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On the Optimal Boolean Function for Prediction

under Quadratic Loss
Nir Weinberger,Student Member, IEEE,and Ofer Shayevitz,Senior Member, IEEE

Abstract

SupposeY n is obtained by observing a uniform Bernoulli random vectorXn through a binary symmetric

channel. Courtade and Kumar asked how large the mutual information betweenY n and a Boolean functionb(Xn)

could be, and conjectured that the maximum is attained by a dictator function. An equivalent formulation of this

conjecture is that dictator minimizes the prediction cost in a sequential prediction ofY n under logarithmic loss,

given b(Xn). In this paper, we study the question of minimizing the sequential prediction cost under a different

(proper) loss function – thequadratic loss. In the noiseless case, we show that majority asymptotically minimizes

this prediction cost among all Boolean functions. We further show that for weak noise, majority is better than

dictator, and that for strong noise dictator outperforms majority. We conjecture that for quadratic loss, there is no

single sequence of Boolean functions that is simultaneously (asymptotically) optimal at all noise levels.

Index Terms

Boolean functions, sequential prediction, logarithmic loss function, quadratic loss function, Pinsker’s inequality.

I. INTRODUCTION AND PROBLEM STATEMENT

Let Xn ∈ {0, 1}n be a uniform Bernoulli random vector,1 and letY n be the result of passingXn through a

memoryless binary symmetric channel (BSC) with crossover probability α ∈ [0, 12 ]. Recently, Courtade and Kumar

conjectured the following:

Conjecture 1 ([1]). For any Boolean functionb(Xn) : {0, 1}n → {0, 1}

I(b(Xn);Y n) = H(Y n)−H(Y n|b(Xn)) ≤ 1− hb(α) (1)

wherehb(α) := −α log α− (1− α) log(1− α) is the binary entropy function.2

The work of the first author was supported by the Gutwirth scholarship for Ph.D. students of the Technion, Israel Institute of Technology.
The work of the second author was supported by an ERC grant no.639573, and an ISF grant no. 1367/14. The material in this paper was
presented in part at the IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, July 2016.

1As customary, upper case letters will denote random variables/vectors, and their lower case counterparts will denote specific values that
they take.

2Throughout, the logarithmlog(t) is on base2, while ln(t) is the natural logarithm.
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Since thedictator function Dict(xn) := x1 (or any other coordinate) achieves this upper bound with equality,

then loosely stated, Conjecture 1 claims that dictator is the most “informative” one-bit quantization ofXn in terms

of reducing the entropy ofY n. Despite considerable effort in several directions (e.g. [1], [2], [3], [4]), Conjecture

1 remains generally unsettled. Recently, it was shown in [5]that Conjecture 1 holds for very noisy channels, to

wit for all α ≥ 1
2 − α∗, for some absolute constantα∗ > 0.

From a different perspective, definingQk := P[Yk = 1|Y k−1, b(Xn)], and using the chain rule, we can write

H(Y n|b(Xn)) =

n
∑

k=1

H(Yk|Y k−1, b(Xn))

=

n
∑

k=1

E [ℓlog(Yk, Qk)] (2)

whereℓlog(b, q) := − log[1− q − b(1 − 2q)] is thebinary logarithmic lossfunction.3 Thus, the most informative

Boolean functionb(xn) can also be interpreted as the one that minimizes the (expected)sequential prediction cost

incurred when predicting the sequence{Yk} from its past, under logarithmic loss, and givenb(Xn). It is important

to note that the logarithmic loss function isproper, i.e., corresponds to aproper scoring rule[6].4 This means that

using the true conditional distributionQk as the predictor forYk is guaranteed to minimize the expected prediction

cost at timek.

Given the above interpretation, it seems natural to ask the same question for other loss functions. Namely, what

is the minimal sequential prediction cost of{Yk} incurred under a general loss functionℓ : {0, 1} × [0, 1] → R+,

L(Y n|b(Xn)) :=

n
∑

k=1

E [ℓ(Yk, Qk)] , (3)

and what is the associated optimal Boolean functionb(xn)? Specifically, it makes sense to consider proper loss

functions, as for such functions the optimal prediction strategy is “honest”. The family of proper loss functions

contains many members besides the logarithmic loss; in fact, the exact characterization of this family is well

known [6]. In this work we focus on another prominent member of this family, thequadratic loss function. This

loss function is simply the quadratic distance between the expected guess and the outcome. In the binary case, it

is given byℓquad(b, q) := (b− q)2. Following that, we can define thesequential mean squared error(SMSE) to be

the (expected) sequential prediction cost ofY n incurred under quadratic loss givenb(Xn), namely

M(Y n|b(Xn)) :=

n
∑

k=1

E [ℓquad(Yk, Qk)]

=

n
∑

k=1

E [Qk(1−Qk)]

3The first argument ofℓlog(b, q) represents the outcome of the next bit, and the second argument is the probability assignment for the bit
being1.

4Scoring rules are typically defined in the literature as a quantity to maximize, hence are the negative of cost functions.
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:=

n
∑

k=1

M(Yk|Y k−1, b(Xn)). (4)

In what follows, we show that forα = 0 (noiseless channel) the SMSE is asymptotically minimized by the

majority function.5 We further show that majority is better than dictator for small α. This might tempt one to

conjecture that majority is always asymptotically optimalfor SMSE. However, we show that dictator is in fact

better than majority forα close to 1
2 . Intuitively, it would seem that dictator is in some sense the function “least

affected” by noise, and hence while majority is better at weak noise, dictator “catches up” with it as the noise

increases. This intuition sits well Conjecture 1, since forlogarithmic loss all (balanced) functions are equally good

at α = 0. We conjecture that the optimal function under quadratic loss must be close to majority forα ≈ 0,

and close to dictator forα ≈ 1
2 . The validity of this conjecture would imply in particular that, in contrast to the

common belief in the logarithmic loss case, for quadratic loss there is no single sequence of Boolean functions that

is simultaneously (asymptotically) optimal at all noise levels.

II. RESULTS

Let WH(x
m
k ) be the Hamming weight ofxmk . We denote the majority function byMaj(xn), which is equal to1

wheneverWH(x
n) > n

2 , and0 wheneverWH(x
n) < n

2 . Whenn is odd this definition is unambiguous, but when

n is even, the values ofMaj(xn) whenWH(x
n) = n

2 are not defined, and any arbitrary choice of assignment of

values toMaj(xn) is proper for our needs.

In the noiseless case (α = 0), the assertion in Conjecture 1 for the logarithmic loss is trivial, and equality is

obtained for anybalancedfunction (P[b(Xn) = 1] = 1
2 ), and specifically, for the dictator function. By contrast,for

quadratic loss, finding the optimal function seems far from trivial even forα = 0. In the next theorem we provide a

lower bound on the noiseless SMSE for any Boolean function, and show that the majority function asymptotically

achieves it.

Theorem 2 (Noiseless case). For any Boolean functionb(Xn)

M(Xn|b(Xn)) ≥ n− 2 ln 2

4
, (5)

and for majority

M(Xn|Maj(Xn)) ≤ n− 2 ln 2

4
+ o(1). (6)

Clearly, for dictator

M(Xn|Dict(Xn)) =
n− 1

4
(7)

which is strictly worse than the SMSE of the majority function. In fact, it is easy to see that dictator in fact

maximizes the SMSE.

5In fact, for balanced functions, it is trivially maximized by the dictator.
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M(Xn|Maj(Xn)) minb(·)M(Xn|b(Xn)) Excess SMSE of majority Lower bound (5)

n = 3 0.4792 0.4792 0 0.4034

n = 5 0.9676 0.9686 0.0010 0.9034

n = 7 1.4552 1.4618 0.0066 1.4034

n = 9 1.9483 1.9569 0.0086 1.9034

n = 11 2.4435 2.4532 0.0097 2.4034

Table I
SMSEOF MAJORITY AND SMSEOF THE OPTIMAL FUNCTION, AND (5).

The minimal SMSE for moderate values ofn, can be found efficiently. The idea is to trace, for eachn, the

optimal functions{b(n)w }w∈{0,1,...,2n} under a weight constraint

b(n)w := argmin
b(·): |{xn: b(xn)=1}|=w

M(Xn|b(Xn)). (8)

The optimal functionb(n) is then given by optimizing overw, i.e.,

b(n) := argmin
w∈{0,1,...,2n}

M(Xn|b(n)w (Xn)). (9)

Now, assuming that{b(n)w } were found for all input of size less thann, b(n+1)
w can be found by partitioning it

into two functions of input sizen - one pertaining tox1 = 0 and the other tox1 = 1. Indeed, observing (4)

for any given functionb(·), it can be noted that the SMSE of the first time point, i.e.,M(Xk|Xk−1, b(Xn)),

depends only on the weightsw0 = |{xn2 : b(0, xn2 ) = 1}| andw1 = |{xn2 : b(1, xn2 ) = 1}|. Further, for any given

(w0, w1) : w = w0 + w1, the SMSE of all other time points, i.e.
∑n

k=2M(Xk|Xk−1, b(Xn)), is minimized by

setting

b(0, xn+1
2 ) = b(n)w0

(xn+1
2 ) (10)

and

b(1, xn+1
2 ) = b(n)w1

(xn+1
2 ). (11)

Hence, given{b(n)w } for all n, we can findb(n+1)
w by simply going over all possible allocation of weights(w0, w1) :

w = w0 + w1. The output of such an algorithm is shown in Table I for moderate input sizes. It can be seen that

majority is optimal forn = 3, but not forn = 5, 7, 9, 11. However, Theorem 2 states that the difference tends to

0, asn → ∞. For n = 5, the optimal function disagrees with majority on4 inputs.

Next, we consider the noisy caseα ∈ (0, 12 ], and derive a simple lower bound on the noisy SMSE for any

Boolean function. Then, we provide an upper bound and a lowerbound for the SMSE of majority.6

6Eqs. (5) and (6) of Theorem 2 can be obtained as special cases of (12) and (13) of Theorem 3, by settingα = 0, but since the proof of
the noisy case is based on Theorem 2, we have separated the results on the noiseless and noisy cases to two different theorems.
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Theorem 3 (Noisy case). For any Boolean functionb(Xn)

M(Y n|b(Xn)) ≥ n− 2 ln 2 · (1− 2α)2

4
. (12)

Furthermore, for majority

M(Y n|Maj(Xn)) ≤ n− 2 ln 2 · (1− 2α)2 · [1− µ(α)]

4
+ o(1), (13)

where

µ(α) := hb

(

arccos(1− 2α)

π

)

, (14)

and

M(Y n|Maj(Xn)) ≥
n− 1

2πα(1−α) (1− 2α)2

4
−O

(

(1− 2α)4
)

+ o(1). (15)

Since a straightforward derivation shows that for the dictator function,

M(Y n|Dict(Xn)) =
n− (1− 2α)2

4
, (16)

the above theorem implies that majority is asymptotically better than dictator for allα ∈ [0, α] whereα ≈ 0.0057,

but that on the other hand, there existsα < 1
2 such that dictator is better than majority for allα ∈ [α, 12).

Remark4. To improve the SMSE, unbalanced majority functionsMajq(·) may be proposed, which assign1 to a set

of q ·2n vectors of maximal Hamming weight,q ∈ (0, 1). In the noiseless case, such functions cannot asymptotically

improve the SMSE, since the lower bound is achieved by ordinary majority functions (q = 1
2 ). Furthermore, it can

be shown that they offer no improvement even in the noisy case. Indeed, the noiseless SMSE of such functions is

M(Xn|Maj(Xn)) ≤ n− 2 ln 2 · hb(q)
4

+ o(1), (17)

which is minimized forq = 1
2 . In addition, the effect of the noise of the SMSE is related toboundary size between

vectors withMajq(x
n) = 1 and vectors withMajq(x

n) = 0. For any fixedq ∈ (0, 1), the value of1 will be assigned

by Majq(·) to vectors of Hamming weightn2 −O(n
n/2+ρ) ≤ n

2 ≤ n
2 +O(n

n/2+ρ), which is asymptotically the same

as for ordinary majority withq = 1
2 . So, the boundary size ofMajq(·) is roughly as the boundary size ofMaj(·),

and the effect of the noise on the SMSE is asymptotically the same for allq ∈ (0, 1). Since the noiseless SMSE

for q = 1
2 is minimal, this seems to be the optimal choice even in the presence of noise(α ∈ (0, 12)).

The proofs of Theorems 2 and 3 appear in Sections III and IV, respectively, and will shortly outlined. Throughout

the proofs, we will only consider positive sequences ofn and so Landau notations should be interpreted with a

positive sign. For example, ifan = Θ(n) then an is a positive sequence, increasing approximately linearly. In

addition, we will denote thebinary divergenceby db(α||β) := α log α
β + (1 − α) log (1−α)

(1−β) , and the support of a

random vectorXn by SXn := {xn : P(Xn = xn) > 0}. For brevity, we ignore integer constraints throughout the

paper, as they do no affect the results.
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III. PROOF OF THENOISELESSCASE THEOREM

In this section, we consider the noiseless caseα = 0, namely whereXn = Y n with probability 1, and prove

Theorem 2. The outline of the proof is as follows. To prove thelower bound (5) on the SMSE, we use the

binary Pinsker inequality to upper bound the quadratic lossusing the binary divergence. To prove that majority

asymptotically achieves this lower bound, we first note thatsinceMaj(Xn) is a balanced function, its value does

not help predictX1 at all, and similarly, the gain in SMSE from knowingMaj(Xn) at the first few time points

is negligible. In the same spirit, at the last time point, thevalue of Maj(Xn) is only useful if WH(x
n−1) = n

2

(assuming oddn), which occurs with negligible probability, and similarly, the gain at the last few time points due to

value ofMaj(Xn) is also negligible. Hence, the gain in prediction cost from knowingMaj(Xn) is mainly obtained

in the “middle” time points. However, even at those time points, the gain is moderate and the probability of the

next bit, given the past andMaj(Xn) is still close to 1
2 , with high probability. So, as Pinsker’s inequality is tight

around1
2 , the quadratic loss function can be replaced with a functionof the binary divergence. In turn, the binary

divergence is related to the entropy, conditioned onMaj(Xn). The entropy is simpler to handle, since conditioned

onMaj(Xn) the reduction in the entropy ofXn is 1 bit, and this leads directly to (6). It should be noted that while

the above intuition is fairly simple, a careful analysis is required for the proof, since a constant deviation2 ln 2
4 from

n
4 is sought, which does not depend onn. We begin with proving the lower bound (5) using Pinsker’s inequality.

Proof of (5): Suppose thatP[b(Xn) = 1] = q, and letPk := P[Xk = 1|Xk−1, b(Xn) = 1]. Conditioning on

b(Xn) = 1, Xn is distributed uniformly over a set of sizeq · 2n and thus

M(Xn|b(Xn) = 1) =

n
∑

k=1

E [Pk(1− Pk)]

=
n

4
−

n
∑

k=1

E

[

(

Pk −
1

2

)2
]

(a)

≥ n

4
− 2 ln 2

4

n
∑

k=1

E [db(Pk||1/2)]

=
n

4
− 2 ln 2

4

n
∑

k=1

E [1− hb(Pk)]

=
n

4
− 2 ln 2

4
[n−H(Xn|b(Xn) = 1)]

=
n

4
+

2 ln 2 log(q)

4
(18)

where(a) is using a binary version of Pinsker’s inequality [7, p. 370,Eq. (11.139)]

db(α||β) ≥
4

2 ln 2
(α− β)2 (19)

(where equality is achieved iffα = β). Deriving a similar bound for the eventb(Xn) = 0, we obtain (5) from

M(Xn|b(Xn)) = q ·M(Xn|b(Xn) = 1) + (1 − q) ·M(Xn|b(Xn) = 0)
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≥ n

4
− 2 ln 2 · hb(q)

4

≥ n

4
− 2 ln 2

4
. (20)

Proving the asymptotic achievability of the lower bound (5)by the majority function is more intricate, and is

based on the asymptotic achievability of equality in Pinsker’s inequality (19). We will need several definitions and

lemmas.

Definition 5. A vector vn ∈ {0, 1}n is termedt-majority vectorif WH(v
n) ≥ tn, wheret ∈ [0, 1] is referred to as

the threshold. A random vectorV n will be termedt-majority random vectorif it is uniformly distributed over all

t-majority vectors of lengthn. Let ζn(t) be the minimal integer larger or equal totn. A random vectorV n will

be termedpseudot-majority random vectorif it is uniformly distributed over allt-majority vectors of lengthn,

except possibly for some setDn, such thatWH(v
n) = ζn(t) for all vn ∈ Dn, and there existsvn ∈ SV n such that

WH(v
n) = ζn(t). For brevity, we will sometime omit the parametert when t = 1

2 .

The first lemma provides an approximation for the marginal distributions of at-majority random vector.

Lemma 6. Let η ∈ [0, 12) be given. Then, ifV n is a pseudot-majority random vector,

max

[

1

2
, t

]

≤ P[Vk = 1] ≤ max

[

1

2
, t

]

+Oη

(

1

n1/2−η

)

(21)

for all k ∈ [n].

Proof: See Appendix A.

Before we continue, we shortly comment on notation conventions. There is obviously a difference between a

majority random vector of lengthk, and the firstk coordinates of a majority random vector of lengthn, when

k < n. Nonetheless, to avoid double indexing, we will assume thatn is large enough but fixed, and the indices

of V n will denote the corresponding components, e.g.V k+m
k are the components(Vk, . . . , Vk+m) of the majority

random vectorV n.

The following lemma shows that ifmn increases slowly enough, then the entropy loss of1 bit of a majority

random vectorV n, compared to the entropy of a uniform binary i.i.d. random vector, is mainly due to the entropy

of the middle part of the vectorV n−mn
mn

. In other words, the conditional entropies of the beginningand end parts

are close to their maximal values, given by their length.

Lemma 7. Let ρ ∈ (0, 14 ) andmn = O(n
1/4−ρ). Then, for a majority random vectorV n

H(V n−mn

mn+1 ) ≤ n− 1− 2mn + o(1). (22)

Proof: See Appendix A.

The following corollary is a weakening of lemma 7.
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Corollary 8. Let ρ ∈ (0, 14) andmn = O(n
1/4−ρ). Then, for a majority random vectorV n

H(V n−mn

1 ) ≤ n− 1−mn + o(1). (23)

Now, consider a time indexk which is sufficiently far from the last indexn. In the next lemma, we bound the

probability that at timek, the number of ones in the vector is still significantly less than the minimal weightk2 of

vectors in the support of a majority random vector of lengthk.

Lemma 9. Let mn be an increasing positive sequence, and letρ ∈ (0, 1) be given. Then, for all majority random

vectorsV n with sufficiently largen,

P

[

WH(V
k
1 ) ≤

k − 1

2
− (n− k + 1)

1/2+ρ

]

≤ 2−Ω(m2ρ
n ), (24)

for all k ∈ [n−mn].

Proof: See Appendix A.

We are now ready to prove that majority functions are asymptotically optimal.

Proof of (6): Let ρ ∈ (0, 1/8) be given, and definemn := n
1/4−ρ. Let us defineV n as the random vector

distributed asXn conditioned onMaj(Xn) = 1. Clearly,V n is a majority random vector. For any givenk ∈ [n−mn]

let us define the events

Ak :=

{

WH(V
k
1 ) ≥

k − 1

2
− (n− k + 1)

1/2+ρ

}

=
{

WH(V
k
1 ) ≥

n

2
− rk + 1

}

(25)

whererk := (n−k+1)
2 + (n− k + 1)

1/2+ρ. Now, lettingPk := P[Vk = 1|V k−1] we have

M(Xn|Maj(Xn) = 1) =

n
∑

k=1

E [Pk(1− Pk)]

=
n

4
−

n
∑

k=1

E

[

(

Pk −
1

2

)2
]

≤ n

4
−

n−mn
∑

k=1

E

[

(

Pk −
1

2

)2
]

≤ n

4
−

n−mn
∑

k=1

∑

vk−1∈Ak−1

P

[

V k−1 = vk−1
]

E

[

(

Pk −
1

2

)2

|V k−1 = vk−1

]

. (26)

Now, let vk−1 ∈ Ak−1. Conditioning onV k−1 = vk−1, we have thatV n
k is a t-majority random vector of length

n− k + 1 ≥ mn, and its thresholdt is less than

t ≤ rk
n− k + 1

=
1

2
+

1

(n− k + 1)1/2−ρ

≤ 1

2
+

1

m
1/2−ρ
n

. (27)
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So, assuming thatn is large enough, Lemma 6 (withη < ρ) implies that conditioned on the eventV k−1 = vk−1

with vk−1 ∈ Ak

1

2
≤ Pk ≤ 1

2
+

1

m
1/2−ρ
n

+
1

m
1/2−η
n

≤ 1

2
+Oη

(

1

n1/8−ρ

)

, (28)

for all k ∈ [n−mn]. Consequently, as Pinsker’s inequality is tight around1
2 ,

(

Pk −
1

2

)2

≥ [1− o(1)]
ln 2

2
db(Pk||1/2) (29)

and so

M(Xn|Maj(Xn) = 1) ≤ n

4
− 2 ln 2

4
[1− o(1)]×

n−mn
∑

k=1

∑

vk−1∈Ak−1

P

[

V k−1 = vk−1
]

E

[

db(Pk||1/2)|V k−1 = vk−1
]

. (30)

Denotingτk := P
[

V k 6∈ Ak

]

, we have

E [db(Pk||1/2)] =
∑

vk−1∈Ak−1

P

[

V k−1 = vk−1
]

E

[

db(Pk||1/2)|V k−1 = vk−1
]

+
∑

vk−1 6∈Ak−1

P

[

V k−1 = vk−1
]

E

[

db(Pk||1/2)|V k−1 = vk−1
]

≤
∑

vk−1∈Ak−1

P

[

V k−1 = vk−1
]

E

[

db(Pk||1/2)|V k−1 = vk−1
]

+ τk−1, (31)

becausedb(Pk||1/2) = 1− hb(Pk) ≤ 1. Hence,

M(Xn|Maj(Xn) = 1) ≤ n

4
− 2 ln 2

4
[1− o(1)]

n−mn
∑

k=1

{E [db(Pk||1/2)]− τk−1}

(a)

≤ n

4
− 2 ln 2

4
[1− o(1)]

[

n−mn −H(V n−mn

1 )
]

+ [1− o(1)]

n−mn
∑

k=1

2−cm2ρ
n

(b)

≤ n

4
− [1− o(1)]

2 ln 2

4
+ o(1) + n2−cm2ρ

n

=
n

4
− 2 ln 2

4
+ o(1), (32)

where(a) is using the chain rule,db(Pk||1/2) = 1 − hb(Pk), and since from Lemma 9, for somec > 0 we have

τk ≤ 2−cm2ρ
n for all k ∈ [n−mn], and(b) is using Corollary 8.

Finally, from symmetry, conditioning onMaj(Xn) = 0 we have

M(Xn|Maj(Xn) = 0) ≤ n

4
− 2 ln 2

4
+ o(1) (33)

and so (6) is obtained by averaging overMaj(Xn) (as in (20)).
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IV. PROOF OF THENOISY CASE THEOREM

In this section, we consider the noisy case, and prove Theorem 3. The outline of the proof is as follows. The

lower bound of (12) is based on the the result of the noiselesscase (5), while taking into account that a noisy bit

Yk is to be predicted rather thanXk. To prove (13) we use the noiseless SMSE of majority (6), and quantify the

loss in the SMSE conditioned on majority, due to the fact thatnoisy past bitsY k−1 are observed, rather than the

noiselessXk−1. As in the noiseless case, the “middle” time points contain most of the loss. In addition, we use a

bound onH(Y n|Maj(Xn)) based on thestability of majority. Finally, to prove (15) we use a different asymptotic

lower bound onH(Maj(Xn)|Y n), which is based on the Gaussian approximation of a binomial random variable,

resulting from the Berry-Essen central limit theorem. We then apply Pinsker’s inequality, as in the noiseless case,

to bound the SMSE via that entropy.

To prove (12) begin with the next lemma, which states a bound on SMSE of a channel output in terms of the

input’s SMSE, for any input distribution.

Lemma 10. For V ∼ Bern(β), Z ∼ Bern(α) independent ofV , andW = V + Z (modulo-2 sum),

M(W ) = α(1− α) + (1− 2α)2 ·M(V ). (34)

Proof: See Appendix A.

Lemma 11. Let V n ∈ {0, 1}n be a random vector, andW n be the output of a BSC with crossoverα fed byV n,

i.e. W n = V n + Zn, whereZn ∼ Bern(α), independent ofV n. Then,

M(W n) ≥ α(1 − α) · n+ (1− 2α)2 ·M(V n) (35)

with equality ifV n is a memoryless random vector.

Proof: See Appendix A.

Using the above, we can prove (12).

Proof of (12): Consider any Boolean functionb(Xn) and suppose thatP [b(Xn) = 1] = q. Then,

M(Y n|b(Xn))
(a)

≥ α(1− α) · n+ (1− 2α)2 ·M(Xn|b(Xn))

= α(1 − α) · n+ q(1− 2α)2 ·M(Xn|b(Xn) = 1) + (1− q)(1 − 2α)2 ·M(Xn|b(Xn) = 0)

(b)

≥ α(1 − α) · n+ (1− 2α)2 · (n− 2 ln 2)

4

≥ n− (1− 2α)2 · 2 ln 2
4

, (36)

where(a) follows from Lemma 11, and(b) follows from (5).

To prove (13), we analyze, in the next two lemmas, the SMSE of amajority random vectorV n, and show that

the quadratic loss in the beginning and end of the vector is close to its maximal value of14 per bit.
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Lemma 12. Let mn = O(n1−ρ) for someρ ∈ (0, 1). Then, for a majority random vectorV n

M(V mn

1 ) =

mn
∑

k=1

M(Vk|V k−1
1 ) ≥ mn

4
− o(1). (37)

Proof: See Appendix A.

Lemma 13. Let ρ ∈ (0, 18) andmn = O(n
1/4−ρ). Then, for a majority random vectorV n

n
∑

k=n−mn+1

M(Vk|V k−1
1 ) ≥ mn

4
− o(1). (38)

Proof: See Appendix A.

We also need the following bound on the conditional entropy of the output, given a value of the majority of the

input.

Lemma 14. Let µ(·) be as defined in (14). Then,

H(Y n|Maj(Xn) = 1) ≤ n− 1 + µ(α) + o(1). (39)

Proof: See Appendix A.

We can now prove (13).

Proof of (13): In (36), it may be observed that due to (6), inequality(b) is in fact an asymptotic equality, up

to ano(1) term. So, it remains to bound the loss in the inequality(a) of (36), which we denote byΦ. Let us also

denotemn = n
1/4−ρ for some givenρ ∈ (0, 14). Then, due to symmetry of the majority function, we may condition

on the eventMaj(Xn) = 1, and the loss of inequality(a) of (36) is

Φ := M(Y n|Maj(Xn) = 1)− α(1 − α) · n− (1− 2α)2 ·M(Xn|Maj(Xn) = 1)

=

n
∑

k=1

M(Yk|Y k−1,Maj(Xn) = 1)− α(1 − α) · n− (1− 2α)2 ·
n
∑

k=1

M(Xk|Xk−1,Maj(Xn) = 1)

(a)
= (1− 2α)2 ·

{

n
∑

k=1

M(Xk|Y k−1,Maj(Xn) = 1)−M(Xk|Xk−1,Maj(Xn) = 1)

}

, (40)

where(a) is using a derivation similar to (79).

First, using Lemma 12

mn
∑

k=1

M(Xk|Y k−1,Maj(Xn) = 1)−M(Xk|Xk−1,Maj(Xn) = 1)

≤ mn

4
−

mn
∑

k=1

M(Xk|Xk−1,Maj(Xn) = 1)

≤ o(1), (41)

and similarly, using Lemma 13
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n
∑

k=mn+1

M(Xk|Y k−1,Maj(Xn) = 1)−M(Xk|Xk−1,Maj(Xn) = 1)

≤ mn

4
−

n
∑

k=mn+1

M(Xk|Xk−1,Maj(Xn) = 1)

≤ o(1). (42)

Then, from (5) of Theorem 2, and the symmetry of conditioningMaj(Xn) = 0 andMaj(Xn) = 1, we have

n
∑

k=1

M(Xk|Xk−1,Maj(Xn) = 1) ≥ n− 2 ln(2)

4
, (43)

and

n−mn
∑

k=mn+1

M(Xk|Xk−1,Maj(Xn) = 1)

=

n
∑

k=1

M(Xk|Xk−1,Maj(Xn) = 1)−
mn
∑

k=1

M(Xk|Xk−1,Maj(Xn) = 1)

−
n
∑

k=n−mn+1

M(Xk|Xk−1,Maj(Xn) = 1)

≥
n
∑

k=1

M(Xk|Xk−1,Maj(Xn) = 1)− mn

4
− mn

4

≥ n− 2mn − 2 ln(2)

4
. (44)

So it remains to upper bound the first term in the sum of (40), viz.

n−mn
∑

k=mn+1

M(Xk|Y k−1,Maj(Xn) = 1). (45)

We follow the outline of the proof of (6) from Theorem 2. Let usdenote the random variablesPk(X
k−1) :=

P(Xk = 1|Xk−1,Maj(Xn) = 1), andRk(Y
k−1) := P(Xk = 1|Y k−1,Maj(Xn) = 1), where their arguments will

be sometimes omitted for brevity. In what follows, we will prove the existence of setsBk ⊂ {0, 1}k such that

υk := P
[

Y k 6∈ Bk

]

≤ 2−
c

2
m2ρ

n for somec > 0 and for allk ∈ {mn + 1, . . . , n−mn}, and

1

2
≤ Rk(y

k−1) ≤ 1

2
+Oη

(

1

n1/8−ρ

)

(46)

for all yk−1 ∈ Bk−1. For yk−1 ∈ Bk−1 Pinsker’s inequality is tight and so

(

Rk(y
k−1)− 1

2

)2

≥ [1− o(1)]
ln 2

2
db(Rk(y

k−1)||1/2). (47)
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Hence,

n−mn
∑

k=mn+1

M(Xk|Y k−1,Maj(Xn) = 1)

=

n−mn
∑

k=mn+1

E [Rk(1−Rk)]

=
n− 2mn

4
−

n−mn
∑

k=mn+1

E

[

(

Rk −
1

2

)2
]

≤ n− 2mn

4
−

n−mn
∑

k=mn+1

∑

yk−1
1 ∈Bk−1

P

[

Y k−1 = yk−1
1

]

E

[

(

Rk −
1

2

)2

|Y k−1 = yk−1
1

]

≤ n− 2mn

4
− 2 ln(2)

4
[1− o(1)]

n−mn
∑

k=mn+1

∑

yk−1
1 ∈Bk−1

P

[

Y k−1 = yk−1
1

]

E

[

db(Rk||1/2)|Y k−1 = yk−1
1

]

(a)

≤ n− 2mn

4
− 2 ln(2)

4
[1− o(1)]

n−mn
∑

k=mn+1

{E [db(Rk||1/2)]− υk}

(b)

≤ n− 2mn

4
− 2 ln(2)

4
[1− o(1)]

n−mn
∑

k=mn+1

E [db(Rk||1/2)] + o(1)

=
n− 2mn

4
− 2 ln(2)

4
[1− o(1)]

[

n− 2mn −
n−mn
∑

k=mn+1

H(Xk|Y k−1,Maj(Xn) = 1)

]

+ o(1)

(c)

≤ n− 2mn

4
− 2 ln(2)

4
[1− o(1)]

[

n− 2mn −
n−mn
∑

k=mn+1

H(Yk|Y k−1,Maj(Xn) = 1)

]

+ o(1)

=
n− 2mn

4
− 2 ln(2)

4
[1− o(1)]

[

n− 2mn −H(Y n−mn

mn+1 |Y mn ,Maj(Xn) = 1)
]

+ o(1)

(d)

≤ n− 2mn

4
− 2 ln(2)

4
[1− o(1)] [n−H(Y n|Maj(Xn) = 1)] + o(1)

(e)

≤ n− 2mn

4
− 2 ln(2)

4
[1 + µ(α)] + o(1), (48)

(a) is since, just as in (31),

E [db(Rk||1/2)] ≤
∑

yk−1
1 ∈Bk−1

P

[

Y k−1 = yk−1
1

]

E

[

db(Rk||1/2)|Y k−1 = yk−1
1

]

+ υk, (49)

(b) is sinceυk ≤ 2−
c

2
m2ρ

n , (c) is using

H(Yk|Y k−1,Maj(Xn) = 1) = H(Xk + Zk|Y k−1,Maj(Xn) = 1)

≥ H(Xk + Zk|Y k−1, Zk,Maj(Xn) = 1)

= H(Xk|Y k−1, Zk,Maj(Xn) = 1)

= H(Xk|Y k−1,Maj(Xn) = 1), (50)
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where the last equality is sinceZk is independent of(Xk, Y
k−1). Transition(d) in (48) follows from

H(Y n
n−mm+1|Y n−mn

1 ,Maj(Xn) = 1)
(i)

≥ H(Y n
n−mm+1|Xn−mn

1 ,Maj(Xn) = 1)

= H(Xn
n−mm+1 + Zn

n−mm+1|Xn−mn

1 ,Maj(Xn) = 1)

≥ H(Xn
n−mm+1 + Zn

n−mm+1|Xn−mn

1 , Zn
n−mm+1,Maj(Xn) = 1)

= H(Xn
n−mm+1|Xn−mn

1 ,Maj(Xn) = 1)

(ii)

≥ mn − o(1), (51)

where here(i) follows from the data processing theorem and the fact thatY n−mn

1 −Xn−mn

1 − Y n
n−mn+1, and(ii)

follows from (76) (proof of Lemma 7), and using a similar bound to H(Y mn

1 |Y n
mn+1,Maj(Xn) = 1). Transition

(e) in (48) follows from Lemma 14. To conclude, combining (40),(41), (42), (44) and (48) implies that

Φ ≤ (1− 2α)2 · 2 ln 2
4

µ(α) + o(1), (52)

which, together with (36) implies (13).

To complete the proof, it remains to assert the existence of the setsBk. To this end, recall that in the proof of

(6) in Section III, we have defined the sets

Ak :=

{

WH(V
k
1 ) ≥

k − 1

2
− (n− k + 1)

1/2+ρ

}

(53)

(cf. (25)) and showed that12 ≤ Pk(x
k−1) ≤ 1

2 + O (1/n1/8−ρ) for all xk−1 ∈ Ak−1. In addition, Lemma 9 implied

that there that there existsc > 0 such thatP
[

Xk 6∈ Ak

]

≤ 2−cm2ρ
n for all k ∈ {mn + 1, . . . , n −mn}. Now, note

that

Rk(Y
k−1) = P(Xk = 1|Y k−1,Maj(Xn) = 1)

=
∑

xk−1

P

(

Xk−1 = xk−1|Y k−1,Maj(Xn) = 1
)

· P
(

Xk = 1|Xk−1 = xk−1, Y k−1,Maj(Xn) = 1
)

=
∑

xk−1

P

(

Xk−1 = xk−1|Y k−1,Maj(Xn) = 1
)

· Pk(x
k−1), (54)

so Rk(Y
k−1) is just an averaging ofPk(x

k−1). SincePk(x
k−1) ≥ 1

2 for all xk−1, this immediately implies

Rk(y
k−1) ≥ 1

2 . On the other hand

Rk(Y
k−1) =

∑

xk−1∈Ak−1

P

(

Xk−1 = xk−1|Y k−1,Maj(Xn) = 1
)

· Pk(x
k−1)

+
∑

xk−1 6∈Ak−1

P

(

Xk−1 = xk−1|Y k−1,Maj(Xn) = 1
)

· Pk(x
k−1)

≤ 1

2
+O

(

1

n1/8−ρ

)

+ P

(

Xk−1 6∈ Ak−1|Y k−1,Maj(Xn) = 1
)

, (55)
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where we have bounded the first term usingPk(x
k−1) ≤ 1

2+O (1/n1/8−ρ) for all xk−1 ∈ Ak−1, and we have bounded

the second term simply by usingPk(x
k−1) ≤ 1. Let us inspect the random variableP[Xk−1 6∈ Ak−1|Y k−1,Maj(Xn) =

1]. We know that its expected value satisfies

E

[

P

(

Xk−1 6∈ Ak−1|Y k−1,Maj(Xn) = 1
)]

= P

(

Xk−1 6∈ Ak−1|Maj(Xn) = 1
)

≤ 2−cm2ρ
n . (56)

So, for any givenη > 0 Markov’s inequality implies that

P

[

P

(

Xk−1 6∈ Ak−1|Y k−1,Maj(Xn) = 1
)

≥ 2ηm
2ρ
n 2−cm2ρ

n

]

≤ 2−ηm2ρ
n . (57)

Choosing, e.g.,η = c
2 we get that there exists a setBk whose probability is larger than1− 2−

c

2
m2ρ

n such that

P

(

Xk−1 6∈ Ak−1|Y k−1,Maj(Xn) = 1
)

≤ 2−
c

2
m2ρ

n (58)

for all yk−1 ∈ Bk. For this set, we have

Rk(Y
k−1) ≤ 1

2
+O

(

1

n1/8−ρ

)

+ 2−
c

2
m2ρ

n =
1

2
+O

(

1

n1/8−ρ

)

, (59)

as required.

To prove (15) we first need the following approximation to theentropy of majority functions.

Lemma 15 ([8]). We have

H(Maj(Xn)|Y n) = E

{

hb

[

Q

(

|G(1− 2α)|
√

4α(1 − α)

)]}

+ o(1) (60)

whereG ∼ N (0, 1) is a standard Gaussian random variable, andQ(·) is the Q-function (the tail probability of

the standard normal distribution).

Proof: See Appendix A.

Remark16. If we replace Lemma 14 in the proof of (13) with Lemma 15, we canget a sharper bound than (13),

yet less explicit.

In the next lemma, we evaluateH(Maj(Xn)|Y n) for α ≈ 1
2 .

Lemma 17. We have

H(Maj(Xn)|Y n) ≥ 1− 1

π · ln 2

(

(1− 2α)2

4α(1 − α)

)

−O
(

(1− 2α)4
)

+ o(1). (61)

Proof: See Appendix A.

We can now prove the lower bound on the SMSE of majority functions (15).

Proof of (15): Using Lemma 17 and a derivation similar to (90), for somec > 0, and allα sufficiently close
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to 1
2

H(Y n|Maj(Xn)) = n− 1 +H(Maj(Xn)|Y n)

≥ n− 1

π · ln 2

(

(1− 2α)2

4α(1 − α)

)

− c (1− 2α)4 + o(1). (62)

Hence, as in the proof of (5) in Section III

M(Y n|Maj(Xn)) ≥ n

4
− ln 2

2
[n−H(Y n|Maj(Xn))]

≥ n

4
− 1

2πα(1 − α)

(

(1− 2α)2

4

)

− c (1− 2α)4 + o(1) (63)

for all sufficiently largen.

Remark18. For the sake of proving (15), we only needed the second-orderapproximation, given by Lemma 17.

However, we note that the expression on the left-hand side of(60) can be evaluated numerically to an arbitrary

precision, e.g., via a power series expansion of the analytic functionhb [Q(t)].

V. D ISCUSSION ANDOPEN PROBLEMS

The question addressed by Conjecture 1 can be equivalently cast as an optimal sequential prediction problem,

seeking the Boolean functionb(Xn) that minimizes the cost in sequentially predicting the channel output sequence

Y n, under logarithmic loss. Adopting this point of view, it is natural to consider the same sequential prediction

problem under other proper loss functions. In this paper, wehave focused on the quadratic loss function. We began

by considering the noiseless caseY n = Xn, which is trivial under logarithmic loss but quite subtle under quadratic

loss, and showed that majority asymptotically achieves theminimal prediction cost among all Boolean functions.

For the case of noisy observations, we derived bounds on the cost achievable by general Boolean functions, as well

as specifically by majority. Using these bounds, we showed that majority is better than dictator for weak noise,

but that dictator catches up and outperforms majority for strong noise. This should be contrasted with Conjecture

1, which surmises that dictator minimizes the sequential prediction cost under logarithmic loss, simultaneously at

all noise levels. Thus, viewed through the lens of sequential prediction, the validity of Conjecture 1 appears to

possibly hinge on the unique property of logarithmic loss, namely the fact that in the noiseless case all (balanced)

Boolean functions result in the exact same prediction cost.

The discussion above leads us to conjecture that under quadratic loss, there is no single sequence of functions

{bn(Xn)} that asymptotically minimizes the prediction cost simultaneously at all noise levels. Moreover, it seems

plausible that the optimal function must be close to majority for weak noise, and close to dictator for high noise.

While it appears that characterizing the optimal function at a given noise level may be difficult, it would be interesting

to understand its structural properties, e.g., whether it is monotone, balanced, odd, etc. For logarithmic loss, it is

known that the optimal function is monotone [1]. This fact can be easily established by first switching any non-

monotone coordinate with the last coordinate (losing nothing due to the entropy chain rule), and then "shifting"
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[9] the last coordinate (which can only decrease the cost, asthere are no subsequent coordinates). However,

monotonicity seems more difficult to establish under quadratic loss, even in the noiseless case; for example, the

switching/shifting technique above fails due to the lack ofa chain rule under quadratic loss. Finally, it would be

interesting to extend this study to non-Boolean functions as well as to other proper loss functions. For example,

our results readily indicate that majority is asymptotically optimal in the noiseless case for any loss function that

behaves similarly to quadratic loss around1
2 (e.g., logarithmic loss). What is the family of proper loss functions

for which majority is asymptotically optimal?
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APPENDIX A

M ISCELLANEOUS PROOFS

A. Noiseless case

Proof of Lemma 6:First assume thatV n is a t-majority random vector (and not a pseudot-majority random

vector). From symmetry oft-majority random vector,P (Vk = 1) = P (V1 = 1) for all k ∈ [n], and so it remains

to prove the statement fork = 1. Let us begin with the caset ≤ 1
2 . For t = 0 we clearly havePk = 1

2 . For t = 1
2 ,

the numberM1 of 1
2 -majority vectors such thatv1 = 1 (M0 for v1 = 0, respectively) is

M1 =

n−1
∑

m=n

2
−1

(

n− 1

m

)

, (64)

and

M0 =

n−1
∑

m=n

2

(

n− 1

m

)

, (65)

where the indexm in the summation above counts the number of allowed ones in the vectorvn2 . So, asM1 > M0,

P (Vk = 1) =
M1

M0 +M1
≥ 1

2
. (66)

Moreover, for alln sufficiently large,
(

n−1
n

2
−1

)

∑n−1
m=n

2
−1

(

n−1
m

) ≤
(

n−1
n

2
−1

)

2n−1

(a)

≤
√

2

π
· 1√

n
· 2(n−1)

[

hb(
1

2
− 1

2(n−1)
)−1

]

≤
√

2

π
· 1√

n
, (67)
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where(a) is using Lemma 19. So

P (Vk = 1) =
M1

M0 +M1

=

∑n−1
m=n

2
−1

(n−1
m

)

∑n−1
m=n

2

(n−1
m

)

+
∑n−1

m=n

2
−1

(n−1
m

)

=

∑n−1
m=n

2
−1

(

n−1
m

)

2 ·∑n−1
m=n

2
−1

(n−1
m

)

−
(n−1

n

2
−1

)

=
1

2−
(n−1

n
2

−1)
∑n−1

m=n
2

−1 (
n−1

m )

≤ 1

2
+

√

2

π
· 1√

n
, (68)

where in the last inequality we have used12−s ≤ 1
2 + s, valid for smalls. Now, sincePk is monotonic int, then

clearly

Pk ≤ 1

2
+

√

2

π
· 1√

n
, (69)

for all 0 ≤ t ≤ 1
2 .

Now for the caset ≥ 1
2 . Using symmetry, the probability thatVk = 1 is equal to the total number of ones in the

support ofV n, divided by the total number of zeros and ones in the support of V n . So,

P (Vk = 1) =

∑n
m=tn

(n
m

)

·m
∑n

m=tn

(

n
m

)

· n ≥
∑n

m=tn

(n
m

)

· tn
∑n

m=tn

(

n
m

)

· n ≥ t. (70)

On the other hand, denotingln := n
1/2+η, for all n sufficiently large,

P (Vk = 1) =

∑n
m=tn

(n
m

)

· m
n

∑n
m=tn

(

n
m

)

=

∑tn+ln
m=tn

(

n
m

)

· m
n

∑n
m=tn

(

n
m

) +

∑n
m=tn+ln+1

(n
m

)

· m
n

∑n
m=tn

(

n
m

)

≤
∑tn+ln

m=tn

(

n
m

)

·
(

t+ ln
n

)

∑tn+ln
m=tn

(

n
m

) +

∑n
m=tn+ln+1

(

n
m

)

∑n
m=tn

(n
m

)

= t+
nη

√
n
+

∑n
m=tn+ln+1

(n
m

)

∑n
m=tn

(

n
m

)

≤ t+Oη

(

nη

√
n

)

. (71)

The last inequality follows from
∑n

m=tn+ln+1

(

n
m

)

∑n
m=tn

(n
m

)

(a)
=

∑n
m=tn

(

n
m+ln+1

)

∑n
m=tn

(n
m

)

(b)

≤ max
tn≤m≤n

(

n
m+ln+1

)

(

n
m

)
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(c)

≤ max
tn≤m≤n−ln−1

√

8nm
n (1− m

n )
√

πn · m+ln+1
n (1− m+ln+1

n )
· 2

nhb(m+ln+1

n )

2nhb(m

n )

= [1 + o(1)]

√

8

π
max

tn≤m≤n−ln−1
2
n
[

hb

(

m

n
+n

η/2
√

n

)

−hb(m

n )
]

(d)

≤ [1 + o(1)]

√

8

π
max

n

2
≤m≤n−ln−1

2
n
[

hb

(

m

n
+ nη

√
n

)

−hb(m

n )
]

(e)

≤
√

8

π
· 2n

[

hb

(

1

2
+ nη

√
n

)

−hb( 1

2 )
]

(f)

≤
√

8

π
· 2− 2

ln 2
nη

, (72)

where(a) is using the convention
(

n
m

)

= 0 for m > n, (b) is using Lemma 20,(c) is using Lemma 19,(d) is as

t ≥ 1
2 , (e) is because the maximum is obtained at the minimal value of thefeasible set, due the concavity ofhb(·),

and (f) is using the inequalityhb
(

1
2 + s

)

≤ 1− 2
ln 2s

2.

Finally, the marginal probability of1 for a pseudot-majority random vector is only larger than for ordinary

t-majority random vector, and smaller than the same marginalprobability of a(t+ 1
n)-majority random vector. So,

the asymptotic upper bound does not change for pseudot-majority random vectors.

Proof of Lemma 7:From the chain rule for entropies and as conditioning reduces entropy

n− 1 = H(V n
1 )

= H(V n−mn

mn+1 ) +H(V mn

1 |V n−mn

mn
) +H(V n

n−mn+1|V n−mn

1 )

≥ H(V n−mn

mn+1 ) +H(V mn

1 |V n
mn

) +H(V n
n−mn+1|V n−mn

1 ). (73)

Now, for any vectorvn−mn such thatWH(v
n−mn

1 ) ≥ n
2 + 1, it is assured thatvn ∈ SV n , no matter what its suffix

vnn−mn+1 is. Thus, conditioning on this event, the suffix is distributed uniformly over{0, 1}mn . This implies that

H(V n
n−mn+1|V n−mn

1 ) ≥ P

[

WH(V
n−mn

1 ) ≥ n

2
+ 1
]

·mn. (74)

Now, for all sufficiently largen

P

[

WH(V
n−mn

1 ) ≥ n

2
+ 1
]

=

∑n−mn

k=n

2
+1

(

n−mn

k

)

· 2mn

2n−1

=
2
∑n−mn

k=n

2
+1

(

n−mn

k

)

2n−mn

=
2
∑n−mn

k=n−mn
2

(

n−mn

k

)

− 2
∑

n

2

k=n−mn
2

(

n−mn

k

)

2n−mn

≥ 1−
2
∑

n

2

k=n−mn
2

(n−mn

k

)

2n−mn

≥ 1− 2
(mn

2
+ 1
)

(n−mn
n−mn

2

)

2n−mn
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≥ 1− 2mn

(n−mn
n−mn

2

)

2n−mn

≥ 1− 2

√

4

π(n−mn)
mn, (75)

where the last inequality is from Lemma 19. Recalling thatmn = O(n
1/4−ρ)

H(V n
n−mn+1|V n−mn

1 ) ≥ mn − 4m2
n

√

π(n−mn)

= mn − o(1). (76)

From symmetry,H(V mn

1 |V n−mn
mn

) can be evaluated to the exact same expression, and this leadsto the required

result.

Proof of Lemma 9:Let

rk :=
(n− k + 1)

2
+ (n− k + 1)

1/2+ρ. (77)

Then, for somec, c′ > 0

P

[

WH(V
k
1 ) ≤

n

2
− rk

]

= P

[{

WH(V
k
1 ) ≤

n

2
− rk

}

∩
{

WH(V
n
k+1) ≥ rk

}

]

+ P

[{

WH(V
k
1 ) ≤

n

2
− rk

}

∩
{

WH(V
n
k+1) < rk

}

]

= P

[{

WH(V
k
1 ) ≤

n

2
− rk

}

∩
{

WH(V
n
k+1) ≥ rk

}

]

≤ P
[

WH(V
n
k+1) ≥ rk

]

≤
∑n−k

l=rk

(n−k
l

)

· 2k
2n−1

(a)

≤ n

2n−k−1

(

n− k

rk

)

(b)

≤ n

2n−k−1
2(n−k)hb( rk

n−k)

(c)

≤ 2n · 2−c′(n−k)2ρ

≤ 2n · 2−c′·m2ρ
n

≤ 2−c·m2ρ
n , (78)

where (a) is sincerk ≥ n−k
2 , (b) is using Lemma 19, and(c) is using Taylor expansion of the binary entropy

function at 12 .

B. Noisy case

Proof of Lemma 10:We have

M(W ) = M(V + Z)
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= M(β ∗ α)

= [β(1− α) + (1− β)α] · [βα+ (1− β)(1− α)]

= α(1− α) + (1− 2α)2 · β(1− β)

= α(1− α) + (1− 2α)2 ·M(V ). (79)

Proof of Lemma 11:We will prove by induction. The relation holds (with equality) for n = 1 from Lemma

10. We assume that the property hold up ton− 1. Now,

M(W n) =

n−1
∑

i=1

M(Wi|W i−1
1 ) +M(Wn|W n−1

1 )

≥
n−1
∑

i=1

M(Wi|W i−1
1 ) +M(Wn|W n−1

1 , Zn−1
1 )

=

n−1
∑

i=1

M(Wi|W i−1
1 ) +M(Vn + Zn|V n−1

1 , Zn−1
1 )

(a)
=

n−1
∑

i=1

M(Wi|W i−1
1 ) +M(Vn + Zn|V n−1

1 )

(b)
=

n−1
∑

i=1

M(Wi|W i−1
1 ) + α(1− α) + (1− 2α)2 ·M(Vn|V n−1

1 )

(c)

≥ (n − 1)α(1 − α) + (1− 2α)2 ·M(V n−1
1 ) + α(1− α) + (1− 2α)2 ·M(Vn|V n−1

1 )

= nα(1− α) + (1− 2α)2 ·M(V n), (80)

where(a) is since(Vn, Zn)−V n−1
1 −Zn−1

1 , (b) is using a conditional version of (79) (which holds since thepointwise

relation holds), and(c) is using the induction assumption. Equality clearly holds whenV n is a memoryless random

vector.

Proof of Lemma 12:The proof is quite similar to the proof of (6) in Section III. Let ρ ∈ (0, 1/2) andη ∈ [0, 12 )

be given. For any givenk ∈ [n−mn] let us define the events

Ak :=

{

WH(V
k
1 ) ≥

k − 1

2
− (n − k + 1)

1/2+ρ/3

}

=
{

WH(V
k
1 ) ≥

n

2
− rk + 1

}

, (81)

whererk := (n−k+1)
2 +(n−k+1)

1/2+ρ/3. Let us analyzeM(Vk|V k−1
1 = vk−1

1 ) for 1 ≤ k ≤ mn whenvk−1
1 ∈ Ak−1.

Conditioning onvk−1
1 ∈ Ak−1, we have thatV n

k is a t-majority vector of lengthn− k + 1 ≥ n−mn + 1, and its

threshold is less than

t ≤ rk
n− k + 1

=
1

2
+

1

(n− k + 1)1/2−ρ/3
. (82)

Let Pk := P[Vk = 1|V k−1
1 ]. Assuming thatn is sufficiently large, Lemma 6 (withη < ρ

3 ) implies that conditioned
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on the eventV k−1 ∈ Ak

1

2
≤ Pk ≤ 1

2
+

1

(n−mn + 1)1/2−ρ/3
+Oη

(

1

(n −mn + 1)1/2−η

)

≤ 1

2
+Oη

(

1

n1/2−ρ/3

)

(83)

for all k ∈ [n−mn], andn sufficiently large. Consequently,

M(Vk|V k−1
1 = vk−1

1 ) = Pk(1− Pk) ≥
1

4
−Oη

(

1

n1−2ρ/3

)

. (84)

As in Lemma 9 (when replacingmn, the maximal value ofk, with a maximal value ofn−mn), there existsc > 0

such that

P

[

V k−1 6∈ Ak−1

]

≤ 2−c(n−mn)
2ρ/3

(85)

for all k ∈ [mn], and then

mn
∑

k=1

M(Vk|V k−1
1 ) ≥

mn
∑

k=1

∑

vk−1∈Ak−1

P

[

V k−1 = vk−1
]

M(Vk|V k−1
1 = vk−1)

≥
mn
∑

k=1

[

1− 2−c(n−mn)
2ρ/3
]

[

1

4
−Oη

(

1

n1−2ρ/3

)]

≥ mn

4
− oη(1). (86)

Proof of Lemma 13:Let us define the event

Bk :=
{

WH(V
k
1 ) ≥

n

2
+ 1
}

. (87)

As in the proof of Lemma 7,

P

[

V k ∈ Bk

]

≥ P

[

WH(V
n−mn

1 ) ≥ n

2
+ 1
]

≥ 1− 2

√

4

π(n−mn)
mn

= 1−O
(

n−1/4−ρ
)

(88)

for all k ∈ {n −mn + 1, . . . , n}. Conditioned onvk−1
1 ∈ Bk, all the suffixesvnk are possible in order to obtain a

majority vector, and henceP[Vk = 1|V k−1
1 = vk−1

1 ] = 1
2 . Then,

n
∑

k=n−mn+1

M(Vk|V k−1
1 ) ≥

n
∑

k=n−mn+1

∑

vk−1
1 ∈Bk−1

P

[

V k−1
1 = vk−1

1

]

M(Vk|V k−1
1 = vk−1

1 )

=

n
∑

k=n−mn+1

[

1−O
(

n−1/4−ρ
)]

· 1
4
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≥ mn

4
−O

(

1

n2ρ

)

≥ mn

4
− o(1). (89)

Proof of Lemma 14:The entropy is bounded as

H(Y n|Maj(Xn) = 1)
(a)
= H(Y n|Maj(Xn))

= H(Maj(Xn)|Y n) +H(Y n)−H(Maj(Xn))

= H(Maj(Xn)|Y n) + n− 1

(b)

≤ H(Maj(Xn)|Maj(Y n)) + n− 1

(c)

≤ hb [P (Maj(Xn) = Maj(Y n))] + n− 1

(d)

≤ µ(α) + n− 1 + o(1), (90)

where(a) follows from symmetry,(b) from the data processing theorem,(c) is from Fano’s inequality, and(d) is

from [10, Theorem 2.45].

Proof of Lemma 15:The proof of is based on the Gaussian approximation of the binomial distribution using the

Berry-Essen central limit theorem. For simplicity, we assume thatn is odd, but the proof can be easily generalized

to anyn. We begin by denoting

a(yn) := P[Maj(Xn) = 1|Y n = yn], (91)

we then writing

H(Maj(Xn)|Y n) = E {hb [a(Y n)]} . (92)

SinceY n is the output of a uniform Bernoulli random vectorXn through a BSC with crossover probabilityα,

thenY n = Xn + Zn whereZn ∼ Bern(α). Equivalently, we also haveXn = Y n + Zn, whereY n is a uniform

Bernoulli random vector, andZn andY n are independent. We next use the Berry-Essen central limit theorem [11,

Chapter XVI.5, Theorem 2] to evaluatea(yn). To this end, note thatE[Zi −α] = 0, E[(Zi −α)2] = α(1−α), and

E[|Zi − α|3] = α(1 − α)
[

α2 + (1− α)2
]

< ∞. Then,

a(yn) = P

[

WH(y
n + Zn) >

n

2

]

= P





∑

i∈[n]: yi=0

Zi +
∑

i∈[n]: yi=1

(1− Zi) >
n

2





= P







∑

i∈[n]: yi=0

(Zi − α) +
∑

i∈[n]: yi=1

(α − Zi) > (1− 2α)
[n

2
−WH(y

n)
]






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= P







1
√

nα(1− α)





∑

i∈[n]: yi=0

(Zi − α) +
∑

i∈[n]: yi=1

(α− Zi)



 >
(1− 2α)

√

nα(1− α)
·
[n

2
−WH(y

n)
]







:= P

{

Sn >
(1− 2α)

√

nα(1− α)
·
[n

2
−WH(y

n)
]

}

, (93)

whereSn was implicitly defined. Now, the Berry-Essen central limit theorem implies that for someCα

sup
s∈R

|P [Sn > s]− P [G > s]| ≤ Cα√
n
, (94)

whereG ∼ N (0, 1). Further, [12, Lemma 2.7] provides a bound on the differencein the entropy of two probability

distributions, in terms of the total variation distance between them. In our case, this implies that for alln sufficiently

large,

sup
s∈R

|hb (P [Sn > s])− hb (P [G > s])| ≤ −2Cα√
n

ln

(

Cα√
n

)

= o(1). (95)

Then, denoting

Hn :=
(1− 2α)

√

nα(1− α)
·
[n

2
−WH(y

n)
]

(96)

we have

H(Maj(Xn)|Y n) = E {hb [a(Y n)]}

= E {hb (P [Sn > Hn])}

= E {hb (P [G > Hn])}+ o(1)

= E {hb [Q(|Hn|)]}+ o(1) (97)

whereQ(·) is the Gaussian Q-function, and in the last equality we have used the facts thatQ(t) = 1−Q(|t|) for

t < 0, andhb(p) = hb(1−p). Now, applying the central limit theorem once again, we havethatHn ⇒ (1−2α)√
4α(1−α)

·G,

asn → ∞, in distribution. To complete the proof, we note that sincehb [Q(|t|)] is a bounded and continuous function

of t, Portmanteau’s lemma (e.g. [11, Chapter VIII.1, Theorem 1]) implies that

E {hb [Q(|Hn|)]} → E

{

hb

[

Q

(

|(1− 2α)G|
√

4α(1 − α)

)]}

, (98)

asn → ∞, concluding the proof.

Proof of Lemma 17:Let us denoteα = 1
2 − γ for γ ∈ (0, 12 ), and then let us inspect

E {hb [Q(Γ)]} := E







hb



Q





|G| γ
√

(12 − γ)(12 + γ)















(99)

asγ ↓ 0. Using Leibniz’s integral rule, we obtainQ′(t) = − 1√
2π
e−

t2/2, Q′′(t) = t√
2π

· e−t2/2 and so, there exists
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c > 0 such that for allt ≥ 0

Q(t) ≥ 1

2
− t√

2π
. (100)

Similarly, there exists̃c, s1 > 0 such that for alls ∈ (0, s1)

hb

(

1

2
− s

)

≥ 1− 2

ln 2
s2 − c̃s4. (101)

Hence, for all sufficiently smallt > 0

hb[Q(t)] = hb

[

1

2
−
(

1

2
−Q(t)

)]

≥ 1− 2

ln 2

(

1

2
−Q(t)

)2

− c̃

(

1

2
−Q(t)

)4

≥ 1− 1

π · ln 2t
2 − c̃

4π2
t4. (102)

So, there existŝc > 0 such that for all sufficiently smallγ,

E {hb [Q (Γ)]}

≥ P
[

|G| ≤ γ−1+ρ
]

· E
{

hb [Q (Γ)] ||G| ≤ γ−1+ρ
}

≥ P
[

|G| ≤ γ−1+ρ
]

· E
{

1− 1

π · ln 2Γ
2 − c̃

4π2
Γ4||G| ≤ γ−1+ρ

}

=

∫ γ−1+ρ

−γ−1+ρ

1√
2π

e−
t2/2 ·

[

1− 1

π · ln 2

(

γ2t2

(12 − γ)(12 + γ)

)

− c̃

4π2

(

γ4t4

(12 − γ)2(12 + γ)2

)]

· dt

= 1− 2Q(γ−1+ρ)−
∫ γ−1+ρ

−γ−1+ρ

1√
2π

e−
t2/2 ·

[

1

π · ln 2

(

γ2t2

(12 − γ)(12 + γ)

)

+
c̃

4π2

(

γ4t4

(12 − γ)2(12 + γ)2

)]

· dt

≥ 1− 2Q(γ−1+ρ)−
∫ ∞

−∞

1√
2π

e−
t2/2 ·

[

1

π · ln 2

(

γ2t2

(12 − γ)(12 + γ)

)

+
c̃

4π2

(

γ4t4

(12 − γ)2(12 + γ)2

)]

· dt

= 1− 2Q(γ−1+ρ)− 1

π · ln 2

(

γ2

(12 − γ)(12 + γ)

)

− c̃

4π2

(

3γ4

(12 − γ)2(12 + γ)2

)

(a)

≥ 1− 1

π · ln 2

(

γ2

(12 − γ)(12 + γ)

)

− ĉγ4, (103)

where(a) is since for anyρ ∈ (0, 1), usingQ(t) ≤ 1
t · e−

t2/2 we have

P
[

|G| ≥ γ−1+ρ
]

= 2Q(γ−1+ρ) ≤ 2γ1−ρ · exp
(

− 1

2γ2−2ρ

)

. (104)
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APPENDIX B

USEFUL RESULTS

Lemma 19 ([7, Lemma 17.5.1]). For 0 < α < 1 such thatnα is integer

2nhb(α)

√

8nα(1 − α)
≤
(

n

nα

)

≤ 2nhb(α)

√

πnα(1− α)
. (105)

Lemma 20 ([13, Lemma 1]). If {ai}ni=1 and {bi}ni=1 are all non-negative numbers, then

∑n
i=1 ai

∑n
i=1 bi

≤ max
1≤i≤n

ai
bi
. (106)

Corollary 21. Under the conditions above and for any integerl > 0,

∑n−l
i=1 ai

∑n
i=1 bi

≤ max
1≤i≤n−l

ai
bi
. (107)

This can be obtained by replacingai with 0 for n− l + 1 ≤ i ≤ n.
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