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capacity within a constant gap
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Abstract—This work addresses the question of achieving ca- that prove that the performance of a lattice code in the

pacity with lattice codes in multi-antenna block fading chanels
when the number of fading blocks tends to infinity.

A design criterion based on the normalized minimum determi-
nant is proposed for division algebra multiblock space-tine codes
over fading channels; this plays a similar role to the Hermie
invariant for Gaussian channels.

It is shown that this criterion is sufficient to guarantee trans-
mission rates within a constant gap from capacity both for sbw
fading channels and ergodic fading channels. This performace
is achieved both under maximum likelihood decoding and naig
lattice decoding. In the case of independent identically diributed
Rayleigh fading, it is also shown that the error probability
vanishes exponentially fast.

In contrast to the standard approach in the literature which
employs random lattice ensembles, the existence results this
paper are derived from number theory. First the gap to capaciy
is shown to depend on the discriminant of the chosen division
algebra; then class field theory is applied to build families
of algebras with small discriminants. The key element in the
construction is the choice of a sequence of division algetsavhose
centers are number fields with small root discriminants.

Index Terms—MIMO, block fading, space-time codes, number
theory, division algebras

I. INTRODUCTION

It is well-known [3] that in ergodic multiple-input multipt
output (MIMO) fading channels with channel state inforroati

classical Gaussian channel can be roughly estimated by the
size of a geometrical invariant of the lattice, tihtermite
invariant In particular the Hermite invariant can be used to
roughly measure how close to capacity a family of lattices
can get. This connection has been extremely fruitful and has
led to a monumental work connecting algebra, geometry and
information theory|[6].

In the case of fading channels the situation is quite differe
While it is well-known that space-time lattice codes from
division algebras [7] provide good performance over mistip
antenna fading channels, and a rich algebraic theory has bee
developed to optimize single codes [8], there are as yet no
results connecting capacity questions and the geometry of
lattices. The minimum determinant criterionl [9] allows to
improve the worst-case pairwise error probability in thghhi
SNR regime, when coding over a single fading block. Opti-
mizing this value has been the major concern of several works
in space-time coding [8, 10, 11]. However, no design cioteri
has been suggested for approaching the MIMO capacity with
explicit lattice codes.

In this paper we address this problem and show that when
we are allowed to encode and decode over a growing humber
of fading blocks, thenormalized minimum determinaptays
a similar role to the Hermite constant in Gaussian channels.
In particular it can be used to measure how close to capacity

at receiver only, the maximal mutual information is achtevey given family of lattice codes can get.

with Gaussian circularly symmetric random inputs. In trase

. Based on this design criterion we prove that for a MIMO

the existence of capacity-achieving codes can be proven Witannel withy, transmit andn, receive antennas, there exists

standard random coding arguments.

a family of multiblock lattice codesL,  C M, xnk(C)

It has been shown that by combining simple mod_ul_atlon ar Ahere goes to infinity) that achieves a constant gap to
strong outer codes such as turbo or LDPC codes, it is possi };?pacity both in the slow fading and ergodic fading case.
to operate at rates close to capacity with small error pritibab \15re precisely, for a MIMO channel with ergodic capacity
[4,15]. However, to the best of our knowledge, the problem ¢f _ [log det(I,,, + SXRHTH)], our scheme achieves
achieving capacity wittexplicit codedor all ranges of signal- any rate " "

to-noise ratio (SNR) is still open.

This is in strong contrast to the classical complex Gaussiang By
single antenna channel, where the capacitiogg1l + SNR)

and it is known that several lattice code constructionsexehi \yhere Cy is a certain geometric invariant of the family of

log SNR —C' rates. These constructions are based on a rigfyices. These rates are achieved not only with maximum
theory of lattice co_des developed to attack these questiofse|ihood (ML) decoding, but also with naive lattice dedagl

At the heart of this theory are sphere packing argumentg thermore, the same scheme achieves positive ratesi-of rel
able communication for more general fading proceq9é¢s}
under the mild hypothesis that the weak law of large numbers
holds for the sequence of random variab{ész det HZHZ}

As far as we know, this is the first explicit coding scheme
which achieves constant gap to capacity for all SNR levels in
MIMO channels.

N
[1ogdets RHTH —nlogCL+nlog¥, 1)
n
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Instead of using random coding arguments we considér Related work

algebraic multi-block division algebra codes [[12) 13]. Our \yile our work shows that one can achieve a constant gap
lattice .constructi0n§ are based on two results from claksig, capacity in ergodic MIMO channels with a fixed family
class field theory. First we choose the cerfieof the algebra o 5igebraic codes, it is natural to consider the more génera
from an ensemble of Hilbert class fields having small roQfestion of whether it is possible to achieve capacity with
discriminant and then we prove the existence dk&entral 5,y |attice codes. Such a result would be a generalization
division algebra with small discriminant. Our lattices @&y ¢ the work in [22,[28] 24] which proved the existence of

Fo a very general family of division alge.bra codes introdijcerandom lattice code ensembles achieving taggSNR) over
in [12,113,114], and developed further in_[15] and|[16]. Wene AWGN channel. By making the extra assumption that the
will use the most general form presented.in/ [17]. In paréicul o nsmitter and receiver have access to a common source of
our work proves that the classical number field codes [18],qomness in the form of a dither, the authors in [25] finally
achieve a constant gap to capacity in Rayleigh fast fading,yeq that the AWGN capacity is achievable with random
single antenna channels. lattice codes. An explicit multilevel construction from lap

In most works on algebraic space-time coding the codedes was recently proposed in[26].
design criterion is derived from an upper bound for the As far as we know our work [2] was the first to give a
pairwise error probability [9] together with the union bakin proof that lattice codes achieve a constant gap to capatity i
[1€,119]. In our proofs we abandon this method and considglock fading MIMO channels. In the single antenna fast fgdin
a hard sphere packing approach, classically used in lattigigannel this problem was considered beforelin [27], which
coding for the AWGN channel. The idea, formalized in Sectioflaims that random lattices achieve a constant gap to dgpaci
[ is to exploit the speciatnultiplicative structureof algebraic |n [2€] the authors extend their previous results and claim t
codes. It was observed in the context of diversity-multiplg give a proof that random lattices achieve capacity in single
gain trade-off (DMT) analysis [20, 21], that fading has @ntenna ergodic fading channels. However, we believe that a
diminishing effect on the euclidean distance of the reakivgeast in its current form, the analysis in both works is nrigsi
code constellations derived from division algebra codes: h some fundamental details. In particular, the gap< 1 +
ing the so-callechon-vanishing determinangroperty, only if log Ex, {# , given in [27, Theorem 3], is infinite even when
the channel itself is bad. This property was formalized ifﬁe fadl |
[21], where the authors introduceapproximately universal
codesfor fading channels. Our main results Theoréml 4.
and Theoreni 417 rely on this “incompressibility” propertly o
algebraic lattices. It follows that our codes atemost universal

ing procesgh;} is i.i.d. complex Gaussian. In_[28,
quation (20)] the authors state that for a given fixed fading
alization, the Minkowski-Hlawka theorem implies thag¢itl

exist a lattice for which the error probability is upper bded

o ; : in a certain way. However, they proceed as if there existed

and perform W'th.'n a CO”Sta?”t gap t.o papacny for_ a wide Claglssingle lattice that would satisfy this upper bound for any

of channels, having only mild restrictions on fading. channel state. To the best of our knowledge, such a result can
While we discuss specific lattice codes from division alg&iot pe derived from Minkowski-Hlawka.

bras, our proofs do work for any ensemble of matrix lattices

: : . . . As far as explicit algebraic constructions are concernad, o
with asymptotically good normalized minimum determinant. o .
work is indebted to several previous papers.

The I.arger this value is, the smaller th? gap fo Fhe C?pacn,yfhe idea to use division algebra codes to achieve capacity
This work also suggests that capacity questions in fadingp, pe tracked down to the work of H.-f. Lu in [13]. While
channels are naturally linked to problems in the math_embt'%tudying the diversity-multiplexing gain tradeoff (DMT) o
research area ofeometry of numbersUnlike the single . iihiock codes he conjectured that the ensemble of multi-
antenna Gaussian case, many of the questions that arise haye, division algebra codes might approach the ergodic

not been actively studied by th.e mathematical community. Rayleigh fading capacity. Our work confirms that conjecture
Hopefully, studying such questions may lead to a comprehgyy

. . i , _however, we point out that it is unlikely that DMT-optimalit
sive geometric theory of lattices for multiple antenna fadi 5one is enough to approach capacity. Instead one should
channels.

pick the code very carefully by maximizing the normalized
We note that the proposed lattice code constructions are R§ihimum determinant.
yet practical, since they are based on number fields whoserhe families of number fields on which our constructions
existence is proved through class field theory. Given a fixedle based were first brought to coding theorylinl [29], where
degree, the required number fields can be found using compie authors pointed out that the corresponding lattices hav
tational algebra software, but this process is computalipn |arge Hermite constant. C. Xing in_[30] remarked that these
taxing. Decoding of the proposed codes is also very complgimilies of number fields provide the best known normalized
and the constructions we provide still have a large gap goduct distance making them a natural candidate for achiev
capacity. ing constant gap to capacity in fading single antenna cHanne
On the other side, as demonstrated in Secfion] VIlI, the Our results on slow fading channel are motivated by the
existence results we use are very pessimistic. For smaledsg work in [31], where the authors prove thptecoded integer
the normalized minimum determinants of the best possiliercing achieves a constant gap to capacity for every slow
lattices are considerably better than the bounds proviged fading channel with fixed fading.
our existence results. Our geometry of numbers approach has its roots_ in [32],



where the authors studied lattice codes in single antemiaga We will call such a channel afn, n,., k)-multiblock channel

channel and defined the normalized product distance. Theythis paper, we will also assume that for al> 1, H; €

also pointed out that using this criterion reduces thedatti M, . is full-rank with probability1, and that the random

design to a problem in geometry of numbers. variable Zle %log det(HjHi) converges in probability to
The generalization of these ideas to the MIMO channsbme constant when the number of bloékends to infinity.

was developed in_[33] and [34], where the code design fdhis channel model covers several standard MIMO channels

quasi-static MIMO channel problem was translated intadatt such as the Rayleigh block fading channel and the slow fading

theoretic language and where a formal definition of nornealiz channel.

minimum determinant was given. However, none of these A multi-block codeC in a (n,n,,k)-channel is a set of

works considered the relation between geometry of numbenaitrices inM,, .., (C). In particular we will concentrate on

and capacity problems. finite codes that are drawn from lattices. LBt denote the
code rate in bits per complex channel use; equivalefi|y=
B. Organization of the paper 2ftkn We assume that every matriX in a finite codeC C

. . . C) satisfies the average power constraint
In Section[1 we introduce the multiblock channel modeM”X"k( ) gep

and recall the relevant properties of lattice codes. IniSect 1
[M-Alwe develop a geometric design criterion for capacity %'
approaching lattice codes for fading multiple antenna oleémn
and define the concept ofduced Hermite invariamivhich is
an analogue of the classical Hermite invariant. In Se¢fiBBIl
we state the existence of lattices having asymptoticallydgoB. Lattice codes

normalized minimum determinant (the proof will be given i pafinition 2.1: A matrix lattice I, C My (C) has the
SectionV1l). In Sectio IV we prove that the lattice codes of,,, -
the previous section achieve positive rates over a veryrgéne
class of channels. We then prove that they achieve a constant
gap to capacity over slow fading (Sectibn V-A) and ergodighere the matrice®, ..., B, are linearly independent over
fading channels (Sectidn VB). In Sectibn] VI we focus on thg j.e., form a lattice basis, and is called therank or the
i.i.d. Rayleigh fading channel model, and show that thererrgimensionof the lattice.

probability vanishes exponentially. In Section VIl we pedhe  The spaceM,,,.x(C) is a 2n?k-dimensional real vector
existence of asymptotically good lattices, and in Sedfidlil V space with a real inner product

we specialize our results to the single antenna case. FinallO

in Section[IX we explore the connection between capacity (X,Y) = %(TT(XYT)),

guestions in fading channels and geometry of numbers.decti ) ) .
X discusses some perspectives and open problems whereT'r is the matrix trace. This inner product also naturally
defines a metric on the spadé, . (C) by setting||X|| =

. VX, X).

C. Notation Given anm dimensional latticel, C M,,x . (C), its Gram
Throughout the paper, capacity is measured in bits. Agatrix is defined as

cordingly, we denote byog the base logarithm in rate and

capacity expressions; the natural logarithm will be dediy G(L) = ({(Xi, X3)) 1 <i j<m »

In.

IX|” <P, 3)

where| X || is the Frobenius norm of the matriX.

L=72ZB,®ZBy ®---® LB,,

where {X;}1<i<m IS @ basis of L. The volume of the
fundamental parallelotope df is then defined a¥ol(L) =

[I. MULTIBLOCK LATTICE CODES [det(G(D))].
A. Channel model In the following we will use the notatioR (L) for the linear

We consider a MIMO system with transmit anch,. receive Space generated by the basis elements of the laltice
antennas, where transmission takes place évgquasi-static ~Lemma 2.2: [[35]Let us suppose thal is a lattice in
fading blocks of delayl’ = n. Each multi-block codeword M, xx(C) and S is a Jordan measurable bounded subset of
X € Myxni(C) has the form(Xy, Xo,..., X};), where the R(L). Then there existX € M, xx,(C) such that
submatrix X; € M, (C) is sent during the-th block. The

natrix - / Vol(S)
received signals are given by [(L+X)NS|> Vol T)
(0]

Y = H; X; + W, ic{l,... k} 2

Given a family of latticesL,, ; C M, xnx(C), let us now
whereH; € M, «»(C) andW; € M,, «(C) are the channel show how we can design multiblock cod€shaving rate
and noise matrices. The coefficients f; are modeled as greater or equal to a prescribed constéhtand satisfying
circular symmetric complex Gaussian with zero mean and uttie average power constraift (3), from a scaled versibp
variance per complex dimension. Perfect channel state-infof the lattices, wherex is a suitable energy normalization
mation is available at the receiver but not at the transméted constant. We denote by (r) the set of matrices i/, x.x(C)
decoding is performed after all blocks have been received.with Frobenius norm smaller or equal ta According to



Lemma 2.2, we can choose a constant sKift € M, x,.(C) s a lattice with basid{;B1,- - , HyBay2y, andh(H Ly, i) is

such that forC = B(v/ Pkn) N (Xgr + aL, ) we have well defined.
As a discrete groupH L, , has positive Hermite invari-
7L2 El
oRnk _ c| > Vol(B(v Pkn)) _ Cn P i ant, but even ifh(L, ) is large there is no guarantee that
- VOl(aLn,k) O‘2n2k VOI(Ln,k) ’ h(HLnyk) is.
Jyn 2k For convenience we first introduce a group of matrices
whereC,, , = (”(ZZL)! . We then find the following condition

for the scaling constant: G = {H € Myxni(C) | pdet(H) = 1}, 5)

wherepdet(H) = [[F_, det(H,).
e (4) Definition 3.2: The reduced Hermite invarianof an m-
2w Vol(Ly, i) n2k dimensional latticel. C M,,«,x(C) with respect to the group
G is defined as

1
n2k

9 CoyP

«

IIl. DESIGN CRITERIA FOR FADING CHANNELS rhe (L) = P}nfC:{h(HL)}.
S

In this section we propose a new design criterion for
capacity approaching lattice codes in fading channelstff®r  For any lattice L, h(L) > 0. The same is not true for
sake of simplicity, we will focus on the case. > n. We the reduced Hermite invariant. Let us now describe the set
note that the design criterion derived here will finally be thof lattices L for which rhg (L) > 0.
familiar minimum determinant criterion. However, we hope Definition 3.3: Theminimum determinardf the latticeL C
that our alternative characterization offers more insmithe M, .,.;(C) is defined as
topic and can have applications in further research.

det,in (L) ;= inf det(X)].
tnin (L) Xelil\{o}h) et (X)]
A. Reduced Hermite invariant If det,.;n, (L) > 0 we say that the lattice satisfies then-
We recall the classical definition of the Hermite invariany/@nishing determinanfNVD) property. .
which characterizes the density of a lattice packing: We can now define theormalized minimum determinant
Definition 3.1: The Hermite invariant of am-dimensional ¢(L), which is obtained by first scaling the lattideto have
lattice L C M, i (C) can be defined as a unit size fundamental parallelotope and then taking the
. ) minimum determinant of the resulting scaled lattice. A demp
h(L) = inf{ || X[|* | X e L, X # 0}' computation proves the following.
Vol(L)?/m Lemma 3.4:Let L be anm-dimensional matrix lattice in
On then x n MIMO Gaussian channel such that the channdilnxn(C). We then have that
matricesH; = I,, Vi, the classical sphere packing approach is detin (L)
to choose &n?k-dimensional lattice codé,, 5, C M, xnk(C) o(L) = (Vol(L))nk/m’ ©)

such thath(L,, ;) is as large as possible.

Let us now assume that we have a finite catie C
Lor C Muxni(C) and a random channel realizatio
H = [Hy,...,H;]. We note that the channel outpiit =

The normalized minimum determinant provides an alter-

ative characterization of the reduced Hermite invariant,
r‘Eefore that we need a well known lemma.

Lemma 3.5:Let A be anm x m complex matrix. We have

[Y1,...,Y%] can be written as : .
the inequality
— A m
Y =H;X+W, |det(A)| < ” ”/2
mm

where X = [Xy,...,Xg], W = [Wh,..., W], and Hy = _ o _ o
diag(Hy, ..., Hy,). From the receivers point of view, this isFor a matrixX € M, (C) this immediately implies that
equivalent to an additive white Gaussian noise channelavher [|X ||k
the lattice code is [pdet(X)| < (nk)ok /2"

HCp = {HyX | X €CL}. Proposition 3.6:1f L C M, x,x(C) is a2n?k-dimensional

Even if the latticeL,, , (and therefore the cod®,) has good attice, then o/

minimum distance, there is no guarantee that the same can be nk (6(L)) = rhe(L).

said about the latticdZCy,. This leads us to consider matrix Proof: If the lattice I includes a non-zero elemer
lattices Ly, x C Mnxni(C) which would have good minimum g, thatpdet(X) = 0, it is easy to see thatk (5(L))*/"* =
distance after any (reasonable) channel. If we assumedhbht €he L)=0.

of the matriced?; in equation[(R) has full rank with probability | ot s now assume thatdet(X) # 0, for all X # 0. If
1, thgn thg multlpllcg_tlonX > HdX. is a bijective linear pdet(H) = 1, Lemma 3.5 implies that

mapping with probabilityl. For any latticeL,, ;, C M, xni(C)

having basisBi, ..., By,2; we then have that ||HdX|\2 > nk |pdet(HdX)|2/”k =nk |pdet(X)|2/"k.

HLp = {H4X | X € Ly} =ZHyBy ® -+ ® ZHyBsy2i, It follows thatnk (5(L))*™ < rhe(L).



Let us now assume that we have a sequence of codewords IV. ACHIEVABLE RATES FOR GENERAL CHANNELS

X® e L such that Suppose that we have an infinite family of lattides € C*
with Hermite invariants satisfyiné(i—’“) > ¢, for some positive
constant. Then a classical result in information theory states
that with this family of lattices, all rates satisfying

lim nk|pdet(X ) 2/"* = nk (5(L))2/nk .
11— 00

f X0 = [x{”,....x), we can chooseH") = e
pdet (XO)/m[(X (7)1, (X{7) 7] so thatpdet(H ) = R <log P-+log (77 ) + loge,

1. We then have are achievable in the additive complex Gaussian channel [6,

||H§i)X(i)||2 _ nk|pdet(HU(li)X(i))|z/nk _ Chapter 3]. This means that we can attach a single _number
h(Ly) to each latticeL, € C*, which roughly describes

its performance and in particular estimates how close to the

capacity a family of lattices can get. The following theorem

can be seen as an analogue of this result for fading channels.

lim ||Héi)X(i)||2 — nk (6(L))2/nk' The_orem 4.1:Suppose that,, > n, anc_zl let{H;}icz _be

i—00 a fading process such thdf; € M, ., is full-rank with
probability 1, and suppose that the weak law of large numbers

2/nk __ - .
It follows thatnk (6(L))™ ™" = rhg(L). ' holds for the random variableog det(H; H;)}, i.e. 3 > 0
Remark 3.7:0ur definition of the reduced Hermite invari-g,ch thatve >0,

antrhg depends heavily on the grou@. The group chosen

in (§) can be seen as a block diagonal subgrouflgf, (C). lim ]P’{
We could also consider a subgrogf C G and definech, k—o00
with respect to this group. A natural consequence of these

definitions is that for two subgroupS;, G» of G such that L&t L, C M.k (C) be a family of 2n*k-dimensional
G1 C G, we have that multiblock lattice codes such that

= nk|pdet(X ©)|2/nk

for everyi and therefore

k
1
z Zlogdet(HgHi) —u

=1

> e} =0. (7)

I'hGl (L) > I‘hG2 (L) del;mn (Ln,k) =1, and VOl(Lnk)m <(Cp (8)

for some constant’;, > 0. Then, any rate
B. Asymptotically good families of lattices R<u+n (1ogP —log Cr + log I—i)
n

Based on the observations in the previous section, we Gan, hievable using the codds, , both with ML decoding
say that a sequence of codks ;. is asymptotically good for 4,4 naive lattice decoding. '

: 5 o
the AWGN channéf h(Ly, x) > cn’k, for some positive fixed  Remark 4.2:We note that existence of a family of lattices
constant. Similarly, we can say that a sequence of lattices {§ji,

asymptotically good for fading channédsthg (L, ) > cn’k. O < 93452 G
As seen in Proposition 3.6, this is equivalent to asking that L= ! ’

2/nk > . . "
0(Ln,1) = n. _ . was given in Proposition 3.8.
.In order to keep the paper suitable ]‘or a "'?‘rger audience WeRemark 4.3:This theorem is stated by giving two condi-
will postpone the proof of the following existence result t(ﬁons [8) for the lattices.,, x. However, according to Lemma

Sestlorm_!. 38 Gi h ) tamily obn2k 3.4 we could have captured both of these conditions by an
di rop(_)sm(?nl o Siven " ';V[ere e)((C'StS ah am];y OLT"k-  equivalent assumptiod(L,, ;)2/"* > z-- Proposition[36
imensional latticesL, k. C Myxnk(C), wherek grows t0 01 transforms this condition to

infinity, and a constan€’ < 92.4 such that

ths (L) = nk (5(Ln )2/ > ¥

G n?k - C_L
Vol(Lp ) <2350 (2 . . .
e = 2 As only k is growing, we can further write thatg (L, 1) >
1 n?kC}, where C;, = n/CrL. We can therefore see that

detpmin(Lnk) =1 and  §(Ly ) > 235 (=1 (G/2) % conditions [(8) assure that the family of latticks ;. is asymp-

totically good in the sense of Sectibn 1II-B.

Remark 3.9:In this section we have developed the notion The achievable rat& in Theoren{ 41l can then be seen as
of reduced Hermite invariant for the case > n. We observe a complete analogue to the classical sphere packing result i
that this notion does not extend in a straightforward wayt t AWGN channels.
casen, < n, because the imagH L of an infinite lattice L Remark 4.4:The condition [(¥) holds in particular for er-
will no longer be a lattice, and the minimum distanceHrd. godic stationary fading channels and for constant MIMO
will be zero. However, when considering finite constellatio channels. These special cases will be analyzed further in
Cyr, it is still possible to find suitable lower bounds on th&ection[Y, where we will show that the codes in Theorem
minimum distance of the received constellatifii€;, as will [4.1 achieve a constant gap to channel capacity.
be shown in the following sections. To prove Theorerh 411, we need the following Lemma:



/

Lemma 4.5:Consider the finite cod€ = B(vPkn) N and R, = R; , with R, € M,,(C) upper triangular. Note
(Xr + aL, ) defined in Sectiori_I[-B. Suppose that the k. O . o
receiver performs maximum likelihood decoding or “naivethat _the_ thin” QR decomposm_om{i ~ Qi}?ri also hOId_S‘
lattice decoding (closest point search in the infinite defi MUItiPlying the channel equatiori}(2) bg;, we obtain the
Then, under the hypotheses of Theofem > 0 the error €duivalent system

probability is bounded by Y, = QY; = RiX; + QIW;

kn2e2 042 k L .
P. < 2e 5 +P{4—Hdet(H3Hi)"k <1 +E} (9) foralli=1,... k. Note that
n
i=1

Voo | Y| _ | BiXi QW
Proof: We distinguish two cases: the symmetric case LY QIW; '

wheren, = n, and the asymmetric case with. > n. Let

dy denote the minimum Euclidean distance in the receivér(ﬁws’ the second component C‘?ma'”s_ only noise and no
constellation: information. The output of the naive lattice decoder can be

. written as
d% = min Hi(X: — X)|I?. . k
H X7X§C21 H z( i Z)H X = argmin Z HYz o Hin{Hz _
X#£X = X'€aLy i

i=1

a) Casen, = n: We have 9

Y, — RiX]

argmin Z ‘

d 2 X’'ealL ‘
2 H n,k i=
PesP{|W| > (%) } x

= argmin > (V! = RIX[* + |QIWi)*) =

whereW = (W, W, ..., Wy) is the multiblock noise. By X'€aln iy
the law of total probabilityye > 0 we have k
= argmin Y/ - RX!|?,
s &, g )| :
P.<P{l - >1+ey+P <l+ep. (10) i=1
kn? 4kn?

since the second component does not depend on the lattice
Note that2 |IW||> ~ y2(2kn?), and the tail of the chi-squarePoInt X'. Thus, the naive lattice decoder for the original
distribution is bounded as follows fare (0, 1) [36]: system declares an error if and only if the naive lattice deco

for the (n,n, k) multiblock system with components

kn2e2

1w .
P{ T S a1 Y/ = RIX, + QiW: = RIX, + W

Thus, the first term in equatiofi_{10) vanishes exponentia@?es- Note thatV; = (QQ)TWi is ann x n matrix with i.i.d.
fast ask — oo. aussian entries of variandeper complex dimension.

In order to provide an upper bound for the second term,'—et dr be the minimum distance in thn“k-dimensional

we consider a lower bound for the minimum distance in tHeonstellation generated by’ = [R;, ..., R]:
received constellation. We have k
d?, > onk  min ﬁ |det(H; X;)| 7% > dn = XH;%IGICZ I7iXi - Xi)HQ.
H Z X€eL, x\{0} bl i3 = X£X i=1
, k , Observe thavi =1, ...k,
| nk
2 etk [ [t 1%~ X0 = @i - 0 = i, - %o P

where the first bound comes from Lemmal3.5 and the secongry, ;5 dy = dp. Moreover,det(H] H;) = det((R!)!R!) =
from the hypothesis that dgt, (L, ) = 1. Therefore, the ' ' i 41 i) 4y

) i |det(R})|*. Similarly to the symmetric case, the error proba-
second term in[(10) is upper bounded by

bility can be bounded by
2 k

« 2 2
E”{@I_Il [det(H)|7F < 1+€}- (12) P gp{|w’|2 > (—d;) }

b) Casen, > n: In this case, the latticé/,L,, j. is 2n2k-
dimensional but is contained in Zn,.nk-dimensional space.
Foralli =1,...,k, consider the QR decomposition

Hi = QZRM QZ S MnTXnT((C)v Rz S MnTXn((C)7

whereW’ = (W7,...,W]). We can write
k R k .
g > o’nk [ [ |det(R)[™ = o®nk [ [ det(H]H;)=.
=1 =1
where(@); is unitary andR; is upper triangular. We hav@; = The proof then follows exactly the same steps as in the
(@) QY], whereQ', € M,, «,(C) is such thatQ’)'Q’ = I,,, symmetric case. O



Proof of Theoreni_4]1: The second term i 19) can be V. ACHIEVING CONSTANT GAP TO CAPACITY FOR SLOW

rewritten as FADING AND ERGODIC CHANNELS
k .
1 1 An(1 A. Slow fading channel
P{ - ~logdet(H] H;) < log (M) , , , _
k = n « We now consider a slow fading scenario, whéfe = H
_ ) is constant. WhenH is known both at the transmitter and
and will vanish as long as receiver, the channel capacity is given by [3]
An(1 + ¢) ] t
Ld C(P) = logdet(I,, + HQxH"),
1Og< a? ) S ®) szol,g%g»gz? og det(ln, + HQxH')
Recalling that the normalization constamt in equation [(#) WhereQx is the covariance matrix of the inputfor a single
satisfies channel use.
Ol/;fkp However, if the channel is known at the receiver but not at the
2 n

transmitter, the transmitter cannot use optimal powecation
and waterfilling, and can only achieve tivbite-input capacity
corresponding to uniform power allocati@p, = =

@ = 2R/nCL
under the hypothesis thafol(Ln_,k)ﬁ < (9, a sufficient

condition to have vanishing error probability is P P
Cwi = log det <Inr + —HHT> = log det (In + —HTH) .
n n

R <logP + £ log(4n(1 +¢€)) —log Cr + ——log Cp i
n " k This is for example the case for an open-loop broadcast
From Stirling’s approximation, for largé we have channel where the transmitter cannot perform rate adaptati
g\ 1 for all the users.
(Crk) B me/(n(2mn"k) 2% ). (13) Clearly, Theoremd_4l1 and_#.7 apply to the slow-fading

scenario since the law of large numbers holds. Moreover,
the convergence of the error probability to zero will be
exponential, since the second term in equatidn (9) is dgtual
zero. The following corollary then shows that a constant gap

is achievable. This holdge > 0, and concludes the proofJ  to white-input capacity is achievable:
Remark 4.6:Note that the two-sided convergence in prob- Corollary 5.1: Consider a slow fading channel such that
ability in equation[{¥) is actually not required in the pradf H:; = H for all i > 1, and letL, ; C Mx,.(C) be a

Theoren{Z11. The theorem still holds provided that> 0, family of 2n2k-dimensional multlblock lattice codes such that
det,in (Ln.x) = 1 andVol(L,, k)n% < (. Then, this coding

scheme can achieve any rate
} —0. (14 y

Since 51 log 2rn?k — 0 whenk — oo, any rate

R < p+n(log P—log(4n(1+¢))—log Cr+log me—logn)

k
1
lim P {u -7 > logdet(HH;) > e

k—o0

=1 R < logdet BHTH—nlogCL—i—nlogF—e
Moreover, if we have exponentially fast convergenceld (14) n 4n
then the error probability?, also vanishes exponentially fastif n,. > n, and any rate
whenk — oo.

As a final remark, we note that we can prove an analogie< log det BHHT 2n,—(n— nr)log +n10g e
of Theoren{ 41l also in the case < n, although the bound nC
on achievable rates is more involved: if n,. <n.

Theorem 4.7:Suppose that, < n, and let{H,};cz be Remark 5.2:In the casen, > n, let \;, i = 1,...,n

a fading process such thdf; € M, ., is full-rank with be the singular values off. Then the channel capacity can
probability 1. Suppose that the weak law of large numbeise written asC(P) = > log (1+ £);). The previous
holds for the random variabldsg det(HiHj), i.e. 3p > 0 corollary shows that the achievable rate is of the form
such thatve > 0, p

R(P) = max (o, log det EHTH — c>

k
1
; gt
lim P{‘E E log det(H;H])

k—o00 .
i=1

— i >e}=0. (15)

for some constant > 0. Let P,,;,, be the smallest value a?

. - . such thatR(P) > 0if P > Pyin. Then, forP < P,,;, we have
Let Ly, C Muxnx(C) be a family of 2n“k-dimensional that C(P) — R(P) = C(P) < C(Pun), while for P> Py,

[tiblock latti d tisfyi 8). Then, t n L .
multiblock lattice codes satisfyin@l(8). Then, any rate C(P) -~ R(P) = 3", log (1 n P_M) + ¢ which is a strictly

R < p+n,(log P —2)+ (n —n,)log(n —n,) +nlog _rme decreasing function o and tends t@ when P — oo. Thus,
n2CL for all P > 0 we have thalC'(P) — R(P) < C(Puin)- This

is achievable using the codds, , both with ML decoding shows that the gap is bounded by a constant, however the value
and naive lattice decoding. of Pnin and of the constant depends on the channel.

The proof of Theorerfi4l7 can be found in Appendix A. A similar argument holds fon, < n.



B. Stationary ergodic channels equation [(B), the ergodic capacity (per channel use) islequa
We now specialize the results of Sectionl IV to the cadl

where the fading proceddd;} is ergodicand stationary For C(P) = max Eg [logdet(I,, + HQxH')],
the sake of completeness, we review the relevant definitions Qx20,t1(Qx)<P
here. where H is a random matrix with the same first-order distri-

Let Z be the seZ or N, and consider a random proces$ution of the proces$H,}, which is independent of time by
X7 = {X,}iez on a probability spac€Q, B,IP) where each stationarity, andy, is the covariance matrix of the input
random variableX; takes values in a separable Banach spafer one channel ule
X. The sequence spa¢&’”, B(X7)) with the Borel sigma- If we suppose that the channeliotropically invariant i.e.
algebra inherits a probability measurey from the underlying the distribution ofH is invariant under right multiplication by
probability space, defined by unitary matrices, then the optimal input covariance maigix

« = £1I, [3] and we have
mx(A) =P{w: X*(w)e A} VAeBX*). (16) @ =l [
P
C(P) =Ey [mg det (Inr n —HHT)} :
n
Definition 5.3: The process{X,} is called stationary JR— P o
if Vt,k € N,¥iyio,....ir € Z, the joint distri- Sincedet(l,, + THH') = det(I, + 7 H'H), we can also
bution of (X,,,X,,...,X;,) is the same as that ofWrte P
(Xiytts Xigto oo s Xigrt)- C(P) =Ex [1Ogd€t (In + EHTH)} :
In this case it is well-known [37, p. 494] that the measure

mx is invariant with respect to the shift map: xZ — xZ The following Corollary to Theorerii 4.1 shows that in this
such thatT({z;}) = {zi1}. case, the proposed multiblock codes can achieve a constant

Definition 5.4: The procesg.X;} is calledergodicif YA € 9ap to ergodic capacity. _
B(XT) such thatl~1(A) = A, we have thatny (A) is equal Corollary 5.5: Suppose that,, > n and that the fading
to 0 or 1. process{ H;} is ergodic, stationary and isotropically invariant.

We now go back to the channel mod@l (2). For the sake Wforeover, suppose tha ngg det HTHH <oo. Letly, C
simplicity, we suppose that, > n. If the fading proces§H; } M, ni(C) be a family of2n°k-dimensional mulU%)ck lattice
is stationary and ergodic, it is not hard to see that the randgodes such that dgt;, (L, x) = 1 and Vol(L,, ) »** < Cf.
process{X;} = {1ogdet(HjHi)} taking values in¥ = R Then, any rate
is also stationary and ergodic, and the sfift: RT — RZ R<Ep [logdet BHTH] —nlogCr + nlog =<
preserves the measuney defined in [(16). n dn
For an ergodic process such that the sHiftis measure- is achievable using the codds, ; both with ML decoding
preserving, Birkhoff's theorem [38] guarantees that foy anand naive lattice decoding.

f e LY(XE, B(Xx%), mx), the sample means with respect to  Proof: From equation[{19), we have that the hypotheses

[ converge almost everywhere: for almost fil};} € X7, of Theoren{ 4.1l are satisfied (actually, only the weak law of
o large numbers was required). Consequently, any rate
klig}o%zlf(Tn({%})):/XZfde (17) R <nlogP+Eg [1ogdetHTH} —nlogC’L—i—nlogI—;:

. L . . P\"
In particular, the projectiofil : RZ — R on the first coordinate = log (—) +Epn [logdet H'H] — nlog Cy, + nlog Z—e =
is L' according to the image measurex if and only if K "
E [[logdet HTH|| < oo. Under this hypothesis, Birkhoff's _ {1ogdet EHTH] —nlogCy + nlog =5
theorem implies the law of large numbers: n 4n

o is achievable. O
m = _ . 1) — A similar corollary to Theorerii 417 holds in the case< n:
lim le = /}RIH({@})de({xl}) = y ase

. Corollary 5.6: Suppose that, < n and that the fading
= /QH o X*dP = /QXIdP =E[X] ae. (18) process{ H;} is ergodic, stationary and isotropically invariant.
Moreover, suppose that [|logdet HHT|] < oo. Let Ly, C
In other words, M, xn1(C) be a family of2n2k-dimensional multiblock lattice
1 codes such that dgt,, (L, 1) = 1 and Vol(Ln_,k)ﬁ < Cr.
klingo % Zlog det(HH;) = Ey logdet(HTH)]  (19) Then, any rateR lower than
=1 n me

1
n—nr+n 8 nCy,

P
T
almost everywhere. En [k’g det HH }_Q”T_(”_”T) log

In the ergodic stationary case, it is well-known|[3, 39] tha

ergodic capacity of the channel is well-defined and does ngt'e note that the capacity (per channel use) of the block gaiMO
hfnnel of finite block lengti” with perfect channel state information at the

depend on the channel lation with ime, by
epen .on .t € channe .colrre at'.on with respect to t'me* t}g eiver is independent &f [40, eq. (9)]. So the previous result still holds
only on its first order statistics. Given a power constrdin  in the multiblock case.



is achievable using the codds, ; both with ML decoding Then if we consider the baselogarithm, we find
and naive lattice decoding.
Remark 5.7:Using the same argument as in RemarK 5.2, Eg [logdet HTH] =Eflog Vo, ] = M, —

we can show that the achievable rate is within a constant " . In2
gap from capacity, although this constant will depend on the _ 2 jln, 41 Y0 _ nloge% i g ¥09)
fading model. In2

Under the hypothesisEy [[logdet HTH|], we have
|Ex [logdet H'H|| < oo. The achievable rate is of
the form R(P) = max (0,nlog £ + Eg[logdet H'H] — ¢)
for some constant > 0. Let P,;, be the smallest value of
P such thatR(P) > 0 if P > Pyi,. For P < Py,
that C(P) — R(P) = C(P) < C(Puin).

Let\;, 7 =1,...,n be the (random) singular values Hf. For
P>fmmCGU—R@%:ZZﬁmth+ﬁiU+c

which concludes the proof of equatidn [20).

In order to show that the error probability converges expene
tially fast, by Remark4l6 it is enough to show that we have
exponential convergence in equatinl(14).

in We have  consider a sequence of i.i.d. random variatiies, "), , i =
1,...,k, with the same distribution akV;, ,,,. Using the
Chernoff boundl|[43], givend > 0, Vv > 0 we have

which is a strictly decreasing function d? and tends ta: My, 1 k i )
whenP — co. This shows that the gap is uniformly bounded. P % ;log det HiH; 2 1= 0 =
k
VI. ACHIEVABLE RATES AND ERROR PROBABILITY =P{ My, — 1 Zlndet HJHZ- >4 =
BOUNDS FOR LI.D. RAYLEIGH FADING CHANNELS k—~
We now suppose that the coefficients Bf are circular 1 @)

symmetric complex Gaussian with zero mean and unit variance =P Mnn, — ¢ Z InV;5, =6, <
per complex dimension, and that the fading blodKs are i=1 .
independent. In this case, the achievable rate can be cechput < My =0) (B0 Vanr]) (21)
explicitly, and we can prove that the error probability \sirés
exponentially fast. The tightest bound if{21) is obtained fos such that
Let ¢(z) = - InT'(z) denote the Digamma function. Then B B
we have the following: E[—InV, ,, e Vs Vo] = (§ — My, . JE[e™ v 12 Vainr],

Proposition 6.1:Let L, C M,xnx(C) be a fam- b h
ily of 2n2k-dimensional multiblock lattice codes such thap serve that

det,in (L, ) = 1 and Vol(L,, ﬁgC.Then,oerthe _ < j —
tn ( ,k) o ( ,k) L Vi [ v 1 ) / pd= =0 =T g F(.] 1))7 (22)
0

(n,n,, k) multiblock channel, these codes achieve any rate Z;"] = r'(j T(j)
P —v 1 > j—1—v _—x
R <Ey {logdet—HTH] —nlogCL+n10g7T—e, E[27 hle]—m/ /e Ing do =
n dn J) Jo
I(j—v) .
where = ———>Y(j —v). (23)
nr I'(j) G=v)
P P+ X w0 .
En [log det —HTH} =log —e i=nrondl (20)  Thus we find
n n
Moreover, the error probability vanishes exponentiallst fa E [e*vln Vn,nr} =E [Vﬂf ] = H E [Z;”] =
Proof of Proposition[6]1: The first statement follows n JE— '
from Corollary[5.5. The next step is to prove equation (20). | G —w)

is well-known [41, 42] that ifH is ann,. x n matrix with i.i.d. = 1“7')’
complex Gaussian entries having variance per real dimensio j=nr—n+1 (7
1/2, the random variablelet(H'H), corresponding to the [ [V, nre—vlnvn,n,\] =E[-V, ) V] =

determinant of the Wishart matrikt H, is distributed as the n n,

product = > E|-mz [ z7|=
Vn,nr - nrfnJrlZannJrQ te an j=n,—n+1 l=n,—n+1

of n independent variables, such thgt=n, —n+1,...,n,, el Cw w

2Z; is a chi square random variable wityj degrees of - Z HE[Zl I E[=Z;"InZ;] =

—1

freedom. The density of; is pz, (z) = 55— We have

N o P\ IG-v
Blnz) = 5 [ @l e do = 0() - U= | g v

j=n,—n+1 \I#j

My =EMVan )= > 6() =Ey [lndet H'H] - 1I % > o)
Jj=n,—m+1

Jj=nr—n+1 l=n,—n+1
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Consequently, the tightest bound [n](21) is achievedufor Here K is the center of the algebrd.

such that

ny

S @) = vl —vy)).

l=n,—n+1

5= (24)

Definition 7.2: We call \/[A : K| thedegreeof the algebra
A. It is easily verified that the degree of is equal ton.

We considet4 as a right vector space ovér and note that
every elementt = 2o + uxy +--- +u" 'z, ; € A has the

Note that ass — 0, vs — 0. The right-hand side in equationfollowing representation as a matrix:

(21) for v = vs can be rewritten as

T

H F(l—vls)>k:

I'(l)
l=n,—n+1
s, (s () T () ~InT(5)) _

ekvé(_6+2;£nr—n+1 1/1(])) <

I i1 05 (i—vs) ~In D)+ T (G —v5))

using (24).

Recall thatI'(z) is monotone decreasing for < = < ap =

1.461632 ... and monotone increasing far > ag. Using the
mean value theorem for the functidnI'(z) in the interval
[i —wvs, 4] we get that for = 1, vse)(1—vs) +InT(1—ws) < 0,

and fori > 2, vs1(i —vs) < InT'(i) — InT'(¢ — vs). Thus, the
exponent is negative both far = n,. and forn > n,.. We can
conclude that

P Mn,nT
In2

k
1 )
_ - 1 dtHTEQ>— < o~ kKnnp.s
k;oge i —1m2}—e

for some positive constank’, ,,. 5. Since the bound holds

V6 > 0, using Remark™16 with: = A’fggr, we find that the

error probability tends t® exponentially fast for any rate

P "y .
R<n (k’g —en Zin a1 ¥ _1og O + log Z_e) . O
" n

Corollary 6.2: Over the(n,n, k) multiblock channel, reli-
able communication is guaranteed whier» oo for rates

P n ,
R<n <log “enw Dt v0) 4 log ;T—e — log231_10(1%)G)
n n

when using the multiblock code construction in PrOpOSiti%reveryQ-embeddin@-

B3

o yo(zn_1) Y0 (Tn_2) o (a1)
1 o(xo) vo? (1) yo Y (xg)
dla) = | 22 o(r1) o (x0) Yot (x3)
oot 0(@nz) 02(Ea—z) - o™ (zo)

The mappingy is called theleft regular representatiorof
A and allows us to embed any cyclic algebra irtf,(C).
Under such an embedding.A) forms anmn?-dimensional
Q-vector space.

We are particularly interested in algebtdsfor which ¢(a)
is invertible for all non-zera € A.

Definition 7.3: A cyclic K-algebraD is adivision algebra
if every non-zero element d is invertible.

If we assume tha® is a division algebra, thew is an
injective mapping toM,,(C) and every non-zero element in
¢(D) is invertible. Howeverg(D) is not a lattice. Therefore
we will instead consider a suitable subsetZaf

Definition 7.4: A Z-order A in D is a subring ofD having
the same identity element &3, and such that\ is a finitely
generated module ové@ which generate® as a linear space
over Q.

With the previous definition, the sé{A) is a matrix lattice
that can be used for coding over a single space-time block.
A generalization of the embeddingto the multiblock case
was proposed in_[12, 13] for division algebras whose center
K contains an imaginary quadratic field. In this paper we
consider a more general multiblock construction develaped

[17], which applies to any totally complex centat.

We say that a degre®: number fieldK is totally complex if
: K — Cthe imager;(K) includes
complex elements. The field has2k distinct Q-embeddings
Bi : K — C. As we assumed that is totally complex, each

VII. EXISTENCE OF ASYMPTOTICALLY GOOD LATTICES  of these embeddings is part of a complex conjugate pair. We

All of our capacity results depend on the existence of lesticwill denote by 3; the embedding given by + 3;(x).
with asymptotically good normalized minimum determinants For eachs; we can find an embedding; : £ — C
which was claimed in Sectidn 1I[B. In this section we willsuch thata;|x = S;. This choice can be made in such a
prove this result. way thata@;|x = B;. We will suppose that the embeddings
We will first recall the construction of single-block space{a;,...,as;} have been ordered in such a way that =
time codes from cyclic division algebras (see for examptgi,,, for0 < : < m. Leta be an element d andA = ¢(a).
[19]). Due to space constraints, we refer the reader_to [4@bnsider the mapping : A — M, «,x(C) given by
for algebraic definitions.

Definition 7.1: Let K be an algebraic number field of a > (a1(A),..., ar(4)),
degreem and _assume_thaﬁJ/K is a cyclic Galois extension ;oo eachy; is extended to an embedding : M, (E) <
of degreen with Galois groupGal(E/K) = (o). We can M, (C)
define an associativ& -algebra

A=(E/K,0,7)=FE®uE®u*E®---®u" 'E,

(25)

The following result was proven in [17, Proposition 5]:
Proposition 7.5:Let A be aZ-order inD and the previ-

) - ) ) ously defined embedding. Them(A) is a 2kn2-dimensional
whereu € A is an auxiliary generating element subject to th@yttice in A1, .., (C) which satisfies

relationszu = uo(z) for all z € E andu”™ = v € K*. We

call the resulting algebra eyclic algebra det,in (0(A)) =1, Vol(p(A)) = g—hkn’ |d(A/Z)]
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and Lemma 7.8:Every number field<, in the Martinet family
92kn? )1/4” has idealsP; and P, such that

Here d(A/Z) is the Z-discriminant of the orden. It is a Proof: Every field K, has a subfield F =
non-zero integer we can associate to &wrder of D. We Q(cos(27/11),v2,v/=23), where [F : Q] = 20 (see
refer the reader to [44] for the relevant definitions. for example [46, p. 395]). The field" has prime ideals3;

We can now see that in order to maximize the minimu@nd B such thatNp,q(B;) = 23. Let us now suppose that
determinant of a multi-block code, we have to minimize th&: and P, are such prime ideals ok}, that P, N Or = B;.
Z-discriminant of the correspondiriorder A. Transitivity of the norm then gives us that

The first step to attack this question is to assume that . 2k /20
has some extra structure. L&y be the ring of algebraic Nijo(P) = Nejo(Niw/r (P) < Nijo(B)**. O
integers of K. If we assume thaf\ is also anOx module,
then theOx-discriminant ofA is well-defined [[44], and will Armed with this observation, we can finally prove Propositio
be denoted byl(A/Ok). The following formula holds: B38.

) Proof of Propositiori_3.8:
d(A/Z) = Nicjo(d(A/Or))(dx)"™ (26) Suppose that we have a degrek field extensionK in
the Martinet family of totally complex fields such that[28)
holds. We know that this field{ has some prime#; and

k/10 k/10
In the case of fixed centeK, [11] addressed the prob—P2 such thatNq(P1) < 23%/°" and Nic/q(P2) < 23%/°7.
Then, there exists a central division algelipaof degreen

lem of finding the division algebras with the small&3i - .
discriminant, yielding the densest MIMO lattices. The maiﬂverK’ and a maximal ordeA of D, such that

construction is based on the following result (Theorem 6.14  q(A/Z) = (N;C/@(Pl)NK/Q(PQ))"(”*l)(dK)”2 <
in [11]) k/5\(n(n—1 2k\n?

Theorem 7.6:Let K be a number field of degr&d and P, < ! )( ( ))(G )" -
and P, be two prime ideals of{. Then there exists a degree
n division algebraD having anOk-orderA with discriminant ~ Remark 7.9:We note that the number field towers in The-

n(n—1) 2 orem[7.Y are not the best known possible. It was shown in
d(A/Z) = (Nk/g(P1)Nk/q(P2)) (dr)™ . (27) [47] that one can construct a family of totally complex fields

Theorem[ 76 suggests that in order to build families auch thaiG < 82.2, but this choice would add some notational

(n,n, k) multiblock codes with the largest normalized mincomplications.

imum determinant, we should proceed in two steps:

a) choose a sequence of center fieldof degree2k such
that their discriminantg/x grow as slowly as possible;
b) given the centek, choose an algebr® satisfying [27), ~ The single antenna fast fading channel is one of the special

where P, and P, are the prime ideals ik with the cases of the general channel model (2). It is particularly
smallest nornis iluminating as the connection to the classical AWGN |attic

(r*ling is most striking. In this case the abstract matritides
Section[ VIl correspond to simple number field codes that
pve been studied for twenty years![18]. Due to the familiari

Nic/o(Pr) < 23510 and Ny¢/q(P2) < 23%/10,

where N o is the algebraic norm inkK and dx is the
discriminant of the fieldk.

VIIl. COROLLARIES TO SINGLE ANTENNA FADING
CHANNEL

We now discuss the choice of a suitable sequence of cen‘f?
fields. The following theorem by Martinet [45] proves th 0

existence of infinite sequences of totally complex numb o ) .
fields K with small discriminantsix. As we will see in the and simplicity of this mode| we can most easily compare our
¥\§)rk to previous research on the topic.

following, choosing such a field as the center of the algeb In the singl ‘ the ch | el (2 ;
D is a key element to obtain a good normalized minimum n fhe singie antenna case the channel mo (2) gets

determinant. simplified to
Theorem 7.7 (Martinet) There exists an infinite tower of yi = hi - zi + wi, (29)
totally complex number field§K,} of degree2k, where2k =  wherex; are the transmitted symbols, akd = 1,...,k, w;
527", such that are i.i.d. complex Gaussian random variables with variance
dre, | =G, (28) o2 = 02 = 3 per real dimension andh;} is some complex
ko1

fading process such that_, + log |h;|?> converges in prob-

for G ~ 92.368. _ . ability to some constant when the number of bloékgends
The following Lemma shows that the number fields in th&) infinity.

Martinet family have suitable primes of small norm yielding Thg scenario has received considerable interest in the cas

a good bound in Theorem T.6. of an i.i.d. complex Gaussian fading procéés}, and several
) . works have focused on the design of lattice codes for this
However, we note| [17] thah priori there may be a trade-off between

these two choices, so that minimizing the two terms[id (2@asately may quell [327 48]' The. .anaIySiS Of. the union bound for the
be suboptimal. pairwise error probability for a lattice code c C* leads to a
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design criterion based on the maximization of tliemalized and how this method can be used to approach capacity in fast

product distance fading channels.
k Let K/Q be a totally complex extension of degrgke and
Ndpmin(L) = inf iz |Ili|. {o1,..., 01} be a set ofQ-embeddings, such that we have
x€L\{0} Vol(L)z chosen one from each complex conjugate pair. Then we can

Note that the normalized product distance is a special dase (defme arelative canonical embeddingf K into C* by

n = 1) of the normalized minimum determinant [d (6). Most of o(z) = (01(2),...,00(x)).
the works in the literature have focused on the optimization ) o )
of the product distance for lattice signal constellatiorithw The ring of algebraic integer®x has aZ-basis W =

a fixed number of blocks; few authors|[30[ 49] have also{w1; - w2kk} and o(W) is a Z-basis for the full lattice
studied the upper and lower bounds fNd,, .., over all ¢(Ok) in C". S .
lattices wherk grows to infinity. Propositio_Z.b now simplifies to the following.

However, there has been no general consensus on whethéroroliary 8.2: Let ¢ be the previously defined embedding
significant gain could be achieved from coding over an extefnd/ @ degreek totally compLex number field. Thep(Ox )
sive number of fading realizations. For example the authrors!S @ 2k-dimensional lattice inC* which satisfies
[5C>] state that: “increasing the diversity does not necrdiysa detnin (0(Ok)) =1, Vol(p(Ok)) = 27%\/|dx]|
increase to the same extent the performance: in fact, the
minimum product distance decreases and the product kissﬁ*l'@jj ok 1/4
number increases. Simulations show that most of the gain is 5(p(Ox)) = (2_>
obtained for diversity orders up to 16”. In fact, the anadysi ||
of the distribution of pairwise errors in the union bound@s i Using Martinet’s family of fieldsk, from Theoreni7J7 and
[51] shows that theproduct kissing numbef4€&], or number setting L1 . = ¢(Ok, ) we have
of worst case occurrences, will grow fast aadriori might

k
eat away the product distance gain. However, this issueseem Vol(L < (g) ddeto (L) =1
to be due to the suboptimality of the union bound rather than ol(L1k) < and detman(L1k) = 1,
to the codes themselves. whereG ~ 92.368. Specializing to the case where the fading

lattices L, ¢ C* with normalized product distance satisfying

(Ndp min(Lx))?'* > ¢, for some positive constant R < log,(Pe™") — log, (E) , (30)
According to Theoreni 411 and Remdrk]4.3 we then have me
the following. wheree™" = E},[log |h;|?], is achievable.

Corollary 8.1: Any rate R

R<E, [10g2 p |h|2} + log, ™ log, c, B. Known bounds on discriminants and Hermite invariants

Equation [[3D) reveals that the codes based on the Martinet
is achievable with the familyL, of lattices over the fading family have a rather large gap to capacity. However, thetrigh
channel[(Z2D). hand side of[(30) is just a lower bound on the maximum

This result proves that indeed we gain by coding over athievable rate with lattice codes, and might be improvet wi
increasing number of blocks, assuming that we have a faméybetter error probability estimate and/or a better chofdbe
of lattices L, with the described product distances. Accordintattice sequence.
to Proposition[316, the conditiofNd, min(L1))>* > ¢ An upper bound for the maximum achievable rate using this
implies thatrhg (Ly) > kc. It reveals that families of lattice approach can be derived from a lower bound for the discrim-
codes with large product distance do not only have largeant. The Odlyzko bound [53] states that when» oo we
Hermite invariants, but also that the Hermite invariantshef have that|dx|'/?* > 22.3. If it were possible to reach this
faded lattices are as large as well. Thus, the product distafower bound with an ensemble of lattice codes, then any rate
is not only relevant in capacity considerations or in thehhigR satisfying
SNR scenario, but also plays a role when coding over a finite 14.6
number of fading realizations for low SNR. R < logy(Pe™ ") —log, (F) , (31)

would be achievable. For small valueskofthere exist number

fields having considerably smaller root discriminants. l&db
Using the normalized product distance as a code desif#¥] lists the best known root discriminants for totally colex

criterion led to lattice constructions based on number dieltiumber fields of degrek. The first four values are known

in [52,/32,/48, 18]. However, none of these works considergal be optimal.

capacity questions. We note that even equatiof {31) does not represent an
Let us now show how the construction in Proposifion 7.@bsolute limit for the rates that are achievable with lattic

when specialized to the single antenna case, is just thdastén codes and not even with algebraic lattices arising from rermb

method used to build lattice codes from number fields [48Elds, and does not mean that the performance of algebraic

A. Approaching capacity with number field codes
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TABLE | . N .
BEST KNOWN ROOT DISCRIMINANTS FOR TOTALLY CoMPLEx NumBer  CONStantc. As stated in the beginning of Sectibnl IV, then all

FIELDS K OF SMALL DEGREE2k. rates satisfying
4
k| Jdg| 72 R < logy(P) — log, <E> + log, ¢,
1| 1.732. . . . . .
are achievable in the complex Gaussian channel, with this
2| 3.289.. . - . .
3T 1622 family of lattices. The Hermite invariait(L;) now roughly
) 5.787“ describes the performance of the lattiEg and can be used
ol to estimate how close to the capacity a family of lattices can
5| 6.793. get. This relation is one of the key connections between the

theory of lattices and information theory [6] and has spdrke
a remarkable amount of research.

codes will always be bounded away from capacity. In fact, Let us now see how our results can be seen as natural
as seen in Corollarly_ 8.1, we are only interested in the nageneralizations of the relation between Hermite invaramd
malized product distance of the lattices under considarati capacity.
For example, instead of considering the image of the ring ofLet us consideRk-dimensional latticed. ¢ C* in £;, and
integersOx under the embedding, one can use an ideal ofthe form
this ring of integers (see [54, 49, 1]) or more generally any
lattices with good normalized product distance.

The Minkowski-Hlawka theorem provides a nonThen Ndp min(L) = infier o0 f2(z), is the normalized
constructive proof of the existence o2k-dimensional product distance of the lattick.
lattices L, ¢ C* having Hermite invarianta(L;) ~ % [6]. Assume that we have an infinite family of lattices
If it were possible to obtain alsbg (L) ~ % or equivalently L, € L; with normalized product distance satisfying
(Ndp.min(L1)) ~ (%)’W’ then all rates satisfying (Ndp min(Ln))¥* > ¢, for some positive constant As seen

before we have that all rates satisfying

fo(x1, 22, . 2k) = w122 - - |- (34)

2 4 1
_ = - — 4
R<En [IOgQ Pl } log, e 108 e R<E, [log2 r |h|2} — log, — +log, ¢
2

=By [lOg2P|h| } —2 (32) are accessible with this family of lattices with zero error
would be achievable with this family of lattices. HoweverProPability over t.he Rayleigh fast fading ch2anngl. .
we do not know if this is possible. The two bit gap to We denote withl, ;) the set of all2n°k-dimensional
Ey[log, P |h|*] in @2) would be exactly the same that idattices in the spaceé\l,.,;(C) with volume one. Given

obtained in the AWGN case when using the hard sphef&1; Xz, ..., Xx) € Myxkn(C), we consider the function

packing approach [6, Chapter 3]. Still this two bit gap is aot k
fundamental limit of the performance of lattice codes bkl f3(X1, Xo, ..., Xy) = H | det (X5)|.
an artifact of the suboptimal method to analyze the error. i=1
For L € Ly, we have
IX. GEOMETRY OF NUMBERS FOR FADING CHANNELS (L) = inf  f3(X).

. . . X€Ly,X#0
In the previous sections, we have shown that the normalized €L, X#

minimum determinant provides a design criterion to build If Lx C M, x,(C) is a family of lattices with the property
capacity-approaching lattice codes for block fading rpigti that §(Ly)**™ > ¢ then according to Remafk3.3, any rate
antenna channels. Let us now see how this approach fits iagdisfying

a more general context and can be regarded as a natural P e

generalization of the classical theory of lattices for Gaars R <En {logz det EHTH} +nlogy - +nlogyc
channels. Finally we show how the code design problems, both . .

in Gaussian and fading channels, can be seen as instance$ gfhievable with the lattices.

the same problem in the mathematical theory of geometry of /€ can now see that the normalized minimum determinant
numbers. and product distance can be regarded as generalizations of

Consider a latticd,  C* having fundamental parallelotopethe Hermite invariant which characterize the gap to capacit
achievable with a certain family of lattice codes.

of volume one and define a functigh : C¥ — R by
) ) ) A natural question is how close to capacity we can get with
fi@e, .o a) = o | + |ze]™ + - + [z (33) these methods by taking the best possible lattice sequences

The real numbei(L) — infoc . 440 f1(x) is then the Hermite The Hermite constantf{ (k) can now be defined as

invariant of the latticeL. Let us now denote witlC;, the set H(2k) = sup{h(L) | L € L1} (35)
of all 2k-dimensional lattices ifC* with volume one.

Suppose that we have an infinite family of lattides € L,
with Hermite invariants satisfyiné% > ¢, for some positive Ndp min(k) = sup{Ndp min(L) | L € L1 1)} (36)

In the same manner we can define
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and different channel models. It seems that given a fading chlann
d(k,n) =sup{o(L) | L € Ly k) }- (37) model, there exists a form whose absolute homogeneous

minima provide a lower bound for the achievable rate using
Each of these constants now represents how close to cap

hod K i | bound wi fce codes.
our methods can ta € us. Any a_symptonc ower bound WIth pomark 9.2:The definitions for the geometry of numbers
respect tok will immediately provide a lower bound for the

X o iven in this section were stated for lattices in the space
achievable rate. Just as well upper bounds .W'" give Upg%nxnk(@, while usually the definitions are given in the space
bounds for the rates that are approachable with this meth ™ This is however, just to keep our notation simple. The

The characterizations of achievable rates using latticeso spaceM,,»,x(C) can be identified with the spa@@?nzk and
have now been transformed into purely geometrical questiofe could have given the definitions also in the traditionairfo
about the existence of lattices with certain propertiese Tlysing this identification.
value of the Hermite constarif (&), for different values of
k, has been studied in mathematics for hundreds of years asgd
there exists an extensive literature on the topic. In padic “
good upper and lower bounds are available and it has beerin this work we proved the existence of lattice codes achiev-
proven that we can get quite close to Gaussian capacity willy constant gap to capacity in ergodic fading channelsikenl
this approach |6, Chapter 3]. the case of existence results based on random coding, our
In the case of the product distance, this problem has befrnite codes are always built from the same family of lattjces
considered in the context of algebraic number fields and soinespective of the SNR and even of the fading statistics.
upper bounds have been provided. As far as we know the bEistnce, using the minimum determinant as a design principle
lower bounds come from the existence results provided Bads to extremely robust codes. In particular divisiorehtg
number field constructions [30] and [1]. and number field codes have this robustness property.

The properties of(k, n) have been far less researched in the However, our codes still have a considerable gap to capacity
literature. Simple upper bounds can be derived from boundsd further research is needed. Let us now point out a few
for Hermite constants as pointed outlin/[33] and lower boundérections this research can take next.
are obtained from division algebra constructions as desdri  In the case of single user channels the clearest goal is
in this paper, but the mathematical literature doesn’t semto improve our methods and close the gap to capacity. We
offer any ready-made results for this problem. note that this gap depends on several factors. First oftall, t
However, all three questions can be seen as special cases ohbrmalized minimum determinant affects the value of the gap
problem of finding the minimum of a homogeneous form ove3econd, our bound for the error probability is based on spher
a lattice in the mathematical theory géometry of numbers packing and thus is suboptimal.

[35]. Let us now elaborate on the topic. Thus, the possible improvements to our construction are

Definition 9.1: A continuous functionf: M, xx,(C) — R two-fold. In the first place, one could try to find families of
is called a homogeneous form of degree> 0 if it satisfies lattices L,, . C M,, ,x(C) with larger normalized minimum
the relation determinant, for instance by replacing the centers in our

constructions with families of number fields having smaller
[FlaX)| = a]7|F(X)] (Vo € R, VX € Mnxin(C))- discriminants. One can also consider more general exaroples

DISCUSSION AND QUESTIONS FOR FURTHER RESEARCH

Let us consider the bodyS(F) = {X|X ¢ latticesthan those arising from orders in division algebfar
My ien(C),|F(X)| < 1}, and a2kn? dimensional latticel example ideals of orders, or in the case of number field codes,
with a fundamental parallelotope of volume one. ideals of the ring of algebraic integers. In the second place
We then define theomogeneous minime(F, L) of F with in this paper we have not considered the issue of shaping.
respect to the latticé by Improving the shaping properties of our lattices might léad
a better error probability bound.
A(F, L) = (inf{A| A > 0, dim(R(AS(F) N L)) > 1})7, Another approach is to relax our minimum determinant code

whereR(AS(F) N L) is the R-linear space generated by thede_sign cr@terion. Our codes are extremely robust and quite
elements iM\S(F) N L. This allows us to define thabsolute universal in the sense that they respond very well to any non
homogeneous minimum pathological fading realization. This universality is afuzse a

strength, but it could also lead to a situation where the sode

AMF) = sup A(F,L). are rather good for every channel, but not optimal for any.

Vol(L)=1 If we fix a channel model, it may be possible to weaken

We can now see that all of our form§, f. and f3 are the design principle. This might allow us to consider larger

homogeneous forms. For the Hermite invariant we have ensembles of lattices and possibly to close the gap to dgpaci

2, for the product distance = n, and for the normalized in this fixed channel model.

minimum determinantr = n2k. We can also easily see that Our work was about explicit code constructions in the spirit

the constants(35)[(86) and {37) are absolute homogeneotislassical sphere packinds [6]. However, it seems tham eve

minima of the corresponding forms. the existence of capacity achieving lattice codes in fading
These results suggest that there is a very general connectibannels is an open question (see Sedtioh I-A). In the case of

between information theory and geometry of numbers f&&WGN channel this question was solved only quite recently in
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[25] by assuming that the receiver and transmitter havesasccéJsing the mismatched eigenvalue bound [55, 20], we have

to a common source of randomness. One of the key elements " n

in the achievability result of_ [25] is the _I\/Iinkowski-HI_qwka | H,; X4 > Z/\m‘li,j - Z Aijlij.

theorem, that can be used to prove the existence of lattiths w = Jen—met1

certain properties. It is then a natural idea to generahi® t

approach by proving an analogue of the Minkowski—HIawkgonsequemly’

theorem for fading channels. It seems to us that this problem k n

is non-trivial. dy>a® min > N Nl >
In this paper we have considered block fading MIMO XeLn MOYiT o m, 41

we find that

channels, but we hope that the methods developed here can k n )
be applied also in a more general setting. Let us now sketch > a2nrkH H (Aijlig)™rF (39)
an outline for possible generalizations. i=1j=n—n,+1

The reduced Hermite invariant is a natural analogue of tr@psmg the NVD property of the code, we get

classical Hermite invariant for fading channels. This aptc
k n k

can likely be generalized to other fading channel modelsh su 9
as for example intersymbol interference channels. Given a HHZH = H |det X" > 1
fading channel we can ask what would be the group (or set) =1j=1 =1

G that would represent the action of the channel, and defiaerefore, we have the lower bound

the corresponding reduced Hermite invaridni. The next N N 1
uestion is then to find lattices that would maximize thisieal - r

g H H lij > (H H li,j) >

In the case of the block fading channel, the problem was made

i=1 j=n—n,+1 i=1 j=1

more accessible by Propositibn13.6, where we provedithat . )k
can be seen as the minimum of a certain homogeneous form. 1 " "
This line of thought suggests a general approach to turn the 2 (m Z Z lm‘)

chase for capacity into a problem in geometry of numbers for

different channel models. It also raises several questieos Pn k)
example we can ask which are the channel models where this a?(n —ny)

approlach can be applied and for which grotpshe reduced where we have used the arithmetic-geometric mean inegualit
Hermite invariant corresponds to some homogeneous form

Finally, the lattice codes proposed in this paper could ha?ged the power constraint* ”XH2 = o 2?21 lij < Phn.
o T . lacing the previous expression [n](39), we obtain
applications to other problems in information theory, sash placing previous exp lon ni(39), w I

>

i=1 j=1

coding for multiple access fading channels and for inforamat aZn kl—[{c I ok
theoretic security. a2 > mloSgmnonetl T
() ™
APPENDIX n—nr k
R N R T gty
A. Proof of Theorerh 417 = (a”)mr ( P ) nrkHdet(HzHi) o

i=1
With a similar approach as in the proof of Theorlem 4.1, we ,
consider the following upper bound: The second term ir_(38) can thus be upper bounded by

n

k o P n;:w
P, gﬁ»{ w2 > <d§>2} < P{1_[‘]“*(*’“”'}]3)ﬁ <401+ (73) (n—n) }
=1

) k Ny gy N PN—Tpm
a2 o)1 t (41 +¢))"n"P
SP{||W| . 1+€} —HP’{ ho_ 1+e} (38) _p{EE og det HH] <log = o
i=1 "

knn, 4knn,

The first term in equatiofi{38) tends to zero exponentiaky faBY Nypothesis the weak law of large numbefs](15) holds,

- L'k gt
whenk — oo since2|[W|? ~ x2(2knn,). We now focus € £ i1 logdet H;H] — p ask — oo. Thus, the error

on the second term in equation(38), and begin by ﬁnd"{ﬁobability will vanish provided that for sufficiently laeg,
a lower bound on the minimum distandg; in the received (4(1 + €))rrpn pr—nr

constellation. log @ (n —npyrn M

Foralli € {1,...,k}, let \;;, 7 = 1,...,n be the singular "
values ofH; H; with

_ cT¥ p N .
Recalling thatr? > =22 — | the condition can be rewritten as

27n Cp,

O=Xi1="""=Xin-n, < Ain—npt1 < < Ajp,

R < p+n.logP —n,logd(l+¢€)—nlognCr+
n log C, &

Lig>lig>- 2> 1. nk

andl; ; the singular values ok, X, with
+ (n —n,)log(n — n,)



Using Stirling’s approximation{13), for largke we have

log C), 1
08Tk nlogme — nlogn — — log 2mn’k [18]
nk 2nk
Asymptotically, we find that any rate
P C [19]

R < p+n, logm —nlog—L—i—(n—nr)log(n—nT)
is achievable. Since this is true for a&ll> 0, this concludes
the proof. O [20]
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