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LCD Cyclic Codes over Finite Fields
Chengju Li, Cunsheng Ding, and Shuxing Li

Abstract

In addition to their applications in data storage, communications systems, and consumer electronics, LCD
codes – a class of linear codes – have been employed in cryptography recently. LCD cyclic codes were referred to
as reversible cyclic codes in the literature. The objectiveof this paper is to construct several families of reversible
cyclic codes over finite fields and analyse their parameters.The LCD cyclic codes presented in this paper have
very good parameters in general, and contain many optimal codes. A well rounded treatment of reversible cyclic
codes is also given in this paper.

Index Terms

BCH codes, cyclic codes, linear codes, LCD codes, reversible codes.

I. INTRODUCTION

Throughout this paper, letq be a power of a primep. An [n,k,d] codeC over GF(q) is ak-dimensional
subspace of GF(q)n with minimum (Hamming) distanced. Let C be an[n,k] linear code over GF(q). Its
dual code, denoted byC⊥, is defined by

C⊥ = {b ∈ GF(q)n : bcT = 0 ∀ c ∈ C},

wherebcT denotes the standard inner product of the two vectorsb andc. A linear code is called anLCD
code (linear code with complementary dual)if C ∩C⊥ = {0}, which is equivalent toC ⊕C⊥ = GF(q)n.

A linear [n,k] codeC over GF(q) is calledcyclic if (c0,c1, · · · ,cn−1)∈C implies(cn−1,c0,c1, · · · ,cn−2)∈
C . By identifying any vector(c0,c1, · · · ,cn−1) ∈ GF(q)n with

c0+c1x+c2x2+ · · ·+cn−1xn−1 ∈ GF(q)[x]/(xn−1),

any codeC of length n over GF(q) corresponds to a subset of the quotient ring GF(q)[x]/(xn−1). A
linear codeC is cyclic if and only if the corresponding subset in GF(q)[x]/(xn−1) is an ideal of the ring
GF(q)[x]/(xn−1).

Note that every ideal of GF(q)[x]/(xn−1) is principal. LetC = 〈g(x)〉 be a cyclic code, whereg(x)
is monic and has the smallest degree among all the generatorsof C . Theng(x) is unique and called the
generator polynomial,andh(x) = (xn−1)/g(x) is referred to as theparity-check polynomialof C .

LCD cyclic codes over finite fields were calledreversible codesand studied by Massey [12]. Massey
showed that some LCD cyclic codes over finite fields are BCH codes, and made a comparison between
LCD codes and non-LCD codes [12]. He also demonstrated that asymptotically good LCD codes exist
[13]. Yang and Massey gave a necessary and sufficient condition for a cyclic code to have a complementary
dual [18]. Using the hull dimension spectra of linear codes,Sendrier showed that LCD codes meet the
asymptotic Gilbert-Varshamov bound [16]. Esmaeili and Yari analysed 1-generator LCD quasi-cyclic codes
[9]. Muttoo and Lal constructed a reversible code over GF(q) [15]. Tzeng and Hartmann proved that the
minimum distance of a class of reversible cyclic codes is greater than the BCH bound [17]. Dougherty,
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Kim, Özkaya, Sok and Solè developed a linear programming bound on the largest size of an LCD code
of given length and minimum distance [8]. Güneri,Özkaya, and Solè studied quasi-cyclic complementary
dual codes [10]. Carlet and Guilley investigated an application of LCD codes against side-channel attacks,
and presented several constructions of LCD codes [3]. LCD codes can be used in a direct-sum-masking
technique for the prevention of side-channel attacks (see [3] for detail).

The objective of this paper is to construct several familiesof LCD cyclic codes over finite fields and
analyse their parameters. The dimensions of these codes aredetermined and the minimum distances of
some of the codes are settled and lower bounds on the minimum distance of other codes are given. Many
codes are optimal in the sense that they have the best possible parameters. We will also give a well
rounded treatment of LCD cyclic codes in general.

We will compare some of the codes presented in this paper withthe tables of best known linear codes
(referred to as theDatabaselater) maintained by Markus Grassl at http://www.codetables.de.

II. q-CYCLOTOMIC COSETS MODULOn AND AUXILIARIES

To deal with cyclic codes of lengthn over GF(q), we have to study the canonical factorization of
xn−1 over GF(q). To this end, we need to introduceq-cyclotomic cosets modulon. Note thatxn−1
has no repeated factors over GF(q) if and only if gcd(n,q) = 1. Throughout this paper, we assume that
gcd(n,q) = 1.

Let Zn = {0,1,2, · · · ,n−1}, denoting the ring of integers modulon. For anys∈ Zn, the q-cyclotomic
coset of s modulo nis defined by

Cs= {s,sq,sq2, · · · ,sqℓs−1} modn⊆ Zn,

whereℓs is the smallest positive integer such thats≡ sqℓs (mod n), and is the size of theq-cyclotomic
coset. The smallest integer inCs is called thecoset leaderof Cs. Let Γ(n,q) be the set of all the coset
leaders. We have thenCs∩Ct = /0 for any two distinct elementss and t in Γ(n,q), and

⋃

s∈Γ(n,q)

Cs= Zn. (1)

Hence, the distinctq-cyclotomic cosets modulon partitionZn.
Let m= ordn(q), and let α be a generator of GF(qm)∗, which denotes the multiplicative group of

GF(qm). Put β = α(qm−1)/n. Thenβ is a primitiven-th root of unity in GF(qm). The minimal polynomial
ms(x) of βs over GF(q) is the monic polynomial of the smallest degree over GF(q) with βs as a zero. It
is now straightforward to prove that this polynomial is given by

ms(x) = ∏
i∈Cs

(x−βi) ∈ GF(q)[x], (2)

which is irreducible over GF(q). It then follows from (1) that

xn−1= ∏
s∈Γ(n,q)

ms(x) (3)

which is the factorization ofxn−1 into irreducible factors over GF(q). This canonical factorization of
xn−1 over GF(q) is crucial for the study of cyclic codes.

The following result will be useful and is not hard to prove [11, Theorem 4.1.4].

Lemma 1. The sizeℓs of each q-cyclotomic cosetCs is a divisor ofordn(q), which is the sizeℓ1 of C1.

The following lemma was proved in [1] and contains results in[4] as special cases.

Lemma 2. Let n be a positive integer such that q⌊m/2⌋ < n ≤ qm− 1, where m= ordn(q). Then the
q-cyclotomic coset Cs = {sqj modn : 0 ≤ j ≤ m−1} has cardinality m for all s in the range1 ≤ s≤
nq⌈m/2⌉/(qm−1). In addition, every s with s6≡ 0 (mod q) in this range is a coset leader.

http://www.codetables.de
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Later in this paper, we will need the following fundamental result on elementary number theory.

Lemma 3. Let h≥ 1 and let a> 1 be an integer. Then

gcd(aℓ+1,ah−1) =











1 if h
gcd(ℓ,h) is odd and a is even,

2 if h
gcd(ℓ,h) is odd and a is odd,

agcd(ℓ,h)+1 if h
gcd(ℓ,h) is even.

III. CHARACTERISATIONS OFLCD CYCLIC CODES OVER FINITE FIELDS

Let f (x) = fhxh+ fh−1xh−1+ · · ·+ f1x+ f0 be a polynomial over GF(q) with fh 6= 0 and f0 6= 0. The
reciprocal f ∗(x) of f (x) is defined by

f ∗(x) = f−1
0 xh f (x−1).

A polynomial is self-reciprocal if it coincides with its reciprocal.
A codeC is calledreversibleif (c0,c1, . . . ,cn−1) ∈ C implies that(cn−1,cn−2, . . . ,c0) ∈ C . The conclu-

sions of the following theorem are known in the literature (see [18] and [14, p. 206]), and are easy to
prove. We will employ some of them later.

Theorem 4. [18],[14, p. 206]Let C be a cyclic code of length n overGF(q) with generator polynomial
g(x). Then the following statements are equivalent.

• C is an LCD code.
• g is self-reciprocal.
• β−1 is a root of g for every rootβ of g(x) over the splitting field of g(x).

Furthermore, if−1 is a power of q mod n, then every cyclic code overGF(q) of length n is reversible.

Proof: The conclusion of the last part is known [14, p. 206]. But we would present the following
proof, which provides hints for studying LCD cyclic codes inthe next section.

Let Ca denote theq-cyclotomic class modulon that containsa, where 0≤ a≤ n−1. By assumption,
qℓ ≡−1 (mod n) for some positive integerℓ. Thena≡−aqℓ (mod n). We deduce that−a∈Ca. Hence
every irreducible factor ofxn−1 is self-reciprocal. It follows that every cyclic code overGF(q) of length
n is reversible.

Massey showed that reversible cyclic codes are those which have self-reciprocal generator polynomials
[12]. It then follows from Theorem 4 that a cyclic code is LCD if and only if it is reversible.

IV. A CONSTRUCTION OF ALL REVERSIBLE CYCLIC CODES OVERGF(q)

The goal in this section is to give an exact count of reversible cyclic codes of lengthqm−1 for odd
primesm. Recall theq-cyclotomic cosetsCa modulon and the irreducible polynomials defined in Section
II. It is straightforward that−a= n−a∈Ca if and only if a(1+q j)≡ 0 (mod n) for some integerj. The
following two lemmas are straightforward.

Lemma 5. The irreducible polynomialma(x) is self-reciprocal if and only if n−a∈Ca.

Lemma 6. The least common multiplelcm(ma(x),mn−a(x)) is self-reciprocal for every a∈ Zn.

By Lemma 5, we have that

lcm(ma(x),mn−a(x)) =

{

ma(x) if n−a∈Ca,
ma(x)mn−a(x) otherwise.

Let

Π(n,q) = Γ(n,q) \{max{a,Leader(n−a)} : a∈ Γ(n,q),n−a 6∈Ca},
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where Leader(i) denotes the coset leader ofCi . Then{Ca∪Cn−a : a∈ Π(q,n)} is a partition ofZn.
The following conclusion follows directly from Lemmas 5, 6,and Theorem 4.

Theorem 7. The total number of reversible cyclic codes overGF(q) of length n is equal to2|Π(q,n)|−1.
Every reversible cyclic code overGF(q) of length n is generated by a polynomial

g(x) = ∏
a∈S

lcm(ma(x),mn−a(x)) ,

where S is a nonempty subset ofΠ(q,n).

Example 1. Let (n,q) = (15,2). There are the following2-cyclotomic classes

C0 = {0},

C1 = {1,2,4,8},

C3 = {3,6,9,12},

C5 = {5,10},

C7 = {7,11,13,14}.

We have also
x15−1= m0(x)m1(x)m3(x)m5(x)m7(x),

where

m0(x) = x+1,

m1(x) = x4+x+1,

m3(x) = x4+x3+x2+x+1,

m5(x) = x2+x+1,

m7(x) = x4+x3+1.

Note that allmi(x) are self-reciprocal exceptm1(x) and m7(x). In this case,

Γ(n,q) = {0,1,3,5,7}.

But
Π(n,q) = {0,1,3,5}.

Hence, there are 15 reversible binary cyclic codes of length15.

Corollary 8. Let q be an even prime power and n= qm−1. If m is odd, then the only self-reciprocal
irreducible divisor of xn−1 overGF(q) is x−1. If m is an odd prime, then the total number of reversible

cyclic codes of length n overGF(q) is equal to2
qm+(m−1)q

2m −1.

Proof: Since m is odd andq is even, it then follows from Lemma 3 that gcd(q j +1,qm−1) = 1
for all j with 0≤ j ≤ m−1. Hencea(1+q j) ≡ 0 (mod n) if and only if a= 0, wherea∈ Zn. We then
deduce that the only self-reciprocal irreducible divisor of xn−1 over GF(q) is x−1.

Sincem is a prime, the length ofq-cyclotomic cosets modulen is either 1 orm. Since gcd(q−1,qm−
1) = q−1, there are exactlyq−1 elements inZn, i.e, {i qm−1

q−1 | 0≤ i ≤ q−2}, such that the corresponding
q-cyclotomic cosets have length 1. Note that 0∈Zn corresponds tox−1, which is the only self-reciprocal
irreducible divisor ofxn−1 over GF(q). Thus, we have

|Π(q,n)|=
qm−1− (q−1)

2m
+

q−2
2

+1=
qm+(m−1)q

2m
.

Hence, in this case, the total number of reversible cyclic codes of lengthn over GF(q) is 2
qm+(m−1)q

2m −1.
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Corollary 9. Let q be an odd prime power and n= qm−1. If m is odd, then the only self-reciprocal
irreducible divisor of xn−1 over GF(q) are x−1 and x+1. If m is an odd prime, then the total number

of reversible cyclic codes of length n overGF(q) is equal to2
qm+(m−1)q+m

2m −1.

Proof: Sincem is odd andq is odd, by Lemma 3 we have gcd(q j +1,qm−1) = 2 for all j with
0 ≤ j ≤ m−1. Hencea(1+q j) ≡ 0 (mod n) if and only if a = 0 or a = n/2, wherea ∈ Zn. We then
deduce that the only self-reciprocal irreducible divisorsof xn−1 over GF(q) arex±1.

Sincem is a prime, the length ofq-cyclotomic cosets modulen is either 1 orm. Since gcd(q−1,qm−
1) = q−1, there are exactlyq−1 elements inZn, i.e, {i qm−1

q−1 | 0≤ i ≤ q−2}, such that the corresponding

q-cyclotomic cosets have length 1. Note that 0∈ Zn and qm−1
2 ∈ Zn correspond tox−1 andx+1, which

are the only self-reciprocal irreducible divisors ofxn−1 over GF(q). Thus, we have

|Π(q,n)|=
qm−1− (q−1)

2m
+

q−3
2

+2=
qm+(m−1)q+m

2m
.

Hence, in this case, the total number of reversible cyclic codes of lengthn over GF(q) is 2
qm+(m−1)q+m

2m −1.

V. BCH CODES

Let n be a positive integer, and letm= ordn(q). Let α be a generator of GF(qm)∗, and putβ =α(qm−1)/n.
Thenβ is a primitiven-th root of unity.

For any i with 0 ≤ i ≤ n− 1, let mi(x) denote the minimal polynomial ofβi over GF(q). For any
2≤ δ ≤ n, define

g(q,n,δ,b)(x) = lcm(mb(x),mb+1(x), · · · ,mb+δ−2(x)), (4)

where b is an integer, lcm denotes the least common multiple of theseminimal polynomials, and the
addition in the subscriptb+ i of mb+i(x) always means the integer addition modulon. Let C(q,n,δ,b)
denote the cyclic code of lengthn with generator polynomialg(q,n,δ,b)(x). The δ is called adesigned
distanceof C(q,n,δ,b). The Bose distance, denotedδB, of a BCH code is the largest designed distance of
the code. The BCH bound says that

d ≥ δB ≥ δ

for the codeC(q,n,δ,b). Thus, determining the Bose distance may improve the lower bound on the minimum
distance ofC(q,n,δ,b).

Whenb= 1, the setC(q,n,δ,b) is called anarrow-sense BCH codewith designed distanceδ. If n= qm−1,
C(q,n,δ,b) is called aprimitive BCH code.

The following theorem was proved in [1] and contains resultsin [4] as special cases.

Theorem 10. Let n be a positive integer such that q⌊m/2⌋ < n ≤ qm−1, where m= ordn(q). Then the
narrow-sense BCH codeC(q,n,δ,1) of length n and designed distanceδ, where2≤ δ ≤ min{⌊nq⌈m/2⌉/(qm−
1)⌋,n}, has dimension

k= n−m⌈(δ−1)(1−1/q)⌉.

Although BCH codes are not good asymptotically, they are among the best linear codes when the length
of the codes is not very large [5, Appendix A]. So far, we have very limited knowledge of BCH codes, as
the dimension and minimum distance of BCH codes are in general open, in spite of some recent progress
[6], [7]. It is surprising that only two papers on BCH codes oflengthqℓ+1 have been published in the
literature.

Theorem 10 gives indeed the dimension of some BCH codes, but has the following limitations:
• It applies only to narrow-sense BCH codes with small designed distances. Note that most BCH codes

are not narrow-sense codes.
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• It is useful only whenn is close toqm−1. For example, it is not useful at all whenn= q⌊m/2⌋+1.
The following three theorems follow directly from Theorem 4and the definition of BCH codes, and

can be viewed as corollaries of Theorem 4. We will make use of them directly later.

Theorem 11. The BCH codeC(q,n,δ,b) is reversible when b=−t and the designed distance isδ = 2t+2
for any nonnegative integer t.

Theorem 12. The BCH codeC(q,n,δ,b) is reversible when n is odd, b= (n− t)/2 and the designed distance
is δ = t +2 for any odd integer t with1≤ t ≤ n−2.

Theorem 13. The BCH codeC(q,n,δ,b) is reversible when n is even, b= (n− 2t)/2 and the designed
distance isδ = 2t +2 for any integer t with0≤ t ≤ n/2.

For all the reversible BCH codes described in Theorems 11, 12, and 13, we have obviously the BCH
bound on the minimum distanced≥ δ. Little is known about their dimensions. Determining the dimension
is a very hard problem in general. We will settle the dimension for some of them in some special cases
later.

VI. SOME REVERSIBLE BCH CODES OF LENGTHqℓ+1 OVER GF(q) AND THEIR PARAMETERS

It follows from Theorem 4 that every cyclic code of lengthn= qℓ+1 over GF(q) is reversible. Little
has been done so far for cyclic codes of lengthn= qℓ+1 over GF(q). Only a few papers on such codes are
available in the literature. This is because the structure of the q-cyclotomic cosets modulon is extremely
complex. However, we mention that Zetterberg’s double-error correcting binary codes have length 2ℓ+1
[14, p. 206].

In this section, we will determine the dimensions of a few families of such reversible cyclic codes and
improve the BCH bound on their minimum distances by making use of the reversibility. Throughout this
section, letm= 2ℓ andn= qℓ+1.

A. A basic result on q-cyclotomic cosets modulo n

The following is basic result and will be employed very often.

Lemma 14. ordn(q) = 2ℓ= m.

Proof: Let h be the least positive integer withqh ≡ 1 (mod n). Then qℓ + 1 divides qh− 1. The
desired conclusion then follows from Lemma 3.

The following lemma will play an important role in this section.

Lemma 15. Let ℓ≥ 2. Then every positive integer a≤ q⌊(ℓ−1)/2⌋+1 and a6≡ 0 (mod q) is a coset leader
and |Ca| = 2ℓ, and all the remaining positive integers in this range are not coset leaders. In particular,
these Ca’s are pairwise disjoint for all such a’s.

Proof: We prove the conclusions of this lemma only for the case thatℓ is odd, and omit the proof
of the conclusions forℓ being even, which is similar.

Let ℓ be odd from now on. Defineh= ⌊(ℓ−1)/2⌋= (ℓ−1)/2. We have thenℓ = 2h+1. Recall that
n = qℓ+1 = q2h+1+ 1. We first prove thata := qh+1 is a coset leader and|Ca| = m= 2ℓ. It can be
verified that

aqj modn=























aqj if 1 ≤ j ≤ h,
(qh+1−1)q j−(h+1) if h+1≤ j ≤ 2h,
n− (qh+1)q j−(2h+1) if 2h+1≤ j ≤ 3h,
n−q2h−qh if j = 3h+1,
n+q j−(3h+2)−q j−(2h+1) if 3h+2≤ j ≤ 4h+1.
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One can then easily check thataqj modn> a for all j with 1≤ j ≤ m−1 = 2ℓ−1= 4h+1. We then
deduce thata is a coset leader and|Ca|= m= 2ℓ.

Let a be an integer witha 6≡ 0 (mod q) and 1≤ a≤ qh−1. Thena can be uniquely expressed as

a=
t

∑
u=0

auqiu, (5)

where














0≤ t ≤ h−1,
i0 = 0,
1≤ i1 < i2 < · · ·< it ≤ h−1,
1≤ ai ≤ q−1 for all i with 0≤ i ≤ t.

(6)

It then follows that

1≤ ik2 − ik1 ≤ h−2 for all k2 > k1 ≥ 1 (7)

and

1≤ ik− i0 ≤ h−1 for all k≥ 1. (8)

We now prove thataqj modn> a for all j with 1≤ j ≤ 4h+1 by distinguishing the following four
cases.

Case I:1≤ j ≤ h+1: In this case, we have clearly thataqj modn= aqj > a.
Case II: h+2≤ j ≤ 2h: If j + ik ≤ 2h for all k with 1≤ k ≤ t, we have thenaqj modn = aqj > a.

Otherwise, letk be the smallest such thatj + ik ≥ 2h+1. We have then 1≤ k≤ t, as i0+ j = j ≤ 2h. By
assumption, we have

j + iu < 2h+1 for u≤ k−1

and
j + iu ≥ 2h+1 for u≥ k.

In this case, we have

aqj modn=
k−1

∑
u=0

auqiu+ j −
t

∑
u=k

auqiu+ j−2h−1. (9)

Notice that
2h≥ ik−1+ j − (it + j −2h−1) = 2h+1− (it − ik−1)≥ h+2.

We see that the right-hand side of (9) is less thann and larger thana.
Case III: 2h+1≤ j ≤ 3h: In this case, we have

aqj ≡−
t

∑
u=0

auqiu+ j−2h−1 modn.

Note that
0≤ it + j −2h−1≤ 2h−2.

We get that

aqj modn = q2h+1+1−
t

∑
u=0

auqiu+ j−2h−1

≥ q2h+1+1− (q−1)
2h−2

∑
u=2h−t−2

qu

= q2h+1−q2h−1+1+q2h−t−2

> qh+1

> a.
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Case IV:3h+1≤ j ≤ 4h+1: Put h̄= j −2h−1. Thenh≤ h̄≤ 2h. In this case, we have

aqj ≡−
t

∑
u=0

auqiu+h̄ (mod n).

If iu+ h̄≤ 2h for all u with 1≤ u≤ t, then

aqj modn = q2h+1+1−
t

∑
u=0

auqiu+h̄

≥ q2h+1+1− (q−1)
2h

∑
u=2h−t

qu

= 1+q2h−t

≥ qh+1+1

> a.

Otherwise, letk be the smallest such thatik+ h̄≥ 2h+1. We have then 1≤ k≤ t, as i0+ h̄= h̄≤ 2h.
Define

T1 =
k−1

∑
u=0

auqiu+h̄

and

T2 =
t

∑
u=k

auqiu+h̄−(2h+1) ≥ ak ≥ 1.

We have then
aqj ≡−T1+T2 (mod n).

Observe that
it + h̄− (2h+1) = it + j − (4h+2)≤ h−2

and
i0+ h̄= j − (2h+1)≥ h.

We conclude thata0qi0+h̄ > T2. As a result,−T1+T2 < 0. We obtain that

aqj modn = n−T1+T2

= n−
k−1

∑
u=0

auqiu+h̄+T2

≥ n− (q−1)
2h

∑
u=2h−k+1

qu+T2

= q2h−k+1+1+T2

≥ q2h−k+1+1+1

≥ qh+2+2

> a.

Summarizing all the discussions above, we obtain the desired conclusions.
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B. Reversible BCH codes overGF(q) of length n= qℓ+1

Sincen= qℓ+1 by assumption, the BCH codesC(q,m,δ,b) are reversible, and have the BCH boundd≥ δ
for their minimum distances. For some of these BCH codes, we have the following bound, which is much
better whenδ is getting large.

Theorem 16. Let n= qℓ+1 and m= 2ℓ. Then the codeC(q,n,δ,0) has minimum distance d≥ 2(δ−1).

Proof: Let β = αqℓ−1, whereα is a generator of GF(qm)∗. By definition, the generator polynomial
g(q,n,δ,0)(x) of this code defined in (4) has the rootsβi for all i in the set

{0,1,2, · · · ,δ−2}.

It follows from Theorem 4 that this code is reversible. As a result, the polynomialg(q,n,δ,0)(x) has the
rootsβi for all i in the set

{n− (δ−2), · · · ,n−2,n−1,0,1,2, · · · ,δ−2}.

Again by the BCH bound, we deduce thatd ≥ 2(δ−1).
Given this much improved lower bound on the minimum distanceof the codesC(q,n,δ,0), we would like

to determine the dimension of these codes. Unfortunately, Lemma 2 and Theorem 10 are useless in this
case because

⌊

nq⌈m/2⌉/(qm−1)
⌋

= 1.

The lower bound on the minimum distance of the reversible BCHcodeC(q,n,δ,0) is quite tight according
to experimental data. However, the determination of the dimension of this code is in general very difficult.
We will settle the dimension of this code in a number of special cases in this section.

The main result of this subsection is documented in the following theorem.

Theorem 17. For any integerδ with 3≤ δ ≤ q⌊(ℓ−1)/2⌋+3, the reversible codeC(q,n,δ,0) has parameters
[

qℓ+1, qℓ−2ℓ

(

δ−2−

⌊

δ−2
q

⌋)

, d ≥ 2(δ−1)

]

and generator polynomial
(x−1) ∏

1≤a≤δ−2, a6≡0 (mod q)

ma(x),

wherema(x) is the minimal polynomial ofβa over GF(q) and β is the n-th root of unity inGF(qm).

Proof: Note that 0≤ δ−2≤ q⌊(ℓ−1)/2⌋+1. By Lemma 15, every integera with 1≤ a≤ δ−2 and
a 6≡ 0 (mod q) is a coset leader and all the remaining integers in this rangeare not coset leaders. The total
number of integersa such that 1≤ a≤ δ−2 anda≡ 0 (mod q) is equal to⌊(δ−2)/q⌋. The conclusions
on the dimension and generator polynomial then follow from Lemma 15 and the definition of BCH codes.
The lower bound on the minimum distance comes from Theorem 16.

As a special case of Theorem 17, we have the following corollaries.

Corollary 18. Let q= 2. We have the following.
• Let ℓ≥ 3. The reversible codeC(2,n,4,0) has parameters[2ℓ+1,2ℓ−2ℓ,6] and generator polynomial
(x−1)m1(x).

• Let ℓ ≥ 5. The reversible codeC(2,n,6,0) has parameters[2ℓ + 1,2ℓ − 4ℓ,d ≥ 10] and generator
polynomial(x−1)m1(x)m3(x).

• Let ℓ ≥ 6. The reversible codeC(2,n,8,0) has parameters[2ℓ + 1,2ℓ − 6ℓ,d ≥ 14] and generator
polynomial(x−1)m1(x)m3(x)m5(x).

• Let ℓ ≥ 7. The reversible codeC(2,n,10,0) has parameters[2ℓ + 1,2ℓ − 8ℓ,d ≥ 18] and generator
polynomial(x−1)m1(x)m3(x)m5(x)m7(x).



10

Example 2. We have the following examples for the codes of Corollary 18.
• Whenℓ∈ {3,4,5,6}, C(2,n,4,0) has parameters[9,2,6], [17,8,6], [32,22,6], and[65,52,6], respectively,

which are the best possible for cyclic codes[5, pp. 246, 247, 250, 261]. All these codes are optimal
linear codes according to the Database.

• Whenℓ ∈ {5,6,7}, C(2,n,6,0) has parameters[32,12,10], [65,40,10], and [129,100,10], respectively,
which are the best possible for cyclic codes[5, pp. 250, 261].

• Whenℓ∈ {6,7,8}, C(2,n,8,0) has parameters[65,28,14], [129,86,14], and [257,208,14], respectively.
The first one is the best possible for cyclic codes[5, p. 261].

Corollary 19. Let q= 3. We then have the following statements.
• Let ℓ≥ 3. The reversible codeC(3,n,3,0) has parameters[3ℓ+1,3ℓ−2ℓ,d ≥ 4] and generator polyno-

mial (x−1)m1(x).
• Let ℓ≥ 3. The reversible codeC(3,n,5,0) has parameters[3ℓ+1,3ℓ−4ℓ,d ≥ 8] and generator polyno-

mial (x−1)m1(x)m2(x).
• Let ℓ ≥ 6. The reversible codeC(3,n,6,0) has parameters[3ℓ + 1,3ℓ − 6ℓ,d ≥ 10] and generator

polynomial(x−1)m1(x)m2(x)m4(x).

Example 3. We have the following examples of the codes of Corollary 19.
• Whenℓ ∈ {3,4}, C(3,n,3,0) has parameters[28,21,4], [82,73,4], respectively. The former has the best

possible parameters for cyclic codes[5, p. 301].
• Whenℓ ∈ {3,4}, C(3,n,5,0) has parameters[28,15,8] and [82,65,8], respectively. The former has the

best possible parameters for cyclic codes[5, p. 301].
• Whenℓ ∈ {3,4}, C(3,n,6,0) has parameters[28,9,10] and [82,57,10], respectively. The first one is the

best possible for cyclic codes[5, p. 301]. The latter has the same parameters as the best known code
in the Database.

Conjecture 1. The following conjectures are supported by experimental data.
• The codeC(3,n,3,0) of Corollary 19 has minimum distance d= 4.
• The codeC(3,n,5,0) of Corollary 19 has minimum distance d= 8.

VII. REVERSIBLE CYCLIC CODES OF LENGTHn= qm−1 OVER GF(q)

Throughout this section, letn= qm−1 for a positive integerm, and letα be a generator of GF(qm)∗.
Our task in this section is to construct reversible cyclic codes with some known cyclic codes. Our idea is
to construct reversible cyclic codes with some known families of cyclic codesC , which are not reversible.
Given a cyclic codeC , we wish to find out conditions under which the even-like subcode of C ∩C⊥ or
the codeC ∩C⊥ is reversible, where the even-like subcode ofC ∩C⊥ is defined as

{c(x) ∈ C ∩C⊥ : c(1) = 0}.

A known class of reversible cyclic codes are the Melas’s double-error correcting binary codes with
parameters[2m−1,2m−2m,d ≥ 5] [14, p. 206].

We now employ the punctured generalised Reed-Muller codes to construct reversible cyclic codes with
the construction idea above. To this end, we need to do some preparations.

For any i with 0≤ i ≤ n−1, defineωq(i) = ∑m−1
j=0 i j , wherei = ∑m−1

j=0 i jq j is theq-adic expansion ofi
and each 0≤ i j ≤ q−1. We define

I(q,n,t) = {1≤ i ≤ n−1 : 1≤ ωq( j)≤ t} (10)

and
−I(q,n,t) = {n−a : a∈ I(q,n,t)},

wheret ≥ 1.
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Lemma 20. If 1≤ t ≤ ⌈(q−1)m/2⌉−1, then I(q,n,t)∩ (−I(q,n,t)) = /0.

Proof: Note that

n= qm−1= (q−1)qm−1+(q−1)qm−2+ · · ·+(q−1)q+(q−1)q0.

Hence, we haveωq(i)+ωq(n− i) = m(q−1) for all i ∈ Zn.
By this identity, if i ∈ Zn andωq(i)≤ ⌈(q−1)m/2⌉−1, thenωq(n− i)> ⌈(q−1)m/2⌉−1. The desired

conclusion then follows.
Let ℓ= ℓ1(q−1)+ ℓ0 < q(m−1), whereℓ0 < q−1. Theℓ-th orderpunctured generalized Reed-Muller

codeRq(ℓ,m)∗ over GF(q) is the cyclic code of lengthn= qm−1 with generator polynomial

gR(x) := ∏
1≤ j≤n−1

ωq( j)<(q−1)m−ℓ

(x−α j), (11)

whereα is a generator of GF(qm)∗. It is easily seen thatgR(x) is a polynomial over GF(q).
By definition, we have

(q−1)m− ℓ= (m− ℓ1−1)(q−1)+(q−1− ℓ0).

Let h be the smallest integer withωq(h) = (q−1)m− ℓ. Then

h = (q−1− ℓ0)q
m−ℓ1−1+

m−ℓ1−2

∑
i=0

(q−1)qi

= (q− ℓ0)q
m−ℓ1−1−1.

By the construction of the codeRq(ℓ,m)∗, every integeru with 0< u< h satisfiesωq(u)< (q−1)m− ℓ.
Hence, the elementsα1,α2, . . . ,αh−1 are all roots of the generator polynomialgR(x) of (11). Consequently,
the minimum distance ofRq(ℓ,m)∗ is at leasth. It was proved in [2, Theorem 5.4.1] that the minimum
distance ofRq(ℓ,m)∗ equalsh and the dimension of the codeRq(ℓ,m)∗ is equal to

ℓ

∑
i=0

m

∑
j=0

(−1) j
(

m
j

)(

i − jq+m−1
i − jq

)

. (12)

Let g∗R(x) denote the reciprocal ofgR(x) defined above. Set

g(x) = (x−1)lcm(gR(x),g
∗
R(x)).

Let R(q,m,ℓ) denote the cyclic code of lengthn over GF(q) with generator polynomialg(x). We have then
the following theorem.

Theorem 21. If q(m−1)−2≥ ℓ≥ 1+(q−1)m−⌈(q−1)m/2⌉, then the codeR(q,m,ℓ) is reversible and
has minimum distance

d ≥ 2((q− ℓ0)q
m−ℓ1−1−1)

and dimension

2
ℓ

∑
i=0

m

∑
j=0

(−1) j
(

m
j

)(

i − jq+m−1
i − jq

)

−qm. (13)

Proof: Whenq(m−1)−2≥ ℓ≥ 1+(q−1)m−⌈(q−1)m/2⌉, it follows from Lemma 20 thatgR(x)
andg∗R(x) have no common roots. Consequently,g(x) = (x−1)gR(x)g∗R(x). Therefore,

deg(g(x)) = 2deg(gR(x))+1.
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The desired conclusion on the dimension of the code then follows from the dimension ofRq(ℓ,m)∗, which
was given in (12). In this case,g(x) has the rootsαi for all i in the set

{n− (h−1),n− (h−2), · · · ,n−2,n−1,0,1,2, · · · ,h−2,h−1}.

The desired conclusion on the minimum distance then followsfrom the BCH bound.
The first part of Theorem 21 can be simplified into the following.

Theorem 22. When q= 2 and m−2≥ ℓ≥ m−⌊(m−2)/2⌋, the codeR(q,m,ℓ) is a reversible cyclic code
and has parameters

[

2m−1, 2m−2
m−1−ℓ

∑
j=0

(

m
j

)

, d ≥ 2(2m−ℓ−1)

]

.

Example 4. Let m= 5 and let α be a generator ofGF(25)∗ with α5+α2+1 = 0. Then R(2,5,3) has
parameters[31,20,6], and generator polynomial

g(x) = x11+x10+x9+x7+x6+x5+x4+x2+x+1.

R(2,5,3) has the best possible parameters for cyclic codes[5, p. 250]. Its dual code has parameters
[31,11,10], while the best binary cyclic code of length31 and dimension11 has minimum distance11
[5, p. 250].

Example 5. Let m= 6 and letα be a generator ofGF(26)∗ with α6+α4+α3+α+1= 0. ThenR(2,6,4)
has parameters[63,50,6], and generator polynomial

g(x) = x13+x9+x7+x6+x4+1.

R(2,6,4) has the best possible parameters for cyclic codes[5, p. 260]. Its dual code has parameters
[63,13,24], and is the best possible linear code[5, p. 258].

Example 6. Let m= 6 and letα be a generator ofGF(26)∗ with α6+α4+α3+α+1= 0. ThenR(2,6,3)
has parameters[63,20,14], and generator polynomial

g(x) = x43+x42+x40+x37+x36+x35+x34+x33+x29+x25+

x22+x21+x18+x14+x10+x9+x8+x7+x6+x3+x+1.

Its dual code has parameters[63,43,6], which are the best possible parameters[5, p. 260].

Note that the punctured generalized Reed-Muller codesRq(ℓ,m)∗ are in general not BCH codes. So
are the reversible codesR(q,m,ℓ). The following problem is open and interesting.

Open Problem 1. Is it true that the minimum distance d= 2((q− ℓ0)qm−ℓ1−1−1) for the codesR(q,m,ℓ)

of Theorem 21?

VIII. T WO CLASSES OF REVERSIBLEBCH CYCLIC CODES OF LENGTH(qm−1)/(q−1) OVER GF(q)

In this section, we construct a class of reversible cyclic codes from a family of projective BCH codes.
Throughout this section,n= (qm−1)/(q−1) andq≥ 3. We first do some preparations.

Let δ ≥ 2 be a positive integer. Define

J(q,n,δ) = ∪1≤i≤δ−1Ci

and
−J(q,n,δ) = {n−a : a∈ J(q,n,δ)}.

We will need the following conclusion.

Lemma 23. Let δ = qe, where e= ⌊(m−1)/2⌋. Then J(q,n,δ)∩ (−J(q,n,δ)) = /0.
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Proof: Suppose on the contrary thatJ(q,n,δ)∩ (−J(q,n,δ)) 6= /0. Then there exista, 1≤ i ≤ δ−1 and
1≤ j ≤ δ−1 such that

a∈Ci ∩ (−Cj),

which implies that
a≡ iqℓ1 ≡− jqℓ2 (mod n),

where 0≤ ℓ1 ≤ m−1 and 0≤ ℓ2 ≤ m−1. Without loss of generality, assume thatℓ2 ≥ ℓ1. Then

i + jqℓ2−ℓ1 ≡ 0 (mod n).

Let ℓ= ℓ2− ℓ1. Then 0≤ ℓ≤ m−1. We can further assume thatℓ≤ ⌈(m−1)/2⌉. Otherwise, we have

iqm−ℓ+ j ≡ 0 (mod n),

wherem− ℓ≤ ⌈(m−1)/2⌉.
Sinceℓ≤ ⌈(m−1)/2⌉ by assumption and

1≤ i ≤ δ−1= q⌊(m−1)/2⌋−1 and 1≤ j ≤ δ−1= q⌊(m−1)/2⌋−1,

one can verify that
0< i + jqℓ < n,

which shows thati + jqℓ 6≡ 0 (mod n). This contradiction proves the lemma.
One of the main results of this section is the following.

Theorem 24. Let δ be an integer with2≤ δ ≤ q⌊(m−1)/2⌋. Then the reversible BCH codeC(q,n,2δ,1−δ) is
reversible and has length n= (qm−1)/(q−1), dimension

k= n−1−2m

⌈

(δ−1)(q−1)
q

⌉

,

and minimum distance d≥ 2δ.

Proof: Let gu(x) denote the generator polynomial of the BCH codeC(q,n,δ,1). It follows from Lemma
2 that

deg(gu(x)) = m

⌈

(δ−1)(q−1)
q

⌉

.

Hence,C(q,n,2δ,1−δ) is reversible. By definition,C(q,n,2δ,1−δ) has generator polynomial

g(x) = lcm(x−1,gu(x),g
∗
u(x)),

whereg∗u(x) is the reciprocal ofgu(x). Notice that 2≤ δ ≤ q⌊(m−1)/2⌋. By Lemma 23, we deduce that

g(x) = (x−1)gu(x)g
∗
u(x).

The conclusion on the dimension ofC(q,n,2δ,1−δ) then follows. The lower bound on the minimum distance
comes from the BCH bound.

Example 7. The following are examples of the code of Theorem 24.
• When(q,m,δ) = (3,4,2), C(q,n,2δ,1−δ) has parameters[40,31,4].
• When(q,m,δ)= (3,4,3), C(q,n,2δ,1−δ) has parameters[40,23,8], which are the best possible for cyclic

codes[5, p. 306].
• When(q,m,δ) = (5,3,2), C(q,n,2δ,1−δ) has parameters[31,24,5], which are the best parameters for

linear codes according to the Database.
• When(q,m,δ) = (5,3,3), C(q,n,2δ,1−δ) has parameters[31,18,8].
• When(q,m,δ) = (5,3,4), C(q,n,2δ,1−δ) has parameters[31,12,12].
• When(q,m,δ) = (5,3,5), C(q,n,2δ,1−δ) has parameters[31,6,19].
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• When(q,m,δ) = (4,4,3), C(q,n,2δ,1−δ) has parameters[85,68,6].

Lemma 25. Let m be a positive even integer andδ = qm/2. Defineℓ= (qm/2−1)/(q−1). Then sℓ is a
coset leader for each1≤ s≤ q−1, |Csℓ|= m and Csℓ =−Csℓ. In addition,

J(q,n,δ)∩ (−J(q,n,δ)) =
⋃

1≤s≤q−1

Csℓ.

Proof: Let m be even and ¯m= m/2. Recall that

n=
qm−1
q−1

and ℓ=
qm̄−1
q−1

We first prove thatsℓ is a coset leader and|Csℓ| = m for eachs with 1≤ s≤ q−1. To this end, we
considersℓqk modn by distinguishing the following three cases.

Case I: When 1≤ k≤ m̄−1, it is obvious that

sℓqk = s
qm̄+k−qk

q−1
< n.

As a result,sℓqk modn= sℓqk > sℓ.
Case II: Whenk= m̄, sℓqk modn= n−sℓ > sℓ.
Case III: When m̄+1≤ k≤ m−1, we have

sℓqk ≡ s

(

k−1−m̄

∑
i=0

qi +
m−1

∑
j=k

q j

)

(mod n)

≡ −s
k−1

∑
i=k−m̄

qi (mod n).

It then follows that

sℓqk modn = n−s
k−1

∑
i=k−m̄

qi

=
qm−1−s(qm̄−1)qk−m̄

q−1
> sℓ.

Collecting the conclusions in Cases I, II and III yields the desired conclusions onsℓ above. We now
proceed to prove the rest of the conclusions of this lemma.

Let a andb be two coset leaders inJ(q,n,δ) such thatCa =−Cb. Then there exists aj with 0≤ j ≤ m−1
such that

a+bqj ≡ 0 (mod n). (14)

By assumption,a 6≡ 0 (mod q), b 6≡ 0 (mod q), and

1≤ a≤ qm̄−1, 1≤ b≤ qm̄−1.

Let

a=
m̄−1

∑
i=0

aiq
i andb=

m̄−1

∑
i=0

biq
i,

where 0≤ ai ≤ q−1, 0≤ bi ≤ q−1, a0 6= 0 andb0 6= 0.
Below we continue our proof by considering the following three cases.



15

Case 1: If j ≤ m̄−1, thenm̄+ j −1≤ m−2. Consequently,

0< a+bqj =
m̄−1+ j

∑
i=m̄

bi− jq
i +

m̄−1

∑
i= j

(ai +bi− j)q
i +

j−1

∑
i=0

aiq
i < n.

This means that
a+bqj modn= a+bqj 6= 0,

which is contrary to (14).
Case 2: If j = m̄, then

bqj =
m̄

∑
i=1

bm̄−iq
m−i

≡
m̄

∑
i=2

(bm̄−i −bm̄−1)q
m−i −bm̄−1

m̄−1

∑
i=0

qi (mod n).

We then obtain
a+bqj ≡ T (mod n),

where

T =
m̄

∑
i=2

(bm̄−i −bm̄−1)q
m−i +

m̄−1

∑
i=0

(ai −bm̄−1)q
i .

Note that the highest power ofq in the expression ofT is at mostm−2. We know that−n< T < n. It
then follows from (14) that all the coefficients in the expression of T are zero. This implies that

a0 = a1 = · · ·= am̄−1 = b0 = b1 = · · ·= bm̄−1.

Recall thata0 6= 0 andb0 6= 0. We then deduce thata= b= sℓ for somes with 1≤ s≤ q−1. Furthermore,
Csℓ =−Csℓ.

Case 3: If m̄+1≤ j ≤ m−1, then

bqj ≡
j−m̄−1

∑
h=0

bm− j+hqh+
m−1

∑
h= j

bh− jq
h (mod n)

≡
m−2

∑
k= j

(bk− j −bm− j−1)q
k−bm− j−1

j−1

∑
h= j−m̄

qh+
j−m̄−1

∑
h=0

(bm− j+h−bm− j−1)q
h (mod n). (15)

Case 3.1: If bk− j −bm− j−1 = 0 for all k with j ≤ k≤ m−2, then

b0 = b1 = · · ·= bm− j−1 6= 0.

It then follows from (15) that

bqj modn= n−bm− j−1

j−1

∑
h= j−m̄

qh+
j−m̄−1

∑
h=0

(bm− j+h−bm− j−1)q
h.

Note thatm̄≤ j −1≤ m−2 and 1≤ a≤ qm̄−1. We arrive at

0< a+(bqj modn)< n,

which means that
a+bqj 6≡ 0 (mod n).

This is contrary to (14).
Case 3.2: If bk− j −bm− j−1 6= 0 for somek with j ≤ k≤ m−2, let k be the largest such one.
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Case 3.2.1:If bk− j −bm− j−1 < 0, it follows from (15) that

bqj modn= n+
k

∑
h= j

(bh− j −bm− j−1)q
h−bm− j−1

j−1

∑
h= j−m̄

qh+
j−m̄−1

∑
h=0

(bm− j+h−bm− j−1)q
h.

Recall that j ≤ k≤ m−2 and 1≤ a≤ qm̄−1. We deduce that

0< a+(bqj modn)< n,

which shows that
a+bqj 6≡ 0 (mod n).

This is contrary to (14).
Case 3.2.2:If bk− j −bm− j−1 > 0, it follows from (15) that

bqj modn=
k

∑
h= j

(bh− j −bm− j−1)q
h−bm− j−1

j−1

∑
h= j−m̄

qh+
j−m̄−1

∑
h=0

(bm− j+h−bm− j−1)q
h.

Recall thatm̄≤ k≤ m−2 and 1≤ a≤ qm̄−1. We conclude that

0< a+(bqj modn)< n,

which implies that
a+bqj 6≡ 0 (mod n).

This is contrary to (14).
Summarizing all the conclusions in Cases 1, 2 and 3, we know that (14) holds if and only if

a= b= sℓ and j =
m
2
,

where 1≤ s≤ q−1. This completes the proof of this lemma.

Lemma 26. Let m≥ 4 be even and n= (qm−1)/(q−1). Let a be an integer such that q(m−2)/2 ≤ a≤ qm/2

and a6≡ 0 (mod q).
1) When q is even, a is a coset leader with|Ca|= m except that

a= i +1+ i
qm/2−q

q−1
,

where

i ∈

{

q
2
,
q
2
+1, · · · ,

q
2
+

q−4
2

}

.

2) When q= 3, a must be a coset leader.
When q> 3 is odd, a is a coset leader except that

a= i +1+ i
qm/2−q

q−1
,

where

i ∈

{

q+1
2

,
q+1

2
+1, · · · ,

q+1
2

+
q−5

2

}

.

In addition, if q is odd and a is a coset leader, then|Ca|= m except that

a=
qm/2+1

2
with |Ca|= m/2.
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Proof: Let m̄= m/2. Let a be such thatq(m−2)/2 ≤ a ≤ qm/2 and a 6≡ 0 (mod q). Then theq-adic
expansion ofa is of the form

a=
m̄−1

∑
i=0

aiq
i ,

where 0≤ ai ≤ q−1, a0 6= 0 andam̄−1 6= 0. Then

aqj =
m̄−1

∑
i=0

aiq
i+ j

for all j ≥ 0. To prove the desired conclusions of this lemma, we below consideraqj modn for 1≤ j ≤
m−1 by distinguishing the following three cases.

Case 1:1≤ j ≤ m̄−1: In this case,aqj modn= aqj modn> a.
Case 2: j= m̄: In this case, we have

aqj ≡
m−2

∑
i=m̄

(ai−m̄−am̄−1)q
i −am̄−1

m̄−1

∑
i=0

qi (mod n). (16)

We continue our discussions of Case 2 by distinguishing the following two subcases.
Case 2.1: In this subcase, we assume thatai −am̄−1 = 0 for all i with 0≤ i ≤ m̄−2. It then follows

from (16) that

aqj modn= n−a0
qm̄−1
q−1

=
qm−1−a0(qm̄−1)

q−1
=

(qm̄−1)(qm̄+1−a0)

q−1
> a.

Case 2.2:In this subcase, letk be the largest such thatak−am̄−1 6= 0 and 0≤ k≤ m̄−2. It then follows
from (16) that

aqj ≡
k

∑
i=0

(ai −am̄−1)q
m̄+i −am̄−1

m̄−1

∑
i=0

qi (mod n). (17)

Case 2.2.1:If ak−am̄−1 > 0, it follows from (17) that

aqj modn=
k

∑
i=0

(ai −am̄−1)q
m̄+i −am̄−1

m̄−1

∑
i=0

qi . (18)

Whenk≥ 1, we have that ¯m+k≥ (m+2)/2. It then follows from (18) thataqj modn≥ qm̄ > a.
Whenk= 0, by assumption,

a1−am̄−1 = a2−am̄−1 = · · ·= am̄−2−am̄−1 = 0

and
a0−am̄−1 > 0, a0 6= 0, am̄−1 6= 0.

Consequently,
a1 = a2 = · · ·= am̄−2 = am̄−1.

By (18), we obtain

aqj modn = (a0−am̄−1)q
m̄−am̄−1

m̄−1

∑
i=0

qi

= a0qm̄−a1
qm̄+1−1

q−1
. (19)
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By definition and the discussions above, we get

a= a0+a1
qm̄−q
q−1

. (20)

Combining (19) and (20), we arrive at

aqj modn−a=

(

a0−a1
q+1
q−1

)

(qm̄−1). (21)

If q is even, then gcd(q−1,q+1) = 1. As a result,

a0−a1
q+1
q−1

6= 0. (22)

In this case, it can be verified that the total number of pairs(a0,a1) ∈ {1,2, · · · ,q−1}2 such thata0 > a1
and

a0−a1
q+1
q−1

< 0

is equal to(q−2)/2, and those pairs are(i +1, i), where

i ∈

{

q
2
,
q
2
+1, · · · ,

q
2
+

q−4
2

}

. (23)

Consequently, all thea’s with q(m−2)/2 ≤ a≤ qm/2 anda 6≡ 0 (mod q) are coset leaders except that

a= (i +1)+ i
qm̄−q
q−1

,

where i satisfies (23).
If q is odd, then gcd(q−1,q+1) = 2. The only pair(a0,a1) ∈ {1,2, · · · ,q−1}2 such thata0 > a1 and

a0−a1
q+1
q−1

= 0 (24)

is ((q+1)/2,(q−1)/2). In this case,

a=
qm/2+1

2

and aqm̄ modn = a. It then follows from the conclusion of Case 1 that thisa is a coset leader with
|Ca|= m/2.

It can be verified that the total number of pairs(a0,a1) ∈ {1,2, · · · ,q−1}2 such thata0 > a1 and

a0−a1
q+1
q−1

< 0 (25)

is equal to(q−3)/2, and those pairs are(i +1, i), where

i ∈

{

q+1
2

,
q+1

2
+1, · · · ,

q+1
2

+
q−5

2

}

. (26)

Consequently, all thea’s with q(m−2)/2 ≤ a≤ qm/2 anda 6≡ 0 (mod q) are coset leaders except that

a= (i +1)+ i
qm̄−q
q−1

,

where i satisfies (26). This completes the discussions in Case 2.2.1.



19

Case 2.2.2:If ak−am̄−1 < 0, it follows from (17) that

aqj modn= n+
k

∑
i=0

(ai −am̄−1)q
m̄+i −am̄−1

m̄−1

∑
i=0

qi. (27)

Note thatm̄+k≤ m−2. It then follows from (27) that

aqj modn≥ qm̄ > a.

Case 3:m̄+1≤ j ≤ m−1: In this case, let̄j = j −(m̄+1). Then 0≤ j̄ ≤ m̄−2. Note that(qm−1)≡ 0
(mod n). One can check that

aqj ≡ T modn, (28)

where

T =
j̄

∑
u=0

(am̄−1− j̄+u−am̄− j̄−2)q
u−am̄− j̄−2

j̄+m̄

∑
u= j̄+1

qu+
m−2

∑
u= j̄+m̄+1

(au−( j̄+m̄+1)−am̄− j̄−2)q
u.

Case 3.1: If au−am̄− j̄−2 = 0 for all u with 0≤ u≤ m̄− j̄ −3, then

0 6= a0 = a1 = · · ·= am̄− j̄−2.

In this case,

aqj modn= n+
j̄

∑
u=0

(am̄−1− j̄+u−am̄− j̄−2)q
u−am̄− j̄−2

j̄+m̄

∑
u= j̄+1

qu.

Note thatm̄+ j̄ ≤ m−2. We then deduce that

aqj modn≥ qm̄ > a.

Case 3.2: If au− am̄− j̄−2 6= 0 for someu with 0 ≤ u ≤ m̄− j̄ − 3, let k be the largest suchu. By
definition,

0≤ k≤ m̄− j̄ −3.

Case 3.2.1:If ak−am̄− j̄−2 > 0, thenT > 0. Note thatk≥ m̄+ j̄ +1≥ m̄+1. We have

aqj modn= T > a.

Case 3.2.2:If ak−am̄− j̄−2 < 0, thenT < 0. Note thatk+ m̄+ j̄ +1≤ m−2. We have

aqj modn= n−T > a.

Collecting all the conclusions in Cases 1, 2 and 3, we complete the proof of this lemma.

Theorem 27. Let m≥ 4 be even and2≤ δ ≤ qm/2. Define

ε =
⌊

(δ−2)(q−1)

qm/2−1

⌋

.

Then the BCH codeC(q,n,δ,1) has length n= (qm−1)/(q−1), minimum distance d≥ δ, and dimension

k=

{

n−m⌈(δ−1)(q−1)/q⌉+(2ε− (q−2))m
2 if ε ≥ ⌊(q−1)/2⌋,

n−m⌈(δ−1)(q−1)/q⌉ if ε < ⌊(q−1)/2⌋.

Proof: Let m be even. The lower bound on the minimum distance comes from the BCH bound. We
prove the conclusion on the dimension only for the case thatq is odd, and omit the proof of the conclusion
for the other case, which is similar.
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Let q be odd. Whenε ≥ (q−1)/2, it follows from Lemmas 2 and 26 that the total number of non-
coset-leadersb with (qm/2+1)/2≤ b≤ δ−1 is equal to

ε−
q+1

2
+1= ε−

q−1
2

.

In this case, ˆa := (qm/2+1)/2≤ δ−1. Hence, ˆa is a coset leader with|Câ|= m/2. It follows again from
Lemmas 2 and 26 that the total number of coset leadersa with 1≤ a≤ δ−1 is equal to

⌈

(δ−1)(q−1)
q

⌉

−

(

ε−
q−1

2

)

.

For all these coset leadersa we have|Ca|= m except thata= â. The desired conclusion on the dimension
then follows.

When ε < (q−1)/2, we haveδ−1< (qm/2+1)/2, it follows from Lemmas 2 and 26, every integer
a with 1≤ a≤ δ−1 anda 6≡ 0 (mod q) is a coset leader with|Ca| = m. The desired conclusion on the
dimension then follows.

Corollary 28. Let m≥ 4 be even andδ = qm/2. Then the codeC(q,n,δ,1) has length n= (qm−1)/(q−1),
dimension

k= n−q(m−2)/2(q−1)m+(q−2)
m
2
,

and minimum distance d≥ δ+1.

Proof: The conclusion on the dimension follows from Theorem 27. Theimprovement on the lower
bound of the minimum distance is due to the fact that the Bose distance isδ+1 in this case.

Theorem 29. Let m≥ 4 be even and2≤ δ ≤ qm/2. Define

ε =
⌊

(δ−2)(q−1)

qm/2−1

⌋

, ε̄ =
⌊

(δ−1)(q−1)

qm/2−1

⌋

.

Then the BCH codeC(q,n,2δ,1−δ) is reversible and has length n= (qm−1)/(q− 1), minimum distance
d ≥ 2δ, and dimension

k=

{

n−1−2m⌈(δ−1)(q−1)/q⌉+(2ε− (q−2))m+ ε̄m if ε ≥ ⌊(q−1)/2⌋,
n−1−2m⌈(δ−1)(q−1)/q⌉+ ε̄m if ε < ⌊(q−1)/2⌋.

Proof: Notice that the codeC(q,n,2δ,1−δ) is reversible. The lower bound on the minimum distance
comes from the BCH bound. Letg(q,n,δ,1)(x) denote the generator polynomial of the codeC(q,n,δ,1) of
Theorem 27. It then follows from Theorem 27 that

deg(g(q,n,δ,1)(x)) =

{

m⌈(δ−1)(q−1)/q⌉− (2ε− (q−2))m
2 if ε ≥ ⌊(q−1)/2⌋,

m⌈(δ−1)(q−1)/q⌉ if ε < ⌊(q−1)/2⌋.

By definition, the generator polynomialg(q,n,2δ,1−δ)(x) of C(q,n,2δ,1−δ) is given by

g(q,n,2δ,1−δ)(x) = lcm(x−1,g(q,n,δ,1)(x),g
∗
(q,n,δ,1)(x))

= (x−1)
g(q,n,δ,1)(x)g

∗
(q,n,δ,1)(x)

gcd(g(q,n,δ,1)(x),g
∗
(q,n,δ,1)(x))

,

whereg∗(q,n,δ,1)(x) is the reciprocal ofg(q,n,δ,1)(x). Consequently,

deg(g(q,n,2δ,1−δ)(x)) = 1+2deg(g(q,n,δ,1)(x))−deg(gcd(g(q,n,δ,1)(x),g
∗
(q,n,δ,1)(x))).

By Lemma 25, we have
deg(gcd(g(q,n,δ,1)(x),g

∗
(q,n,δ,1)(x))) = ε̄.
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The desired conclusion on the dimension ofC(q,n,2δ,1−δ) then follows.
For the two parameters̄ε and ε defined in Theorem 29, we havēε = ε except in a few cases where

ε̄ = ε+1.

Corollary 30. Let m≥ 4 be even andδ = qm/2. Then the reversible BCH codeC(q,n,2δ,1−δ) has length
n= (qm−1)/(q−1), dimension

k= n−1−2mq(m−2)/2(q−1)+(2q−3)m,

and minimum distance d≥ 2δ+2.

Proof: The conclusion on the dimension follows from Theorem 29. Theimprovement on the lower
bound of the minimum distance is due to the fact that the Bose distance isδ+1 in this case.

Example 8. Let (q,m,δ) = (3,4,9). Then the codeC(q,n,2δ,1−δ) has parameters[40,3,20].

Example 9. Let (q,m,δ) = (4,4,16). Then the codeC(q,n,2δ,1−δ) has parameters[85,8,34].

IX. CONCLUDING REMARKS

The main contributions of this paper are the following:
• The construction of all reversible cyclic codes over finite fields documented in Section IV.
• The construction of the family of reversible cyclic codes oflength n = qℓ+1 over GF(q) and the

analysis of their parameters (see Theorem 17).
• The analysis of the family of reversible cyclic codes of length n= qm−1 over GF(q) (see Theorem

21).
• The analysis of the family of reversible cyclic codes of length n= (qm−1)/(q−1) over GF(q) (see

Theorem 29).
The dimensions of all these codes were settled. Lower boundson all the reversible cyclic codes were

derived from the BCH bound. In most cases, we conjecture thatthe lower bounds are actually the minimum
distances of the codes. However, it is extremely difficult todetermine the minimum distance of these cyclic
codes. The reader is cordially invited to settle the open problems and conjectures proposed in this paper.
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