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Universal Secure Multiplex Network Coding with

Dependent and Non-Uniform Messages
Ryutaroh Matsumoto, Member, IEEE, and Masahito Hayashi, Fellow, IEEE

Abstract—We consider the random linear precoder at the
source node as a secure network coding. We prove that it is
strongly secure in the sense of Harada and Yamamoto [23]
and universal secure in the sense of Silva and Kschischang
[35], [36], while allowing arbitrary small but nonzero mutual
information to the eavesdropper. Our security proof allows
statistically dependent and non-uniform multiple secret messages,
while all previous constructions of weakly or strongly secure
network coding assumed independent and uniform messages,
which are difficult to be ensured in practice.

Index Terms—information theoretic security, network coding,
secure multiplex coding, strongly secure network coding

I. Introduction

Network coding [1] attracts much attention recently because

it can offer improvements in several metrics, such as through-

put and energy consumption, see [19], [20]. On the other hand,

the information theoretic security [5], [32] also attracts much

attention because it offers security that does not depend on a

conjectured difficulty of some computational problem.

A juncture of the network coding and the information

theoretic security is the secure network coding [8], [11],

which prevents an eavesdropper, called Eve, from knowing

the message from the legitimate sender, called Alice, to the

multiple legitimate receivers by eavesdropping intermediate

links up to a specified number in a network. In this paper,

we focus on the single source multicast network coding. Here,

we should remark that there are two kinds of formulation of

(secure) network coding even in the single source multicast

setting. In the first kind, given a graph corresponding to the

network, we design the coding operations on each node to
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transmit information [13]. In the second kind, given (partial)

information of the operations on intermediate nodes as well as

the graph, we design the encoder and decoder on source and

sink nodes, respectively. We adopt the second formulation, and

assume linearity on the operations on intermediate nodes.

It can be seen [15], [16] as a network coding counterpart

of the traditional wiretap channel coding problem considered

by Wyner [38] and subsequently others [32]. In both secure

network coding and coding for wiretap channels, the secrecy is

realized by including random bits into the transmitted signal

by Alice so that the secret message becomes ambiguous to

Eve. The inclusion of random bits, of course, decreases the

information rate. In order to get rid of the decrease in the

information rate, Yamamoto et al. [27], [28] proposed the

secure multiplex coding for wiretap channels, in which there

is no loss of information rate. The idea of Yamamoto et al. is

as follows: Suppose that Alice has T statistically independent

messages S 1, . . . , S T . Then S 1, . . . , S i−1, S i+1, . . . , S T serve

as the random bits making S i ambiguous to Eve, for each

i. Indeed, since there are multiple legitimate receivers, each

receiver may have a different demand for information. In this

situation, it is natural that we have multiple messages S 1, . . . ,

S T dependently on receivers’ demands.

Independently and simultaneously, Bhattad and Narayanan

[3] proposed a scheme based on the same idea as [27], [28],

whose goal is also to get rid of the loss of information rate

in the secure network coding. This scheme was called weakly

secure network coding in [3]. Their method [3] ensures that

the mutual information between S i and Eve’s information

is zero for each i. Recall that Eve’s knowledge on secret

information S i is usually measured by the mutual information

in the information theoretic security [5], [32]. As drawbacks,

the construction depends on the network topology and coding

at intermediate nodes, and the computational complexity of

code construction is large.

Harada and Yamamoto [23] defined a stronger security

requirement on the weakly secure network coding, which will

be reviewed later, and called it as the strongly secure network

coding. Then they showed its construction procedure. As [3],

the construction depends on the network topology and coding

at intermediate nodes, and the computational complexity of

code construction is large.

In order to remove these drawbacks, Silva and Kschis-

chang [35] proposed a scheme called universal weakly secure

network coding, in which they showed an efficient code

construction that can support up to two Fq-symbols in each

S i and is independent of the network topology and coding at

intermediate nodes, where Fq denotes the finite field with q

elements throughout this paper. The independence of coding
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at the source node from network topology and coding at inter-

mediate nodes is termed universal by Silva and Kschischang

in [35], [36]. They [35] also showed the existence of universal

weakly secure network coding with more than two Fq-symbols

in S i, but have not shown an explicit construction.

Cai [6] removed most of drawbacks mentioned earlier. Cai

proved that random linear network coding [26] gives the

strongly secure network coding in the sense of [23] with

arbitrarily high probability with sufficiently large finite fields.

However, he did not provide evaluation of the required field

size, and it seems huge. Moreover, for some applications (e.g.

[9], [39]) we want to choose coding at intermediate nodes in

non-random fashion.

There exists a common difficulty in all the previous con-

structions reviewed above. In practice, we are not sure if the

multiple messages are uniform and statistically independent.

However, all the previous studies1 assumed the uniformity and

the independence, and without both of them their security

proofs do not seem to hold. It is important to provide a

security proof for weakly and strongly secure network coding

without uniformity or independence assumption. On the other

hand, non-uniformity of secret messages has been considered

in the ordinary secure network coding [10], [40] (see also

the survey [7]). In [7], [10], [40], the randomness to hide a

secret message was assumed to be statistically independent of

the secret message, while our present study allows it to be

statistically dependent.

We shall analyze the security of a slightly modified con-

struction of the random linear precoder originally proposed

in [8]. Our modified construction is strongly secure in the

sense of [23] and universal secure in the sense of [35], [36].

Uniformity and the independence assumptions are required in

previous works to guarantee security. This paper relaxed the

assumptions and aims to determine the amount of information

leakage if the two conditions are not satisfied. The optimality

of our modified construction is verified under the uniformity

and independence assumption at the end of Remark 10.

However, we relax an aspect of the security requirements

traditionally used in the secure network coding. In previous

proposals of secure network coding [3], [8], [23], [35], [36]

it is required that the mutual information to the eavesdrop-

per is exactly zero. We relax this requirement by regarding

sufficiently small mutual information to be acceptable. This

relaxation is similar to requiring the decoding error probability

to be sufficiently small instead of strictly zero. Also observe

that our relaxed criterion is much stronger than one commonly

used in the information theoretic security [32]. Our modified

construction can realize arbitrary small mutual information

if coding over sufficiently many symbols in single packet is

allowed.

Up to this point, we have followed the conventional usage

of terminology “strong security” and “weak security” in secure

network coding. On the other hand, in the context of key

agreement and wiretap channel coding and “strong security”

1Cai [6] considered arbitrary probability distribution in [6, Theorem 3.2]
but assumed uniformity and independence for his study of the strongly secure
network coding in [6, Section IV].

and “weak security” mean completely different security cri-

teria [4]. We shall introduce a different terminology “secure

multiplex network coding” to mean “strong security” used in

secure network coding.

After we submitted the original manuscript in 2012, one

of the authors started and published another approach [30] to

the same problem as this paper. [30] proposed a deterministic

construction of universal secure multiplex network coding and

its security analysis also valid for dependent and non-uniform

multiple messages, while the proposed construction in this

paper is probabilistic. However, when multiple messages are

dependent or non-uniform, the construction and the security

analysis in [30] cannot ensure the mutual information to the

eavesdropper arbitrarily small, which makes the construction

in [30] less useful for dependent or non-uniform messages. As

far as the authors know, only the construction in the present

paper can ensure arbitrarily small mutual information to the

eavesdropper when multiple messages are dependent or non-

uniform.

This paper is organized as follows: Section II reviews related

results used in this paper, and a slightly new terminology

“secure multiplex network coding”. Section III introduces the

strengthened version of the privacy amplification theorem and

the proposed scheme for secure network coding. Section IV

concludes the paper.

Part of this paper was reported as earlier proceedings papers

[33], [34]. We substantially rewrote our security proof in [34]

so that we can analyze the security with dependent and non-

uniform multiple secret messages, which was not done in [34].

We borrowed ideas from [33, Section IV] and extended them

in Appendix B so that we can prove Lemma 5.

II. Preliminary

A. Model of network and network coding and two-universal

hash functions

As in [3], [8], [11], [23], [35], [36] we consider the single

source multicast, and assume the linear network coding [29],

[31]. The source node is assumed to have at least n outgoing

links. For i = 1, . . . , n, the source node generates a packet

Pi consisting of m symbols in Fq, and transmits an Fq-

linear combination of P1, . . . , Pn to each outgoing link, as

explained in [18, Section 2.1]. At an intermediate node, only

packets generated at the same time by the source node are

linearly combined, as explained in [18, Section 2.5]. The linear

combination coefficients at each node are fixed so that all the

legitimate receivers can decode n packets P1, . . . , Pn from the

source node. In this paper, we assume that all of sink nodes

have respective decoders to recover all of the nm transmitted

symbols. Since all of legitimate receivers can recover the

message without error due to this assumption, we do not need

to discuss the decoding error probability, and focus on the

security.

If the random linear network coding [26] is employed, we

have to also include so-called encoding vectors in each packet

Pi [18, Section 2.2]. We ignore those encoding vectors because

they do not carry secret information.

Hereafter, we shall only consider the eavesdropper Eve and

forget about the multiple legitimate receivers. The n packets
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P1, . . . , Pn carry in total mn symbols in Fq. We shall propose

a method encoding secret information into mn symbols by

the source node. The mn symbols obtained by the proposed

method are distributed to packets P1, . . . , Pn.

Eve can eavesdrop µ links. We assume µ ≤ n throughout

this paper. The total number of eavesdropped symbols is

therefore mµ. The set of µ eavesdropped links is assumed

to be fixed during packets P1, . . . , Pn are traveling on the

network, as assumed in [35], [36]. The situation considered

here also includes the conventional store-and-forward network

as a special case.

We shall use a family of two-universal hash functions [12]

for the privacy amplification theorem introduced later.

Definition 1: Let F be a set of functions from a finite set

S1 to another finite set S2, and F a random variable on F . If

for any x1 , x2 ∈ S1 we have

Pr[F(x1) = F(x2)] ≤
1

|S2|
, (1)

then F with the probability distribution of F is said to be a

family of two-universal hash functions.

B. Security definitions

In this subsection, we review the existing security criteria,

and introduce our security criterion. We also discuss the

relation among security criteria because the same terminology

is used to mean different criteria.

Definition 2 (Strongly secure network coding): [23] Let m =

1, and S 1, . . . , S T ∈ Fq be messages with T ≤ n. We denote by

S T+1, . . . , S n ∈ Fq randomness not intended as messages. A

network coding is said to be η-strongly secure if the following

relation holds for any 0 ≤ µ ≤ n. When Eve’s observation Z is

obtained by eavesdropping µ links, any I ⊂ {1, . . . , T } with

µ − η ≤ T − |I| satisfies

I(S I; Z) = 0,

where S I = [S i : i ∈ I] and I(S I; Z) denotes their mutual

information as defined in [14].

The parameter η is equivalent to k in [23]. Harada and

Yamamoto [23] showed a procedure to construct (n − T )-

strongly secure network coding under the uniformity and

independence assumption on the messages S 1, . . . , S n. Bhattad

and Narayanan [3] introduced the weak security for network

coding that requires I(S i; Z) = 0 for all i ∈ I.

We want to consider the universal security studied in [35],

[36], and also want to use multiple symbols in a single packet

Pi, that is, m > 1. So we introduce our version of universal

strong security, by following the approach initiated by Silva

and Kschischang [35], [36].

Definition 3: Assume that we are given a linear network

coding for single source multicast. Assume also that linear

coding at intermediate nodes and the set of µ eavesdropped

links are fixed when packets P1, . . . , Pn travel from the source

node to all the legitimate receivers. Suppose that we have T+1

messages S 1, . . . , S T+1 and S i ∈ F
ki
q . S T+1 denotes randomness

not intended as a message. We assume
∑T+1

i=1 ki = mn. A linear

transformation of S 1, . . . , S T+1 at the source node is said to

be a universal (ǫ, η)-secure multiplex network coding if the

following relation holds for all linear coding at intermediate

nodes and for any 0 ≤ µ ≤ n. When Eve’s observation Z

corresponds to µ eavesdropped links, any subset I ⊂ {1, . . . ,

T } with m(µ − η) <
∑

1≤i≤T+1,i<I ki satisfies

I(S I; Z) ≤ ǫ, (2)

where S I = [S i : i ∈ I].

Readers may observed that the above secure multiplex

network coding with ǫ = 0 is almost the same as the strong

security in [23]. The reason for using a different name is as

follows. In the study of wiretap channel coding, we usually

consider a sequence of encoders and decoders for block length

m = 1, 2, . . . . the weak security in the wiretap coding

means limm→∞ I(S , Z)/m = 0, where S is the message of

the wiretap coding and Z is the received sequence by the

eavesdropper. The strong security in the wiretap coding means

limm→∞ I(S , Z) = 0. Since those meanings of the weak and

strong security in the wiretap coding are different from the

secure network coding, we introduced a different terminology

in Definition 3 to reduce unnecessary confusion.

III. Universal secure multiplex network coding

A. Strengthened privacy amplification theorem

In order to evaluate the mutual information to Eve when

the sum rate of multiple secret information is large, we need

to strengthen the privacy amplification theorem originally

appeared in [2], [25] as follows. The below new privacy

amplification theorem enables an upper bound (8) on the

mutual information when the mutual information grows with

m instead of converging to zero.

The following proposition is a slightly enhanced version of

[34, Theorem 2].

Proposition 4: Let A1 and A2 be discrete random variables

on finite sets A1 and A, respectively, and F a family of

functions from A1 to A3. Let F be a random variable on

F . Assume that A1 and F are conditionally independent given

A2, and that for any fixed realization a2 of A2, the conditional

probability distribution of F given a2 satisfies the condition

for a family of two-universal hash functions. Then we have

E f [exp(ρI(F(A1); A2|F = f ))] ≤ 1 + |A3|
ρE[PA1 |A2

(A1|A2)ρ]

(3)

for all 0 ≤ ρ ≤ 1, where E f [·] denotes the expectation of · with

f being the random variable. We use the natural logarithm for

all the logarithms in this paper, which include ones implicitly

appearing in entropy and mutual information. Otherwise we

have to adjust the above inequality.

Proof: Proof is given in Appendix A.

In our analysis of the security, we shall use Proposition 4

with A1 being the whole secret message, A2 being part of the

secret message whose secrecy we analyze, and F(A1) being

Eve’s observation.

B. Description of the proposed scheme and analysis with

randomized coding

The purpose of this section is to provide a universal

(ǫI , (kT+1/m−δρ))-secure multiplex network coding in the sense
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of Definition 3, where δρ is a parameter measuring conditional

non-uniformity to be defined in Eq. (12). The modified sense

means that the zero mutual information in Eq. (2) is relaxed

to the requirement that it can be made arbitrarily small. For

this purpose, in this subsection, we treat the coding scheme

with randomized coding. We assume that we have T secret

messages, which can be dependent or non-uniform, and that

the i-th secret message is given as a random variable S i

whose realization is a row vector in F
ki
q . We shall provide

upper bounds on the information leaked to Eve for all choices

of values of ki. We shall also use a supplementary random

message S T+1 taking values in F
kT+1
q when the randomness in

the encoder is insufficient to make S i secret from Eve. By S

we denote the entire collection (S 1, . . . , S T+1) of messages.

We assume mn = k1 + · · · + kT+1.

Let L be the set of all bijective Fq-linear maps from
∏T+1

i=1 F
ki
q to itself, and L the uniform random variable on L

statistically independent of S = (S 1, . . . , S T+1), and arbitrary

fix nonempty I ⊆ {1, . . . , T }. The source node store LS t into

packets P1, . . . , Pn defined in Section II-A and send them via

its n outgoing links, where t denotes the transpose of a vector.

Our modified construction just adds a bijective linear precode

to an existing network code. Note that attaching a random

linear function was first proposed in [8] for the secure network

coding. This coding scheme is illustrated in Fig. 1.

The legitimate sender and all the legitimate receivers agree

on the choice of L. The eavesdropper Eve may also know

their choice of L. Choice of L is part of protocol specification,

the chosen L is repeatedly used, and agreement on its choice

among legitimate sender and receivers is not counted as

consumption of the network bandwidth. A legitimate receiver

can recover S 1, . . . , S T , S T+1 by multiplying L−1 to his/her

received information. By the assumption on Eve, her informa-

tion can be expressed as BLS t by using an mµ×mn matrix B

over Fq as in [35], [36].

For the nonempty I ⊆ {1, . . . , T }, denote the collection of

random variables [S i : i ∈ I] by S I, denote [S i : i ∈ {1, . . . ,

T + 1} \ I] by S
I

, and let kI =
∑

i∈I ki.

For a fixed realization ℓ of L, the information gained by

Eve is measured by the mutual information I(S I; BLS t|L = ℓ),

which is common practice in the information theoretic security

[5], [32]. Since its average Eℓ[I(S I; BLS t|L = ℓ)] is the

conditional mutual information I(S I; BLS t|L) [14], we will

upper bound I(S I; BLS t|L). After upper bounding the average

I(S I; BLS t|L) in Eq. (5), we can ensure that for most choices

of ℓ and all possible B, I(S I; BLS t|L = ℓ) is small, as done in

Eq. (11).

In order to use Proposition 4, we introduce a lemma.

Lemma 5: For fixed B, the family of mapping S 7→ BLS t

is a family of two-universal hash functions to the rank(B)-

dimensional Fq-linear space.

Proof: See Appendix B.

We can upper bound I(S I; BLS t|L) as follows, by applying

Proposition 4 with A1 = S , A2 = S I, and F(A1) = BLS t.

Observe that the assumption in Proposition 4 holds because

S I is part of S and L is independent of S .

Eℓ[exp(ρI(S I; BLS t|L = ℓ))]

≤ 1 + qmρ×rank(B)E[PS |S I(S |S I)ρ]

= 1 + qmρ×rank(B)E[PS
I
|S I(S I|S I)ρ]

≤ 1 + qmρµE[PS
I
|S I(S I|S I)ρ]. (4)

From Eq. (4) we have

ρI(S I; BLS t|L)

= ln exp(ρI(S I; BLS t|L))

≤ ln Eℓ[exp(ρI(S I; BLS t|L = ℓ))]

≤ ln(1 + qmρµE[PS
I
|S I(S I|S I)ρ])

≤ qmρµE[PS
I
|S I(S I|S I)ρ]. (5)

Fix a real number C1 > 1. Equation (5) and the Markov

inequality yield that

Pr[ℓ ∈ LI,1] < 1/C1

for any single nonempty I ⊆ {1, . . . , T }, where LI,1 := {ℓ |

I(S I; BLS t|L = ℓ) > C1Eℓ[I(S I; BLS t|L = ℓ)]}. Thus,

Pr[ℓ ∈ ∪I:I,∅LI,1] < (2T − 1)/C1.

This means that there is at least a probability of 1−(2T −1)/C1

such that a realization ℓ of L satisfies

I(S I; BLS t|L = ℓ)

≤ C1Eℓ[I(S I; BLS t|L = ℓ)]

≤ C1qmρµE[PS
I
|S I(S I|S I)ρ]/ρ (6)

for all the (2T − 1) nonempty subsets I of {1, . . . , T }.

Defining another subset LI,2 := {ℓ | exp(ρI(S I; BLS t|L = ℓ)) >

C1Eℓ[exp(ρI(S I; BLS t|L = ℓ))]}, by Eq. (4) and the Markov

inequality we obtain

Pr[ℓ ∈ ∪I:I,∅(LI,1 ∪ LI,2)] < 2(2T − 1)/C1.

Therefore, a realization ℓ of L satisfies both Eq. (6) and

exp(ρI(S I; BLS t|L = ℓ)) ≤ C1(1 + qmρµE[PS
I
|S I(S I|S I)ρ]).

(7)

with probability at least 1 − 2 × (2T − 1)/C1.

Equation (7) implies

I(S I; BLS t|L = ℓ)

m

=
1

m
ln exp I(S I; BLS t|L = ℓ)

≤
ln C1

mρ
+

1

mρ
ln(1 + qmρµE[PS

I
|S I(S I|S I)ρ]) (by Eq. (7))

≤
ln C1

mρ
+

∣
∣
∣
∣
∣
∣
µ ln q +

1 + ln E[PS
I
|S I(S I|S I)ρ]

mρ

∣
∣
∣
∣
∣
∣

+

, (8)

where in Eq. (8) we used ln(1 + exp(x)) ≤ |1 + x|+ = max{0,

1 + x}.

Summarizing the preceding discussion, we have the follow-

ing proposition.

Proposition 6: Recall that the eavesdropping mµ×mn matrix

B is fixed, that L is the uniform random variable on L

statistically independent of S = (S 1, . . . , S T+1), and that a

real number C1 > 1 is arbitrarily fixed. There is at least a

probability of 1−2×(2T −1)/C1 such that information leakage
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S = (S 1, . . . , S T+1)→
nonsingular

matrix L

LS t

→

✓

✒

✏

✑

network

coded

network

→

one of

multiple

receivers

→ S

↓

BLS t

eavesdropper

Eve

Fig. 1. Proposed coding scheme for the universal secure multiplex network coding

I(S I; BLS t|L = ℓ) to Eve with the chosen realization ℓ of L

satisfies both inequalities (6) and (8) simultaneously.

The previous proposition does not ensure the universal

security in the sense of [35], [36] because it only considers a

fixed eavesdropping matrix B. To ensure the universal security,

we must consider all the possible eavesdropping matrix B,

which shall be done in the next two subsections.

C. Evaluation of the number of different kinds of eavesdrop-

ping

In the following, we considered the case when the matrix

B corresponds to µ eavesdropped links. Such a case can be

mathematically formulated as follows. Let xi, j ∈ Fq be the j-

th symbol in the i-th packet Pi defined in Section II-A. Then

there exists a µ × n matrix Bµ×n such that what are observed

by Eve at the j-th symbols in her eavesdropped µ packets is

expressed as Bµ×n(x1, j, . . . , xn, j)
t for j = 1, . . . , m. Without

loss of generality we may assume rank(Bµ×n) = µ because if

rank(Bµ×n) = µ′ < µ then such a case can be regarded as only

µ′ links being eavesdropped. Then, the mµ × mn matrix2 B is

completely determined by Bµ×n.

In order to show the universal security in Definition 3, we

need to ensure that the mutual information is small for any B

and any 0 ≤ µ ≤ n. For this purpose, we need to count the

number of different kinds of eavesdropping.

We consider the set B(µ) of all possible mµ × mn matri-

ces B that characterize Eve’s eavesdropping with the above

restriction. Then, we define an equivalence relation ∼ on B(µ)

as B1 ∼ B2 for B1, B2 ∈ B(µ) if there exists an invertible

function f such that f (B1LS t) = B2LS t for all L and S t. That

is, B1 ∼ B2 if and only if the kernel of B1 is the same as that

of B2. Since B1 and B2 are determined by µ × n matrices, the

space B(µ)/ ∼ is the set of the (n− µ)-dimensional subspaces

in Fn
q. The space is called Grassmannian and the number is

evaluated in the following way [17]

|B(µ)/ ∼ | =

µ−1∏

i=0

qn − qi

qµ − qi
≤

µ−1∏

i=0

qn − qµ−1

qµ − qµ−1
=

µ−1∏

i=0

qn−µ+1 − 1

q − 1

≤

µ−1∏

i=0

qn−µ+1 = qµ(n−µ+1) ≤ q
(n+1)2

4 (9)

because (x − z)/(y − z) is monotonically increasing in z when

x > y > z > 0. The final inequality follows from the inequality

2Mathematically, the mµ × mn matrix B is written as Bµ×n ⊗ Im×m.

√

µ(n − µ + 1) ≤
µ+n−µ+1

2
= n+1

2
. Hence, the total number of

equivalence classes excluding B(0) is upper bounded as

n∑

µ=1

|B(µ)/ ∼ | ≤ nq
(n+1)2

4 . (10)

D. Universally secure multiplex network coding

Next, using the above discussion, we show the existence of

universal secure multiplex networking coding. Due to (10), the

probability of L satisfying Eqs. (6) and (8) simultaneously for

all possible B is at least

1 − 2 × (2T − 1) × nq
(n+1)2

4 /C1. (11)

Recall that chosen L is part of protocol specification and re-

peatedly used. Because Eqs. (6), (8) and (11) are independent

of realization of the random variable S representing secret

information, Eqs. (6) and (8) are satisfied in every repeated

use of L with probability at least Eq. (11).

The upper bound (6) can go to either zero or ∞ as m→ ∞.

When the upper bound (6) goes to ∞, the information leakage

to Eve grows linearly with m and its growth rate with m

will be analyzed by Eq. (8). Firstly, we need to clarify under

what condition Eq. (6) converges to zero as m → ∞. To do

so, we shall introduce a version of conditional Rényi entropy

introduced in [25]. There seems to be no standard definition

for the conditional Rényi entropy, for example, definitions in

[2] and [22] disagree and our definition in [25] is different

from [2], [22]. For discrete random variables X, Y, define

conditional Rényi entropy of order 1 + ρ as

H1+ρ(X|Y) = −
ln E[PX |Y(X|Y)ρ]

ρ
.

For ρ = 0, we define H1(X|Y) as limρ→0 H1+ρ(X|Y). By using

l’Hôpital’s rule we see that H1(X|Y) is equal to the conditional

Shannon entropy. Observe also that H1+ρ(X|Y) = logq |X| if X

is conditionally uniform given Y, where X denotes the alphabet

of X. We note that E[PS
I
|S I(S I|S I)ρ] = eH1+ρ(S I |S I).

In order to clarify under what condition Eq. (6) converges to

zero, we need to assume some knowledge on PS
I
|S I(S I|S I).

We consider the situation in which each message S i originates

from a different organization and it is compressed before

network coded. Even after compression, it is known that S 1,

. . . , S T are not completely uniform [24], and we must allow

certain degree of statistical dependence among S 1, . . . , S T and

their non-uniformity. In this paper we consider secure network

coding separately from source coding of S i.
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Let δρ be a nonnegative constant such that

n −
kI

m
−

H1+ρ(S I|S I)

m ln q
≤ δρ (12)

for some 0 < ρ ≤ 1, for all I, and for sufficiently large m.

Observe that if all messages S i’s are uniform and independent

then δρ = 0. The parameter δρ captures the deviation from

the uniform and independent situation in terms of conditional

Rényi entropy per the number m of symbols in single packet.

By taking the natural logarithm of Eq. (6), we see

ln [RHS of Eq. (6)]

= ln
C1

ρ
+ mρ(µ ln q +

ln E[PS
I
|S I(S I|S I)ρ]

mρ
)

= ln
C1

ρ
+ mρ(

(∗)
︷                ︸︸                ︷

µ −
H1+ρ(S I|S I)

m
) ln q. (13)

When

µ < (n −
kI

m
) − δρ i.e.

kI

m
< n − µ − δρ, (14)

(∗) in Eq. (13) becomes negative by Eq. (12). Under such

condition Eq. (13) converges to −∞ as m→ ∞, which means

that the upper bound Eq. (6) can be made arbitrary small by

letting m be large.

Secondly, we shall analyze how much information Eve can

gain when Eq. (14) does not hold. In such case we use the

other upper bound Eq. (8). We can rewrite Eq. (8) as

RHS of Eq. (8)

=
1 + ln C1

mρ
+ µ ln q −

H1+ρ(S I|S I)

m

≤
1 + ln C1

mρ
+ (µ − (n −

kI

m
− δρ)) ln q (by Eq. (12)).

We see that we can make the upper bound Eq. (8) on
I(S I ;BLS t |L=ℓ)

m
arbitrary close to

(µ + δρ − (n −
kI

m
)) ln q (15)

by letting m be large.

Observe that the assumption (14) is equivalent to the as-

sumption of Definition 3 with η = kT+1/m − δρ. By summa-

rizing the previous discussion, we can construct a universal

secure multiplex network coding in the sense of Definition 3

as follows:

Theorem 7: For any ǫp, ǫI > 0 and sufficiently large m, a

random choice of mn × mn matrix L gives with probability

at least 1 − ǫp a universal (ǫI , kT+1/m − δρ)-secure multiplex

network coding.

Remark 8: The condition (14) for almost zero mutual infor-

mation can become true for µ = 1 if δρ < n−
kI
m
− 1, which is

equivalent to H1+ρ(S I|S I)/(m ln q) > 1. A sufficient condition

for (14) to hold for µ = 1 is that the conditional Rényi entropy

of S
I

given S I is > ln q for some ρ, which is equivalent

to S
I

has at least one Fq symbol of conditional randomness

given S I. So we can see that the previous argument can ensure

almost zero mutual information with messages very far from

independence and uniformity.

Remark 9: The meaning of C1 is as follows: At Eqs. (4) and

(5), there might not exist a realization ℓ of L that satisfies Eqs.

(4) and (5) for all subsets I of {1, . . . , T } simultaneously. By

sacrificing the tightness of the upper bounds, we ensure the

existence of ℓ satisfying Eqs. (6) and (7) for all I.

Remark 10: Under the assumption that all messages S 1, . . . ,

S T+1 are uniform and independent, the mutual information can

be made exactly zero for every eavesdropping matrix B. The

reason is as follows: For fixed B and L = ℓ, we have

I(S I; BLS t|L = ℓ) = H(S I|L = ℓ) − H(S I|BLS t, L = ℓ). (16)

The first term H(S I|L = ℓ) is an integer multiple of ln q since

S I is assumed to have the uniform distribution. Let αI be

the projection from
∏T+1

i=1 F
ki
q to

∏

i∈I F
ki
q for ∅ , I ⊆ {1,

. . . , T }. For fixed B and ℓ, and a given realization z of

BℓS t, the set of solutions s such that z = Bℓs is written as

ker(Bℓ)+ some vector v. This means that the set of possible

candidates of S I given realization z of BℓS t is written as

αI(ker(Bℓ)) + αI(v), and S I given realization z is uniformly

distributed on αI(ker(Bℓ)) + αI(v). Since the cardinality of

αI(ker(Bℓ)) + αI(v) is independent of ℓS t for fixed B and ℓ,

the second term H(S I|BLS t, L = ℓ) is also an integer multiple

of ln q. Therefore, if Eq. (6) holds for every B as verified

in Eq. (11) and the RHS of Eq. (6) is < ln q, then the LHS

of Eq. (6) must be zero. Observe that under this assumption

our modified construction is a universal (0, kT+1/m)-secure

multiplex network coding in the exact sense of Definition 3.

The parameter kT+1/m is optimal according to [7].

E. Evaluation of the required resource

In this subsection, we evaluate the amount of required

resource in our proposal. One can make convergence of Eq.

(6) arbitrarily slow by decreasing the difference between LHS

and RHS of Eq. (14), which makes evaluation of required size

of m very difficult.

To overcome the above difficulty, we consider (ǫI , kT+1/m−

δρ− ǫµ)-secure multiplex network coding, with which we have

to ensure small mutual information only for µ < n − kI/m −

δρ − ǫµ. This assumption makes the difference between LHS

and RHS of Eq. (14) at least ǫµ, which enables us to provide

an upper bound on m.

Proposition 11: For given n, q, T , ρ, δρ, ǫI , ǫp and ǫµ,

m ≥

(n+1)2

4
+ logq(2n(2T − 1)) − logq(ρǫpǫI )

ρǫµ

is sufficient to ensure that a random choice of L gives an

(ǫI , kT+1/m − δρ − ǫµ)-secure multiplex network coding with

probability at least 1 − ǫp.

Proof: By Eq. (11) we have to choose C1 with

C1 ≥ 2 × (2T − 1) × nq
(n+1)2

4 /ǫp. (17)

By Eq. (13), to make the mutual information ≤ ǫI , we see

ln
C1

ρ
− mρǫµ ln q ≤ ln ǫI (18)
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is sufficient. The condition (18) is equivalent to

m ≥ (ln
2 × (2T − 1) × nq

(n+1)2

4

ρǫpǫI
)/(ρǫµ ln q)

⇔ m ≥

(n+1)2

4
+ logq(2n(2T − 1)) − logq(ρǫpǫI)

ρǫµ

We comment on the required field size and the com-

putational complexity of code construction of our proposal

and previous proposals realizing the security. The proposed

construction works with any given field size q, as well as [30],

[35]. The required sizes of q in [3], [23] are not explicitly given

but they seem quite large.

Instead of increasing q, we need to increase m to satisfy the

maximum allowable mutual information to the eavesdropper,

as shown in Proposition 11. Proposition 11 indicates that

a small value of ǫµ makes the required size of m large,

because smaller ǫµ makes the convergence of Eq. (6) slower.

In [35], m ≥ n is sufficient for explicit construction of a

code, and in [30] m ≥ 2n is sufficient, while neither [30],

[35] realizes almost zero mutual information with dependent

or non-uniform multiple messages.

The complexity of code construction of our proposal is m2n2

because of the random choice of mn × mn matrix. The codes

in [30], [35] are the Gabidulin codes [21] of length n over Fqm

and construction of an encoding matrix at the source node can

be done in m2n2 arithmetic operations in Fq. We note that for

small ǫµ the required size of m in our proposal can be much

larger than [30], [35]. The complexities of code constructions

in [3], [23] are not given but they seem quite large.

F. Numerical example of explicit computation of required

block size m

In this section we give a numerical example of computing

required block length m in order to ensure the mutual infor-

mation is below some value. In order to do so, we need an

estimate of E[PS
I
|S I(S I|S I)ρ]. We assume to have δ0.5 = 0.5

in Eq. (12) at ρ = 0.5.

Let q = 256, n = 10, µ = 3, T = 5, ki = 2m for all i. We

do not have S T+1. We want to ensure that we choose ℓ with

probability at least 1−10−12 such that I(S i; BLS t|L = ℓ) < 10−6

for all i = 1, . . . , 5. By Eq. (11) we choose C1 as

2 × nq
(n+1)2

4 (2T − 1)/C1 = 10−12

⇔ C1 = 2 × 10 × 256112/4(2T − 1)1012

By using δρ, we can upper bound the RHS of Eq. (6) as

follows:

C1qmρµE[PS
I
|S I(S I|S I)ρ]/ρ

= C1 expq(mρ(µ +
H1+ρ(S I|S I)

m ln q
)/ρ

≤ C1 expq(mρ(µ − n + kI/m + δρ))/ρ (by Eq. (12)).(19)

In order to keep the above upper bound to be below 10−6 we

have to choose

C1 expq(mρ(µ − n + kI/m + δρ))/ρ < 10−6

⇔ m > −
logq(106C1/ρ)

ρ(µ − n + kI/m + δρ)

⇔ m > −
log256(106 × 2 × 10 × 256121/4(25 − 1)1012/0.5)

0.5(3 − 10 + 2 + 0.5)

⇐ m ≥ 17.3373

This means that we can choose m = 18 and should choose

the matrix L at least as large as 180 × 180 over F256, which

is implementable. Recall that we assumed n = 10 outgoing

(logical) links from the source node and that each outgoing

link carries m = 18 symbols in single coding block in this

example. We note that the above computation corresponds to

the case ǫI = 10−6, ǫp = 10−12 and ǫµ = 4.5 in Proposition 11,

and realizes (10−6, −5)-secure multiplex network coding in

the sense of Definition 3 with probability 1−10−12. Relatively

small m comes from the choice of ǫµ = 4.5. If we want to

realize the same level of security for any triple of S 1, . . . S 5

instead of single S i, then ǫµ becomes 0.5 and the required size

of m becomes 9(= 4.5/0.5) times larger than this example,

which realizes (10−6, −1)-secure multiplex network coding.

Since δρ > 0, we cannot realize (ǫp, 0)-secure multiplex

network coding without use of the dummy message S T+1,

which is not used in this example.Use of the dummy message

S T+1 also decreases the required size of m.

Remark 12: A vector in Fmn
q can be identified with an

element in Fqmn , and multiplication by a nonzero element in

Fqmn is an Fq-linear mapping and can be identified with an

element in L. Let LFqmn be a commutative subgroup of L

whose elements can be identified with nonzero elements in

Fqmn . By looking at the proof of Lemma 5 in Appendix B, we

can see that LFqmn can be used in place of L in our modified

construction. Necessary storage space to record choice of an

element in LFqmn is that of mn Fq symbols and is smaller than

that of L. Matrix multiplication by an element in LFqmn is at

least as fast as that in L.

IV. Conclusion

In the secure network coding, there was loss of information

rate due to inclusion of random bits at the source node. Weakly

and strongly secure network coding [3], [6], [23], [35] remove

that loss of information rate by using multiple messages to

be kept secret from an eavesdropper, which require huge

computational complexity in code construction or huge finite

field size. In addition to this, the previous studies assumed

uniform and independent multiple messages, which seems

too strong assumption in practice. In this paper, we have

shown that random linear transform of multiple messages at

the source node realizes the strongly secure (called secure

multiplex network coding in this paper) network coding with

arbitrary high probability with sufficiently large block length.

We did not assume uniformity nor independence in multiple

messages. Our numerical example in Section III-F showed that

“sufficiently large block length” can be small. We studied the

secure network coding from separately the source coding of

messages. Joint source and network coding might improve the

performance, but we leave the study of such a joint encoding

as a future.
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Appendix A

Proof of Proposition 4

In order to show Proposition 4, we introduce the following

lemma.

Lemma 13: Under the same assumption as Proposition 4,

we have

E f [exp(−ρH(F(A1)|A2, F = f ))] ≤ |A3|
−ρ + E[PA1 |A2

(A1|A2)ρ]

(20)

for 0 ≤ ρ ≤ 1.

Proof of Proposition 4:

E f [exp(ρI(F(A1); A2|F = f ))]

= E f [exp(ρH(F(A1)|F = f )
︸              ︷︷              ︸

≤logq |A3|

−ρH(F(A1)|A2, F = f ))]

≤ E f [|A3|
ρ exp(−ρH(F(A1)|A2, F = f ))]

≤ |A3|
ρ(|A3|

−ρ + E[PA1 |A2
(A1|A2)ρ]) (by Eq. (20))

= 1 + |A3|
ρE[PA1 |A2

(A1|A2)ρ].

Proof of Lemma 13: Fix a2 ∈ A2. The concavity of xρ

for 0 ≤ ρ ≤ 1 implies

E f

[ ∑

a3∈A3

P f (A1)|A2
(a3|a2)1+ρ

]

= E f

[ ∑

a3∈A3

P f (A1)|A2
(a3|a2)

︸            ︷︷            ︸

=
∑

a1∈ f−1(a3)
PA1 |A2

(a1 |a2)

P f (A1)|A2
(a3|a2)ρ

]

= E f

[ ∑

a1∈A1

PA1 |A2
(a1|a2)

∑

a′
1
∈ f−1( f (a1))

PA1 |A2
(a′1|a2)ρ

]

=
∑

a1∈A1

PA1 |A2
(a1|a2)E f

[ ∑

a′
1
∈ f−1( f (a1))

PA1 |A2
(a′1|a2)ρ

]

≤
∑

a1∈A1

PA1 |A2
(a1|a2)

(

E f

[ ∑

a′
1
∈ f−1( f (a1))

PA1 |A2
(a′1|a2)

]

︸                              ︷︷                              ︸

(∗∗)

)ρ
. (21)

For a fixed realization a2 of A2, by the assumption in Propo-

sition 4 two random variables F and A1 are statistically

independent, which implies the distribution of f in (**) is

independent of a1. Since f is chosen from a family of two-

universal hash functions defined in Definition 1, we have

P(a′
1
∈ F−1(F(a1)) \ {a1}) ≤ 1/|A3| for a1 , a′

1
∈ A1 and

(∗∗) = E f

[

PA1 |A2
(a1|a2) +

∑

a′
1
∈ f−1( f (a1))\{a1}

PA1|A2
(a′1|a2)

]

≤ PA1 |A2
(a1|a2) +

∑

a1,a′
1
∈A1

PA1|A2
(a′

1
|a2)

|A3|

≤ PA1 |A2
(a1|a2) + |A3|

−1.

Since any two positive numbers x and y satisfy (x+y)ρ ≤ xρ+yρ

for 0 ≤ ρ ≤ 1, we have

(PA1 |A2
(a1|a2) + |A3|

−1)ρ ≤ PA1 |A2
(a1|a2)ρ + |A3|

−ρ. (22)

By Eqs. (21) and (22) we can see

E f

[ ∑

a3∈A3

P f (A1)|A2
(a3|a2)1+ρ

]

≤
∑

a1∈A1

PA1 |A2
(a1|a2)1+ρ + |A3|

−ρ.

Taking the average over A2 of the both sides of the last

equation, we have

E f [EA1A2
[P f (A1)|A2

( f (A1)|A2)ρ]] ≤ EA1 A2
[PA1|A2

(A1|A2)ρ]+|A3|
−ρ.

(23)

Define g(ρ) = EA1 A2
[P f (A1)|A2

( f (A1)|A2)ρ] as a function of ρ

with fixed f and PA1A2
, and h(ρ) = ln g(ρ). We have

g′(ρ) = EA1A2
[P f (A1)|A2

( f (A1)|A2)ρ ln P f (A1)|A2
( f (A1)|A2)],

g′′(ρ) = EA1A2
[P f (A1)|A2

( f (A1)|A2)ρ(ln P f (A1)|A2
( f (A1)|A2))2],

h′(ρ) = g′(ρ)/g(ρ),

h′′(ρ) =
g′′(ρ)g(ρ) − [g′(ρ)]2

g(ρ)2
.

Define (A′
1
, A′

2
) to be the random variables that have the same

joint distribution as (A1, A2) and statistically independent of

A1 and A2. To examine the sign of h′′(ρ) we compute

g′′(ρ)g(ρ) − [g′(ρ)]2

= EA1A2A′
1
A′

2
[P f (A1)A2

( f (A1), A2)ρP f (A1)A2
( f (A′1), A′2)ρ

{(ln P f (A1)|A2
( f (A1)|A2))2

− ln P f (A1)|A2
(A1|A2) ln P f (A1)|A2

(A′1|A
′
2)}]

=
1

2
EA1A2A′

1
A′

2
[P f (A1)A2

( f (A1), A2)ρP f (A1)A2
( f (A′1), A′2)ρ

{(ln P f (A1)|A2
( f (A1)|A2))2 + (ln P f (A1)|A2

( f (A′1)|A′2))2

− 2 ln P f (A1)|A2
( f (A1)|A2) ln P f (A1)|A2

( f (A′1)|A′2)}]

=
1

2
EA1A2A′

1
A′

2
[P f (A1)A2

( f (A1), A2)ρP f (A1)A2
( f (A′1), A′2)ρ

{ln P f (A1)|A2
( f (A1)|A2) − ln P f (A1)|A2

( f (A′1)|A′2)}2]

≥ 0.

This means that h′′(ρ) ≥ 0 and h(ρ) is convex. We can see

EA1 A2
[P f (A1)|A2

( f (A1)|A2)ρ] = exp(h(ρ))

≥ exp( h(0)
︸︷︷︸

=0

+ρh′(0))

= exp(−ρH( f (A1)|A2)). (24)

By Eqs. (23) and (24) we see that Eq. (20) holds.

Appendix B

Proof of Lemma 5

We shall prove Lemma 5 in this Appendix. Let L be a

subgroup of the group of all bijective linear maps on Fmn
q . For

~x ∈ Fmn
q , the orbit O(~x) of ~x under the action of L is defined

by

O(~x) = {L~x | L ∈ L}.

Lemma 14: Let ~x, ~y be two different vectors belonging to

O(~z). We have

|{L ∈ L | L~z = ~x}| = |{L ∈ L | L~z = ~y}|.

Proof: Let K ∈ L such that K~x = ~y. We have

|{L ∈ L | L~z = ~x}|

= |{L ∈ L | KL~z = K~x}|

= |{L ∈ L | KL~z = ~y}|
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= |{L ∈ L | L~z = ~y}|.

Lemma 15: Let B be an mµ×mn matrix, ker(B) = {~x ∈ Fmn
q |

B~x = ~0}, and im(B) = {B~x | ~x ∈ Fmn
q }. The family of functions

{BL | L ∈ L} with uniformly distributed L is a family of two-

universal hash functions from Fmn
q to im(B) if and only if

|O(~v) ∩ ker(B)|

|O(~v)|
≤

1

|im(B)|

for all ~v ∈ Fmn
q \ {

~0}.

Proof: With the uniform distribution on L, LHS of Eq.

(1) is equal to

|{L ∈ L | BL~x1 = BL~x2}|

|L|

=
|{L ∈ L | BL(~x1 − ~x2) = ~0}|

|L|

=
|{L ∈ L | L(~x1 − ~x2) ∈ ker(B)}|

|L|

=
|{L ∈ L | L(~x1 − ~x2) ∈ O(~x1 − ~x2) ∩ ker(B)}|

|{L ∈ L | L(~x1 − ~x2) ∈ O(~x1 − ~x2)}|

=
|O(~x1 − ~x2) ∩ ker(B)|

|O(~x1 − ~x2)|
(by Lemma 14).

Renaming ~x1 − ~x2 to ~v proves the lemma.

Proposition 16: If L is the set of all bijective linear maps

on Fmn
q , then {BL | L ∈ L} with uniformly distributed L is a

family of two-universal hash functions from Fmn
q to im(B).

Proof: For a nonzero ~v ∈ Fmn
q , we have O(~v) = Fmn

q \ {
~0},

which implies

|O(~v)| = |Fmn
q | − 1,

|O(~v) ∩ ker(B)| =
|Fmn

q |

|im(B)|
− 1.

By Lemma 15 we can see that the proposition is true.

Proof of Lemma 5: Lemma 5 is equivalent to Proposition

16.
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