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Almost universal codes achieving ergodic MIMO
capacity within a constant gap

Laura Luzzi and Roope Vehkalahti

Abstract—This work addresses the question of achieving ca-
pacity with lattice codes in multi-antenna block fading channels
when the number of fading blocks tends to infinity.
A design criterion based on the normalized minimum determi-
nant is proposed for division algebra multiblock space-time codes
over fading channels; this plays a similar role to the Hermite
invariant for Gaussian channels.
It is shown that this criterion is sufficient to guarantee trans-
mission rates within a constant gap from capacity both for slow
fading channels and ergodic fading channels. This performance
is achieved both under maximum likelihood decoding and naive
lattice decoding. In the case of independent identically distributed
Rayleigh fading, it is also shown that the error probability
vanishes exponentially fast.
In contrast to the standard approach in the literature which
employs random lattice ensembles, the existence results inthis
paper are derived from number theory. First the gap to capacity
is shown to depend on the discriminant of the chosen division
algebra; then class field theory is applied to build families
of algebras with small discriminants. The key element in the
construction is the choice of a sequence of division algebras whose
centers are number fields with small root discriminants.

Index Terms—MIMO, block fading, space-time codes, number
theory, division algebras

I. I NTRODUCTION

It is well-known [3] that in ergodic multiple-input multiple-
output (MIMO) fading channels with channel state information
at receiver only, the maximal mutual information is achieved
with Gaussian circularly symmetric random inputs. In this case
the existence of capacity-achieving codes can be proven with
standard random coding arguments.
It has been shown that by combining simple modulation and
strong outer codes such as turbo or LDPC codes, it is possible
to operate at rates close to capacity with small error probability
[4, 5]. However, to the best of our knowledge, the problem of
achieving capacity withexplicit codesfor all ranges of signal-
to-noise ratio (SNR) is still open.
This is in strong contrast to the classical complex Gaussian
single antenna channel, where the capacity islog(1 + SNR)
and it is known that several lattice code constructions achieve
log SNR−C rates. These constructions are based on a rich
theory of lattice codes developed to attack these questions.
At the heart of this theory are sphere packing arguments
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that prove that the performance of a lattice code in the
classical Gaussian channel can be roughly estimated by the
size of a geometrical invariant of the lattice, theHermite
invariant. In particular the Hermite invariant can be used to
roughly measure how close to capacity a family of lattices
can get. This connection has been extremely fruitful and has
led to a monumental work connecting algebra, geometry and
information theory [6].

In the case of fading channels the situation is quite different.
While it is well-known that space-time lattice codes from
division algebras [7] provide good performance over multiple
antenna fading channels, and a rich algebraic theory has been
developed to optimize single codes [8], there are as yet no
results connecting capacity questions and the geometry of
lattices. The minimum determinant criterion [9] allows to
improve the worst-case pairwise error probability in the high-
SNR regime, when coding over a single fading block. Opti-
mizing this value has been the major concern of several works
in space-time coding [8, 10, 11]. However, no design criterion
has been suggested for approaching the MIMO capacity with
explicit lattice codes.

In this paper we address this problem and show that when
we are allowed to encode and decode over a growing number
of fading blocks, thenormalized minimum determinantplays
a similar role to the Hermite constant in Gaussian channels.
In particular it can be used to measure how close to capacity
a given family of lattice codes can get.

Based on this design criterion we prove that for a MIMO
channel withn transmit andnr receive antennas, there exists
a family of multiblock lattice codesLn,k ⊂ Mn×nk(C)
(where k goes to infinity) that achieves a constant gap to
capacity both in the slow fading and ergodic fading case.
More precisely, for a MIMO channel with ergodic capacity
C = EH

[

log det(Inr
+ SNR

n H†H)
]

, our scheme achieves
any rate

R < EH

[

log det
SNR

n
H†H

]

− n logCL + n log
πe

4n
, (1)

whereCL is a certain geometric invariant of the family of
lattices. These rates are achieved not only with maximum
likelihood (ML) decoding, but also with naive lattice decoding.
Furthermore, the same scheme achieves positive rates of reli-
able communication for more general fading processes{Hi}
under the mild hypothesis that the weak law of large numbers
holds for the sequence of random variables{log detH†

iHi}.
As far as we know, this is the first explicit coding scheme
which achieves constant gap to capacity for all SNR levels in
MIMO channels.
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Instead of using random coding arguments we consider
algebraic multi-block division algebra codes [12, 13]. Our
lattice constructions are based on two results from classical
class field theory. First we choose the centerK of the algebra
from an ensemble of Hilbert class fields having small root
discriminant and then we prove the existence of aK-central
division algebra with small discriminant. Our lattices belong
to a very general family of division algebra codes introduced
in [12, 13, 14], and developed further in [15] and [16]. We
will use the most general form presented in [17]. In particular
our work proves that the classical number field codes [18]
achieve a constant gap to capacity in Rayleigh fast fading
single antenna channels.

In most works on algebraic space-time coding the code
design criterion is derived from an upper bound for the
pairwise error probability [9] together with the union bound
[18, 19]. In our proofs we abandon this method and consider
a hard sphere packing approach, classically used in lattice
coding for the AWGN channel. The idea, formalized in Section
III, is to exploit the specialmultiplicative structureof algebraic
codes. It was observed in the context of diversity-multiplexing
gain trade-off (DMT) analysis [20, 21], that fading has a
diminishing effect on the euclidean distance of the received
code constellations derived from division algebra codes, hav-
ing the so-callednon-vanishing determinantproperty, only if
the channel itself is bad. This property was formalized in
[21], where the authors introducedapproximately universal
codes for fading channels. Our main results Theorem 4.1
and Theorem 4.7 rely on this “incompressibility” property of
algebraic lattices. It follows that our codes arealmost universal
and perform within a constant gap to capacity for a wide class
of channels, having only mild restrictions on fading.

While we discuss specific lattice codes from division alge-
bras, our proofs do work for any ensemble of matrix lattices
with asymptotically good normalized minimum determinant.
The larger this value is, the smaller the gap to the capacity.

This work also suggests that capacity questions in fading
channels are naturally linked to problems in the mathematical
research area ofgeometry of numbers. Unlike the single
antenna Gaussian case, many of the questions that arise have
not been actively studied by the mathematical community.
Hopefully, studying such questions may lead to a comprehen-
sive geometric theory of lattices for multiple antenna fading
channels.

We note that the proposed lattice code constructions are not
yet practical, since they are based on number fields whose
existence is proved through class field theory. Given a fixed
degree, the required number fields can be found using compu-
tational algebra software, but this process is computationally
taxing. Decoding of the proposed codes is also very complex
and the constructions we provide still have a large gap to
capacity.

On the other side, as demonstrated in Section VIII, the
existence results we use are very pessimistic. For small degrees
the normalized minimum determinants of the best possible
lattices are considerably better than the bounds provided by
our existence results.

A. Related work

While our work shows that one can achieve a constant gap
to capacity in ergodic MIMO channels with a fixed family
of algebraic codes, it is natural to consider the more general
question of whether it is possible to achieve capacity with
any lattice codes. Such a result would be a generalization
of the work in [22, 23, 24] which proved the existence of
random lattice code ensembles achieving ratelog(SNR) over
the AWGN channel. By making the extra assumption that the
transmitter and receiver have access to a common source of
randomness in the form of a dither, the authors in [25] finally
proved that the AWGN capacity is achievable with random
lattice codes. An explicit multilevel construction from polar
codes was recently proposed in [26].

As far as we know our work [2] was the first to give a
proof that lattice codes achieve a constant gap to capacity in
block fading MIMO channels. In the single antenna fast fading
channel this problem was considered before in [27], which
claims that random lattices achieve a constant gap to capacity.
In [28] the authors extend their previous results and claim to
give a proof that random lattices achieve capacity in single
antenna ergodic fading channels. However, we believe that at
least in its current form, the analysis in both works is missing
some fundamental details. In particular, the gap∆ < 1 +

logEh

[

1
|h|2

]

, given in [27, Theorem 3], is infinite even when

the fading process{hi} is i.i.d. complex Gaussian. In [28,
Equation (20)] the authors state that for a given fixed fading
realization, the Minkowski-Hlawka theorem implies that there
exist a lattice for which the error probability is upper bounded
in a certain way. However, they proceed as if there existed
a single lattice that would satisfy this upper bound for any
channel state. To the best of our knowledge, such a result can
not be derived from Minkowski-Hlawka.

As far as explicit algebraic constructions are concerned, our
work is indebted to several previous papers.
The idea to use division algebra codes to achieve capacity
can be tracked down to the work of H.-f. Lu in [13]. While
studying the diversity-multiplexing gain tradeoff (DMT) of
multiblock codes he conjectured that the ensemble of multi-
block division algebra codes might approach the ergodic
Rayleigh fading capacity. Our work confirms that conjecture;
however, we point out that it is unlikely that DMT-optimality
alone is enough to approach capacity. Instead one should
pick the code very carefully by maximizing the normalized
minimum determinant.

The families of number fields on which our constructions
are based were first brought to coding theory in [29], where
the authors pointed out that the corresponding lattices have
large Hermite constant. C. Xing in [30] remarked that these
families of number fields provide the best known normalized
product distance making them a natural candidate for achiev-
ing constant gap to capacity in fading single antenna channels.

Our results on slow fading channel are motivated by the
work in [31], where the authors prove thatprecoded integer
forcing achieves a constant gap to capacity for every slow
fading channel with fixed fading.

Our geometry of numbers approach has its roots in [32],
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where the authors studied lattice codes in single antenna fading
channel and defined the normalized product distance. They
also pointed out that using this criterion reduces the lattice
design to a problem in geometry of numbers.

The generalization of these ideas to the MIMO channel
was developed in [33] and [34], where the code design for
quasi-static MIMO channel problem was translated into lattice
theoretic language and where a formal definition of normalized
minimum determinant was given. However, none of these
works considered the relation between geometry of numbers
and capacity problems.

B. Organization of the paper

In Section II we introduce the multiblock channel model
and recall the relevant properties of lattice codes. In Section
III-A we develop a geometric design criterion for capacity
approaching lattice codes for fading multiple antenna channels
and define the concept ofreduced Hermite invariantwhich is
an analogue of the classical Hermite invariant. In Section III-B
we state the existence of lattices having asymptotically good
normalized minimum determinant (the proof will be given in
Section VII). In Section IV we prove that the lattice codes of
the previous section achieve positive rates over a very general
class of channels. We then prove that they achieve a constant
gap to capacity over slow fading (Section V-A) and ergodic
fading channels (Section V-B). In Section VI we focus on the
i.i.d. Rayleigh fading channel model, and show that the error
probability vanishes exponentially. In Section VII we prove the
existence of asymptotically good lattices, and in Section VIII
we specialize our results to the single antenna case. Finally
in Section IX we explore the connection between capacity
questions in fading channels and geometry of numbers. Section
X discusses some perspectives and open problems.

C. Notation

Throughout the paper, capacity is measured in bits. Ac-
cordingly, we denote bylog the base2 logarithm in rate and
capacity expressions; the natural logarithm will be denoted by
ln.

II. M ULTIBLOCK LATTICE CODES

A. Channel model

We consider a MIMO system withn transmit andnr receive
antennas, where transmission takes place overk quasi-static
fading blocks of delayT = n. Each multi-block codeword
X ∈ Mn×nk(C) has the form(X1, X2, . . . , Xk), where the
submatrixXi ∈ Mn(C) is sent during thei-th block. The
received signals are given by

Yi = HiXi +Wi, i ∈ {1, . . . , k} (2)

whereHi ∈Mnr×n(C) andWi ∈Mnr×T (C) are the channel
and noise matrices. The coefficients ofWi are modeled as
circular symmetric complex Gaussian with zero mean and unit
variance per complex dimension. Perfect channel state infor-
mation is available at the receiver but not at the transmitter, and
decoding is performed after allk blocks have been received.

We will call such a channel an(n, nr, k)-multiblock channel.
In this paper, we will also assume that for alli ≥ 1, Hi ∈
Mnr×n is full-rank with probability1, and that the random
variable

∑k
i=1

1
n log det(H†

iHi) converges in probability to
some constant when the number of blocksk tends to infinity.
This channel model covers several standard MIMO channels
such as the Rayleigh block fading channel and the slow fading
channel.

A multi-block codeC in a (n, nr, k)-channel is a set of
matrices inMn×nk(C). In particular we will concentrate on
finite codes that are drawn from lattices. LetR denote the
code rate in bits per complex channel use; equivalently,|C| =
2Rkn. We assume that every matrixX in a finite codeC ⊂
Mn×nk(C) satisfies the average power constraint

1

nk
‖X‖2 ≤ P, (3)

where‖X‖ is the Frobenius norm of the matrixX .

B. Lattice codes

Definition 2.1: A matrix lattice L ⊆ Mn×nk(C) has the
form

L = ZB1 ⊕ ZB2 ⊕ · · · ⊕ ZBr,

where the matricesB1, . . . , Br are linearly independent over
R, i.e., form a lattice basis, andr is called therank or the
dimensionof the lattice.

The spaceMn×nk(C) is a 2n2k-dimensional real vector
space with a real inner product

〈X,Y 〉 = ℜ(Tr(XY †)),

whereTr is the matrix trace. This inner product also naturally
defines a metric on the spaceMn×nk(C) by setting||X || =
√

〈X,X〉.
Given anm dimensional latticeL ⊂ Mn×nk(C), its Gram

matrix is defined as

G(L) = (〈Xi, Xj〉)1≤i,j≤m ,

where {Xi}1≤i≤m is a basis ofL. The volume of the
fundamental parallelotope ofL is then defined asVol(L) =
√

| det(G(L))|.
In the following we will use the notationR(L) for the linear

space generated by the basis elements of the latticeL.
Lemma 2.2: [35] Let us suppose thatL is a lattice in

Mn×kn(C) andS is a Jordan measurable bounded subset of
R(L). Then there existsX ∈Mn×kn(C) such that

|(L+X) ∩ S| ≥ Vol(S)

Vol(L)
.

Given a family of latticesLn,k ⊆ Mn×nk(C), let us now
show how we can design multiblock codesC having rate
greater or equal to a prescribed constantR, and satisfying
the average power constraint (3), from a scaled versionαLn,k
of the lattices, whereα is a suitable energy normalization
constant. We denote byB(r) the set of matrices inMn×nk(C)
with Frobenius norm smaller or equal tor. According to
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Lemma 2.2, we can choose a constant shiftXR ∈Mn×nk(C)
such that forC = B(

√
Pkn) ∩ (XR + αLn,k) we have

2Rnk = |C| ≥ Vol(B(
√
Pkn))

Vol(αLn,k)
=

Cn,kP
n2k

α2n2k Vol(Ln,k)
,

whereCn,k = (πnk)n
2k

(n2k)! . We then find the following condition
for the scaling constant:

α2 =
C

1
n2k

n,k P

2
R
n Vol(Ln,k)

1
n2k

(4)

III. D ESIGN CRITERIA FOR FADING CHANNELS

In this section we propose a new design criterion for
capacity approaching lattice codes in fading channels. Forthe
sake of simplicity, we will focus on the casenr ≥ n. We
note that the design criterion derived here will finally be the
familiar minimum determinant criterion. However, we hope
that our alternative characterization offers more insighton the
topic and can have applications in further research.

A. Reduced Hermite invariant

We recall the classical definition of the Hermite invariant,
which characterizes the density of a lattice packing:

Definition 3.1: The Hermite invariant of anm-dimensional
latticeL ⊂Mn×nk(C) can be defined as

h(L) =
inf{ ||X ||2 | X ∈ L,X 6= 0}

Vol(L)2/m
.

On then× n MIMO Gaussian channel such that the channel
matricesHi = In ∀i, the classical sphere packing approach is
to choose a2n2k-dimensional lattice codeLn,k ⊂Mn×nk(C)
such thath(Ln,k) is as large as possible.

Let us now assume that we have a finite codeCL ⊂
Ln,k ⊂ Mn×nk(C) and a random channel realization
H = [H1, . . . , Hk]. We note that the channel outputY =
[Y1, . . . , Yk] can be written as

Y = HdX +W,

whereX = [X1, . . . , Xk], W = [W1, . . . ,Wk], andHd =
diag(H1, . . . , Hk). From the receiver’s point of view, this is
equivalent to an additive white Gaussian noise channel where
the lattice code is

HCL = {HdX | X ∈ CL}.

Even if the latticeLn,k (and therefore the codeCL) has good
minimum distance, there is no guarantee that the same can be
said about the latticeHCL. This leads us to consider matrix
latticesLn,k ⊂Mn×nk(C) which would have good minimum
distance after any (reasonable) channel. If we assume that each
of the matricesHi in equation (2) has full rank with probability
1, then the multiplicationX 7→ HdX is a bijective linear
mapping with probability1. For any latticeLn,k ⊂Mn×nk(C)
having basisB1, . . . , B2n2k we then have that

HLn,k = {HdX | X ∈ Ln,k} = ZHdB1 ⊕ · · · ⊕ ZHdB2n2k,

is a lattice with basisHdB1, · · · , HdB2n2k, andh(HLn,k) is
well defined.

As a discrete group,HLn,k has positive Hermite invari-
ant, but even ifh(Ln,k) is large there is no guarantee that
h(HLn,k) is.

For convenience we first introduce a group of matrices

G = {H ∈Mn×nk(C) | pdet(H) = 1}, (5)

wherepdet(H) =
∏k
i=1 det(Hi).

Definition 3.2: The reduced Hermite invariantof an m-
dimensional latticeL ⊂Mn×nk(C) with respect to the group
G is defined as

rhG(L) = inf
H∈G

{h(HL)}.

For any latticeL, h(L) > 0. The same is not true for
the reduced Hermite invariant. Let us now describe the set
of latticesL for which rhG(L) > 0.

Definition 3.3: Theminimum determinantof the latticeL ⊆
Mn×nk(C) is defined as

detmin (L) := inf
X∈L\{0}

|pdet(X)| .

If detmin (L) > 0 we say that the lattice satisfies thenon-
vanishing determinant(NVD) property.

We can now define thenormalized minimum determinant
δ(L), which is obtained by first scaling the latticeL to have
a unit size fundamental parallelotope and then taking the
minimum determinant of the resulting scaled lattice. A simple
computation proves the following.

Lemma 3.4:Let L be anm-dimensional matrix lattice in
Mn×nk(C). We then have that

δ(L) =
detmin (L)

(Vol(L))nk/m
. (6)

The normalized minimum determinant provides an alter-
native characterization of the reduced Hermite invariant,but
before that we need a well known lemma.

Lemma 3.5:Let A be anm×m complex matrix. We have
the inequality

| det(A)| ≤ ‖A‖m
mm/2

.

For a matrixX ∈Mn×nk(C) this immediately implies that

|pdet(X)| ≤ ‖X‖nk
(nk)nk/2

.

Proposition 3.6: If L ⊂Mn×nk(C) is a 2n2k-dimensional
lattice, then

nk (δ(L))
2/nk

= rhG(L).

Proof: If the lattice L includes a non-zero elementX
such thatpdet(X) = 0, it is easy to see thatnk (δ(L))2/nk =
rhG(L) = 0.
Let us now assume thatpdet(X) 6= 0, for all X 6= 0. If
pdet(H) = 1, Lemma 3.5 implies that

‖HdX‖2 ≥ nk |pdet(HdX)|2/nk = nk |pdet(X)|2/nk .

It follows thatnk (δ(L))2/nk ≤ rhG(L).



5

Let us now assume that we have a sequence of codewords
X(i) ∈ L such that

lim
i→∞

nk|pdet(X(i))|2/nk = nk (δ(L))
2/nk

.

If X(i) = [X
(i)
1 , . . . , X

(i)
k ], we can chooseH(i) =

pdet(X(i))1/n[(X
(i)
1 )−1, . . . , (X

(i)
k )−1] so thatpdet(H(i)) =

1. We then have

||H(i)
d X(i)||2 = nk|pdet(H(i)

d X(i))|2/nk =

= nk|pdet(X(i))|2/nk

for every i and therefore

lim
i→∞

||H(i)
d X(i)||2 = nk (δ(L))

2/nk
.

It follows thatnk (δ(L))2/nk = rhG(L).
Remark 3.7:Our definition of the reduced Hermite invari-

ant rhG depends heavily on the groupG. The group chosen
in (5) can be seen as a block diagonal subgroup ofSLkn(C).
We could also consider a subgroupG1 ⊂ G and definerhG1

with respect to this group. A natural consequence of these
definitions is that for two subgroupsG1, G2 of G such that
G1 ⊆ G2, we have that

rhG1(L) ≥ rhG2(L).

B. Asymptotically good families of lattices

Based on the observations in the previous section, we can
say that a sequence of codesLn,k is asymptotically good for
the AWGN channelif h(Ln,k) ≥ cn2k, for some positive fixed
constantc. Similarly, we can say that a sequence of lattices is
asymptotically good for fading channelsif rhG(Ln,k) ≥ cn2k.
As seen in Proposition 3.6, this is equivalent to asking that
δ(Ln,k)

2/nk ≥ cn.
In order to keep the paper suitable for a larger audience we

will postpone the proof of the following existence result to
Section VII.

Proposition 3.8:Given n, there exists a family of2n2k-
dimensional latticesLn,k ⊂ Mn×nk(C), wherek grows to
infinity, and a constantG < 92.4 such that

Vol(Ln,k) ≤ 23
kn(n−1)

10

(

G

2

)n2k

detmin(Ln,k) = 1 and δ(Ln,k) ≥
1

23
k
20 (n−1)(G/2)

nk
2

.

Remark 3.9:In this section we have developed the notion
of reduced Hermite invariant for the casenr ≥ n. We observe
that this notion does not extend in a straightforward way to the
casenr < n, because the imageHL of an infinite latticeL
will no longer be a lattice, and the minimum distance inHL
will be zero. However, when considering finite constellations
CL, it is still possible to find suitable lower bounds on the
minimum distance of the received constellationHCL, as will
be shown in the following sections.

IV. A CHIEVABLE RATES FOR GENERAL CHANNELS

Suppose that we have an infinite family of latticesLk ∈ Ck

with Hermite invariants satisfyingh(Lk)
k ≥ c, for some positive

constantc. Then a classical result in information theory states
that with this family of lattices, all rates satisfying

R < logP + log
(πe

4

)

+ log c,

are achievable in the additive complex Gaussian channel [6,
Chapter 3]. This means that we can attach a single number
h(Lk) to each latticeLk ∈ Ck, which roughly describes
its performance and in particular estimates how close to the
capacity a family of lattices can get. The following theorem
can be seen as an analogue of this result for fading channels.

Theorem 4.1:Suppose thatnr ≥ n, and let {Hi}i∈Z be
a fading process such thatHi ∈ Mnr×n is full-rank with
probability1, and suppose that the weak law of large numbers
holds for the random variables{log det(H†

iHi)}, i.e. ∃µ > 0
such that∀ǫ > 0,

lim
k→∞

P

{∣

∣

∣

∣

∣

1

k

k
∑

i=1

log det(H†
iHi)− µ

∣

∣

∣

∣

∣

> ǫ

}

= 0. (7)

Let Ln,k ⊂ Mn×nk(C) be a family of 2n2k-dimensional
multiblock lattice codes such that

detmin (Ln,k) = 1, and Vol(Ln,k)
1

n2k ≤ CL (8)

for some constantCL > 0. Then, any rate

R < µ+ n
(

logP − logCL + log
πe

4n2

)

is achievable using the codesLn,k both with ML decoding
and naive lattice decoding.

Remark 4.2:We note that existence of a family of lattices
with

CL ≤ 23
(n−1)
10n

(

G

2

)

,

was given in Proposition 3.8.
Remark 4.3:This theorem is stated by giving two condi-

tions (8) for the latticesLn,k. However, according to Lemma
3.4 we could have captured both of these conditions by an
equivalent assumptionδ(Ln,k)2/nk ≥ 1

CL
. Proposition 3.6

then transforms this condition to

rhG(Ln,k) = nk (δ(Ln,k))
2/nk ≥ nk

CL
.

As only k is growing, we can further write thatrhG(Ln,k) ≥
n2kC′

L, where C′
L = n/CL. We can therefore see that

conditions (8) assure that the family of latticesLn,k is asymp-
totically good in the sense of Section III-B.

The achievable rateR in Theorem 4.1 can then be seen as
a complete analogue to the classical sphere packing result in
AWGN channels.

Remark 4.4:The condition (7) holds in particular for er-
godic stationary fading channels and for constant MIMO
channels. These special cases will be analyzed further in
Section V, where we will show that the codes in Theorem
4.1 achieve a constant gap to channel capacity.

To prove Theorem 4.1, we need the following Lemma:
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Lemma 4.5:Consider the finite codeC = B(
√
Pkn) ∩

(XR + αLn,k) defined in Section II-B. Suppose that the
receiver performs maximum likelihood decoding or “naive”
lattice decoding (closest point search in the infinite lattice).
Then, under the hypotheses of Theorem 4.1,∀ǫ > 0 the error
probability is bounded by

Pe ≤ 2e−
kn2ǫ2

8 + P

{

α2

4n

k
∏

i=1

det(H†
iHi)

1
nk < 1 + ǫ

}

(9)

Proof: We distinguish two cases: the symmetric case
wherenr = n, and the asymmetric case withnr > n. Let
dH denote the minimum Euclidean distance in the received
constellation:

d2H = min
X,X̄∈C
X 6=X̄

k
∑

i=1

∥

∥Hi(Xi − X̄i)
∥

∥

2
.

a) Casenr = n: We have

Pe ≤ P

{

‖W‖2 ≥
(

dH
2

)2
}

,

whereW = (W1,W2, . . . ,Wk) is the multiblock noise. By
the law of total probability,∀ǫ > 0 we have

Pe ≤ P

{

‖W‖2
kn2

≥ 1 + ǫ

}

+ P

{

d2H
4kn2

< 1 + ǫ

}

. (10)

Note that2 ‖W‖2 ∼ χ2(2kn2), and the tail of the chi-square
distribution is bounded as follows forǫ ∈ (0, 1) [36]:

P

{

‖W‖2
kn2

≥ 1 + ǫ

}

≤ 2e−
kn2ǫ2

8 . (11)

Thus, the first term in equation (10) vanishes exponentially
fast ask → ∞.
In order to provide an upper bound for the second term,
we consider a lower bound for the minimum distance in the
received constellation. We have

d2H ≥ α2nk min
X∈Ln,k\{0}

k
∏

i=1

|det(HiXi)|
2
nk ≥

≥ α2nk

k
∏

i=1

|det(Hi)|
2
nk ,

where the first bound comes from Lemma 3.5 and the second
from the hypothesis that detmin (Ln,k) = 1. Therefore, the
second term in (10) is upper bounded by

P

{

α2

4n

k
∏

i=1

|det(Hi)|
2

nk < 1 + ǫ

}

. (12)

b) Casenr > n: In this case, the latticeHdLn,k is 2n2k-
dimensional but is contained in a2nrnk-dimensional space.
For all i = 1, . . . , k, consider the QR decomposition

Hi = QiRi, Qi ∈Mnr×nr(C), Ri ∈Mnr×n(C),

whereQi is unitary andRi is upper triangular. We haveQi =
[Q′

i Q
′′
i ], whereQ′

i ∈ Mnr×n(C) is such that(Q′
i)

†Q′
i = In,

andRi =

[

R′
i

0

]

, with R′
i ∈ Mn(C) upper triangular. Note

that the “thin” QR decompositionHi = Q′
iR

′
i also holds.

Multiplying the channel equation (2) byQ†
i , we obtain the

equivalent system

Ỹi = Q†
iYi = RiXi +Q†

iWi

for all i = 1, . . . , k. Note that

Ỹi =

[

Y ′
i

Y ′′
i

]

=

[

R′
iXi +Q′

iWi

Q′′
iWi

]

.

Thus, the second component contains only noise and no
information. The output of the naive lattice decoder can be
written as

X̂ = argmin
X′∈αLn,k

k
∑

i=1

‖Yi −HiX
′
i‖

2
=

= argmin
X′∈αLn,k

k
∑

i=1

∥

∥

∥Ỹi −RiX
′
i

∥

∥

∥

2

=

= argmin
X′∈αLn,k

k
∑

i=1

(

‖Y ′
i −R′

iX
′
i‖

2
+ ‖Q′′

iWi‖2
)

=

= argmin
X′∈αLn,k

k
∑

i=1

‖Y ′
i −R′

iX
′
i‖

2
,

since the second component does not depend on the lattice
point X ′. Thus, the naive lattice decoder for the original
system declares an error if and only if the naive lattice decoder
for the (n, n, k) multiblock system with components

Y ′
i = R′

iXi +Q′
iWi = R′

iXi +W ′
i

does. Note thatW ′
i = (Q′

i)
†Wi is ann× n matrix with i.i.d.

Gaussian entries of variance1 per complex dimension.
Let dR′ be the minimum distance in the2n2k-dimensional

constellation generated byR′ = [R′
1, . . . , R

′
k]:

dR′ = min
X,X̄∈C
X 6=X̄

k
∑

i=1

∥

∥R′
i(Xi − X̄i)

∥

∥

2
.

Observe that∀i = 1, . . . , k,
∥

∥Hi(Xi − X̄i)
∥

∥

2
=
∥

∥Q′
iR

′
i(Xi − X̄i)

∥

∥

2
=
∥

∥R′
i(Xi − X̄i)

∥

∥

2

Thus,dH = dR. Moreover,det(H†
iHi) = det((R′

i)
†R′

i) =
|det(R′

i)|
2. Similarly to the symmetric case, the error proba-

bility can be bounded by

Pe ≤ P

{

‖W ′‖2 ≥
(

dR′

2

)2
}

,

whereW ′ = (W ′
1, . . . ,W

′
k). We can write

d2R′ ≥ α2nk

k
∏

i=1

|det(R′
i)|

2
nk = α2nk

k
∏

i=1

det(H†
iHi)

1
nk .

The proof then follows exactly the same steps as in the
symmetric case.
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Proof of Theorem 4.1: The second term in (9) can be
rewritten as

P

{

1

k

k
∑

i=1

1

n
log det(H†

iHi) < log

(

4n(1 + ǫ)

α2

)

}

,

and will vanish as long as

log

(

4n(1 + ǫ)

α2

)

<
µ

n
.

Recalling that the normalization constantα2 in equation (4)
satisfies

α2 ≥
C

1/n2k
n,k P

2R/nCL

under the hypothesis thatVol(Ln,k)
1

n2k ≤ CL, a sufficient
condition to have vanishing error probability is

R

n
< logP +

µ

n
− log(4n(1 + ǫ))− logCL +

1

n2k
logCn,k

From Stirling’s approximation, for largek we have

(Cn,k)
1

n2k ≈ πe/(n(2πn2k)
1

2n2k ). (13)

Since 1
2nk log 2πn

2k → 0 whenk → ∞, any rate

R < µ+n(logP−log(4n(1+ǫ))−logCL+logπe−logn)

is achievable. This holds∀ǫ > 0, and concludes the proof.
Remark 4.6:Note that the two-sided convergence in prob-

ability in equation (7) is actually not required in the proofof
Theorem 4.1. The theorem still holds provided that∀ǫ > 0,

lim
k→∞

P

{

µ− 1

k

k
∑

i=1

log det(H†
iHi) > ǫ

}

= 0. (14)

Moreover, if we have exponentially fast convergence in (14),
then the error probabilityPe also vanishes exponentially fast
whenk → ∞.

As a final remark, we note that we can prove an analogue
of Theorem 4.1 also in the casenr < n, although the bound
on achievable rates is more involved:

Theorem 4.7:Suppose thatnr < n, and let {Hi}i∈Z be
a fading process such thatHi ∈ Mnr×n is full-rank with
probability 1. Suppose that the weak law of large numbers
holds for the random variableslog det(HiH

†
i ), i.e. ∃µ > 0

such that∀ǫ > 0,

lim
k→∞

P

{∣

∣

∣

∣

∣

1

k

k
∑

i=1

log det(HiH
†
i )− µ

∣

∣

∣

∣

∣

> ǫ

}

= 0. (15)

Let Ln,k ⊂ Mn×nk(C) be a family of 2n2k-dimensional
multiblock lattice codes satisfying (8). Then, any rate

R < µ+ nr(logP − 2)+ (n−nr) log(n−nr) +n log
πe

n2CL

is achievable using the codesLn,k both with ML decoding
and naive lattice decoding.

The proof of Theorem 4.7 can be found in Appendix A.

V. ACHIEVING CONSTANT GAP TO CAPACITY FOR SLOW

FADING AND ERGODIC CHANNELS

A. Slow fading channel

We now consider a slow fading scenario, whereHi = H
is constant. WhenH is known both at the transmitter and
receiver, the channel capacity is given by [3]

C(P ) = max
Qx≥0,tr(Qx)≤P

log det(Inr
+HQxH

†),

whereQx is the covariance matrix of the inputx for a single
channel use.
However, if the channel is known at the receiver but not at the
transmitter, the transmitter cannot use optimal power allocation
and waterfilling, and can only achieve thewhite-input capacity
corresponding to uniform power allocationQx = P

n In:

CWI = log det

(

Inr
+
P

n
HH†

)

= log det

(

In +
P

n
H†H

)

.

This is for example the case for an open-loop broadcast
channel where the transmitter cannot perform rate adaptation
for all the users.
Clearly, Theorems 4.1 and 4.7 apply to the slow-fading
scenario since the law of large numbers holds. Moreover,
the convergence of the error probability to zero will be
exponential, since the second term in equation (9) is actually
zero. The following corollary then shows that a constant gap
to white-input capacity is achievable:

Corollary 5.1: Consider a slow fading channel such that
Hi = H for all i ≥ 1, and letLn,k ⊂ Mn×nk(C) be a
family of 2n2k-dimensional multiblock lattice codes such that
detmin (Ln,k) = 1 andVol(Ln,k)

1
n2k ≤ CL. Then, this coding

scheme can achieve any rate

R < log det
P

n
H†H − n logCL + n log

πe

4n

if nr ≥ n, and any rate

R < log det
P

n
HH†−2nr−(n−nr) log

n

n− nr
+n log

πe

nCL

if nr < n.
Remark 5.2:In the casenr ≥ n, let λi, i = 1, . . . , n

be the singular values ofH . Then the channel capacity can
be written asC(P ) =

∑n
i=1 log

(

1 + P
n λi

)

. The previous
corollary shows that the achievable rate is of the form

R(P ) = max

(

0, log det
P

n
H†H − c

)

for some constantc > 0. Let Pmin be the smallest value ofP
such thatR(P ) > 0 if P > Pmin. Then, forP ≤ Pmin we have
thatC(P )−R(P ) = C(P ) ≤ C(Pmin), while for P > Pmin,

C(P )−R(P ) =
∑n
i=1 log

(

1 + n
Pλi

)

+ c which is a strictly
decreasing function ofP and tends toc whenP → ∞. Thus,
for all P > 0 we have thatC(P ) − R(P ) ≤ C(Pmin). This
shows that the gap is bounded by a constant, however the value
of Pmin and of the constant depends on the channel.
A similar argument holds fornr < n.
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B. Stationary ergodic channels

We now specialize the results of Section IV to the case
where the fading process{Hi} is ergodicandstationary. For
the sake of completeness, we review the relevant definitions
here.

Let I be the setZ or N, and consider a random process
XI = {Xi}i∈I on a probability space(Ω,B,P) where each
random variableXi takes values in a separable Banach space
X . The sequence space(X I ,B(X I)) with the Borel sigma-
algebra inherits a probability measuremX from the underlying
probability space, defined by

mX(A) = P
{

ω : XI(ω) ∈ A
}

∀A ∈ B(X I). (16)

Definition 5.3: The process{Xi} is called stationary
if ∀t, k ∈ N, ∀i1, i2, . . . , ik ∈ I, the joint distri-
bution of (Xi1 , Xi2 , . . . , Xik) is the same as that of
(Xi1+t, Xi2+t, . . . , Xik+t).

In this case it is well-known [37, p. 494] that the measure
mX is invariant with respect to the shift mapT : X I → X I

such thatT ({xi}) = {xi+1}.
Definition 5.4: The process{Xi} is calledergodicif ∀A ∈

B(X I) such thatT−1(A) = A, we have thatmX(A) is equal
to 0 or 1.

We now go back to the channel model (2). For the sake of
simplicity, we suppose thatnr ≥ n. If the fading process{Hi}
is stationary and ergodic, it is not hard to see that the random
process{Xi} =

{

log det(H†
iHi)

}

taking values inX = R

is also stationary and ergodic, and the shiftT : RI → RI

preserves the measuremX defined in (16).
For an ergodic process such that the shiftT is measure-
preserving, Birkhoff’s theorem [38] guarantees that for any
f ∈ L1(X I ,B(X I),mX), the sample means with respect to
f converge almost everywhere: for almost all{xi} ∈ X I ,

lim
k→∞

1

k

k
∑

n=1

f(T n({xi})) =
∫

XI

fdmX . (17)

In particular, the projectionΠ : RI → R on the first coordinate
is L1 according to the image measuremX if and only if
E
[∣

∣log detH†H
∣

∣

]

< ∞. Under this hypothesis, Birkhoff’s
theorem implies the law of large numbers:

lim
k→∞

1

k

k
∑

i=1

Xi =

∫

RI

Π({xi})dmX({xi}) =

=

∫

Ω

Π ◦XIdP =

∫

Ω

X1dP = E[X ] a.e. (18)

In other words,

lim
k→∞

1

k

k
∑

i=1

log det(H†
iHi) = EH

[

log det(H†H)
]

(19)

almost everywhere.
In the ergodic stationary case, it is well-known [3, 39] thatthe
ergodic capacity of the channel is well-defined and does not
depend on the channel correlation with respect to time, but
only on its first order statistics. Given a power constraintP in

equation (3), the ergodic capacity (per channel use) is equal
to

C(P ) = max
Qx≥0,tr(Qx)≤P

EH
[

log det(Inr
+HQxH

†)
]

,

whereH is a random matrix with the same first-order distri-
bution of the process{Hi}, which is independent of time by
stationarity, andQx is the covariance matrix of the inputx
for one channel use1.
If we suppose that the channel isisotropically invariant, i.e.
the distribution ofH is invariant under right multiplication by
unitary matrices, then the optimal input covariance matrixis
Qx = P

n In [3] and we have

C(P ) = EH

[

log det
(

Inr
+
P

n
HH†

)

]

.

Sincedet(Inr
+ P

nHH
†) = det(In + P

nH
†H), we can also

write

C(P ) = EH

[

log det
(

In +
P

n
H†H

)

]

.

The following Corollary to Theorem 4.1 shows that in this
case, the proposed multiblock codes can achieve a constant
gap to ergodic capacity.

Corollary 5.5: Suppose thatnr ≥ n and that the fading
process{Hi} is ergodic, stationary and isotropically invariant.
Moreover, suppose thatE

[∣

∣log detH†H
∣

∣

]

< ∞. Let Ln,k ⊂
Mn×nk(C) be a family of2n2k-dimensional multiblock lattice
codes such that detmin (Ln,k) = 1 andVol(Ln,k)

1
n2k ≤ CL.

Then, any rate

R < EH

[

log det
P

n
H†H

]

− n logCL + n log
πe

4n

is achievable using the codesLn,k both with ML decoding
and naive lattice decoding.

Proof: From equation (19), we have that the hypotheses
of Theorem 4.1 are satisfied (actually, only the weak law of
large numbers was required). Consequently, any rate

R < n logP + EH
[

log detH†H
]

− n logCL + n log
πe

4n2
=

= log

(

P

n

)n

+ EH
[

log detH†H
]

− n logCL + n log
πe

4n
=

= EH

[

log det
P

n
H†H

]

− n logCL + n log
πe

4n

is achievable.
A similar corollary to Theorem 4.7 holds in the casenr < n:

Corollary 5.6: Suppose thatnr < n and that the fading
process{Hi} is ergodic, stationary and isotropically invariant.
Moreover, suppose thatE

[∣

∣log detHH†
∣

∣

]

< ∞. Let Ln,k ⊂
Mn×nk(C) be a family of2n2k-dimensional multiblock lattice
codes such that detmin (Ln,k) = 1 andVol(Ln,k)

1
n2k ≤ CL.

Then, any rateR lower than

EH

[

log det
P

n
HH†

]

−2nr−(n−nr) log
n

n− nr
+n log

πe

nCL

1We note that the capacity (per channel use) of the block fading MIMO
channel of finite block lengthT with perfect channel state information at the
receiver is independent ofT [40, eq. (9)]. So the previous result still holds
in the multiblock case.
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is achievable using the codesLn,k both with ML decoding
and naive lattice decoding.

Remark 5.7:Using the same argument as in Remark 5.2,
we can show that the achievable rate is within a constant
gap from capacity, although this constant will depend on the
fading model.
Under the hypothesisEH

[∣

∣log detH†H
∣

∣

]

, we have
∣

∣EH
[

log detH†H
]∣

∣ < ∞. The achievable rate is of
the formR(P ) = max

(

0, n log Pn + EH [log detH†H ]− c
)

for some constantc > 0. Let Pmin be the smallest value of
P such thatR(P ) > 0 if P > Pmin. For P ≤ Pmin we have
thatC(P )−R(P ) = C(P ) ≤ C(Pmin).
Let λi, i = 1, . . . , n be the (random) singular values ofH . For
P > Pmin, C(P ) − R(P ) =

∑n
i=1 EH

[

log
(

1 + n
Pλi

)]

+ c

which is a strictly decreasing function ofP and tends toc
whenP → ∞. This shows that the gap is uniformly bounded.

VI. A CHIEVABLE RATES AND ERROR PROBABILITY

BOUNDS FOR I.I .D. RAYLEIGH FADING CHANNELS

We now suppose that the coefficients ofHi are circular
symmetric complex Gaussian with zero mean and unit variance
per complex dimension, and that the fading blocksHi are
independent. In this case, the achievable rate can be computed
explicitly, and we can prove that the error probability vanishes
exponentially fast.
Let ψ(x) = d

dx ln Γ(x) denote the Digamma function. Then
we have the following:

Proposition 6.1:Let Ln,k ⊂ Mn×nk(C) be a fam-
ily of 2n2k-dimensional multiblock lattice codes such that
detmin (Ln,k) = 1 andVol(Ln,k)

1
n2k ≤ CL. Then, over the

(n, nr, k) multiblock channel, these codes achieve any rate

R < EH

[

log det
P

n
H†H

]

− n logCL + n log
πe

4n
,

where

EH

[

log det
P

n
H†H

]

= log
P

n
e

1
n

nr∑

i=nr−n+1

ψ(i)

. (20)

Moreover, the error probability vanishes exponentially fast.
Proof of Proposition 6.1: The first statement follows

from Corollary 5.5. The next step is to prove equation (20). It
is well-known [41, 42] that ifH is annr×n matrix with i.i.d.
complex Gaussian entries having variance per real dimension
1/2, the random variabledet(H†H), corresponding to the
determinant of the Wishart matrixH†H , is distributed as the
product

Vn,nr
= Znr−n+1Znr−n+2 · · ·Znr

of n independent variables, such that∀j = nr−n+1, . . . , nr,
2Zj is a chi square random variable with2j degrees of
freedom. The density ofZj is pZj

(x) = xj−1e−x

Γ(j) . We have

E[lnZj ] =
1

Γ(j)

∫ ∞

0

xj−1e−x lnx dx = ψ(j),

Mn,nr
= E[ln Vn,nr

] =

nr
∑

j=nr−n+1

ψ(j) = EH
[

ln detH†H
]

.

Then if we consider the base2 logarithm, we find

EH
[

log detH†H
]

= E[log Vn,nr
] =

Mn,nr

ln 2
=

=

∑nr

j=nr−n+1 ψ(j)

ln 2
= n log e

1
n

∑nr
j=nr−n+1 ψ(j)

which concludes the proof of equation (20).
In order to show that the error probability converges exponen-
tially fast, by Remark 4.6 it is enough to show that we have
exponential convergence in equation (14).
Consider a sequence of i.i.d. random variableslnV

(i)
n,nr , i =

1, . . . , k, with the same distribution aslnVn,nr
. Using the

Chernoff bound [43], givenδ > 0, ∀v > 0 we have

P

{

Mn,nr

ln 2
− 1

k

k
∑

i=1

log detH†
iHi ≥

δ

ln 2

}

=

= P

{

Mn,nr
− 1

k

k
∑

i=1

ln detH†
iHi ≥ δ

}

=

= P

{

Mn,nr
− 1

k

k
∑

i=1

lnV (i)
n,nr

≥ δ

}

≤

≤ ekv(Mn,nr−δ)
(

E[e−v lnVn,nr ]
)k

(21)

The tightest bound in (21) is obtained forvδ such that

E[− lnVn,nr
e−vδ lnVn,nr ] = (δ −Mn,nr

)E[e−vδ lnVn,nr ].

Observe that

E[Z−v
j ] =

1

Γ(j)

∫ ∞

0

xj−1−ve−xdx =
Γ(j − v)

Γ(j)
, (22)

E[Z−v
j lnZj ] =

1

Γ(j)

∫ ∞

0

xj−1−ve−x lnx dx =

=
Γ(j − v)

Γ(j)
ψ(j − v). (23)

Thus we find

E
[

e−v lnVn,nr

]

= E
[

V −v
n,nr

]

=

nr
∏

j=nr−n+1

E
[

Z−v
j

]

=

=

nr
∏

j=nr−n+1

Γ(j − v)

Γ(j)
,

E
[

− lnVn,nr
e−v lnVn,nr

]

= E
[

−V −v
n,nr

lnVn,nr

]

=

=

nr
∑

j=nr−n+1

E

[

− lnZj

nr
∏

l=nr−n+1

Z−v
l

]

=

=

nr
∑

j=nr−n+1





∏

l 6=j

E[Z−v
l ]



E[−Z−v
j lnZj ] =

= −
nr
∑

j=nr−n+1





∏

l 6=j

Γ(l − v)

Γ(l)





Γ(j − v)

Γ(j)
ψ(j − v) =

= −
nr
∏

l=nr−n+1

Γ(l − v)

Γ(l)

nr
∑

j=nr−n+1

ψ(j − v)
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Consequently, the tightest bound in (21) is achieved forvδ
such that

δ =

nr
∑

l=nr−n+1

(ψ(l)− ψ(l − vδ)). (24)

Note that asδ → 0, vδ → 0. The right-hand side in equation
(21) for v = vδ can be rewritten as

ekvδ(−δ+
∑nr

j=nr−n+1 ψ(j))

(

nr
∏

l=nr−n+1

Γ(l − vδ)

Γ(l)

)k

=

= ek(−vδδ+
∑nr

j=nr−n+1(vδψ(j)+ln Γ(j−vδ)−ln Γ(j))) =

= ek
∑nr

j=nr−n+1(vδψ(j−vδ)−ln Γ(j)+ln Γ(j−vδ))

using (24).
Recall thatΓ(x) is monotone decreasing for0 < x < a0 =
1.461632 . . . and monotone increasing forx > a0. Using the
mean value theorem for the functionln Γ(x) in the interval
[i−vδ, i] we get that fori = 1, vδψ(1−vδ)+lnΓ(1−vδ) ≤ 0,
and fori ≥ 2, vδψ(i− vδ) ≤ ln Γ(i)− ln Γ(i− vδ). Thus, the
exponent is negative both forn = nr and forn > nr. We can
conclude that

P

{

Mn,nr

ln 2
− 1

k

k
∑

i=1

log detH†
iHi ≥

δ

ln 2

}

≤ e−kKn,nr,δ

for some positive constantKn,nr,δ. Since the bound holds
∀δ > 0, using Remark 4.6 withµ =

Mn,nr

ln 2 , we find that the
error probability tends to0 exponentially fast for any rate

R < n

(

log
P

n
e

1
n

∑nr
i=nr−n+1 ψ(i) − logCL + log

πe

4n

)

.

Corollary 6.2: Over the(n, n, k) multiblock channel, reli-
able communication is guaranteed whenk → ∞ for rates

R < n

(

log
P

n
e

1
n

∑n
i=1 ψ(i) + log

πe

2n
− log 23

1
10 (1−

1
n)G

)

when using the multiblock code construction in Proposition
3.8.

VII. E XISTENCE OF ASYMPTOTICALLY GOOD LATTICES

All of our capacity results depend on the existence of lattices
with asymptotically good normalized minimum determinants,
which was claimed in Section III-B. In this section we will
prove this result.
We will first recall the construction of single-block space-
time codes from cyclic division algebras (see for example
[19]). Due to space constraints, we refer the reader to [44]
for algebraic definitions.

Definition 7.1: Let K be an algebraic number field of
degreem and assume thatE/K is a cyclic Galois extension
of degreen with Galois groupGal(E/K) = 〈σ〉. We can
define an associativeK-algebra

A = (E/K, σ, γ) = E ⊕ uE ⊕ u2E ⊕ · · · ⊕ un−1E,

whereu ∈ A is an auxiliary generating element subject to the
relationsxu = uσ(x) for all x ∈ E andun = γ ∈ K∗. We
call the resulting algebra acyclic algebra.

HereK is the center of the algebraA.
Definition 7.2: We call

√

[A : K] thedegreeof the algebra
A. It is easily verified that the degree ofA is equal ton.

We considerA as a right vector space overE and note that
every elementa = x0 + ux1 + · · · + un−1xn−1 ∈ A has the
following representation as a matrix:

φ(a) =















x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)
x1 σ(x0) γσ2(xn−1) γσn−1(x2)
x2 σ(x1) σ2(x0) γσn−1(x3)
...

...
xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)















The mappingφ is called theleft regular representationof
A and allows us to embed any cyclic algebra intoMn(C).
Under such an embeddingφ(A) forms anmn2-dimensional
Q-vector space.

We are particularly interested in algebrasA for which φ(a)
is invertible for all non-zeroa ∈ A.

Definition 7.3: A cyclic K-algebraD is a division algebra
if every non-zero element ofD is invertible.

If we assume thatD is a division algebra, thenφ is an
injective mapping toMn(C) and every non-zero element in
φ(D) is invertible. However,φ(D) is not a lattice. Therefore
we will instead consider a suitable subset ofD.

Definition 7.4: A Z-order Λ in D is a subring ofD having
the same identity element asD, and such thatΛ is a finitely
generated module overZ which generatesD as a linear space
overQ.

With the previous definition, the setφ(Λ) is a matrix lattice
that can be used for coding over a single space-time block.

A generalization of the embeddingφ to the multiblock case
was proposed in [12, 13] for division algebras whose center
K contains an imaginary quadratic field. In this paper we
consider a more general multiblock construction developedin
[17], which applies to any totally complex centerK.
We say that a degree2k number fieldK is totally complex if
for everyQ-embeddingβi : K →֒ C the imageσi(K) includes
complex elements. The fieldK has2k distinctQ-embeddings
βi : K →֒ C. As we assumed thatK is totally complex, each
of these embeddings is part of a complex conjugate pair. We
will denote byβi the embedding given byx 7→ βi(x).

For eachβi we can find an embeddingαi : E →֒ C

such thatαi|K = βi. This choice can be made in such a
way thatαi|K = βi. We will suppose that the embeddings
{α1, . . . , α2k} have been ordered in such a way thatαi =
αi+m, for 0 ≤ i ≤ m. Leta be an element ofD andA = φ(a).
Consider the mappingϕ : A 7→Mn×nk(C) given by

a 7→ (α1(A), . . . , αk(A)), (25)

where eachαi is extended to an embeddingαi : Mn(E) →֒
Mn(C).
The following result was proven in [17, Proposition 5]:

Proposition 7.5:Let Λ be aZ-order inD andϕ the previ-
ously defined embedding. Thenϕ(Λ) is a 2kn2-dimensional
lattice inMn×nk(C) which satisfies

detmin (ϕ(Λ)) = 1, Vol(ϕ(Λ)) = 2−kn
2√|d(Λ/Z)|
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and

δ(ϕ(Λ)) =

(

22kn
2

|d(Λ/Z)|

)1/4n

.

Here d(Λ/Z) is theZ-discriminant of the orderΛ. It is a
non-zero integer we can associate to anyZ-order ofD. We
refer the reader to [44] for the relevant definitions.

We can now see that in order to maximize the minimum
determinant of a multi-block code, we have to minimize the
Z-discriminant of the correspondingZ-orderΛ.

The first step to attack this question is to assume thatΛ
has some extra structure. LetOK be the ring of algebraic
integers ofK. If we assume thatΛ is also anOK module,
then theOK-discriminant ofΛ is well-defined [44], and will
be denoted byd(Λ/OK). The following formula holds:

d(Λ/Z) = NK/Q(d(Λ/OK))(dK)n
2

, (26)

where NK/Q is the algebraic norm inK and dK is the
discriminant of the fieldK.

In the case of fixed centerK, [11] addressed the prob-
lem of finding the division algebras with the smallestOK -
discriminant, yielding the densest MIMO lattices. The main
construction is based on the following result (Theorem 6.14
in [11]):

Theorem 7.6:LetK be a number field of degree2k andP1

andP2 be two prime ideals ofK. Then there exists a degree
n division algebraD having anOK-orderΛ with discriminant

d(Λ/Z) = (NK/Q(P1)NK/Q(P2))
n(n−1)(dK)n

2

. (27)

Theorem 7.6 suggests that in order to build families of
(n, n, k) multiblock codes with the largest normalized min-
imum determinant, we should proceed in two steps:

a) choose a sequence of center fieldsK of degree2k such
that their discriminantsdK grow as slowly as possible;

b) given the centerK, choose an algebraD satisfying (27),
whereP1 and P2 are the prime ideals inK with the
smallest norms2.

We now discuss the choice of a suitable sequence of center
fields. The following theorem by Martinet [45] proves the
existence of infinite sequences of totally complex number
fieldsK with small discriminantsdK . As we will see in the
following, choosing such a field as the center of the algebra
D is a key element to obtain a good normalized minimum
determinant.

Theorem 7.7 (Martinet):There exists an infinite tower of
totally complex number fields{Kk} of degree2k, where2k =
5 · 22+t, such that

|dKk
|

1
2k = G, (28)

for G ≈ 92.368.
The following Lemma shows that the number fields in the

Martinet family have suitable primes of small norm yielding
a good bound in Theorem 7.6.

2However, we note [17] thata priori there may be a trade-off between
these two choices, so that minimizing the two terms in (26) separately may
be suboptimal.

Lemma 7.8:Every number fieldKk in the Martinet family
has idealsP1 andP2 such that

NK/Q(P1) ≤ 23k/10 and NK/Q(P2) ≤ 23k/10.

Proof: Every field Kk has a subfield F =
Q(cos(2π/11),

√
2,
√
−23), where [F : Q] = 20 (see

for example [46, p. 395]). The fieldF has prime idealsB1

andB2 such thatNF/Q(Bi) = 23. Let us now suppose that
P1 andP2 are such prime ideals ofKk that Pi ∩ OF = Bi.
Transitivity of the norm then gives us that

NKk/Q(Pi) = NF/Q(NKk/F (Pi)) ≤ NF/Q(Bi)
2k/20.

Armed with this observation, we can finally prove Proposition
3.8.

Proof of Proposition 3.8:
Suppose that we have a degree2k field extensionK in

the Martinet family of totally complex fields such that (28)
holds. We know that this fieldK has some primesP1 and
P2 such thatNK/Q(P1) ≤ 23k/10 and NK/Q(P2) ≤ 23k/10.
Then, there exists a central division algebraD of degreen
overK, and a maximal orderΛ of D, such that

d(Λ/Z) = (Nk/Q(P1)NK/Q(P2))
n(n−1)(dK)n

2 ≤
≤ (23k/5)(n(n−1))(G2k)n

2

.

Remark 7.9:We note that the number field towers in The-
orem 7.7 are not the best known possible. It was shown in
[47] that one can construct a family of totally complex fields
such thatG < 82.2, but this choice would add some notational
complications.

VIII. C OROLLARIES TO SINGLE ANTENNA FADING

CHANNEL

The single antenna fast fading channel is one of the special
cases of the general channel model (2). It is particularly
illuminating as the connection to the classical AWGN lattice
coding is most striking. In this case the abstract matrix lattices
of Section VII correspond to simple number field codes that
have been studied for twenty years [18]. Due to the familiarity
and simplicity of this model we can most easily compare our
work to previous research on the topic.

In the single antenna case the channel model (2) gets
simplified to

yi = hi · xi + wi, (29)

wherexi are the transmitted symbols, and∀i = 1, . . . , k, wi
are i.i.d. complex Gaussian random variables with variance
σ2
h = σ2 = 1

2 per real dimension and{hi} is some complex
fading process such that

∑k
i=1

1
k log |hi|2 converges in prob-

ability to some constant when the number of blocksk tends
to infinity.

This scenario has received considerable interest in the case
of an i.i.d. complex Gaussian fading process{hi}, and several
works have focused on the design of lattice codes for this
model [32, 48]. The analysis of the union bound for the
pairwise error probability for a lattice codeL ⊂ Ck leads to a
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design criterion based on the maximization of thenormalized
product distance

Ndp,min(L) = inf
x∈L\{0}

∏k
i=1 |xi|

Vol(L)
1
2

.

Note that the normalized product distance is a special case (for
n = 1) of the normalized minimum determinant in (6). Most of
the works in the literature have focused on the optimization
of the product distance for lattice signal constellations with
a fixed number of blocksk; few authors [30, 49] have also
studied the upper and lower bounds forNdp,min over all
lattices whenk grows to infinity.

However, there has been no general consensus on whether
significant gain could be achieved from coding over an exten-
sive number of fading realizations. For example the authorsin
[50] state that: “increasing the diversity does not necessarily
increase to the same extent the performance: in fact, the
minimum product distance decreases and the product kissing
number increases. Simulations show that most of the gain is
obtained for diversity orders up to 16”. In fact, the analysis
of the distribution of pairwise errors in the union bound as in
[51] shows that theproduct kissing number[48], or number
of worst case occurrences, will grow fast anda priori might
eat away the product distance gain. However, this issue seems
to be due to the suboptimality of the union bound rather than
to the codes themselves.

In fact, let us consider an infinite family of2k-dimensional
latticesLk ⊂ Ck with normalized product distance satisfying
(Ndp,min(Lk))

2/k ≥ c, for some positive constantc.
According to Theorem 4.1 and Remark 4.3 we then have

the following.
Corollary 8.1: Any rateR

R < Eh

[

log2 P |h|2
]

+ log2
πe

4
+ log2 c,

is achievable with the familyLk of lattices over the fading
channel (29).

This result proves that indeed we gain by coding over an
increasing number of blocks, assuming that we have a family
of latticesLk with the described product distances. According
to Proposition 3.6, the condition(Ndp,min(Lk))

2/k ≥ c
implies thatrhG(Lk) ≥ kc. It reveals that families of lattice
codes with large product distance do not only have large
Hermite invariants, but also that the Hermite invariants ofthe
faded lattices are as large as well. Thus, the product distance
is not only relevant in capacity considerations or in the high
SNR scenario, but also plays a role when coding over a finite
number of fading realizations for low SNR.

A. Approaching capacity with number field codes

Using the normalized product distance as a code design
criterion led to lattice constructions based on number fields
in [52, 32, 48, 18]. However, none of these works considered
capacity questions.

Let us now show how the construction in Proposition 7.5,
when specialized to the single antenna case, is just the standard
method used to build lattice codes from number fields [48]

and how this method can be used to approach capacity in fast
fading channels.

Let K/Q be a totally complex extension of degree2k and
{σ1, . . . , σk} be a set ofQ-embeddings, such that we have
chosen one from each complex conjugate pair. Then we can
define arelative canonical embeddingof K into Cn by

ϕ(x) = (σ1(x), . . . , σk(x)).

The ring of algebraic integersOK has a Z-basis W =
{w1, . . . , w2k} and ϕ(W ) is a Z-basis for the full lattice
ϕ(OK) in Ck.

Proposition 7.5 now simplifies to the following.
Corollary 8.2: Let ϕ be the previously defined embedding

andK a degree2k totally complex number field. Thenϕ(OK)
is a 2k-dimensional lattice inCk which satisfies

detmin (ϕ(OK)) = 1, Vol(ϕ(OK)) = 2−k
√

|dK |
and

δ(ϕ(OK)) =

(

22k

|dK |

)1/4

.

Using Martinet’s family of fieldsKk from Theorem 7.7 and
settingL1,k = ϕ(OKk

) we have

Vol(L1,k) ≤
(

G

2

)k

and detmin(L1,k) = 1,

whereG ≈ 92.368. Specializing to the case where the fading
process is i.i.d complex Gaussian we have that any rate

R < log2(Pe
−γ)− log2

(

2G

πe

)

, (30)

wheree−γ = Eh[log |hi|2], is achievable.

B. Known bounds on discriminants and Hermite invariants

Equation (30) reveals that the codes based on the Martinet
family have a rather large gap to capacity. However, the right-
hand side of (30) is just a lower bound on the maximum
achievable rate with lattice codes, and might be improved with
a better error probability estimate and/or a better choice of the
lattice sequence.

An upper bound for the maximum achievable rate using this
approach can be derived from a lower bound for the discrim-
inant. The Odlyzko bound [53] states that whenk → ∞ we
have that|dK |1/2k ≥ 22.3. If it were possible to reach this
lower bound with an ensemble of lattice codes, then any rate
R satisfying

R < log2(Pe
−γ)− log2

(

44.6

πe

)

, (31)

would be achievable. For small values ofk, there exist number
fields having considerably smaller root discriminants. Table I
[53] lists the best known root discriminants for totally complex
number fields of degree2k. The first four values are known
to be optimal.

We note that even equation (31) does not represent an
absolute limit for the rates that are achievable with lattice
codes and not even with algebraic lattices arising from number
fields, and does not mean that the performance of algebraic
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TABLE I
BEST KNOWN ROOT DISCRIMINANTS FOR TOTALLY COMPLEX NUMBER

FIELDSK OF SMALL DEGREE2k.

k |dK |1/2k
1 1.732..
2 3.289..
3 4.622..
4 5.787..
5 6.793..

codes will always be bounded away from capacity. In fact,
as seen in Corollary 8.1, we are only interested in the nor-
malized product distance of the lattices under consideration.
For example, instead of considering the image of the ring of
integersOK under the embeddingϕ, one can use an ideal of
this ring of integers (see [54, 49, 1]) or more generally any
lattices with good normalized product distance.

The Minkowski-Hlawka theorem provides a non-
constructive proof of the existence of2k-dimensional
latticesLk ⊂ Ck having Hermite invariantsh(Lk) ∼ k

πe [6].
If it were possible to obtain alsohG(Lk) ∼ k

πe or equivalently

(Ndp,min(Lk)) ∼
(

1
πe

)k/2
, then all rates satisfying

R < Eh

[

log2 P |h|2
]

− log2
4

πe
+ log2

1

πe
=

= Eh

[

log2 P |h|2
]

− 2 (32)

would be achievable with this family of lattices. However,
we do not know if this is possible. The two bit gap to
Eh
[

log2 P |h|2
]

in (32) would be exactly the same that is
obtained in the AWGN case when using the hard sphere
packing approach [6, Chapter 3]. Still this two bit gap is nota
fundamental limit of the performance of lattice codes but likely
an artifact of the suboptimal method to analyze the error.

IX. GEOMETRY OF NUMBERS FOR FADING CHANNELS

In the previous sections, we have shown that the normalized
minimum determinant provides a design criterion to build
capacity-approaching lattice codes for block fading multiple
antenna channels. Let us now see how this approach fits into
a more general context and can be regarded as a natural
generalization of the classical theory of lattices for Gaussian
channels. Finally we show how the code design problems, both
in Gaussian and fading channels, can be seen as instances of
the same problem in the mathematical theory of geometry of
numbers.

Consider a latticeL ⊂ Ck having fundamental parallelotope
of volume one and define a functionf1 : Ck → R by

f1(x1, . . . , xk) = |x1|2 + |x2|2 + · · ·+ |xk|2. (33)

The real numberh(L) = infx∈L,x 6=0 f1(x) is then the Hermite
invariant of the latticeL. Let us now denote withLk the set
of all 2k-dimensional lattices inCk with volume one.

Suppose that we have an infinite family of latticesLk ∈ Lk
with Hermite invariants satisfyingh(Lk)

k ≥ c, for some positive

constantc. As stated in the beginning of Section IV, then all
rates satisfying

R < log2(P )− log2

(

4

πe

)

+ log2 c,

are achievable in the complex Gaussian channel, with this
family of lattices. The Hermite invarianth(Lk) now roughly
describes the performance of the latticeLk and can be used
to estimate how close to the capacity a family of lattices can
get. This relation is one of the key connections between the
theory of lattices and information theory [6] and has sparked
a remarkable amount of research.

Let us now see how our results can be seen as natural
generalizations of the relation between Hermite invariantand
capacity.

Let us consider2k-dimensional latticesL ⊂ Ck in Lk and
the form

f2(x1, x2, . . . , xk) = |x1x2 · · ·xk|. (34)

Then Ndp,min(L) = infx∈L,x 6=0 f2(x), is the normalized
product distance of the latticeL.

Assume that we have an infinite family of lattices
Lk ∈ Lk with normalized product distance satisfying
(Ndp,min(Ln))

2/k ≥ c, for some positive constantc. As seen
before we have that all rates satisfying

R < Eh

[

log2 P |h|2
]

− log2
4

πe
+ log2 c

are accessible with this family of lattices with zero error
probability over the Rayleigh fast fading channel.

We denote withL(n,k) the set of all 2n2k-dimensional
lattices in the spaceMn×nk(C) with volume one. Given
(X1, X2, . . . , Xk) ∈Mn×kn(C), we consider the function

f3(X1, X2, . . . , Xk) =

k
∏

i=1

| det(Xi)|.

For L ∈ L(n,k), we have

δ(L) = inf
X∈Lk,X 6=0

f3(X).

If Lk ⊂Mn×kn(C) is a family of lattices with the property
that δ(Lk)2/kn ≥ c then according to Remark 4.3, any rate
satisfying

R < EH

[

log2 det
P

n
H†H

]

+ n log2
πe

4n
+ n log2 c

is achievable with the latticesLk.
We can now see that the normalized minimum determinant

and product distance can be regarded as generalizations of
the Hermite invariant which characterize the gap to capacity
achievable with a certain family of lattice codes.

A natural question is how close to capacity we can get with
these methods by taking the best possible lattice sequences.

The Hermite constantH(k) can now be defined as

H(2k) = sup{h(L) | L ∈ L(1,k)}. (35)

In the same manner we can define

Ndp,min(k) = sup{Ndp,min(L) | L ∈ L(1,k)}. (36)
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and
δ(k, n) = sup{δ(L) | L ∈ L(n,k)}. (37)

Each of these constants now represents how close to capacity
our methods can take us. Any asymptotic lower bound with
respect tok will immediately provide a lower bound for the
achievable rate. Just as well upper bounds will give upper
bounds for the rates that are approachable with this method.

The characterizations of achievable rates using lattice codes
have now been transformed into purely geometrical questions
about the existence of lattices with certain properties. The
value of the Hermite constantH(k), for different values of
k, has been studied in mathematics for hundreds of years and
there exists an extensive literature on the topic. In particular
good upper and lower bounds are available and it has been
proven that we can get quite close to Gaussian capacity with
this approach [6, Chapter 3].
In the case of the product distance, this problem has been
considered in the context of algebraic number fields and some
upper bounds have been provided. As far as we know the best
lower bounds come from the existence results provided by
number field constructions [30] and [1].

The properties ofδ(k, n) have been far less researched in the
literature. Simple upper bounds can be derived from bounds
for Hermite constants as pointed out in [33] and lower bounds
are obtained from division algebra constructions as described
in this paper, but the mathematical literature doesn’t seemto
offer any ready-made results for this problem.
However, all three questions can be seen as special cases of the
problem of finding the minimum of a homogeneous form over
a lattice in the mathematical theory ofgeometry of numbers
[35]. Let us now elaborate on the topic.

Definition 9.1: A continuous functionF : Mn×kn(C) → R

is called a homogeneous form of degreeσ > 0 if it satisfies
the relation

|F (αX)| = |α|σ |F (X)| (∀α ∈ R, ∀X ∈Mn×kn(C)).

Let us consider the bodyS(F ) = {X |X ∈
Mn×kn(C), |F (X)| ≤ 1}, and a2kn2 dimensional latticeL
with a fundamental parallelotope of volume one.

We then define thehomogeneous minimaλ(F,L) of F with
respect to the latticeL by

λ(F,L) = (inf{λ|λ > 0, dim(R(λS(F ) ∩ L)) ≥ 1})σ,

whereR(λS(F ) ∩ L) is theR-linear space generated by the
elements inλS(F )∩L. This allows us to define theabsolute
homogeneous minimum

λ(F ) = sup
Vol(L)=1

λ(F,L).

We can now see that all of our formsf1, f2 and f3 are
homogeneous forms. For the Hermite invariant we haveσ =
2, for the product distanceσ = n, and for the normalized
minimum determinantσ = n2k. We can also easily see that
the constants (35), (36) and (37) are absolute homogeneous
minima of the corresponding forms.

These results suggest that there is a very general connection
between information theory and geometry of numbers for

different channel models. It seems that given a fading channel
model, there exists a form whose absolute homogeneous
minima provide a lower bound for the achievable rate using
lattice codes.

Remark 9.2:The definitions for the geometry of numbers
given in this section were stated for lattices in the space
Mn×nk(C), while usually the definitions are given in the space
Rm. This is however, just to keep our notation simple. The
spaceMn×nk(C) can be identified with the spaceR2n2k and
we could have given the definitions also in the traditional form
using this identification.

X. D ISCUSSION AND QUESTIONS FOR FURTHER RESEARCH

In this work we proved the existence of lattice codes achiev-
ing constant gap to capacity in ergodic fading channels. Unlike
the case of existence results based on random coding, our
finite codes are always built from the same family of lattices,
irrespective of the SNR and even of the fading statistics.
Hence, using the minimum determinant as a design principle
leads to extremely robust codes. In particular division algebra
and number field codes have this robustness property.

However, our codes still have a considerable gap to capacity
and further research is needed. Let us now point out a few
directions this research can take next.

In the case of single user channels the clearest goal is
to improve our methods and close the gap to capacity. We
note that this gap depends on several factors. First of all, the
normalized minimum determinant affects the value of the gap.
Second, our bound for the error probability is based on sphere
packing and thus is suboptimal.

Thus, the possible improvements to our construction are
two-fold. In the first place, one could try to find families of
latticesLn,k ⊂ Mn,nk(C) with larger normalized minimum
determinant, for instance by replacing the centers in our
constructions with families of number fields having smaller
discriminants. One can also consider more general examplesof
lattices than those arising from orders in division algebras: for
example ideals of orders, or in the case of number field codes,
ideals of the ring of algebraic integers. In the second place,
in this paper we have not considered the issue of shaping.
Improving the shaping properties of our lattices might leadto
a better error probability bound.

Another approach is to relax our minimum determinant code
design criterion. Our codes are extremely robust and quite
universal in the sense that they respond very well to any non
pathological fading realization. This universality is of course a
strength, but it could also lead to a situation where the codes
are rather good for every channel, but not optimal for any.
If we fix a channel model, it may be possible to weaken
the design principle. This might allow us to consider larger
ensembles of lattices and possibly to close the gap to capacity
in this fixed channel model.

Our work was about explicit code constructions in the spirit
of classical sphere packings [6]. However, it seems that even
the existence of capacity achieving lattice codes in fading
channels is an open question (see Section I-A). In the case of
AWGN channel this question was solved only quite recently in
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[25] by assuming that the receiver and transmitter have access
to a common source of randomness. One of the key elements
in the achievability result of [25] is the Minkowski-Hlawka
theorem, that can be used to prove the existence of lattices with
certain properties. It is then a natural idea to generalize this
approach by proving an analogue of the Minkowski-Hlawka
theorem for fading channels. It seems to us that this problem
is non-trivial.

In this paper we have considered block fading MIMO
channels, but we hope that the methods developed here can
be applied also in a more general setting. Let us now sketch
an outline for possible generalizations.

The reduced Hermite invariant is a natural analogue of the
classical Hermite invariant for fading channels. This concept
can likely be generalized to other fading channel models, such
as for example intersymbol interference channels. Given a
fading channel we can ask what would be the group (or set)
G that would represent the action of the channel, and define
the corresponding reduced Hermite invarianthG. The next
question is then to find lattices that would maximize this value.
In the case of the block fading channel, the problem was made
more accessible by Proposition 3.6, where we proved thathG
can be seen as the minimum of a certain homogeneous form.
This line of thought suggests a general approach to turn the
chase for capacity into a problem in geometry of numbers for
different channel models. It also raises several questions. For
example we can ask which are the channel models where this
approach can be applied and for which groupsG the reduced
Hermite invariant corresponds to some homogeneous form.

Finally, the lattice codes proposed in this paper could have
applications to other problems in information theory, suchas
coding for multiple access fading channels and for information
theoretic security.

APPENDIX

A. Proof of Theorem 4.7

With a similar approach as in the proof of Theorem 4.1, we
consider the following upper bound:

Pe ≤ P

{

‖W‖2 ≥
(

dH
2

)2
}

≤

≤ P

{

‖W‖2
knnr

≥ 1 + ǫ

}

+ P

{

d2H
4knnr

< 1 + ǫ

}

(38)

The first term in equation (38) tends to zero exponentially fast
when k → ∞ since 2 ‖W‖2 ∼ χ2(2knnr). We now focus
on the second term in equation (38), and begin by finding
a lower bound on the minimum distancedH in the received
constellation.
For all i ∈ {1, . . . , k}, let λi,j , j = 1, . . . , n be the singular
values ofH†

iHi with

0 = λi,1 = · · · = λi,n−nr
< λi,n−nr+1 ≤ · · · ≤ λi,n,

and li,j the singular values ofXiX
†
i with

li,1 ≥ li,2 ≥ · · · ≥ li,n.

Using the mismatched eigenvalue bound [55, 20], we have

‖HiXi‖2 ≥
n
∑

j=1

λi,j li,j =

n
∑

j=n−nr+1

λi,j li,j .

Consequently, we find that

d2H ≥ α2 min
X∈Ln,k\{0}

k
∑

i=1

n
∑

j=n−nr+1

λi,j li,j ≥

≥ α2nrk
k
∏

i=1

n
∏

j=n−nr+1

(λi,j li,j)
1

nrk (39)

Using the NVD property of the code, we get

k
∏

i=1

n
∏

j=1

li,j =

k
∏

i=1

|detXi|2 ≥ 1

Therefore, we have the lower bound

k
∏

i=1

n
∏

j=n−nr+1

li,j ≥
(

k
∏

i=1

n−nr
∏

j=1

li,j

)−1

≥

≥
(

1

(n− nr)k

k
∑

i=1

n−nr
∑

j=1

li,j

)−(n−nr)k

≥

≥
(

Pn

α2(n− nr)

)−k(n−nr)

where we have used the arithmetic-geometric mean inequality
and the power constraintα2 ‖X‖2 = α2

∑n
j=1 li,j ≤ Pkn.

Replacing the previous expression in (39), we obtain

d2H ≥
α2nrk

∏k
i=1

∏n
j=n−nr+1 λ

1
nrk

i,j

(

Pn
α2(n−nr)

)
n−nr
nr

=

= (α2)
n
nr

(

n− nr
Pn

)
n−nr
nr

nrk

k
∏

i=1

det(HiH
†
i )

1
nrk

The second term in (38) can thus be upper bounded by

P

{

k
∏

i=1

det(HiH
†
i )

1
nrk < 4(1 + ǫ)

( n

α2

)
n
nr
( P

n− nr

)
n−nr
nr

}

= P

{

1

k

k
∑

i=1

log detHiH
†
i < log

(4(1 + ǫ))nrnnPn−nr

α2n(n− nr)n−nr

}

By hypothesis the weak law of large numbers (15) holds,
i.e. 1

k

∑k
i=1 log detHiH

†
i → µ as k → ∞. Thus, the error

probability will vanish provided that for sufficiently large k,

log
(4(1 + ǫ))nrnnPn−nr

α2n(n− nr)n−nr
< µ

Recalling thatα2 ≥ C
1

n2k
n,k

P

2
R
n CL

, the condition can be rewritten as

R < µ+ nr logP − nr log 4(1 + ǫ)− n lognCL+

+
logCn,k
nk

+ (n− nr) log(n− nr)
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Using Stirling’s approximation (13), for largek we have

logCn,k
nk

≈ n log πe − n logn− 1

2nk
log 2πn2k

Asymptotically, we find that any rate

R < µ+nr log
P

4(1 + ǫ)
−n log n

2CL
πe

+(n−nr) log(n−nr)

is achievable. Since this is true for allǫ > 0, this concludes
the proof.
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