
ar
X

iv
:1

50
3.

09
09

2v
2

 [
cs

.I
T

]
 2

7
A

ug
 2

01
5

Efficiently decoding Reed-Muller codes from random errors

Ramprasad Saptharishi∗ Amir Shpilka† Ben Lee Volk∗

Abstract

Reed-Muller codes encode an m-variate polynomial of degree r by evaluating it on all points
in {0, 1}m. We denote this code by RM(m, r). The minimal distance of RM(m, r) is 2m−r and so
it cannot correct more than half that number of errors in the worst case. For random errors one
may hope for a better result.

In this work we give an efficient algorithm (in the block length n = 2m) for decoding ran-
dom errors in Reed-Muller codes far beyond the minimal distance. Specifically, for low rate
codes (of degree r = o(

√
m)) we can correct a random set of (1/2 − o(1))n errors with high

probability. For high rate codes (of degree m− r for r = o(
√

m/ log m)), we can correct roughly

mr/2 errors.
More generally, for any integer r, our algorithm can correct any error pattern in RM(m, m−

(2r + 2)) for which the same erasure pattern can be corrected in RM(m, m − (r + 1)). The
results above are obtained by applying recent results of Abbe, Shpilka and Wigderson (STOC,
2015), Kumar and Pfister (2015) and Kudekar et al. (2015) regarding the ability of Reed-Muller
codes to correct random erasures.

The algorithm is based on solving a carefully defined set of linear equations and thus it is
significantly different than other algorithms for decoding Reed-Muller codes that are based on
the recursive structure of the code. It can be seen as a more explicit proof of a result of Abbe et
al. that shows a reduction from correcting erasures to correcting errors, and it also bares some
similarities with the famous Berlekamp-Welch algorithm for decoding Reed-Solomon codes.

∗Department of Computer Science, Tel Aviv University, Tel Aviv, Israel, E-mails: ramprasad@cmi.ac.in,

benleevolk@gmail.com. The research leading to these results has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement number 257575.

†Department of Computer Science, Tel Aviv University, Tel Aviv, Israel, shpilka@post.tau.ac.il. The research
leading to these results has received funding from the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 257575, and from the Israel Science Foundation (grant number
339/10).

http://arxiv.org/abs/1503.09092v2

1 Introduction

Consider the following challenge:

Given the truth table of a polynomial f (x) ∈ F2[x1, . . . , xm] of degree at most r, in
which 1/2 − o(1) fraction of the locations were flipped (that is, given the evaluations
of f over F

m
2 with nearly half the entries corrupted), recover f efficiently.

If the errors are adversarial, then clearly this task is impossible for any degree bound r ≥ 2, since
there are two different quadratic polynomials that disagree on only 1/4 fraction of the domain.
Hence, we turn to considering random sets of errors of size (1/2− o(1))2m , and we hope to recover
f with high probability (in this case, one may also consider the setting where each bit is indepen-
dently flipped with probability 1/2− o(1). By standard Chernoff bounds, both settings are almost
equivalent).

Even in the random model, if every bit was flipped with probability exactly 1/2, the situation is
again hopeless: in this case the input is completely random and carries no information whatsoever
about the original polynomial.

It turns out, however, that even a very small relaxation leads to a dramatic improvement in
our ability to recover the hidden polynomial: in this paper we prove, among other results, that
even at corruption rate 1/2 − o(1) and degree bound as large as o(

√
m), we can efficiently recover

the unique polynomial f whose evaluations were corrupted. Note that in the worst case, given a
polynomial of such a high degree, an adversary can flip a tiny fraction of the bits — just slightly

more than 1/2
√

m — and prevent unique recovery of f , even if we do not require an efficient
solution; and yet, in the average case, we can deal with flipping almost half the bits.

Recasting the playful scenario above in a more traditional terminology, this paper deals with
similar questions related to recovery of low-degree multivariate polynomials from their randomly
corrupted evaluations on F

m
2 , or in the language of coding theory, we study the problem of decod-

ing Reed-Muller codes under random errors in the binary symmetric channel (BSC). We turn to some
background and motivation.

1.1 Reed-Muller Codes

Reed-Muller (RM) codes were introduced in 1954, first by Muller [Mul54] and shortly after by
Reed [Ree54] who also provided a decoding algorithm. They are among the oldest and simplest
codes to construct — the codewords are multivariate polynomials of a given degree, and the en-
coding function is just their evaluation vectors. In this work we mainly focus on the most basic
case where the underlying field is F = F2, the field of two elements, although our techniques do
generalize to larger finite fields. Over F2, the Reed-Muller code of degree r in m variables, denoted
by RM(m, r), has block length n = 2m, rate (m

≤r)/2m and its minimal distance is 2m−r.
RM codes have been extensively studied with respect to decoding errors in both the worst case

and random setting. We begin by giving a review of Reed-Muller codes and their use in theoretical
computer science and then discuss our results.

Background

Error-correcting codes (over both large and small finite fields) have been extremely influential
in the theory of computation, playing a central role in some important developments in several

1

areas such as cryptography (e.g. [Sha79] and [BF90]), theory of pseudorandomness (e.g. [BV10]),
probabilistic proof systems (e.g. [BFL91, Sha92] and [ALM+98]) and many more.

An important aspect of error correcting codes that received a lot of attention is designing effi-
cient decoding algorithms. The objective is to come up with an algorithm that can correct a certain
amounts of errors in a received word. There are two settings in which this problem is studied:

Worst case errors: This is also referred to as errors in the Hamming model [Ham50]. Here, the
algorithm should recover the original message regardless of the error pattern, as long as there
are not too many errors. The number of errors such a decoding algorithm can tolerate is upper
bounded in terms of the distance of the code. The distance of the code C is the minimum Hamming
distance of any two codewords in C. If the distance is d, then one can uniquely recover from at most
d − 1 erasures and from ⌊(d − 1)/2⌋ errors. For this model of worst-case errors it is easy to prove
that Reed-Muller codes perform badly. They have relatively small distance compared to what
random codes of the same rate can achieve (and also compared to explicit families of codes).

Another line of work in Hamming’s worst case setting concerns designing algorithms that can
correct beyond the unique-decoding bound. Here there is no unique answer and so the algorithm
returns a list of candidate codewords. In this case the number of errors that the algorithm can tol-
erate is a parameter of the distance of the code. This question received a lot of attention and among
the works in this area we mention the seminal works of Goldreich and Levin on Hadamard Codes
[GL89] and of Sudan [Sud97] and Guruswami and Sudan [GS99] on list decoding Reed-Solomon
codes. Recently, the list-decoding question for Reed-Muller codes was studied by Gopalan, Kli-
vans and Zuckerman [GKZ08] and by Bhowmick and Lovett [BL15], who proved that the list
decoding radius1 of Reed-Muller codes, over F2, is at least twice the minimum distance (recall
that the unique decoding radius is half that quantity) and is smaller than four times the minimal
distance, when the degree of the code is constant.

Random errors: A different setting in which decoding algorithms are studied is Shannon’s
model of random errors [Sha48]. In Shannon’s average-case setting (which we study here), a
codeword is subjected to a random corruption, from which recovery should be possible with high
probability. This random corruption model is called a channel. The two most basic ones, the Binary
Erasure Channel (BEC) and the Binary Symmetric Channel (BSC), have a parameter p (which may
depend on n), and corrupt a message by independently replacing, with probability p, the symbol
in each coordinate, with a “lost” symbol in the BEC(p) channel, and with the complementary
symbol in the BSC(p) case. In his paper Shannon studied the optimal trade-off achievable for
these channels (and many other channels) between the distance and rate. For every p, the capacity
of BEC(p) is 1 − p, and the capacity of BSC(p) is 1 − h(p), where h is the binary entropy function.2

Shannon also proved that random codes achieve this optimal behavior. That is, for every 0 < ε

there exist codes of rate 1 − h(p) − ε for the BSC (and rate 1 − p − ε for the BEC), that can decode
from a fraction p of errors (erasures) with high probability.

For our purposes, it is more convenient to assume that the codeword is subjected to a fixed
number s of random errors. Note that by the Chernoff-Hoeffding bound, (see e.g., [AS92]), the
probability that more than pn + ω(

√
pn) errors occur in BSC(p) (or BEC(p)) is o(1), and so we

can restrict ourselves to the case of a fixed number s of random errors, by setting the corruption
probability to be p = s/n. We refer to [ASW15] for further discussion on this subject.

1The maximum distance η for which the number of code words within distance η is only polynomially large (in n).
2h(p) = −p log2(p)− (1 − p) log2(1 − p), for p ∈ (0, 1), and h(0) = h(1) = 0.

2

Decoding erasures to decoding errors

Recently, there has been a considerable progress in our understanding of the behavior of Reed-
Muller codes under random erasures. In [ASW15], Abbe, Shpilka and Wigderson showed that
Reed-Muller codes achieve capacity for the BEC for both sufficiently low and sufficiently high
rates. Specifically, they showed that RM(m, r) achieves capacity for the BEC for r = o(m) or
r > m − o(

√

m/ log m). More recently, Kumar and Pfister [KP15] and Kudekar, Mondelli, Şaşoğlu
and Urbanke [KMŞU15] independently showed that Reed-Muller codes achieve capacity for the
BEC in the entire constant rate regime, that is r ∈ [m/2 − O(

√
m), m/2 + O(

√
m)]. These regimes

are pictorially represented in Figure 1.

m/20 m

o(m) o(
√

(m/ log m))O(
√

m)

Figure 1: Regime of r for which RM(m, r) is known to achieve capacity for the BEC

Another result proved by Abbe et al. [ASW15] is that Reed-Muller codes RM(m, m − 2r − 2)
can correct any error pattern if the same erasure pattern can be decoded in RM(m, m − r − 1). This
reduction is appealing on its own, since it connects decoding from erasures — which is easier in
both an intuitive and an algorithmic manner — with decoding from errors; but its importance is
further emphasized by the progress made later by Kumar and Pfister and Kudekar et al., who
showed that Reed-Muller codes can correct many erasures in the constant rate regime, right up to
the channel capacity.

This result show that RM(m, m − (2r + 2)) can cope with most error patterns of weight (1 −
o(1))(m

≤r), which is the capacity of RM(m, m − (r + 1)) for the BEC. While this is polynomially
smaller than what can be achieved in the Shannon model of errors for random codes of the same
rate, this number is still much larger (super-polynomial) than the distance (and the list-decoding
radius) of the code, which is 22r+2. Also, since RM

(

m, m
2 − o(

√
m)
)

can cope with
(

1
2 − o(1)

)

-
fraction of erasures, this translation implies that RM(m, o(

√
m)) can handle that many random

errors.
However, a shortcoming of the proof of Abbe et al. for the BSC is that it is existential. In

particular it does not provide an efficient decoding algorithm. Thus, Abbe et al. left open the
question of coming up with a decoding algorithm for Reed-Muller codes from random errors.

1.2 Our contributions

In this work we give an efficient decoding algorithm for Reed-Muller codes that matches the pa-
rameters given by Abbe et al. Following the aforementioned results about the erasure correcting
ability of Reed-Muller codes, the results can be partitioned into the low-rate and the high-rate
regimes. We begin with the result for the low rate case.

Theorem 1 (Low rate, informal). Let r < δ
√

m for a small enough δ. Then, there is an efficient algorithm
that can decode RM(m, r) from a random set of (1 − o(1)) · (m

≤m/2−r) errors. In particular, if r = o(
√

m),

3

the algorithm can decode from
(

1
2 − o(1)

)

· 2m errors. The running time of the algorithm is O(n4) and it
can be simulated in NC.

For high rate Reed-Muller codes, we cannot hope to achieve such a high error correction capa-
bility as in the low rate case, even information theoretically. We do give, however, an algorithm
that corrects many more errors (a super-polynomially larger number) than what the minimal dis-
tance of the code suggests, and its running time is also nearly linear in the block length of the
code.

Theorem 2 (High rate, informal). Let r = o(
√

m/ log m). Then, there is an efficient algorithm that can
decode RM(m, m − (2r + 2)) from a random set of (1 − o(1))(m

≤r) errors. Moreover, the running time of

the algorithm is 2m · poly((m
≤r)) and it can be simulated in NC.

Recall that the block length of the code is n = 2m, and thus the running time is near linear in n
when r = o(m).

A general property of our algorithm is that it corrects any error pattern in RM(m, m − 2r − 2)
for which the same erasure pattern in RM(m, m − r − 1) can be corrected. Stated differently, if an
erasure pattern can be corrected in RM(m, m− r − 1) then the same pattern, where the “lost” sym-
bol is replaced with arbitrary 0/1 values, can be corrected in RM(m, m − (2r + 2)). This property
is useful when we know RM(m, m − r − 1) can correct a large set of erasures with high probabil-
ity, that is, when m − r − 1 falls in the red region in Figure 1. Thus, our result has implications also
beyond the above two instances. In particular, it may be the case that our algorithm performs well
for other rates as well. For example, consider the following question and the theorem it implies.

Question 3. Does RM(m, m − r − 1) achieve capacity for the BEC?

Theorem 4 (informal). For any value r for which the answer to Question 3 is positive, there exists an
efficient algorithm that decodes RM(m, m − 2r − 2) from a random set of (1 − o(1))(m

≤r) errors with
probability (1 − o(1)) (over the random errors). Moreover, the running time of the algorithm is 2m ·
poly

(

(m
≤r)
)

.

Recall that Abbe et al. [ASW15] also proved that the answer to Question 3 is positive for
r = m − o(m) (that is, for RM(m, o(m))) but this case does not help us as we need to consider
RM(m, m − (2r + 2)) and m − (2r + 2) < 0 in this case. The coding theory community seems
to believe the answer to Question 3 is positive, for all values of r, and conjectures to that effect
were made3 in [CF07, Arı08, MHU14]. Recent simulations have also suggested that the answer
to the question is positive [Arı08, MHU14]. Thus, it seems natural to believe that the answer
is positive for most values of r, even for r = Θ(m). As a conclusion, the belief in the coding
theory community suggests that our algorithm can decode a random set of roughly (m

≤r) errors
in RM(m, m − (2r + 2)). For example, for r = ρ · m, where ρ < 1/2, the minimal distance of
RM(m, m − (2r + 2)) is roughly 22ρm whereas our algorithm can decode from roughly 2h(ρ)m ran-
dom errors (assuming the answer to Question 3 is positive), which is a much larger quantity for
every ρ < 1/2.

In Section 3, we also present an abstraction of our decoding procedure that may be applica-
ble to other linear codes. This is a generalization of the abstract Berlekamp-Welsch decoder or

3The belief that RM codes achieve capacity is much older, but we did not trace back where it appears first.

4

“error-locating pairs” method of Duursma and Kötter [DK94] that connects decodable erasure
patterns on a larger code to decodable error patterns. A specific instantiation of this was observed
by Abbe et al. [ASW15] by connecting decodable error patterns of any linear code C to decodable
erasure patterns of an appropriate “tensor” C′ of C (by essentially embedding these codes in a
large enough RM code). Although Abbe et al. did not provide an efficient decoding algorithm,
the algorithm we present directly applies here (Section 3.2). The abstraction of the “error-locating
pairs” method presented in Section 3 should hopefully be applicable in other contexts too, espe-
cially considering the generality of the results of [KP15, KMŞU15].

1.3 Related literature

In Section 1.1 we surveyed the known results regarding the ability of Reed-Muller codes to correct
random erasures. In this section we summarize the results known about recovering RM codes
from random errors.

Once again, it is useful to distinguish between the low rate and the high rate regime of Reed-
Muller codes. We shall use d to denote the distance of the code in context. For RM(m, r) codes,
d = 2m−r.

In [Kri70], the majority logic algorithm of [Ree54] is shown to succeed in recovering all but
a vanishing fraction of error patterns of weight up to d log d/4 for all RM codes of positive rate.
In [Dum06], Dumer showed for all r such that min(r, m − r) = ω(log m) that most error patterns

of weight at most (d log d/2) · (1 − log m
log d) can be recovered in RM(m, r). To make sense of the

parameters, we note that when r = m − ω(log m) the weight is roughly (d log d/2). To compare
this result to ours, we first consider the case when r = m − o(

√

m/ log m). Here the algorithm

of [Dum06] can correct roughly 2o(
√

m/ log m) random errors in RM(m, r) whereas Theorem 2 gives

an algorithm for correcting roughly mo(
√

m/ log m) ≈ (d log d)O(log m) random errors.
Further, even for the case r = (1 − ρ)m, where ρ < 1/2 is a constant, the bound in the

above result of [Dum06] is equal to O(d log d). On the other hand, assuming a positive answer
to Question 3, Theorem 4 implies an efficient decoding algorithm for RM(m, (1 − ρ)m) that can
decode from, roughly, (m

1
2 ρm) = dO(log 1/ρ) random errors, for this case.

We now turn to other regimes of parameters, specifically RM codes of low rate. For the special
case of r = 1, 2, [HKL05] shows that RM(m, r) codes are capacity-achieving. In [SP92], it is shown
that RM codes of fixed order (i.e., r = O(1)) can decode most error patterns of weight up to
1
2 n(1 −

√

c(2r − 1)mr/nr!), where c > ln(4). In [ASW15], Abbe et al. settled the question for
low order Reed-Muller codes proving that RM(m, r) codes achieve capacity for the BSC when
r = o(m) [ASW15]. We note however that all the results mentioned here are existential in nature
and do not provide an efficient decoding algorithm.

A line of work by Dumer [Dum04, DS06] based on recursive algorithms (that exploit the recur-
sive structure of Reed-Muller codes), obtains algorithmic results mainly for low-rate regimes. In
[Dum04], it is shown that for a fixed degree, i.e., r = O(1), an algorithm of complexity O(n log n)
can correct most error patterns of weight up to n(1/2− ε) given that ε exceeds n−1/2r

. In [Dum06],
this is improved to errors of weight up to 1

2 n(1 − (4m/d)1/2r
) for all r = o(log m). The case

r = ω(log m) is also covered in [Dum06], as described above.
We note that all the efficient algorithms mentioned above (both for high- and low-rate) rely

on the so called Plotkin construction of the code, that is, on its recursive structure (expand-
ing an m-variate polynomial according to the m-th variable f (x1, . . . , xm) = xmg(x1, . . . , xm−1) +

5

m/20 m

log m log m

o(
√

m)

o(
√

m/ log m)

Degree (r) of RM(m, r):

[Dum04, DS06, Dum06]:
≈ n/2 errors O(d log d) errors

O(n log n) time algorithm

Our results:
≈ n/2 errors

O(n4) time algo.

(d log d)O(log m) errors

n1+o(1) time algo.

(d log d)ω(1) errors

assuming positive answer to Question 3

Figure 2: Comparison with [Dum04, DS06, Dum06]

h(x1, . . . , xm−1)), whereas our approach is very different.
We summarize and compare our results with [Dum04, DS06, Dum06] for various range of

parameters in Figure 2 (degree is r and distance is d = 2m−r). The dotted region in Figure 2 corre-
sponds to the uncovered region in Figure 1 beyond m/2, via the connection given in Theorem 4.

1.4 Notation and terminology

Before explaining the idea behind the proofs of our results we need to introduce some notation
and parameters. We shall use the same notation as [ASW15].

• We denote by M(m, r) the set of m-variate monomials over F2 of degree at most r.

• For non-negative integers r ≤ m, RM(m, r) denotes the Reed-Muller code whose codewords
are the evaluation vectors of all multivariate polynomials of degree at most r on m boolean
variables. The maximal degree r is sometimes called the order of the code. The block length

of the code is n = 2m, the dimension k = k(m, r) = ∑
r
i=0 (

m
i)

def
= (m

≤r), and the distance

d = d(m, r) = 2m−r. The code rate is given by R = k(m, r)/n.

• We use E(m, r) to denote the “evaluation matrix” of parameters m, r, whose rows are indexed
by all monomials in M(m, r), and whose columns are indexed by all vectors in F

m
2 . The value

at entry (M, u) is equal to M(u). For u ∈ F
m
2 , we denote by ur the column of E(m, r) indexed

by u, which is a k-dimensional vector, consisting of all evaluations of degree ≤ r monomials
at u. For a subset of columns U ⊆ F

m
2 we denote by Ur the corresponding submatrix of

E(m, r).

• E(m, r) is a generator matrix for RM(m, r). The duality property of Reed-Muller codes (see,
for example, [MS77]) states that E(m, m − r − 1) is a parity-check matrix for RM(m, r), or
equivalently, E(m, r) is a parity-check matrix for RM(m, m − r − 1).

• We associate with a subset U ⊆ F
m
2 its characteristic vector 1U ∈ F

n
2 . We often think of the

vector 1U as denoting either an erasure pattern or an error pattern.

6

• For a positive integer n, we use the standard notation [n] for the set {1, 2, . . . , n}.

We next define what we call the degree-r syndrome of a set.

Definition 5 (Syndrome). Let r ≤ m be two positive integers. The degree-r syndrome, or simply r-
syndrome of a set U = {u1, . . . , ut} ⊆ F

m
2 is the (m

≤r)-dimensional vector α whose entries are indexed by
all monomials M ∈ M(m, r), such that

αM
def
=

t

∑
i=1

M(ui).

Note that this is nothing but the syndrome of the error pattern 1U ∈ F
n
2 in the code RM(m, m−

r − 1) (whose parity check matrix is the generator matrix of RM(m, r)).

1.5 Proof techniques

In this section we describe our approach for constructing a decoding algorithm. Recall that the
algorithm has the property that is decodes in RM(m, m − 2r − 2) any error pattern U which is
correctable from erasures in RM(m, m − r − 1). Such patterns are characterized by the property
that the columns of E(m, r) corresponding to the elements of U are linearly independent vectors.
Thus, it suffices to give an algorithm that succeeds whenever the error pattern 1U gives rise to
such linearly independent columns, which happens with probability 1 − o(1) for the regime of
parameters mentioned in Theorem 1 and Theorem 2.

So let us assume from now on that the error pattern 1U corresponds to a set of linearly indepen-
dent columns in E(m, r). Notice that by the choice of our parameters, our task is to recover U from
the degree (2r + 1)-syndrome of U. Furthermore, we want to do so efficiently. For convenience,
let t = |U| = (1 − o(1))(m

≤r).

Recall that the degree-(2r + 1) syndrome of U is the (m
≤2r+1)-long vector α such that for every

monomial M ∈ M(m, 2r + 1), αM = ∑
t
i=1 M(ui). Imagine now that we could somehow find

degree-r polynomials fi(x1, . . . , xm) satisfying fi(uj) = δi,j. Then, from knowledge of α and, say,
f1, we could compute the following sums:

σℓ =
t

∑
i=1

(f1 · xℓ)(ui), ℓ ∈ [m].

Indeed, if we know α and f1 then we can compute each σℓ, as it just involves summing several
coordinates of α (since deg(f1 · xℓ) ≤ r + 1). We now observe that

σℓ =
t

∑
i=1

(f1 · xℓ)(ui) = (f1 · xℓ)(u1) = (u1)ℓ.

In other words, knowledge of such an f1 would allow us to discover all coordinates of u1 and in
particular, we will be able to deduce u1, and similarly all other ui using fi.

Our approach is thus to find such polynomials fi. What we will do is set up a system of linear
equations in the coefficients of an unknown degree r polynomial f and show that f1 is the unique
solution to the system. Indeed, showing that f1 is a solution is easy and the hard part is proving
that it is the unique solution.

7

To explain how we set the system of equations, let us assume for the time being that we actually
know u1. Let f = ∑M∈M(m,r) cM · M, where we think of {cM} as unknowns. Consider the following
linear system:

1.
t

∑
i=1

f (ui) = f (u1) = 1,

2.
t

∑
i=1

(f · M)(ui) = M(u1), for all M ∈ M(m, r).

3.
t

∑
i=1

(f · M · (xℓ + (u1)ℓ + 1))(ui) = M(u1) for every ℓ ∈ [m] and for all M ∈ M(m, r).

In words, we have a system of 2 + (m
≤r) + m · (m

≤r) equations in (m
≤r) variables (the coefficients of

f). Observe that f = f1 is indeed a solution to the system. To prove that it is the unique solution
we rely on the fact that the columns of Ur are linearly independent and hence expressing ur

1 as a
linear combination of those columns can be done in a unique way.

Now we explain what to do when we do not know u1. Let v = (v1, . . . , vm) ∈ F
m
2 . We modify

the linear system above to:

1.
t

∑
i=1

f (ui) = f (v) = 1,

2.
t

∑
i=1

(f · M)(ui) = M(v) for all M ∈ M(m, r).

3.
t

∑
i=1

(f · M · (xℓ + vℓ + 1))(ui) = M(v) for all ℓ ∈ [m] and M ∈ M(m, r).

Now the point is that one can prove that if a solution exists then it must be the case that v is an
element of U. Indeed, the set of equations in item 2 implies that vr is in the linear span of the
columns of Ur. The linear equations in item 3 then imply that v must actually be in the set U.

Notice that what we actually do amounts to setting, for every v ∈ F
m
2 , a system of linear

equations of size roughly (m
≤r). Such a system can be solved in time poly

(

(m
≤r)
)

. Thus, when we

go over all v ∈ F
m
2 we get a running time of 2m · poly

(

(m
≤r)
)

, as claimed.

Our proof can be viewed as an algorithmic version of the proof of Theorem 1.8 of Abbe et al.
[ASW15]. That theorem asserts that when the columns of Ur are linearly independent, the (2r+ 1)-
syndrome of U is unique. In their proof of the theorem they first use the (2r)-syndrome to claim
that if V is another set with the same (2r)-syndrome then the column span of Ur is the same as that
of Vr. Then, using the degree (2r + 1) monomials they deduce that U = V. This is similar to what
our linear system does, but, in contrast, [ASW15] did not have an efficient algorithmic version of
this statement.

2 Decoding Algorithm For Reed-Muller Codes

We begin with the following basic linear algebraic fact.

8

Lemma 6. Let u1, . . . , ut ∈ F
m
2 such that {ur

1, . . . , ur
t} are linearly independent. Then, for every i ∈ [t],

there exists a polynomial fi so that for every j ∈ [t],

fi(uj) = δi,j =

{

1 if i = j

0 otherwise.

For completeness, we give the short proof.

Proof. Consider the matrix Ur ∈ F
t×(m

≤r)

2 whose i-th row is ur
i . A polynomial fi which satisfies

the properties of the lemma is a solution to the linear system Urx = ei, where ei ∈ F
t
2 is the i-th

elementary basis vector (that is, (ei)j = δi,j), and the (m
≤r) unknowns are the coefficients of fi. By

the assumption that U is of full rank, indeed there exists a solution.

The algorithm would proceed by making a guess v = (v1, . . . , vm) ∈ F
m
2 for one of the error

locations. If we could come up with an efficient way to verify that the guess is correct, this would
immediately yield a decoding algorithm. We shall verify our guess by using the dual polynomials
f1, . . . , ft described above. We shall find them by solving a system of linear equations that can be
constructed from the (2r + 1)-syndrome of {u1, . . . , um}. We will need the following crucial, yet
simple, observation.

Observation 7. Let f be any m-variate polynomial of degree at most 2r + 1, and u1, . . . , ut ∈ F
m
2 . Then,

the sum ∑
t
i=1 f (ui) can be computed given the (2r + 1)-syndrome of {u1, . . . , ut}, in time O

(

(m
2r+1)

)

.

Proof. For any M ∈ M(m, 2r + 1), denote αM = ∑
t
i=1 M(ui) (so that α = (αM)M∈M(M,2r+1) is

precisely the syndrome of {u1, . . . , ut}). Write f = ∑M∈M(m,2r+1) cM · M, where cM ∈ F2, then

t

∑
i=1

f (ui) =
t

∑
i=1

∑
M∈M(m,2r+1)

cM · M(ui)

= ∑
M∈M(m,2r+1)

cM

(

t

∑
i=1

M(ui)

)

= ∑
M∈M(m,2r+1)

cMαM.

The following lemma shows how to verify a guess for an error location. It is the main ingre-
dient in the analysis of our algorithm and the reason why it works. Basically, the lemma gives
a system of linear equations whose solution enables us to decide whether a given v ∈ F

m
2 is a

corrupted coordinate or not, without knowledge of the set of errors U but only of its syndrome.
In a sense, this lemma is analogous to the Berlekamp-Welch algorithm, which also gives a system
of linear equations whose solution reveals the set of erroneous locations ([WB86], and see also the
exposition in Chapter 13 of [GRS14]).

Lemma 8 (Main Lemma). Let u1, . . . , ut ∈ F
m
2 such that {ur

1, . . . , ur
t} are linearly independent, and v =

(v1, . . . , vm) ∈ F
m
2 . Suppose there exists a multilinear polynomial f ∈ F2[x1, . . . , xm] with deg(f) ≤ r

such that for every monomial M ∈ M(m, r),

1.
t

∑
i=1

f (ui) = f (v) = 1,

2.
t

∑
i=1

(f · M)(ui) = M(v), and

9

3.
t

∑
i=1

(f · M · (xℓ + vℓ + 1))(ui) = M(v) for every ℓ ∈ [m].

Then there exists i ∈ [t] such that v = ui.

Observe that if indeed v = ui for some i ∈ [t], then the polynomial fi guaranteed by Lemma 6
satisfies those equations. Hence, the lemma should be interpreted as saying the converse: that
if there exists such a solution, then v = ui for some i. Further, given the (2r + 1)-syndrome of
{u1, . . . , ut} as input, Observation 7 shows that each of the above constraints are linear constraints

in the coefficients of f . Thus, finding such an f is merely solving a system of O
(

(m
≤r)
)

linear

equations in (m
≤r) unknowns and can be done in poly

(

(m
≤r)
)

time.

Proof of Lemma 8. Let J =
{

j | f (uj) = 1
}

. Note that by item 1 it holds that J 6= ∅.

Subclaim 9. ∑
i∈J

ur
i = vr.

Proof. Let M ∈ M(m, r). We show that ∑i∈J M(ui) = M(v), i.e., that the M’th
coordinate of ∑i∈J ur

i is equal to that of vr. Indeed, as f satisfies the constraints in
item 2,

M(v) =
t

∑
i=1

(f · M)(ui) = ∑
i∈J

(f · M)(ui) + ∑
i 6∈J

(f · M)(ui) = ∑
i∈J

M(ui). (Subclaim)

For any ℓ ∈ [m], let Jℓ =
{

j | f (uj) = 1 and (uj)ℓ = vℓ
}

⊆ J. Observe that this definition implies
that for every j ∈ [t], the index j is in Jℓ if and only if (f · (xℓ + vℓ + 1))(uj) = 1. Using a similar
argument, we can show the following.

Subclaim 10. For every ℓ ∈ [m],

∑
i∈Jℓ

ur
i = vr. (11)

Proof. Again, for any M ∈ M(m, r) the constraints in item 3 imply that

M(v) =
t

∑
i=1

(f · M · (xℓ + vℓ + 1))(ui) = ∑
i∈Jℓ

M(ui). (Subclaim)

From the above claims,
vr = ∑

i∈J

ur
i = ∑

i∈J1

ur
i = · · · = ∑

i∈Jm

ur
i .

By the linear independence of {ur
1, . . . , ur

t}, it follows that J = J1 = J2 = · · · = Jm. Indeed, there
is a unique linear combination of {ur

1, . . . , ur
t} that gives vr. The only vector which can be in the

(non-empty) intersection
⋂m

k=1 Jk is v, and so there exists i ∈ [t] so that ui = v.

Lemma 8 implies a natural algorithm for decoding from t errors indexed by vectors {u1, . . . , ut},
assuming {ur

1, . . . , ur
t} are linearly independent, that we write down explicitly in Algorithm 1.

10

Algorithm 1 : Reed-Muller Decoding

Input: A (2r + 1)-syndrome of {u1, . . . , ut}
1: E = ∅

2: for all v = (v1, . . . , vm) ∈ F
m
2 do

3: Solve for a polynomial f ∈ F2[x1, . . . , xm] of degree at most r:

•
t

∑
i=1

f (ui) = f (v) = 1,

•
t

∑
i=1

(f · M)(ui) = M(v) for all M ∈ M(m, r).

•
t

∑
i=1

(f · M · (xℓ + vℓ + 1))(ui) = M(v) for all ℓ ∈ [m] and M ∈ M(m, r).

4: if there is a polynomial f that satisfies the above system of equations then

5: Add v to the set E .
6: return the set E as the error locations.

Theorem 12. Given the (2r + 1)-syndrome of t unknown vectors {u1, . . . , ut} ⊆ F
m
2 such that

{ur
1, . . . , ur

t} are linearly independent, Algorithm 1 outputs {u1, . . . , ut}, runs in time 2m · poly((m
≤r))

and can be realized using a circuit of depth poly(m) = poly(log n).

Proof. The algorithm enumerates all vectors in F
m
2 , and for each candidate v checks whether there

exists a solution to the linear system of poly((m
≤r)) equations in poly((m

≤r)) unknowns given in
Lemma 8. Observation 7 shows that this system of linear equations can be constructed from the
(2r + 1)-syndrome in poly((m

≤r)) time.
By Lemma 6 and Lemma 8, a solution to this system exists if and only if there is i ∈ [t] so that

v = ui. The bound on the running time follows from the description of the algorithm. Further-
more, all 2m = n linear systems can be solved in parallel, and each linear system can be solved
with an NC

2 circuit (see, e.g., [MV97]).

Observe that the the proof of correctness for Algorithm 1 is valid, for any value of r, whenever
the set of error locations {u1, . . . , ut} satisfies the property that {ur

1, . . . , ur
t} are linearly indepen-

dent. Therefore, we would like to apply Theorem 12 in settings where {u1, . . . , ut} are linearly
independent with high probability.

For the constant rate regime, Kumar and Pfister [KP15] and Kudekar, Mondelli, Şaşoğlu and
Urbanke [KMŞU15] proved that RM(m, m − r − 1) achieves capacity for r = m/2 ± O(

√
m).

Theorem 13 ([KP15], Theorem 23). Let r ≤ m be integers such that r = m/2 ± O(
√

m). Then, for
t = (1 − o(1))(m

≤r), with probability 1 − o(1), for a set of vectors {u1, . . . , ut} ⊆ F
m
2 chosen uniformly at

random, it holds that {ur
1, . . . , ur

t} are linearly independent over F
(m
≤r)

2 .

Letting r = m/2 − o(
√

m) and looking at the code RM(m, m − 2r − 2) = RM(m, o(
√

m)) so
that (m

≤r) = (1/2 − o(1))2m, we get the following statement, stated earlier as Theorem 1.

Corollary 14. There exists a (deterministic) algorithm that is able to correct t = (1/2 − o(1))2m random

errors in RM(m, o(
√

m) with probability 1− o(1). The algorithm runs in time 2m ·
(

(m
m/2−o(

√
m)
)3

≤ n4.

11

Alternatively, we can pick r = m/2 − O(
√

m) and correct c · 2m random errors in the code
RM(m, O(

√
m)), where c is some positive constant that goes to zero as the constant hidden under

the big O increases.
For the high-rate regime, recall the following capacity achieving result proved in [ASW15]:

Theorem 15 ([ASW15], Theorem 4.5). Let ε > 0, r ≤ m be two positive integers and t <

(m−log((m
≤r))−log(1/ε)
≤r

). Then, with probability at least 1 − ε, for a set of vectors {u1, . . . , ut} ⊆ F
m
2 cho-

sen uniformly at random, it holds that {ur
1, . . . , ur

t} are linearly independent over F
(m
≤r)

2 .

Using Theorem 15, we apply Theorem 12 to obtain the following corollary, which was stated
informally as Theorem 2.

Corollary 16. Let ε > 0, and r ≤ m be two positive integers. Then there exists a (deterministic) algo-

rithm that is able to correct t =
⌊

(m−log((m
≤r))−log(1/ε)
≤r

)
⌋

− 1 random errors in RM(m, m − (2r + 2)) with

probability at least 1 − ε. The algorithm runs in time 2m · poly
(

(m
≤r)
)

.

If r = o(
√

m/ log m), the bound on t is (1 − o(1))(m
≤r), as promised.

More generally, a positive answer to Question 3 is equivalent to {ur
1, . . . , ur

t} for t = (1 −
o(1))(m

≤r) being linearly independent with probability 1− o(1) (see Corollary 2.9 in [ASW15]), and
thus we also obtain the following corollary, which was stated informally as Theorem 4.

Corollary 17. Let r ≤ m be two positive integers. Suppose that RM(m, m − r − 1) achieves capacity for
the BEC. Then there exists a (deterministic) algorithm that is able to correct (1 − o(1))(m

≤r) random errors

in RM(m, m − (2r + 2)) with probability 1 − o(1). The algorithm runs in time 2m · poly
(

(m
≤r)
)

.

We note that for all values of r, 2m · poly
(

(m
≤r)
)

is polynomial in the block length n = 2m, and

when r = o(m) this is equal to n1+o(1).

3 Abstractions and Generalizations

3.1 An abstract view of the decoding algorithm

In this section we present a more abstract view of Algorithm 1, in the spirit of the works by Pel-
likaan, Duursma and Kötter ([Pel92, DK94]) which abstract the Berlekamp-Welch algorithm (see
also the exposition in [Sud01]). Stated in this way, it is also clear that the algorithm works also
over larger alphabets, so we no longer limit ourselves to dealing with binary alphabets. As shown
in [KP15], Reed-Muller codes over Fq (sometimes referred to as Generalized Reed-Muller codes) also
achieve capacity in the constant rate regime.

We begin by giving the definition of a (pointwise) product of two vectors, and of two codes.

Definition 18. Let u, v ∈ F
n
q . Denote by u ∗ v ∈ F

n
q the vector (u1v1, . . . , unvn). For A, B ⊆ F

n
q we

similarly define A ∗ B = {u ∗ v | u ∈ A, v ∈ B}.

Following the footsteps of Algorithm 1, we wish to decode, in a code C, error patterns which
are correctable from erasures in a related code N, through the use of an error-locating code E. Under
some assumptions on C, N and E, we can use a similar proof in order to do this.

12

Theorem 19. Let E, C, N ⊆ F
n
q be codes with the following properties.

1. E ∗ C ⊆ N

2. For any pattern 1U that is correctable from erasures in N, and for any coordinate i 6∈ U there exists
a codeword e ∈ E such that ej = 0 for all j ∈ U and ei = 1.

Then there exists an efficient algorithm that corrects in C any pattern 1U, which is correctable from erasures
in N.

To put things in perspective, earlier we set C = RM(m, m − 2r − 2), N = RM(m, m − r − 1)
and E = RM(m, r + 1). It is immediate to observe that item 1 holds in this case, and item 2
is guaranteed by Lemma 6: Indeed, consider the error pattern U = {u1, . . . , ut} and the dual
polynomials { fi}t

i=1, and let v 6∈ U be any other coordinate of the code. If there exists j ∈ [t] such
that f j(v) = 1, we can pick the codeword g = f j · (1 + xℓ + vℓ), where ℓ is some coordinate such
that vℓ 6= (uj)ℓ. g has degree at most r + 1 and so it is a codeword in E, and it can be directly

verified that it satisfies the conditions of item 2. If f j(v) = 0 for all j, we can pick g = 1 − ∑
t
i=1 fi.

It is also worth pointing out the differences between our approach and the abstract Berlekamp-
Welch decoder of Duursma and Kötter: They similarly set up codes E, C and N such that E ∗ C ⊆
N. However, instead of item 2, they require that for any e ∈ E and c ∈ C, if e ∗ c = 0 then e = 0 or
c = 0 (or similar requirements regarding the distances of E and C that guarantee this property).
This property, as well as the distance properties, do not hold in the case of Reed-Muller codes.

Turning back to the proof of Theorem 19, the algorithm and the proof of correctness turn out
to be very short to describe in this level of generality. Given a word y ∈ F

n
q , the algorithm would

solve the the linear system a ∗ y = b, in unknowns a ∈ E and b ∈ N. Under the hypothesis of the
theorem, we show that common zeros of the possible solutions for a determine exactly the error
locations. Once the locations of the errors are identified, correcting them is easy: we can replace
the error locations by the symbol ’?’ and use an algorithm which corrects erasures (this can always
be done efficiently, when unique decoding is possible, as this merely amounts to solving a system
of linear equations). The algorithm is given in Algorithm 2.

Algorithm 2 : Abstract Decoding Algorithm

Input: received word y ∈ F
n
q such that y = c + e, with c ∈ C and e is supported on a set U

1: Solve for a ∈ E, b ∈ N, the linear system a ∗ y = b.
2: Let {a1, . . . , ak} be a basis for the solution space of a, and let E denote the common zeros of

{ai | i ∈ [k]}.
3: For every j ∈ E , replace yj with ’?’, to get a new word y′.
4: Correct y′ from erasures in C.

Note that in Theorem 19 we assume that the error pattern U is correctable from erasures in N,
whereas Algorithm 2 first computes a set of error locations E and then corrects y′ from erasures in
C. Thus, the proof of Theorem 19 can be divided into two steps. The first, and the main one, will
be to show that E = U. The second, which is merely an immediate observation, will be to show
that U is also correctable from erasures in C. We begin with the second part:

Lemma 20. Assume the setup of Theorem 19, and let U be any pattern which is correctable from erasures
in N. Then U is also correctable from erasures in C.

13

Proof. We may assume that U 6= ∅, as otherwise the statement is trivial. Suppose on the contrary
that U is not correctable from erasures in C, that is, there exists a non-zero codeword c ∈ C
supported on U. For any a ∈ E, we have that a ∗ c is a codeword of N which is supported on a
subset of U. In order to reach a contradiction, we want to pick a ∈ E so that a ∗ c is a non-zero
codeword of N, which contradicts the assumption that U is correctable from erasures in N.

Pick i ∈ U so that ci 6= 0. Observe that if U is correctable from erasures in N then so is U \ {i}.
By item 2 in Theorem 19 with respect to the set U \ {i} there exists a ∈ E with ai = 1. Thus, in
particular a ∗ c is non-zero.

We now prove that main part of Theorem 19, that is, that under the assumptions stated in the
theorem, Algorithm 2 correctly decodes (in C) any error pattern that is correctable from erasures
in N.

Proof of Theorem 19. Write y = c + e, so that c ∈ C is the transmitted codeword and e is supported
on the set of error locations U. As noted above, by Lemma 20 it is enough to show that under the
assumptions of the theorem (in particular, that U is correctable from erasures in N), the set of error
locations E computed by Algorithm 2 equals U.

In the following two lemmas, we argue that any solution a for the system vanishes on the error
points, and then that for every other index i, there exists a solution whose i-th entry is non-zero
(and so there must be a basis element for the solution space whose i-th entry is non-zero).

The following lemma states that every solution a ∈ E to the equation a ∗ y = b vanishes on U,
the support of e. In the pointwise product notation, this is equivalent to showing that a ∗ e = 0.

Subclaim 21. For every a ∈ E, b ∈ N such that a ∗ y = b, it holds that a ∗ e = 0.

Proof. Since a ∗ y = b ∈ N (by the assumption) and a ∗ c ∈ N (by item 1),
we get that a ∗ e = a ∗ y − a ∗ c is also a codeword in N. Furthermore, a ∗ e is
also supported on U, and since U is an erasure-correctable pattern in N, the only
codeword that is supported on U is the zero codeword. (Subclaim)

To finish the proof, we show that for any i 6∈ U, there is a solution a to the system of linear
equations with ai = 1.

Subclaim 22. For every i 6∈ U there exists a ∈ E, b ∈ N such that a is 0 on U, ai = 1
and a ∗ y = b.

Proof. By item 2, since U is correctable from erasures in N, for every i 6∈ U we can
pick a ∈ E such that a is 0 on U and ai = 1. Set b = a ∗ y. It remains to be shown
that b is a codeword of N. This follows from the fact that

b = a ∗ c + a ∗ e = a ∗ c,

where the second equality follows from the fact that a is zero on U (the support of
e). Finally, a ∗ c is a codeword of N by item 1. (Subclaim)

These two claims complete the proof of the theorem.

14

3.2 Decoding of Linear Codes over F2

In [ASW15], it is observed that their results for Reed-Muller codes imply that for every linear code
N, every pattern which is correctable from erasures in N is correctable from errors in what they
call the “degree-three tensoring” of N. One can in fact use our Algorithm 1 almost verbatim to
obtain an efficient version of this statement. However, here we remark that this is nothing but a
special case of Theorem 19 with an appropriate setting of the codes E, C, N. We begin by briefly
describing their definitions and their argument.

The basic tool used by [ASW15] is embedding any parity check matrix in the matrix E(m, 1)
for an appropriate choice of m. Let N be any linear code of dimension k over F2 and H be its parity
check matrix. For convenience, we first extend N by adding a parity bit. This increases the block
length by 1, does not decrease the distance and preserves the dimension. A parity check matrix
for the extended code can by obtained from H by constructing the matrix

H0 =









1 1 · · · 1
0

H...
0









.

The main observation now is that E(m, 1) is an (m + 1)× 2m matrix that contains all vectors of
the form (1, v) for v ∈ F

m
2 , so if we set m = n − k to be the number of rows of H, we can pick a

subset S of the columns of E(m, 1) that correspond to the columns that appear in H0.
[ASW15] then define the degree-three tensoring of N, which is a code C whose parity check

matrix is H⊗3
0 : this is an (m

≤3) × n matrix with rows indexed by tuples i1 < i2 < i3, with the
corresponding row being the pointwise product (as in Definition 18) of rows i1, i2, i3 of H0. One
can then verify that Algorithm 1 can be used in order to correct (in C) any error pattern which is
correctable from erasures in N, by using the algorithm with r = 1 and having the error location
guesses run only over the columns in S.

A closer look reveals that this construction is in fact a special case of Theorem 19. Given any
linear binary code N with parity check matrix H, the main observation of [ASW15] can be in-
terpreted as saying that when we add a parity bit to N, we can embed N in a puncturing of
RM(m, m − 2) (whose parity check matrix is E(m, 1)). We state it in the following claim:

Claim 23. Let N′ denote the subcode of RM(m, m − 2) of all words that are 0 outside S. Then N is
precisely the restriction of N′ to the S coordinates.

Proof. Let b ∈ N. Then H0b = 0, i.e. the columns of H0 indexed by the non-zero elements in b

add up to 0. Let b′ ∈ F
2m

2 denote that extension of b into a vector of length 2m obtained by filling
0’s in every coordinate not in S. Then E(m, 1)b′ = 0, since the same columns that appeared in H0

appear in E(m, 1). This implies that b′ ∈ N′.
Similarly, for every b′ ∈ N′, we can define b to be its restriction to S, and then H0b = 0, i.e.

b ∈ N.

The degree-three tensoring of N, which we denote by C, can then be similarly embedded in a
puncturing of RM(m, m − 4), where again, only the coordinates in S remain, and similarly C can
be seen to be the restriction to S to the subcode C′ of RM(m, m − 4) that contains the words that
are 0 outside S.

15

Finally, we define the error locating code E to be the restriction of RM(m, 2) to the coordinates
of S.

We now show that the conditions of Theorem 19 are satisfied in this case. We begin with
item 2. If U is a correctable pattern in N, it means that the columns indexed by U in H0 are
linearly independent. It follows that they are also linearly independent as columns in E(m, 1).
Hence, using the same arguments as before we can find, for any coordinate v 6∈ U, a degree 2
polynomial g such that g(v) = 1 and g restricted to U is 0. Restricting the evaluations of g to the
subset of coordinates S, we get a codeword e ∈ E with the required property.

As for item 1: We first argue that RM(m, 2) ∗C′ ⊆ N′, since the degrees match and the property
of vanishing outside S is preserved under multiplication. Projecting back to the coordinates in S,
we get that E ∗ C ⊆ N.

Acknowledgement

We would like thank Avi Wigderson, Emmanuel Abbe and Ilya Dumer for helpful discussions
and for commenting on an earlier version of the paper. We thank Venkatesan Guruswami and
anonymous reviewers for pointing out the abstraction of Algorithm 1 given in Section 3.

References

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof Verification and the Hardness of Approximation Problems. J. ACM, 45(3):501–
555, 1998.

[Arı08] Erdal Arıkan. A Performance Comparison of Polar Codes and Reed-Muller Codes.
IEEE Communications Letters, 12(6):447–449, 2008.

[AS92] Noga Alon and Joel H. Spencer. The Probabilistic Method. John Wiley, 1992.

[ASW15] Emmanuel Abbe, Amir Shpilka, and Avi Wigderson.
Reed-Muller Codes for Random Erasures and Errors. In Proceedings of the 47th
Annual ACM Symposium on Theory of Computing (STOC 2015), pages 297–306, 2015.
Pre-print available at arXiv:1411.4590.

[BF90] Donald Beaver and Joan Feigenbaum. Hiding instances in multioracle queries. In Pro-
ceedings of the 7th Symposium on Theoretical Aspects of Computer Science (STACS 1990),
pages 37–48, 1990.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund.
Non-Deterministic Exponential Time has Two-Prover Interactive Protocols. Com-
putational Complexity, 1:3–40, 1991. Preliminary version in the 31st Annual IEEE
Symposium on Foundations of Computer Science (FOCS 1990).

[BL15] Abhishek Bhowmick and Shachar Lovett. The List Decoding Radius of Reed-Muller Codes over Small Fields.
In Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC 2015),
pages 277–285, 2015. Pre-print available at eccc:TR14-087.

16

http://dx.doi.org/10.1145/278298.278306
http://dx.doi.org/10.1109/LCOMM.2008.080017
https://books.google.co.il/books?id=XLwRrn4rpk4C
http://doi.acm.org/10.1145/2746539.2746575
http://arxiv.org/abs/1411.4590
http://dx.doi.org/10.1007/3-540-52282-4_30
http://dx.doi.org/10.1007/BF01200056
http://dx.doi.org/10.1145/2746539.2746543
http://eccc.hpi-web.de/report/2014/087/

[BV10] Andrej Bogdanov and Emanuele Viola. Pseudorandom Bits for Polynomials. SIAM
J. Comput., 39(6):2464–2486, 2010. Preliminary version in the 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2007). Pre-print available at
eccc:TR14-081.

[CF07] Daniel J. Costello, Jr. and G. David Forney, Jr.
Channel coding: The road to channel capacity. Proceedings of the IEEE, 95(6):1150–
1177, 2007.

[DK94] Iwan M. Duursma and Ralf Kötter. Error-locating pairs for cyclic codes. IEEE Transac-
tions on Information Theory, 40(4):1108–1121, 1994.

[DS06] Ilya Dumer and Kirill Shabunov. Recursive error correction for general Reed-Muller codes.
Discrete Applied Mathematics, 154(2):253–269, 2006.

[Dum04] Ilya Dumer. Recursive decoding and its performance for low-rate Reed-Muller codes.
IEEE Transactions on Information Theory, 50(5):811–823, 2004.

[Dum06] Ilya Dumer. Soft-decision decoding of Reed-Muller codes: a simplified algorithm.
IEEE Transactions on Information Theory, 52(3):954–963, 2006.

[GKZ08] Parikshit Gopalan, Adam R. Klivans, and David Zuckerman.
List-decoding Reed-Muller codes over small fields. In Proceedings of the 40th An-
nual ACM Symposium on Theory of Computing (STOC 2008), pages 265–274, 2008.

[GL89] Oded Goldreich and Leonid A. Levin. A Hard-Core Predicate for all One-Way Functions.
In Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC 1989),
pages 25–32, 1989.

[GRS14] Venkatesan Guruswami, Atri Rudra, and Madhu Su-
dan. Essential Coding Theory. 2014. Available at
http://www.cse.buffalo.edu/faculty/atri/courses/coding-theory/book/.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon and algebraic-geometry codes.
IEEE Transactions on Information Theory, 45(6):1757–1767, 1999.

[Ham50] R. W. Hamming. Error Detecting and Error Correcting Codes. Bell System Technical
Journal, 26(2):147–160, 1950.

[HKL05] Tor Helleseth, Torleiv Kløve, and Vladimir I. Levenshtein.
Error-correction capability of binary linear codes. IEEE Transactions on Information
Theory, 51(4):1408–1423, 2005.

[KMŞU15] Shrinivas Kudekar, Marco Mondelli, Eren Şaşoğlu, and Rüdiger L. Urbanke.
Reed-Muller Codes Achieve Capacity on the Binary Erasure Channel under MAP Decoding.
CoRR, abs/1505.05831, 2015.

[KP15] Santhosh Kumar and Henry D. Pfister. Reed-Muller Codes Achieve Capacity on Erasure Channels.
CoRR, abs/1505.05123, 2015.

17

http://dx.doi.org/10.1137/070712109
http://eccc.hpi-web.de/report/2014/081/
http://dx.doi.org/10.1109/JPROC.2007.895188
http://dx.doi.org/10.1109/18.335964
http://dx.doi.org/10.1016/j.dam.2005.05.013
http://dx.doi.org/10.1109/TIT.2004.826632
http://dx.doi.org/10.1109/TIT.2005.864425
http://dx.doi.org/10.1145/1374376.1374417
http://dx.doi.org/10.1145/73007.73010
http://www.cse.buffalo.edu/faculty/atri/courses/coding-theory/book/
http://www.cse.buffalo.edu/faculty/atri/courses/coding-theory/book/
http://dx.doi.org/10.1109/18.782097
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://dx.doi.org/10.1109/TIT.2005.844080
http://arxiv.org/abs/1505.05831
http://arxiv.org/abs/1505.05123

[Kri70] R. E. Krichevskiy. On the number of Reed-Muller code correctable errors. Dokl. Sov.
Acad. Sci., 191:541–547, 1970.

[MHU14] Marco Mondelli, Seyed Hamed Hassani, and Rüdiger L. Urbanke.
From Polar to Reed-Muller Codes: A Technique to Improve the Finite-Length Performance.
IEEE Transactions on Communications, 62(9):3084–3091, 2014.

[MS77] F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Number v. 2
in North-Holland mathematical library. North-Holland Publishing Company, 1977.

[Mul54] D. E. Muller. Application of Boolean algebra to switching circuit design and to error detection.
Electronic Computers, Transactions of the I.R.E. Professional Group on, EC-3(3):6–12, Sept
1954.

[MV97] Meena Mahajan and V. Vinay. Determinant: Combinatorics, Algorithms, and Complexity.
Chicago J. Theor. Comput. Sci., 1997.

[Pel92] Ruud Pellikaan. On decoding by error location and dependent sets of error positions.
Discrete Mathematics, 106-107:369–381, 1992.

[Ree54] Irving S. Reed. A class of multiple-error-correcting codes and the decoding scheme.
Trans. of the IRE Professional Group on Information Theory (TIT), 4:38–49, 1954.

[Sha48] C. E. Shannon. A Mathematical Theory of Communication. The Bell System Technical
Journal, 27:379–423, 623–656, 1948.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

[SP92] V. M. Sidel’nikov and A. S. Pershakov. Decoding of Reed-Muller Codes with a Large Number of Errors.
Problems Inform. Transmission, 28(3):80–94, 1992.

[Sud97] Madhu Sudan. Decoding of Reed Solomon Codes beyond the Error-Correction Bound.
J. Complexity, 13(1):180–193, 1997.

[Sud01] Madhu Sudan. Algorithmic Introduction to Coding Theory, 2001. Lecture Notes,
available at http://people.csail.mit.edu/madhu/FT02/scribe/lect11.pdf.

[WB86] Lloyd R. Welch and Elwyn R. Berlekamp. Error correction for algebraic block codes,
1986. US Patent 4,633,470.

18

http://dx.doi.org/10.1109/TCOMM.2014.2345069
http://books.google.com/books?id=G99QAAAAMAAJ
http://dx.doi.org/10.1109/IREPGELC.1954.6499441
http://cjtcs.cs.uchicago.edu/articles/1997/5/contents.html
http://dx.doi.org/10.1016/0012-365X(92)90567-Y
http://dx.doi.org/10.1109/TIT.1954.1057465
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1145/146585.146609
http://mi.mathnet.ru/eng/ppi1360
http://dx.doi.org/10.1006/jcom.1997.0439
http://people.csail.mit.edu/madhu/FT02/scribe/lect11.pdf
http://people.csail.mit.edu/madhu/FT02/scribe/lect11.pdf
http://www.google.com/patents/US4633470

	1 Introduction
	1.1 Reed-Muller Codes
	1.2 Our contributions
	1.3 Related literature
	1.4 Notation and terminology
	1.5 Proof techniques

	2 Decoding Algorithm For Reed-Muller Codes
	3 Abstractions and Generalizations
	3.1 An abstract view of the decoding algorithm
	3.2 Decoding of Linear Codes over F2

