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Abstract

SupposeY™ is obtained by observing a uniform Bernoulli random vecio? through a binary symmetric
channel. Courtade and Kumar asked how large the mutualnsfiton betweert’™ and a Boolean functioh(X™)
could be, and conjectured that the maximum is attained byctatdr function. An equivalent formulation of this
conjecture is that dictator minimizes the prediction costisequential prediction df ™ underlogarithmic loss
given b(X™). In this paper, we study the question of minimizing the setjaé prediction cost under a different
(proper) loss function — thquadratic loss In the noiseless case, we show that majority asymptogicalhimizes
this prediction cost among all Boolean functions. We furtekrow that for weak noise, majority is better than
dictator, and that for strong noise dictator outperformgoniy. We conjecture that for quadratic loss, there is no

single sequence of Boolean functions that is simultango@slymptotically) optimal at all noise levels.

Index Terms

Boolean functions, sequential prediction, logarithmigsldunction, quadratic loss function, Pinsker’s ineqyalit

I. INTRODUCTION AND PROBLEM STATEMENT

Let X™ € {0,1}"™ be a uniform Bernoulli random vecﬂrand letY™ be the result of passing™ through a
memoryless binary symmetric channel (BSC) with crossovebability « € [0, %]. Recently, Courtade and Kumar

conjectured the following:

Conjecture 1 ([1). For any Boolean functiom(X™) : {0,1}" — {0,1}
I(b(X");Y"™) = H(Y") — H(Y"[b(X")) < 1 — hy() @)

wherehp(a) := —aloga — (1 — a)log(1 — «) is the binary entropy functi(HL
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The work of the second author was supported by an ERC grar38573, and an ISF grant no. 1367/14. The material in thigpajs
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1As customary, upper case letters will denote random vassabéctors, and their lower case counterparts will denogeific values that
they take.

2Throughout, the logarithnibg(t) is on base2, while In(t) is the natural logarithm.
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Since thedictator function Dict(z™) := x; (or any other coordinate) achieves this upper bound withakigu
then loosely stated, Conjecture 1 claims that dictatoresniost “informative” one-bit quantization of” in terms
of reducing the entropy of ™. Despite considerable effort in several directions (&1§. [2], [3], [4]), Conjecture
[ remains generally unsettled. Recently, it was showr lintjg} Conjecturé]l holds for very noisy channels, to
wit for all o > % — o, for some absolute constant > 0.

From a different perspective, definirg, := P[Y; = 1|Y*~! b(X™)], and using the chain rule, we can write

H(Y"[b(X™) =Y H(Y;[Y* ! b(X"))

k=1
= E[liog(Ye, Qr)] )
k=1
where /i, (b, q) := —log[l — ¢ — b(1 — 2q)] is thebinary logarithmic Ioss‘unctionH Thus, the most informative

Boolean functiorb(z™) can also be interpreted as the one that minimizes the (eghestquential prediction cost
incurred when predicting the sequer{@g.} from its past, under logarithmic loss, and give(X ™). It is important
to note that the logarithmic loss functionpsoper, i.e., corresponds to proper scoring rule[EﬂH This means that
using the true conditional distributiof;, as the predictor fol;, is guaranteed to minimize the expected prediction
cost at timek.

Given the above interpretation, it seems natural to askdngesquestion for other loss functions. Namely, what

is the minimal sequential prediction cost £f;.} incurred under a general loss functién {0, 1} x [0,1] — R,

L(Y"[b(X™)) ==Y "E[0(Ye, Qu)] . (3)

k=1
and what is the associated optimal Boolean funct¢n™)? Specifically, it makes sense to consider proper loss
functions, as for such functions the optimal predictioratgtgy is “honest”. The family of proper loss functions
contains many members besides the logarithmic loss; in fhet exact characterization of this family is well
known [6]. In this work we focus on another prominent memblethis family, the quadratic loss functionThis

loss function is simply the quadratic distance between #peeted guess and the outcome. In the binary case, it
is given by/quaa(b, ) := (b — q)?. Following that, we can define treequential mean squared err@8MSE) to be

the (expected) sequential prediction costvdf incurred under quadratic loss give(X"), namely

M(Yn‘b(Xn)) = ZE [equad(Yka Qk)]
k=1

= E[Qr(1—Qx)

k=1

3The first argument ofy.. (b, ¢) represents the outcome of the next bit, and the second arglsthe probability assignment for the bit
being 1.
4Scoring rules are typically defined in the literature as antjtylato maximize, hence are the negative of cost functions.



— 3 M(VYEL, b(X™). @
k=1

In what follows, we show that forv = 0 (noiseless channel) the SMSE is asymptotically minimizgdte
majority functiond We further show that majority is better than dictator for #ma This might tempt one to
conjecture that majority is always asymptotically optinfied SMSE. However, we show that dictator is in fact
better than majority forx close to%. Intuitively, it would seem that dictator is in some sense thnction “least
affected” by noise, and hence while majority is better at kveaise, dictator “catches up” with it as the noise
increases. This intuition sits well Conjectliie 1, sincelémarithmic loss all (balanced) functions are equally good
at « = 0. We conjecture that the optimal function under quadratgs lmust be close to majority far ~ 0,
and close to dictator for & % The validity of this conjecture would imply in particulandt, in contrast to the
common belief in the logarithmic loss case, for quadratssIthere is no single sequence of Boolean functions that

is simultaneously (asymptotically) optimal at all noisedks.

Il. RESULTS

Let Wy (2}") be the Hamming weight af}. We denote the majority function bylaj(z"), which is equal tol
wheneveWy(2™) > %, and0 wheneverWy(z") < 5. Whenn is odd this definition is unambiguous, but when
n is even, the values d¥laj(z") whenWy(z") = 5 are not defined, and any arbitrary choice of assignment of
values toMaj(z™) is proper for our needs.

In the noiseless casex (= 0), the assertion in Conjectufé 1 for the logarithmic lossrigal, and equality is
obtained for anyalancedfunction P[b(X") = 1] = %), and specifically, for the dictator function. By contrdst,
quadratic loss, finding the optimal function seems far froial even fora = 0. In the next theorem we provide a
lower bound on the noiseless SMSE for any Boolean functiod,show that the majority function asymptotically

achieves it.

Theorem 2 (Noiseless case)or any Boolean functiom(X™)

n—2In2
M b(X™)) > ———, (5)
and for majority
on n—2Iln2
M(X"[Maj(X™)) < ———— +o(1). (6)
Clearly, for dictator
M(X"|Dict(X")) = = - ! 7

which is strictly worse than the SMSE of the majority funatidn fact, it is easy to see that dictator in fact
maximizes the SMSE.

5In fact, for balanced functions, it is trivially maximized Ibhe dictator.



\ | M(X™[Maj(X™)) | minyy M(X"[b(X™)) | Excess SMSE of majority Lower bound[(5)|

n = 0.4792 0.4792 0 0.4034

n = 0.9676 0.9686 0.0010 0.9034

n = 1.4552 1.4618 0.0066 1.4034

n = 1.9483 1.9569 0.0086 1.9034

n=11 2.4435 2.4532 0.0097 2.4034
Table |

SMSEOF MAJORITY AND SMSEOF THE OPTIMAL FUNCTION, AND (§).

The minimal SMSE for moderate values of can be found efficiently. The idea is to trace, for eaghthe
optimal functions{bg‘)}we{()’l,m’gn} under a weight constraint
b{r) .= arg min M(X"|b(X™)). (8)
b(): {zm: b(zm)=1}|=w
The optimal functiorb(™ is then given by optimizing ovew, i.e.,

b .= argmin M(X"b{(X™)). (9)
we{0,1,...,27}

Now, assuming tha{bgf)} were found for all input of size less than bﬂf“) can be found by partitioning it
into two functions of input size: - one pertaining tar; = 0 and the other tar; = 1. Indeed, observind14)
for any given functionb(-), it can be noted that the SMSE of the first time point, iM(X.|X*~! b(X")),

depends only on the weightsy = [{z} : b(0,2%) = 1}| andw; = [{z% : b(1,z%) = 1}|. Further, for any given
(wo,w1) : w = wo + wy, the SMSE of all other time points, i.&_7_, M(X,|X*~1 b(X™)), is minimized by

setting

b(0,5™") = b{j) (a5 +) (10)
and

b(1,a5™1) = b (a5 ™). (12)
Hence, given[bgf)} for all n, we can fincbg”l) by simply going over all possible allocation of weigltisy, w; ) :

w = wo + wy. The output of such an algorithm is shown in Talle | for motkeiaput sizes. It can be seen that
majority is optimal forn = 3, but not forn = 5,7,9,11. However, Theorerh]2 states that the difference tends to
0, asn — oo. Forn = 5, the optimal function disagrees with majority dnnputs.

Next, we consider the noisy case € (0, %], and derive a simple lower bound on the noisy SMSE for any
Boolean function. Then, we provide an upper bound and a Itwend for the SMSE of majority.

®Egs. [3) and[{6) of Theoref 2 can be obtained as special cag&B)aand [IB) of Theorerl3, by setting= 0, but since the proof of
the noisy case is based on Theolgim 2, we have separated tifts oesthe noiseless and noisy cases to two different thesre



Theorem 3 (Noisy case) For any Boolean functiom(X")

n—2n2-(1-2a)?

M(Y"[b(X™)) > - (12)
Furthermore, for majority
(Y aj 7)) < P22 (L2 o pe)] o) (13)
where
1(0) = hy (M) , (14)
and n—g—t—(1-2a)?
M(Y"|Maj(X™)) > “““‘Z) ~0 ((1 - 2a)4) +o(1). (15)
Since a straightforward derivation shows that for the dictéunction,
M (Y™ |Dict(X™)) = %‘2@2 (16)

the above theorem implies that majority is asymptoticaliytdr than dictator for allv € [0, a] wherea ~ 0.0057,

but that on the other hand, there exigtsc % such that dictator is better than majority for alle [a, %).

Remark4. To improve the SMSE, unbalanced majority functidnsj,(-) may be proposed, which assigro a set
of ¢-2" vectors of maximal Hamming weight,€ (0, 1). In the noiseless case, such functions cannot asymptgtical
improve the SMSE, since the lower bound is achieved by ordingjority functions ¢ = %). Furthermore, it can
be shown that they offer no improvement even in the noisy.daseed, the noiseless SMSE of such functions is

n—2In2-hy(q)

M Maj (X)) < 2=

+o(1), 17)

which is minimized forg = % In addition, the effect of the noise of the SMSE is relatethdandary size between
vectors withMaj, (") = 1 and vectors witiVlaj,(z") = 0. For any fixed; € (0, 1), the value ofl will be assigned
by Maj,(-) to vectors of Hamming weigh§ — O(n'**tr) < 5 <5+ O(n"/>*?), which is asymptotically the same
as for ordinary majority withy = % So, the boundary size dflaj,(-) is roughly as the boundary size dfaj(-),
and the effect of the noise on the SMSE is asymptotically #maesfor allg € (0,1). Since the noiseless SMSE

for ¢ = 3 is minimal, this seems to be the optimal choice even in theguree of noiséa < (0, 1)).

The proofs of Theorenid 2 ahdl 3 appear in Secfiohs Ill[anhd sheetively, and will shortly outlined. Throughout
the proofs, we will only consider positive sequences:oind so Landau notations should be interpreted with a

positive sign. For example, i, = ©(n) thena, is a positive sequence, increasing approximately linednly

(1—a)
(1-8)

random vectorX” by Sx» := {2" : P(X™ = z™) > 0}. For brevity, we ignore integer constraints throughout the

addition, we will denote théinary divergencedy dy(a||3) := alog § + (1 — o) log , and the support of a

paper, as they do no affect the results.



I1l. PROOF OF THENOISELESSCASE THEOREM

In this section, we consider the noiseless case 0, namely whereX™ = Y™ with probability 1, and prove
Theorem[R. The outline of the proof is as follows. To prove kweer bound [(b) on the SMSE, we use the
binary Pinsker inequality to upper bound the quadratic lesiag the binary divergence. To prove that majority
asymptotically achieves this lower bound, we first note #iateMaj(X™) is a balanced function, its value does
not help predictX; at all, and similarly, the gain in SMSE from knowirlgaj(X™) at the first few time points
is negligible. In the same spirit, at the last time point, tedue of Maj(X™) is only useful if Wy (2"~ 1) = 5
(assuming oda), which occurs with negligible probability, and similartje gain at the last few time points due to
value ofMaj(X™) is also negligible. Hence, the gain in prediction cost fromawing Maj(X") is mainly obtained
in the “middle” time points. However, even at those time psithe gain is moderate and the probability of the
next bit, given the past anlllaj(X™) is still close to%, with high probability. So, as Pinsker’s inequality is tigh
around%, the quadratic loss function can be replaced with a funatibthe binary divergence. In turn, the binary
divergence is related to the entropy, conditioned\aj(X"). The entropy is simpler to handle, since conditioned
on Maj(X™) the reduction in the entropy of” is 1 bit, and this leads directly t¢{(6). It should be noted thatlevh
the above intuition is fairly simple, a careful analysisagjuired for the proof, since a constant deviat3é§¥1g from
2 is sought, which does not depend @nWe begin with proving the lower bound] (5) using Pinskersqunality.

Proof of [B): Suppose thaP[b(X™) = 1] = ¢, and letP;, := P[X};, = 1|X*~! b(X") = 1]. Conditioning on

b(X™) =1, X™ is distributed uniformly over a set of size 2" and thus

M(X"|b(X™") =1) =Y E[P:(1 - F)]

- $ef(n-2)]

n
n
:Z_E E
k=1

@n 2ln2 <
> > E[dy(Pe]]1/2)]
k=1

4 4
n  2In2 <«
=11 ;E[l — hy(F%)]
n 2In2 n n
= & — = [n— H(X"b(X") = 1)
_n  2In2log(q)
=7 + — 1 (18)
where(a) is using a binary version of Pinsker’s inequality [7, p. 3Eg}, (11.139)]
4 2
dp(el|B) = 57— (= B) (19)

21n2

(where equality is achieved ifi = (). Deriving a similar bound for the eveb{X") = 0, we obtain [(5) from

M(X"b(X"™)) = ¢- M(X"[b(X") = 1) + (1 — ¢) - M(X"[b(X") = 0)



n 2In2-hy(q)
4 4
n 2ln2
= . 20
>0 2 (20)
|

Proving the asymptotic achievability of the lower boubd K¥)the majority function is more intricate, and is
based on the asymptotic achievability of equality in Pimskimequality [19). We will need several definitions and

lemmas.

Definition 5. A vectorv™ € {0,1}" is termedt-majority vectorif Wy (v™) > tn, wheret € [0,1] is referred to as
the threshold A random vecto/™ will be termed¢-majority random vectoif it is uniformly distributed over all
t-majority vectors of lengt. Let ¢,,(¢) be the minimal integer larger or equal ta. A random vector’™ will
be termedpseudot-majority random vectoif it is uniformly distributed over allt-majority vectors of lengt,
except possibly for some s&,, such thatWy(v") = ¢, (¢) for all v™ € D", and there exists” € Sy~ such that
Wi (v™) = (o (t). For brevity, we will sometime omit the parametewhent = 3.

The first lemma provides an approximation for the marginatritiutions of at-majority random vector.

Lemma 6. Letn € [0, %) be given. Then, it/ is a pseuda-majority random vector,

n1/2—77

max E,t] < P[Vj = 1] < max [%,t] + Oy < 1 ) (21)
for all k € [n].

Proof: See AppendixA. [ |

Before we continue, we shortly comment on notation coneasti There is obviously a difference between a
majority random vector of lengthk, and the firstk coordinates of a majority random vector of lengthwhen
k < n. Nonetheless, to avoid double indexing, we will assume tha large enough but fixed, and the indices
of V" will denote the corresponding components, é[éfrm are the componentds, . .., Vii.,) Of the majority
random vectoi/".

The following lemma shows that if,, increases slowly enough, then the entropy losd it of a majority
random vectof’”, compared to the entropy of a uniform binary i.i.d. randorateg is mainly due to the entropy
of the middle part of the vectdr,;"~. In other words, the conditional entropies of the beginrang end parts

are close to their maximal values, given by their length.

Lemma 7. Letp € (0, 1) andm,, = O(n”/*=*). Then, for a majority random vectdr™
H(VE~™) <n—1—2my, +o(1), 22)

Proof: See AppendixA. [ |

The following corollary is a weakening of lemrha 7.



Corollary 8. Letp € (0,1) andm,, = O(n"/*~*). Then, for a majority random vectdr™
HWV" ™) <n—1—-my+o(1). (23)

Now, consider a time indek which is sufficiently far from the last index. In the next lemma, we bound the
probability that at timek, the number of ones in the vector is still significantly Ielsart the minimal Weigh§ of

vectors in the support of a majority random vector of length
Lemma 9. Let m,, be an increasing positive sequence, anddet (0,1) be given. Then, for all majority random
vectorsV" with sufficiently largen,

P Wy (V) < % —(n—k+1)7re) < o7 0ml), (24)

for all k € [n —m,).

Proof: See AppendixA. [
We are now ready to prove that majority functions are asytigatty optimal.
Proof of [8): Let p € (0,1/s) be given, and definen, := n”/*~*. Let us definel’” as the random vector
distributed as{™ conditioned orMaj(X™) = 1. Clearly,VV" is a majority random vector. For any givére [n—m,,]

let us define the events
AM:{MMGf)EE%i—%n—k+U%ﬂ}
= {WH(Vlk) > g —TE + 1} (25)

wherery, := Ukt 4 (5 — k4 1)+, Now, letting P, := P[V, = 1|]V*~1] we have

M(X"Maj(X™") =1) = Y E[Py(1 - P)]
k=1

IN
~| 3
|
(]
=

<Z-3 Y pvEl=oE

(Pk — %)2 |VE-L = v'H] . (26)

Now, let v*~1 € A;_;. Conditioning onV*~! = v*~1, we have thal/" is a¢t-majority random vector of length

n—k+1>m,, and its threshold is less than

1
n—k+1)/-r
1
mil/z_p.

Tk 1

t< ——mmMm = —
“n—k+1 2
1

2

"

<5+ (27)



So, assuming that is large enough, Lemnid 6 (with < p) implies that conditioned on the eveht*—! = y*~!

with vF—1 ¢ A

1 1 1 1 1 1
— <P, < <= e —
5 = P, < 5+ T + = ) + Oy, <n1/8_p> , (28)

for all & € [n — m,]. Consequently, as Pinsker’s inequality is tight aro%md

2
Q%—%) > 1 - o(1)] "2 du (P12 (29)
and so
MO Ma(x™) = 1) < 7~ 22 [ (1)) x
nf Soop [Vk‘l - vk_l} E [db(PkHl/z)\vk—l - v’f—l] . (30)

k=1 vk=1€A;_,

Denotingry, := P [V* & A;], we have

E [db(PkHI/Z)] — Z P [Vk—l — ?)k_l] E [db(PkHI/Q)‘Vk_l _ vk—l}
vhle A,y
+ Y PV = E [dy (Rl VT = ot
vk Ay
< Y PV = E[aBlnvi = o 4, @1
vk=le A,

becausel,(Px||1/2) = 1 — hy(FP;) < 1. Hence,

n—m,

M [Maj(X™) = 1) < 7 — 4[LWﬂﬂ;;WHWMWM—mA}
B2 o) [ - B
+[1—o(1)] n_fn 9—em’
k=1
¢ % 1 —o(1)] 2122 +o(1) + n27emi’
= g - 2122 +o(1), 32)

where (a) is using the chain ruled,(P||1/2) = 1 — hp(F%), and since from Lemm@ 9, for some> 0 we have
. < 27 for all k € [n —m,,], and(b) is using Corollary’B.

Finally, from symmetry, conditioning oMaj(X") = 0 we have

_202 o) (33)

n
M(X"|Maj(X") =0) < —
(X IMaj(x™) = 0) < & - =

and sol(b) is obtained by averaging owaj(X™) (as in [20)). [ |
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IV. PROOF OF THENOISY CASE THEOREM

In this section, we consider the noisy case, and prove The@eThe outline of the proof is as follows. The
lower bound of [(IR) is based on the the result of the noisadase[(b), while taking into account that a noisy bit
Y. is to be predicted rather thaki,. To prove [(IB) we use the noiseless SMSE of majofity (6), amhtify the
loss in the SMSE conditioned on majority, due to the fact ti@isy past bitsy’*~! are observed, rather than the
noiselessX*~1. As in the noiseless case, the “middle” time points contagstof the loss. In addition, we use a
bound onH (Y"|Maj(X™)) based on thetability of majority. Finally, to prove[(15) we use a different asyotjut
lower bound onH (Maj(X™)|Y™), which is based on the Gaussian approximation of a binorarom variable,
resulting from the Berry-Essen central limit theorem. Wentfapply Pinsker’s inequality, as in the noiseless case,
to bound the SMSE via that entropy.

To prove [12) begin with the next lemma, which states a boumn@WISE of a channel output in terms of the

input's SMSE, for any input distribution.

Lemma 10. For V' ~ Bern(), Z ~ Berna) independent o/, andW =V + Z (modulo2 sum),
M(W) = a(l —a) + (1 — 2a)* - M(V). (34)

Proof: See AppendixA. [
Lemma 11. Let V"™ € {0,1}" be a random vector, ant¥" be the output of a BSC with crossoverfed by V",
ie. Wn =Vn"+ 7" whereZ" ~ Bern(a), independent of/ ™. Then,

MW™) > a(l —a)-n+ (1 —2a)? - M(V"™) (35)

with equality if V" is a memoryless random vector.

Proof: See AppendixA. [ |
Using the above, we can proJe12).
Proof of [12): Consider any Boolean function X™) and suppose thdt [b(X™) = 1] = ¢. Then,

M(Y™|b(X™)) (ﬁ) a(l —a)-n+(1-2a)?-M(X"[b(X™))

=a(l—a) -n+q(1—20)%  M(X"b(X") =1)+ (1 — ¢)(1 — 2a)? - M(X"|b(X™) = 0)

®) —
> a(l—a)-n+(1—2a)2-(%+h12)
—(1— 2.
Zn (1 —-2a) 21112, (36)
4
where (a) follows from LemmalL, andb) follows from (). [

To prove [(18), we analyze, in the next two lemmas, the SMSE migrity random vecto#’”, and show that

the quadratic loss in the beginning and end of the vectorasecto its maximal value oi per bit.
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Lemma 12. Let m,, = O(n'~*) for somep € (0,1). Then, for a majority random vectdr™

My

M(V™) = 3 MVIVEY) = B2 — o(1).

(37)
k=1
Proof: See AppendixA. [ |
Lemma 13. Let p € (0, %) and m,, = O(n"*"). Then, for a majority random vectdr™
> MV = T —o(1). (38)
k=n—m,+1
Proof: See AppendixA. [ |

We also need the following bound on the conditional entropthe output, given a value of the

majority of the
input.

Lemma 14. Let u(-) be as defined if(14). Then,
HY"Maj(X™) =1) <n—1+ u(a)+o(1). (39)

Proof: See AppendixA.
We can now prove (13).

Proof of [13): In (38), it may be observed that due d (6), inequaliiy is in fact an asymptotic equality, up
to ano(1) term. So, it remains to bound the loss in the inequdlity of (36), which we denote bp. Let us also

denotem,, = n'/*~* for some givery € (0, %). Then, due to symmetry of the majority function, we may ctiodi
on the evenMaj(X™) = 1, and the loss of inequalitya) of (38) is

B = M(Y"|Maj(X") = 1) — a(l — a) -1 — (1 — 2a)? - M(X"|Maj(X™) = 1)

3

= MY Maj(X™) =1) —a(l —a) -n— (1—2a)* - > M(X, X! Maj(X™) = 1)
k=1 k=1
< (120 {Z M(Xk[Y7L Maj(X™) = 1) — M(X,| X5, Maj(X™) = 1)} , (40)
k=1
where (a) is using a derivation similar td_(¥9).
First, using Lemma_12

D> MXGYF Maj(X™) = 1) = M(X5|XF! Maj(X™) = 1)
k=1
My - k-1 . ny __

ST—ZM(XMX ;Maj(X™") =1)

k=1
< o(1), (41)

and similarly, using Lemma13
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> MGYF Maj(X™) = 1) — M(X| X5, Maj(X™) = 1)
k=m, +1

My . k—1 . ny __
< _k_ZHM(Xk'X ,Maj(X") = 1)

< o(1). (42)

Then, from [b) of Theorerl2, and the symmetry of conditioniigj(X™) = 0 andMaj(X™) = 1, we have

= —2In(2
3 MOGIXE, Maj(x) = 1) > 2 2R (43
k=1
and
> MXGXF Maj(x ™) = 1)
k=m,+1
=D MXG X" Maj(X™) = 1) = ) M(X,[ X" Maj(X™) = 1)
k=1 k=1
=) MXEXM Maj(X™) = 1)
k=n—m,+1
> ST MG XE! Maj(x™) = 1) — 2o T
Zn—an—an(Q)' (44)
4
So it remains to upper bound the first term in the suniaof (4@), vi
> MY Maj(X™) =1). (45)
k=m,+1

We follow the outline of the proof ofC{6) from Theorem 2. Let denote the random variablegg, (X*~1) :=
P(X), = 1| Xk~ Maj(X") = 1), and Ry (Y*~1) := P(X = 1]Y*~! Maj(X™) = 1), where their arguments will
be sometimes omitted for brevity. In what follows, we willoge the existence of sef§, c {0,1}* such that
v =P [Y* ¢ B] <275 for somec > 0 and for allk € {m, +1,...,n —m,}, and

% < Re(y*h) < % +0, <ﬁ> (46)
for all y*~! € B;,_,. Fory*~! € B;,_; Pinsker’s inequality is tight and so

2
(A= 5) = 1= o] 5 a1 (7)
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Hence,
> MXRYHF! Maj(X™) = 1)
k=m, +1
= > E[Ry(1—Ry)
k=m, +1
n —2my, i 1\2
k=m,+1

SH—TM_ Y P[yk—lzylf—l]E

1\ 2
(m-3) -]
k:mn‘*‘ly’f’lEqu
n—2m, 2In(2) "

< 2 o) Y PR =y E [de(Rellya) Y = gt

4 4
k=m,+1 y’f*IEkal

n—m,

L L) D SR CICRE N S I
k=m,+1
Qno2m 200 o)) S BRI + o)
k=m,+1
_n —42mn B 21121(2) [1— o(1)] [n —2m,, — ninf H(X3[Y*1 Maj(X™) = 1)| +0(1)
k=m,+1
(SC) n —42mn B 211(2) [ — o(1)] [n —om,, — n—z:m H(Yi Y1 Maj(X™) = 1)| +o(1)
k=my,+1
=z _42% - 211(2) (1= o(V)] [n = 2my, — H(Y, 2 Y™ Maj(X™) = 1)] + (1)
< n 2 20 4 (1)) fn - H (Y Mai(X") = 1] + o)
9 n —42mn B 211(2) 1+ ()] + o(1), (48)
(a) is since, just as i (31),
E [do (Ry||1/2)] < Z P [Yk—l _ y’f‘l} E [db(Rk||1/2)|yk—1 Y (49)
Yy reBL

(b) is sincev, < 27:™%, (¢) is using

H(Yi Y Maj(X™) = 1) = H(Xg + Z¢|Y*!, Maj(X™) = 1)

v

Xk + Zk|Yk_17 Zk7 MaJ(Xn) = 1)

(
H(
H (XYL, Zp, Maj(X™) = 1)
H(

Xp[YE Maj(X™) = 1), (50)
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where the last equality is sincg, is independent of X}, Y*~1). Transition(d) in @8) follows from

—
.
=

HY Y7, Maj(X") = 1) 2 HY, | X777 Maj(X™) = 1)
= H(X5 1+ Zin, 1 [ XT77 Maj(XT) = 1)
>H(X) o 0+ 2y | X0 20 41, Maj(XT) = 1)
=H(X;_,,, 1| X77"" Maj(X™) = 1)
Y i —oL), (51)

where herg(i) follows from the data processing theorem and the fact Yffat™" — X" — Y ., and(ii)
follows from (78) (proof of Lemm&l7), and using a similar bduto H (YY" |, Maj(X") = 1). Transition
(e) in (48) follows from Lemma T4. To conclude, combining (48], (42), [(44) and(48) implies that

21n2
O < (1-2a)% 22

() +o(1), (52)

which, together with[(36) implies_(13).
To complete the proof, it remains to assert the existenc@eetsB;. To this end, recall that in the proof of

(©) in Sectior1ll, we have defined the sets

Ay = {WH(V1 ) > %—(n—k—l—l)vﬁp} (53)

(cf. 28)) and showed tha} < Py(zF~1) < 2+ O (1/n's-0) for all 25~ € A;_;. In addition, Lemmdl9 implied
that there that there exists> 0 such that? [X* ¢ A,] < 27" for all k € {m, + 1,...,n — m,}. Now, note
that

Ri(YF 1 = P(X;, = 1[Y*! Maj(X") = 1)
— Z]P;(Xk—l k llyk 1 MaJ(X")

rk—1

= > P (xF =Y Maj(X™) = 1) - Pu(at ), (54)

k=1

) P <Xk — 1) xXF1 = ALy Rl Maj(x") = 1)

so Ry(Y*~1) is just an averaging of,(z*~!). Since P,(z*"!) > 1 for all 2!, this immediately implies

Ri(y*~1) > 1. On the other hand

R(YFh= Y P (Xk_l = 1)yl Maj(X™) = 1) - Py(z*1)

k1€ A, _y

+ Y P (Xk_l = 2F 1y F1 Maj(X™) = 1) - Py(at )
ch1g ALy
1

5+O< /1 )HP’(X’“ Vg A [V Maj(x™) = ) (55)
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where we have bounded the first term usigz*~1) < £ +0 (1/n'/s-) for all 25~1 € A;_;, and we have bounded
the second term simply by usig.(z¥~!) < 1. Let us inspect the random variat#eX*—! ¢ A,_;|Y*~1 Maj(X") =

1]. We know that its expected value satisfies
E [IP’ (Xk—l ¢ A1 |V, Maj(X™) = 1)] —P (Xk—l ¢ Aj_1|Maj(X™) = 1) < g=emir, (56)
So, for any givery > 0 Markov’s inequality implies that
P []P (Xk_l ¢ A1 Y1, Maj(X™) = 1) > 2"”1?2—0"1?} < 9, (57)
Choosing, e.g.p = 5 we get that there exists a sBf, whose probability is larger thah— 2-5™ such that
P (Xk‘l ¢ Ap_1|YF1, Maj(X™) = 1) < 9—smi (58)
for all y*~! € By,. For this set, we have

1 1 c 2p 1 1
Ry(Y" ) <-+0 <—> +275m =~ 40 < > : (59)
2 n/S_P

as required. |

To prove [Ib) we first need the following approximation to #reropy of majority functions.

Lemma 15 ([8]). We have

B 1G(1 = 2a)]
H(Maj(X™)|Y )_E{hb [Q< 4a(1—a)>

} +o(1) (60)

whereG ~ N(0,1) is a standard Gaussian random variable, a@q-) is the Q-function (the tail probability of

the standard normal distribution).

Proof: See AppendixA. [ |

Remark16. If we replace Lemma&_14 in the proof df (13) with Lemind 15, we gaha sharper bound than {13),

yet less explicit.

In the next lemma, we evaluafé(Maj(X™)[Y™) for a ~ 3.

Lemma 17. We have

—2a)?
H(Maj(X")[Y") > 1 — -in2 <£¥(1 2_ ;) — O ((1—2a)*) +o(1). (61)

Proof: See AppendixA. [ |

We can now prove the lower bound on the SMSE of majority fuumsti{15).

Proof of [1%): Using Lemmd_1l7 and a derivation similar {0(90), for some 0, and all« sufficiently close
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to

D=

H(Y"|Maj(X™)) = n — 1+ H(Maj(X"™)[Y™)

1 (1—2a)? 4
T <4a(1_a)>—c(1—20z) +o(1). (62)
Hence, as in the proof of](5) in Sectignllll
M(Y"[Maj(X™)) > 7 = = [n — H(Y"|Maj(X"))
n 1 (1 —2a)? 4
_Z_2wa(1—a)< 1 >—c(1—2a) +o(1) (63)
for all sufficiently largen. [ |

Remark18. For the sake of provind_(15), we only needed the second-approximation, given by Lemmall7.
However, we note that the expression on the left-hand sid@@f can be evaluated numerically to an arbitrary

precision, e.g., via a power series expansion of the awdlytiction hy, [Q(t)].

V. DIScUssION ANDOPEN PROBLEMS

The question addressed by Conjecture 1 can be equivalesdlyas an optimal sequential prediction problem,
seeking the Boolean functids( X ") that minimizes the cost in sequentially predicting the ctemutput sequence
Y™, under logarithmic loss. Adopting this point of view, it i@tmral to consider the same sequential prediction
problem under other proper loss functions. In this paperhawe focused on the quadratic loss function. We began
by considering the noiseless casé = X™, which is trivial under logarithmic loss but quite subtleden quadratic
loss, and showed that majority asymptotically achievesntivémal prediction cost among all Boolean functions.
For the case of noisy observations, we derived bounds onasteachievable by general Boolean functions, as well
as specifically by majority. Using these bounds, we showedl tiajority is better than dictator for weak noise,
but that dictator catches up and outperforms majority foorsg noise. This should be contrasted with Conjecture
[, which surmises that dictator minimizes the sequentiedligtion cost under logarithmic loss, simultaneously at
all noise levels. Thus, viewed through the lens of sequkeptiediction, the validity of Conjecturgl 1 appears to
possibly hinge on the unique property of logarithmic losamnely the fact that in the noiseless case all (balanced)
Boolean functions result in the exact same prediction cost.

The discussion above leads us to conjecture that under afiatirss, there is no single sequence of functions
{b,(X™)} that asymptotically minimizes the prediction cost simuétausly at all noise levels. Moreover, it seems
plausible that the optimal function must be close to majdidr weak noise, and close to dictator for high noise.
While it appears that characterizing the optimal functiba given noise level may be difficult, it would be interesting
to understand its structural properties, e.g., whethes ihonotone, balanced, odd, etc. For logarithmic loss, it is
known that the optimal function is monotorig [1]. This fachdae easily established by first switching any non-

monotone coordinate with the last coordinate (losing mgthidue to the entropy chain rule), and then "shifting"
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[9] the last coordinate (which can only decrease the costhase are no subsequent coordinates). However,
monotonicity seems more difficult to establish under quidiass, even in the noiseless case; for example, the
switching/shifting technique above fails due to the lackaoéhain rule under quadratic loss. Finally, it would be

interesting to extend this study to non-Boolean functiogsvall as to other proper loss functions. For example,
our results readily indicate that majority is asymptoticaptimal in the noiseless case for any loss function that
behaves similarly to quadratic loss arougde.g., logarithmic loss). What is the family of proper lossidtions

for which majority is asymptotically optimal?
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APPENDIXA

MISCELLANEOUS PROOFS
A. Noiseless case

Proof of Lemmal6: First assume thalt™ is a¢-majority random vector (and not a pseutdmajority random

vector). From symmetry of-majority random vector? (V, = 1) = P(V; = 1) for all k£ € [n], and so it remains

NO[—

to prove the statement fdr= 1. Let us begin with the case< % Fort = 0 we clearly haveP, = % Fort =

the numberM; of %—majority vectors such that; =1 (M, for v; = 0, respectively) is

M, = nf <"7; 1), (64)

and

My = nf <”7;1> (65)

My 1
P = = 66
(V% ) My+ My — 2 ( )
Moreover, for alln sufficiently large,
n—1 n—1
G I Gy
Sy () T
N X L
m n
2 1
<A/ = —7= (67)
s n
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where (a) is using Lemma&_19. So

D=
B DY ()
o (D T ()
D Dy
2 X () - (DY)

P (Vi =

§%+ e (68)

where in the last inequality we have usgﬁg < % + s, valid for smalls. Now, sinceP,, is monotonic int, then

clearly

1 2 1
P.< =44/ — 69
b= \/; N (69)

forall 0 <t < 3.
Now for the case > % Using symmetry, the probability thdf, = 1 is equal to the total number of ones in the

support of V™, divided by the total number of zeros and ones in the supgdovi’o. So,

> m—tn (TT:L) meg > m—tn (TT:L) “in >t

P(Vk = 1) = n n = n n = & (70)
Zm:tn (m) ‘N Zm:tn (m) ‘n
On the other hand, denotirlg := n'/2*", for all n sufficiently large,
Zn =t (n) i
Zm:tn (m)
_ ngii;lz (;Lz) ) % + Z:Ln:tn—‘rln—i-l (Tr:L) ) %
ZZL:tn (7?1) ZZL:tn (7?1)
< ZZZ;IZ (Z) ) (t + lﬁ) + ZZ%:tn—i-ln-i-l (:7,)
Yttt (o)
=l+—=+ n - n
\/ﬁ Zm:tn (m)
<t+0 n (71)
= n \/ﬁ .

The last inequality follows from

an:tn-i-ln—i-l (:L) (i) Zﬁmzm (m-i-zl-i-l)

ZZL:tn (:zib) Z:Ln:tn (rrrLL)

(b) (m—i—?n +1)
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—
o
~

SnZ(1 - ) g ()

Stngmngli}fln—l meAl, 41 (| _ mtl,+1 . onhs ()
mn - et (] — et )
m /2 m
N R DR
T tn<m<n-—I,—1

(d) 8 myn\_ph (m
(2 8 gn[m(at+o)-m(3)]

T
(f)
28 - (72)

™

where (a) is using the conventiof” ) = 0 for m > n, (b) is using Lemmd 20(c) is using Lemma_19(d) is as
t > 1, (e) is because the maximum is obtained at the minimal value ofehsible set, due the concavity lof(-),
and (f) is using the inequalityy, (3 +s) <1 — 2552

Finally, the marginal probability of for a pseuda:-majority random vector is only larger than for ordinary
t-majority random vector, and smaller than the same margiraability of a(t + %)—majority random vector. So,
the asymptotic upper bound does not change for pseudajority random vectors. ]

Proof of Lemma&]J7: From the chain rule for entropies and as conditioning resl@gropy
n—1=H(V")
= H(Vy 37) + HO™ [V o) + H(VL V™)

> H(V, )+ HV™ Vg )+ H(V,L V™). (73)

Now, for any vectors”~ "~ such thatWy (v ™™") > 5 + 1, it is assured that™ € Sy», no matter what its suffix

vy 41 iS. Thus, conditioning on this event, the suffix is distréituniformly over{0, 1}"~. This implies that

n n—m n—m n
HWV, V7)) 2P [WH(V1 ") > 5+ 1} Mgy (74)

Now, for all sufficiently largen

n—"my (n—mn) .My

- n k=241 &
P [WH(VI" EOEE S 1} - —

QZZ—TM (")

on—my,

2R () <28 ()

on—my,
257 ()

on—my,
(g

on—my,

> 1

>1—2(— 1)
Ly
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>1—2m, 2n_2mn
4
>1=2y |y, (75)
m(n —my)

where the last inequality is from Lemrhal19. Recalling that = O(n'"/*~")

2

4msy

HWV, V) =2 my — —————
m(n —my,)

=my —o(1). (76)

From symmetry,H (V""|V,"~") can be evaluated to the exact same expression, and this tieaks required
result. [ |

Proof of Lemma&l9: Let

— 1 i
e = w + (n—k+ 1)/, (77)

Then, for some:, ¢’ > 0

P [Wy(VF) < g - rk] —P [{WH(Vlk) < g - rk} N {WR(V,) > rk}]
+P HWH(V{“) < g - rk} AWV ) < rk}]
_Pp [{WH(Vlk) < g _ rk} A {WH(V) > rk}]
< P [Wh(Vihy) 2 7]

o ("1) 2

— 2n—1

n n—=k
2n—k—1 Tk

G0 mkn ()

— on—k-1

(C) ’ 2p
< om- 9—¢ (n—k)

A

INE

< 2n . 270l
< g emd, (78)
where (a) is sincery > "T"“ (b) is using Lemmd—19, andr) is using Taylor expansion of the binary entropy

function at1. n

B. Noisy case

Proof of Lemmd&_10: We have

M(W) = M(V + 2)
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— M(8 % )
— 81~ a) + (1 - Bal - [Ba+ (1 - B)(1 — a)]
= a(l—a) + (1 - 20)- (1 - )

=a(l —a)+ (1 -2a)%* M(V). (79)

[ |
Proof of Lemma&~111:We will prove by induction. The relation holds (with equg)ifor n» = 1 from Lemma
[1d. We assume that the property hold upnte- 1. Now,

n—1
M(W™) = Z M(W; W11 + MW, W)

=1
n—1 ‘

> MWW + MW, W, 27
=1
n—1 ‘

= MWW + M(V,, + Zo [V, 277
=1

n—1
WSS MY + MV, + Zo V1Y)
=1

n—1
O S MWW + a1 — a) + (1 - 2a)? - MV V)
i=1
(20) (n—Da(l —a)+ (1 —2a)* MV +all —a) + (1 —2a)% - MV, [V )

=na(l —a) + (1 —2a)? - M(V"), (80)

where(a) is since(V,,, Z,,) V"1 —Z~1, (b) is using a conditional version df{79) (which holds sinceb@twise

relation holds), andc) is using the induction assumption. Equality clearly holdseewl” is a memoryless random

vector. [
Proof of Lemm&Z12:The proof is quite similar to the proof dfl(6) in Sectian lllety € (0,1/2) andn € [0, %)

be given. For any givek € [n — m,,] let us define the events

A = {WH(Vlk) > % —(n—k+ 1)1/2+”/3}

_ {WH(I/lk) > g S 1}, (81)

wherery, := O=FED | (5 k1) /2, Let us analyze (Vi |V~ = of 1) for 1 < k < m,, wheno¥ ! € A,
Conditioning onv’f‘1 € Ai—1, we have thal/" is at-majority vector of lengtm — &k +1>n —m, + 1, and its

threshold is less than
Tk 1 1
< — = =_ . 82
gy oy Sl A P S U (62)

Let P, :=P[V}, = 1\V1k‘1]. Assuming that: is sufficiently large, LemmBl6 (witly < £) implies that conditioned
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on the event/*—1 ¢ 4,

IA
-
IA

+ ! Lo !
(n—my, + 1)1/2—P/3 n (n —my, + 1)1/2—77
1
+0y (s (83)

for all k£ € [n — m,], andn sufficiently large. Consequently,

NN
l\’)lr—‘ N | —

1 1

As in Lemmd® (when replacing,,, the maximal value ok, with a maximal value of. —m,,), there exists: > 0

such that
PVl g A < gmetnmn ™ (85)
for all £ € [m,], and then
Z M Vk"/lk 1 > Z Z P |:Vk—1 — ,Uk:—l:| M(Vk’v*lk—l — vk—l)
k=1 vk— TeAr 1
2e/3 1 1
—cn my)"/ L
>3- 150" [0 ()
mp
2 =~ on(1). (86)
|

Proof of Lemm&_13:Let us define the event
= > —
By i= {W(Vf) = 2+ 1} (87)
As in the proof of Lemmal7,

i [Vk c Bk} >P [WH(V{L‘m") > g + 1]

>1-2 74 My,
m(n —my)
—1-0 <n_l/4_p> (88)
for all k € {n —m, +1,...,n}. Conditioned on{~* € By, all the suffixesv} are possible in order to obtain a

majority vector, and hencB[Vj, = 1|V~! = v} '] = 1. Then,

SoMGWT) Y Y B[ =l Mua =
k=n—m,+1 k=n—m,+1"1epB, _,

n

R EIGEIE

k=n—m.,+1
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> T8 —o(1) (89)
|
Proof of Lemmé&_14: The entropy is bounded as
HY"[Maj(X™) = 1) 2 H(Y™"[Maj(X"))
= H(Maj(X")[Y"™) + H(Y™) — H(Maj(X™))
= H(Maj(X™)[Y"™) +n—1
< H(Mj(X") Maj(y™)) + 7 — 1
< by [P (Maj(X™) = Maj(y"))] 4 n — 1
< a) +n—1+o(1), (90)

where(a) follows from symmetry,(b) from the data processing theore() is from Fano’s inequality, an€) is
from [10, Theorem 2.45]. [ |
Proof of Lemm@&5:The proof of is based on the Gaussian approximation of thenbial distribution using the
Berry-Essen central limit theorem. For simplicity, we assuthatn is odd, but the proof can be easily generalized
to anyn. We begin by denoting
a(y") == P[Maj(X") = 1[Y" = y"], (91)

we then writing
H(Maj(X™)[Y") = E {hp [a(Y")]}. (92)

SinceY™ is the output of a uniform Bernoulli random vectd™ through a BSC with crossover probability,

thenY™ = X™ + Z™ where Z™ ~ Bern(). Equivalently, we also hav&™ = Y™ + Z", whereY™ is a uniform
Bernoulli random vector, and™ andY™ are independent. We next use the Berry-Essen central lvadrem [[11,
Chapter XVI.5, Theorem 2] to evaluat€y™). To this end, note thdk[Z; — a] = 0, E[(Z; — a)?] = a(1 — a), and
E[|Z; — a’] = a(1 — @) [o® + (1 — @)?] < cc. Then,

a(y") =P [WH(y" +2Z") > ﬁ]

2
n
]1»{ > Zi+ Y, 1-2Zy>3
i€[n]: ;=0 i€[n]: y;=1
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1 (1-2a) n n
Pl Zi—a a—7) | > == [ _w
{ Vne(l —a) (ie[n%o( " ie[n]X:;i—l( )) - no(l — o) {2 i )] }
- P{sn > U200 ] } (93)

na(l — «)

where S,, was implicitly defined. Now, the Berry-Essen central lintfiebrem implies that for somé,,

Ca
P[S, > s] — PG > s]| < —,
igﬂg\ [ s] = P[G > s]| NG

whereG ~ N (0, 1). Further, [12, Lemma 2.7] provides a bound on the differendbe entropy of two probability

(94)

distributions, in terms of the total variation distancevibetn them. In our case, this implies that forrakufficiently

large,
ilelg [hy (P [Sy, > s]) — hp (P[G > s])| < —%ln <%> = o(1). (95)
Then, denoting
o (1 — 2a) n n
H, = m : [5 — Wh(y )] (96)

we have

H(Maj(X™)[Y") = E {hy, [a(Y")]}

= E {hy (P[S, > H,])}
=E {hy (P
=E {hy [Q(IHa])]} +0(1) (97)

(G > Hy])} +o(1)

whereQ(-) is the Gaussian Q-function, and in the last equality we haezluhe facts thaf(t) = 1 — Q(|¢|) for
(1—2a)

129
VAa(l—a)

asn — oo, in distribution. To complete the proof, we note that sihgé)(|¢|)] is a bounded and continuous function

of t, Portmanteau’s lemma (e.@. [11, Chapter VIII.1, Theorejirhplies that

E {h, [Q(Ha )]} %E{hb [Q (Mﬂ} (98)

4da(l — )

t < 0, andh,(p) = hy(1—p). Now, applying the central limit theorem once again, we haatH, =

asn — oo, concluding the proof. |

Proof of Lemmd_17:Let us denotex = 3 —~ for v € (0, 1), and then let us inspect

E{hb[Q<P>]}:E{hb [Q( il )]} (99)
(3 -G +9)

as~y J 0. Using Leibniz’s integral rule, we obtai@’(t) = —\/%e‘t%, Q"(t) = ﬁ -e~"/> and so, there exists




¢ > 0 such that for allt > 0
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1 t
) > - — —. 100
Similarly, there exists, s; > 0 such that for alls € (0, s1)
L 2 2 -4
R >1 - = ¢4 .
hy <2 s) >1 mas (201)
Hence, for all sufficiently smalt > 0
1 1
Q] =[5~ (3-aw)]
2 (1 2 1 4
>1— — [ Z = -
21- 2% (5-00) ~¢(5-aw)
1 2 c 4
>1-— - —t*
>1 - ln2t 47T2t (102)

So, there existg > 0 such that for all sufficiently smakl,

E {hy [Q (1]}
> P[|G] <] -E {he [Q (D)]||G] < v7'*7}
>P[|G] <4717 -E{l - .LQPQ - %F“HG\ < ’Y‘””}

,Y*IJrP 1 _t2/ 1 ,Y2t2 6 ,.Y4t4
= e” 1= 1 1 “ 12\ 71 51 5 ~dt
—y-tte V2T m-n2 \ (53 -7)(z+7) 4ms \ (3 =) (3 +7)

—1+4p

_|_
_ 1 e 1 y2t? ¢ Al
:1—2@7””—/ el +— - dt
( ) 14 V27 T2\ (3 -G+ /) 472\ (G725 +7)?

B e [ 1 s 1 242 & A '
21-20077) /_oo o7 [Wln? ((%—7)(%+7)> T <(%—’y)2(%+7)2 "

B B 1 72 ¢ 3!
=1-2007) ~ <<% —w(%m) A ((% — 2+

(103)

1
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APPENDIX B

USEFUL RESULTS

Lemma 19 ([[7, Lemma 17.5.1]) For 0 < a < 1 such thatn« is integer

nhy(a) nhy (o)
2 < <”> <2 Ny (105)

8na(l — a) no ma(l — a)
Lemma 20 ([13, Lemma 1]) If {a;}*, and {b;}!" , are all non-negative numbers, then

Zn—l a; a;
==l " L -
S b~ 1%isn by (106)

Corollary 21. Under the conditions above and for any intedes 0,

n—I
-_1 Q5 a
Zz—l max —

S S 107
Z?zl bz T 1<i<n—l bz ( )

This can be obtained by replacing with 0 forn — 1+ 1 <i < n.
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