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Capacity Bounds for Discrete-Time,
Amplitude-Constrained, Additive White Gaussian

Noise Channels
Andrew Thangaraj, Gerhard Kramer and Georg Böcherer

Abstract—The capacity-achieving input distribution of the
discrete-time, additive white Gaussian noise (AWGN) channel
with an amplitude constraint is discrete and seems difficultto
characterize explicitly. A dual capacity expression is used to
derive analytic capacity upper bounds for scalar and vector
AWGN channels. The scalar bound improves on McKellips’
bound and is within 0.1 bits of capacity for all signal-to-noise
ratios (SNRs). The two-dimensional bound is within 0.15 bits of
capacity provably up to 4.5 dB, and numerical evidence suggests
a similar gap for all SNRs.

Index Terms—additive white Gaussian noise channel, ampli-
tude constraint, capacity

I. I NTRODUCTION

The most commonly-studied channel model for communi-
cations is the additive white Gaussian noise (AWGN) channel.
The AWGN model is interesting only with constraints on the
channel input or output. Depending on the application, one
is interested in limiting, e.g., the average input (or output)
variance or the input amplitude.

Input (or output) variance constraints result in elegant ana-
lytic capacity expressions such as Shannon’s1

2 log(1 + SNR)
formula. The amplitude constraint seems less tractable, and
typical analyses use Smith’s methods [1] to show that the
capacity-achieving input distribution has discrete amplitudes,
see [2], [3], [4], [5] and references therein. A recent line of
work studies the peak-to-average power (PAPR) ratio of good
codes [6].

An alternative approach is by McKellips [7] who develops
analytic and tight capacity upper bounds by bounding the
channel output entropy. We instead use the dual capacity
expression in [8, p. 128] (see also [9, Eqn. (7)]) and study both
scalar and vector channels. The dual approach was also used
in [10] for scalar AWGN channels with non-negative channel
inputs. Our models and results differ from those in [10]: we
do not impose a non-negativity constraint (this differenceturns
out to be minor for the scalar case), we study vector channels
that include the important practical case of two-dimensional
(complex) AWGN channels, and we develop certain bounds
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in more detail. Our bounds are within 0.15 bits of capacity
provably up to 4.5 dB, and numerically for all SNRs for two-
dimensional (complex) AWGN channels.

This paper is organized as follows. Section II presents func-
tions, integrals, and bounds that we need later. Sections III-V
develop the one-, two-, andn-dimensional bounds, as well as
two refinements. The appendices contain technical proofs.

II. PRELIMINARIES

Consider the following functions:

ψ(x)
(a)
=

1√
2π
e−x2/2

Q(x)
(b)
=

∫ ∞

x

ψ(z) dz

I0(x)
(c)
=

1

π

∫ π

0

ex cosφ dφ

Q1(a, b)
(d)
=

∫ ∞

b

z e−(z2+a2)/2I0(az) dz

D(p‖q) (e)
=

∫ ∞

∞
p(z) log

p(z)

q(z)
dz

where(a) is the Gaussian density,(b) is the Q-function,(c) is
the modified Bessel function of the first kind of integer order
0, (d) is the Marcum Q-function, and(e) is the informational
divergence between the densitiesp and q. Logarithms to the
basee and base 2 are denoted aslog and log2, respectively.
A few useful properties areQ1(a, 0) = 1 and the bounds

x

1 + x2
ψ(x) < Q(x) <

1

x
ψ(x) (1)

for x > 0 (and forx = 0). We also consider the integrals:
∫ ∞

x

y ψ(y) dy = −ψ(y)|∞x = ψ(x) (2)
∫ ∞

x

y2 ψ(y) dy =

∫ ∞

x

y(−dψ(y)) = xψ(x) +Q(x) (3)
∫ ∞

x

y3 ψ(y) dy =

∫ ∞

x

y2(−dψ(y)) = (x2 + 2)ψ(x). (4)

For sequencesf(n) and g(n), the standard big-O notation
f(n) = O(g(n)) denotes that|f(n)| ≤ c|g(n)| for a constant
c and sufficiently largen [11]. Finally, a useful upper bound
on the capacityC of a memoryless channelpY |X(·) is based
on the dual capacity expression [8, p. 128], [9, Eqn. (7)]. The
bound is

C ≤ max
x∈S

D
(

pY |X(·|x) ‖ qY (·)
)

(5)
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Fig. 1. Test densities for the real AWGN channel.

whereqY (·) is any choice of “test” densityqY (·) andS is the
set of permittedx.

III. R EAL AWGN CHANNEL

Consider the real-alphabet AWGN channel

Y = X + Z (6)

where Z is a Gaussian random variable with mean0 and
variance1. The channel density is

pY |X(y|x) = ψ(y − x). (7)

Consider the amplitude constraint|X | ≤ A whereA > 0.
We choose a family of test densities

qY (y) =

{

β
2A , |y| ≤ A
1−β√
2π
e−(y−A)2/2, |y| > A

(8)

whereβ ∈ [0, 1] is a parameter to be optimized. The test den-
sity is illustrated in Fig. 1. It is a mixture of two distributions,
a uniform distribution in the interval|y| ≤ A and a “split
and scaled” Gaussian density for|y| > A. The parameterβ
specifies the mixing proportion.

Inserting (8) into the divergence in (5), we have

D
(

pY |X(·|x)‖qY (·)
)

=

∫ ∞

−∞
pY |X(y|x) log pY |X(y|x)

qY (y)
dy

= − log
(√

2πe
)

− log

(

β

2A

)

[1−Q(A+ x)−Q(A− x)]

− log

(

1− β√
2π

)

[Q(A+ x) +Q(A− x)]

+
1

2

{

[(A+ x)2 + 1]Q(A+ x)− (A+ x)ψ(A + x)

+[(A− x)2 + 1]Q(A− x)− (A− x)ψ(A − x)
}

= log
2A

β
√
2πe

+ log
β
√
2πe

(1− β)2A
[Q(A− x) +Q(A+ x)]

+
1

2
[g(A− x) + g(A+ x)] (9)

whereg(u) , u2Q(u)− uψ(u).

A. McKellips’ bound

Using (1), we readily see thatg(u) ≤ 0 for u > 0. By
symmetry, we may restrict attention to0 ≤ x ≤ A so that
g(A− x) + g(A+ x) ≤ 0. Using (9), we thus have

D(pY |X(·|x)‖qY (·)) ≤ log
2A

β
√
2πe

+ log
β
√
2πe

(1− β)2A
[Q(A− x) +Q(A+ x)] . (10)

To recover McKellips’ bound [7], we choose

β =
2A√

2πe+ 2A
(11)

to make the second term in (10) equal to zero, and obtain

C ≤ log

(

1 +
2A√
2πe

)

. (12)

We now combine (12) with the capacity under the (weaker)
average power constraintE

[

X2
]

≤ A2. The noise power is 1
so the signal-to-noise ratio (SNR) isP =

√
A. We thus arrive

at McKellips’ bound in [7]:

C ≤ min

{

log

(

1 +

√

2P

πe

)

,
1

2
log (1 + P )

}

. (13)

Observe that the high-SNR power loss is10 log10(πe/2) ≈
6.30 dB. However, this comparison is based on equating the
maximum powerP with the average power. Instead, if we
use the uniform distribution forX then the average power is
P/3 and the high-SNR power loss reduces to the high-SNR
shaping loss of10 log10(πe/6) ≈ 1.53 dB (see [12]).

B. Refined Bound

McKellips’ bound seems tight for high SNR, roughly above
6 dB. For low SNR, below 0 dB, the average-constraint bound
1
2 log(1+P ) is tight. For the intermediate range between 0 to
6 dB, we derive a better bound next.

Considerβ for which log β
√
2πe

(1−β)2A is positive, i.e., consider
the range

β ≥ 2A√
2πe+ 2A

. (14)

Observe thatQ(A − x) +Q(A + x) increases withx if x ∈
[0, A], since the derivative evaluates toψ(A− x)− ψ(A+ x)
which is positive forx ∈ [0, A]. Thus, the RHS of (10) is
maximized by settingx = A, and we obtain the bound

D(pY |X(·|x)‖qY (·)) ≤ log
2A

β
√
2πe

+ log
β
√
2πe

(1 − β)2A
[1/2 +Q(2A)]

= (1/2−Q(2A)) log
2A√
2πe

− (1/2−Q(2A)) log β

− (1/2 +Q(2A)) log(1− β). (15)

Setting β = 1/2 − Q(2A), minimizes the RHS of (15).
However, from (14) this choice ofβ is valid only if

1/2−Q(2A) ≥ 2A√
2πe+ 2A

(16)
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Fig. 2. Capacity bounds for scalar AWGN channels. The rate units are bits
per channel use.

which is equivalent toA ≤ 2.0662 ≈
√

πe/2. Therefore,
usingP =

√
A, we have the bound

C ≤ β(P ) log

√

2P

πe
+He(β(P )), P ≤ 6.303dB (17)

whereβ(P ) = 1/2−Q(2
√
P ) andHe(x) = −x log(x)−(1−

x) log(x) is the binary entropy function with the units of nats.
The bounds are plotted in Fig. 2, where the lower bound is

taken from [7] with optimized input distribution. The refined
bound is best for SNR from 0 to 5 dB but is valid only for
SNR below 6.3 dB.

IV. COMPLEX AWGN CHANNEL

Consider next the complex-alphabet AWGN channel

Y = X + Z (18)

whereZ = ZR+jZI , j =
√
−1, andZR, ZI are independent

Gaussian random variables with mean0 and variance1. The
channel density in Cartesian coordinates withx = [xR, xI ]
andy = [yR, yI ] is

pY |X(y|x) = 1

2π
e−‖y−x‖2/2. (19)

In spherical coordinates withx = [|x|, φx] and y = [|y|, φy],
the density is

pY |X(y|x) = 1

2π
e−(|y|

2+|x|2−2|x||y| cos(φy−φx))/2. (20)

Consider again the peak power constraint|X | ≤ A where
A > 0. We choose the test density

qY (y) =







β
πA2 , |y| ≤ A

1−β

2π
(

1+
√

π/2A
)e−(|y|−A)2/2, |y| > A. (21)

Again, the test density is uniform in the interval|y| ≤ A and
is a “split and scaled” Gaussian density for|y| > A. Inserting

into the divergence (5), we have1

D
(

pY |X(·|x)‖qY (·)
)

= − log(2πe)− E [log qY (Y )]

= log
πA2

2πeβ
− E

[

log

(

qY (Y )
πA2

β

)]

= log
A2

2eβ
−
∫ ∞

A

e−(z2+|x|2)/2I0(z|x|)


log





(1− β)πA2

2π
(

1 +
√

π/2A
)

β



− (z −A)2

2



 z dz. (22)

= log
A2

2eβ
+ log





2e
(

1 +
√

π/2A
)

β

(1− β)A2



Q1(|x|, A)

− g̃(|x|, A) (23)

where

g̃(|x|, A) =
∫ ∞

A

e−(z2+|x|2)/2I0(z|x|)
[

1− (z −A)2

2

]

z dz.

(24)

Lemma 1: g̃(|x|, A) in (24) is positive for|x| ∈ [0, A].
Proof: We use the definition ofI0(x) to re-write (24) as

1√
2π

∫ π

0

e−(|x|2/2) sin2 φ

[∫ ∞

A

[

2− (z −A)2
]

z ψ (z − |x| cosφ) dz
]

dφ. (25)

The integral in square brackets can be simplified by substitut-
ing z̃ = z − |x| cosφ andu = A− |x| cosφ to become

∫ ∞

u

[

2− (z̃ − u)2
]

(z̃ − u+A)ψ (z̃) dz̃. (26)

Using (2)-(4), the integral (26) evaluates to

u(A− u) [ψ(u)− uQ(u)] + (A+ u)Q(u) (27)

or alternatively to

−(A− u)
[

(1 + u2)Q(u)− uψ(u)
]

+ 2AQ(u). (28)

Note that we have0 ≤ u ≤ A+ |x|. We consider two cases.
• 0 ≤ u ≤ A: We haveu(A − u) ≥ 0 and the bound on

the right-hand side of (1) tells us that (27) is negative.
• A ≤ u ≤ A+ |x|: We haveA− u ≤ 0 and the bound on

the left-hand side of (1) tells us that (28) is positive.
Thus, the expression (27) (or equivalently (28)) is positive.
But this implies that the integrals in (25)-(26) are all positive,
and we conclude that̃g(A, x) is positive.

A. McKellips-type Bound

Using Lemma 1 in (23), we have

D
(

pY |X(·|x)‖qY (·)
)

≤ log
A2

2eβ
+ log





2e
(

1 +
√

π/2A
)

β

(1− β)A2



Q1(|x|, A). (29)

1By symmetry we may restrict attention toφx = 0, i.e., realx satisfying
0 ≤ x ≤ A.
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By choosingβ to make the second term above zero, we have

β =
A2

A2 + 2e
(

1 +
√

π/2A
) (30)

which results in the McKellips-type bound

D
(

pY |X(·|x)‖qY (·)
)

≤ log

(

1 +
√

π/2A+
A2

2e

)

. (31)

Since this bound is independent ofx, we have

C < log

(

1 +
√

π/2A+
A2

2e

)

. (32)

We combine (32) with the capacity under the (weaker) average
power constraintE

[

|X |2
]

≤ A2. Observe that the complex
noise has power 2 so the corresponding SNR isP = A2/2.
We thus have the simple bound

C ≤ min

{

log

(

1 +
√
πP +

P

e

)

, log (1 + P )

}

(33)

where we measure the rate per complex symbol (two real
dimensions).

The high-SNR power loss is10 log10(e) ≈ 4.34 dB. Again,
however, this comparison is based on equating the maximum
power P with the average power. Instead, if we use the
uniform distribution forX then the average power isP/2
and the high-SNR power loss reduces to a shaping loss of
10 log10(e/2) ≈ 1.33 dB.

B. Refined Bound

We refine the upper bound for the complex AWGN channel
in a manner similar to the refinement in the real AWGN case.
First, rewrite the final expression forD

(

pY |X(·|x)‖qY (·)
)

in
(22) as

D
(

pY |X(·|x)‖qY (·)
)

= log

(

A2

2eβ

)

+ log
2β(1 +

√

π/2A)

(1− β)A2
Q1(|x|, A) + g(|x|, A) (34)

where

g(|x|, A) =
∫ ∞

A

(z −A)2

2
z e−(z2+|x|2)/2I0(z|x|) dz.

The functionsQ1(|x|, A) andg(|x|, A) are both increasing in
|x|. This is proved as part of the generaln-dimensional case

in Appendix B. Hence, for a positivelog
2β(1+

√
π/2A)

(1−β)A2 the
expression (34) is maximized at|x| = A, and we obtain

D
(

pY |X(·|x)‖qY (·)
)

≤ log

(

A2

2eβ

)

+ log
2β(1 +

√

π/2A)

(1− β)A2
Q1(A,A) + g(A,A) (35)

provided that

β ≥ A2

A2 + 2(1 +
√

π/2A)
. (36)
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Fig. 3. Capacity bounds for complex AWGN channels. The rate units are
bits per 2 dimensions.

Rewriting the bound of (35) as

D
(

pY |X(·|x)‖qY (·)
)

≤ Q1(A,A) log
1 +

√

π/2A

e

+ (1−Q1(A,A)) log
A2

2e
+ g(A,A)

− (1−Q1(A,A)) log β −Q1(A,A) log(1− β) (37)

we see thatβ = 1 − Q1(A,A) minimizes the RHS of (37).
However, from (36) this choice ofβ is valid only if

1−Q1(A,A) ≥
A2

A2 + 2(1 +
√

π/2A)
(38)

which requiresA < 2.36 numerically. Therefore, settingP =
A2/2 we have

C ≤(1− β(P )) log(1 +
√
πP ) + β(P ) log

P

e

+He(β(P )) − g̃(
√
2P,

√
2P ), P ≤ 4.45dB (39)

whereβ(P ) = 1 − Q1(
√
2P ,

√
2P ) and we have used the

relationshipg̃(|x|, A) = Q1(|x|, A) − g(|x|, A).
The bounds are plotted in Fig. 3. The lower bound is ob-

tained by evaluating mutual information for the equi-probable
complex constellation

{0} ∪
⋃

0≤k≤⌊A/2⌋−1

{(A− 2k)ejnθk : 0 ≤ n ≤ Nk} (40)

where θk = 2π
3(A−2k) andNk = ⌊3(A − 2k)⌋. We see that

the refined upper bound, valid for SNR less than 4.45 dB,
is close to the lower bound. The numerical evaluation of
minβ maxxD

(

pY |X(·|x)‖qY (·)
)

is seen to yield best bounds
throughout.
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point. Forx ∈ A3, (X + U)|X = x is distributed uniformly in the shaded
region aroundx.

C. Analytical lower bound

A lower bound on the capacity of real AWGN channels
was derived in [12] by using PAM-like constellations. The
input was peak-power constrained. By selecting the number of
points suitably, PAM achieves rates within a small gap from
the average-power constrained capacity1

2 log(1 + SNR).
For two-dimensions, consider the constellation

AN = {0} ∪
N−1
⋃

n=1

{(n+ 0.5)∆ej(l+0.5)θn : l = 0, 1, . . . , 2n}

(41)
whereN ≥ 2 is a positive integer,∆ is a positive real number
and θn = 2π/(2n + 1). The setAN containsN2 points
including the origin and(2n + 1) equally-spaced points on
a circle of radius(n+ 0.5)∆ for n = 1, 2, . . . , N − 1. The 9
points ofA3 are shown in Fig. 4 for illustration.

Define a random variableU jointly distributed withX ∼
Unif(AN ) such thatX̃ = X+U is uniformly distributed in the
circle of radiusN∆ around the origin. For the constellation
A3, the distribution ofX̃ |X = x is illustrated through the
shading around each pointx ∈ A3 in Fig. 4. Specifically, for
the constellationAN , U is defined so that(X + U)|X = 0
is uniform in the circle of radius∆ around the origin, and
(X +U)|X = (n+ 0.5)∆ej(l+0.5)θn is uniform in the region

{(r cos θ, r sin θ) : n ≤ r

∆
≤ n+ 1, l ≤ θ

θn
≤ l + 1}. (42)

As before, the received value isY = X+Z. SinceX̃−X−Y
forms a Markov chain, we haveI(X ;Y ) ≥ I(X̃;Y ) by the
data processing inequality. We further lower boundI(X̃;Y )
by using a strategy similar to the real case in [12]. However,
unlike the real case,U and X are correlated resulting in
additional computations.

Since I(X̃ ;Y ) = h(X̃) − h(X̃ |Y ) and h(X̃) =
log2 πN

2∆2, we lower boundI(X̃;Y ) by first upper bound-

ing h(X̃|Y ) as follows:

h(X̃|Y = y) = −
∫

p(x̃|y) log2 p(x̃|y)dx̃

≤ −
∫

p(x̃|y) log2 qy(x̃)dx̃ (43)

whereqy(x̃) is any valid density parametrized byy. Choosing
qy(x̃) = 1

2πs2 e
−||x̃−ky||2/2s2 (with parametersk and s to be

optimized later), we obtain

h(X̃|Y = y)

log2 e
≤ log 2πs2 +

1

2s2
E[||X̃ − ky||2|Y = y]

h(X̃|Y )

log2 e
= log 2πs2 +

1

2s2
E[||X̃ − kY ||2]. (44)

Expanding usingX̃ = X +U andY = X +Z, and using the
fact thatZ is independent ofX andU , we have

E[||X̃−kY ||2] = N2∆2

2
−2(1+ρN)PNk+(PN+2)k2 (45)

wherePN , E[X2], ρN , Re(E[X∗U ])/PN , and we have
usedE[||X̃||2] = N2∆2

2 . To obtain the lowest upper bound
for E[||X̃ − kY ||2], we setk = k∗ = (1+ρN )PN

2+PN
and s2 =

1
2E[||X̃ − k∗Y ||2]. Simplifying, we have

h(X̃|Y ) ≤ log2

(

πe

[

N2∆2

2
− P 2

N (1 + ρN )2

PN + 2

])

. (46)

We continue to bound lowerI(X̃;Y ) by

log2 πN
2∆2 − log2

(

πe

[

N2∆2

2
− P 2

N (1 + ρN)2

PN + 2

])

= log2N
2 − log2

e

2
− log2

(

N2 − P 2
N (1 + ρN )2

(1 + PN/2)∆2

)

. (47)

Defining C̃ = log2(1 + PN/2), and settingN2 = α2C̃ =
α(1 + PN/2) and simplifying, we have

I(X̃ ;Y ) ≥ C̃ − log2
e

2
− log2

(

N2

α
− P 2

N (1 + ρN )2

N2∆2

)

.

(48)

In Appendix C, we show thatPN = ∆2N2

2

(

1− O(1/N2)
)

,
−0.66 ≤ ρNN

2/(1−O(1/N2)) ≤ −0.64 and provide details
of the simplification needed to obtain the following lower
bound:

I(X ;Y ) ≥ C̃ − 0.45− log2

(

1 +
1.82

α
+O

(

1

N2

))

. (49)

We see that the gap to the average-power constrained capacity
with a finite constellation can be made as small as 0.45
by choosing a large enoughα at high rates (largeN ). For
moderateN , choosingα = 4 results in a gap of less than 1
to capacity. Finally, the rate in (47) is achieved at a peak-
power constraint of|X | ≤ (N − 0.5)∆ or an equivalent
SNR= (N−0.5)2∆2/2. This lets one compare the analytical
lower bound against the other bounds shown in Fig. 3.
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V. n-DIMENSIONAL AWGN CHANNEL

Consider next then-dimensinal AWGN channel

Y = X + Z (50)

whereZ = [Z1, Z2, . . . , Zn] has independent Gaussian entries
with mean0 and variance1. The channel density in Cartesian
coordinates withx = [x1, . . . , xn] andy = [y1, . . . , yn] is

pY |X(y|x) = 1

(2π)n/2
e−‖y−x‖2/2. (51)

Then-dimensional spherical coordinate system has a radial
coordinater andn−1 angular coordinatesφi, i = 1, 2, . . . , n−
1, where the domain ofφi, i = 1, 2, . . . , n− 2, is [0, π), and
the domain ofφn−1 is [0, 2π).2 For a pointx with spherical
coordinatesx = [rx, φx,1, . . . , φx,n−1] we can compute the
Cartesian coordinatesx = [x1, . . . , xn] via

x1 = rx cos(φx,1)

x2 = rx sin(φx,1) cos(φx,2)

x3 = rx sin(φx,1) sin(φx,2) cos(φx,3)

...

xn−1 = rx sin(φx,1) . . . sin(φx,n−2) cos(φx,n−1)

xn = rx sin(φx,1) . . . sin(φx,n−2) sin(φx,n−1).

In spherical coordinates the channel density has a complex
form due to the many sine and cosine terms. However, by
symmetry we may restrict attention to pointsx with φx,i = 0
for all i. For suchx, the channel density inn-dimensional
spherical coordinates is simply

pY |X(y|x) = 1

(2π)n/2
e−(r

2
y+r2x−2rxry cosφy,1)/2. (52)

Consider now then-dimensional amplitude constraint
‖X‖ ≤ A whereA > 0. We choose the test density

qY (y) =

{

β
Vol(A) , ry ≤ A

1−β
kn(A)(2π)n/2 e

−(ry−A)2/2, ry > A
(53)

where Vol(r) is the volume of ann-dimensional ball with
radiusr andkn(A) is a constant that ensures thatqY (·) is a
density. Again, the test density is uniform in the intervalry ≤
A and is a “split and scaled” Gaussian density forry > A.
We have3

Vol(r) =
πn/2

Γ (n/2 + 1)
rn (54)

whereΓ(·) is Euler’s gamma function. To computekn(A),
observe that we require

1

kn(A)(2π)n/2

∫ ∞

A

∫ π

0

· · ·
∫ π

0

∫ 2π

0

e−(r−A)2/2 dV = 1

(55)

where

dV = rn−1dr

[

n−2
∏

i=1

sinn−1−i(φi) dφi

]

dφn−1 (56)

2See http://en.wikipedia.org/wiki/N-sphere.
3See http://en.wikipedia.org/wiki/Volumeof an n-ball .

is the spherical volume element inn dimensions. We thus have

kn(A) =
2

2n/2 Γ
(

n
2

)

∫ ∞

A

e−(r−A)2/2 rn−1dr

=
2

2−n
2

Γ
(

n
2

)

∫ ∞

A

e
−(r−A)2

2

(

n−1
∑

i=0

(

n− 1

i

)

An−1−i(r −A)i

)

dr

=
2

2−n
2

Γ
(

n
2

)

[

n−1
∑

i=0

(

n− 1

i

)

An−1−i

∫ ∞

0

rie−r2/2dr

]

. (57)

Using the standard integral
∫ ∞

0

xne−ax2

dx =
Γ
(

n+1
2

)

2a
n+1
2

the expression forkn(A) in (57) simplifies to

kn(A) =

n−1
∑

i=0

(

n− 1

i

)

Γ
(

n−i
2

)

2i/2 Γ
(

n
2

) Ai. (58)

For example, forn = 1 we havek1 = 1, and forn = 2 we
havek2 = 1 +

√

π/2A.

A. McKellips-type Bound

The divergence in (5) can be written as

D
(

pY |X(·|x)‖qY (·)
)

= −n
2
log(2πe)− E

[

log qY (Y )
]

= log
Vol(A)

(2πe)n/2β
− E

[

log

(

qY (Y )
Vol(A)
β

)]

. (59)

The expectation in the above equation can be simplified and
written as

2

2
n−1
2 Γ

(

n−1
2

)

∫ π

0

sinn−2(φ1) e
−(r2x/2) sin

2 φ1

{∫ ∞

A

ψ (z − rx cosφ1)

[

log
(1− β)Vol(A)
(2π)n/2β kn(A)

− (ry −A)2

2

]

rn−1
y dry

}

dφ1.

(60)

For n ≥ 2, define the functions

Ĩn(x) =
2

2
n−1
2 Γ

(

n−1
2

)√
2π

∫ π

0

ex cosφ (sinφ)n−2 dφ (61)

Qn(x,A) =

∫ ∞

A

e−(z2+x2)/2 Ĩn(zx) z
n−1dz (62)

gn(x,A) =

∫ ∞

A

(z −A)2

2
e−(z2+x2)/2 Ĩn(zx) z

n−1dz (63)

g̃n(x,A) =

∫ ∞

A

(

n

2
− (z −A)2

2

)

e−(z2+x2)/2 Ĩn(zx) z
n−1dz.

(64)

In terms of the above functions, we can write

D
(

pY |X(·|x)‖qY (·)
)

= log
Vol(A)

(2πe)n/2β

+

(

log
(2πe)n/2β kn(A)

(1− β)Vol(A)

)

Qn(x,A) − g̃n(x,A). (65)

http://en.wikipedia.org/wiki/N-sphere
http://en.wikipedia.org/wiki/Volume_of_an_n-ball
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In Appendix A, we show that̃gn(x,A) is positive. We make
the secondlog term in (65) zero by choosing

β =
Vol(A)

Vol(A) + (2πe)n/2kn(A)
(66)

and we obtain the bound

C ≤ log

(

kn(A) +
Vol(A)
(2πe)n/2

)

.

We combine this result with the capacity under the (weaker)
average power constraintE

[

‖X‖2
]

≤ A2. Observe that the
complex noise has powern so the corresponding SNR isP =
A2/n. We thus have the bound

C ≤ min







log



kn(
√
nP ) +

Vol
(√

nP
)

(2πe)n/2



 ,
n

2
log (1 + P )







(67)

where we measure the rate pern-dimensional symbol.

B. Refined Bound

The refinement is similar to the 2-dimensional case. We
rewriteD

(

pY |X(·|x)‖qY (·)
)

in (65) as follows:

D
(

pY |X(·|x)‖qY (·)
)

= log
Vol(A)

(2πe)n/2β

+

(

log
(2π)n/2kn(A)β

(1− β)Vol(A)

)

Qn(x,A) + gn(x,A) (68)

where we have used the relationshipg̃n(x,A) = n
2Qn(x,A)−

gn(x,A). As shown in Appendix B, the functionsQn(x,A)
and gn(x,A) are both increasing inx. Hence, for a positive

log (2π)n/2kn(A)β
(1−β)Vol(A) , the RHS of (68) is maximized atx = A,

and we obtain the bound

D
(

pY |X(·|x)‖qY (·)
)

≤ log
Vol(A)

(2πe)n/2β

+

(

log
(2π)n/2βkn(A)

(1− β)Vol(A)

)

Qn(A,A) + gn(A,A) (69)

provided that

β ≥ Vol(A)
(2π)n/2kn(A) + Vol(A)

. (70)

Rewriting (69) as

D
(

pY |X(·|x)‖qY (·)
)

≤ Qn(A,A) log
kn(A)

en/2

+ (1−Qn(A,A)) log
Vol(A)
(2πe)n/2

+ gn(A,A)

− (1−Qn(A,A)) log β −Qn(A,A) log(1− β) (71)

we see thatβ = 1 − Qn(A,A) minimizes the RHS of (71).
However, from (70) this choice ofβ is valid only if

1−Qn(A,A) ≥
Vol(A)

(2π)n/2kn(A) + Vol(A)
(72)

which requiresA < A∗
n, whereA∗

n is the smallest positive
value that results in equality in (72). The valueA∗

n can be

determined numerically. ChoosingP = A2/n and P ∗
n =

(A∗
n)

2/n, we obtain the bound

C ≤(1− βn(P )) log
(

kn(
√
nP )

)

+ βn(P ) log
Vol
(√

nP
)

(2πe)n/2

+He(βn(P ))− g̃(
√
nP,

√
nP ), P ≤ P ∗

n (73)

whereβn(P ) = 1−Qn(
√
nP ,

√
nP ).

C. Volume-based Lower Bound

To obtain a lower bound, we use the volume-based method
introduced in [13]. The capacity of then-dimensional AWGN
channelY = X + Z with the peak constraint|X | ≤ A is

C = lim
m→∞

1

m
sup

p(xm)∈Pm
n

I(Xm;Y m) (74)

wherePm
n is the set of all valid distributions satisfying the

n-dimensional peak-power constraint. Now consider

1

m
I(Xm;Y m) =

1

m
(h(Y m)− h(Zm))

=
1

m
h(Y m)− n

2
log(2πe). (75)

Using the entropy-power inequality, we have

sup
p(xm)∈Pm

n

e
2

mnh(Y m) ≥ sup
p(xm)∈Pm

n

e
2

mnh(Xm) + e
2

mnh(Zm)

≥ e
2

mn log(Vol(A))m + elog(2πe)

≥ (Voln(A))2/n + 2πe. (76)

Therefore, we have

sup
p(xm)∈Pm

n

1

m
h(Y m) ≥ n

2
log((Vol(A))2/n + 2πe). (77)

Using (77) in (75), we have

C ≥ n

2
log

(

1 +
Vol(A)2/n

2πe

)

= log

(

O(An−2) +
Vol(A)
(2πe)n/2

)

. (78)

Comparing (78) with the McKellips-type upper bound in
(67), we see that two bounds meet as SNR tends to infinity,
and they differ byO(An−1) inside the logarithm. Thus, for
moderate SNR the McKellips-type bound could be improved.
Comparing with the refined bound is not straight-forward, and
a numerical comparison forn = 2 is shown in Fig. 3. The case
n = 4 is interesting because coherent optical communication
with two polarizations results in a 4-dimensional signal space.
The bounds forn = 4 are plotted in Fig. 5. As expected,
the volume-based lower bound meets the McKellips-type
bound at high SNR. The analytical refined bound is valid
for SNR less thanP ∗

4 ≈ 7.92 dB. Numerical evaluation of
minβ maxxD

(

pY |X(·|x)‖qY (·)
)

is seen to be close to the
lower bound for moderate SNR. For lower SNR, the volume-
based lower bound is not expected to be tight.
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Fig. 5. Capacity bounds for 4-dimensional AWGN channels. The rate units
are bits per 4 dimensions.

D. Remarks

Based on extensive numerical evaluations, we conjecture
that the expression forD

(

pY |X(·|x)‖qY (·)
)

in (68), denoted
as

Dn(β, x) , log
Vol(A)

(2πe)n/2β
+ gn(x,A)

+

(

log
(2π)n/2kn(A)β

(1− β)Vol(A)

)

Qn(x,A) (79)

is maximized overx ∈ [0, A] (for a fixedβ) at the endpoints
x = 0 or x = A. Under this conjecture, we have

min
β

max
x

Dn(β, x) = min
β

max(Dn(β, 0), Dn(β,A)). (80)

Now, writing Dn(β, x) as

Dn(β, x) = −(1−Qn(x,A)) log β −Qn(x,A) log(1− β)

+ terms independent ofβ (81)

we see that, for a fixedx andβ ∈ [0, 1], Dn(β, x) achieves
a minimum atβ̂n(x) = 1 − Qn(x,A), decreases withβ for
β ∈ [0, β̂n(x)], and increases forβ ∈ [β̂n(x), 1]. Let β∗

n(A)
be the value ofβ for whichDn(β, 0) = Dn(β,A).

Using the above, the minmax in (80) evaluates to

min{Dn(β
∗
n(A), A),max(Dn(β̂n(0), 0), Dn(β̂n(0), A)),

max(Dn(β̂n(A), 0), Dn(β̂n(A), A))}. (82)

To obtain an expression forβ∗
n(A), we simplify Dn(β, 0) =

Dn(β,A) resulting in

β∗
n(A) =

Vol(A)
Vol(A) + (2π)n/2ecn(A)kn(A)

(83)

wherecn(A) =
gn(A,A)− gn(0, A)

Qn(0, A)−Qn(A,A)
. Interestingly, asA→

∞, cn(A) → −1/2, and we see thatβ∗
n(A) tends to the

McKellips-type expression in (66).
Finally, we remark that the best upper bounds are as follows:

1) at low SNR: the average-power capacityn
2 log(1 + P );

2) at moderate SNR: the refined upper bound which eval-
uates toDn(β̂n(A), A);

3) at high SNR: Dn(β
∗
n(A), A) which tends to the

McKellips-type bound.

The exact range of low, moderate, and high SNR depends on
the dimensionn.
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APPENDIX A

We show that the functioñgn(x,A) in (64) is positive. First,
we rewriteg̃n(x,A) as

g̃n(x,A) =
1

2
n−1
2 Γ

(

n−1
2

)

∫ π

0

sinn−2(φ) e−(x2/2) sin2 φ

{∫ ∞

A

[

n− (z −A)2
]

ψ (z − x cosφ) zn−1 dz

}

dφ. (84)

Now it suffices to show that the integral overz above is
positive. We set̃z = z−x cosφ, u = A−x cosφ and simplify
the integral as

∫ ∞

u

[

n− (z̃ − u)2
]

(z̃ − u+A)n−1ψ (z̃) dz̃. (85)
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For example, forn = 2 we recover (26). Now (85) can be
rewritten as

n−1
∑

i=0

(

n− 1

i

)

An−1−i

∫ ∞

u

[n(z̃ − u)i − (z̃ − u)i+2]ψ(z̃)dz̃.

(86)
We claim that the integral inside the summation above is
positive. In fact, we prove the following stronger inequality
for u ≥ 0 and a non-negative integeri:

∫ ∞

u

[(i+ 1)(z − u)i − (z − u)i+2]ψ(z)dz ≥ 0. (87)

Sincen ≥ i + 1 in (86), the inequality (87) implies that the
integral in (86) is positive. A proof of (87) is as follows:
∫ ∞

u

(z − u)iψ(z)dz =

∫ ∞

u

(z − u)iψ(z)(z − u)′dz

(a)
= (z − u)i+1ψ(z)

∣

∣

∞
u

−
∫ ∞

u

(z − u)[(z − u)i(−zψ(z))

+ i(z − u)i−1ψ(z)]dz

=

∫ ∞

u

(z − u)i+2ψ(z)dz + u

∫ ∞

u

(z − u)i+1ψ(z)dz

− i

∫ ∞

u

(z − u)iψ(z)dz

where(a) uses integration by parts. The above simplifies to
(87) becauseu

∫∞
u (z − u)i+1ψ(z)dz ≥ 0.

APPENDIX B

We use the double factorial notation

n!! =

{

2 · 4 · · ·n, n : even,

1 · 3 · · ·n, n : odd.

Using ex cosφ =
∑∞

m=0
(x cosφ)m

m! in the integral of (61), we
get the Taylor series expansion forĨn(x), n ≥ 2, as

Ĩn(x) =
2(2−n)/2

Γ
(

n−1
2

)√
π

∞
∑

m=0

an−2,m
xm

m!
(88)

wherean,m =
∫ π

0
sinn φ cosm φdφ. For oddm, it is easy to

see thatan,m = 0. For evenm, we have

an,m =















π (m− 1)!! (n− 1)!!

(n+m)!!
, n : even,

2 (m− 1)!! (n− 1)!!

(n+m)!!
, n : odd.

(89)

Using the aboveam,n in (88) and simplifying, we have

Ĩn(x) = dn

∞
∑

k=0

(2k − 1)!!

(n+ 2k − 2)!!

x2k

(2k)!
(90)

with a suitably-defineddn.
We show that the derivatives of the functionsQn(x,A) and

gn(x,A) in (62) and (63) with respect tox are non-negative.

First, the derivative ofe−x2/2Ĩn(zx) with respect tox in
Taylor series form is seen to be

d

dx
(e−x2/2Ĩn(zx))

= dne
−x2/2

∞
∑

k=1

(2k − 3)!!

(n+ 2k − 2)!!

z2kx2k−1

(2k − 2)!

− dne
−x2/2

∞
∑

k=0

(2k − 1)!!

(n+ 2k − 2)!!

z2kx2k+1

(2k)!

= dne
−x2/2

∞
∑

k=0

(

z2k+2

n+ 2k
− z2k

)

(2k − 1)!!

(n+ 2k − 2)!!

x2k+1

(2k)!
.

(91)

Using (91) in the definition ofQn(x,A), we see that

dQn(x,A)

dx

=

∞
∑

k=0

tn,k(x)

∫ ∞

A

(

z2k+2

n+ 2k
− z2k

)

zn−1e−z2/2dz (92)

wheretn,k(x) , dne
−x2/2 (2k−1)!!

(n+2k−2)!!
x2k+1

(2k)! . We now show that
the integral in (91) is non-negative, which implies that the
derivative ofQn(x,A) with respect tox is non-negative. We
have
∫ ∞

A

(z2k)zn−1e−z2/2dz =

∫ ∞

A

e−z2/2

(

zn+2k

n+ 2k

)′
dz

=
−An+2ke−A2/2

n+ 2k
+

∫ ∞

A

(

z2k+2

n+ 2k

)

zn−1e−z2/2dz (93)

where we used integration by parts in the last step. Rearranging

the above equation, sinceA
n+2ke−A2/2

n+2k > 0, we see that the
integral in (92) is non-negative.

For gn(x,A), a similar approach is used. Using (91) in the
definition of gn(x,A), we see that

dgn(x,A)

dx
=

∞
∑

k=0

tn,k(x)

∫ ∞

A

(

z2k+2

n+ 2k
− z2k

)

(z −A)2

2
zn−1e−z2/2dz.

(94)

A proof for the non-negativity of the integral in (94) is
∫ ∞

A

(z2k)
(z −A)2

2
zn−1e−z2/2dz

=

∫ ∞

A

(z −A)2

2
e−z2/2

(

zn+2k

n+ 2k

)′
dz

=

∫ ∞

A

(

z2k+2

n+ 2k

)

(z −A)2

2
zn−1e−z2/2dz

−
∫ ∞

A

(

zn+2k

n+ 2k

)

(z −A)e−z2/2dz (95)

where we used integration by parts in the last step. Rearranging
the above equation, since

(

zn+2k

n+2k

)

(z − A)e−z2/2 > 0 for
z > A, we see that the integral in (94) is non-negative.
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APPENDIX C

SinceX is uniform inAN and |AN | = N2, we have

PN = E[||X ||2] = 1

N2

N−1
∑

n=1

2n
∑

l=0

(n+ 0.5)2∆2

=
∆2

N2

N−1
∑

n=1

(2n+ 1)

(

n2 + n+
1

4

)

(96)

=
∆2

2

(

N2 − 1

2

(

1 +
1

N2

))

. (97)

To evaluateρN = E[X∗U ]/PN , we consider

E[X∗(X + U)] = E[E[X∗(X + U)|X ]].

Now X∗(X + U)|X = 0 is zero with probability 1, and
(X +U)|X = (n+ 0.5)∆ej(l+0.5)θn is uniform in the region
specified in (42). SoX∗(X + U)|X = (n+ 0.5)∆ej(l+0.5)θn

is uniform in the region

{(r cos θ, r sin θ) : n(n+ 0.5) ≤ r

∆2
≤ (n+ 1)(n+ 0.5),

−0.5 ≤ θ

θn
≤ 0.5}. (98)

A calculation shows that

E[X∗(X + U)|X = (n+ 0.5)∆ej(l+0.5)θn ]

= ∆2

(

n2 + n+
1

3

)

sinc
π

2n+ 1
(99)

where sincx = sin x
x . Therefore, we have

E[X∗(X + U)]

=
1

N2

N−1
∑

n=1

2n
∑

l=0

∆2

(

n2 + n+
1

3

)

sinc
π

2n+ 1

=
∆2

N2

N−1
∑

n=1

(2n+ 1)

(

n2 + n+
1

3

)

sinc
π

2n+ 1
. (100)

SinceE[X∗(X + U)] = E[||X ||2] + E[X∗U ], we have

ρNPN =
∆2

N2

N−1
∑

n=1

(2n+ 1)

[(

n2 + n+
1

3

)

sinc
π

2n+ 1

−
(

n2 + n+
1

4

)]

. (101)

The sequencean = (n2 + n + 1/4) − (n2 + n +

1/3)sinc(π/(2n+ 1)) is increasing and converges toπ
2−2
24 ≤

0.33 with a1 ≥ 0.32. We thus have

−0.33

(

1− 1

N2

)

≤ ρNPN

∆2
≤ −0.32

(

1− 1

N2

)

. (102)

From (97), usingPN = ∆2N2

2 (1−O(1/N2)), we have

−0.66
(

1−O
(

1/N2
))

≤ ρNN
2 ≤ −0.64

(

1−O
(

1/N2
))

.
(103)

The expression inside the secondlog term in (48) is

N2

α
− P 2

N (1 + ρN )2

N2∆2
.

SincePN = ∆2N2

2 (1 − 0.5/N2 −O(1/N4)), we have

P 2
N

N2∆2
= PN

PN

∆2N2
=

(

N2

α
− 1

)(

1− 0.5

N2
−O(1/N4)

)

where we have also usedN2 = α(1 + PN/2). We arrive at

N2

α
− P 2

N (1 + ρN )2

N2∆2

=
N2

α
−
(

N2

α
− 1

)

(1− 0.5/N2 −O(1/N4))(1 + ρN )2

≥ 1 +
1.82

α
+O(1/N2)

usingρNN2 ≥ −0.66(1− O(1/N2)). This explains the final
analytical lower bound given in (49).
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