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Optimal Zero Delay Coding of Markov

Sources: Stationary and Finite Memory Codes

Richard G. Wood, Tamás Linder, and Serdar Yüksel

Abstract

The optimal zero delay coding of a finite state Markov source is considered. The existence and

structure of optimal codes are studied using a stochastic control formulation. Prior results in the literature

established the optimality of deterministic Markov (Walrand-Varaiya type) coding policies for the finite

time horizon problem, and the optimality of both deterministic nonstationary and randomized stationary

policies for the infinite time horizon problem. Our main result here shows that for any irreducible and

aperiodic Markov source with a finite alphabet, deterministic and stationary Markov coding policies are

optimal for the infinite horizon problem. In addition, the finite blocklength (time horizon) performance

on an optimal (stationary and Markov) coding policy is shown to approach the infinite time horizon

optimum at a rate O(1/T ). The results are extended to systems where zero delay communication takes

place across a noisy channel with noiseless feedback.

Keywords: Zero delay source coding, real time coding, causal coding, quantization, stochastic

control, Markov sources, Markov decision processes.

I. INTRODUCTION

This paper is concerned with optimal zero delay coding of Markov sources for infinite time

horizons. Zero delay coding is a variant of the original lossy source coding problem introduced

by Shannon [1].

A. Block Coding and Zero Delay Coding

Recall Shannon’s lossy source coding problem [2]: Given is an X-valued information source

{Xt}t≥0, where we assume that X is a finite set. An encoder compresses the source at a rate R

bits per source symbol. A decoder reproduces the information source via the sequence {X̂t}t≥0

of X̂-valued random variables, where X̂ is also a finite set. One is typically concerned with the

transmission rate and the distortion of the system.
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In particular, a (2RT , T )-rate distortion block code [2] encodes T source symbols X[0,T−1] :=

(X0, . . . , XT−1) at a time, and comprises an encoding function ηT : XT → {1, . . . , 2RT} and a

decoding function γT : {1, . . . , 2RT} → X̂
T . This code has rate R bits per source symbol, and

(expected) distortion given by

DT :=
1

T
E

[

T−1
∑

t=0

d
(

Xt, X̂t

)

]

,

where (X̂0, . . . , X̂T−1) = γT (ηT (X[0,T−1])) and d : X × X̂ → [0,∞) is a so called single letter

distortion measure.

A rate distortion pair (R,D) is said to be achievable if there exists a sequence of (2RT , T )-rate

distortion codes (ηT , γT ) such that

lim sup
T→∞

DT ≤ D. (1)

By a classical result, if the source is stationary and ergodic, the minimum achievable distortion

for rate R is given by the distortion rate function of the source

D(R) = lim
T→∞

DT (R), (2)

where DT (R) is the T th order distortion rate function which can be calculated from the statistics

of the block X[0,T−1] (see, e.g., [3]).

As is evident from the definition of block codes, such a coding scheme relies on encoding

blocks of data (X0, . . . , XT−1) together, which may not be practical for many applications as the

encoder has to wait until it has all T source symbols before it can start encoding and transmitting

the data. In zero delay source coding, the encoder can produce the code of X̂t as soon as the

source symbol Xt is available. Such coding schemes have many practical applications in emerging

fields such as networked control systems (see [4] and references therein for an extensive review

and discussion of applications), real-time mobile audio-video systems (as in streaming systems

[5] [6]), and real-time sensor networks [7], among other areas.

In this paper, we consider a zero delay (sequential) encoding problem where the goal is

to encode an observed information source without delay. It is assumed that the information

source {Xt}t≥0 is an X-valued discrete time Markov process, where X is a finite set. The

transition probability matrix P and initial distribution π0 for X0 completely determine the process

distribution, so we will use the shorthand {Xt} ∼ (π0, P ). The encoder encodes (quantizes) the

source samples and transmits the encoded versions to a receiver over a discrete noiseless channel

with common input and output alphabet M := {1, 2, . . . ,M}, where M is a positive integer.

In the following, we build on the notation in [8]. Formally, the encoder is specified by a
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quantization policy Π, which is a sequence of functions {ηt}t≥0 with ηt : M
t × X

t+1 → M. At

time t, the encoder transmits the M-valued message

qt = ηt(It)

with I0 = X0, It = (q[0,t−1], X[0,t]) for t ≥ 1, where we have used the notation q[0,t−1] =

(q0, . . . , qt−1) and X[0,t] = (X0, . . . , Xt). The collection of all such zero delay encoding policies

is called the set of admissible quantization policies and is denoted by ΠA.

Observe that for fixed q[0,t−1] and X[0,t−1], as a function of Xt, the encoder ηt(q[0,t−1], X[0,t−1], · )

is a quantizer, i.e., a mapping of X into the finite set M. Thus a quantization policy at each time

index t selects a quantizer Qt : X → M based on past information (q[0,t−1], X[0,t−1]), and then

“quantizes” Xt as qt = Qt(Xt).

Upon receiving qt, the decoder generates the reconstruction X̂t, also without delay. A zero

delay decoder policy is a sequence of functions γ = {γt}t≥0 of type γt : M
t+1 → X̂, where X̂

denotes the finite reconstruction alphabet. Thus for all t ≥ 0,

X̂t = γt(q[0,t]).

For the finite horizon (blocklength) setting the goal is to minimize the average cumulative

distortion (cost)

EΠ,γ
π0

[

1

T

T−1
∑

t=0

d(Xt, X̂t)

]

(3)

for some T ≥ 1, where d : X × X̂ → [0,∞) is a cost (distortion) function and EΠ,γ
π0

denotes

expectation with initial distribution π0 for X0 and under the quantization policy Π and receiver

policy γ. We assume that the encoder and decoder know the initial distribution π0.

Since the source alphabet is finite, for any encoder policy Π ∈ ΠA and any t ≥ 0, there always

exists an optimal receiver policy γ∗ = γ∗(Π) such that for all t ≥ 0,

EΠ,γ∗

π0

[

d(Xt, X̂t)
]

= inf
γ
EΠ,γ

π0

[

d(Xt, X̂t)
]

.

From now on, we always assume that an optimal receiver policy is used for a given encoder

policy and, with an abuse of notation, Π ∈ ΠA will mean the combined encoder and decoder

policies (Π, γ∗(Π)). Using this new notation, we have for all t ≥ 0,

EΠ
π0

[

d(Xt, X̂t)
]

= inf
γ
EΠ,γ

π0

[

d(Xt, X̂t)
]

.

In this paper, we concentrate on the following performance criteria.

1) Infinite Horizon Discounted Cost Problem: In the infinite horizon discounted cost problem,
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the goal is to minimize the cumulative “discounted” cost

Jβ
π0
(Π) := lim

T→∞
EΠ

π0

[

T−1
∑

t=0

βtd(Xt, X̂t)

]

(4)

for some β ∈ (0, 1).

2) Infinite Horizon Average Cost Problem: The more challenging infinite horizon average cost

problem has the objective of minimizing the long term average distortion

Jπ0
(Π) := lim sup

T→∞
EΠ

π0

[

1

T

T−1
∑

t=0

d(Xt, X̂t)

]

. (5)

We note that in source coding only the average cost problem is of interest, but we also consider

the discounted cost problem since it will serve as a useful tool in studying the more difficult

average cost problem.

Observe that R = log2M is the rate of the described zero delay codes. Then, in analogy to

(1), the rate distortion pair (R,D) is said to be achievable if there exists a policy Π such that

Jπ0
(Π) ≤ D. As opposed to the block coding case, finding the minimum achievable distortion

(cost) minΠ∈ΠA
Jπ0

(Π) at rate R for zero delay codes is an open problem. In particular, if the

source is stationary and memoryless, then this minimum is equal to minf E[d(X0, f(X0))], where

the minimum is taken over all “memoryless quantizers” f : X → X̂ with |f(X)| ≤ 2R [9], [10],

[11]. However, this optimum performance is not known for any other (more general) source

classes, and in particular it is unknown when {Xt} is a stationary and ergodic Markov source.

(Some partial results on this problem are given in, e.g., [11], [12].)

Our main goal in this paper is to characterize some important properties of optimal cod-

ing policies that achieve this minimum, even though we cannot characterize the value of the

minimum.

We review two results fundamental to the structure of optimal zero delay codes (see also [13]).

Theorem 1 (Witsenhausen [14]). For the problem of coding a Markov source over a finite

time horizon T , any zero delay quantization policy Π = {ηt} can be replaced, without loss in

distortion performance, by a policy Π̂ = {η̂t} which only uses q[0,t−1] and Xt to generate qt,

i.e., such that qt = η̂t(q[0,t−1], Xt) for all t = 1, . . . , T − 1.

Let P(X) denote the space of probability measures on X. Given a quantization policy Π, for

all t ≥ 1 let πt ∈ P(X) be the conditional probability defined by

πt(A) := Pr(Xt ∈ A|q[0,t−1])

for any set A ⊂ X.
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Theorem 2 (Walrand and Varaiya [15]). For the problem of coding a Markov source over a finite

time horizon T , any zero delay quantization policy can be replaced, without loss in performance,

by a policy which at any time t = 1, . . . , T − 1 only uses the conditional probability measure

πt = P (dxt|q[0,t−1]) and the state Xt to generate qt. In other words, at time t such a policy

η̂t uses πt to select a quantizer Qt = η̂(πt) (where Qt : X → M), and then qt is generated as

qt = Qt(xt).

As discussed in [13], the main difference between the two structural results above is the

following: in the setup of Theorem 1, the encoder’s memory space is not fixed and keeps

expanding as the encoding block length T increases. In the setup of Theorem 2, the memory

space P(X) of an optimal encoder is fixed (but of course is not finite). More importantly, the

setup of Theorem 2 allows one to apply the powerful theory of Markov decision processes on

fixed state and action spaces, thus greatly facilitating the analysis.

Recall that a Markov chain {Xt} with finite state space X is irreducible if for any a, b ∈ X

there exists a positive n such that Pr(Xn = b|X0 = a) > 0 (e.g., [44, Chapter 1.2]), and it is

aperiodic if for each state a ∈ X there is a positive n such that Pr(Xn′ = a|X0 = a) > 0 for all

n′ ≥ n (e.g., [44, Chapter 1.8]). Our assumption on the source {Xt} is that it is an irreducible

and aperiodic finite state Markov chain.

The main results in this paper are the following.

• For the problem of zero delay source coding of an irreducible and aperiodic Markov source

over an infinite time horizon we show the optimality (among all admissible policies) of

deterministic and stationary (i.e., time invariant) Markov (Walrand-Varaiya type) policies

for both stationary and nonstationary Markov sources.

• For the same class of Markov sources, we show that the optimum performance for time

horizon T converges to the optimum infinite horizon performance at least as fast as O
(

1
T

)

.

• Using the above convergence rate result, for stationary Markov sources we also show the

existence of ǫ-optimal periodic zero delay codes with an explicit bound on the relationship

between ǫ and the period length. This result is relevant since the complexity of the code is

directly related to the length of the period (memory size).

The rest of the paper is organized as follows. In the next subsection we review some existing

results on zero delay coding and related problems. In Section II we derive auxiliary results

and show that stationary Walrand-Varaiya type policies are optimal in the set of all policies

for the infinite horizon discounted cost problem. In Section III we consider the infinite horizon

average cost problem and prove the optimality of stationary and deterministic Walrand-Varaiya

type policies. The convergence rate result and the ǫ-optimality of finite memory policies are also

presented here. Section IV describes the extension of these results for zero delay coding over a
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noisy channel with feedback. Concluding remarks are given in Section V. In the Appendix we

provide a brief summary of some definitions and results we need from the theory of Markov

decision processes.

B. Literature Review

Structural results for the finite horizon coding problem have been developed in a number of

important papers. As mentioned before, the classic works by Witsenhausen [14] and Walrand

and Varaiya [15], which use two different approaches, are of particular relevance. An extension

to the more general setting of non feedback communication was given by Teneketzis [16], and

[13] also extended these results to more general state spaces; see also [8] and [4] for a more

detailed review.

A related lossy coding procedure was introduced by Neuhoff and Gilbert [17], which they

called causal source coding. The main result in [17] established that for stationary memoryless

sources, an optimal causal coder can either be replaced by one that time shares two memoryless

coders, without loss in performance. As noted in [17], zero delay codes form a special subclass

of causal codes. We also note that scalar quantization is a practical (but in general suboptimal)

method for zero delay coding of continuous sources. A detailed review of classical results on

scalar and vector quantization is given in [18].

Causal coding under a high rate assumption for stationary sources and individual sequences

was studied in [25]. Borkar et al. [26] studied the related problem of coding a partially observed

Markov source and obtained existence results for dynamic vector quantizers in the infinite horizon

setting. It should be noted that in [26] the set of admissible quantizers was restricted to the set

of nearest neighbor quantizers, and other conditions were placed on the dynamics of the system;

furthermore the proof technique used in [26] relies on the fact that the source is partially observed

unlike the setup we consider here.

In [8], zero delay coding of Rd-valued Markov sources was considered. In particular, [8] estab-

lished the existence of optimal quantizers (having convex codecells) for finite horizons and the

existence of optimal deterministic nonstationary or randomized stationary policies for stationary

Markov sources over infinite horizons, but the optimality of stationary and deterministic codes

was left as an open problem. Related work include [27] which considered the coding of discrete

independent and identically distributed (i.i.d.) sources with limited lookahead using the average

cost optimality equation. Also, [28] studied real time joint source-channel coding of a discrete

Markov source over a discrete memoryless channel with feedback under a similar average cost

formulation.

Some partial, but interesting results on the optimum performance of zero-delay coding over a

noisy channel are available in the literature. It is shown in [15, Theorem 3] that when the source
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and the channel alphabets have the same cardinality and the channel satisfies certain symmetry

conditions (e.g., the channel is the binary symmetric channel or a binary erasure channel),

then memoryless encoding is optimal for any Markov source. Also, an information theoretic

source-channel matching type argument can be made for special scenarios where the sequential

rate-distortion [19] [20] achieving channel kernels are realized with the physical channel itself,

a crucial case being the scalar Gaussian source transmitted over a scalar Gaussian channel under

power constraints at the encoder [21]. Along this direction, a more modern treatment and further

results are given in [22] and [23]. Optimal zero delay coding of Markov sources over noisy

channels without feedback was considered in [16] and [24].

In this paper we also investigate how fast the optimum finite blocklength (time horizon)

distortion converges to the optimum (infinite horizon) distortion. An analog of this problem

in block coding is the speed of convergence of the finite block length encoding performance

to Shannon’s distortion rate function. For stationary and memoryless sources, this speed of

convergence was shown to be of the type O
(

logT
T

)

[29], [30]. See also [31] for a detailed

literature review and further finite blocklength performance bounds.

Finally, we note that control theoretic tools are playing an increasingly important role in solving

certain types of problems in information theory. Several of the papers cited above use dynamic

programming as a crucial tool to analyze an average cost optimal control problem that the

given information theoretic problem is reduced to. To facilitate this analysis, the convex analytic

method [32] was used, e.g., in [8] and [33], while in [26], [34], [35], [36], [27], [37], and [38] the

average cost optimality equation was used (typically through the vanishing discount method). In

particular, [34], [37], and [38] use this latter approach to solve dynamic programs that provide

explicit channel capacity expressions. In this paper (unlike in our earlier work [8]), we also use

the average cost optimality equation approach, but here certain technical subtleties complicate

the analysis: (i) the structural result (on the optimality of Walrand-Varaiya type policies) only

holds for finite horizon problems; and (ii) we have a controlled Markov chain (where the beliefs

are the states and the quantizer maps are the actions) only when the quantizers belong to the

Walrand-Varaiya class (see Definition 1). Much of our technical analysis concerns extending

this line of argument to the infinite horizon case through the study of recurrence, coupling,

convergence, and continuity properties of the underlying controlled Markov chain.

II. THE FINITE HORIZON AVERAGE DISTORTION AND THE INFINITE HORIZON

DISCOUNTED DISTORTION PROBLEMS

A. The Finite Horizon Average Cost Problem

In view of Theorem 2, for a finite horizon problem any admissible (i.e., zero delay) quantization

policy can be replaced by a Walrand-Varaiya type policy. Using the terminology of Markov
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decision processes, we will also refer to such policies as Markov policies. The class of all such

policies is denoted by ΠW , and is formally defined below.

Definition 1. Let Q denote the set of all quantizers Q : X → M. An (admissible) quantization

policy Π = {ηt} belongs to ΠW if there exists a sequence of mappings {η̂t} of the type η̂t :

P(X) → Q such that for Qt = η̂t(πt) we have qt = Qt(Xt) = ηt(It). A policy in ΠW is called

stationary if η̂t does not depend on t. The set of such stationary policies is denoted by ΠWS .

Remark. It is worth pointing out that the classical definition of a stationary (time invariant or

sliding block [39]) encoder involves a “two sided” infinite source sequence {Xt}
∞
t=−∞ and has

the form qt = g(X[−∞,t]) for all t, where g maps the infinite past X[−∞,t] = . . . , Xt−2, Xt−1, Xt,

up to time t into the symbol qt. Clearly, for a “one sided” source {Xt}t≥0 such a definition

of stationary codes is problematic. Thus, in a sense, stationary Walrand-Varaiya type encoding

policies give a useful generalization of classical stationary encoders for the case of one sided

sources.

Building on [13] and [8], suppose a given quantizer policy Π = {η̂t} in ΠW is used to encode

the Markov source {Xt}. Let P = P (xt+1|xt) denote the transition kernel of the source. Observe

that the conditional probability of qt given πt and xt is given by P (qt|πt, xt) = 1{Qt(xt)=qt} with

Qt = η̂t(πt), and is therefore determined by the quantizer policy. Then standard properties of

conditional probability can be used to obtain the following “filtering equation” for the evolution

of πt:

πt+1(xt+1) =

∑

xt
πt(xt)P (qt|πt, xt)P (xt+1|xt)

∑

xt

∑

xt+1
πt(xt)P (qt|πt, xt)P (xt+1|xt)

=
1

πt(Q
−1
t (qt))

∑

xt∈Q
−1
t (qt)

P (xt+1|xt)πt(xt). (6)

Therefore, given πt and Qt, πt+1 is conditionally independent of (π[0,t−1], Q[0,t−1]). Thus {πt}

can be viewed as a P(X)-valued controlled Markov process [40] with Q-valued control {Qt}

and average cost up to time T − 1 given by

EΠ
π0

[

1

T

T−1
∑

t=0

d(Xt, X̂t)

]

= EΠ
π0

[

1

T

T−1
∑

t=0

c(πt, Qt)

]

,

where

c(πt, Qt) :=

M
∑

i=1

min
x̂∈X̂

∑

x∈Q−1
t (i)

πt(x)d(x, x̂). (7)

In this context, ΠW corresponds to the class of deterministic Markov control policies [40]. The

Appendix provides a brief overview of controlled Markov processes.
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The following statements follow from results in [8], but they can also be straightforwardly

derived since, in contrast to [8], here we have only finitely many M-cell quantizers on X. For

any Π ∈ ΠA, define

Jπ0
(Π, T ) := EΠ

π0

[

1

T

T−1
∑

t=0

d(Xt, X̂t)

]

.

Proposition 1. For any T ≥ 1, there exists a policy Π in ΠW such that

Jπ0
(Π, T ) = inf

Π′∈ΠA

Jπ0
(Π′, T ). (8)

Letting JT
T ( · ) := 0, JT

0 (π0) := minΠ∈ΠW
Jπ0

(Π, T ), the dynamic programming recursion

TJT
t (π) = min

Q∈Q

(

c(π,Q) + TE
[

JT
t+1(πt+1)|πt = π,Qt = Q

]

)

holds for all t = T − 1, T − 2, . . . , 0 and π ∈ P(X).

Proof. By Theorem 2, there exists a policy Π in ΠW such that (8) holds. Also, by Theorem 8

in the Appendix, we can use the dynamic programming recursion to solve for an optimal

quantization policy Π ∈ ΠW .

B. The Infinite Horizon Discounted Cost Problem

As discussed in Section I-A, the goal of the infinite horizon discounted cost problem is to

find policies that achieve

Jβ
π0

:= inf
Π∈ΠA

Jβ
π0
(Π) (9)

for given β ∈ (0, 1), where

Jβ
π0
(Π) = lim

T→∞
EΠ

π0

[

T−1
∑

t=0

βtd(Xt, X̂t)

]

.

From the viewpoint of source coding, the discounted cost problem has much less significance

than the average cost problem. However the discounted cost approach will play an important

role in deriving results for the average cost problem.

Proposition 2. There exists an optimal (deterministic) quantization policy in ΠWS among all

policies in ΠA that achieves the infimum in (9).

Proof. Observe that

inf
Π∈ΠA

lim
T→∞

EΠ
π0

[

T−1
∑

t=0

βtd(Xt, X̂t)

]
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≥ lim sup
T→∞

inf
Π∈ΠA

EΠ
π0

[

T−1
∑

t=0

βtd(Xt, X̂t)

]

= lim sup
T→∞

min
Π∈ΠW

EΠ
π0

[

T−1
∑

t=0

βtd(Xt, X̂t)

]

= lim sup
T→∞

min
Π∈ΠW

EΠ
π0

[

T−1
∑

t=0

βtc(πt, Qt)

]

, (10)

where the first equality follows from Theorem 2 and the second from the definition of c(πt, Qt)

in (7). For each T , let ΠT denote the optimal policy in ΠW achieving the minimum in (10).

One can easily check that conditions (i)–(iii) of Theorem 9 in the Appendix hold in our case

(with Z = P(X), A = Q, c(z, a) = c(π,Q), and K(dz′|z, a) = P (dπ′|π,Q)). Specifically, the

definition of c(π,Q) in (7) shows that c is continuous, so (i) holds. Condition (ii) clearly holds.

since Q is a finite set. Finally, it is easily verified that the stochastic kernel P (dπt+1|πt, Qt)

is weakly continuous, i.e., that
∫

P(X)
f(π′)P (dπ′|π,Q) is continuous on P(X) × Q for any

continuous and bounded f : P(X) → R (see [8, Lemma 11]). Thus by Theorem 9 in the

Appendix, this sequence of policies, {ΠT}, can be obtained by using the iteration algorithm

Jt(π) = min
Q∈Q

[

c(π,Q) + β

∫

P(X)

Jt−1(π
′)P (dπ′|π,Q)

]

with J0(π) ≡ 0. By the same theorem, the sequence of value functions for the policies {ΠT},

i.e. {Jπ0
(ΠW , T )}, converges to the value function of some deterministic policy Π ∈ ΠWS (i.e.,

a deterministic stationary Markov policy) which is optimal in the set of policies ΠW for the

infinite horizon discounted cost problem. Thus by the chain of inequalities leading to (10), Π is

optimal among all policies in ΠA.

III. MAIN RESULTS: THE INFINITE HORIZON AVERAGE DISTORTION PROBLEM

The more challenging average cost case deals with a performance measure (the long time

average distortion) that is usually studied in source coding problems. Formally, the infinite

horizon average cost of a coding policy Π is

Jπ0
(Π) = lim sup

T→∞
EΠ

π0

[

1

T

T−1
∑

t=0

d(Xt, X̂t)

]

(11)

and the goal is to find an optimal policy attaining

Jπ0
:= inf

Π∈ΠA

Jπ0
(Π). (12)
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A. Optimality of policies in ΠW for stationary sources

For the infinite horizon setting structural results such as Theorems 1 and 2 are not available in

the literature as the proofs are based on dynamic programming, which starts at a finite terminal

time stage and optimal policies are computed by working backwards from the end. However, as

in [8], we can prove an infinite horizon analog of Theorem 2 assuming that {Xt} starts from

its invariant measure π∗ (which exists e.g. if {Xt} is irreducible and aperiodic).

Proposition 3 ([8, Theorem 6]). Assume {Xt} is a stationary Markov chain with invariant

probability π∗. Then there exists an optimal policy in ΠW that solves the minimization problem

(12), i.e., there exists Π ∈ ΠW such that

Jπ∗(Π) = Jπ∗ .

The proof of the proposition is straightforward; it relies on a construction that pieces together

policies from ΠW that on time segments of appropriately large lengths increasingly well ap-

proximate the infimum of the infinite horizon cost achievable by policies in ΠA; see [8] for

the details. This construction results in a policy that is nonstationary in general. However, for

the finite alphabet case considered here, we will also establish the optimality of deterministic

stationary policies even for possibly nonstationary Markov sources. The remainder of the section

focuses on this problem.

B. Optimality of Stationary Coding Policies

The following theorem is the main result of the paper. It states that for any irreducible and

aperiodic Markov source there exists a stationary Markov (Walrand-Varaiya type) coding policy

that is optimal among all zero delay coding policies. Note that the theorem does not require the

source to be stationary.

Theorem 3. Assume that {Xt} is an irreducible and aperiodic Markov chain. Then for any

initial distribution π0,

inf
Π∈ΠA

Jπ0
(Π) = min

Π∈ΠWS

Jπ0
(Π).

Furthermore, there exist Π∗ ∈ ΠWS that achieves the minimum above simultaneously for all π0

and which satisfies for all T ≥ 1

1

T
EΠ∗

π0

[

T−1
∑

t=0

d(Xt, X̂t)

]

≤ Jπ0
+

K

T
(13)

for some positive constant K.
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The theorem is proved in the next subsection where the constant K is more explicitly identified.

Here we give a brief description of the main steps. The key step in the proof is Lemma 1

where we build on the approach of Borkar [42] (but use a different construction) to show

that for any two initial distributions µ0 and ζ0, the absolute difference of the optimal infinite

horizon discounted costs Jβ
µ0

and Jβ
ζ0

is uniformly upper bounded by a constant times the L1

Wasserstein distance between µ0 and ζ0. With the aid of this result and an Abelian lemma

that relates the infinite horizon discounted cost to the average cost, Lemma 2 shows through

the vanishing discount approach that for the infinite horizon average cost problem, randomized

stationary Markov policies are at least as good as deterministic policies in ΠA. Lemma 4 in turn

shows that deterministic stationary Markov policies are no worse than randomized ones, which,

together with Lemma 2, gives infΠ∈ΠA
Jπ0

(Π) = infΠ∈ΠWS
Jπ0

(Π) (Lemma 5). Finally, we show

that Lemma 1 implies that the average cost optimality equation (ACOE) (see Theorem 10 in

the Appendix) holds for our controlled Markov chain, which in turn implies that the infimum

infΠ∈ΠWS
Jπ0

(Π) is achieved by some policy in ΠWS , proving the first statement of the theorem.

The O(1/T ) convergence rate result is shown to be a direct consequence of the ACOE.

Definition 2 (ǫ-Optimality). Given an initial distribution π0 and ǫ > 0, a policy Π ∈ ΠA is

ǫ-optimal if Jπ0
(Π) ≤ Jπ0

+ ǫ, where Jπ0
is the optimal performance for the infinite horizon

average cost problem.

Now suppose that {Xt} is irreducible and aperiodic and it starts from the unique invariant

probability π∗ so that it is a stationary process. Consider the (nonstationary) coding policy that

is obtained by periodically extending an initial segment of the optimal stationary policy Π∗

in Theorem 3. In particular, assume Π∗ = {η∗} and for T ≥ 1 consider the periodic policy

Π(T ) = {η
(T )
t }, where η

(T )
t = η∗ for t = kT +1, . . . , (k+1)T , k = 0, 1, 2, . . . , and η

(T )
t ≡ η∗(π∗)

for t = kT , k = 0, 1, 2, . . .. Since {Xt} is stationary, the infinite horizon cost of Π(T ) is

Jπ∗(Π(T )) =
1

T
EΠ∗

π0

[

T−1
∑

t=0

d(Xt, X̂t)

]

.

Since the encoder of Π(T ) is reset to η∗(π∗) each time after processing T source samples, we can

say that it has memory length T . The following result, which is implied by the above construction

and the bound (13), may have implications in the construction of practical codes since, loosely

speaking, the complexity of a code is determined by its memory length.

Theorem 4. Assume {Xt} is an irreducible and aperiodic Markov chain. If X0 ∼ π∗, where

π∗ is the invariant probability measure, then for every ǫ > 0, there exists a finite memory,

nonstationary, but periodic coding policy with period at most K
ǫ

that is ǫ-optimal, where K is
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the constant from Theorem 3.

C. Proof of Theorem 3

Let X = {1, · · · , |X|} be viewed as a subset of R. The L1 Wasserstein distance [41] between

two distributions µ0 and ζ0 is defined as

ρ1(µ0, ζ0) := inf
X∼µ0,Y∼ζ0

E
[

|X − Y |
]

, (14)

where the infimum is taken over all joint distributions of pairs of X-valued random variables

(X, Y ) such that X ∼ µ0 and Y ∼ ζ0. It can be shown that the infimum in the definition is in

fact a minimum and that the L1 Wasserstein distance is a metric on P(X).

Recall the definition

Jβ
π0

:= inf
Π∈ΠA

lim
T→∞

EΠ
π0

[

T−1
∑

t=0

βtd(Xt, X̂t)

]

.

The following lemma is a key step in the proof.

Lemma 1. Suppose the source is an irreducible and aperiodic Markov chain. Then for any pair

of initial distributions µ0 and ζ0, and any β ∈ (0, 1), we have

∣

∣Jβ
µ0

− Jβ
ζ0

∣

∣ ≤ K1‖d‖∞ρ1(µ0, ζ0),

where K1 is a finite constant and ‖d‖∞ = maxx,y d(x, y).

Proof. Note that by monotone convergence for any Π and β ∈ (0, 1),

lim
T→∞

E

[T−1
∑

t=0

βtd(Xt, X̂t)

]

= E

[ ∞
∑

t=0

βtd(Xt, X̂t)

]

.

Thus the lemma statement is equivalent to

∣

∣

∣

∣

inf
Π∈ΠA

EΠ
µ0

[ ∞
∑

t=0

βtd(Xt, X̂t)

]

− inf
Π∈ΠA

EΠ
ζ0

[ ∞
∑

t=0

βtd(Xt, X̂t)

]
∣

∣

∣

∣

≤ K1‖d‖∞ρ1(µ0, ζ0).

The proof builds on the approach of Borkar [42] (see also [43] and [26]), but our argument is

different (and also more direct) since the absolute continuity conditions in [42] are not applicable

here due to quantization. As in [26], in the proof we will enlarge the space of admissible coding

policies to allow for randomization at the encoder. Since for a discounted infinite horizon optimal

encoding problem optimal policies are deterministic even among possibly randomized policies

(see Proposition 2), allowing common randomness does not change the optimal performance.
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In our construction, we will use the well known coupling method for Markov chains. In

particular, we will use a minor modification of the coupling argument in the proof of [44,

Theorem 1.8.3].

Given the initial distributions µ0 and ζ0, let λ be a joint distribution on X×X , having marginals

µ0 and ζ0, such that E
[

|X − Y |
]

= ρ1(µ0, ζ0) if (X, Y ) ∼ λ.

Now consider the X×X-valued process {(Xt, Yt)}t≥0 such that {Xt}t≥0 ∼ (µ0, P ), {Yt}t≥0 ∼

(ζ0, P ), (X0, Y0) ∼ λ, and {Xt}t≥1 and {Yt}t≥1 are conditionally independent given (X0, Y0). We

note that given {Xt} ∼ (µ0, P ), a process {(Xt, Yt)} with such a distribution can be obtained via

an i.i.d. randomization process {Wt} which is uniform on the interval [0, 1] and is independent

of {Xt}, and via appropriate functions F0, F : X× [0, 1] → X, by letting

Y0 = F0(X0,W0) and Yt = F (Yt−1,Wt) for all t ≥ 1. (15)

Fixing a reference state b ∈ X, define

τ = inf{t ≥ 0 : Xn = Yn = b}.

Since the common transition probability P of {Xt} and {Yt} is irreducible and aperiodic, it

easily follows that {(Xt, Yt)} is an irreducible and aperiodic Markov chain [44, p. 41]. Since X

is finite, this implies that the chain is positive recurrent and thus E[τ ] < ∞. Define X ′
t = Xt

for t ≥ 0 so that {X ′
t} ∼ (µ0, P ). Also define the process {X ′′

t } by

X ′′
t =







Yt if t ≤ τ

Xt if t > τ.

It is shown in [44, p. 42] that {X ′′
t } is a Markov chain such that {X ′′

t } ∼ (ζ0, P ).

Assume without loss of generality that Jβ
µ0

− Jβ
ζ0
≥ 0. Then from the above

∣

∣Jβ
µ0

− Jβ
ζ0

∣

∣ = Jβ
µ0

− Jβ
ζ0

= inf
Π∈ΠA

EΠ
µ0

[ ∞
∑

t=0

βtd(X ′
t, X̂

′
t)

]

− inf
Π∈ΠA

EΠ
ζ0

[ ∞
∑

t=0

βtd(X ′′
t , X̂

′′
t )

]

(16)

= EΠ′

µ0

[ ∞
∑

t=0

βtd(X ′
t, X̂

′
t)

]

−EΠ′′

ζ0

[ ∞
∑

t=0

βtd(X ′′
t , X̂

′′
t )

]

, (17)

where Π′ (resp. Π′′) achieves the first (resp. the second) infimum in (16); see Proposition 2.

Consider the following suboptimal coding and decoding policy for {X ′
t}: In addition to

observing the source X ′
t = Xt, t ≥ 0, the encoder is also given the randomization process

{Wt} which is independent of {X ′
t}. Then the encoder can generate Y0, . . . , Yτ according to

the representation (15) and thus it can produce the second source process {X ′′
t }. The encoder
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for {X ′
t} feeds sequentially the {X ′′

t } values to the quantizer policy Π′′ and produces the

same channel symbols q′′t and reproduction sequence X̂ ′′
t = γ′′

t (q
′′
[0,t]) as the policy Π′′ does

in response to {X ′′
t }. Note that this procedure comprises a suboptimal randomized encoder and

a deterministic decoder for coding {X ′
t}. Let us denote this randomized policy by Π̂. Thus we

obtain the upper bound

EΠ′

µ0

[ ∞
∑

t=0

βtd(X ′
t, X̂

′
t)

]

≤ EΠ̂
µ0

[ ∞
∑

t=0

βtd(X ′
t, X̂

′′
t )

]

.

In view of this and (17), we can write

∣

∣Jβ
µ0

− Jβ
ζ0

∣

∣

≤ EΠ̂
µ0

[ ∞
∑

t=0

βtd(X ′
t, X̂

′′
t )

]

− EΠ′′

ζ0

[ ∞
∑

t=0

βtd(X ′′
t , X̂

′′
t )

]

(18)

≤

∣

∣

∣

∣

E

[ ∞
∑

t=0

βt
(

d(X ′
t, X̂

′′
t )− d(X ′′

t , X̂
′′
t )
)

]
∣

∣

∣

∣

≤ E[τ ]‖d‖∞, (19)

where the last inequality follows since X ′
t = X ′′

t if t ≥ τ .

On the other hand,

E[τ ] =
∑

x,y

λ(x, y)E[τ |X0 = x, Y0 = y]

and since E[τ ] < ∞, we have that K1 := maxx,y E[τ |X0 = x, Y0 = y] < ∞ and

E[τ ] ≤
∑

x 6=y

λ(x, y)K1 = Pr(X0 6= Y0)K1 ≤ K1ρ1(µ0, ζ0),

where the the second inequality follows from the fact that Pr(X0 6= Y0) ≤ ρ1(µ0, ζ0) by (14).

This and (19) complete the proof of Lemma 1.

Under any given stationary Markov policy Π ∈ ΠWS the sequence {(πt, Qt)}t≥0 is a P(X)×Q-

valued Markov chain whose transition kernel is determined by Π and the transition kernel

P (dπt+1|πt, Qt), which is given by the filtering equation (6) and does not depend on Π. As

pointed out in the proof of Proposition 2, the transition kernel P (dπt+1|πt, Qt) is weakly con-

tinuous. This implies that the Markov process {(πt, Qt)} is weak Feller, that is, the transition

kernel P (d(πt+1, Qt+1)|πt, Qt) is weakly continuous [40, C.3 Definition]. Since every weak

Feller Markov process with a compact state space has an invariant probability measure [45], it

follows that there exists a probability measure π∗(Π) on P(X) such that if π0 is picked randomly

according to π∗(Π), then {(πt, Qt)} is a stationary process. We call π∗(Π) an invariant probability

on P(X) induced by Π ∈ ΠWS.
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Note that if the initial probability π0 is random with distribution π∗(Π), the quantization policy

Π becomes a randomized policy since the encoder and decoder must have access to the same

random π0. Expectations under such policies will be denoted by EΠ
π0∼π∗(Π).

Lemma 2. If the source is irreducible and aperiodic, then for any initial distribution π,

inf
Π∈ΠA

lim sup
T→∞

1

T
EΠ

π

[

T−1
∑

t=0

d(Xt, X̂t)

]

≥ inf
Π∈ΠWS

lim sup
T→∞

1

T
EΠ

π0∼π∗(Π)

[

T−1
∑

t=0

d(Xt, X̂t).

]

Proof. We will need the following well known Abelian result.

Lemma 3 ([40, Lemma 5.3.1]). Let {ct}t≥0 be a sequence of nonnegative numbers. Then

lim inf
T→∞

1

T

T−1
∑

t=0

ct ≤ lim inf
β↑1

(1− β)
∞
∑

t=0

βtct

≤ lim sup
β↑1

(1− β)
∞
∑

t=0

βtct

≤ lim sup
T→∞

1

T

T−1
∑

t=0

ct.

Let {Πk} be a sequence of policies in ΠA such that limk→∞ Jπ(Πk) = Jπ and fix n > 0 such

that

Jπ ≥ Jπ(Πn)− ǫ. (20)

Applying Lemma 3 with ct = EΠn
π

[

d(Xt, X̂t)
]

, there exists βǫ ∈ (0, 1) such that for all β ∈ (βǫ, 1)

Jπ ≥ Jπ(Πn)− ǫ ≥ (1− β)EΠn

π

[

∞
∑

t=0

βtd(Xt, X̂t)

]

− 2ǫ

≥ min
Π∈ΠWS

(1− β)EΠ
π

[

∞
∑

t=0

βtd(Xt, X̂t)

]

− 2ǫ, (21)

where the minimum exists by Proposition 2.

Now consider the case where for some Π ∈ ΠWS the initial measure π0 is distributed according

to π0 ∼ π∗(Π). For ease of interpretation, let X ′
t denote the source process with X ′

0 ∼ π, let X ′′
t

be a process with X ′′
0 ∼ π0 for some fixed π0, and in addition let X ′

t and X ′′
t be coupled as in

Lemma 1. Then for any β ∈ (0, 1),

∣

∣

∣

∣

min
Π∈ΠWS

(1− β)EΠ
π

[ ∞
∑

t=0

βtd(X ′
t, X̂

′
t)

]

− min
Π∈ΠWS

(1− β)EΠ
π0

[ ∞
∑

t=0

βtd(X ′′
t , X̂

′′
t )

]∣

∣

∣

∣
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≤ (1− β)E[τ ]‖d‖∞

≤ (1− β)K1‖d‖∞ρ1(π, π0), (22)

where τ = min{t ≥ 0 : X ′
t = X ′′

t }, and where the first inequality follows from the coupling

of the Markov chains as in Lemma 1 (see (19)) and the second also follows from the proof of

Lemma 1. Since ρ1(π, π0) is upper bounded by |X| (see (14)) for any π and π0, we obtain

∣

∣

∣

∣

min
Π∈ΠWS

(1− β)EΠ
π

[ ∞
∑

t=0

βtd(X ′
t, X̂

′
t)

]

− inf
Π∈ΠWS

(1− β)EΠ
π0∼π∗(Π)

[ ∞
∑

t=0

βtd(X ′′
t , X̂

′′
t )

]
∣

∣

∣

∣

≤ (1− β)K2‖d‖∞, (23)

where K2 = K1|X|.

Choosing β̄ such that (23) with β = β̄ is less than ǫ, and combining the preceding bound

with (21) yields for any β ∈ (max{βǫ, β̄}, 1),

Jπ ≥ min
Π∈ΠWS

(1− β)EΠ
π

[

∞
∑

t=0

βtd(Xt, X̂t)

]

− 2ǫ

≥ inf
Π∈ΠWS

(1− β)EΠ
π0∼π∗(Π)

[

∞
∑

t=0

βtd(Xt, X̂t)

]

− 3ǫ (24)

≥ (1− β)E
Πβ

π0∼π∗(Πβ)

[

∞
∑

t=0

βtd(Xt, X̂t)

]

− 4ǫ

≥ lim inf
T→∞

1

T
E

Πβ

π0∼π∗(Πβ)

[

T−1
∑

t=0

d(Xt, X̂t)

]

− 5ǫ

= lim sup
T→∞

1

T
E

Πβ

π0∼π∗(Πβ)

[

T−1
∑

t=0

c(πt, Qt)

]

− 5ǫ,

where the Πβ ∈ ΠWS is chosen so that it achieves the infimum in (24) within ǫ, and where the

fourth inequality holds by Lemma 3 if β ∈ (max{βǫ, β̄}, 1) is large enough. Finally, the last

equality follows since π∗(Πβ) is invariant and hence {(πt, Qt)} is a stationary process. Thus we

obtain

Jπ ≥ lim sup
T→∞

1

T
EΠ′

π0∼π∗(Πβ)

[

T−1
∑

t=0

d(Xt, X̂t)

]

− 5ǫ

≥ inf
Π∈ΠWS

lim sup
T→∞

1

T
EΠ

π0∼π∗(Π)

[

T−1
∑

t=0

d(Xt, X̂t)

]

− 5ǫ,

where ǫ > 0 is arbitrary, which completes the proof.
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Lemma 4. If the source is irreducible and aperiodic, then for any initial distribution π,

inf
Π∈ΠWS

lim sup
T→∞

1

T
EΠ

π

[

T−1
∑

t=0

d(Xt, X̂t)

]

= inf
Π∈ΠWS

lim sup
T→∞

1

T
EΠ

π0∼π∗(Π)

[

T−1
∑

t=0

d(Xt, X̂t)

]

.

Proof. First note that by Lemma 2,

inf
Π∈ΠWS

lim sup
T→∞

1

T
EΠ

π

[

T−1
∑

t=0

d(Xt, X̂t)

]

≥ inf
Π∈ΠWS

lim sup
T→∞

1

T
EΠ

π0∼π∗(Π)

[

T−1
∑

t=0

d(Xt, X̂t)

]

.

Now apply the argument that led to the bounds (22) and (23) to obtain

∣

∣

∣

∣

∣

inf
Π∈ΠWS

lim sup
T→∞

1

T
EΠ

π

[

T−1
∑

t=0

d(Xt, X̂t)

]

− inf
Π∈ΠWS

lim sup
T→∞

1

T
EΠ

π0∼π∗(Π)

[

T−1
∑

t=0

d(Xt, X̂t)

]
∣

∣

∣

∣

∣

≤ lim sup
T→∞

1

T
Eπ0∼π∗(Π)[τ ]‖d‖∞

≤ lim sup
T→∞

1

T
K2‖d‖∞ = 0.

The following important result immediately follows from Lemmas 2 and 4.

Lemma 5. If the source is irreducible and aperiodic, then for any initial distribution π0,

inf
Π∈ΠA

lim sup
T→∞

1

T
EΠ

π0

[

T−1
∑

t=0

d(Xt, X̂t)

]

= inf
Π∈ΠWS

lim sup
T→∞

1

T
EΠ

π0

[

T−1
∑

t=0

d(Xt, X̂t)

]

. (25)

Remark. This lemma is crucial because it shows that without any loss we can restrict the search

for optimal quantization policies to the set ΠW . Since the filtering equation (6) leads to a

controlled Markov chain only for policies in ΠW , this lemma allows us to apply controlled

Markov chain techniques in the study of the the average distortion problems. The rigorous

justification of this fact is one of the main contributions of this paper.
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Note that Lemma 5 immediately implies the first statement of Theorem 3 once we can show

that the infimum in (25) is actually a minimum. This will be done by invoking the ACOE for

controlled Markov chains. To show that the infimum is achieved by a stationary and deterministic

Markov policy Π ∈ ΠWS we make use of Theorem 10 in the Appendix. To do this we have

to verify that the conditions of the theorem are satisfied with Z = P(X), A = Q, c(z, a) =

c(π,Q), and K(dz′|z, a) = P (π′|π,Q). We have already shown in the proof of Proposition 2

that conditions (i)—(iii) hold. Since P(X) is the standard probability simplex in R
|X| and Q is a

finite set, condition (iv) clearly holds. Finally, condition (v) holds since the family of functions

{

hβ(ζ) := Jβ
ζ − Jβ

ζ0
: β ∈ (0, 1)

}

for some arbitrary but fixed ζ0 ∈ P(X) is equicontinuous on P(X) by Lemma 1 which states

that

|hβ(ζ)− hβ(ζ
′)| =

∣

∣Jβ
ζ − Jβ

ζ′

∣

∣ ≤ K1‖d‖∞ρ1(ζ, ζ
′). (26)

Thus we can apply Theorem 10 to deduce the existence of a policy in ΠWS achieving the

minimum in (25). This completes the proof of the first statement in Theorem 3.

To prove the second statement (13) we use the result in (38) in the Appendix. Note that by

Lemma 1 we have for all β ∈ (0, 1) and ζ ∈ P(X)

|hβ(ζ)| =
∣

∣Jβ
ζ − Jβ

ζ′

∣

∣ ≤
K

2
,

where

K := 2K1‖d‖∞ρ1(ζ, ζ0) ≤ 2K1‖d‖∞|X|.

Thus equation (38) implies, with z0 = π0, g∗ = Jπ0
, and Π∗ being the optimal policy in ΠWS

achieving the minimum in (25), that

Jπ0
(Π∗, T )− Jπ0

≤
K

T

as claimed.

IV. ZERO-DELAY CODING OVER A NOISY CHANNEL WITH FEEDBACK

In this section, we briefly describe the extension of our main results to zero delay lossy coding

over a noisy channel. As in Section I-A, the encoder processes the observed information source

without delay. It is assumed that the source {Xt}t≥0 is a discrete time Markov process with finite

alphabet X. The encoder encodes the source samples without delay and transmits the encoded

versions to a receiver over a discrete channel with input alphabet M = {1, . . . ,M} and output

alphabet M′ := {1, . . . ,M ′}, where M and M ′ are positive integers.
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In contrast with the setup described in Section I-A, here the channel between the encoder and

decoder is a discrete and memoryless noisy channel characterized by the transition probability

T (b|a) = Pr(q′ = b|q = a), a ∈ M, b ∈ M
′.

We assume that the encoder has access to the previous channel outputs in the form of feedback.

In particular, the encoder is specified by a quantization policy Π, which is a sequence of functions

{ηt}t≥0 with ηt : M
t×(M′)t×X

t+1 → M. At time t, the encoder transmits the M-valued message

qt = ηt(It),

where I0 = X0, It = (q[0,t−1], q
′
[0,t−1], X[0,t]) for t ≥ 1, and q′t is the received (noisy) version

of qt. The collection of all such zero delay policies is called the set of admissible quantization

policies and is denoted by ΠA.

Upon receiving q′t, the receiver generates the reconstruction, X̂t, also without delay. A zero

delay receiver policy is a sequence of functions γ = {γt}t≥0 of type γt : (M
′)t+1 → X̂, where X̂

is the finite reproduction alphabet. Thus

X̂t = γt(q
′
[0,t]) for all t ≥ 0.

Note that, due to the presence of feedback, the encoder also has access to q′[0,t] at time t + 1.

The finite and infinite horizon coding problems are defined analogously to the noiseless case.

The following result is a known extension of Witsenhausen’s structure theorem [14].

Theorem 5 ([4, Theorem 10.7.1]). For the problem of transmitting T samples of a Markov

source over a noisy channel with feedback, any zero delay quantization policy Π = {ηt} can be

replaced, without any loss in performance, by a policy Π̂ = {η̂t} which only uses q′[0,t−1] and

Xt to generate qt, i.e., such that qt = η̂t(q
′
[0,t−1], Xt) for all t = 1, . . . , T − 1.

Given a quantization policy Π, for all t ≥ 1 let πt ∈ P(X) be the conditional probability

defined by

πt(A) := Pr(Xt ∈ A|q′[0,t−1])

for any set A ⊂ X.

The following result is due to Walrand and Varaiya.

Theorem 6 ([15]). For the problem of transmitting T samples of a Markov source over a noisy

channel with feedback, any zero delay quantization policy can be replaced, without any loss in

performance, by a policy which at any time t = 1, . . . , T−1 only uses the conditional probability

measure πt = P (dxt|q
′
[0,t−1]) and the state Xt to generate qt. In other words, at time t such a

policy uses πt to select a quantizer Qt : X → M and then qt is generated as qt = Qt(Xt).
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Under a Walrand-Varaiya type policy the filtering equation (6) is modified as

πt+1(xt+1) =

∑

xt,qt
πt(xt)T (q

′
t|qt)P (qt|πt, xt)P (xt+1|xt)

∑

xt,qt

∑

xt+1
πt(xt)T (q′t|qt)P (qt|πt, xt)P (xt+1|xt)

.

Thus, as before, given πt and Qt, πt+1 is conditionally independent of (π[0,t−1], Q[0,t−1]) and it

follows that {πt} can be viewed as P(X)-valued controlled Markov process [40] with Q-valued

control {Qt} and average cost up to time T − 1 given by

EΠ,γ
π0

[

1

T

T−1
∑

t=0

d(Xt, X̂t)

]

= EΠ
π0

[

1

T

T−1
∑

t=0

c(πt, Qt)

]

.

The set of deterministic Markov coding policies ΠW and deterministic stationary Markov

policies ΠWS is defined analogously to Definition 1.

It can be checked that the properties concerning the continuity of the kernel and the existence

of invariant measures apply identically to the new controlled Markov state pair (πt, Qt). Under

the assumption that {Xt} is irreducible and aperiodic, the simulation argument also applies

identically by considering the same channel noise realizations for both processes X ′
t and X ′′

t ;

i.e., in the simulation argument we can compare the performance of the coding schemes by taking

the expectations over the channel noise realizations. Thus, the finite coupling time argument in

Lemma 1 applies to this case as well. The following theorem compactly summarizes the noisy

channel analogues of our results in the previos sections.

Theorem 7.

(i) For the minimization of the finite horizon average distortion (3), an optimal solution in ΠW

exists and a noisy channel analog of Proposition 1 holds.

(ii) For the minimization of the infinite horizon discounted distortion (4), an optimal solution

exists and such a solution is in ΠWS, i.e., a noisy channel analog of Proposition 2 holds.

(iii) The noisy channel version of Theorem 3 holds: If {Xt} is irreducible and aperiodic,

there exists a policy in ΠWS that minimizes the infinite horizon average distortion (5).

Furthermore, the convergence rate result (13) holds for this optimal policy.

(iv) Under the assumption that {Xt} is irreducible and aperiodic, if X0 ∼ π∗, where π∗ is

the invariant probability measure, for any ǫ > 0, there exists K > 0 and a finite memory,

nonstationary, but periodic quantization policy with period less than K
ǫ

that achieves ǫ-

optimal performance Thus the noisy channel version of Theorem 4 holds.

V. CONCLUSION

Zero delay lossy coding of finite alphabet Markov sources was considered. The main result

showed that for any irreducible and aperiodic (not necessarily stationary) Markov chain there
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exists a stationary and deterministic Markov (Walrand-Varaiya type) policy that is optimal in the

set of zero delay coding policies. This result significantly generalizes existing results in [14],

[15], and [8].

In addition, it was shown that the distortion of an optimal stationary policy for time horizon

(block length) T converges to the optimal infinite horizon distortion at a rate O(1/T ). As a

corollary, the ǫ-optimality of periodic zero delay codes is established with an explicit bound on the

relationship between ǫ and the period length. This result is of potential practical importance since

the code’s complexity is directly related to the length of the period (memory size). Extensions

of these results to zero delay lossy coding over noisy channels with feedback were also given.

An interesting open problem is the generalization of the results to continuous sources such as

real or Rd-valued Markov sources. Such a generalization would be facilitated by an appropriate

extension of Lemma 1 to continous alphabets. Some related results in this direction are available

in [46]. Another, more challenging open problem of information theoretic flavor is to find a

(preferably) single-letter characterization of the optimum infinite horizon average distortion of

zero delay coding of Markov sources. As mentioned before, such a characterization is only known

for stationary and memoryless (i.i.d.) sources, while for the block coding problem the distortion

rate function gives a (non single-letter) characterization, and even closed form expressions exist

for binary symmetric Markov sources in a certain range of distortion values [47] as well as

explicit lower and upper bounds [48].

APPENDIX

MARKOV DECISION PROCESSES

Let Z be a Borel space (i.e., a Borel subset of a complete and separable metric space) and let

P(Z) denote the set of all probability measures on Z.

Definition 3 (Markov Control Model [40]). A discrete time Markov control model (Markov

decision process) is a system characterized by the 4-tuple

(Z,A, K, c),

where

1) Z is the state space, the set of all possible states of the system;

2) A (a Borel space) is the control space (or action space), the set of all controls (actions)

a ∈ A that can act on the system;

3) K = K( · |z, a) is the transition probability of the system, a stochastic kernel on Z given

Z × A, i.e., K( · |z, a) is a probability measure on Z for all state-action pairs (z, a), and

K(B| · , · ) is a measurable function from Z× A to [0, 1] for each Borel set B ⊂ Z;

March 6, 2018 DRAFT



23

4) c : Z×A → [0,∞) is the cost per time stage function of the system, a function c(x, a) of

the state and the control.

Define the history spaces Ht at time t ≥ 0 of the Markov control model by H0 := Z and

Ht := (Z×A)t×Z. Thus a specific history ht ∈ Ht has the form ht = (z0, a0, . . . , zt−1, at−1, zt).

Definition 4 (Admissible Control Policy [40]). An admissible control policy Π = {αt}t≥0, also

called a randomized control policy (more simply a control policy or a policy) is a sequence

of stochastic kernels on the action space A given the history Ht. The set of all randomized

control policies is denoted by ΠA. A deterministic policy Π is a sequence of functions {αt}t≥0,

αt : Ht → A, that determine the control used at each time stage deterministically, i.e., at = αt(ht).

The set of all deterministic policies is denoted ΠD. Note that ΠD ⊂ ΠA. A Markov policy is a

policy Π such that for each time stage the choice of control only depends on the current state

zt, i.e., Π = {αt}t≥0 with αt : Z → P(A). The set of all Markov policies is denoted by ΠM . The

set of deterministic Markov policies is denoted by ΠMD. A stationary policy is a Markov policy

Π = {αt}t≥0 such that αt = α for all t ≥ 0 for some α : Z → P(A). The set of all stationary

policies is denoted by ΠS and the set of deterministic stationary policies is denoted by ΠSD.

According to the Ionescu Tulcea theorem (see [40]), the transition kernel K, an initial prob-

ability distribution π0 on Z, and a policy Π define a unique probability measure PΠ
π0

on H∞ =

(X× A)∞, the distribution of the state-action process {(Zt, At)}t≥0. The resulting state process

{Zt}t≥0 is called a controlled Markov process. The expectation with respect to PΠ
π0

is denoted

by EΠ
π0

. If π0 = δz, the point mass at z ∈ Z, we write PΠ
z and EΠ

z instead of PΠ
δz

and EΠ
δz

.

In an optimal control problem, a performance objective J of the system is given and the goal

is to find the controls that minimize (or maximize) that objective. Some common optimal control

problems for Markov control models are the following:

1) Finite Horizon Average Cost Problem: Here the goal is to find policies that minimize the

average cost

Jπ0
(Π, T ) := EΠ

π0

[

1

T

T−1
∑

t=0

c(Zt, At)

]

, (27)

for some T ≥ 1.

2) Infinite Horizon Discounted Cost Problem: Here the goal is to find policies that minimize

Jβ
π0
(Π) := lim

T→∞
EΠ

π0

[

T−1
∑

t=0

βtc(Zt, At)

]

, (28)

for some β ∈ (0, 1).

3) Infinite Horizon Average Cost Problem: In the more challenging infinite horizon control
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problem the goal is to find policies that minimize the average cost

Jπ0
(Π) := lim sup

T→∞
EΠ

π0

[

1

T

T−1
∑

t=0

c(Zt, At)

]

. (29)

The Markov control model together with the performance objective is called a Markov decision

process.

A common method to solving finite horizon Markov control problems is by dynamic pro-

gramming, which involves working backwards from the final time stage to solve for the optimal

sequence of controls to use. The optimality of this algorithm is guaranteed by Bellman’s principle

of optimality.

Theorem 8 (Bellman’s Principle of Optimality [40, Chapter 3.2]). Given a finite time horizon

T ≥ 1, define a sequence of functions JT , . . . , J0 on Z recursively such that

JT (zT ) ≡ 0,

and for 0 ≤ t < T and z ∈ Z,

Jt(z) := min
a∈A

[

c(z, a) +

∫

Z

Jt+1(z
′)K(dz′|z, a)

]

. (30)

If the Jt are measurable and there exist measurable ft : Z → A such that a = ft(z) achieves the

above minimum for all t = 0, . . . , T−1, then the deterministic Markov policy Π := (f0, . . . , fT−1)

is optimal with cost Jz0(Π, T ) = J0(z0).

Quite general conditions exist under witch the two assumptions of the above theorem hold

[40, Chapter 3.3].

For the infinite horizon discounted cost Markov control problem, one can also use an iter-

ation algorithm to obtain an optimal policy. This approach is commonly called the successive

approximations or value iteration method [40, Chapter 4.2].

A stochastic kernel K on Z given Z×A is called weakly continuous if the function (a, z) 7→
∫

Z
v(z′)K(dz′|z, a) is continuous whenever v is a bounded and continuous real function on Z×A.

It is called strongly continuous if the (a, z) 7→
∫

Z
v(z′)K(dz′|z, a) is continuous whenever v is

a measurable and bounded real function on Z×A. The next theorem follows from [49, Chapter

8.5].

Theorem 9. Suppose the following conditions hold:

(i) The one stage cost c is continuous, nonnegative, and bounded;

(ii) A is compact;

(iii) the transition kernel K is weakly continuous.
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Then for any β ∈ (0, 1), the pointwise limit J(z) as t → ∞, of the sequence defined by

Jt(z) = min
a∈A

[

c(x, a) + β

∫

Z

Jt−1(z
′)K(z′|z, a)

]

, z ∈ Z,

with J0(z) ≡ 0, yields the optimum cost in the infinite horizon discounted cost problem (i.e.,

infΠ∈ΠA
Jβ
z = J(z). Furthermore, there exists a measurable function f : Z → A such that

J(z) = c(x, f(z)) + β

∫

Z

Jt−1(z
′)K(z′|z, f(z))

and the policy Π = {f} is an optimal stationary Markov policy.

Finally, for the infinite horizon average cost Markov control problem, we give a brief overview

of the average cost optimality equation (ACOE). When the ACOE holds for a deterministic and

stationary Markov policy Π, we know Π is optimal for the infinite horizon average cost problem.

Definition 5. Let h and g be measurable real functions on Z and let f : Z → A be measurable.

Then (g, h, f) is said to be a canonical triplet if for all z ∈ Z,

g(z) = inf
a∈A

∫

Z

g(z′)K(dz′|z, a) (31)

g(z) + h(z) = inf
a∈A

(

c(z, a) +

∫

Z

h(z′)K(dz′|z, a)

)

(32)

and

g(z) =

∫

Z

g(z′)K(dz′|z, f(z)) (33)

g(z) + h(z) = c(z, f(z)) +

∫

Z

h(z′)K(dz′|z, f(z)). (34)

Equations (31)–(34) are called the canonical equations. In case g is a constant, g ≡ g∗ ∈

[0,∞), these equations reduce to

g∗ + h(z) = inf
a∈A

(

c(z, a) +

∫

Z

h(z′)K(dz′|z, a)

)

(35)

g∗ + h(z) = c(z, f(z)) +

∫

Z

h(z′)K(dz′|z, f(z)) (36)

and (35) is called the average cost optimality equation (ACOE).

The ACOE is of central importance in the theory of infinite horizon average cost problems since

(as can be shown [40, Chapter 5.2]), with the additional condition that lim supT→∞(1/T )EΠ
z0

[

h(ZT )] =

0 for all z0 ∈ Z and Π ∈ ΠA, it implies that the deterministic and stationary Markov policy
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Π∗ = {f} is optimal in ΠA and g∗ is the value function, i.e.,

g∗ = Jz0(Π
∗) = inf

Π∈ΠA

Jz0(Π).

Although several general sufficient conditions for the ACOE to hold exist (see, e.g., Assump-

tions 4.2.1 and 5.5.1 in [40]), these conditions are restrictive in our setup since they involve the

strong continuity of the transition kernel. In our results we take Z to be the space probability

measures, which makes strong continuity too strict a condition in general [50] [51]. More relaxed

conditions that involve weak continuity are available in the literature, see [52] [53]. Since for

us it is enough to consider compact state and action spaces and uniformly bounded cost, the

following theorem will suffice. Recall that

Jβ
z = inf

Π∈ΠA

Jβ
z (Π).

Theorem 10 ([50, Theorem 3.3]). Suppose conditions (i)–(iii) of Theorem 9 hold and, in addition,

(iv) the state space Z is compact;

(v) the family of functions {hβ : β ∈ (0, 1)}, with

hβ(z) = Jβ
z − Jβ

z0

for some fixed z0 ∈ Z, is uniformly bounded and equicontinuous.

Then there exist a constant g∗ ≥ 0, a continuous and bounded function h : Z → R, and a

measurable function f ∗ : Z → A such that (g∗, h, f ∗) is a canonical triplet that satisfies the

ACOE. Thus the deterministic and stationary Markov policy Π∗ = {f ∗} is optimal in ΠA and

g∗ is the value function, i.e.,

g∗ = Jz0(Π
∗) = inf

Π∈ΠA

lim sup
T→∞

EΠ
z0

[

1

T

T−1
∑

t=0

c(Zt, At)

]

,

for all z0 ∈ Z.

Recall the definition

Jπ0
(Π, T ) := EΠ

π0

[

1

T

T−1
∑

t=0

c(Zt, At)

]

.

For the canonical triplet (ρ∗, h, f ∗) in the preceding theorem, [40, p. 80] shows that for all z0 ∈ Z

and T ≥ 1,

Jz0(Π, T ) = g∗ +
1

T

(

h(z0)− EΠ∗

z0
h(ZT )

)

. (37)

Also, the function h in Theorem 10 is the pointwise limit of the sequence {hβn
(z)} along some

sequence of discount factors {βn} such that limn→∞ βn = 1. Thus if {hβn
(z)} is uniformly
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bounded, say |hβ(z)| ≤ K/2 for all z ∈ Z and β ∈ (0, 1), then |h(z)| ≤ K/2 for all z, and so

(37) implies

Jz0(Π
∗, T )− g∗ = Jz0(Π

∗, T )− Jz0(Π
∗) ≤

K

T
(38)

for all T ≥ 1.

For further details on controlled Markov processes, see [40].
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