-II error probability
of a (randomized) binary hypothesis test H ∈ {0, 1} between P and Q with the type-I error probability being no larger than
1− α, i.e.,

βα(P,Q) := min
PH|X :X→{0,1}:∑

x∈X PH|X(1|x)P (x)≥α

∑
x∈X

PH|X(1|x)Q(x). (258)

Then, the following two statements hold:
• Data Processing Inequality (DPI)

βα(P,Q) ≤ βα(PV,QV ) (259)
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for any channel V from X to another set Y and PV (y) =
∑
x V (y|x)P (x) is the output distribution induced by P and

V .
• For any η > 0

βα(P,Q) ≥ 1

η

(
α− P

[
ln
P

Q
≥ ln η

])
, (260)

The proofs of these results can be found in [25, Sec. 2.3] and [16, Sec. 2.1].
Now, we use similar arguments as in [8], [25], and [37] to prove Lemma 7. Encoder 1 defines a transition probability kernel

PY n|W1
(yn|w1) from the input space D1 := {1, 2, . . . ,M1n} to the output Y n. Hence, we can view the triplet (D1, PY n|W1

,Rn)
as a random transformation for which we can use the meta-converse theorem [13, Section III.E]. Note the error probability
here is bounded as Pr(Ŵ1 6= W1) ≤ Pr((Ŵ1, Ŵ2) 6= (W1,W2)) ≤ ε. Therefore, we have

M1n ≤
1

β1−ε (PW1Y n , PW1
QY n)

, (261)

where PW1 is equiprobable on D1 and the inequality holds for any auxiliary output distribution QY n . Define

QXn
2 Y

n|W2
:=

n∏
k=1

PX2k|W2,Y k−1QYk|X2k
, (262)

QW2Xn
2 Y

n := PW2QXn
2 Y

n|W2
. (263)

In the rest of the proof, we use W or WYk|X1kX2k
to denote the k-th channel. Note that by stationarity, all these channels are

the same but we sometimes retain the time index k for the sake of clarity.
Applying the DPI in (259), we see that

β1−ε(PW1Y n , PW1
QY n)

≥ β1−ε (PW1W2Y n , PW1
QW2Y n) (264)

(a)
= β1−ε

(
PW1W2PY n|W1W2

, PW1
PW2

QY n|W2

)
(265)

= β1−ε
(
PW1W2PY n|W1W2

, PW1W2QY n|W2

)
(266)

≥ β1−ε

(
PW1W2PXn

1 X
n
2 Y

n|W1W2
, PW1W2QXn

2 Y
n|W2

n∏
k=1

PX1k|W1W2X
k−1
1 Xk−1

2 Y k−1

)
(267)

= β1−ε

(
PW1W2

n∏
k=1

PX1kX2k|W1W2X
k−1
1 Xk−1

2 Y k−1

n∏
k=1

WYk|X1kX2k
,

PW1W2
QXn

2 Y
n|W2

n∏
k=1

PX1k|W1W2X
k−1
1 Xk−1

2 Y k−1

)
(268)

(b)
= β1−ε

(
PW1W2

n∏
k=1

PX1kX2k|W1W2X
k−1
1 Xk−1

2 Y k−1

n∏
k=1

WYk|X1kX2k
,

PW1W2

n∏
k=1

PX2k|W2,Y k−1

n∏
k=1

QYk|X2k

n∏
k=1

PX1k|W1W2X
k−1
1 Xk−1

2 Y k−1

)
(269)

(c)
= β1−ε

(
PW1W2

n∏
k=1

PX1k|W1W2X
k−1
1 Xk−1

2 Y k−1

n∏
k=1

PX2k|W2Y k−1

n∏
k=1

WYk|X1kX2k
,

PW1W2

n∏
k=1

PX2k|W2,Y k−1

n∏
k=1

QYk|X2k

n∏
k=1

PX1k|W1W2X
k−1
1 Xk−1

2 Y k−1

)
. (270)

Here, (a), (b) follow from (262) and (263) and (c) follows from the Markov chain

(W1, X
k
1 , X

k−1
2 )− (W2, Y

k−1)−X2k. (271)

By using (260), from (261) and (270) we have for any γ1n > 0 and any sequence of auxiliary distributions QYk|X2k
, k =

1, 2, . . . , n that

1

M1n
≥ 1

γ1n

(
1− ε− Pr

[
n∑
k=1

ln
W (Yk|X1kX2k)

QYk|X2k
(Yk|X2k)

≥ ln γ1n

])
. (272)
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Note here that we exploited the fact that the MAC is stationary and memoryless so Wn(yn|xn1 , xn2 ) =
∏n
k=1W (yk|x1k, x2k).

It follows that

lnM1n ≤ ln γ1n − ln+

(
1− ε− Pr

[
n∑
k=1

ln
W (Yk|X1kX2k)

QYk|X2k
(Yk|X2k)

≥ ln γ1n

])
. (273)

Similarly, we can show that for all γ2n > 0 and any sequence of auxiliary distributions QYk|X1k
, k = 1, 2, . . . , n that

lnM2n ≤ ln γ2n − ln+

(
1− ε− Pr

[
n∑
k=1

ln
W (Yk|X1kX2k)

QYk|X1k
(Yk|X1k)

≥ ln γ2n

])
. (274)

Now, the combination of the two encoders defines a transition probability kernel PY n|W1W2
from an input space D1,2 :=

{1, 2, . . . ,M1n}×{1, 2 . . . ,M2n} to the output Y n. We can view then the triplet (D1,2, PY n|W1W2
,Rn) as a random transfor-

mation for which we have a usual (M1nM2n, ε)-code in the sense of [25, Definition 2] with error probability Pr((Ŵ1, Ŵ2) 6=
(W1,W2)) ≤ ε. For such a code, by the meta-converse theorem [13, Section III.E]

M1nM2n ≤
1

β1−ε(PW1W2PY n|W1W2
, PW1W2QY n)

, (275)

where PW1W2
is the equiprobable distribution on D1,2 and QY n is arbitrary. Define

QY n =

n∏
k=1

QYk
(276)

for some single-letter output distributions QYk
, k = 1, 2, . . . , n. Using the DPI in (259), we have

β1−ε
(
PW1W2

PY n|W1W2
, PW1W2

QY n

)
(277)

≥ β1−ε

(
PW1W2PXn

1 X
n
2 Y

n|W1W2
, PW1W2QY n

n∏
k=1

PX1kX2k|W1W2X
k−1
1 Xk−1

2 Y k−1

)
(278)

= β1−ε

(
PW1W2

n∏
k=1

PX1kX2kYk|W1W2X
k−1
1 Xk−1

2 Y k−1 , PW1W2
QY n

n∏
k=1

PX1kX2k|W1W2X
k−1
1 Xk−1

2 Y k−1

)
(279)

(a)
= β1−ε

(
PW1W2

n∏
k=1

PX1kX2k|W1W2X
k−1
1 Xk−1

2 Y k−1

n∏
k=1

WYk|X1kX2k
,

PW1W2QY n

n∏
k=1

PX1kX2k|W1W2X
k−1
1 Xk−1

2 Y k−1

)
, (280)

where (a) follows from the Markov chain

(W1,W2, X
k−1
1 , Xk−1

2 , Y k−1)− (X1k, X2k)− Yk. (281)

Now, applying (260), from (275) and (280) we have for any γ3n > 0 and any sequence of auxiliary distributions QYk
, k =

1, 2, . . . , n that

1

M1nM2n
≥ 1

γ3n

(
1− ε− Pr

[
n∑
k=1

ln
W (Yk|X1kX2k)

QYk
(Yk)

≥ ln γ3n

])
. (282)

This is equivalent to

ln (M1nM2n) ≤ ln γ3n − ln+

(
1− ε− Pr

[
n∑
k=1

ln
W (Yk|X1kX2k)

QYk
(Yk)

≥ ln γ3n

])
, (283)

completing the proof of Lemma 10.
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