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Abstract

Current deterministic algorithms for the construction ofgs codes can only be argued to be practical for channets smitall
input alphabet sizes. In this paper, we show that any cartgtrualgorithm for channels with moderate input alphalis svhich
follows the paradigm of “degrading after each polarizatiep” will inherently be impractical with respect to a céntéhard”
underlying channel. This result also sheds light on why thestruction of LDPC codes using density evolution is impicat
for channels with moderate sized input alphabets.
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I. INTRODUCTION

Polar codesl[1] are a novel family of error correcting coddsctv are capacity achieving and have efficient encoding and
decoding algorithms. Originally defined for channels withaoy input, they were soon generalized to channels witltrarly
input alphabets [2]. Although polar codes are applicablenemy information theoretic settings, the channel codirtrngeis
the one we consider in this paper. More specifically, we amrsihe symmetric capacity setting discussed_in [1] andrqZ2].
this setting, a polar code is gotten by unfreezing channéls pvobability of error at mos2—"", wheren is the code length
and 8 > 0 is a suitably chosen constant. A synthesized channel iemdity repeatedly applying polar channel transforms.
The plus and minus polar transforms were defined in [1]. Otfsarsforms are possiblel[4],1[5]1[6], see also [7].

Since the synthesized channels have an output alphabetkizie grows exponentially in the code lengthcalculating their
probability of misdecoding is intractable if approacheckdily. To the author’s knowledge, the only tunable and mheitgstic
methods of circumventing this difficulty involve approxitimgy some of the intermediate channels by channels whicle hav
manageable output alphabet size. Simply put: before thepolarization step and after each polarization step, apprate
the relevant channel by another channel having a prescobgult alphabet size. Doing so ensures that the channelibutp
alphabet sizes do not grow intractably.

The above “approximate after each polarization step” ides its origins in density evolution|[8, Page 217], a method to
evaluate the performance of LDPC code ensembles. Densitytenn was suggested as a method of constructing polarscode
in [9]. In order to bound the misdecoding probability of a #esized channel — as opposed to only approximating it — one
can force the approximating channel to be either (stoatelbt) degraded or upgraded with respect to it. An efficidgbathm
for such a degrading/upgrading approximation was intreduor the binary-input case in [10] and analyzed.in/ [11]. Ske
[12] for an optimal degrading algorithm. Algorithms for dading and upgrading non-binary channels were given in @l
[14], respectively. See alsb [[15]. On a related note, thesitaaotion of polar codes was recently proven to be polynbfhg],
for an arbitrary bufixed input alphabet size.

For a fixed input distribution, a degrading approximatiosutes in a channel with reduced mutual information between
input and output. This drop in mutual information shouldaillie be kept small. The reason for this will be elaborated ron i
Section[Tl. In brief, the reason is that such a drop necdgsmanslates into a drop in code rate, both in the polar egdi
setting as well as in the LDPC setting. Thus, a non-negkgdrbp in mutual information due to approximation necessari
means a coding scheme which is not capacity achieving.

In this paper, we define a specific channel. With respect ® ¢hannel, we derive lower bounds on the drop in mutual
information as a function of the channel input alphabet,sjzeand the number of output letters of the approximating cegnn
L. Simply put, the main result of this paper is that for modesatiues of;, a modest drop in mutual information translates into
the requirement that be unreasonably large, in the general case. It seems to m@oknowledge that constructing capacity
achieving LDPC or polar codes for channels with such inpphabet sizes is generally hard; this is commonly referrealsto
the “curse of dimensionality”. This paper is an attempt tamify this hardness, under assumptions that are in link what
is currently done.
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supported in part by the Israel Science Foundation gran®/136
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The structure of this paper is as follows. Secfidn Il introelsithe main result of the paper, after stating the needexdio:t
SectionIl explains the implications of the result to thedress of constructing polar codes and LPDC codes. Sdc¥bn |
contains a specialization of Holder's defect formula to eatting. Sectiof V defines and analyzes the previouslyudssd
channel.

II. NOTATION AND PROBLEM STATEMENT

We denote a channel by : X — ). The probability of receiving) € Y given thatz € X was transmitted ovelV is
denotediW (y|x). All our channels will be defined over a finite input alphaBgtwith sizeq = |X|. Unless specifically stated
otherwise, all channels will have a finite output alphabetnatedout(WW) = ). Thus, the channel output alphabet size is
denoted out(W)].

We will eventually deal with a specific channel, which turng to be symmetric (as defined inl [3, page 94]). In additiom, th
input distribution we will ultimately assign to this chariierns out to be uniform. However, we would like to be as gaher
as possible wherever appropriate. Thus, unless spedffistted otherwise, wwill not assume that a generic chani@l is
symmetric. Each channel will typically have a correspogdimput distribution, denoted®y = P)((W). Note thatPx need not
necessarily be uniform anteed notnecessarily be the input distribution achieving the capadfi 177. We denote the random
variables corresponding to the input and outpui®éfby X = X") andY = Y(W), respectively. The distribution of is
denotedPy = Pi(/W). That is, fory € ),

Py(y) =Y Px(x)W(ylz) .

reX
The mutual information betweeR andY is denoted as

(W) = I(X;Y),

and is henceforth measured in nats. That is, all logaritheme&forth are natural. Note thatiW) typically does notequal the
capacity of V.

We say that a channé): X — Z is (stochastically) degraded with respectWé: X — Y if there exists a channel
®: Y — Z such that the concatenation @fto W yields Q. Namely, for allz € X andz € Z,

Qzlz) =Y W(ylx)®(zly) - 1)
yey
We denotel) being degraded with respect W as@ < W.
For input alphabet size = |X'| and specified output alphabet siZe define thedegrading costs

DC(q,L) £ sup chfﬁw (I(W) - 1(Q)) - 2
lout(Q)|<L

Namely, bothiW and @ range over channels with input alphak®tsuch that|X| = ¢; both channels share the same input
distribution Px, which we optimize over; the channé) is degraded with respect td/; both channels have finite output
alphabets and the size of the output alphabefos at mostL; we calculate the drop in mutual information incurred by
degradingi¥ to @, for the “hardest” channélV’, the “hardest” corresponding input distributid?y, and the corresponding
best approximationd).

Note that the above explanation &f (1) is a bit off, since tbeeopqualifier is $up”, not “max”. Namely, we might need to
consider a sequence of channBlsand input distributions”y. Note however that the inner qualifier is afn”, and not an
“inf”. This is justified by the following claim, which is taken fmo[12, Lemma 1].

Claim 1: Let W: X — ) and Px be given. LetL > 1 be a specified integer for whid®)| > L. Then,
ot (W)~ 1(Q)
lout(Q)|<L
is attained by a channé): X — Z for which it holds thaout(Q)| = L and
Qzle) =Y Wlylo)®(zly) . ®(zly) € {0, 1}, D ®(zfy)=1.
yey 2€Z

Namely, Q is gotten fromW by defining a partition(A;)% , of J and mapping with probability all symbols in4; to a
single symbol; € Z, whereZ = {z;}L .
In [13], an upper bound o®C(q, L) is derived. Specifically,

1 1/q
DC(q, L) <2q- <f) :



The above has been recently sharpened [14, Lemma 8] to

, 1\ Y1
DC(q, L) <2-¢'Ta 1 . <Z> .

These bounds are constructive and stem from a specific giraptlgorithm. Specifically, the algorithm is given as ibpu
the channelV, the corresponding input distributiaRy, and an upper bound on the output alphabet size\ote that for a
fixed input alphabet sizg and a target difference such thatDC(q, L) < ¢, the above implies that we takle proportional to
(1/€)2~1. That is, for moderate values gf the required output alphabet size grows very rapidly in. Because of this[[13]
explicitly states that the algorithm can be considered taralconly for small values of;.

We now quote our main result: a lower bound & (g, L). Let 0,1 be the constant for which the volume of a sphere in
R?~1 of radiusr is o,_177"1. Namely,

g—1

mT 2

Og—1 = —
2

whereI is the Gamma function.
Theorem 2:Let ¢ and L be specified. Then,

DG, 1) 2 2(qurll) ' (Uql : 2(1* 1)!)% ' (%)_ ' ®

The above bound is attained in the limit for a sequence of sgtricnchannels, each have a corresponding input distabuti
which is uniform.

The consequences of this theorem in the context of code romtish will be elaborated on in the next section. However,
one immediate consequence is a vindication of sorts for ld@rithm presented in [13]. That is, farfixed, we deduce from
the theorem that the optimal degrading algorithm must thkedutput alphabet sizé at least proportional tg1/e)(a—1)/2,
wheree is the designed drop in mutual information. That is, the aslveffect of L growing rapidly with1/e is an inherent
property of the problem, and is not the consequence of a poplementation. For a numerical example, take- 16 and
e = 10~°. The theorem states that the optimal degrading algorithret rallow for a target output alphabet siZe~ 1023.
This number is for all intents and purposes intractable.

We note that the term multiplyingl /L)%/(¢=1 in (@) can be simplified by Stirling’s approximation. The ultss that

e 1Y)t
> x— | =
pcen> ~ ey (z)

and the approximation becomes tight@mcreases.

Note that the RHS of the above is eventually decreasing, ifor L fixed. However, it must be the case tHaC(q, L)
is increasing ing (to see this, note that the input distribution can give a phility of 0 to some input symbols). Thus, we
conclude that our bound is not tight.

I1l. | MPLICATIONS FOR CODE CONSTRUCTION

We now explain the relevance of our result to the constraatioboth polar codes and LDPC codes. In both cases, a “hard”
underlying channel is used, with a corresponding inputiBiistion that is uniform. Let us explain: far and L fixed, and for
a uniform input distribution, we say that a channel is harthé& drop in mutual information incurred by degrading it to a
channel with at mosf. output letters is, say, at least half of the RHS[df (3). ThedBassures us that such hard channels
exist. Put another way, the crucial point we will make usesofhiat for a hard channel, the drop in mutual information is at
least proportional tq1,/1)%/(a=1),

A. Polar codes

As explained in the introduction, the current methods ofstarcting polar codes for symmetric channels involve apipro
mating the intermediate channels by channels with a mah#gyeatput alphabet size. Specifically, the underlying clehr—
the channel over which the codeword is transmitted — is apprated by degradation before any polarization operation i
applied. Now, forg fixed andL a parameter, consider an underlying hard channel, as dedine¢e. Denote the underlying
channel agV, and let the result of the initial degrading approximatiendenoted byQ.

The key point to note is that the construction algorithm adrdistinguish betweef and ). That is, consider two runs
of the construction algorithm, one in which the underlyifguenel isiW and another in which the underlying channells
In the first case, the initial degradation produc¢gsrom W. In the second case, the initial degradation simply retépns
since the output alphabet size is at mastand thus no reduction of output alphabet is needed. Thestate of the code
constructed cannot be greater than the symmetric capdci®); which is at mosti? — e. We can of course makearbitrarily
small. However, this would necessitate Arat least proportional t¢1/¢)(¢~)/2, For rather modest values gfande, this is
intractable.



B. LDPC codes

The standard way of designing an LDPC code for a specified riyidg channel is by applying the density evolution
algorithm [8, Section 4.4]. To simplify to our needs, depsvolution preforms a series of channel transformationghen
underlying channel, which are a function of the degree ibigtion of the code ensemble considered. Exactly as in thar po
coding setting, these transformations increase the ouatiphBbet size to intractable sizes. Thus, in practice, Haamwels are
approximated. If we assume that the approximation is déggad- and it typically is — the rest of the argument is now
essentially a repetition of the argument above. In briefistaler an LDPC code designed for a hard chariiel After the
first degrading operation, a channglis gotten. The algorithm must produce the same result fon Biétand @ being the
underlying channel. Thus, an ensemble with rate above thdteosymmetric capacity of) will necessarily be reported as
“bad” with respect to bothV and Q. Reducing the mutual information betwe#n and @ is intractably costly for moderate
parameter choices.

IV. PRELIMINARY LEMMAS

As a consequence of the data processing inequality, i degraded with respect @, thenI(W) — I(Q) > 0. In this
section, we derive a tighter lower bound on the differenaethibt end, let us first defing(p) as

wheren(0) = 0. Next, for a probability vectop = (p.)zcx, define
h(P) =D —pe-pa= Y n(pa).
TEX reX

For A = {y1,v2,...,y:} C Y, define the quantityA(A) as the decrease in mutual information resulting from meyaith
symbols inA into a single symbol inQ). Namely, define

A(A) &7 (h |:zt: 9jp(j)] _ (i gjh[p(j)])) 7 ()

where
= Z Py(y), 0;="Py(yj)/m, )
yEA
and
pY) = (P(X = 2]Y = y;))uex - (6)

The following claim is easily derived.
Claim 3: Let W, Q, Px, L, and(4;)E , be as in ClainfIl. Then,

L
I(W) = 1(Q) = >_A(A) . (7)

Although the drop in mutual information is easily describa@ were not able to analyze and manipulate it directly. We
now aim for a bound which is more amenable to analysis. As imeed, by the concavity of, and Jensen’s inequality, we
deduce thatA(A4;) > 0. Namely, data processing reduces mutual information. Wesortly make use of the fact that is
strongly concave in order to derive a sharper lower boundth®@b end, we now state Holder’s defect formulal[17] (See [18
Page 94] for an accessible reference).

As is customary, we will phrase Holder's defect formula feronvex functions, although we will later apply it towhich
is N-concave. We remind the reader that for twice differengalyconvex functionsf: D — R, D C R™, the Hessian off,

denoted 52
VQf(Oé) — ( f(Oé) ) ,
i,j

80&1' 80éj

is positive semidefinite on the interior & [19, page 71]. We denote the smallest eigenvalu& &f () by Amin (V2 f(a)).
Lemma 4:Let f(a): D — R be a twice differentiable convex function defined over a eamfomainD C R". Letm > 0
be such that for alk in the interior of D,
m S )\min(VQf(a)>

Fix (a;)5—; € D and let(6;)’_, be non-negative coefficients summingitoDenote

t
o = E Hjaj
j=1



and
t 1 t t )
—12
=Y billay a3 =5 30D 00 lay — el
j=1 j=1k=1
Then,

t
> 0 fleg] = F1D004] > %méz .
Jj=1 j

Proof: Let A be a diagonal matrix having all entries equalto By definition of m, we have that the functiop(a) =
f(a) — 2o’ A« is positive semidefinite for alv € D. Thus, by Jensen’s inequality,

Z 0iglai] — Q[Z Oic;] >0

Replacingg(«) in the above expression bj(a) — Z:a” « and rearranging yields the required result. ]
We now apply Hdlder’s inequality in order to bounzt(A). For A ={y1,y2,...,4:} C Y, define

t

¢ ¢
™ WEEZEZ ; o |12
)£ 2 Z_ Hp(ﬂ) B pH T i Hp(ﬂ) - )Hz ’ ®

j=1k=1

wherer andd; are as in[(b)p?) is as defined in[{6), and

p=> 0;p(j).

The following is a simple corollary of Lemnid 4
Corollary 5: Let W, @, Px, L, and(4;)~, be as in Clainil. Then, for all <i < L,

A(4) > A(4) . 9)
Thus,
L ~
IW)=1(Q) = > A(A) . (10)
1=1
Proof: The second inequality follows from the first inequality af. \We now prove the first inequality. Lé? = [0, 1]",
the set of vectors of length having each entry betweeghand 1. Since the second derivative gfis ”(p) = —1/p, we
conclude\y,in(—h(p)) > 1 for all p in the interior(0,1)". That is, we taken = 1 in Lemmal4. Sincé: is continuous orD,
our result follows by LemmBl4 and standard limiting arguraent ]

V. BOUNDING THE DEGRADING COST

We now turn to bounding the degrading cost. As a first step, &fime a channélV for which we will prove a lower bound
on the cost of degrading.

A. The channeW
For a specified integet! > 1, we now define the chann&/ = W,,;, whereW: X — ). The input alphabet ist =

{1,2,...,q}, of size|X| = ¢q. The output alphabet consists of vectors of lengthith integer entries, defined as follows:
V= {Utedareosda) ooy 20, S da =01} (12)
r=1
The channel transition probabilities are given by
W((ias- - o)) = # .
q—1

Lemma 6:The above definetlV is a valid channel with output alphabet size

lout (W)] = (M+ a- 1) .

S (12)



Proof: The binomial expression for the output alphabet size fdldw noting that we are essentially dealing with an
instance of “combinations with repetitions” |20, Page 18hviously, the probabilities are non-negative. It remamshow

that for allz € X, .
Z E -1
M+q—1\ — ~°
Greamey MO

Since the above is independentgfwe can equivalently show that

Z q-(Gr+jo+---+7q)
Mrq—1 =
(J1,d250:9q) EY M( q—1 )

By the definition ofy in (1), the denominator above equals) . Since we have already provéd12), the result follouss.

Recall the definition of symmetry in|[3, page 94]: LBf : X — ) be a channel. Define the probability matrix associated
with W as a matrix with rows indexed by and columns byy such that entry(z,y) € X x Y equalsW (y|x). The channel
W is symmetric if the output alphabet can be partitioned irdts,sand the following holds: for each set, the correspandin
submatrix is such that every row is a permutation of the fiost and every column is a permutation of the first column.

Lemma 7:The above definetlv is a symmetric channel.

Proof: Define the partition so that two output lettetss, jo, - - ., jg) and(ji, js, - - - , j), are in the same set if there exists

a permutationr : X — X such thatj, = j/ ), for all z € X. n

SinceW is symmetric, it follows from[[3, Theorem 4.5.2] that the aajty achieving distribution is the uniform distribution.
Thus, we take the corresponding input distribution as umifdNamely, for allz € X,

1
PX=z)=-.
q
As a result, all output letters are equally likely (the praokimilar to that of Lemmal6).
Denote the vector of a posteriori probabilities correspoado (ji, jo, ..., jq) as

P(j1sJ2, -5 dg) = (P(X = 2Y = (j1,j2, -5 Jq) oz -
A short calculation gives

. ) J1 J2 J
P(j1:92s- -5 0q) = (H’M’H"Mq) . (13)

In light of the above, let us define the shorthand
<j17j27 oo 7jq> £ (]1/‘]\/[7]2/‘]\/[7 s 7.](]/‘]\/[) .

With this shorthand in place, the label of each output leferj», ..., j,) € ) is the corresponding a posteriori probability
vectorp(ji, j2, - - ., jq). Thus, we gain a simple expression ix(A). Namely, forA C ),

~ 1 _ _ 1
A(A)ZWZHP—P||§7 PZZEP-
( q—1 ) pEA peA

We remark in passing that @4 — oo, W “converges” to the channéd,: X — X x [0, 1]¢ which we now define. Given

an inputz, the channel picks, ¢o, . . e, as follows: 1, @2, ..., pe—1 are picked according to the Dirichlet distribution
D(1,1,...,1), while ¢, is set tol — > 7~ ¢,. That is, (¢1, ¢2, - .., ¢,) is chosen uniformly from all possible probability
vectors of lengthy. Then, the input: is transformed inta: + 4 (with a modulo operation where approprigtevith probability
;. The transformed symbol along with the vectar, ¢», ..., ¢,) is the output of the channel.

B. OptimizingA’

Our aim is to find a lower bound oA (A), whereA C ) is constrained to have a sizd| = t. Recalling [IB), note that
all output lettersp = (p,)?_, € Y must satisfy the following three properties.

1) All entriesp, are of the formj,. /M, wherej, is an integer.
2) All entriesp, sum tol.
3) All entriesp, are non-negative.

Since all entries must sum tb by property( 2, entry, is redundant. Thus, for a givam € ), denote byp’ the firstqg — 1
coordinates op. Let A’ be the set one gets by applying this puncturing operatiorath @lement ofd. Denote

_ 1 )
A(A) £ ] >y -5 . (14)
q—1

— pleA/

1To be preciseg is transformed intal + (z — 1414 mod q).



One easily shows that
A(A) < A(4), (15)

thus a lower bound o\ (A') is also a lower bound or (A).

In order to find a lower bound o\ (A4’) we relax constrainfl3 above. Namely, a s&twith elementsp’ will henceforth
mean a set for which each elemgyit= (p:,j)fg;l1 has entries of the form, = j/M, and each such entry i@t required to be
non-negative. Our revised aim is to find a lower bound\qm’) where A’ holds elements as just defined and is constrained to
have sizet. The simplification enables us to give a characterizatiothefoptimal A’. Informally, a sphere, up to irregularities
on the boundary.

Lemma 8:Lett > 0 be a given integer. Letl’ be the set of sizéA’| = ¢ for which A(A4’) is minimized. Denote by’ the
mean of all elements ofl’. Then, A’ has a critical radiug: all p’ for which ||p’ — p’Hg < r? are inA4’ and allp’ for which
|p’ — p'||5 > 2 are not inA'.

Proof: We start by considering a general. Supposep’(1) € A’ is such that? = |p’(1) — p’Hg. Next, suppose that
there is ap’(2) ¢ A’ such that|p/(2) — p'||> < r2. Then, for

B'=AU{p@}\{p'()}, AB)<AMA).

To see this, first note that

S -plr< > lIp -l - (16)

p’'eB’ p’€A’

Next, note that the RHS of (]L6) i& (A4’), but the LHS isnot A(B’). Namely,p’ is the mean of the vectors id’ but is not
the mean of the vectors iB’. However,3_ , p, [P’ — u'[|2 is minimized foru’ equal to the mean of the vectors Bf (to
see this, differentiate the sum with respect to every coaitéi ofu’). Thus, the LHS of[(16) is at leagk(B’) while the RHS
equalsA(A4’).

The operation of transforming’ into B’ as above can be applied repeatedly, and must terminateaafigite number of
steps. To see this, note that the sbn),, . 4, [[p’ — p’Hg is constantly decreasing, and so is upper bounded by thal igitm.
Therefore, one can bound the maximum distance between anpdimts in A’. Since the sum is invariant to translations, we
can always translatel’ such that its members are contained in a suitably large kbyper(the translation will preserve the
1/M grid property). The number of ways to distribuyt4’| grid points inside the hypercube is finite. Since the sumristht
decreasing and non-negative, the number of steps is firtie ukimate termination implies a criticalas well as the existence
of an optimalA’. [ |

Recall that a sphere of radiutsn R?~! has volumer,_,r9~!, whereo,_; is a well known constant]21, Page 411]. Given
a setA’, we define the volume ofl’ as "

Ma-1 "~
For optimal A’ as above, the following lemma approximalés(A’) by the volume of a corresponding sphere.
Lemma 9:Let A’ be a set of size for which A(4’) is minimized. Let the critical radius beand assume that< 4. Then,

Vol(A") £

Vol(A') = o177 + €41 (1)

The error terme,_;(t) is bounded from both above and below by functions\éfalone ot of t) that areo(1) (decay to0
asM — o).
Proof: Let §: R?~! — {0, 1} be the indicator function of a sphere with radiusentered ap’. That is,

5(p/) — 1 Hp/ - f)/“g S T2
0 otherwise.

Note that 1)¢ is a bounded function and 2) the measure of points for which not continuous is zero (the boundary of a
sphere has no volume). Thusjs Riemann integrable [22, Theorem 14.5].

Consider the se?’ which is[—4r, 4r]9~1 shifted byp’. Since¥’ contains the above sphere, the integrab aver ¥’ must
equalo,_177~1. We now show a specific Riemann sum][22, Definition 14.2] whialist converge to this integral. Consider
a partition of U’ into cubes of side length/A, where each cube center is of the fofth /M, jo/M, ..., j,—1/M) and the
j. are integers (the fact that cubes at the edg@’ofire of volume less than/M?~! is immaterial). Defindp’ € A’] as1 if
the conditionp’ € A’ holds and0 otherwise. We claim that the following is a Riemann sum afver ¥’ with respect to the

above partition.
1
Ma—1
p'=(j1/M,j2/M,....jq—1/M)EP’

[p' € A']

To see this, recall thatl’ has critical radius-.



The absolute value of the difference between the above suhwanr¢=! can be upper bounded by the number of cubes
that straddle the sphere times their volumm@/¢—" (any finer partition will only affect these cubes). Since 4, this quantity
must go to zero ad/ grows, no matter how we let depend onl. ]

Lemma 10:Let A’ be a set of size for which A(A’) is minimized. Let the critical radius be and assume that < 4.
Then,

g+1 t
2+ D) Og—1T +eg—1(t) .

The error terme,_:(t) is bounded from both above and below by functions\éfalone ot of t) that areo(1) (decay to0
asM — o).
Proof: Let the sphere indicator functiohand the bounding seb’ be as in the proof of Lemnid 9. Consider the sum

1 _n2
2 7=t P =Pl [P e A7 (17)
p'=(j1/M,j2/M,....jq—1/M)EW’

On the one hand, by (114), this sum is simply

2(1”;:171) _ )
ﬁA(A ). (18)

On the other hand[[{17) is the Riemann sum correspondingetintegral
e =l e A
\I//

with respect to the same partition as was used in the proofeafrha®. As before, the sum must converge to the integral,
and the convergence rate can be shown to be bounded by eérgpeegsich are not a function af

All that remains is to calculate the integral. Denotesdpyiere, (1) C R?~! the sphere centered at the origin with radius
r. After translatingp’ to the origin, the integral becomes

og-1-(¢—1) 1!
qg+1

/ (m%—i—x%—l—---—i—xifﬂ drids - - drg_1 = , (29)
sphere,_ (1)

where the RHS is derived as follows. After converting thegnal to generalized spherical coordinates

x1=rcos(b1) ,

xo=rsin(fr) cos(62) ,

xg—o=rsin(61)sin(fz) - - - sin(64—2) cos(fg—1) ,

xg—1=rsin(fy)sin(fz) - - - sin(f,_2) sin(64—1) ,

we get an integrand that i€ times the integrand we would have gotten had the originabjrsind beer (this follows by
applying the identitysin® 6 + cos® # = 1 repeatedly). We know that had that been the case, the imtegudd have equaled
Jq,qufl.

Since [I9) must equal the limit df (118), and since the fraciio (18) converges t@/(¢ — 1)!, the claim follows. [ |

As a corollary to the above three lemmas, we have the follgwasult. The important point to note is that the RHS is
convex inVol(A").

Corollary 11: Let ¢ > 0 be a given integer. Lel’ be a set of size¢ and assume that

AT
max [lp’ —p'll, <2 (20)
Then,
. —1)-(g—1)! a1
Aays =D @= DV goanss oy 21)

2(q + 1) : (Uq—l)qf1

where theo(1) is a function of M alone and goes t6 as M — oc.

Proof: Let B’ be the set of size for which A(B’) is minimized. The proof centers on showing that the critigalius
of B’ is at most4. All else follows directly from Lemmak]9 arid110. Assume to toatrary that the critical radius a8’ is
greater thant. Thus, up to translationd’ is a subset of3’. But this implies thatA(A’) < A(B’), a contradiction. [ |



C. BoundingDC(q, L)
We are now in a position to prove Theor&in 2. Recall thats the set of output letters iy which get mapped to the letter
z; € Z. Also, recall thatd] is simply A; with the last entry dropped from each vector.
Proof of Theorenf]2: By combining [2), [(ID),[(T5), and(21), we have that as longasdition [20) holds for all4/,
1 <i < L, the degrading codDC(q, L) is at least

(=1 (¢g—1! Vol(4) 5 . 22
2g+1)- (Jql(,l; +o(1) (22)

Recalling that the elements of are probability vectors, we deduce that conditionl (20) nindeed hold. Indeed,
_/2 _ _
Ip" = p'll; < lIp" = B'lly < Ipll, + 1Pll, < 2

The first inequality follows from the fact tha€ is less tharp for 0 < p < 1. The second inequality is the triangle inequality.
The third inequality follows from the same reasons as theé firs
Next, recall thatVol(A}) = Vol(A;), and thus

M+q—1
|out(W)| (M
Zw (A) = = 371 (23)

Note that the RHS converges 1g(¢ — 1)! as M — co. By convexity, we have that if we are constrained byl (23)ntttee
sum in [22) is lower bounded by setting albl(4}) equal to the RHS of(23) divided b¥. Thus, after taking/ — oo, we

get [3). n
Acknowledgments: The author thanks Eren Sasoglu and Igal Sason for teeiddack.
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