
1

Generalized HARQ Protocols with Delayed Channel
State Information and Average Latency Constraints

Kasper Fløe Trillingsgaard, Student Member, IEEE, and Petar Popovski, Fellow, IEEE

Abstract—In many wireless systems, the signal-to-interference-
and-noise ratio that is applicable to a certain transmission,
referred to as channel state information (CSI), can only be
learned after the transmission has taken place and is thereby
delayed (outdated). In such systems, hybrid automatic repeat
request (HARQ) protocols are often used to achieve high
throughput with low latency. This paper put forth the family
of expandable message space (EMS) protocols that generalize
the HARQ protocol and allow for rate adaptation based on
delayed CSI at the transmitter (CSIT). Assuming a block-fading
channel, the proposed EMS protocols are analyzed using dynamic
programming. When full delayed CSIT is available and there
is a constraint on the average decoding time, it is shown that
the optimal zero outage EMS protocol has a particularly simple
operational interpretation and that the throughput is identical
to that of the backtrack retransmission request (BRQ) protocol.
We also devise EMS protocols for the case in which CSIT is
only available through a finite number of feedback messages.
The numerical results demonstrate that the throughput of BRQ
approaches the ergodic capacity quickly compared to HARQ,
while EMS protocols with only three and four feedback messages
achieve throughputs that are only slightly worse than that of
BRQ.

Index Terms—hybrid automatic repeat request, delayed chan-
nel state information, low latency, backtrack retransmission
request, dynamic programming

I. INTRODUCTION

CHANNEL state information at the transmitter is impor-
tant for achieving high throughput in wireless systems.

Preferably, CSIT is known before a transmission takes place
since, in that case, the transmitter is able to optimize the
transmission parameters such as rate and power. The trans-
mitter may acquire an estimate of the CSI in advance in
various ways; for example, by using channel reciprocity or via
explicit feedback from the receiver. This is referred to as prior
CSIT. A wireless channel is, however, dynamic and in many
cases the channel changes from the time the CSI has been
acquired to the time at which the channel is actually used for
transmission [2, pp. 211–213]. In addition, even if the channel
is static, during the transmission there may be an unpredictable
amount of interference at the receiver. In such cases, prior
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CSI is different from the actual conditions at the receiver
when the data transmission takes place and thus of limited
use for adapting the transmission parameters. On the other
hand, it is viable to assume that the transmitter gets feedback
about the CSI after the data transmission has been made. We
refer to this as delayed CSIT as it carries information to the
transmitter about the conditions at the receiver in the past. The
simplest form of delayed CSIT is the 1−bit feedback used in
ARQ protocols: (ACK) the transmission was successful, i.e.,
the channel could support the chosen data rate and (NACK)
the channel could not support the data rate. In the most
elementary form of ARQ, a failed packet is retransmitted in
the subsequent time slots until it is successfully decoded or
until a strict decoding time constraint is violated. In order
to increase throughput compared to ARQ, one can use chase
combining (CC) or send incremental redundancy (IR) instead
of retransmissions that consist of pure packet repetition. Such
extensions are referred to as HARQ-CC and HARQ-INR,
respectively [3]. In this paper, we focus on IR-based protocols.

The ergodic capacity represents an upper bound on the
throughput for any communication protocol and can be ap-
proached by fixed-length coding across many time slots.
HARQ-type protocols attempt to get as close as possible to this
upper bound while keeping the average or maximum decoding
time as small as possible. Specifically, as the rate R, which is
used in the first transmission opportunity, tends to infinity, the
average decoding time of HARQ-INR also tends to infinity
and the throughput of HARQ-INR approaches the ergodic
capacity of the underlying channel provided that there is no
strict constraint on the decoding time. If a strict or average
decoding time constraint is present, the achievable throughput
is strictly lower than the ergodic capacity.

The purpose of this paper is to put forth and investigate
a type of retransmission protocol which is fundamentally
different from conventional HARQ protocols and uses rate
adaptation based on delayed CSIT to achieve high throughput
subject to an average decoding time constraint. As with most
prior work in the area of HARQ-INR, we assume the channel
is modeled by a Gaussian block-fading channel, with each
time slot consisting of n channel uses. The channel gain is
kept constant during a single time slot but varies independently
from time slot to time slot. Feedback, such as delayed CSIT
or acknowledgements (ACKs), can only be received by the
transmitter at the end of each time slot. The main problem
with an HARQ-INR protocol for a block-fading channel is that
resources are wasted when the receiver sends NACK, while it
only needs a small amount of additional information to be
able to decode. This results in under-utilization of the last
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time slot and may significantly reduce the throughput when
the average decoding time is small. Our key idea is to append
new information bits in each time slot such that the last time
slot is rarely under-utilized and the throughput degradation
is reduced. We achieve this by using delayed CSIT which
allows the transmitter to estimate the amount of unresolved
information at the beginning of each time slot.

A. Prior work

Caire and Tuninetti [3] were among the first who analyzed
HARQ from an information-theoretic perspective. Here, the
throughput measure was defined through the renewal-reward
theorem (see also [4] and [5]) and achievability and converse
results were proved for the HARQ-INR protocol. Several lines
of works has since improved the throughput of HARQ-INR by
using available side information in combination with either
power adaptation or rate adaptation.

One line of work uses power or rate adaptation to enhance
the throughput of HARQ-INR with either prior or no CSIT. For
example, [6] investigates HARQ-INR protocols that maximize
the throughput over a block-fading channel with independent
channel gains under both a strict decoding time constraint and
a long-term power constraint. The long-term power constraint
allows the use of slot-based power allocation. It is found that
HARQ-INR in combination with slot-based power allocation
increases the throughput. The key idea is that the probability
of having to retransmit m times is decreasing in m. This
implies that the throughput is increased by using more power
in the first slots. In addition, it is shown that if the single
feedback bit is used to convey a one-bit quantization of the
prior CSI rather than an ACK/NACK message, then this can
result in significant throughput gains. The results from [6]
are further extended to any number of feedback bits per
slot in [7]. Under the same channel conditions, [8] considers
rate adaptation for an HARQ-INR protocol without prior nor
delayed CSIT. Dynamic programming is used to maximize the
throughput under an outage constraint and it is found that rate
adaptation provides significantly lower outage probabilities.
The assumption of independent channel gains is relaxed in
[9], where optimal rate adaptation policies are found for the
cases in which the channel gains are correlated.

Although prior CSIT improves the throughput of HARQ-
INR remarkably, CSIT is often delayed when it is obtained
by the transmitter. This has led to another line of work which
studies the benefits of delayed CSIT in context of HARQ-
INR protocols. Specifically, [10] and [11] considers a point-
to-point channel with independent block-fading in a setting
identical to ours. Apart from the statistics of the channel gain,
the transmitter has no knowledge about the current CSI, but the
transmitter is informed about the CSI of the previous slot. In
their protocol, the channel uses of each slot are divided among
a large number of parallel HARQ-INR instances transmitting
separate messages in a time division multiplexing (TDM)
fashion. In particular, for a specific HARQ-INR instance, the
number of channel uses used for the kth retransmission is some
percentage 0 ≤ `k ≤ 1 of the number of channel uses spend
in the first transmission. This implies that new HARQ-INR

instances, with new data, can be initiated in each slot. The
objective is to maximize the throughput under a constraint on
the outage probability. It is found that delayed CSIT signifi-
cantly decreases the outage probabilities. A similar setting was
considered in [12], where power adaptation was investigated.
Here, the authors used a conventional HARQ-INR instance,
but adapted the power in each slot according to the delayed
CSIT. In contrast to [10], in which the authors design compos-
ite protocols based on a large number of HARQ-INR instances,
the protocol proposed in [12] only uses a single HARQ-
INR instance with power adaptation which is optimized using
dynamic programming. Rate adaptation can also be achieved
using superposition coding. A multi-layer broadcast approach
to fading channels without prior CSIT is proposed in [13].
Specifically, a transmission is initiated in large number of
superposition coded layers and the number of decoded layers
at the receiver depends on the actual CSI, which is assumed not
to be known in advance. This approach provides an alternative
to HARQ protocols in the sense that it provides variable-
rate transmission with a fixed transmission length of one
slot. The approach, however, has the disadvantage that the
throughput in practical implementations suffer as the number
of layers increases. A more practical approach is taken in
[14] which combines the approach in [13] for few layers
with HARQ-INR. Specifically, the proposed protocols initiate
an HARQ-INR instance in each layer. In a certain slot, the
receiver feeds back the number of decoded layers and, in the
subsequent slot, the transmitter only conveys IR for the layers
not decoded. For the layers that are decoded, the transmitter
initiates new HARQ-INR instances with new data. Finally,
although not directly related to our work, it was shown in [15]
that delayed CSIT, which is possibly completely independent
of the current channel state, increases the multiplexing gains
in a multiple-input multiple-output (MIMO) broadcast channel
with K transmit antennas and K receivers each with one
receive antenna.

In contrast to previous works, this paper is motivated by
the backtrack retransmission request (BRQ) protocol proposed
in [1]. BRQ is suited for systems in which the transmission
opportunities come in slots of a predefined number of channel
uses. This prevents conventional HARQ-INR to optimize the
throughput, as the number of channel uses cannot be adapted
to the required amount of IR. BRQ overcomes this problem by
appending additional new information bits before the informa-
tion bits sent in previous slot have been decoded. The number
of new information bits is adapted according to the reported
delayed CSIT. Our approach in this paper combines the idea
of appending new data during a transmission for HARQ in
[1], [10], and [14] with streaming codes proposed in [16] and
[17]. The streaming codes in [16] and [17] are a family of
codes that allow the transmitter to append new information
bits during a transmission in such a way that all information
bits can be jointly decoded as one code. In [16], each message
has the same absolute deadline at which all messages need to
be decoded. In [17], each message is required to be decoded
within a certain number slots after arrival. Both [16] and
[17] use a transmission scheme that enlarges the message
space in each slot. In coding theory, streaming codes, as
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those investigated in [16] and [17], are also known as cross-
packet codes. Cross-packet codes based on Turbo codes and
LDPC codes have previously been considered in the context
of HARQ in [18] and [19], respectively. The EMS protocols
proposed in this paper extend streaming codes to an HARQ-
INR setting in which the amount of new information bits that
are appended within a retransmission is adaptive, as it depends
on the delayed CSIT in manner similar to BRQ.

EMS protocols are thus variable-rate protocols in a sense
similar to [10] and [14]. However, to the best of our knowl-
edge, all previously proposed protocols that allow for rate
adaptation are composite protocols based on a conventional
HARQ-INR protocol as building block, where rate adaptation
is achieved by using a large number of parallel HARQ-INR
instances in a TDM fashion or in superposition coded layers.
These approaches incur rate penalties in practical implementa-
tions because each HARQ-INR instance only uses a small frac-
tion of the available resources (channel uses/power) in each
slot. In contrast, EMS protocols differ fundamentally from
HARQ-INR in the way new information bits are appended
in each slot. This implies that, in principle, one can use our
scheme instead of HARQ-INR as a building block and devise
protocols similar to [10] and [14]. Consequently, we consider
HARQ-INR and HARQ-INR with power adaptation based on
delayed CSIT as relevant baseline protocols for comparison.

B. The backtrack retransmission protocol

Since our work is motivated by BRQ, we shall provide a
brief description of the protocol below. Suppose the transmitter
sends to the receiver in slots, where each slot is a fixed
communication resource that consists of n channel uses.
The channel is modeled as a Gaussian block-fading channel
with channel gains {Ht} of the slots being independent and
identically distributed. Assume also that the transmitter uses
unit transmission power such that Ht is the SNR in the tth
slot. The channel gain Ht is fed back to the transmitter by the
end of the tth slot. The BRQ protocol uses a single channel
code with blocklength n and a fixed rate R in each slot such
that the receiver can decode if C(Ht) > R, where we have
defined

C(h) ,
1

2
log2(1 + h). (1)

In the first slot, the transmitter sends nR bits of new infor-
mation using the fixed channel code. If the realized channel
gain H1 satisfies C(H1) > R, the receiver decodes the packet,
extracts the nR information bits, and the protocol terminates
with a decoding time of one slot. On the other hand, if
C(H1) ≤ R, the receiver cannot decode the packet, it feeds
back the CSI of the first slot, and the protocol continues in
slot 2. Considering the kth slot, with k ≥ 2 and assuming that
C(Ht) ≤ R for all t ∈ {1, · · · , k − 1}, the transmitter forms
the packet of nR bits for the kth slot as follows:

1) The first n(R − C(Hk−1)) bits are IR that allow the
decoding of the packet in slot k − 1.

2) The remaining nC(Hk−1) bits are new information bits.
Note that Hk−1 is fed back to the transmitter by the end of
slot k − 1 and thereby known at the transmitter in slot k.

If C(Hk) ≤ R, the receiver feeds back the CSI of the slot
and the protocol continues in slot k + 1. If C(Hk) > R, the
receiver can decode the packet in slot k and it can recover
the nC(Hk−1) information bits. It also recovers the n(R −
C(Hk−1)) bits of IR for the packet in slot k−1. At this time,
the receiver can decode the packet conveyed in the (k − 1)th
slot using the side information from the IR bits in slot k. Next,
the decoder sequentially decodes the packets (k − 2), (k −
3), · · · , 1 in a similar fashion, thereby recovering all the n(R+
C(H1)+ · · ·+C(Hk−1)) bits. Over the same slots, one could
have transmitted n(C(H1) + · · ·+C(Hk)) information bits if
the channel gains had been available a priori (and assuming
that power adaptation was not used). The loss in throughput by
BRQ is thus only due to the difference Ck−R. The throughput
of BRQ, reported in [1], is restated in Theorem 3.

We note that the IR bits and the new information bits are
only separable in the digital domain, but not at the physical
layer. Hence, the receiver needs to decode the whole packet,
which is transmitted using the fixed channel code with rate R,
in order to extract the IR bits and the new information bits.

We observe that BRQ relies on appending information bits
to the parity bits. The transmission rate used in BRQ is
predefined to be R in each slot. The number of appended in-
formation bits is computed based on delayed CSIT but chosen
such that the a priori probability of decoding a certain slot is
kept constant. Hence, the BRQ protocol ends a transmission as
soon as the CSI is above a level that is sufficient for decoding
the predefined rate R.

C. Contribution

In this paper, we generalize the BRQ protocol from [1].
First, we propose a family of EMS protocols that allow the
transmitter to expand the message space in manner similar
to BRQ. In contrast to BRQ, however, the EMS protocols are
based on streaming codes and all information bits are decoded
jointly. The notion of an EMS protocol introduced here is
sufficiently general to include protocols like ARQ, HARQ-
INR, and BRQ. Next, we prove a converse and an achiev-
ability result for the EMS protocols, and it is shown that the
throughput of the optimal zero outage EMS protocol given a
constraint on the average decoding time and full delayed CSIT
is identical to the throughput of BRQ. Then, we address the
same problem with only a finite number of feedback messages
in each slot. In this case, we put forth heuristic EMS protocols
which have a structure similar to BRQ, but are designed to
work with a finite number of feedback messages. Finally, the
throughput of BRQ and the proposed finite feedback EMS
protocols are evaluated and compared to relevant baseline
protocols. Specifically, we compute the throughput in terms of
SNR and in terms of average decoding time. Our numerical
results confirm that the throughput of BRQ converges to the
ergodic capacity faster than the throughput of HARQ-INR.
Moreover, the proposed finite feedback EMS protocol using
only three feedback messages per slot achieves throughput
which is only slightly worse than that of BRQ. We remark that
EMS protocols have previously been introduced in [20], where
we used finite blocklength analysis to investigate a protocol
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similar to BRQ in a simplified setup. In a similar setting,
optimal rate adaptation policies were optimized using error
exponents in [21].

Notation: Vectors are denoted by boldface (e.g., a), while
their entries are denoted by roman letters (e.g., ai). The
transpose of a vector a is denoted by aT, the length of a vector
by len(·), and the tuple (ai, · · · , aj), for i ≤ j, is denoted
by aji . Similarly, we denote a tuple of random variables
(Xi, · · · , Xj), j ≥ i, by Xj

i . We adopt the convention
that

∑j−1
i=j ai = 0 and likewise we let Xi−1

i be the empty
tuple. Let N be the natural numbers, R be the reals, and
R+ be the nonnegative reals. Moreover, the range of integers
{i, · · · , j}, i ≤ j, is denoted by [i:j]. We also use the standard
asymptotic notation f(n) = O(g(n)) and f(n) = o(g(n))
which means that lim supn→∞ |f(n)/g(n)| < ∞ and that
lim supn→∞ |f(n)/g(n)| = 0, respectively. Finally, we let
[x]
− , min{x, 0}.

II. SYSTEM MODEL

We consider a single-user block-fading channel with Gaus-
sian noise. The transmitter sends to the receiver in slots of n
channel uses, where n is sufficiently large to offer reliable
communication that is optimal in an information-theoretic
sense. The received signal vector in slot t ∈ N is given by

Yt =
√
HtXt + Zt (2)

where Zt ∼ N (0n, In) is an n-dimensional noise vector dis-
tributed according to the Gaussian distribution with zero mean
and identity covariance matrix, Xt ∈ Rn is the transmitted
vector satisfying

1

n
XT
t Xt ≤ 1 (3)

and Ht ≥ 0 denotes the instantaneous channel gain, drawn
independently from a smooth probability density PH(·) with
support on R+. The cumulative distribution function of Ht

is given by FH(·). The instantaneous channel gain Ht is
unknown at the transmitter prior to the transmission of Xt

but is known at the receiver after observing Yt. Moreover,
the receiver is able to provide feedback based on the CSI.
Specifically, we assume that feedback is given by a sequence
of feedback functions vt : Rt+ → F that maps Ht

1 to a feedback
alphabet F such that Vt = vt(Ht

1) is observed at the transmitter
before transmission in the (t+ 1)th slot. The feedback cost is
defined as the cardinality of the feedback alphabet |F| and
may be finite, countably infinite, or uncountably infinite. The
transmitter is said to have full delayed CSIT if Ht can be
recovered from Vt.

If a transmission is to be done over slot t alone, the
maximum supported rate is given by C(Ht), whereas the
maximum achievable rate if a transmission is done over many
slots approaches the ergodic capacity [22]

Cerg = E[C(H)] (4)

as the number of slots tends to infinity. Here, H denotes a
random variable distributed according to PH . If, however, a
transmission is to be done over few slots, high throughput
cannot be achieved without either layered transmissions as in

[14] or a HARQ technique. The latter approach is commonly
applied in practical systems due to its relative simplicity
compared to the layered transmissions.

A comment on the block-fading assumption is in order. The
block-fading channel model is an abstraction of a practical sys-
tem model. In particular, if slots are transmitted consecutively
in time as this model suggests, the channel gains cannot be
assumed to be independent. In practical systems, however, the
delay of ACK/NACK feedback can often spread over multiple
slots in time. Therefore, in wireless systems such as LTE,
multiple HARQ instances are interleaved in time [23, Ch. 12];
while the transmitter waits for feedback from one HARQ
instance, it transmits to other users. In the uplink in LTE,
a synchronous version of HARQ is employed [23, Ch. 12].
This ensures that the time between each retransmission is
fixed and known by both the transmitter and the receiver.
The fact that each transmission opportunity is spaced apart
by a fixed number of slots implies that channel gains can be
assumed to be independent for many scenarios. In addition to
these considerations, one cannot expect that each transmission
opportunity occurs in the same frequency slot; this further
justifies the use of a block-fading model.

An EMS protocol is now defined by

• A sequence of feedback functions vt : Rt+ 7→ F that maps
Ht

1 to the feedback alphabet F such that

Vt , vt(H
t
1). (5)

• A sequence of rate selection functions r(n)
t : F 7→ R+

that satisfy R
(n)
t , r(n)

t (Vt−1), r(n+1)
t (·) ≥ r(n)

t (·)
for all t ∈ N, and R

(n)
t ≤ rmax for some positive

constant rmax. We also define the cumulative rates R
(n)

t ,∑t
k=1R

(n)
k .

• A sequence of encoding functions f(n)
t : B 7→ Rn such

that

Xt , f(n)
t

(
B
dnR(n)

t e
1

)
. (6)

Here, B denotes all binary vectors (of arbitrary length),
i.e., B , {[]} ∪

⋃∞
i=1{0, 1}i, where [] denotes the vector

of length 0; Bi are independent Bernoulli variables with
parameter 1/2; and the tuple (Bi, · · · , Bj) is denoted by
Bji .

• A sequence of decoding functions g(n)
t : Rtn×Rt+ 7→ B.

• A sequence of nonnegative integer-valued random vari-
ables {τn}∞n=1, which are stopping times with respect to
the filtration Ft , σ{V t} (see e.g. [24, p. 488]) and
satisfy τn+1 ≥ τn and supn E[τn] <∞.

The error event of an EMS protocol is given by

En ,
{

g(n)
τn (Yτn

1 , Hτn) 6= B
dnRτne
1

}
. (7)

We also define the limiting rate selection functions and stop-
ping time of an EMS protocol:

rt , lim
n→∞

r(n)
t (8)

τ , sup
n
τn. (9)
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The limit of r(n)
t exists because r(n)

t is non-decreasing in n
and bounded above by rmax. On the other hand, we define τ
as the supremum over τn since the existence of the limit of
τn cannot be guaranteed because only E[τn] is bounded above
for increasing n.

The random variables B∞ ∈ {0, 1}∞ correspond to the
binary sequence of information bits, which size in bits is un-
bounded. We assume that all the information bits are available
prior to the transmission in the first slot. This implies that the
stopping time τn is also the decoding time and the transmission
time in slots. In the remainder of this paper, we shall refer to τn
as a decoding time. We note that our definition of decoding
time deviates from some other works. For example, in [8]
and [10], the decoding time is measured as the time from the
information bits are appended to the time at which they are
decoded.

As an implication of the definition of an EMS protocol,

Xt becomes a function of the information bits BdnR
(n)
t e

1 =
(B1, · · · , BdnR(n)

t e
). This enables the encoder to combine

IR and new information bits, i.e., in each slot the encoder
fetches nR

(n)
t information bits and encodes them jointly

with the previously encoded nR
(n)

t−1 information bits. This
message structure is different from other works on HARQ-
INR protocols. In light of [25], HARQ-INR can be seen as
fixed-to-variable coding because the number of transmitted
information bits are prespecified while the number of channel
observations at the receiver depends on channel realization.
On the other hand, for an EMS protocol, both the number
of information bits and the number of channel observations
depend on the channel realization. This concept has previously
been used in [10] and [14]; however, none of these works alter
the conventional HARQ-INR protocol. They rather use it as
a building block and initiate a large number of HARQ-INR
instances which run in parallel consecutively in time or in
multiple superposition coded layers.

Following other HARQ works [3], [5], [14], we define the
throughput η of an EMS protocol in terms of a renewal-
reward process. A renewal event occurs at time τn and the
reward is the sum of all rates appended since time 1. Likewise,
the inter-renewal time corresponds to the decoding time τn.
Hence, we define the throughput of an EMS protocol as
limn→∞ E

[
R

(n)

τn

]
/E[τn]. This leads us to the definition of a

zero outage EMS protocol.
Definition 1: An EMS protocol is called an (η, T )-zero

outage EMS protocol if there exists a non-decreasing integer-
valued sequence {τ̄n} such that τn ≤ τ̄n, E[τn] ≤ T ,
limn→∞ E

[
R

(n)

τn

]
/E[τn] ≥ η,

lim
n→∞

P[En] = 0 (10)

and

lim
n→∞

max
t∈[1:τ̄n−1]:
P[τn=t]>0

P[En|τn = t] = 0. (11)

Our focus is on the characterization of optimal zero outage
EMS protocols:

ηopt(T ) , sup{η : ∃(η, T )-zero outage EMS protocol}. (12)

The condition in (10) ensures that the outage probability of
the EMS protocol is zero, while the condition in (11) ensures
that the conditional probability of error given a decoding time
vanishes uniformly for all decoding times except for τ̄n. We
note that our converse result does not hinge on the condition
in (11); it is only introduced to strengthen the achievability
result.

We note that most other HARQ works consider strict latency
constraints which naturally arise in wireless communication
systems having either a strict deadline or a limited buffer
size. We consider average decoding time constraints and zero
outage protocols for two reasons:

• A strict latency constraint does not naturally arise in
systems without a strict deadline or limited buffer size,
and hence, in such applications, there is no reason to
choose a specific deadline T in the strict decoding time
constraint P[τn ≤ T ] = 1. For example, consider an
application that requires high reliability. In this case, im-
posing a strict latency constraint for the HARQ protocol
only implies that the receiver will request a retransmission
of the data in outage. This is the case for LTE, which
uses HARQ in the medium access control (MAC) layer,
while it implements an ARQ protocol on a higher layer
– in the radio link control (RLC) layer – that requests
retransmissions for data in outage [23, Ch. 12]. In that
sense, LTE attempts to achieve an outage probability
close to zero, and an average decoding time constraint
is therefore a natural constraint which attempts to keep
the decoding time low on average but does not give any
strict guarantees. As previously mentioned, LTE employs
synchronous HARQ in the uplink which implies that the
decoding time τn is indeed proportional to real decoding
time in a system. We also point out that the customary
metric for latency in queuing theory is the average waiting
time.

• It turns out that the throughput of the optimal zero
outage EMS protocol, under an average decoding time
constraint, coincides with the throughput of the BRQ
protocol proposed in [1], i.e., the optimization problem
in (12) has a simple form.

III. ACHIEVABILITY AND CONVERSE

In this section, we state converse and achievability re-
sults that we shall apply in the subsequent sections. The
achievability and converse results state conditions for when
the probability of error tends to zero or one, respectively.
In order to state the results, it is convenient to introduce
some notation. In particular, given rate selection functions and
feedback functions, let

u(n)
k,t (ht1) ,

t∑
i=k

(
r(n)
i (vi−1(hi−1

1 ))− C(hi)
)

(13)

for k ≤ t and let u(n)
k,t (·) , 0 for t < k. Intuitively, u(n)

1,t (ht1)
is the remaining amount of information needed to decode the
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information bits appended up to time t given the channel gains
ht1 = (h1, · · · , ht) ∈ Rt+. We also define

uk,t(h
t
1) , lim

n→∞
u(n)
k,t (ht1) (14)

=

t∑
i=k

(
ri(vi−1(hi−1

1 ))− C(hi)
)
. (15)

We prove the following results in Appendix A and Ap-
pendix B.

Lemma 1 (converse): Given an EMS protocol, we have

lim
n→∞

P
[
En
∣∣∣H∞ = h∞

]
= 1 (16)

for every h∞ ∈ R∞+ satisfying supk∈[1:τ ] uk,τ (hτ ) > 0 and
τ <∞ given that H∞ = h∞.

Remark 1: The conditions in Lemma 1 are only given in
terms of the asymptotic quantities τ and rt and not τn and
r(n)
t . Therefore, Lemma 1 allows us to restrict the search for

optimal zero outage EMS protocols to those EMS protocols
for which supk∈[1:τ ] uk,τ (hτ ) ≤ 0 almost surely.

Remark 2: The smallest limiting decoding time of a zero
outage EMS protocol which is not ruled out by Lemma 1 is
given by

τopt , inf
{
t ≥ 1 : u1,t(H

t
1) ≤ 0

}
. (17)

To show that an EMS protocol with τ = τopt is not ruled out
by Lemma 1, note that by the definition of τopt, we must have

u1,1(H1
1 ) > 0, · · · , u1,τopt−1(H

τopt−1

1 ) > 0 (18)

and

u1,τopt(H
τopt
1 ) ≤ 0. (19)

Thus, using the fact that uk,τopt(H
τopt
1 ) = u1,τopt(H

τopt
1 ) −

u1,k−1(Hk−1
1 ) ≤ 0 for every k ∈ [1:τopt], we find that the

conditions in Lemma 1 cannot be simultaneously satisfied.

Lemma 2 (achievability): Let decoding times {τn}, rate
selection functions {r(n)

t }, and feedback functions {vt} be
given. Suppose that there exist positive sequences cn, gn, and
τ̄n such that τ̄n ∈ N is a nondecreasing sequence satistying
τn ≤ τ̄n and such that

τ̄2
n

ngnc2n
→ 0 (20)

as n→∞. Moreover, define the event

H̄n ,

{
max
k∈[1:τn]

u(n)
k,τn

(Hτn) ≤ −cn
}

(21)

and assume for all sufficiently large n that

min
t∈[1:τ̄n]:

P[τn=t|H̄n]>0

P
[
τn = t|H̄n

]
≥ gn. (22)

Then, there exists an EMS protocol satisfying

lim
n→∞

max
t∈[1:τ̄n]:

P[τn=t]>0

P
[
En
∣∣∣H̄n, τn = t

]
= 0. (23)

IV. FULL DELAYED CSIT

In this section, we consider the case in which the feedback
alphabet is the positive reals, F = R, and the feedback
functions are given by

vt(h
t
1) , ht. (24)

This provides the transmitter with full delayed CSIT. In the
following, we characterize the trade-off between throughput
and the average decoding time for optimal zero outage EMS
protocols. First, we specify an EMS protocol and we shall
later show that it is an optimal zero outage EMS protocol.
The EMS protocol is specified as follows

r(n)
t (v) ,

{
C(hT )− c1

logn , t = 1

min
{
C(v), C(hT )− c1

logn

}
, t ≥ 2

(25)

for a positive constants hT and c1. The decoding times are
given by

τn , min{τ̄n, τ} (26)

where

τ̄n , −
⌊

log(c2
√
n)

logFH(hT )

⌋
(27)

τ , inf{t ≥ 1 : hT < Ht} (28)

for an arbitrary constant c2 > 0. The particular choice of the
rate selection functions has a simple operational interpretation
when neglecting the vanishing term c1/ log n. Consider a
transmitter using a fixed-rate codebook with rate C(hT ) in
each slot such that the minimal channel gain required to
decode a slot is hT . Based on the delayed CSI, in slot t,
the transmitter sends the exact amount of IR that is required
to decode the previous packet, i.e., n(C(hT ) − C(Ht−1))
bits, along with nC(Ht−1) bits of new information bits. This
protocol resembles the BRQ protocol previously described in
Section I-B but formulated as an EMS protocol.

The operation of BRQ is illustrated and compared to
HARQ-INR in Fig. 1. Initially, HARQ-INR transmits at a
rate RHARQ. The receiver accumulates information until the
amount of unresolved information reaches zero. BRQ starts
the transmission at a rate RBRQ, but in contrast to HARQ-
INR, it uses the delayed CSI to append new information
bits in each slot to ensure that the amount of unresolved
information, before the receiver observes Yt and Ht, remains
RBRQ. Note that, in order to attain the same average decoding
time for BRQ and HARQ-INR, RBRQ needs to be chosen
smaller than RHARQ since no additional information bits are
appended during transmission in the HARQ-INR protocol.
This is why we have chosen RHARQ > RBRQ in the figure. For
the particular realization of channel gains depicted in Fig. 1,
it is seen that HARQ-INR does not fully utilize the supported
rate since the unresolved information, before Y4 and H4 are
observed, is significantly smaller than the supported rate in that
slot. This phenomenon reduces the throughput at low average
decoding times. The problem is partially circumvented in BRQ
by ensuring that the amount of unresolved information, before
Yt and Ht are observed, is kept constant. In contrast to
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Information 

Slot #

(a) HARQ-INR.

Delayed CSI

Information

Delayed CSI Delayed CSI Delayed CSI

Supported rate 

New information Incremental redundancy

Slot #

Unresolved information

(b) BRQ.

Fig. 1. Comparison between HARQ-INR and BRQ. In slot t, the left and
right striped areas correspond to the amount of unresolved information before
receiving Yt. The dark grey areas designate the instantaneous supported
rate and the light grey areas corresponds to the unresolved information after
observing Yt. Note that for each time slot, the dark grey areas have the same
size for both HARQ-INR and BRQ.

BRQ, the EMS protocol specified by (24) and (25) uses joint
decoding over all slots. Since the EMS protocol specified by
(24) and (25) and BRQ are closely related, we shall refer to
the proposed EMS protocol as “BRQ-EMS” to emphasize its
relation to BRQ.

The following result analyzes the trade-off between through-
put and average decoding time of BRQ-EMS. Specifically,
we find that the throughput is identical to that of BRQ.
Furthermore, we apply the converse result in Lemma 1 and
we demonstrate using dynamic programming that BRQ-EMS
is optimal within the class of zero outage EMS protocols.

Theorem 3: For T > 1, we have

ηopt(T ) ≥ ηBRQ(T ) ,
∫ hT

0

PH(h)C(h) dh+
C(hT )

T
(29)

where

hT , F−1
H

(
1− 1

T

)
. (30)

Moreover, we have that ηBRQ(T ) = ηopt(T ) if

PH(h)

1− FH(h)
+

1

(1 + h)
+
P ′H(h)

PH(h)
≥ 0 (31)

for every h ≥ 0. Here, P ′H(·) denotes the derivative of PH(·).

Remark 3: The throughput of BRQ, which is identical to
(29), was first reported in [1].

Remark 4: One can verify that (31) is satisfied for the
Rayleigh fading distribution PH(h) = 1

Γe−h/Γ for all Γ > 0.

Indeed, the LHS of (31) yields (1+h)−1 which is nonnegative
for all h ≥ 0.

Remark 5: It follows directly from (29) that ηBRQ(T ) →
Cerg as T → ∞. This is because hT → ∞ as T → ∞, and
thus the first term in (29) tends to Cerg while the second term
in (29) tends to zero.

Remark 6: The second term on the RHS of (29) is the
throughput of the conventional ARQ protocol with a rate
equal to C(hT ). The first term on the RHS of (29) thereby
corresponds to the improvement of BRQ-EMS over ARQ.

Proof: We shall first use Lemma 2 to show that there
exists an (ηBRQ(T ), T )-zero outage EMS protocol with rate
selection and feedback functions given by (24) and (25),
respectively. Then, we apply the converse result in Lemma 1
to show that ηopt(T ) = ηBRQ(T ) under the condition in (31).

Fix positive constants c1 and c2, and hT as in (30).
We first show that an EMS protocol specified by (24)–(26)
has throughput ηBRQ(T ) and average decoding time upper-
bounded by T . Since {τn} is a non-decreasing sequence of
random variables and since E[τn] ≤ E[τ ] < ∞, Lebesgue’s
monotone convergence theorem [24, Th. 16.2] implies that

lim
n→∞

E[τn] = E[τ ] (32)

=

∞∑
i=1

iFH(hT )
i−1

(1− FH(hT )) (33)

=
1

1− FH(hT )
(34)

= T (35)

Similarly, we also have that

lim
n→∞

E
[
R

(n)

τn

]
= lim
n→∞

E

[ ∞∑
t=1

1{τn ≥ t} r(n)
t

(
vt−1

(
Ht−1

1

))]
(36)

= E

[ ∞∑
t=1

lim
n→∞

1{τn ≥ t} r(n)
t

(
vt−1

(
Ht−1

1

))]
(37)

= C(hT ) + E

[ ∞∑
t=2

1{τ ≥ t}min{C(Ht−1), C(hT )}

]
(38)

= C(hT ) +

∞∑
t=2

E
[
1{τ ≥ t}min{C(Ht−1), C(hT )}

]
(39)

= C(hT ) + E[C(H)|H ≤ hT ] (E[τ ]− 1) (40)

= C(hT ) + T

∫ hT

0

PH(h)C(h) dh. (41)

Here, (37) follows from Lebesgue’s monotone convergence
theorem [24, Th. 16.2] because τn and r(n)

t are non-decreasing
in n. Moreover, (39) follows from Tonelli’s theorem [24,
Th. 18.3] and (41) follows because∫ hT

0

PH(h)C(h) dh = E[C(H)|H ≤ hT ] P[H ≤ hT ] (42)

and because T = E[τ ] = 1/P[H ≥ hT ]. As a result of (35)
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and (41), we obtain the throughput

lim
n→∞

E
[
R

(n)

τn

]
E[τn]

= ηBRQ(T ). (43)

To show the existence of an (ηBRQ(T ), T )-zero outage EMS
protocol, we need to demonstrate that BRQ-EMS satisfies
(10) and (11). Both of these conditions follow from (23)
if the conditions of Lemma 2 can be verified. Let cn ,
c1/ log n. Then, we shall first show that τ ≤ τ̄n implies that
maxk∈[1:τn] u(n)

k,τn
(Hτn

1 ) ≤ −cn, which in turn implies that

P
[
H̄n|τn = t

]
= 1 (44)

for t ∈ [1:τ̄n − 1], where H̄n is defined in (21). Because
u(n)

1,t (ht) ≤ u1,t(h
t) − cn for every ht ∈ Rt+ and because

u1,τn(Hτn) ≤ 0 when τ ≤ τ̄n, this follows from

u(n)
1,τn

(Hτn
1 ) ≤ u1,τn(Hτn)− cn ≤ −cn (45)

and from the following chain of inequalities1

max
k∈[2:τn]

u(n)
k,τn

(Hτn
1 )

= max
k∈[2:τn]

τn∑
i=k

[
min

{
C(hT )− cn, C(Hi−1)

}
− C(Hi)

]
(46)

≤ max
k∈[2:τn]

{
C(Hk−1)− C(hT )

+

τn∑
i=k

[
min{C(hT )− cn, C(Hi−1)} − C(Hi−1)

]}
(47)

= max
k∈[2:τn]

{
(C(Hk−1) + cn − C(hT ))− cn

+

τn∑
i=k

[
C(hT )− cn − C(Hi−1)

]−}
(48)

= max
k∈[2:τn]

{[
C(Hk−1) + cn − C(hT )

]−
− cn

+

τn∑
i=k+1

[
C(hT )− cn − C(Hi−1)

]−}
(49)

≤ −cn. (50)

Here, (46) follows from (13) and (25), (47) follows because
(28) implies that hT < Hτn when τ ≤ τ̄n, (49) follows
because x+[−x]− = [x]− for x ∈ R, and (50) follows because
[·]− ≤ 0. Next, we show that gn , O(1/

√
n) satisfies (22):

min
t∈[1:τ̄n]:

P[τn=t|H̄n]>0

P
[
τn = t|H̄n

]
≥ min

t∈[1:τ̄n]:

P[τn=t|H̄n]>0

P
[
τn = t, H̄n

]
(51)

≥ min
t∈[1:τ̄n]:

P[τn=t|H̄n]>0

P[τ = t] (52)

1We use the convention that
∑j−1

i=j ai = 0 for all ai and for all integers
j.

= FH(hT )τ̄n−1(1− FH(hT )) (53)
= O(elog(FH(hT ))τ̄n) (54)

= O
(

1√
n

)
= gn. (55)

Here, (52) follows because τ ≤ τ̄n implies that the event H̄n
occurs. It also follows that (20) is satisfied:

τ̄2
n

ngnc2n
= O

(
log2(n) log2(

√
n)√

n

)
= o(1) (56)

as n → ∞. As a consequence of (55) and (56), Lemma 2
implies that there exists an EMS protocol satisfying (23).
In addition, the EMS protocol is also an (ηBRQ(T ), T )-zero
outage EMS protocol, which follows because the condition in
(11) is implied by (23) and (44):

max
t∈[1:τ̄n−1]:
P[τn=t]>0

P[En|τn = t]

= max
t∈[1:τ̄n−1]:
P[τn=t]>0

{
P
[
En|τn = t, H̄n

]
P
[
H̄n|τn = t

]
+ P

[
En|τn = t, H̄{

n

]
P
[
H̄{
n|τn = t

]}
(57)

≤ max
t∈[1:τ̄n−1]:
P[τn=t]>0

P
[
En|τn = t, H̄n

]
(58)

= o(1) (59)

as n → ∞. Here, H̄{
n denotes the complement of the event

H̄n and (58) follows (44). The condition in (10) now follows
from (59) and because P[τn = τ̄n]→ 0 as n→∞.

We prove in Appendix C that no zero outage EMS protocol
can achieve a throughput larger than that of the RHS of (29),
i.e., we establish that ηopt(T ) = ηBRQ(T ) for T > 1 under the
condition in (31).

V. FINITE NUMBER OF FEEDBACK MESSAGES

Full delayed CSIT feedback is not always an viable assump-
tion. This section addresses the case where the feedback cost is
finite. While HARQ-INR does not allow for rate adaptations,
EMS protocols with three or more feedback messages can be
used to signal ACK/NACK, but also to instruct the transmitter
to append additional information bits in the subsequent slot.
The key difference from the case with full delayed CSIT is that
the optimal amount of new information to be appended cannot
be specified through the feedback. We provide a heuristic
choice of the rate selection functions, feedback functions, and
decoding times and demonstrate the existence of a zero outage
EMS protocol. In Section VI, it is numerically shown that
the throughput of the finite feedback cost EMS protocol is
comparable with that of the BRQ protocol.

We shall construct an EMS code with feedback cost f + 1,
where f ∈ N. Specifically, we define the rate selection and
feedback functions as

vt(h
t
1) ,

{ ⌊
f − u1,t(h

t
1)

r

⌋
, u1,t(h

t
1) > 0

−1, u1,t(h
t
1) ≤ 0

(60)
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and

r(n)
t (vt−1) ,{

rf − cn, t = 1
min{r(f − 1)− cn, rvt−1}1{vt−1 6= −1} , t ≥ 2.

(61)

Here, r > 0 is a predefined constant, F = [−1:f − 1], and
cn , c1/ log(n) for an arbitrary positive constant c1. The
decoding time is given by

τn = min{τ̄n, τ} (62)

where

τ , inf{t ≥ 1 : Vt = −1} (63)

τ̄n , −
⌊

log(c2
√
n)

logFC(r(f − 1))

⌋
. (64)

Here, c2 is an arbitrary positive constant and the feedback −1

designates an ACK message. Since v(n)
t can take at most f +

1 = |F| values, the corresponding EMS protocol has feedback
cost f + 1. We define the composite rate-feedback function as

rv(u) , r min

{
f − 1,

⌊
f − [u]

+

r

⌋}
. (65)

With this definition, we can write

rt(vt−1(ht−1
1 )) = rv(u1,t−1(ht−1

1 )) (66)

for all t ≥ 2 and ht−1
1 ∈ Rt−1

+ such that u1,t−1(ht−1
1 ) > 0.

The trade-off between throughput and average decoding
time achievable by an EMS-(f + 1) protocol is characterized
by the following theorem which provides a way to compute the
throughput and average decoding time by solving two integral
equations. Varying the parameter r determines the trade-off
between throughput and average decoding time.

Theorem 4: Define W : [0, rf ] 7→ R+ and M : [0, rf ] 7→
R+ through the integral equations

W (u) , rv(u) +

∫ u+rv(u)

0

PC(x)W (u+ rv(u)− x) dx

(67)

and

M(u) = 1 +

∫ u+rv(u)

0

PC(x)M(u+ rv(u)− x) dx. (68)

Here, PC(·) denotes the probability density function of C(H).
Then, there exists an (η, T )-zero outage EMS protocol with

η =
rf + E

[
1{C(H) ≤ rf}W (rf − C(H))

]
1 + E

[
1{C(H) ≤ rf}M(rf − C(H))

] (69)

and

T = 1 + E
[
1{C(H) ≤ rf}M(rf − C(H))

]
. (70)

Proof: In order to show that (60)–(62) define a zero
outage EMS protocol, we need to verify the conditions of
Lemma 2. We shall first show that (22) is satisfied for
gn = O(1/

√
n). The remaining conditions are verified using

arguments similar to those in the proof of Theorem 3. Given

that τ ≤ τ̄n, we have for k ∈ [2:τn]

u(n)
k,τn

(Hτn)

=

τn∑
i=k

[
min

{
r(f − 1)− cn, r

⌊
f − u1,i−1(Hi−1

1 )

r

⌋}

− C(Hi)

]
(71)

≤
τn∑
i=k

[
min

{
r(f − 1)− cn, r

⌊
f − u1,i−1(Hi−1

1 )

r

⌋}

− C(Hi)

]
− u1,τn(Hτn) (72)

=

τn∑
i=k

[
r(f − 1)− cn − r

⌊
f − u1,i−1(Hi−1

1 )

r

⌋]−
− u1,k−1(Hk−1) (73)

≤
τn∑
i=k

[
−cn + u1,i−1(Hi−1

1 )
]− − u1,k−1(Hk−1

1 ) (74)

≤ min{−cn,−u1,k−1(Hk−1
1 )}

+

τn∑
i=k+1

[
−cn + u1,i−1(Hi−1

1 )
]−

(75)

≤ −cn. (76)

Here, (71) follows from (13) and (60)–(61), (72) follows
because u1,τn(Hτn) ≤ 0 when τ ≤ τ̄n, (74) follows from
bxc ∈ (x − 1, x], (76) follows because [x]− ≤ 0. Using
the same arguments as in (45), it can also be shown that
u(n)

1,τn
(Hτn) ≤ −cn when τ ≤ τ̄n. Hence, we conclude that

maxk∈[1:τn] u(n)
k,τn

(Hτn) ≤ −cn when τ ≤ τ̄n. An immediate
implication of this is that

P
[
τn = t

∣∣∣H̄n] =
P
[
τn = t, H̄n

]
P
[
H̄n
] =

P[τ = t]

P
[
H̄n
] ≥ P[τ = t] (77)

for all t ∈ [1:τ̄n]. Note that τ is not necessarily Geometrically
distributed as for the case with full delayed CSIT. Instead,
since bxc ∈ (x− 1, x] for any constant x, we have that

u1,t(h
t) + rt+1(vt(h

t))

= u1,t(h
t) + r

⌊
f − u1,t(h

t
1)

r

⌋
∈ (r(f − 1), rf ] (78)

for all t ∈ N and ht1 ∈ Rt+ such that u1,t(h
t
1) > 0. Therefore,

for all t ∈ N, we also have that

P[τ ≥ t+ 1|τ ≥ t] = P
[
u1,t(H

t) > 0
∣∣τ ≥ t]

∈ [FC(r(f − 1)), FC(rf)]. (79)

Thus,

P[τ = t] = P[τ = t|τ ≥ t]
t−1∏
i=1

P[τ ≥ i+ 1|τ ≥ i] (80)

≥ FC(r(f − 1))t−1(1− FC(rf)). (81)

It follows from (77) and (81) that (22) is satisfied for gn =
O(1/

√
n). The conditions in (10), (11), and (20) follows



10

using the same arguments as in the proof of Theorem 3.
Similarly, we can also show that limn→∞ E[τn] = E[τ ] and
that limn→∞ E

[
R

(n)

τn

]
= E

[
Rτ
]
. Hence, it only remains to

compute the throughput given by E
[
Rτ
]
/E[τ ] and the limiting

average decoding time E[τ ].
We compute the throughput E

[
Rτ
]
/E[τ ] via the rate selec-

tion functions, feedback functions, and the decoding time in
(60)–(62). Using the following recursive relation

u1,t(h
t) = u1,t−1(ht−1) + rv(u1,t−1(ht−1))− C(ht) (82)

for t ≥ 2, we observe that, if t ≥ k ≥ 2, then u1,t(h
k−1, Ht

k)
only depends on hk−1 through u1,k−1(hk−1). Therefore,
we can define ū(u, htk) such that ū(u1,k−1(hk−1), htk) =
u1,t(h

k−1, htk). In order to compute E
[
Rτ
]
, define

Wt(u) , E

[
τt(u)∑
i=t

rv(ū(u,Hi−1
t ))

]
(83)

for u ∈ [0, rf ], where

τt(u) , inf
{
t̄ ≥ t : ū(u,H t̄

t ) < 0
}
. (84)

Observe that

E
[
Rτ
]

= rf + E[1{C(H1) ≤ rf}W1(u1,1(H1))] . (85)

Rewriting the RHS of (83) in terms of Wt+1(·), we obtain

Wt(u) (86)

= rv(u) + E

[
1{u+ rv(u) ≥ C(Ht)}

× E

[
τt+1(ū(u,Ht))∑

i=t+1

rv(ū(ū(u,Ht), H
i−1
t+1 ))

∣∣∣∣∣Ht

]]
(87)

= rv(u)

+ E[1{u+ rv(u) ≥ C(Ht)}Wt+1(ū(u,Ht))] (88)
= rv(u)

+

∫ u+rv(u)

0

PC(x)Wt+1(u+ rv(u)− x) dx. (89)

By defining W (·) , W1(·) and by noting that Wt(u) =
Wt+1(u) for u ∈ [0, rf ], we have the integral equation in
(67). The expected reward is thereby given by

E
[
Rτ
]

= rf + E[1{C(H) ≤ rf}W (rf − C(H))] . (90)

Using derivations similar to (83)–(89), we obtain E[τ ] = 1 +
E[1{C(H) ≤ rf}M(rf − C(H))].

We remark that the integral equations in Theorem 4 can be
written as Fredholm equations of the second kind. These are
readily solved as a system of linear equations when discretized
or by using a quadrature method specifically for Fredholm
equations [26].

VI. NUMERICAL RESULTS

In this section, the throughput of the described protocols
are assessed and compared to the HARQ-INR protocol with
and without power adaptation.

HARQ-INR

In the HARQ-INR protocol, the transmitter uses a rate R
in the first slot and continues to send additional IR in the
subsequent slots. By the end of each slot, the receiver attempts
to decode and feeds back an ACK/NACK signal depending on
whether the decoding was successful or not. The receiver is
thereby able to accumulate mutual information until decoding
is possible. The average decoding time of the HARQ-INR
protocol is given by [14]

E[τ ] =

∞∑
m=1

m(pm−1
out (R)− pmout(R)) (91)

= 1 +

∞∑
m=1

pmout(R) (92)

where pmout(·) is the outage probability after the mth retrans-
mission and is given by

pmout(r) = P

[
m∑
k=1

C(Hk) < r

]
. (93)

The maximal throughput of HARQ-INR subject to the average
decoding time constraint is given by [14]

ηHARQ-INR(T ) = max
R

R

1 +
∑∞
m=1 p

m
out(R)

(94a)

s.t. 1 +

∞∑
m=1

pmout(R) ≤ T. (94b)

We remark that supT∈(1,∞) ηHARQ-INR(T ) = Cerg.

HARQ-INR with power adaptation

A comparison between BRQ and HARQ-INR is not fair in
the sense that HARQ-INR does not use the available delayed
CSIT. It has been shown in literature that delayed CSIT can
provide significant throughput benefits if the short-term power
constraint in (3) is relaxed. Power adaptation based on delayed
CSIT has previously been proposed in a slightly different
setting in [12]. In this section, we optimize HARQ-INR with
power adaptation under a constraint on the average decoding
time. We follow [6] and redefine the power constraint in (3)
such that 1

nXT
t Xt ≤ ρt, where we require that the random

variables {ρt} depend only on {Ht}t−1
t=1 and that {ρt}∞t=1

satisfies
E[
∑τ
i=1 ρi]

E[τ ]
≤ 1. (95)

The constraint in (95) ensures that the average power per slot
over many runs of the protocol does not exceed one. Under
this relaxation, we can design an HARQ-INR-type protocol
that benefits from full delayed CSIT using power adaptation.
In particular, full delayed CSIT provides the transmitter with
knowledge about the amount of unresolved information at the
receiver and is allowed to use this knowledge to optimize the
power spend in the following slot. The transmitter sends in
the first slot at a rate R using power ρ1. At the end of the
slot, the transmitter receives the delayed CSIT which can be
used to compute the unresolved information I1 at the receiver.
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In the tth slot, the transmitter sends IR with power ρt(It−1),
where It−1 is the amount of unresolved information at the
receiver by the end of slot t− 1 and ρt(·) denotes the power
adaptation policy in the tth slot. It follows that the unresolved
information in slot t satisfies

It = It−1 − C(Htρt(It−1)) (96)

where I0 , R. We shall solve the following optimization
problem using dynamic programming:

min
{ρt(·)}∞t=1

E[τ ] (97a)

s.t. E

[
τ∑
t=1

ρi(It−1)

]
≤ E[τ ] . (97b)

Here, τ , inf{t : It < 0}. First, we rewrite (97) as an
unconstrained optimization problem using duality:

max
λ>0

min
{ρt(·)}∞t=1

{
E[τ ] (1− λ) + λE

[
τ∑
t=1

ρt(It−1)

]}
. (98)

Then, we rewrite the inner minimization in (98) as an infinite-
horizon dynamic programming problem. Specifically, we find
that

min
{ρt(·)}∞t=1

{
E[τ ] (1− λ) + λE

[
τ∑
t=1

ρt(It−1)

]}
= Jλ(R) (99)

where the function Jλ(·) is defined by Jλ(u) = 0 for u ≤ 0
and

Jλ(u) = min
ρ

{
1 + λ(ρ− 1)

+

∫ 2u−1
ρ

0

PH(h)Jλ(u− C(hρ)) dh

}
(100)

for u > 0. Consequently, we find that the solution to the
optimization problem in (97) is given by maxλ>0 Jλ(R). The
throughput of HARQ-INR with power adaptation under an
average decoding time constraint is thereby given by

ηHARQ-INR-P(T ) = max
R>0

R

maxλ>0 Jλ(R)
(101a)

s.t. max
λ>0

Jλ(R) ≤ T. (101b)

Assessment

We evaluate the proposed protocols by assuming Rayleigh
block-fading, independent from slot to slot, i.e., the probability
density of H is given by

PH(h) =
1

Γ
e−h/Γ. (102)

Fig. 2 depicts the throughput of various protocols as a
function of average decoding time for SNR equal to 10 dB
and 30 dB. We remark that the stair-step behavior of the
throughput of HARQ-INR at SNR = 30 dB origins because
the probability distribution of C(H) becomes increasingly
concentrated around Cerg as the SNR increases. For high SNR,
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Fig. 2. Throughput versus average decoding time E[τ ] for the investigated
protocols. The throughputs of HARQ-INR and HARQ-INR with power
adaptation are computed using (94) and (101), respectively. The throughput
of BRQ is computed using (29) and for the EMS protocols we use (69) and
(70).

this implies that the average decoding time, and therefore
also the throughput, has a stair-step behavior when R grows
linearly. It is seen that the throughput of all protocols tend to
the ergodic capacity as the allowed average decoding times are
increased. We observe that BRQ and the EMS protocols with
finite feedback cost significantly outperforms both HARQ-INR
and HARQ-INR with power adaptation in terms of throughput.
A particular interesting observation is that the proposed EMS
protocols for finite feedback cost achieves throughputs that
are very close to that of BRQ, even for the case f = 2. Our
interpretation of this is that the precise amount of additional
information bits appended in each slot does not affect the
throughput significantly.

In Fig. 3, the throughput is plotted in terms of SNR for
fixed average decoding time E[τ ]. Observe that the back-off
from the ergodic capacity of BRQ is approximately constant
throughout the range of SNR values while the penalty of the
remaining protocols increases for larger SNR.

VII. DISCUSSION AND CONCLUSIONS

The objective of this paper was to generalize and extend
the BRQ protocol, proposed in [1], to a broader class of
communication strategies termed EMS protocols. EMS pro-
tocols are useful when the CSI is only available after the
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Fig. 3. Throughput versus SNR for the investigated protocols. The through-
puts of HARQ-INR and HARQ-INR with power adaptation are computed
using (94) and (101), respectively. The throughput of BRQ is computed using
(29) and for the EMS protocols, we use (69) and (70).

transmission has taken place. The main novelty of EMS
protocols is the possibility of appending new information bits
before previously transmitted data has been resolved. EMS
protocols thereby provides a way to design communication
protocols that approach the ergodic capacity with low average
decoding time. In contrast to BRQ, EMS protocols in general
also benefit from limited feedback. Specifically, it has been
shown that even ternary feedback is sufficient to achieve
throughput close to that of BRQ. This suggests that the main
reason for the superior throughput of BRQ and EMS proto-
cols is that, compared to HARQ-type protocols with/without
power adaptation, they only terminate a transmission when
the CSI is sufficiently good, whereas HARQ-INR terminates
a transmission as soon as a sufficient amount of information is
accumulated. As a result, HARQ-INR protocol often collects
a wasteful amount of mutual information which far surpasses
the amount of unresolved information, leading to waste of
resources.

Unlike most works in the field of HARQ, we have presented
results for systems with an average decoding time constraint
as opposed to a strict decoding time constraint. Strict decoding
time constraints lead to protocols with a maximum transmis-
sion length. Such constraints are motivated by applications
like streaming of multimedia data, where data become useless

after a certain amount of time. Despite this, there are many
applications where data is retransmitted at a packet level upon
outage. In other words, a new transmission is initiated with the
same data – perhaps concatenated with data from new data
arrivals. For such applications, a constraint on the average
decoding time is more applicable. Although strict decoding
time constraints have not been considered, they are not ruled
by the definition of EMS protocols. An optimal EMS protocol
with full delayed CSIT and a constraint on outage probability
instead of average decoding time can be computed numerically
using dynamic programming.

We have not treated the impact of the accuracy of the de-
layed CSI in our throughput comparisons. In the conventional
HARQ-INR protocol that rely on, possibly quantized, prior
CSI to perform rate and/or power adaptation, the accuracy of
CSI has a significant impact on the throughput [2, pp. 209–
213]. The main reason for this is that the channel gains change
from the time the CSI is estimated to the time the channel is
used, which can take a duration that spans multiple slots. This
inaccuracy is largely eliminated by relying only on delayed
CSI. This follows because the receiver can make a much
more precise estimate of the CSI after having observed a
time slot. For the EMS protocols, however, inaccurate delayed
CSI implies that the transmitter cannot precisely append the
optimal amount of new information in each step. Our results
for the EMS protocols with finite feedback cost show that the
precise amount of new information appended in each slot does
not significantly alter the achievable throughput. Therefore, we
do not expect that the throughput of EMS protocols to suffer
significantly if the CSI is inaccurate.

Finally, we note that HARQ-INR has led to several com-
posite protocols that use HARQ-INR as building block. As
previously discussed, two examples which are of relevance to
this paper are [10] and [14]. One can design similar composite
protocols using the EMS protocols as building blocks. For
example, the broadcast approach to HARQ-INR proposed
in [14] provides an approach combine multiple HARQ-INR
instances that run in parallel in multiple superposition coded
layers. We can combine multilayered transmission and EMS
protocols similarly. One feasible approach is to divide each
transmission into two layers: one with IR for the previous slots
and one with new information bits. One can then optimize
over the distribution of power in the two layers. In this way
the decoder does not need to decode both the IR for previous
slot and the new information bits simultaneously. Hence, such
protocols might lead to higher throughputs than the present
paper report. One can also follow the approach taken in [10]
and instantiate several instances of EMS protocols which run
in parallel in a TDM fashion.
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APPENDIX A
PROOF OF LEMMA 1 (CONVERSE)

Fix an EMS protocol defined by {τn}, {r(n)
t }, {vt}, {f

(n)
t },

and {g(n)
t }. The EMS protocol induces a probability distribu-

tion on (Xτn ,Yτn , Hτn) given by PYτn ,Xτn ,Hτn . To simplify
notation, we condition on H∞ = h∞ throughout the proof and
define the probability distribution P̄ on (Xτn ,Yτn) by

P[·] , P[·|H∞ = h∞] . (103)

Since the stopping time and rate selection functions depend
only on the channel realizations, conditioning on H∞ = h∞

implies that {τn} and {R(n)
t } are deterministic sequences. The

probability distribution of the channel outputs in the tth slot
is

PYt|Xt
(y|x) ,

n∏
i=1

1√
2π

e−
1
2 (yi−

√
htxi)

2

. (104)

Since τ < ∞ by assumption, the limit limn→∞ τn = τ
exists and implies that there exist positive integers N and n0

such that τn ≤ N for all n ≥ n0. Therefore, we have2

lim
n→∞

max
k∈[1:τn+1]

τn∑
i=k

(R
(n)
i − C(hi))

= lim
n→∞

max
k∈[1:N+1]

N∑
i=k

1{i ≤ τn} (R
(n)
i − C(hi)) (105)

= max
k∈[1:N+1]

N∑
i=k

1{i ≤ τ} (Ri − C(hi)) (106)

= max
k∈[1:τ+1]

uk,τ (hτ ) (107)

> 0. (108)

The last inequality follows from the condition
supk∈[1:τ ] uk,τ (hτ ) > 0. Eq. (108) implies that there
exist a positive integer n1, a positive constant γ, and a
sequence of integers {k̄n}∞n=n1

with k̄n ∈ [1:τn] such that
τn∑

k=k̄n

(R
(n)
k − C(hk)) ≥ 2γ (109)

for all n ≥ n1.
To proceed, we prove a variation of the Verdú-Han converse

[27]. To state the result, we shall define the information density
for t ∈ [1:τn] as follows

i
(
xτnt ; yτnt |xt−1

)
= log2

∏τn
i=t PYi|Xi

(yi|xi)
PYτn

t |Xt−1(yτnt |xt−1)
(110)

where xτn ,yτn ∈ Rnτn .
Lemma 5: Under the above definitions, the following holds

for every n

P[En] ≥ max
t∈[1:τn]

P

[
1

n
i
(
Xτn
t ; Yτn

t

∣∣∣Xt−1
)
≤

τn∑
k=t

R
(n)
k − γ

]
− 2−nγ (111)

2We use the convention that
∑j−1

i=j ai = 0 for all ai and for all integers
j.

where γ > 0 is an arbitrary constant.

Proof: The proof closely follows those found in [27,
Th. 4] or [28, Lemma 3.2.2]. The encoding functions
(f(n)

1 , · · · , f(n)
τn ) generates Mn , 2dnR

(n)
τn
e codewords which

we denote by {u(i)}Mn
i=1, where u(i) ∈ Rnτn . Note that

PXt(ut(i)) = 2−nR
(n)
t for i ∈ [1:Mn] and t ∈ [0:τn] (recall

that R
(n)

0 = 0), where ut(i) denotes the first nt entries of
u(i). The decoding function g(n)

τn (·) defines disjoint decoding
regions {Di}Mn

i=1 such that Di ⊆ Rnτn and
⋃Mn

i=1Di = Rnτn .
Set β , 2−nγ and note that

1

n
i
(
xτnt ; yτnt |xt−1

)
=

1

n
log2

PXτn
t |Y

τn
t ,Xt−1(xτnt |y

τn
t ,x

t−1)

PXτn
t |Xt−1(xτnt |xt−1)

=

τn∑
k=t

R
(n)
k +

1

n
log2 PXτn

t |Y
τn
t ,Xt−1(xτnt |y

τn
t ,x

t−1). (112)

The last equality follows because

log2 PXτn
t |Xt−1(xτnt |xt−1)

= log2 PXτn (xτn)− log2 PXt−1(xt−1) (113)

= −nR(n)

τn + nR
(n)

t−1 (114)

= −n
τn∑
k=t

R
(n)
k . (115)

Consequently, we obtain

P

[
1

n
i
(
Xτn
t ; Yτn

t

∣∣∣Xt−1
)
≤

τn∑
k=t

R
(n)
k − γ

]
= P

[
PXτn

t |Y
τn
t ,Xt−1(Xτn

t |Y
τn
t ,X

t−1) ≤ β
]
. (116)

Define

Bi =
{

yτn ∈ Rτnn :

PXτn
t |Y

τn
t ,Xt−1

(
uτnt (i)|yτnt ,ut−1(i)

)
≤ β

}
. (117)

We obtain a lower bound on P[En] through the following chain
of inequalities

P

[
1

n
i
(
Xτn
t ; Yτn

t

∣∣∣Xt−1
)
≤

τn∑
k=t

R
(n)
k − γ

]

=

Mn∑
i=1

PXτn ,Yτn [u(i),Bi] (118)

=

Mn∑
i=1

PXτn ,Yτn

[
u(i),Bi ∩ D{

i

]
+

Mn∑
i=1

PXτn ,Yτn [u(i),Bi ∩ Di] (119)

≤ 1

Mn

Mn∑
i=1

PYτn |Xτn

(
D{
i |u(i)

)
+

Mn∑
i=1

∫
Bi∩Di

PYτn ,Xt−1

(
yτn ,ut−1(i)

)
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× PXτn
t |Y

τn
t ,Xt−1

(
uτnt (i)|yτnt ,ut−1(i)

)
dyτn (120)

≤ P[En] + β

Mn∑
i=1

PYτn ,Xt−1

(
Bi ∩ Di,ut−1(i)

)
(121)

≤ P[En] + β

Mn∑
i=1

PYτn ,Xt−1

(
Di,ut−1(i)

)
(122)

≤ P[En] + β. (123)

Here, (118) follows from (116) and (117); (120) follows
because Bi ∩ D{

i ⊆ D{
i and because PXτn ,Yτn can be

factorized as PYτn ,Xt−1PXτn
t |Y

τn
t ,Xt−1 ; (121) follows from

(117); and finally, (123) follows because {Di}Mn
i=1 are disjoint

sets. Since (123) holds for t ∈ [1:τn], we have established
(111).
By Lemma 5 and (109), we have for all n ≥ n1

P[En] ≥ P

 1

n
i
(
Xτn
k̄n

; Yτ
k̄n

∣∣∣Xk̄n−1
)
≤

τn∑
k=k̄n

R
(n)
k − γ


− 2−nγ (124)

≥ P

 1

n
i
(
Xτn
k̄n

; Yτn
k̄n

∣∣∣Xk̄n−1
)
≤

τn∑
k=k̄n

C(hk) + γ


− 2−nγ . (125)

Next, by using the argument in the proof of [28, Th. 3.7.4] to
analyze the first term in (125), we find that

lim
n→∞

P

 1

n
i
(
Xτn
k̄n

; Yτn
k̄n

∣∣∣Xk̄n−1
)
≤

τn∑
k=k̄n

C(hk) + γ

 = 1. (126)

Using (126) in (125), we obtain limn→∞ P[En] = 1 as desired.

APPENDIX B
PROOF OF LEMMA 2 (ACHIEVABILITY)

Define the random variable Un ∈ Un , Rn×Rn×Rn×· · ·
by the probability distribution

PUn , Pn × Pn × Pn × · · · (127)

where Pn denotes probability density of
√
nX̃/

∥∥X̃∥∥
2
. Here,

X̃ ∼ N (0, In) and ‖·‖2 denotes the Euclidean distance.
Hence, Pn denotes the uniform distribution on the n-
dimensional sphere with radius

√
n. We use one realization

of Un to generate the encoder and decoding functions. Then,
we show that the conditional probability of error averaged over
Un, {Zt}∞t=1, and H∞ given that maxk∈[1:τn] u(n)

k,τn
(H∞) ≤

−cn tends to zero. Invoking the random coding argument then
enables us to show that there must be at least one realization
of Un for each n such that the probability of error tends to
zero as n → ∞. Let the ith entry of u ∈ Un be denoted
by u(i) ∈ Rn. By countability of N2, there exists a bijection
between N2 and N defined by the mapping ı : N2 7→ N. The
encoding functions f(r)

n,t, for r ∈ R+, are then defined in terms
of u ∈ Un as follows

f(n)
t (u,b) = u

(
ı

(
t, 1 +

len(b)∑
i=1

bi2
i−1

))
(128)

for every b ∈ B, where bi is the ith entry of b and len(·)
denotes the length of a vector. The inner sum in (128) is a
binary-to-integer conversion that converts the information bit
vector b into an integer-valued index in the range

[
1:2len(b)

]
.

Based on the above construction of the encoder, we have that
(recall that BdnR

(n)
t e

1 = (B1, · · · , BdnR(n)
t e

))

Xt = f(n)
t

(
Un, B

dnR(n)
t e

1

)
. (129)

In order to keep notation simple, we define for b ∈
{0, 1}dnR

(n)
t e and j, t ∈ N, j ≤ t,

X̄
(n)
j:t (u,b)

,
[
f(n)
j

(
u, b
dnR(n)

j e
1

)
, · · · , f(n)

t

(
u, b
dnR(n)

t e
1

)]
. (130)

Let ζn , cn/2. For every yt ∈ Rnt, we define the threshold-
based decoding functions as follows:

g
(n)
t (u,yt, Ht) ,

b if ∃!b ∈ {0, 1}dnR
(n)
t e s.t. ∀j ∈ [1:t] :

i
(
X̄

(n)
j:t (u,b); yt|Ht

1

)
≥ n

∑t
k=j R

(n)
k + nζn

[], otherwise.

(131)

Here, [] is the vector of length zero which indicates an error,
and we have defined the mismatched information density as
follows [29]

i(x; y|h) , nC(h) +
‖y‖22

2(h+ 1) log(2)
−
∥∥y −√hx

∥∥2

2

2 log(2)
. (132)

We note that E[i(Xt; Yt|Ht)|Ht = h] = nC(h) and by using
the same arguments as in [29], we find that

Vn(h) ,
1

n
Var[i(Xt; Yt|Ht)|H1 = h]

n→∞→ h(h+ 2)

2(h+ 1)2 log2(2)
(133)

≤ 1

2 log2(2)
(134)

, V. (135)

Thus, for sufficiently large n, we have that Vn(h) ≤ 2V for
all h ∈ R+.

It remains to analyze the probability of error. To do so, we
rely on the technique used to prove Shannon’s achievability
bound in [30, Th. 17.1]. Assume, without loss of generality,
that Bi = 0 for i ∈ N. We define, for j ∈ [1:τn], the “outage”
events as follows

Aj

,

{
i(X̄

(n)
j:τn(Un,0); Yτn

j |H
τn
j ) < n

τn∑
k=j

R
(n)
k + nζn

}
. (136)

Here, 0 denotes the all-zero vector (we omit specifying the
length to keep notation simple). The “confusion” events are
similarly defined by

B(b) ,
⋂

j∈[1:τn]

{
i(X̄

(n)
j:τn(Un,b); Yτn

j |H
τn
j )
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≥ n
τn∑
k=j

R
(n)
k + nζn

}
.(137)

where b ∈ {0, 1}dnR
(n)
τn
e. Here, Aj is the event that the infor-

mation density of the correct codeword does not exceed the
threshold, while B(·) is the event that the information density
of an incorrect codeword does exceed the threshold. Define
the (random) set of information bit vectors for k ∈ [1:τn]

Bk

,
{

b ∈ {0, 1}dnR
(n)
τn
e : b

dnR(n)
k−1e

1 = 0, b
dnR(n)

τn
e

dnR(n)
k−1e+1

6= 0
}
. (138)

We also define Bτn+1 , ∅. Here, we let R
(n)

0 = 0 such that
B1 is the set of all binary vectors of length dnR(n)

τn e except
the all-zero vector 0. Note that |Bk| = 2dn(Rk+···+Rτn )e − 1

and that X̄
(n)
k:τn(Un,b) and Yτn

k are conditionally independent
for every b ∈ Bk given B∞1 = 0 and H∞. Define the error
event

En(Un) ,
{

g(n)
τn (Un,Y

τn
1 , Hτn) 6= B

dnRτne
1

}
. (139)

Then, we obtain the following probability of error

P
[
En(Un)

∣∣∣H̄n]
= P

[
En(Un)

∣∣∣B∞1 = 0, H̄n
]

(140)

= P

 τn⋃
k=1

Ak ∪
⋃

b̄∈B1

B(b̄)

∣∣∣∣∣B∞ = 0, H̄n

 (141)

≤ P

[
τn⋃
k=1

Ak

∣∣∣∣∣B∞ = 0, H̄n

]

+ P

 ⋃
b̄∈B1

B(b̄)

∣∣∣∣∣B∞ = 0, H̄n

 .(142)

Here, (140) follows from symmetry, (141) follows from (131),
(136), and (137); and (142) follows from the union bound.
Next, we upper-bound each of the two terms in (142) sepa-
rately. For the first term, we use the law of total expectation
and the union bound to obtain

P

[
τn⋃
k=1

Ak

∣∣∣∣∣B∞ = 0, H̄n

]

= E

[
P

[
τn⋃
k=1

Ak

∣∣∣∣∣B∞ = 0, H∞

] ∣∣∣∣∣H̄n
]

(143)

= E

[
τn∑
k=1

P

[
1

n
i(Xτn

k ; Yτn
k )

<

τn∑
j=k

R
(n)
j + ζn

∣∣∣∣∣H∞
]∣∣∣∣∣H̄n

]
. (144)

For all h∞ such that maxk∈[1:τn] u(n)
k,τn

(hτn) ≤ −cn, we
upper-bound the inner probability in (144) for sufficiently large

n using Chebyshev’s inequality as follows

P

 1

n
i(Xτn

k ; Yτn
k |H

τn
k ) <

τn∑
j=k

R
(n)
j + ζn

∣∣∣∣∣H∞ = h∞


≤ E

[
2V (τn − k + 1)

n(
∑τn
j=k[C(Hj)−R(n)

j ]− ζn)2

∣∣∣∣∣H∞ = h∞

]
(145)

≤ E

[
2V (τn − k + 1)

n(cn − ζn)2

∣∣∣∣∣H∞ = h∞

]
(146)

= E

[
8V (τn − k + 1)

nc2n

∣∣∣∣∣H∞ = h∞

]
(147)

≤ 8V τ̄n
nc2n

. (148)

Here, (145) follows from Chebyshev’s inequality, from
E[i(Xt; Yt|Ht)|Ht] = nC(Ht), and from (135); (146) follows
from maxk∈[1:τn] u(n)

k,τn
(hτn) ≤ −cn; and (148) follows from

τn ≤ τ̄n. As a result of (144) and (148), we have

P

[
τn⋃
k=1

Ak

∣∣∣∣∣B∞ = 0, H̄n

]

≤ E

[
τn∑
k=1

8V τ̄n
nc2n

∣∣∣∣∣H̄n
]
≤ 8τ̄2

nV

nc2n
. (149)

Next, the second term in (142) is upper-bounded as follows
[see (151)–(157), shown in the top of the next page]. Here,
(151) follows from the law of total expectation; (152) follows
from (137) and (138); (153) follows from the union bound and
because |Bj | = (2dn

∑τn
k=j Rke − 1); (154) follows by defining

the random variables {X̄t}∞t=1 independently according to the
probability distribution Pn such that they are independent
of {Xt}∞t=1 and {Zt}∞t=1; finally, (155) follows from [30,
Cor. 17.1]. Consequently, we have shown that

P
[
En(Un)

∣∣∣H̄n] ≤ τ̄n2−ncn/2+1 +
8τ̄2
nV

nc2n
(157)

for all sufficiently large n. As a result, there exists a deter-
ministic sequence {u∗n}∞n=1 such that

P
[
En(u∗n)

∣∣∣H̄n] ≤ τ̄n2−ncn/2+1 +
8τ̄2
nV

nc2n
. (158)

Define

pmin,n , min
t∈[1:τ̄n]:

P[τn=t|H̄n]>0

P
[
τn = t|H̄n

]
. (159)

The condition in (22) implies that pmin,n ≥ gn for all
sufficiently large n and therefore we have

lim
n→∞

max
t∈[1:τn]:

P[τn=t|H̄n]>0

P
[
En(u∗n)

∣∣∣H̄n, τn = t
]

≤ lim
n→∞

1

pmin,n

∑
t∈[1:τ̄n]:

P[τn=t|H̄n]>0

(
P
[
τn = t|H̄n

]

× P
[
En(u∗n)

∣∣∣H̄n, τn = t
] )

(160)



16

P

 ⋃
b̄∈B1

B(b̄)

∣∣∣∣∣B∞ = 0, H̄n


= E

P

 ⋃
b̄∈B1

B(b̄)

∣∣∣∣∣B∞ = 0, H∞

 ∣∣∣∣∣H̄n
 (151)

= E

[
P

[
τn⋃
j=1

⋃
b̄∈Bj\Bj+1

⋂
q∈[1:t]

{
i
(
X̄

(n)
q:τn(U, b̄); Yτn

q

)
≥ n

τn∑
k=q

R
(n)
k + nζn

}∣∣∣∣∣B∞ = 0, H∞

]∣∣∣∣∣H̄n
]

(152)

≤ E

[
P

[
τn⋃
j=1

⋃
b̄∈Bj\Bj+1

{
i
(
X̄

(n)
j:τn(U, b̄); Yτn

j

)
≥ n

τn∑
k=j

R
(n)
k + nζn

}∣∣∣∣∣B∞ = 0, H∞

]∣∣∣∣∣H̄n
]

(153)

≤ E

[
τn∑
j=1

2dn
∑τn
k=j R

(n)
k eP

[
i(X̄

τn
j ; Yτn

j ) ≥ n
τn∑
k=j

R
(n)
k + nζn

∣∣∣∣∣H∞
]∣∣∣∣∣H̄n

]
(154)

≤ E

[
τn∑
j=1

2dn
∑τn
k=j R

(n)
k e2

−
(
n
∑τn
k=j R

(n)
k +nζn

)]
(155)

≤ E

[
τn∑
j=1

2−nζn+1

]
(156)

= τ̄n2−ncn/2+1. (157)

≤ lim
n→∞

1

gn
P
[
En(u∗n)

∣∣∣H̄n] (161)

≤ lim
n→∞

1

gn

(
τ̄n2−ncn/2+1 +

8τ̄2
nV

nc2n

)
(162)

= 0. (163)

Here, (161) follows from (22) and the law of total probability.
Moreover, (163) follows from (20), from the upper bound 2x ≤
2/x2 that holds for x ≤ 0, and because τ̄n is a nondecreasing
sequence:

τ̄n2−ncn/2+1

gn
≤ 16τ̄n
gnn2c2n

≤ o(1)

τ̄nn
= o(1). (164)

APPENDIX C
PROOF OF THEOREM 3 (UPPER BOUND)

We shall prove that ηopt(T ) ≤ ηBRQ(T ) for T > 1.
We do this by applying the converse result in Lemma 1,
which implies that a zero outage EMS protocol must satisfy
supk∈[1:τ ] uk,τ (Hτ ) ≤ 0 almost surely. To see this, note
first that we must have τ < ∞ almost surely. Otherwise,
supn E[τn] = ∞. Additionally, suppose that a zero outage
EMS protocol satisfies P

[
supk∈[1:τ ] uk,τ (Hτ ) > 0

]
> 0.

Then,

lim inf
n→∞

P[En]

≥ P
[

sup
k∈[1:τ ]

uk,τ (Hτ ) > 0, τ <∞
]

× lim inf
n→∞

E
[
P[En|H∞]

∣∣∣ sup
k∈[1:τ ]

uk,τ (Hτ ) > 0, τ <∞
]

(165)

≥ P
[

sup
k∈[1:τ ]

uk,τ (Hτ ) > 0
]

× E
[

lim inf
n→∞

P[En|H∞]
∣∣∣ sup
k∈[1:τ ]

uk,τ (Hτ ) > 0, τ <∞
]

(166)

= P
[

sup
k∈[1:τ ]

uk,τ (Hτ ) > 0
]

(167)

> 0. (168)

Here, (166) follows from Fatou’s lemma [24, Th. 16.3] and
because τ < ∞ almost surely, and (167) follows from
Lemma 1. Therefore, we can find τ , {rt}, and {vt} of an
optimal zero outage EMS protocol satisfying the constraint
E[τ ] ≤ T by solving the optimization problem:

ζ1(T ) , sup
{rt},{vt},τ

TE
[
Rτ
]
/E[τ ] (169a)

s.t. E[τ ] ≤ T (169b)

P
[

sup
k∈[1:τ ]

uk,τ (Hτ
1 ) ≤ 0

]
= 1. (169c)

Here, T ≥ 1 and Rτ ,
∑τ
t=1 rt(vt−1(Ht−1)). It turns out

that it is convenient to scale the objective function in (169)
by T . We shall prove that the solution to (169) coincides with
the BRQ-EMS protocol, i.e., we find that ζ1(T ) = TηBRQ(T )
under the condition in (31).

Since the transmitter has full delayed CSIT, it is sufficient to
maximize over all composite rate selection-feedback functions
rvt : Rt−1

+ 7→ R+ such that rt(vt−1(Ht−1
1 )) = rvt(H

t−1
1 ).

Moreover, we also define the optimization problem

ζ(T ) , sup
{rvt},τ

E
[
Rτ
]

(170a)

s.t. E[τ ] ≤ T (170b)

P
[

sup
k∈[1:τ ]

uk,τ (Hτ
1 ) ≤ 0

]
= 1. (170c)



17

It clearly follows from the constraint E[τ ] ≤ T that ζ(T ) ≤
ζ1(T ), but if it can be shown that ζ(·) is an increasing function,
then ζ1(T ) = ζ(T ). Indeed, suppose that ζ(·) is an increasing
function and that there exists T̃ > 1 such that ζ(T̃ ) < ζ1(T̃ ).
Let τ∗ be the solution of (169) for T = T̃ . Then, we must
have that ζ(E[τ∗]) = ζ1(E[τ∗]) and that E[τ∗] < T̃ . But since
ζ(T ) is an increasing function, we also have that ζ(T̃ ) >
ζ(E[τ∗]) = ζ1(E[τ∗]) = ζ1(T̃ ) which cannot be true since
ζ(T ) ≤ ζ1(T ) for all T > 1. We shall later use this fact to
prove equality between ζ1(T ) and ζ(T ) under the condition
in (31).

To solve the optimization problem in (170), we first relate
ζ(T ) to the decoding time τopt (recall that τopt depends on
{rvt}) defined in (17) as follows

ζ(T )

= sup
{rvt}:

E[τopt]≤T

{
E

[ τopt∑
t=1

rvt(H
t−1)

]

+ max
τ≥τopt

E

[
τ∑

t=τopt+1

rvt(H
t−1)

]}
. (171)

Here, the inner maximization is subject to the constraints
E[τ ] ≤ T and P

[
supk∈[τopt+1:τ ] uk,τ (Hτ ) ≤ 0

]
= 1, and

we have used that any feasible (in the sense defined by the
constraints in (170)) decoding time τ must satisfy τ ≥ τopt
almost surely and that the constraints uk,τ (Hτ

1 ) ≤ 0, by the
definition of τopt, are automatically satisfied for k ∈ [1:τopt]

when P
[
supk∈[τopt+1:τ ] uk,τ (Hτ

1 ) ≤ 0
]

= 1 because

uk,τ (Hτ
1 )

= u1,τopt(H
τopt
1 )− u1,k−1(Hk−1

1 ) + uτopt+1,τ (Hτ
1 ) (172)

≤ 0. (173)

It follows that the inner maximization in (171) is upper-
bounded by (T − E[τopt])Cerg, which implies that

ζ(T )

≤ sup
{rvt}:

E[τopt]≤T

{
E

[ τopt∑
t=1

rvt(H
t−1)

]
+ (T − E[τopt])Cerg

}
(174)

= sup
1<T1≤T

{ζopt(T1) + (T − T1)Cerg} (175)

where we have defined

ζopt(T ) , sup
{rvt}:

E[τopt]≤T

E

[ τopt∑
t=1

rvt(H
t−1)

]
(176)

for T ≥ 1. We can upper bound ζopt(·) using weak duality as
follows

ζopt(T ) ≤ min
λ>0

{
λ(T − 1) + sup

{rvt}

{
E

[ τopt∑
t=1

rvt(H
t−1)

]

− λ(E[τopt]− 1)

}}
. (177)

We solve the inner maximization in (177) using dynamic

programming. For given λ > 0, let {rv∗i } be the solution to
the inner maximization problem in (177). Then, observe that
rv∗t depends only on Ht−1

1 through ut−1
1 (Ht−1

1 ). Intuitively,
this means that the rate selection depends only on the amount
of unresolved information up to time t. We define functions
rvt : R 7→ R+ and let rvt(u1,t−1(ht−1

1 )) , rvt(h
t−1
1 ) for

t ∈ N and ht−1
1 ∈ Rt−1

+ .
Now, define the value function (see e.g. [31])

Vt(u) , max
{rvi}

E

τt(u)∑
i=t

rvi(ūt,i−1(u,Hi−1
t ))− λ(τt(u)− t)


(178)

where

τt(u) , min
{
t̄ ≥ t : ūt,t̄(u,H

t̄
t ) < 0

}
(179)

for t ∈ N and

ūk,t(u, h
t
k) , u+

t∑
i=k

[rvi(ūk,i−1(u, hi−1
k ))− C(hi)] (180)

for t, k ∈ N. Using these definitions, the inner maximization
in (177) can be expressed in terms of Vt(·) in (178):

V1(0) = max
{rvt}

E

[ τopt∑
i=1

rvi(H
i−1
1 )− λ(τopt − 1)

]
(181)

To apply dynamic programming, the value function Vt in (178)
is expressed in a recursive form as follows

Vt(u) = max
r≥0

{
r + E

[
1{C(H) ≤ u+ r}

× (Vt+1(u+ r − C(H))− λ)
]}
. (182)

Here, we have defined FC(r) , P[C(H) ≤ r] and let PC(·) be
the probability density of C(H). The problem is thereby for-
mulated as a standard infinite horizon dynamic programming
problem [31]. Consequently, the value function Vt is time-
invariant such that Vt(u) = Vt+1(u) for all t ∈ N and u ∈ R.
We denote the time-invariant value function by V (u) , V1(u).
As a result, we obtain

V (u) = max
r≥0

{
r + E

[
1{C(H) ≤ u+ r}

× (V (u+ r − C(H))− λ)
]}
. (183)

It remains to guess V (u) satisfying (183). We claim that the
value function has the form V (u) = A − u for u ∈ [0, rA],
where

A , max
r≥0

{
r +

C(r)− FC(r)λ

1− FC(r)

}
(184)

and rA is the maximizer in (184). Here, C(r) ,∫ r
0
xPC(x) dx. Indeed, by substituting V (u) = A − u into

(183), we have

V (u) = max
r≥0

{
r + E

[
1{C(H) ≤ u+ r}

× (A− u− r + C(H)− λ)
]}

(185)

= max
r̄≥u

{
r̄(1− FC(r̄)) + C(r̄) + FC(r̄) (A− λ)

}
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− u (186)
= A− u (187)

for every u ∈ [0, rA]. Here, (186) follows by the substitution
r̄ = u+ r and (187) follows from (184) because

0 = max
r≥0

{
r −A+

C(r)− FC(r)λ

1− FC(r)

}
(188)

= max
r≥0

{
(r −A)(1− FC(r)) + C(r)− FC(r)λ

}
(189)

= max
r≥0

{
r(1− FC(r)) + C(r) + FC(r)(A− λ)

}
−A.

(190)

Since rA is a maximizer of the RHS of (184), it is also a
maximizer of (190), and thus also of the optimization problem
in (186). This proves that V (u) = A− u for u ∈ [0, rA].

We shall shortly prove that (31) implies that

TηBRQ(T ) = F−1
C

(
1− 1

T

)
+ TC

(
F−1
C

(
1− 1

T

))
(191)

is concave in T . Consequently, we have shown the following

ζopt(T )

≤ min
λ>0

{
λ(T − 1) + max

r≥0

{
r +

C(r)− λFC(r)

1− FC(r)

}}
(192)

= min
λ>0

{
λ(T − 1) + max

ν≥1

{
F−1
C

(
1− 1

ν

)
+ νC

(
F−1
C

(
1− 1

ν

))
− λ(ν − 1)

}}
(193)

= max
ν∈[1,T ]

{
F−1
C

(
1− 1

ν

)
+ νC

(
F−1
C

(
1− 1

ν

))}
(194)

= F−1
C

(
1− 1

T

)
+ TC

(
F−1
C

(
1− 1

T

))
(195)

= TηBRQ(T ). (196)

Here, (192) follows (177), (181), and from V (0) = A; (193)
follows from the substitution r = F−1

C (1−1/ν); (194) follows
because (191) is concave in T and by Slater’s condition [32,
pp. 226–227]; and (195) holds since the objective function in
(194) is increasing in ν. Since we have already shown that
ηopt(T ) ≥ ηBRQ(T ), it follows that (196) implies ζopt(T ) =
TηBRQ.

Next, we need to show that ζ1(T ) = ζopt(T ). Because of
the concavity of ζopt(·), the upper bound ζopt(T ) ≤ TCerg,
and ζ ′opt(T ) > Cerg for T > 1, (175) implies that ζ(T ) =
ζopt(T ) = TηBRQ(T ). Here, ζ ′opt(T ) denote the derivative of
ζopt(T ). Moreover, since ηBRQ(·) is an increasing function,
it follows as previously argued that ζ1(T ) = TηBRQ(T ) as
desired.

It remains to establish the claim in (191) that TηBRQ(T ) is
concave in T . To do so, we show that the second derivative
of TηBRQ(T ) with respect to T is negative. It turns out that
the second derivative of TηBRQ(T ) with respect to T is given
by

log(2)
∂2(TηBRQ)

∂T 2

= − 1

(1 + F−1
H (1− 1/T ))T 3PH(F−1

H (1− 1/T ))

− 1

(1 + F−1
H (1− 1/T ))2T 4PH(F−1

H (1− 1/T ))2

−
P ′H(F−1

H (1− 1/T ))

(1 + F−1
H (1− 1/T ))T 4PH(F−1

H (1− 1/T ))3
. (197)

Here, P ′H(·) denotes the derivative of PH(·). By multiplying
the RHS of (197) by the positive term (1+F−1

H (1−1/T ))2T 4

and by using the substitution T = 1/(1−FH(h)), we find that
∂2(TηBRQ)
∂T 2 ≤ 0 is equivalent to the condition in (31), hence

establishing the desired result.
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