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Abstract

Current deterministic algorithms for the construction of polar codes can only be argued to be practical for channels with small
input alphabet sizes. In this paper, we show that any construction algorithm for channels with moderate input alphabet size which
follows the paradigm of “degrading after each polarizationstep” will inherently be impractical with respect to a certain “hard”
underlying channel. This result also sheds light on why the construction of LDPC codes using density evolution is impractical
for channels with moderate sized input alphabets.
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I. I NTRODUCTION

Polar codes [1] are a novel family of error correcting codes which are capacity achieving and have efficient encoding and
decoding algorithms. Originally defined for channels with binary input, they were soon generalized to channels with arbitrary
input alphabets [2]. Although polar codes are applicable tomany information theoretic settings, the channel coding setting is
the one we consider in this paper. More specifically, we consider the symmetric capacity setting discussed in [1] and [2].In
this setting, a polar code is gotten by unfreezing channels with probability of error at most2−βn, wheren is the code length
and β > 0 is a suitably chosen constant. A synthesized channel is gotten by repeatedly applying polar channel transforms.
The plus and minus polar transforms were defined in [1]. Othertransforms are possible [4], [5] [6], see also [7].

Since the synthesized channels have an output alphabet sizewhich grows exponentially in the code lengthn, calculating their
probability of misdecoding is intractable if approached directly. To the author’s knowledge, the only tunable and deterministic
methods of circumventing this difficulty involve approximating some of the intermediate channels by channels which have a
manageable output alphabet size. Simply put: before the first polarization step and after each polarization step, approximate
the relevant channel by another channel having a prescribedoutput alphabet size. Doing so ensures that the channel output
alphabet sizes do not grow intractably.

The above “approximate after each polarization step” idea has its origins in density evolution [8, Page 217], a method to
evaluate the performance of LDPC code ensembles. Density evolution was suggested as a method of constructing polar codes
in [9]. In order to bound the misdecoding probability of a synthesized channel — as opposed to only approximating it — one
can force the approximating channel to be either (stochastically) degraded or upgraded with respect to it. An efficient algorithm
for such a degrading/upgrading approximation was introduced for the binary-input case in [10] and analyzed in [11]. Seealso
[12] for an optimal degrading algorithm. Algorithms for degrading and upgrading non-binary channels were given in [13]and
[14], respectively. See also [15]. On a related note, the construction of polar codes was recently proven to be polynomial [16],
for an arbitrary butfixed input alphabet size.

For a fixed input distribution, a degrading approximation results in a channel with reduced mutual information between
input and output. This drop in mutual information should ideally be kept small. The reason for this will be elaborated on in
Section III. In brief, the reason is that such a drop necessarily translates into a drop in code rate, both in the polar coding
setting as well as in the LDPC setting. Thus, a non-negligible drop in mutual information due to approximation necessarily
means a coding scheme which is not capacity achieving.

In this paper, we define a specific channel. With respect to this channel, we derive lower bounds on the drop in mutual
information as a function of the channel input alphabet size, q, and the number of output letters of the approximating channel,
L. Simply put, the main result of this paper is that for moderate values ofq, a modest drop in mutual information translates into
the requirement thatL be unreasonably large, in the general case. It seems to be common knowledge that constructing capacity
achieving LDPC or polar codes for channels with such input alphabet sizes is generally hard; this is commonly referred toas
the “curse of dimensionality”. This paper is an attempt to quantify this hardness, under assumptions that are in line with what
is currently done.

The paper was presented in part at the 2015 IEEE International Symposium on Information Theory, Hong Kong, June 14 – June 19, 2015. Research
supported in part by the Israel Science Foundation grant 1769/13.
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The structure of this paper is as follows. Section II introduces the main result of the paper, after stating the needed notation.
Section III explains the implications of the result to the hardness of constructing polar codes and LPDC codes. Section IV
contains a specialization of Hölder’s defect formula to our setting. Section V defines and analyzes the previously discussed
channel.

II. N OTATION AND PROBLEM STATEMENT

We denote a channel byW : X → Y. The probability of receivingy ∈ Y given thatx ∈ X was transmitted overW is
denotedW (y|x). All our channels will be defined over a finite input alphabetX , with sizeq = |X |. Unless specifically stated
otherwise, all channels will have a finite output alphabet, denotedout(W ) = Y. Thus, the channel output alphabet size is
denoted|out(W )|.

We will eventually deal with a specific channel, which turns out to be symmetric (as defined in [3, page 94]). In addition, the
input distribution we will ultimately assign to this channel turns out to be uniform. However, we would like to be as general
as possible wherever appropriate. Thus, unless specifically stated otherwise, wewill not assume that a generic channelW is
symmetric. Each channel will typically have a corresponding input distribution, denotedPX = P

(W )
X . Note thatPX need not

necessarily be uniform andneed notnecessarily be the input distribution achieving the capacity of W . We denote the random
variables corresponding to the input and output ofW by X = X(W ) andY = Y (W ), respectively. The distribution ofY is
denotedPY = P

(W )
Y . That is, fory ∈ Y,

PY (y) =
∑

x∈X

PX(x)W (y|x) .

The mutual information betweenX andY is denoted as

I(W ) = I(X ;Y ) ,

and is henceforth measured in nats. That is, all logarithms henceforth are natural. Note thatI(W ) typically does notequal the
capacity ofW .

We say that a channelQ : X → Z is (stochastically) degraded with respect toW : X → Y if there exists a channel
Φ: Y → Z such that the concatenation ofΦ to W yieldsQ. Namely, for allx ∈ X andz ∈ Z,

Q(z|x) =
∑

y∈Y

W (y|x)Φ(z|y) . (1)

We denoteQ being degraded with respect toW asQ ≺ W .
For input alphabet sizeq = |X | and specified output alphabet sizeL, define thedegrading costas

DC(q, L) , sup
W,PX

min
Q : Q≺W,
|out(Q)|≤L

(I(W )− I(Q)) . (2)

Namely, bothW andQ range over channels with input alphabetX such that|X | = q; both channels share the same input
distribution PX , which we optimize over; the channelQ is degraded with respect toW ; both channels have finite output
alphabets and the size of the output alphabet ofQ is at mostL; we calculate the drop in mutual information incurred by
degradingW to Q, for the “hardest” channelW , the “hardest” corresponding input distributionPX , and the corresponding
best approximationQ.

Note that the above explanation of (1) is a bit off, since the outer qualifier is “sup”, not “max”. Namely, we might need to
consider a sequence of channelsW and input distributionsPX . Note however that the inner qualifier is a “min”, and not an
“ inf”. This is justified by the following claim, which is taken from [12, Lemma 1].

Claim 1: Let W : X → Y andPX be given. LetL ≥ 1 be a specified integer for which|Y| ≥ L. Then,

inf
Q : Q≺W,
|out(Q)|≤L

(I(W )− I(Q))

is attained by a channelQ : X → Z for which it holds that|out(Q)| = L and

Q(z|x) =
∑

y∈Y

W (y|x)Φ(z|y) , Φ(z|y) ∈ {0, 1} ,
∑

z∈Z

Φ(z|y) = 1 .

Namely,Q is gotten fromW by defining a partition(Ai)
L
i=1 of Y and mapping with probability1 all symbols inAi to a

single symbolzi ∈ Z, whereZ = {zi}
L
i=1.

In [13], an upper bound onDC(q, L) is derived. Specifically,

DC(q, L) ≤ 2q ·

(

1

L

)1/q

.
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The above has been recently sharpened [14, Lemma 8] to

DC(q, L) ≤ 2 · q1+
2

q−1 ·

(

1

L

)1/(q−1)

.

These bounds are constructive and stem from a specific quantizing algorithm. Specifically, the algorithm is given as input
the channelW , the corresponding input distributionPX , and an upper bound on the output alphabet size,L. Note that for a
fixed input alphabet sizeq and a target differenceǫ such thatDC(q, L) ≤ ǫ, the above implies that we takeL proportional to
(1/ǫ)q−1. That is, for moderate values ofq, the required output alphabet size grows very rapidly in1/ǫ. Because of this, [13]
explicitly states that the algorithm can be considered practical only for small values ofq.

We now quote our main result: a lower bound onDC(q, L). Let σq−1 be the constant for which the volume of a sphere in
R

q−1 of radiusr is σq−1r
q−1. Namely,

σq−1 =
π

q−1

2

Γ( q−1
2 + 1)

,

whereΓ is the Gamma function.
Theorem 2:Let q andL be specified. Then,

DC(q, L) ≥
q − 1

2(q + 1)
·

(

1

σq−1 · (q − 1)!

)
2

q−1

·

(

1

L

)
2

q−1

. (3)

The above bound is attained in the limit for a sequence of symmetric channels, each have a corresponding input distribution
which is uniform.

The consequences of this theorem in the context of code construction will be elaborated on in the next section. However,
one immediate consequence is a vindication of sorts for the algorithm presented in [13]. That is, forq fixed, we deduce from
the theorem that the optimal degrading algorithm must take the output alphabet sizeL at least proportional to(1/ǫ)(q−1)/2,
whereǫ is the designed drop in mutual information. That is, the adverse effect ofL growing rapidly with1/ǫ is an inherent
property of the problem, and is not the consequence of a poor implementation. For a numerical example, takeq = 16 and
ǫ = 10−5. The theorem states that the optimal degrading algorithm must allow for a target output alphabet sizeL ≈ 1023.
This number is for all intents and purposes intractable.

We note that the term multiplying(1/L)2/(q−1) in (3) can be simplified by Stirling’s approximation. The result is that

DC(q, L) ≥ ≈
e

4π(q − 1)
·

(

1

L

)
2

q−1

,

and the approximation becomes tight asq increases.
Note that the RHS of the above is eventually decreasing inq, for L fixed. However, it must be the case thatDC(q, L)

is increasing inq (to see this, note that the input distribution can give a probability of 0 to some input symbols). Thus, we
conclude that our bound is not tight.

III. I MPLICATIONS FOR CODE CONSTRUCTION

We now explain the relevance of our result to the construction of both polar codes and LDPC codes. In both cases, a “hard”
underlying channel is used, with a corresponding input distribution that is uniform. Let us explain: forq andL fixed, and for
a uniform input distribution, we say that a channel is hard ifthe drop in mutual information incurred by degrading it to a
channel with at mostL output letters is, say, at least half of the RHS of (3). Theorem 2 assures us that such hard channels
exist. Put another way, the crucial point we will make use of is that for a hard channel, the drop in mutual information is at
least proportional to(1/L)2/(q−1).

A. Polar codes

As explained in the introduction, the current methods of constructing polar codes for symmetric channels involve approxi-
mating the intermediate channels by channels with a manageable output alphabet size. Specifically, the underlying channel —
the channel over which the codeword is transmitted — is approximated by degradation before any polarization operation is
applied. Now, forq fixed andL a parameter, consider an underlying hard channel, as definedabove. Denote the underlying
channel asW , and let the result of the initial degrading approximation be denoted byQ.

The key point to note is that the construction algorithm cannot distinguish betweenW andQ. That is, consider two runs
of the construction algorithm, one in which the underlying channel isW and another in which the underlying channel isQ.
In the first case, the initial degradation producesQ from W . In the second case, the initial degradation simply returnsQ,
since the output alphabet size is at mostL, and thus no reduction of output alphabet is needed. Thus, the rate of the code
constructed cannot be greater than the symmetric capacity of Q, which is at mostW − ǫ. We can of course makeǫ arbitrarily
small. However, this would necessitate anL at least proportional to(1/ǫ)(q−1)/2. For rather modest values ofq andǫ, this is
intractable.
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B. LDPC codes

The standard way of designing an LDPC code for a specified underlying channel is by applying the density evolution
algorithm [8, Section 4.4]. To simplify to our needs, density evolution preforms a series of channel transformations onthe
underlying channel, which are a function of the degree distribution of the code ensemble considered. Exactly as in the polar
coding setting, these transformations increase the outputalphabet size to intractable sizes. Thus, in practice, the channels are
approximated. If we assume that the approximation is degrading — and it typically is — the rest of the argument is now
essentially a repetition of the argument above. In brief, consider an LDPC code designed for a hard channelW . After the
first degrading operation, a channelQ is gotten. The algorithm must produce the same result for both W andQ being the
underlying channel. Thus, an ensemble with rate above that of the symmetric capacity ofQ will necessarily be reported as
“bad” with respect to bothW andQ. Reducing the mutual information betweenW andQ is intractably costly for moderate
parameter choices.

IV. PRELIMINARY LEMMAS

As a consequence of the data processing inequality, ifQ is degraded with respect toW , thenI(W ) − I(Q) ≥ 0. In this
section, we derive a tighter lower bound on the difference. To that end, let us first defineη(p) as

η(p) = −p · ln p , 0 ≤ p ≤ 1 ,

whereη(0) = 0. Next, for a probability vectorp = (px)x∈X , define

h(p) =
∑

x∈X

−px · ln px =
∑

x∈X

η(px) .

For A = {y1, y2, . . . , yt} ⊆ Y, define the quantity∆(A) as the decrease in mutual information resulting from merging all
symbols inA into a single symbol inQ. Namely, define

∆(A) , π



h





t
∑

j=1

θjp
(j)



−





t
∑

j=1

θjh
[

p
(j)

]







 , (4)

where
π =

∑

y∈A

PY (y) , θj = PY (yj)/π , (5)

and
p
(j) = (P (X = x|Y = yj))x∈X . (6)

The following claim is easily derived.
Claim 3: Let W , Q, PX , L, and(Ai)

L
i=1 be as in Claim 1. Then,

I(W )− I(Q) =

L
∑

i=1

∆(Ai) . (7)

Although the drop in mutual information is easily described, we were not able to analyze and manipulate it directly. We
now aim for a bound which is more amenable to analysis. As mentioned, by the concavity ofh and Jensen’s inequality, we
deduce that∆(Ai) ≥ 0. Namely, data processing reduces mutual information. We will shortly make use of the fact thath is
strongly concave in order to derive a sharper lower bound. Tothat end, we now state Hölder’s defect formula [17] (see [18,
Page 94] for an accessible reference).

As is customary, we will phrase Hölder’s defect formula for∪-convex functions, although we will later apply it toh which
is ∩-concave. We remind the reader that for twice differentiable ∪-convex functions,f : D → R, D ⊆ R

n, the Hessian off ,
denoted

∇2f(α) =

(

∂2f(α)

∂αi∂αj

)

i,j

,

is positive semidefinite on the interior ofD [19, page 71]. We denote the smallest eigenvalue of∇2f(α) by λmin(∇
2f(α)).

Lemma 4:Let f(α) : D → R be a twice differentiable convex function defined over a convex domainD ⊆ R
n. Let m ≥ 0

be such that for allα in the interior ofD,
m ≤ λmin(∇

2f(α))

Fix (αj)
t
j=1 ∈ D and let(θj)tj=1 be non-negative coefficients summing to1. Denote

α =

t
∑

j=1

θjαj
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and

δ2 =
t

∑

j=1

θj ‖αj − α‖22 =
1

2

t
∑

j=1

t
∑

k=1

θjθk ‖αj − αk‖
2
2

Then,
t

∑

j=1

θjf [αj ]− f [
∑

j

θjαj ] ≥
1

2
mδ2 .

Proof: Let Λ be a diagonal matrix having all entries equal tom. By definition ofm, we have that the functiong(α) =
f(α)− 1

2α
TΛα is positive semidefinite for allα ∈ D. Thus, by Jensen’s inequality,

∑

i

θig[αi]− g[
∑

i

θiαi] ≥ 0 .

Replacingg(α) in the above expression byf(α)− m
2 α

Tα and rearranging yields the required result.
We now apply Hölder’s inequality in order to bound∆(A). For A = {y1, y2, . . . , yt} ⊆ Y, define

∆̃(A) ,
π

2

t
∑

j=1

θj

∥

∥

∥p
(j) − p̄

∥

∥

∥

2

2
=

π

4

t
∑

j=1

t
∑

k=1

θjθk

∥

∥

∥p
(j) − p

(k)
∥

∥

∥

2

2
, (8)

whereπ andθj are as in (5),p(j) is as defined in (6), and

p̄ =

t
∑

j=1

θjp(j) .

The following is a simple corollary of Lemma 4
Corollary 5: Let W , Q, PX , L, and(Ai)

L
i=1 be as in Claim 1. Then, for all1 ≤ i ≤ L,

∆(Ai) ≥ ∆̃(Ai) . (9)

Thus,

I(W )− I(Q) ≥
L
∑

i=1

∆̃(Ai) . (10)

Proof: The second inequality follows from the first inequality and (7). We now prove the first inequality. LetD = [0, 1]n,
the set of vectors of lengthn having each entry between0 and 1. Since the second derivative ofη is η′′(p) = −1/p, we
concludeλmin(−h(p)) ≥ 1 for all p in the interior(0, 1)n. That is, we takem = 1 in Lemma 4. Sinceh is continuous onD,
our result follows by Lemma 4 and standard limiting arguments.

V. BOUNDING THE DEGRADING COST

We now turn to bounding the degrading cost. As a first step, we define a channelW for which we will prove a lower bound
on the cost of degrading.

A. The channelW

For a specified integerM ≥ 1, we now define the channelW = WM , whereW : X → Y. The input alphabet isX =
{1, 2, . . . , q}, of size |X | = q. The output alphabet consists of vectors of lengthq with integer entries, defined as follows:

Y =
{

〈j1, j2, . . . , jq〉 : j1, j2, . . . , jq ≥ 0 ,

q
∑

x=1

jx = M
}

. (11)

The channel transition probabilities are given by

W(〈j1, j2, . . . , jq〉|x) =
q · jx

M
(

M+q−1
q−1

) .

Lemma 6:The above definedW is a valid channel with output alphabet size

|out(W)| =

(

M + q − 1

q − 1

)

. (12)
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Proof: The binomial expression for the output alphabet size follows by noting that we are essentially dealing with an
instance of “combinations with repetitions” [20, Page 15].Obviously, the probabilities are non-negative. It remainsto show
that for all x ∈ X ,

∑

〈j1,j2,...,jq〉∈Y

q · jx

M
(

M+q−1
q−1

) = 1 .

Since the above is independent ofx, we can equivalently show that
∑

〈j1,j2,...,jq〉∈Y

q · (j1 + j2 + · · ·+ jq)

M
(

M+q−1
q−1

) = q .

By the definition ofY in (11), the denominator above equalsq ·M . Since we have already proved (12), the result follows.
Recall the definition of symmetry in [3, page 94]: LetW : X → Y be a channel. Define the probability matrix associated

with W as a matrix with rows indexed byX and columns byY such that entry(x, y) ∈ X ×Y equalsW (y|x). The channel
W is symmetric if the output alphabet can be partitioned into sets, and the following holds: for each set, the corresponding
submatrix is such that every row is a permutation of the first row and every column is a permutation of the first column.

Lemma 7:The above definedW is a symmetric channel.
Proof: Define the partition so that two output letters,〈j1, j2, . . . , jq〉 and〈j′1, j

′
2, . . . , j

′
q〉, are in the same set if there exists

a permutationπ : X → X such thatjx = j′π(x), for all x ∈ X .
SinceW is symmetric, it follows from [3, Theorem 4.5.2] that the capacity achieving distribution is the uniform distribution.

Thus, we take the corresponding input distribution as uniform. Namely, for allx ∈ X ,

P (X = x) =
1

q
.

As a result, all output letters are equally likely (the proofis similar to that of Lemma 6).
Denote the vector of a posteriori probabilities corresponding to 〈j1, j2, . . . , jq〉 as

p(j1, j2, . . . , jq) = ( P (X = x|Y = 〈j1, j2, . . . , jq〉) )
q
x=1 .

A short calculation gives

p(j1, j2, . . . , jq) =

(

j1
M

,
j2
M

, . . . ,
jq
M

)

. (13)

In light of the above, let us define the shorthand

〈j1, j2, . . . , jq〉 , (j1/M, j2/M, . . . , jq/M) .

With this shorthand in place, the label of each output letter〈j1, j2, . . . , jq〉 ∈ Y is the corresponding a posteriori probability
vectorp(j1, j2, . . . , jq). Thus, we gain a simple expression for∆̃(A). Namely, forA ⊆ Y,

∆̃(A) =
1

2
(

M+q−1
q−1

)

∑

p∈A

‖p− p̄‖
2
2 , p̄ =

∑

p∈A

1

|A|
p .

We remark in passing that asM → ∞, W “converges” to the channelWq : X → X × [0, 1]q which we now define. Given
an inputx, the channel picksϕ1, ϕ2, . . . , ϕq as follows:ϕ1, ϕ2, . . . , ϕq−1 are picked according to the Dirichlet distribution
D(1, 1, . . . , 1), while ϕq is set to1 −

∑q−1
x=1 ϕx. That is,(ϕ1, ϕ2, . . . , ϕq) is chosen uniformly from all possible probability

vectors of lengthq. Then, the inputx is transformed intox+ i (with a modulo operation where appropriate1) with probability
ϕi. The transformed symbol along with the vector(ϕ1, ϕ2, . . . , ϕq) is the output of the channel.

B. OptimizingA′

Our aim is to find a lower bound oñ∆(A), whereA ⊆ Y is constrained to have a size|A| = t. Recalling (13), note that
all output lettersp = (px)

q
x=1 ∈ Y must satisfy the following three properties.

1) All entriespx are of the formjx/M , wherejx is an integer.
2) All entriespx sum to1.
3) All entriespx are non-negative.

Since all entries must sum to1 by property 2, entrypq is redundant. Thus, for a givenp ∈ Y, denote byp′ the first q − 1
coordinates ofp. Let A′ be the set one gets by applying this puncturing operation to each element ofA. Denote

∆̃(A′) ,
1

2
(

M+q−1
q−1

)

∑

p′∈A′

‖p′ − p̄
′‖

2
2 , (14)

1To be precise,x is transformed into1 + (x− 1 + i mod q).
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One easily shows that
∆̃(A′) ≤ ∆̃(A) , (15)

thus a lower bound oñ∆(A′) is also a lower bound oñ∆(A).
In order to find a lower bound oñ∆(A′) we relax constraint 3 above. Namely, a setA′ with elementsp′ will henceforth

mean a set for which each elementp
′ = (px)

q−1
x=1 has entries of the formpx = j/M , and each such entry isnot required to be

non-negative. Our revised aim is to find a lower bound on∆̃(A′) whereA′ holds elements as just defined and is constrained to
have sizet. The simplification enables us to give a characterization ofthe optimalA′. Informally, a sphere, up to irregularities
on the boundary.

Lemma 8:Let t > 0 be a given integer. LetA′ be the set of size|A′| = t for which ∆̃(A′) is minimized. Denote bȳp′ the
mean of all elements ofA′. Then,A′ has a critical radiusr: all p′ for which ‖p′ − p̄

′‖
2
2 < r2 are inA′ and allp′ for which

‖p′ − p̄
′‖

2
2 > r2 are not inA′.

Proof: We start by considering a generalA′. Supposep′(1) ∈ A′ is such thatr2 = ‖p′(1)− p̄
′‖

2
2. Next, suppose that

there is ap′(2) 6∈ A′ such that‖p′(2)− p̄
′‖22 < r2. Then, for

B′ = A′ ∪ {p′(2)} \ {p′(1)} , ∆̃(B′) < ∆̃(A′) .

To see this, first note that
∑

p′∈B′

‖p′ − p̄
′‖

2
2 <

∑

p′∈A′

‖p′ − p̄
′‖

2
2 . (16)

Next, note that the RHS of (16) is̃∆(A′), but the LHS isnot ∆̃(B′). Namely,p̄′ is the mean of the vectors inA′ but is not
the mean of the vectors inB′. However,

∑

p′∈B′ ‖p′ − u
′‖

2
2 is minimized foru′ equal to the mean of the vectors inB′ (to

see this, differentiate the sum with respect to every coordinate ofu′). Thus, the LHS of (16) is at least̃∆(B′) while the RHS
equals∆̃(A′).

The operation of transformingA′ into B′ as above can be applied repeatedly, and must terminate aftera finite number of
steps. To see this, note that the sum

∑

p′∈A′ ‖p′ − p̄
′‖

2
2 is constantly decreasing, and so is upper bounded by the initial sum.

Therefore, one can bound the maximum distance between any two points inA′. Since the sum is invariant to translations, we
can always translateA′ such that its members are contained in a suitably large hypercube (the translation will preserve the
1/M grid property). The number of ways to distribute|A′| grid points inside the hypercube is finite. Since the sum is strictly
decreasing and non-negative, the number of steps is finite. The ultimate termination implies a criticalr as well as the existence
of an optimalA′.

Recall that a sphere of radiusr in R
q−1 has volumeσq−1r

q−1, whereσq−1 is a well known constant [21, Page 411]. Given
a setA′, we define the volume ofA′ as

Vol(A′) ,
|A′|

M q−1
.

For optimalA′ as above, the following lemma approximatesVol(A′) by the volume of a corresponding sphere.
Lemma 9:Let A′ be a set of sizet for which ∆̃(A′) is minimized. Let the critical radius ber and assume thatr ≤ 4. Then,

Vol(A′) = σq−1r
q−1 + ǫq−1(t) .

The error termǫq−1(t) is bounded from both above and below by functions ofM alone (not of t) that areo(1) (decay to0
asM → ∞).

Proof: Let δ : Rq−1 → {0, 1} be the indicator function of a sphere with radiusr centered at̄p′. That is,

δ(p′) =

{

1 ‖p′ − p̄
′‖

2
2 ≤ r2

0 otherwise.

Note that 1)δ is a bounded function and 2) the measure of points for whichδ is not continuous is zero (the boundary of a
sphere has no volume). Thus,δ is Riemann integrable [22, Theorem 14.5].

Consider the setΨ′ which is [−4r, 4r]q−1 shifted byp̄′. SinceΨ′ contains the above sphere, the integral ofδ overΨ′ must
equalσq−1r

q−1. We now show a specific Riemann sum [22, Definition 14.2] whichmust converge to this integral. Consider
a partition ofΨ′ into cubes of side length1/M , where each cube center is of the form(j1/M, j2/M, . . . , jq−1/M) and the
jx are integers (the fact that cubes at the edge ofΨ′ are of volume less than1/M q−1 is immaterial). Define[p′ ∈ A′] as1 if
the conditionp′ ∈ A′ holds and0 otherwise. We claim that the following is a Riemann sum ofδ overΨ′ with respect to the
above partition.

∑

p′=(j1/M,j2/M,...,jq−1/M)∈Ψ′

1

M q−1
[p′ ∈ A′]

To see this, recall thatA′ has critical radiusr.



8

The absolute value of the difference between the above sum and σq−1r
q−1 can be upper bounded by the number of cubes

that straddle the sphere times their volume1/M q−1 (any finer partition will only affect these cubes). Sincer ≤ 4, this quantity
must go to zero asM grows, no matter how we letr depend onM .

Lemma 10:Let A′ be a set of sizet for which ∆̃(A′) is minimized. Let the critical radius ber and assume thatr ≤ 4.
Then,

∆̃(A′) =
(q − 1) · (q − 1)!

2(q + 1)
σq−1r

q+1 + ǫq−1(t) .

The error termǫq−1(t) is bounded from both above and below by functions ofM alone (not of t) that areo(1) (decay to0
asM → ∞).

Proof: Let the sphere indicator functionδ and the bounding setΨ′ be as in the proof of Lemma 9. Consider the sum

∑

p′=(j1/M,j2/M,...,jq−1/M)∈Ψ′

1

M q−1
‖p′ − p̄

′‖
2
2 · [p

′ ∈ A′] . (17)

On the one hand, by (14), this sum is simply

2
(

M+q−1
q−1

)

M q−1
∆̃(A′) . (18)

On the other hand, (17) is the Riemann sum corresponding to the integral
∫

Ψ′

‖p′ − p̄
′‖

2
2 [p

′ ∈ A′] dp′ ,

with respect to the same partition as was used in the proof of Lemma 9. As before, the sum must converge to the integral,
and the convergence rate can be shown to be bounded by expressions which are not a function oft.

All that remains is to calculate the integral. Denote bysphereq−1(r) ⊆ R
q−1 the sphere centered at the origin with radius

r. After translatingp̄′ to the origin, the integral becomes
∫

sphereq−1(r)

(

x2
1 + x2

2 + · · ·+ x2
q−1

)

dx1dx2 · · · dxq−1 =
σq−1 · (q − 1) · rq+1

q + 1
, (19)

where the RHS is derived as follows. After converting the integral to generalized spherical coordinates

x1=r cos(θ1) ,

x2=r sin(θ1) cos(θ2) ,
...

xq−2=r sin(θ1) sin(θ2) · · · sin(θq−2) cos(θq−1) ,

xq−1=r sin(θ1) sin(θ2) · · · sin(θq−2) sin(θq−1) ,

we get an integrand that isr2 times the integrand we would have gotten had the original integrand been1 (this follows by
applying the identitysin2 θ + cos2 θ = 1 repeatedly). We know that had that been the case, the integral would have equaled
σq−1r

q−1.
Since (19) must equal the limit of (18), and since the fraction in (18) converges to2/(q − 1)!, the claim follows.
As a corollary to the above three lemmas, we have the following result. The important point to note is that the RHS is

convex inVol(A′).
Corollary 11: Let t > 0 be a given integer. LetA′ be a set of sizet and assume that

max
p′∈A′

‖p′ − p̄
′‖

2
2 ≤ 2 . (20)

Then,

∆̃(A′) ≥
(q − 1) · (q − 1)!

2(q + 1) · (σq−1)
2

q−1

· Vol(A′)
q+1

q−1 + o(1) , (21)

where theo(1) is a function ofM alone and goes to0 asM → ∞.
Proof: Let B′ be the set of sizet for which ∆̃(B′) is minimized. The proof centers on showing that the criticalradius

of B′ is at most4. All else follows directly from Lemmas 9 and 10. Assume to thecontrary that the critical radius ofB′ is
greater than4. Thus, up to translation,A′ is a subset ofB′. But this implies that∆̃(A′) < ∆̃(B′), a contradiction.
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C. BoundingDC(q, L)

We are now in a position to prove Theorem 2. Recall thatAi is the set of output letters inY which get mapped to the letter
zi ∈ Z. Also, recall thatA′

i is simplyAi with the last entry dropped from each vector.
Proof of Theorem 2: By combining (2), (10), (15), and (21), we have that as long ascondition (20) holds for allA′

i,
1 ≤ i ≤ L, the degrading costDC(q, L) is at least

(q − 1) · (q − 1)!

2(q + 1) · (σq−1)
2

q−1

L
∑

i=1

Vol(A′
i)

q+1

q−1 + o(1) . (22)

Recalling that the elements ofA are probability vectors, we deduce that condition (20) mustindeed hold. Indeed,

‖p′ − p̄
′‖

2
2 ≤ ‖p′ − p̄

′‖2 ≤ ‖p′‖2 + ‖p̄′‖2 ≤ 2 .

The first inequality follows from the fact thatp2 is less thanp for 0 ≤ p ≤ 1. The second inequality is the triangle inequality.
The third inequality follows from the same reasons as the first.

Next, recall thatVol(A′
i) = Vol(Ai), and thus

L
∑

i=1

Vol(A′
i) =

|out(W)|

M q−1
=

(

M+q−1
q−1

)

M q−1
. (23)

Note that the RHS converges to1/(q − 1)! asM → ∞. By convexity, we have that if we are constrained by (23), then the
sum in (22) is lower bounded by setting allVol(A′

i) equal to the RHS of (23) divided byL. Thus, after takingM → ∞, we
get (3).

Acknowledgments: The author thanks Eren Şaşoğlu and Igal Sason for their feedback.
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