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Abstract—Polar codes are the latest breakthrough in coding can also be reduced t(V), through multi-dimensional polar

theory, as they are the first family of codes with explicit con
struction that provably achieve the symmetric capacity of dscrete
memoryless channels. Arikan’s polar encoder and successican-
cellation decoder have complexities ofV log N, for code length
N. Although, the complexity bound of N log N is asymptotically
favorable, we report in this work methods to further reduce the
encoding and decoding complexities of polar coding. The ciuis to
relax the polarization of certain bit-channels without performance
degradation. We consider schemes for relaxing the polarizan of
both very good and very bad bit-channels, in the process of channel
polarization. Relaxed polar codes are proved to preserve #hca-
pacity achieving property of polar codes. Analytical bound on the
asymptotic and finite-length complexity reduction attaineble by
relaxed polarization are derived. For binary erasure chanrels, we
show that the computation complexity can be reduced by a facr
of 6, while preserving the rate and error performance. We als
show that relaxed polar codes can be decoded with significagt
reduced latency. For AWNGN channels with medium code lengths
we show that relaxed polar codes can have lower error probakit
ties than conventional polar codes, while having reduced eading
and decoding computation complexities.

I. INTRODUCTION

Polar codes, introduced by Arikanh! [2],][3], are the mo

and, currently, the only family of codes with explicit const-

tion (no ensemble to pick from) to asymptotically achieve t
capacity of symmetric discrete memoryless channels as

block length goes to infinity. Besides their obvious appiaa
in error correction, recent research have shown the pdissifi

applying polar codes and the polarization phenomenon i v
ious communications and signal processing problems such.
data compression[4].][5], BICM channéls [6], wiretap cheisn

[7], multiple access channels [8]-[10], and broadcast nhkmn

: - . re
[11]. There have also been various modified constructions gf

polar codes for the different applications, such as geizel

polar codes[[12], compound polar codés][13], concatenatip

polar codes [14], and universal polar codes [15].

Polar codes can be encoded and decoded with reIativcE:‘Efl
low gomplexny. E.’Oth the encodl_ng complex!ty and the Su(ﬁon[T_ﬂ we give an overview of channel polarization theory
cessive cancellation (SC) decoding complexity of polaresod
areO(N log N), for code lengthV [2]. The decoding latency
and memory requirements of polar decoders can be reduce
O(N) [16]-[18]. Hardware architectures for polar decoder
with O(N) memory and processing elements, were impl
mented [[16]. A semi-parallel architecture for SC decodi
has been recently proposed|[17], where efficiency is actjiev(g.\n
without a significant throughput penalty by sharing protess
resources and taking advantage of the regular structurelaf p
codes. The encoding and decoding latencies of polar co

This work was presented in part at the 2015 IEEE Wireless Canizations
and Networking Conference (WCNC), New Orleans, USA [1].

transformations[[18]. Alamdar and Kschischang proposed a
simplified successive cancellation decoder with reduded &y

and computational complexity by simplifying the decoder to
decode all bits in a rate-one or a rate-zero constituent code
simultaneously [19]. Reduction in decoding latency cap bks
achieved by changing the code construction, such as through
interleaved concatenation of shorter polar codes [14].

In this paper, we propose methods to reduce both the encod-
ing and decoding computational complexities of polar cobes
means ofelaxingthe channel polarization. The resultant codes
are called relaxed polar codes. Hence, hardware implementa
tions for the encoders and decoders of relaxed polar codes ca
require smaller area and less power consumptions than genve
tional polar codes. Efficient methods for the implementatid
the SC decoder, as ih [16]-[18], can also be applied to furthe
improve the efficiency of decoding relaxed polar codes.

In practical scenarios, codes have finite block lengths and
are designed with a specific information block length and rat
in order to satisfy a certain error rate. Due to the nature of
channel polarization, the error probability of certain ditan-
nels decrease (or increase) exponentially at each pdiariza
S"sttep. Hence, the encoding and decoding complexities can be
feduced by relaxing the polarization of certain channelsafr

hpoIarization degrees hit suitable thresholds, while Batig the

ode rate and error rate requirements. For Arikan’s poldeco
fth length NV, each bit-channel is polarizéeg N times. How-
ever, for the proposed relaxed polar codes, some bit channel
will be fully polarizedlog N times, and the polarization of the
maining bit-channels will be relaxed, where their paation
i&3borted if they become sufficiently good or sufficientlydba
with less thanlog N polarization steps. Relaxed polarization
ults in fewer polarizing operations, and hence a reduoti
mplexity. It is found that with careful construction ofared
olar codes, there is no error performance degradatiomci f
T observed that relaxed polar codes can have a lower error
te than conventional polar codes with the same rate.
¥he rest of this paper is organized as follows. In Sec-

and construction of conventional polar codes, which we call

fully polarized codes. In Sectidnlll, the notion of relaxed

(i;@nnel polarization is introduced and the relaxed channel
olarization theory is established. The asymptotic bowrds

e complexity reduction using relaxed polar codes are dis-

"Qissed in SectidnlV. Then, upper bounds and lower bounds

the complexity reduction at finite block lengths are degtiv

in Sectiol Y. These bounds are evaluated and compared with

(%he actual complexity reductions at certain code paramgter
&ctio V2D, Constructions of relaxed polar codes for gaher

channels, and decoders for relaxed polar codes are distusse

in SectionV]. The relation between the relaxed polar code
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construction and the simplified successive cancellaticoder of polarization ofi’. The same process can be continued in
(SSCD) is discussed in Sectidn_V]-C. Numerical simulatiorarder to polarizelV for any arbitrary number of levels. The
on the AWGN channels are presented in Se¢tionVI-D. Thmolarization process can be also described using a binegy tr

paper is concluded in Sectibn V1. where the root of the tree is associated with the chafiel
Each node in the binary tree is associated with some bitradlan
Il. ARIKAN'S FULLY POLARIZED CODES W' and has two children, where the left child corresponds to

For any binary-input discrete memoryless channel (8-DMcJ ~ and the right Ch"_d cgrrespondsw *.
W : 2 — %, letW(y|z) denote the probability of receiving The channel polarization process can be also represented
y €% giventhat: € 2 = {0,1} was sent, forany € 2" and using the Kronecker powers éf defined as followsF®! = F
y €% . For an B-DMCW, theBhattacharyya parametef 1/ and forany: > 1,
s def ®i FoE=D 0
ZW) =3 VW (y0)W (y]1). 1) F2 =1 pe-1 pe-1 |
yewW . . .
whereF'®* is a2¢ x 2! matrix. Letn = log, N. Then, theV x N
i) polarization transform matrix is defined &y £ ByF®",
1 W(yle where By is the bit-reversal permutation matrix| [2]. Let’
(W) & - W lo (2 N -
(W) Z 2 Z (yl) log W (y[0) + W (y[1) @ denote the vectofuy, us, . .., uy) of N independent and uni-

form binary random variables. Lef’ = u{'Gx be transmit-

For a binary memoryless symmetric (BMS) channel wity throughnN independent copies of a binary-input discrete
uniform input, the error probability off” can be characterized memoryless channel (B-DMGY’ to form channel outpug?".

The symmetric capacity of a B-DM® can be written as

yeW e

as 1 . Let WV . 2N — &N denote the channel that results from
EW) =5 > min{W (y[0), W (y[1)}. (3) N independent copies di in the polar transformation i.e.
yew WN(yNzN) 2 [T, W(ys|a;). The combined channély

The Bhattacharyya parametéfI¥) can be shown to be alwaysis defined with transition probabilities given by

betweerd andl. The Bhattacharyya parameter can be regardg&l NNy 2 WG [uN Gn) = W (N [uN By FO?
as a measure of the reliability @ . Channels withZ (W) close Ny ) (" |’ G) (" | N(lO)).
to zero are almost noiseless, while channels Vdtil’) close - rps s the channel that the random veatdf observes through
to one are almost pure-noise channels. More preciselynit GRe polar transformation

be proved that the probability of error of an BMS channel is '

upper-bounded by its Bhattacharyya paraméter [20] Assuming uniform channel input and a genie-aided succes-

sive cancellation decoder, the bit-chanﬁéﬁ}) is defined with
0<2E(W)<Z(W)<L1. (4) the following transition probability:

The construction of polar codes is based on a phenomenoqy](vi) (y{vmiflm) a 1 Z W (yY |u{v)

calledchannel polarizatiordiscovered by Arikari |2]. Consider 2N’1UN {01} N—i
the polarization matrix A (11)
10 Notice thatW](\,i) gives the transition probabilities af; as-
= [ 11 } : ~! are already decoded and

suming all the preceding bits]
) . ) _ are available, together with th¥ observations at the channel
Consider the x 2 polarizing transformatiod’ which takes
two independent copies of and performs the mapping

outputyd . This is actually the channel that observes and is
o . also referred to as thieth bit-channel. It can be observed that
(W, W) — (12/V W )J’r whereW : {0,1} — @’QW : WJ(\}) corresponds to thenode in then-th level of polarization
{0’1}. - g ’ af?dW L {0,1} — {0,1} x g_, then of W. The following recursive formulas hold for Bhattacharyya
polarization is defined with the channel transformation parameters of individual bit-channels in the polar transé-

_ 1 tion [2
W ln) =5 3 Wl @) Wslz), © "2 | | |
rae{01) 2wy V) 22w - Z(w)r (12)
1 i i
W (g gz, alan) = SW(nlas © 22)W (alea), (7) Z(Wy) = Z(Wy))? (13)

where W~ and W+ are degraded and upgraded channeféth equality iff IV is a bin_ary erasure channel.
respectively. Hence, the following is true for the bit-chah The channel polarization theorem states that as the code

rates[[2], length N goes to infinity, the bit-channels become polarized,
. N B meaning that they either become noise-free or very noisy.
IWT)+IW™) = 2[(W) (8) Define the set of good bit-channels according to the channel
IW™)<IW) < I(WT). (9) W and a positive constamt< 1, as
The mapping of W, W) — (W~, W) is called one level Gy (W, 5) © {z €[N] : Z(vai)) < Q_Nﬂ/N} . (14)

of polarization. The same mapping is appliedto- and W+
to getW——, W=+, W+—, W*+, which is the second level where[N] £ {1,2,..., N}, then the main channel polariza-



tion theorem follows [[2],[13]: with odd and even indices, respectively. Then, the bit-ale&n
Theorem 1:For any BMS channdlV, with capacityC(W), transformation at the relaxed node is given by
and any constant < 15,

7 (2i— tHL op D, ot 9
IGn (W, B)] W2(t2+1 1)(y% ut P ugi—1) = W( )(yl ,u% , 2|U2z‘ 1)

. N 3 _ 2 t4+1 i i 1
J\/lgnoo T - C(W) W2(p+)1( 2 ’ % 1|U2i) = Wg(r (ygurl? ul ; |u21)

Theoreni L readily leads to a construction of capacity-aiie  Relaxing the further polarization of sufficiently good chan
polar codesThe crux of polar codes is to carry the informatiomels is called good-channel relaxed polarization. For thedg
bits on the upgraded noise-free channels and freeze the ¢lgannel relaxed polar code, define the set of good bit-chsnne
graded noisy channels to a predetermined value, e.g. zBeo. Rccording to the chann&l” and a positive constapt< 1, as
following theorem shows the error exponent under successiv. def [ . — ) NP

cancellation decoding[2]: Gn(W,B) = {Z €[N Z(Wy') <2 /N}- (18)

Theorem 2:Let 1" be a BMS channel and lek = Next, we show that relaxed polar codes, similar to fully po-

|Gn (W, )] b_e the cardinality of the information b'tS!Wh'Ch arfarized codes, asymptotically achieve the capacity of BMS
encoded using a polar code of length and transmitted over hannels

W, then the probability of decoder error under s(uccessive_l_h AF BMS channdi. with itye (W)
cancellation decoding satisfigs < Z(w eorem 4.For any channéll’, with capaci ;
g & = LieovwsZWy) < and any constarnt < 1,

2N’
Slmllar to the set of good bit-channels, the set of bad bit- QVN(W,ﬁ)‘
channels is defined according to the charifiebnd a positive ]\}im — N = C(W).
constanp3 < 14, as e
By (W, 5) def { i € [N] : Z(W](\,i)) > q1_9oN° } . (15) Proof: Consider a relaxed channel at levek n, where

n = log N. ThenZ(W.})) < 2=N"/N. Then the BPs of all
The following corollary can be derived by specializing thqS 2n—t descendents at level are equal toZ(W( ) and are
Theorem 3 of [[21]: n Gy (W, B). In case of full polarization, if a channel belongs
Corollary 3: Let W be an arbitrary BSM channel. Then, forto G(W, B), then it must have polarized to a good channel at
any positive constant < 'z, level n or earlier. If it polarized at levet, then by definition it

. |BN(W, )] also belongs t@ (W, 8). Otherwise, its parent has polarized
Nlﬁﬂm - N L=cw). 16) t0a good channel at levek: n. With relaxed polarization, this
channel and all ita”~* — 1 siblings will also be |rgN(W B).
I1l. RELAXED POLARIZATION THEORY Therefore,G(W, 5) C QN(W ) and henceGy (W, 8)| >

In this section, we define relaxed polarization. We provg thég (W, 8)|- Then, the proof follows from Theoreirh 1. u

similar to conventional polar codes, relaxed polar codes ca The upper boun~~" on the probability of error as in

asymptotically achieve the capacity of a binary memoryle%‘eoren@ is still valid for the relaxed polar code constdct

symmetric channel. We also prove that the bit-channel erfith respect toGy (W, 3). Hence, Theorefi4 shows that it is
probability of relaxed polar codes is at most that of coniceratl  POssible to construct good-channel relaxed polar codeghwh
polar codes without rate-loss. are still capacity achieving.

Let us observe the definition of good channels in Thedlem 1.The remaining question is to actually compare the bit-error
Let us also observe that the Bhattacharrya parameters (B&te of relaxed polar code with that of Arikan’s polar codenc
approachd or 1 exponentially with the block lengtiv. Let sider the speC|aI case Whgm](W B8) = Gn (W, 8). Consider
W denote the bit-channels of the relaxed polar code. Considgrée ChanneWN ,» then we have the following inequalities (the
two independent copies of a parent bit-chaniralpolarization proof is provided in the Appendix.)
level ¢ to be polarized into two bit-channel children at level _ _ 9
t + 1, corresponding to a code of length™, via the following E (W](f“l)) = 2F (W](V%) —2F (W](V%) (19)

channel transformation @) @ \2
) s E(Wy' 2F (Wy 20
(W9 0) (WO W), an U (we),) (20)
Consider a good-channel relaxed polar code with good-adann
Consider the case, when the polarized chamifa at level set gN(W ), which is assumed to be equal to the good
t < n, wheren = log N, is sufficiently good, such that it channel set of the fully polarized polar code, @V(W B) =
satisfies the definition of a good channel at the target le2igth G (W, 3). Consider the last level of channel polarization e.g.
i.e. Z(W(Z)) 2-N° /N . Then, the idea of relaxed poIanzauorthannelWJ(\; , and its children " and W{**, assum-
is to stop further polarization of this good channel, and tr]ﬁg thatW(Z) is a relaxed node. Then, both indices— 1
corresponding node in the polarization tree is called axegla

N/2
node, such that the channels of all the descendents of &kl

Qnd 2¢ are contained |rQN(W,B) and Gy (W, B). For the
node are the same as that of the relaxed parent node &i@*€d code, it follows that sum error probability of thése

2¢—1 (2t i
will also be relaxed. Let] , andwu] , denote the sub-vectorschannels is (Wz(v )) +E (Wz(v )) =2E (WJ(V/Q) =

Y



2F (W(i) . Together with summind_(19) and {20), it followsIV. ASYMPTOTIC ANALYSIS OF COMPLEXITY REDUCTION

N/2
that 2 (W P < E W@i—U) T E (W(%))_ Therefore.  In this section, we establish bounds on the asymptotic com-
Nj2) = N N . . . , o
we have the following lémma. plexity reduction (as the code’s block length goes to infinit

Lemma 5:Let a good-channel relaxed polar code have ig polar code encoders and decoders, made possible by delaxe

good-channel sef (W, 3), which is equal to the good chan-Polarization. _ _ _
nel set of the fully polarized polar code, i.€y (W,3) = First, we elaborate the notion of complexity reduction. For
Gn (W, B), then ’ ’ Arikan’s polar codes, the total number of channel polaigrat

o } operations required using Arikan’s butterfly polarizatsruc-
S o)< Y BE(WY). () tuels

icGn (W,B) i€Gn (W,5) A(n) =nN,

Note that the left hand side df (21) is the union bound on thhere N = 2" is the length of the code. As a result, the
frame error probability (FER) of the constructed relaxethpo encoding procedure consists ofV binary XOR operations
code while the bound is very tight for low FERs. Similarlyand decoding procedure consistsa¥ LLR combinations.
the right hand side of(21) is the union bound on the framiherefore, each skipped polarization operation is egeital
error probability (FER) of the constructed relaxed poladeo to one unit of complexity reduction in both encoding and
which is also very tight for low FERs. Hence, we conclude thaecoding, where the unit corresponds to a binary XOR when
the relaxed polar code is expected to perform better than #iecoding and an LLR combining operation when decoding.
fully polarized codes in terms of frame error rate. This Wil The complexity reductiorR(n) is defined to be the ratio of
verified in Sectiob VI-ID. the number of polarization operations that are skipped due

Remark 1: The concept of good-channel relaxed polarizdo relaxed polarization to the total number of polarization
tion, discussed so far, can be extendetidd-channel relaxed operationsA(n), required for full polarization. The complexity
polarizationas follows. Consider the bit-channels in the polareduction (CR) can be directly translated into encoding and
ization tree, at a level < n, that arevery bad A bit-channel decoding complexity ratios ¢fl. — R(n)) .
can be considered very bad if its Bhattacharyya parameter id~or the asymptotic analysis throughout this section, alfami
very close tdl, or if none of its descendents will fall into the seof capacity-achieving polar codes is assumed which is con-
of good bit-channels at the last level of polarizatiorHence, Structed with respect to a fixed parametex. 1, and the set of
the polarization of very bad bit-channels can be stoppduowit good bit-channel§ (W, 3), for any block lengthV = 2.
affecting the final set of good bit-channels. Thus, with idre  Theorem 6:Let C (W) be the capacity of the channgl.
bad-channel relaxed polarization, more complexity reidast Then, for anye > 0, small enoughb > 0, and large enough
can be possible, without degrading the code rate and erf®r the complexity reduction ratio using the relaxed polare;od
performance. constructed wittg (W, 3), is at least

Remark 2: The obvious advantage of relaxed polarization
is savings in both encoding and decoding complexities,esinc (€ - E)(l -2+ 5)5)
there will be no channel transformations done at relaxe@sod  Proof: Pick a fixedy such that < § < 1/3 — 2. Consider
while encoding, and there will be no need to calculate nemve polarization level (2 + §)4n]. Let N’ = 2[(2+0)67] pe
likelihood ratios (LRs) at relaxed nodes while decodingnéts  the total number of nodes at this level. Then for large enough
relaxed polarization will result in a reduction in the enitmd 7, the nodes at this level with index belonging to the set
and decoding computational complexities of polar codes. Agy/(W,1/(2 + 4)) will be relaxed. Notice that the fraction
other advantage of relaxed polarization is the reducti@pace of these nodes, i.dGn/ (W, 1/(2+ 6))| /N’, approaches the
(area and memory) complexity in practical implementationsapacityC' by Theorerfill. The fraction of bit-channel polar-
That is because decoding of relaxed polar codes will residttions between the levé(2 + §)sn] and the last leveh is
in smaller LRs (or log-likelihood ratios (LLRs) in case thg1 — (2 + §)3) of the totalnN, among which a fraction of
computation is done in the log domain [16]) than that fof' — ¢ of them are relaxed, for large enoughTherefore, the
fully polarized polar codes, and hence smaller bit-widttilaé  complexity reduction will be at leagC —€) (1 — (2+6)3). ®
required for LR calculation and storage. Relaxed polaomat  In the next theorem, a bound on the asymptotic complexity
has the effect of reducing the number of processing nodegluction using the bad-channel relaxed polarization @& pr
required at lower levels of the polarization tree, and heneiled. The following scenario is considered for bad-chéanne
one can expect even more efficient implementations (or laegsaxed polarization: if none of the descendants of a aertai
throughput penalty) with semi-parallel hardware architezs node will belong toGy (W, 3), then the polarization at that
[17]. Also, by appropriate permutation of the bit channelsiode, and consequently all of its descendants, will be eglax
one expects to be able to eliminate the wiring for the wider Theorem 7:For anye,§ > 0 and large enoughv = 27,
butterflies in FFT-like SC decoders for relaxed polar cofés. the complexity reduction ratio using the bad-channel redax
reduction in bit-width and number of processing nodes megui polarization is at least
for relaxed polar code decoders has the compound effect of
reduction in power consumption. (1-C-—¢) (1 —
The reduction in encoding and decoding complexity will be
addressed in the following section. Proof: Consider the polarization level= [(2 4 0) logn].

n

M)



Then by Corollar{B, for large enough the fraction of nodes
with Bhattacharyya parameter at least 9—2/ 5 1 _9-n
is at leasti — C'—e. Consider such a nodéwith Bhattacharyya
parametet/ > 1 — 2= ". Then the best descendantiofat the
last level of polarization has Bhattacharyya parameter

1

77 s 77 s (127" > 2
which implies that it can not be a good-bit-channel. Thamsfo
the total fraction of complexity reduction is at least
—t
(1 -C - e)n )

n

and the theorem follows. [ |
Observe that, by neglectingandd in the bounds given in
Theoreni b and Theordh 7 and by assuming large enoyigie
complexity reduction ratio from good-channel and bad-clean
relaxed polarization is”(1 — 28) and1 — C, respectively,

Relaxed Polarization Complexity Reduction, Target FER=0.01
T T T T T T

-
—=— AC-RP
- - -GC-RP

3
T

Complexity Reduction Ratio

L L L L
0.4 0.5 0.6 0.7
Channel Erasure Probability

s s s
0 0.1 0.2 0.3

which are both positive constant factors. By combining botg. 1. complexity reduction via relaxed polarization oasre channels at
good and bad channel relaxation, the ratio of saved opesatie = 20

approaches — 25C'. Hence, relaxed polarization can provide a

non-vanishing scalar reduction in complexity, even as titec
length grows infinitely.

V. FINITE LENGTHANALYSIS OF COMPLEXITY
REDUCTION

gives the following

FER< Y Z;./2<|[|E/N < E.
el

(22)

In the proposed bad-channel relaxed polarization (BC-Eie),

In this section, we derive bounds on the complexity reductigad channels are not further polarized if they become suffi-
resulted from good-channel and bad-channel relaxed pakariciently bad, where the bad-channel relaxation threshaidbea

tion at finite block lengths.

set to be7, = 1 — 7,. To guarantee no rate loss from BC-

RP, it should only be performedif — ¢ < [log, 122 TZ]. The

logs Tb

A. Relaxed polar code constructions using Bhattacharyya p%roposed all-channel relaxed polarization (AC'RQP) resatioe

rameters

polarization of a bit-channel if it becomes either suffitign
good or bad. Since the bad bit-channels do not contribute to

In general, finite block length polar codes are constructgie FER, the target FER is still maintained with AC-RP.

by fixing either a target frame error probability (FER) or

In Fig.[1, the achieved complexity reduction ratio for a lpjna

target code raté?. We consider construction of polar codegasure channel with erasure probabititBEC(p), is shown. It

with code lengthV = 2, at a target FER of. To simplify
notation, let?; , £ (WQ(,Z,)). At finite block lengths, we need
to specify certain thresholds for Bhattacharyya pararseter

is observed that up to 85CR is achievable, i.e. fully polarized
(FP) code requires 6.6-fold the complexity of RP code. AC-
RP will result in more complexity reduction than GC-RP as the

order to establish criteria for good-channel and bad-céBn@nannel becomes worse. The rate-loss is calculated as

relaxed polarization. As a result, the following scenargos
considered for relaxed polarization:

1) Good-Channel Relaxed Polarization (GC-RP):
Node: at polarization levek is not further polarized if
Zip < Ty

2) Bad-Channel Relaxed Polarization (BC-RP):
Nodei at polarization levek is not further polarized if
Ziy > Ty

3) All-Channel Relaxed Polarization (AC-RP):
Node: at polarization levek is not further polarized if
Zi,t < 7; or Zi,t > T

RLoss = RFP - RRPa (23)

whereRrp andRgp are the rates of the codes which are con-
structed by full and relaxed polarization, respectivelyeTate

at a target FERF is calculated by aggregating the maximum
number of bit-channels such that their accumulated BPs does
not excee@FE. In this simulation result shown in Figl. 1, the rate
loss is always less thatD—. Another important observation,
from Fig.[d, is the symmetry of the CR curve aroyne: 0.5.
This is explained by the following Theordrh 8, which is a direc
result of Lemmal and the description of GC-RP and BC-RP.

where 7, and 7, are thresholds that can be considered asTheorem 8:The complexity reduction with bad-channel re-

parameters of the construction.

laxed polarization of BEG() with thresholdl — 7 is the same

Remark 3:1f 7, = 2E/N, then GC-RP constructed code$is that of good-channel relaxed polarization of BEC) with

satisfy the target FERY. LetT" be the set ofjood bit-channel
channels which are used to transmit the information bitenTh
this can be observed blyl(4) and the fact tfigt< N, which

thresholdT .
Lemma 9:Let the nodes in the polarization tree be labeled
by their BPs. Then, the polarization tree for BpCand the
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Fig. 2. Upper bound (UB) on Complexity Reduction. Fig. 3. Lower bound (LB1) on Complexity Reduction.

polarization tree for BEQ(— p) are isomorphic, where a nodejevel ¢+ and some thresholds, let Gz, denote the set of

V with BP Z in the first tree is isomorphic to a node with BRyit channels at polarization level with BP at mostB i.e.

1 — Z in the second tree. o Gpy={i:Z;y < B}.
P.rOOf.: We show‘ that the one-to-one mapping 1S ngthlng Theorem 11:Lett, = [1og2 : W,for an arbitrary thresh-

but mirroring i.e. thei-th node at the polarization levelwill T log, p .

be mapped to the node indexed By i at the same level. ©/d B. For a polarization level, > t, lety = |Gp. |/2".

It is sufficient to show this for one polarization level angh | nen the good-channel relaxed polarization complexityiced

the rest follows from induction. Le’;, = BEC(p) andW, = tion is lower bounded by

log, B

BEC(1 — p). Then Ry(n) >~y27"(n—t, —t,)/n
ZWH)=Q1-p?=1-(2p-p*)=1-Z(Wy) wheret, = [log, 12 7].
og
And Proof: Notice tﬁatt7 > t, guarantees th&pg ;. is a non-

_ empty set. In polarization leve). + ¢.,, any node irgg ., has

ZWy)=2(1-p)-(1-p?=1-p*=1-Z(W) at Igayst one dgscendantwith BP less tﬂ%;l/rh.e. the right-most
Therefore, by induction on the polarization level, it is wino descendant which has BP at md@t "~ < 7. Therefore, there
that each polarized nodéin the polarization tree df; canbe are at least2’> = |Gp ;. | nodes at polarization leve} + ¢,
mapped to the polarization treeldf, by reversing the sequencethat have BP less thah, and will be relaxed. Relaxing each of
of +'s and—'s during its polarization. Furthermore, the BP these nodes is equivalent to skippifig= (n—t, —t.,)2" 't

of V will be mapped to BR — Z at the image of/. m polarization steps. Then the total number of polarizatieps
skipped isy2!+ S, and the proof follows. ]
B. Analysis of complexity reduction for GC-RP Corollary 12: Let ¢, = |log, llong]_ Then the good-
: 0ga P

In this subsection, bounds on the complexity reduction froohannel relaxed polarization complexity reduction is lowe
good-channel relaxed polarization are discussedLet 7,. bounded by
In the next theorem, a simple upper bound is provided, which Rgy(n) >27"(n—t,)/n
is also illustrated in Fid.]2.

Theorem 10:The good-channel relaxed polarization com-  Proof: The corollary follows by taking = p, andt, =

plexity reduction is upper bounded by tp =0in Theorenm. _ u
The following provides a tighter lower bound on the GC-RP
Ry(n) < (n—tg)/n, (24)  complexity reduction, which is also illustrated in Fig(te 4
log, B—1

wheret, = [1og2 llzggiﬂ andp is the erasure channel parame-_TheOrem 13Let#, = |log log, p + 1, for an ar-
ter. bitrary thresholdB. For a polarization levek > ¢, let
Proof: The upper bound follows by considering the minid’ = mine>y, | {i 0dd: i € Gp;} |/2". Then the good-channel

mum number of polarization levels required for the best pold€/@xed polarization complexity reduction is lower boudity

ized channel to reach the threshdld Notice thatZ, o = p. A2t

Then, aftert polarization levels, the minimum BP among all Rg(1) = ———((n —t;)(n —t, =2t + 1) +#(t — 1))

Ziy is indeedZy: , = pgt. Hence,t, polarization levels are o T

required for the BP of at least one bit channel to be less fhanWheret, = [bgz Tog BW -

The upper bound on saved operations follows by skipping all Proof: Consider the right-most node at polarization level

polarization steps at all remainimg— ¢, levels. m (- 1which has BPp? ' < p2" ' < B/2. Therefore, the
Next, we derive lower bounds on the complexity reductioleft child of this node is contained iz, which means that

with relaxed polarization foBEC (p). For any polarization the set of odd-indexed nodesliy , is always non-empty for




BP greater thah — 7. The rest of the proof follows as for the
GC-RP case. ]

TheoreniI¥ can also be proved by combining the results of
Theoreni B and Theorem]10. The bounds derived for the good-
channel relaxed polarization in the previous subsectiam, c
) DCp. be turned into bounds for bad-channel relaxed polarizaifon
-\ ¥ >Gp.i1 BEC(p) by replacingy with 1 — p in the bounds, and modifying

N N other parameters accordingly. Hence, to avoid writing lsimi
‘ \ \ proofs, we only mention the theorems and skip the proofs.

o\ Lett, = [log2 lﬁ)ggiﬂ andt, as in Theorem14. In fact,

ty = |log, h};iﬁ;] Observe that ipp > 0.5, thent, < t,

if p < 0.5, thent, > t,, and ifp = 0.5, thent, = ¢,. Com-

Fig. 4. Lower bound (LB2) on Complexity Reduction. bining Theoreri 4 with upper-bounds on GC-RP of Theorem
[10 results in the following upper bound on AC-RP complexity
reduction.

t > ty. The right-most descendant of any of these nodes, aftetCorollary 15: The all-channel relaxed polarization com-

t, more pOlarization levels, will have BP less thanand will p|ex|ty reduction is upper bounded by

be relaxed by eliminating the polarizing subtrees emagatin

from them. The total reduction of polarization steps forteat: Ra(n) < (n—t')/n, (26)

these relaxed nodes is at ledst) = /2021~ 1tr (n_— t—t)  wheret — t, for p < 0.5 andt’ = t, for p > 0.5.

polarization steps. The bound follows by summatioy' ¢f) for

all t with t;, <t < n — ¢,.. Notice that since the right-polarized

children of those odd-indexed nodeg are even indexed, they

S|P U———»
<«—S|9A3]| L 1—»

<€S|3A3] 1>

The next theorem can be also regarded as the counterpart of
Theoreni 11, for bad-channel relaxed polarization.

are not counted among the odd-indexed nodexsin, forany ~ Theorem 16:Let t. = [bgg %W for an arbitrary
othert'. B thresholdG. For a polarization levels > t., let § = |{i :

Notice that in the above lower bound, a necessary conditigh;, > 1 — G}|/2'. Then, the bad-channel relaxed polariza-
is thatt + 2¢,, > n to guarantee that no double counting occursion complexity reduction is lower bounded by
In many practical operation scenarios, this condition holfl 4
the condition does not hold, one can modify the bound by Rg(n) = 27" (n —t1 — t5)/n

limiting the computed summation §6.° "% S(to).

to=t log, T

wheret; = |1 _ .
Remark 4:In TheoreniIlL, for large enough, the parame- ! [ 082 Tog, G
ter is independent of and is approximately equal 6, the ~ FOr AC-RP, the lower bounds of Theoren) 11 and Thedrém 16

capacity of the underlying channidf. Also,~’ in TheoreniIB, ¢&" be combined as in the following corollary. It is assunied t

is approximatelyC'/2. For our practical applications, we car{he set of relaxed nodes in GC-RP and the set of relaxed nodes

always pick a proper value @ such that these approximationd” BC-RP do not intersect. This is a valid as_sumption aslang a
still hold at the desired block length. the good-channel and bad-channel relaxation threshpldsd

1— T, are far apart enough, as characterized in subsédcfion V-A.
Corollary 17: The all-channel relaxed polarization is lower
bounded by

C. Analysis of complexity reduction for AC-RP

In this subsection, we analyze the complexity reductiomfro
bad-channel relaxed polarization, as well as all-chanpeh( R, (n) >
good and bad) relaxed polarization. As opposed to the pusvio
subsection, we limit our attentlon_ in this subsection toab_yn Theorem 18:Let #, — [bgz 110g2 ?_—ﬂ + 1, for an arbi-
erasure channels (BEC), wherein the exact computation tof thresholdC. E lari Of?( lp) of > . let 3 —
Bhattacharrya parameters is applicable at finite blocktleng ra}ry res| odd..Z.or>a1pogr|za2|§)nTEv E] Cl; 3 ﬂh N |

Throughout this subsection, we always assume the chanfiel'*=* | {i0dd: Z;; > 1 —G}|/2". Then, the bad-channe
BEC(p). For a functionF(p), let F*(p) denote the output from relaxed polarization complexity reduction is lower bouddb

% (B2 (n—ty —tg) +72 " (n—t, — 1)) .

. o . ; P 9t

Zr)ecurswe application of the functian ¢ times, with initial input Ro(n) > [32n ((n—t)(n —t — 2+ 1) + £t — 1))
Theorem 14:The bad-channel relaxed polarization com- h — Nog. loga T

plexity reduction is upper bounded by wheret; = [Og? log, GW'

Similar to Theorer 113, the above theorem holds under the
Ro(n) < (n—tp)/n, (25)  condition thatt + 2t; > n. Also, similar to Corollary 19,
wheret, = min, {F'(p) > 1 — T} andF(p) = 2p — p. the following corollary holds by combining Theordm] 13 and
Proof: The left child of a node with BFZ is associated TheoreniIB. To make notations consistent,t{edenote the
with a bit-channel with BPF(Z). Hence, it requires, polar- levelt in Theoreni IB and; denote the leveflin Theoreni IB.

ization levels for the worst left-polarized bit-channelhtave Corollary 19: The all-channel relaxed polarization is lower
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; —F— Construction CHANNELS
| —=¢—=uB 1 . . )
—A—1B1 In this section, we describe how a code can be constructed

5 ‘9‘ L and decoded on general binary memoryless channels using
X : relaxed polarization.
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A. Construction of relaxed polar codes on general BMS chan-
nels

o
2]
T

For general binary memoryless channels, the Bhattacharyaa
parameters are exponentially hard to compute as blockHengt
increases. This is due to the exponential output alphabet si
of the polarized bit-channels. Instead of exact calcutatd
Bhattacharyya parameters, they can be well approximated by
bounding the output alphabet size of bit-channels via chan-
nel degrading and channel upgrading transformation$s [22].
10 The channel degrading and upgrading operations provitié tig

lower bounds and upper bounds on the corresponding Bhat-
: o . . tacharyya parameters. In order to construct polar codes for
\',:\,'i?ﬁ ?érgBe?ang; 225@%9_‘3"“"3“&””6' relaxed polarizationptextty reduction continuous-output BMS channels (e.g. additive white Ganss
noise (AWGN) channels), the channel can be first quantized.
Then, the degrading and upgrading operations will be per-
formed for the bit-channels resulting from polarizationtioé
ot gquantized chgnnel [22]. For AWGN channels, the bit channel
Ru(n) > ﬂ ((n —t)(n—t -2t + 1)+ %Q _ tfﬂ) error probability (BC-EP) can also be reasonably approtécha

Complexity Reduction Ratio
o
N

©
w
T

107
Channel Parameter p

bounded by

2n ) using density evolution and a Gaussian approximation [23].
2 r . _ .
L7 ((n ) —t, — 2t + 1)+ t/72 _ t/) _ Alternatively, .for short codes, the BC.EP can be .numetycalll
2n K K evaluated using Monte-Carlo simulations, assuming a genie

aided SC decoder. For generality of description, let thererr
probability of thej-th bit-channel at the-th polarization level
D. Numerical evaluation of complexity reduction by relaxege bounded by
polarization on erasure channels E,;<E;<E (27)

In this subsection, we compute the complexity reduction @fhereL, ; is the probability of error of the upgraded version of

different scenarios of relaxed polarization over binargsere W(J> andEt ; is the probability of error of its degraded version.
channels and compare them with the bounds provided in thISThe values of, andEm can be computed using upgraded
section. and degraded versions of polarization tree. In the upgraded
The block length of the constructed relaxed polar code jimlarization tree, after each level of polarization theuhirsg
assumed to b&/ = 22° and the FER of? = 10~° is assumed bit-channels will be upgraded to have a limited output alysta
for the code construction. The erasure probabilityill be size. At the next level, the upgraded bit-channels will be po
varying betweerﬁ) and1. We have observed that the thresholdiarized. As a result, all the bit-channels in the upgradddrpo
B = 2p—p?and1—G = p? will resultin desired values foyin  ization tree will have a limited output alphabet size. Tihere,
Theoreni Il and in Theoren 1B. With these values Bfand E, . can be easily computed. The same procedure is repeated
G we havey = 1 —pandf = p. We have also observed thgt to get a degraded polarization tree and to comgite. The
in Theorem 1B and@’ in Theoreni 1B can be well approximatedonstruction of fully polarized codes can be done according
by v/2 and3/2. The results of Fid.]5 show that actual CR ofo either lower bounds or upper bounds on the probability of
GC-RP can be characterized using the derived upper and lowgrior of the bit-channels at the last level of polarizatibor
bounds, and up t80% complexity reduction is achievable at ainstance, in case of using upper bounds, bit-channel atedsor
target FER ofl0~". according to their error probabilities,, ; in ascending order.
The performance of AC-RP is analyzed in Fig. 6 at thAccumulate as many good bit-channels in thelesuch that
same target FER of0~°, where the analytical bounds arezjer E,; < E,whereE is the target FER. Then, the FP code
compared to the numerical results from actual constructida defined byl” and has rat&® = |T'|/N.
It is observed that the bounds give a good approximation ofin proposed good-channel relaxed polar codes, a node will
the actual complexity reduction. GC-RP is effective wittodo not be further polarized if the upper bound on its bit-chdnne
channel parameters and BC-RP is more effective with badror probability is lower than a certain threshélg For bad-
channel parameters. The bounds are also minimized-af.5, channel relaxed polar codes, a bit-channel will not be &rrth
and symmetric aroung = 0.5. This can be explained by thepolarized if the lower bound on its error probability exceed
symmetry property of Theoreph 8. an upper threshold,. Numerically, it was found for BMS



channels that the error performance of the constructed isodi All-Channel Relaxed Polarization Bounds, Target-FER =16-005

closer to that of the upper-bound calculated using the diegia ! AR T—— construction] |
channel. Hence, when polarization is relaxed for a node, t ook O :::t’:l :
error probability of the children of a non-polarized nodséasto . | —o-1e2
the degraded-channel error probability of the parent. Asalt, 08f Xt
the procedure for designing relaxed polar codes of leRg#t o
a target FERE on general BMS channels is specified belov £ ]
Each nodg at levelt in the polarization tree is associated witt = o6}
a label Relaxed( ;) which is initialized to 0, and will be set to g
1 only if this node will not be polarized. The error probayili ¢ Or
(EP) of each node in the RP tree is initialized to that of th % oal
fully polarized treeffj = E.,. The relaxed polar code willbe £
defined by its good channel sét;. oaf
Algorithm 1 Relaxed Construction for General BMS Channel e
1: Stage 1:Calculate AC-RP bit-channel EP for target FER 0.3 xK
and rateR i x Ao ko 4 o0
2: Set the GC relaxation threshold&s= E/(RI) 107 10" 10°
3: Set the BC relaxation threshold ag, = Channel Parameter p
H'(1- H(E,))
4: fort=1:ndo Fig. 6. Bounds on the all-channel relaxed polarization demify reduction

5. for j = 1:2tdo with target FER ofl0 =3 .

6: if Relaxedt — 1, [5/2]) = 1 then

£ R_elaxecﬂt,j) =LE ;= Effjm RP codes, by neglecting the bad-channel relaxation camditi
8: elseif{E,; < &} or {E, ;> &} then {E,, > &} instep 13.

o: Relaxedt, j) = 1 In"case of erasure channels with erasure probabilitthe
10: end if channel parameter (erasure probability) for the targencel
11: end for capacity isp = 1 — C. The upper and lower bound on the

12: end for bit-channel error probabilities coincide, and can be dated
13: Stage 2:Construct AC-RP code with rate exactly by the BPsE, ; = Z; ;/2. To calculate the relaxation
14: Sort bit-channel EPEM in ascending order thresholds, the error probability 5 = p/2, and the entropy is
15: SelectI'r to have theRN bit channels with the H(E) =2FE.
smallest EP Algorithm 1 constructs the relaxed polar codes for general

BMS channels, using bounds on the bit-channel error proba-
rt%ity. However, for short block lengths, the bit-channelos
probability can be numerically calculated to B¢ ; using
Monte-CarIo simulations, assuming a genie-aided suoceessi
ncellation decoder. In such a case, Algorithm 1 is modified
letting B, ; = Ey; = Ey ;.

For the case of AWGN channel, first the channel paramete
calculated to satisfy the conditi@n > R, whereR is the target
rate andC is the capacity of the channel. Then, the chann
is quantized using the method of [22] to get a channel wig‘i'jl
discrete output alphabet. Then Algorithm 1, discussed @bo y
will be applied to this channel. )

With target FERE, the good-channel relaxation threshold- Decoding of relaxed polar codes on general BMS channels
is chosen to be&f, = E/(RN) to satisfy the target FER, Decoding of relaxed polar codes can be done by a modified
e Y ier, E,; < E. Let H(Ew) be the entropy of the successive cancellation decoder. For a polar code of leNgth
channellV with fidelty Eyy, such thatd (Ey) = 1 — I(W), and BMS channelV, suppose that! is the input vector and
whereI(W) is capacity of channdli’. Then, the bad-channely:' is the received word.
relaxation threshold is chosen such th&tg,) = 1 — H(E,). Consider a relaxed polar code constructed as explained in
For general BMS channeld” with error probabilityEy,, the the previous subsection. At each level= log N', for 1 <
approximation H (W) ~ hy(Ew) can be used, based oni < N, Relaxedt,i) = 1 meansihawj(\;/) is not polarized
the inequalityH (W) < ho(Ew) [2], [24], wherehy(p) = and Relaxeft,i) = 0 means thaW](\},) is fully polarized. In
—plogy(p) — (1 — p)log,(1 — p) is the binary entropy func- practical application of relaxed polar codes, the decodér w
tion. To guarantee that there is no rate loss from bad-chanhave prior knowledge of the polarization map by Relaxed,
relaxation if{ﬂt_’j > Eb} is satisfied at Step 13, then relaxationvhich requires at most storage 2W bits. For communication
may only be done after verifying that the lower bound on thgystems, the polarization map can be specified by the communi
error probability of the best upgraded descendent charfnelcation standard, similar to the specification of the pachgck
that node is still higher thad,, which will be satisfied for matrices of block codes.
practical frame error&. Fori=1,2,..., N, the decoder computes the likelihood ra-

The same procedure above can be used to construct GG{LR) LE\Z,) of u;, given the channel outpugg’ and previously



10

decoded bitsli_l if a node is relaxed, then there will e parallel decoding
oy equations as i (30) an@(31). The operations for picking the
_ Wa'(yr a7 |ui = 0) most likely paths remain the same for relaxed SCL.

W (4 u; = 1)

LYy, i)

For FP polar codes, Arikan observed that calculation ¢f. Relaxed polarization versus simplified successive dance
the LRs at length/V require anotherV calculations at the tion decoding

pargzn_tlgwode at lengthN/2), where the LRs from the pair Whereas relaxed polarization results in a construction of a
L

A 24— 21) ~ 27— . . -
SV, a3, LY (i 1)) are assembled from e gifferent from that obtained by Arikan’s full polarizan,
the pair LW yN/2’ a22 g 22 ,L(i) yN ’a2i;2)), the SSCDI[10] is a simplified decoder for a specific code. In
( N/Q( ! b b ) N/Q( N/ fact, as would be clarified below, the SSCD can also be used to

via a straightforward calculation using the bit-channe&lure ; X
sion formulas forn > 1 [2]. The relaxed successive canfurther reduce the complexity and latency of decoding redax
y lar codes.

cellation decoder (RSCD) follows the same recursion. Hend¥® ) o o
if Relaxedt,i) = 0, the likelihood ratio (LR)L(i) can be By construction, relaxed polarization attempts to maxeniz
computed re’zcursivelyy as follows. N the number of rate-one nodes and rate-zero nodes by relaxing

_ the polarization of sufficiently good and sufficiently bad- bi
LD (N, 422y (28) channels, respectively. Rate-1 and rate-0 nodes are nduels w
(1) (  N/2 ~2i—2 . ~2i—-2\7 () [ N £2i—2 have all their descendants in the good channel set and the bad
= ! + L2 ?ulve @_ULO )L{V/2(yN/2+1’ Ul_,e ), channel set, respectively. As Wasgclarified in Sedtion Vh8,
Lg\l[)/g(yiV/Qa a3 ey, %) + LE@)/Q(y%/QH, az'?) encoding or decoding operations are done at the relaxedsnode
L(Qi)(UN ﬁ2i71) (29) The SSCD identifies the rate-1 and rate-0 nodes in the
NoAILo T 2. received code, and reduces the operations required to edecod
_ L%)/z(yiv/z,ﬁfif @ﬂfif)} v %)/Q(y%/ﬂl,ﬁfi;?)_the corresponding constituent codes. Hence, SSCD does not
’ ’ " offer complexity reductions at the encoder. Since a ratedkn
Otherwise, if Relaxe@,i) = 1 the decoding equations areonly has frozen bits at its output, its constituent tree duats

modified as follows: need to be traversed when decoding since the leaf values are
2i—1 2 i), N/2 .o known a priori. The output bits of the tree rooted at a rateden
LYY, a7 = LY,00 % a3 (30) P b

. _ . _ can be found by simple hard-decisions on the soft likelihood
L (yN a2 = L%}Q(y%/ﬂl, @3'.%).  (31) ratios atthe rate-1 node. However, since these bit-chamezk

The hard-decisi timat t t nod | l%otlgarized at the encoder, the input bits at the rate-1 nodd ne
€ harg-gecision estimates at a parent node are calculgi@le recovered with a step similar to re-encoding in order to

fr_orr_1 the hard—d(_acision estimates of its two children in Epsu?ecover the information bits.
similar to encoding. At the last stage whéh = 1, the LRs H o .

. (1) ence, relaxed polarization offers complexity and latency
are simply Ly~ (y:) = iW(y”O)/W(yi'l)' At the end, hard o, ctions at both the encoder and the decoder, while SSCD
decisions are made (at the leaf nodes), except for frozery )y reduces the decoding complexity and latency compared
bit-channeIsW](VZ) wherei; = u; = 0. to Arikan's successive cancellation decoder. The decoding

From the above descriptioB/N' LR calculations forlog N complexity reduction is calculated for the SSCD as for the
levels are required for decoding conventional FP polar sodeelaxed code, where rate-1 nodes and rate-0 nodes coetribut
However, the decoding complexity of relaxed polar codes i the complexity reduction same as relaxed nodes, and the re
linearly reduced by the ratio of relaxed nodes in the poddi@n  encoding complexity at the rate-1 nodes is neglected.
tree, since no LR calculation is required at relaxed nodes. Next, we compare the reductions in decoding latency. As

The relaxed successive cancellation decoding as discusdedcribed in the previous section, a polarized node regjuire
above is extended to perform the relaxed successive cancetiree clock cycles to calculate the even and odd LRs, and
tion list (SCL) decoding of RP codes. The SCL decoding a@hen calculate its hard-decision estimate from the haaisamn
polar codes is shown to have considerable improvement oeatimates of its children pair using the encoding operation
the regular SC decoding [25]-[27]. In SCL decoder, instefad Blence, the total decoding latency with successive carnimella
only one path, i.e. a sequence of decoded information hits, decoding for a polar code of lengfii = 2" can be assumed
to L decoding paths are considered at each decoding stage. ihée L£(n) = 3 z;gol 2t = 3N — 3. Consider the RP
decoding paths are being updated as the decoder evolvescéde decoded with the RSCD. A BC relaxed node requires no
each stage of the decoding process, where an informatian bibperation and hence contributes nothing to the latency.bA su
is being decoded, both optionsof = 0 andu; = 1 are being tree of GC relaxed nodes requires only one clock cycle at its
considered and hence, the number of decoding paths is @bulsteot to calculate its hard-decision estimates. Similddy,the
to at mos2L. Then this extended list of size up2d is pruned, SSCD, rate-0 nodes contribute nothing to the latency, anda s
based on a maximum likelihood metric, to get a list of dizef tree of rate-1 nodes requires one clock cycle. Howevergsinc
the locally most likely paths. In the SCL decoding, therewgre this rate-1 constituent code is fully polarized, if the robthe
to L likelihood ratios ongf,) at each node in the decoding trellisrate-1 constituent code is at level- ¢, then additionat clock
and then up td. parallel recursive calculations, as [n{28) andycles are required for re-encoding to recover the infoionat
(29), are performed at the node. In the relaxed SCL decodirs at the leaf nodes.
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To this end, there are two important observations to make.implies that the bad channel relaxation threshold can beemad

Firstly, the SSCD can be combined with RSCD to decode RRore aggressive without degrading the performance. Aaibss
codes. The SSCD as proposed|ini[19] is applied on Arikamates, the combined RSCD-SSCD on RP codes has the highest
fully polarized code, and will be noted as SSCD FP. Since tlkemplexity reduction. RSCD on the MRP codes is shown in
relaxed polar construction as described above relaxesiiiesn Fig.[8 to have the least latency compared to SSCD on FP codes,
before determining the good-channel set, then there cat exind RSCD on RP codes. It is observed that in case of GC-
rate-1 and rate-0 nodes in the resultant code which have RR, the decoding latency decreases at higher code rates due
been relaxed. Then, this implies that SSCD can also be usedadhe increase in the number of relaxed nodes. For AC-RP,
decode relaxed polar codes, where after determining thd-gothe latency increases with the code rate since GC-relaxed (o
channel set, the rate-1 and rate-0 nodes are identified &ndrdite-1) nodes require more latency than BC-relaxed (ofQate
operations at rate-1 nodes and rate-0 nodes which have nohbdes, as described above. It has also been observed that the
relaxed by construction will be simplified as in SSCD. Hencgercentage of latency reduction increases with the codghen
combined SSCD and RSCD on RP codes, denoted by SSCD
RP, will further reduce the decoding complexity of RP codes.

Moreover, since RP codes are constructed to have more r: Decoder Complexity Reduction with Relaxed Polarization and SSCD, n =16
. . 0.9 T T T T T T
1 and rate-0 nodes by the relaxation operation, SSCD RP v —>— RSCD GC-RP
. . —e— SSCD(1) FP

often have reduced decoding complexity compared to SS( —&— SSCD(1) GC-RP
FP 08[ —— GC-RP limit

" - P - RSCD AC-RP

1 = © =SSCD FP
Secondly, the relaxed polar code construction can be mc 07l TSI e

ified such that all rate-1 and rate-0 nodes of the fully pola
ized code are relaxed at the encoder. This modified relax
polarization (MRP) construction is done by first constnogti
Arikan’s fully polarized code, selecting the good-chansel
according to the desired rate or target error probabilitgifig
the modified relaxed polarization map as that which relakes
the rate-1 and rate-0 nodes in the FP code, and then encoc
according to the modified relaxed polarization map. The got
channel set for the MRP code will be fixed as that in the F
code. If only the rate-1 nodes are relaxed, then the coddésica
GC-MRP. If both the rate-1 and rate-0 nodes are relaxed, 1 - S
code is called AC-MRP. Since all rate-1 and rate-0 nodes ¢ 03 035 04 045 05 055 06 065 07 075 08
already relaxed, the combined SSCD-RSCD will not produt

additional complexity or latency reductions compared t€RS

when decoding the MRP code. Furthermore, neglecting the Fég. 7. Complexity reguction ratios of RP codes and SSCDfégrént code
encoding complexity required by the SSCD at rate-1 nodé%t,es and code lengttt® on the BEC channel.
RSCD on the modified RP codes will have the same decod-
ing complexity but lower decoding latency compared to that
of SSCD on FP codes. MRP codes also have the additional
advantage of having lower error rates than their corresipgnd
FP codes, as shown in Lemia 5.

The complexity reductions by RSCD RP, SSCD FP, SSC og‘w
RP are compared in Fifg] 7 for two cases: GC-RP versus SSi
when applied to rate-1 nodes only, denoted by SSCD(1), a
AC-RP versus SSCD when applied to both rate-1 and rate
nodes, denoted by SSCD. The complexity reductions are sha
for a code of lengti2'% on the binary erasure channel. The Fl
codes are constructed at a rate equal8/tth of the channel
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Decoder Latency Reduction with Relaxed Polarization and SSCD, n=16
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capacity. To construct the RP codes, the error probab#ity P
of the good-channel set of the FP code is calculated and u: L P .| % -RSCDGC-RP
-4 - B - RSCD GC-MRP

T, = 1 — T,. The asymptotic bound of CR with GC-RP is 03[ ,zzZ7 i o ROCDACTRP
the capacity as proved in Theor€in 6, and is also shown. It ¢ ‘ - [—=—RsCDAC-MRP
cussion above. When considering the GC-RP and rate-1 no R
only, RSCD GC-RP can offer higher complexity reduction than

i and code lengtR'® on the BEC channel.
bad-channel nodes and the rate-0 nodes into account, SS

. - © - SSCD(1) FP
to calculate the relaxation thresholds By = 2E/|T'|, and .
—— SSCD FP
be noted that the results of the figure are inline with the di %83 0% 04 04 05 05 06 065 07 075 08
SSCD(l) especially at higher rates. However. after taldimag Fig. 8. Latency reduction ratios of RP codes and SSCD atrdiftecode rates
FP has higher complexity reduction than RSCD RP which
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Fig. 9. Complexity reduction ratios on AWGN channel at coelegthsN =
10, andN = 14 at different code rates

Fig. 10. Error performance of relaxed polar codes by BPSK &GN
channel. The code length 232 and the code rate %59

for the RP codes. Another important observation is that the
proposed construction of relaxed polar codes is robustgmou
The achievable complexity reduction is analyzed by actusilich that it performs well over the whole range of simulated
construction of the relaxed polar codes on AWGN channels 8NRs, although the codes are constructed for a certain SNR.
Fig.[9. An AWGN channel with binary-input capacify = 0.7 The performance of the relaxed SCL decoder is compared
is used to calculate upper and lower bounds on the bit-channéh the performance of the regular SCL decoder for a numeri-
error probabilities. The CR at different code lengfi8, and cal example. The simulations are done for the code blockleng
24 are logged at different target FER. The rate, achievable N = 1024, and rateR = 0.5. First, the fully polarized polar
by construction of the FP code at each target HERs also code of rate0.5 is constructed for an AWGN channel at an
logged. It is observed that at a larger target FERa higher SNR= 2 dB. Then, the all-channel modified relaxed polar code
rate is possible, due to possible accumulation of more goad-constructed by considering the same set of information bi
channel bits. The CR also increases with the target FER indices. The complexity reduction ratio of the modified xeld
due to the increase of the relaxation threshgjddespite the polar code from the good channel relaxation onl§.i€39 and
increase in the code rate. Since the number of polarizatifsom the all channel relaxation 63340. Regular SC decoding
levels increases with the code block length the achievable of the FP code and RSCD of the RP code are simulated and
CR from RP increases witlv. The effect of CR due to bad- compared over the AWGN channel for the constructed codes,
channel relaxation becomes more visible, at higher taf§&,F which corresponds to the case with list size= 1. Further-
asé&, also becomes lower. more, the relaxed SCL decoder, as discussed in Sdctiod VI-B,
The error-rate performance by actual relaxed successied the regular SCL decoder, with a maximum list size of 32 are
cancellation decoding of the RP codes is shown in Eig. 18imulated and compared as well. For list decoding, the polar
for binary phase shift keying (BPSK) on an AWGN channehformation bits are concatenated with a CRC code of length
with variances? as a function of the signal to noise raticl6, where the rates are adjusted accordingly so that thalactu
SNR= 101log;,(1/0?). Practical code length oV = 4096 is information rate i).5, i.e., the information block length of the
assumed with near half-rate code Bf = 0.59, respectively. polar-CRC code is increasedi®2+ 16 = 528. The simulation
The code is constructed with Algorithm 1, assuming an AWGHKesults are shown in Fig.J11 and show abbdB SNR gain with
channel with binary-input capacity = 0.7, and withE = 0.1.  list decoding. It is observed that with successive cantetia
For simpler comparison, both the GC-RP and AC-RP codes u#coding, the RP code has a slightly better FER than the FP
the same good bit-channel set found by construction (Stagecéde. Since the RP code has the same information set as the FP
of the AC-RP code. However, the FP good-channel set is optiede, this can be justified by Lemrh 5. Furthermore, a better
mized for the FP polar code. It is observed that the frame erfait error rate (BER), with up t6.2 dB SNR, is observed for the
rate (FER) and bit error rate (BER) performances of the G&P code compared to FP code.
RP code are similar to those of the AC-RP code. Although, the
RP codes can have a slightly higher FER than the FP code due VII. CONCLUSION
to different information sets, it is observed that the RPesd In this work, a new paradigm for polar codes, called relaxed
have lower information bit error rates than the FP codess Thpolar coding, is investigated. In relaxed polar codes, a bit
verifies the proper design and selection of relaxation tiolgls  channel will not be further polarized if it has been already

D. Performance on the AWGN channel
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numerical results showed that there is room to derive tighte
bounds. Due to the recursive calculations required to &atieu
the Bhattacharyya parameters at an arbitrary bit-chaitmeh,

the exact bounds are expected to be recursive in nature. For
general BMS channels, it is more difficult to get closed form
bounds as the polarization results in bit-channels withoexp
nentially large alphabets. Another issue is that we comsitie
the construction of relaxed polar codes based on Arikan'®
polarization matrix. This construction can be readily exied

to the general case ofx [ polarization matrices, wheie> 3

[12]. Also, it is noted that relaxing the good bit-channels
results in rate-1 constituent codes. These bit-channeldea
further concatenated with other codes to further reduce the
error probability. In fact, the interleaved concatenaocheme

for polar coded[14] adaptively concatenates better katiclels
with outer codes whose rates are higher than those contatiena
with the worse bit-channels, in order to maintain the target
code rate or the target error performance of the concatgnate
code. When constructing concatenated relaxed polar ctiges,
adaptive concatenation scheme can be modified to take into
account, or jointly optimize, the selection of the relaxet b

AWGN Channels, the code length2® and the polar code rate(s5 atL = 1
without CRC bits.

channels.
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polar codes. RP codes also have lower space complexity than
conventional polar codes in fixed point hardware implemen-
tations, due to the less number of bits required to store the
likelihood ratios. This has the compound effect of decodetfl!
implementations with less power consumption. It is prowed i
this work that, similar to conventional polar codes, RP code
are capacity achieving. It is also shown that with propeigies 2]
RP codes will have lower error rates than conventional polar
codes of the same rate. Constructions of RP codes on the/bings)
erasure channel, and on general BMS channels are described.
Asymptotic and finite-length bounds on the complexity reduc[4]
tion achievable by relaxed polar coding are derived andiedri
for the binary erasure channel against actual construgtitime
relaxed successive cancellation decoding (RSCD) for eglax
polar codes is described. The successive cancellatioddist [6]
coder for polar-CRC codek [25], [26] is also modified for-list
decoding of relaxed polar-CRC codes. Moreover, we diSCUﬁ
how simplified successive cancellation decoding [19], can b
done on top of RSCD to further reduce the decoding complexit
and latency of RP codes. For a code of ratg and length
216 the results show af0.9% decoding complexity reduction
ratio and a®3.5% decoding latency reduction ratio are possible9]
with relaxed successive cancellation decoding of RP codes o
the BEC. Itis verified by numerical simulations on the AWGN ]
channel that the information bit error rates of properlyigiesd
RP codes are at least as good as those of conventional pﬁlﬁr
code with the same rate.

Next, we discuss possible directions for future work,
Whereas the derived bounds on the complexity reductioosrat{lz]
on the BEC channel have explicit closed form formulas, the

(5]

8]
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APPENDIX AW 100, Wy DY = (38
N 1 1 11
For any DMCW, let E(W) denote the probability of error { 3@t 3bibj ¢ 5aibs, 5a;bi }
of W under ML decoder. LelV : 2~ — % be a BMS channel,
where 2" is the binary alphabet. Then Then
1 1 M M 1 M M
EW)=>" 5 min {W(y[0), W (y[1)} 2E(WH) = 5 SO aia; + 5 > min {a;b;, a;b;}
yeW i=1 j=1 i=1 j=1
Let the channelV be polarized using the Arikan’s Butterfly. MM M 5 5
Let the polarized bit-channels be denoted 5y~ and T ~. = Z Zaiaﬂ' - (Z a:)” = 4E(W)
Then it is known that =1 4=l =t
which proves the second part of the lemma. ]

1
W™ (y1, y2lur) = 3 Z W(yilur @ u2)W (y2luz) (32)
us€EZX

and

1
W (y1,y2, u|uz) = §W(y1|ul @ u2)W(y2uz)  (33)

Lemma 20:For any BMSIV,
EW™)=2E(W) - 2E(W)? (34)

and
E(W*) > 2B(W)? (35)
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