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A pure quantum state is called k-uniform if all its reductions to k-qudit are maximally mixed.
We investigate the general constructions of k-uniform pure quantum states of n subsystems with d
levels. We provide one construction via symmetric matrices and the second one through classical
error-correcting codes. There are three main results arising from our constructions. Firstly, we show
that for any given even n > 2, there always exists an n/2-uniform n-qudit quantum state of level p
for sufficiently large prime p. Secondly, both constructions show that their exist k-uniform n-qudit
pure quantum states such that k is proportional to n, i.e., k = Ω(n) although the construction
from symmetric matrices outperforms the one by error-correcting codes. Thirdly, our symmetric
matrix construction provides a positive answer to the open question in [23] on whether there exists
3-uniform n-qudit pure quantum state for all n > 8. In fact, we can further prove that, for every k,
there exists a constant Mk such that there exists a k-uniform n-qudit quantum state for all n > Mk.
In addition, by using concatenation of algebraic geometry codes, we give an explicit construction of
k-uniform quantum state when k tends to infinity.

I. INTRODUCTION

Quantum entanglement appears in many areas of
quantum information theory including quantum commu-
nications [1–3], quantum computing [4–6] and quantum
key distribution [7]. Quantum entanglement theory is
developed to determine which states are entangled and
which are separable. In bipartite entanglement, the sim-
plest is quantum bipartite pure state. To determine
whether this pure state is separable, we just diagonal-
ize its reduced density matrix. But it is still NP-hard to
determine separability in bipartite system [8]. In general
problem of multipartite entanglement, besides separabil-
ity and entanglement, there are many types of partial
separability which complicates this problem. Although
there are some attempts to detect genuine multipartite
entanglement [9, 10], there are still many open problems
in this area.
One of the intriguing problem is to investigate highly

entangled states of several qubits[11–19]. In [20, 21],
they considered the one qubit reduced state which is
maximally mixed. This idea was further developed by
Arnaud and Cerf [22]. They proposed the concept of
k-multipartite maximally entangled pure states or k-
uniform for short, i.e., any k-partite reduced state is max-
imally mixed.
It was shown in [29] that an n-qudit pure quantum

state |Φ〉 of level d is k-uniform if and only if |Φ〉 is a
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pure ((n, 1, k + 1))d quantum error-correcting code. Us-
ing this connection the author was able to construct some
k-uniform pure quantum states through stabilizer quan-
tum codes obtained from classical self-dual codes. In [23],
a connection between k-uniform pure quantum states and
orthogonal arrays was established and several classes of
k-uniform states were constructed. More precisely speak-
ing, the following result were obtained in [23].

• There exist k-uniform (d+1)-qudits states of d lev-
els whenever d ≥ 2 and k ≤ d+1

2 .

• There exist 2-uniform n-qudits states of 2 levels
whenever n > 5.

• There exist 3-uniform (2m + 2)-qudits states of 2m

levels whenever m > 2.

• There exist 2m − 1-uniform (2m + 2)-qudits states
of 2m levels whenever m = 2 or 4.

In addition, some k-uniform n-qudits states of d levels
were also given for some small values of k, n, d. The above
special values of the parameters k, n, d are obtained due
to constraint from combinatorial structure of orthogonal
arrays.
In this paper, we first provide an equivalent definition

for k-uniform quantum states through a map from Zn
d to

the complex numbers C. Based on this equivalent defini-
tion, we first derive a construction of k-uniform quantum
states by using symmetric matrices. Again starting from
this equivalent definition, we present the second construc-
tion that makes use of classical error-correcting codes
with good minimum distance and dual distance. There

http://arxiv.org/abs/1511.07992v1
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are three main results arising from our constructions.
Firstly, we show that for any given even n > 2, there
always exists an n/2-uniform n-qudit quantum state of
level p for sufficiently large prime p. Secondly, both con-
structions show that their exist k-uniform n-qudit pure
quantum states such that k is proportional to n, i.e.,
k = Ω(n) although the construction from symmetric
matrices outperforms the one by error-correcting codes.
Thirdly, our symmetric matrix construction provides a
positive answer to the open question in [23] on whether
there exists 3-uniform n-qudit pure quantum states for
all n > 8. In fact, we can further prove that, for every
k, there exists a constant Mk such that there exists a k-
uniform n-qudit quantum state for all n > Mk. In addi-
tion, by using concatenation of algebraic geometry codes,
we give an explicit construction of k-uniform quantum
state when k tends to infinity. Both numeric and the-
oretic results reveal that the matrix construction is in
general better than the one by classical error-correcting
codes.
The paper is organized as follows. In Section 2, we

introduce basic definition of k-uniform quantum states
and present an equivalent definition. By this equivalent
definition, we propose two different constructions of k-
uniform quantum states in Section 3. In Section 4, we
investigate the case where n is small by presenting some
tables and a few other results. In the last section, we
discuss the case where n tends to infinity, i.e., its asymp-
totic behavior through our construction. In addition,
in this section we also provide an explicit construction
of k-uniform quantum states based on our construction
through error-correcting codes.

II. PRELIMINARIES ON k-UNIFORM

QUANTUM STATE

A. Definition

A k-uniform n-qudit quantum state has the property
that, after tracing out all but k qudits, we are left with
the maximally mixed state for any k-tuple of qudits. This
means that all information about the system is lost after
removal of n − k or more parties. Precisely speaking, a
pure quantum state of n subsystems of level d is called k-
uniform (or k-maximally entangled) if every reduction to
k qudits is maximally mixed. Let us give a mathematical
definition.
The density matrix of a quantum state |Φ〉 =∑
c∈Z

n
d
φc|c〉 is defined by ρ :=

∑
c,c′∈Z

n
d
φcφ̄c|c〉〈c′|.

For a subset A of {1, 2, . . . , n} and a vector c ∈ Zn
d ,

we denote by cA the projection of c at A. The re-
duction of |Φ〉 to A has the density matrix ρA :=∑

c,c′∈Z
n
d
φcφ̄c〈cĀ|c′Ā〉|cA〉〈c′A|, where Ā is the comple-

ment set of A (i.e., Ā = {1, 2, . . . , n} \A) and 〈cĀ|c′Ā〉 is
defined to be 1 if cĀ = c′

Ā
and 0 otherwise.

Definition 1. A pure quantum state |Φ〉 =∑
c∈Z

n
d
φc|c〉

is called k-uniform if for any subset A of {1, 2, . . . , n},
the reduction of |Φ〉 to A has the density matrix ρA =
αA

∑
cA∈Z

k
d
|cA〉〈cA|, where αA ∈ C depends only on A

and |Φ〉.
Example 1. Consider 5-qudit quantum state of level 2

|Φ〉 = −|00000〉+ |01111〉 − |10011〉+ |11100〉
+ |00110〉+ |01001〉+ |10101〉+ |11010〉.

Let A = {3, 4}. Then an easy computation shows that
the density matrix ρA is 2|00〉〈00|+2|01〉〈01|+2|10〉〈10|+
2|11〉〈11|. One can also verify that the density matrix ρA
has the same form for all other subsets A with |A| = 2.
By definition, |Φ〉 is 2-uniform.

The well-known Greenberger-Horne-Zeilinger states
belong to the class 1-uniform, while W states do not be-
long to any class of k-uniform states. For a state |Φ〉,
a multipartite entanglement measures Qk(|Φ〉) was de-
fined [29]. The original Meyer-Wallach measure Q1(|Φ〉)
is actually the average entanglement between individual
qudits and the rest. As k increases, Qk(|Φ〉) is getting
more sensitive to correlations of an increasingly global
nature. Qk(|Φ〉) is upper bounded by 1. It was proved
in [29, Propsoition 2] that |Φ〉 is k-uniform if and only if
Qk(|Φ〉) = 1.

B. An equivalent definition

An n-qudit quantum state |Φ〉 =∑
c∈Z

n
d
φc|c〉 of level

d is associated with a map ϕ from Zn
d to C given by

ϕ(c) = φc. This means that n-qudit quantum states of
level d are identified with maps from Zn

d to C. Thus,
an n-qudit state |Φ〉 can be written as

∑
c∈Z

n
d
ϕ(c)|c〉 for

a given function ϕ. A k-uniform quantum state can be
described in terms of its associated map ϕ.

Lemma 1. An n-qudit state |Φ〉 =
∑

c∈Z
n
d
ϕ(c)|c〉 is k-

uniform if and only if

(i) ϕ is not identical to zero.

(ii) For any subset A of {1, 2, · · · , n} with |A| = k, and
every cA, c

′
A ∈ Zk

d, one has

∑

cĀ∈Z
n−k
d

ϕ(cA, cĀ)ϕ(c
′
A, cĀ) =

{
0, if cA 6= c′A,
〈Φ|Φ〉
dk , if cA = c′A.

Proof. If |Φ〉 is k-uniform, by tracing out any n − k qu-
dits, the k-qudit reduced density matrix is proportional
to identity matrix. We fix a subset A of {1, 2, · · · , n}
with |A| = k. An n-qudit state |Φ〉 =

∑
c∈Z

n
d
ϕ(c)|c〉 is

written as

|Φ〉 =
∑

cA∈Z
k
d,cĀ∈Z

n−k
d

ϕ(cA, cĀ)|cA〉〈cĀ|.
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Denote by ρ the density matrix of |Φ〉, i.e., ρ = |Φ〉〈Φ|.
Consider the reduced state

ρA = TrĀ(ρ)

=
∑

cA,c′A∈Z
k
d

|cA〉〈c′A|
∑

cĀ,c′
Ā
∈Z

k
d

ϕ(cA, cĀ)ϕ(c
′
A, c

′
Ā)〈cĀ|c′Ā〉

=
∑

cA,c′A∈Z
k
d

|cA〉〈c′A|
∑

cĀ∈Z
k
d

ϕ(cA, cĀ)ϕ(c
′
A, cĀ)

Since |Φ〉 is k-uniform, the reduced state ρA is propor-
tional to identity matrix. The sum of diagonal element
of ρA is 〈Φ|Φ〉 which implies that

∑

cĀ∈Z
n−k
d

ϕ(cA, cĀ)ϕ(c
′
A, cĀ) =

{
0, if cA 6= c′A,
〈Φ|Φ〉
dk , if cA = c′A.

Vice versa, we have the desired result.

III. CONSTRUCTIONS OF k-UNIFORM

QUANTUM STATES

Before starting our first construction, we prove a
lemma.

Lemma 2. Let d > 2 be an integer. Let a1, a2, . . . , am be
m integers. Assume that gcd(a1, a2, . . . , am, d) = e < d.
Then for every b ∈ Zd/e the equation a1x1 + a2x2 + · · ·+
amxm ≡ be mod d has exactly edm−1 solutions in Zm

d .

Proof. For b ∈ Zd/e, we denote by Nb the number of
solutions x = (x1, x2, . . . , xm) ∈ Zm

d of a1x1 + a2x2 +
· · · + amxm ≡ be mod d. We claim that Nb = N0 for
any b ∈ Zd/e. Denote by g the greatest common di-
visor gcd(a1, a2, . . . , am). Then one can find integers
u1, u2, . . . , um such that a1u1 + a2u2 + · · ·+ amum = g.
Since gcd(g, d) = e, we can find c such that cg ≡ e mod d.
Thus, a1(cu1)+a2(cu2)+ · · ·+am(cum) = cg ≡ e mod d.
If u ∈ Zm

d is a solution of a1x1 + a2x2 + · · · + amxm ≡
0 mod d, then v + (bcu1, bcu2, . . . , bcum) is a solution
of a1x1 + a2x2 + · · · + amxm ≡ b mod d. This implies
that N0 6 Nb. On the other hand, if v ∈ Zm

d is a
solution of a1x1 + a2x2 + · · · + amxm ≡ b mod d, then
v − (bcu1, bcu2, . . . , bcum) is a solution of a1x1 + a2x2 +
· · ·+ amxm ≡ 0 mod d. This implies that Nb 6 N0. Now
we have dm =

∑
b∈Zd

Nd = d
e × N0. The desired result

follows.

Based on Lemma 1, we first provide a construction of
k-uniform quantum state through symmetric matrices.
Our map ϕ is in fact a quadratic function. Let ζd denote
a dth primitive root of unity in C. For two subsets A,B ⊆
{1, 2, . . . , n} and a matrix H = (hij) ∈ Mn×n(Zd), we
denote by HA×B the submatrix (hij)i∈A,j∈B . An n × n
matrix E over Zd is called invertible if there exists an
n× n matrix G over Zd such that EG = GE is equal to
the identity matrix. It is well known that E is invertible
if and only if the determinate of E is co-prime with d.

If E is invertible, then for any nonzero vector c ∈ Zn
d ,

we must have cE 6= 0. Otherwise, one would have 0 =
0E−1 = cEE−1 = c.

Theorem 3. If there is a zero diagonal symmetric ma-
trix H ∈ Mn×n(Zd) such that for any subset A of
{1, 2, . . . , n} with |A| = k, there exists a subset B of
Ā with |B| = k such that the submatrix HA×B is a
k × k invertible matrix over Zd , then the n-qudit state

|Φ〉 =
∑

c∈Z
n
d
ϕ(c)|c〉 is k-uniform with ϕ(c) = ζcH̃c

T

d ,

where H̃ = (h̃ij) with h̃ij = hij for i < j and 0 other-
wise.

Proof. Consider the map f from Zn
d to Zn

d given by f(c) =

cH̃cT . Then for every subset A of {1, 2, · · · , n} with
|A| = k, we have

f(cA, cĀ) = cA(H̃A×Ā + H̃T
Ā×A)c

T
Ā + cAH̃A×Ac

T
A + cĀH̃Ā×Āc

T
Ā

= cAHA×Āc
T
Ā + cAH̃A×Ac

T
A + cĀH̃Ā×Āc

T
Ā.

Hence,

f(cA, cĀ)− f(c′A, cĀ)

= (cA − c′A)HA×Āc
T
Ā + cAH̃A×Ac

T
A − c′AH̃A×A(c

′
A)

T .

If cA = c′A, one has
∑

cĀ∈Z
n−k
d

ϕ(cA, cĀ)ϕ(c
′
A, cĀ) =

∑

cĀ∈Z
n−k
d

ζ
f(cA,cĀ)
d ζ

−f(cA,cĀ)
d

= dn−k =
〈Φ|Φ〉
dk

.

Note that 〈Φ|Φ〉 = dn.
If cA 6= c′A, then (cA−c′A)HA×B is not the zero vector

and hence (cA−c′A)HA×Ā (denoted by (a1, a2, . . . , an−k))

is a nonzero vector in Z
n−k
d . Let e be gcd(a1, a2, . . . , n−

k, d). Then e < d. By Lemma 2, (cA − c′A)HA×Āx = be

has exactly edn−k−1 solutions in Z
n−k
d for every b ∈ Zd/e.

Hence, by (1), we have

∑

cĀ∈Z
n−k
d

ϕ(cA, cĀ)ϕ(c
′
A, cĀ) = ζgd

∑

cĀ∈Z
n−k
d

ζ
(cA−c

′

A)HA×ĀcĀ

d

= edn−k−1ζgd

d/e−1∑

b=0

ζbed = 0,

where g = cAH̃A×Ac
T
A − c′AH̃A×A(c

′
A)

T . This completes
the proof.

If d is a prime p, then the condition in Theorem 3 can
be simplified.

Theorem 4. Let p be a prime. If there is a zero diagonal
symmetric matrix H ∈ Mn×n(Zp) such that for any sub-
set A of {1, 2, . . . , n} with |A| = k, the submatrix HA×Ā

has rank k, then the n-qudit state |Φ〉 =
∑

c∈Zn
p
ϕ(c)|c〉

is k-uniform with ϕ(c) = ζcH̃c
T

d , where H̃ = (h̃ij) with

h̃ij = hij for i < j and 0 otherwise.
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Proof. In this case, HA×Ā has an invertible submatrix
HA×B for some subset B of Ā with |B| = k. The desired
result follows from Theorem 3.

Example 2. Based on Thorem 3, we provide two exam-
ples for 1-uniform 2-qudit quantum states, with level 4
and the other with level 6. In both cases, the matrix is
given by

H =

(
0 1
1 0

)

The quantum state of level 4 corresponding to this matrix
is

|Φ〉 = |00〉+ |10〉+ |20〉+ |30〉+ |01〉+ i|11〉 − |21〉 − i|31〉
+|02〉 − |12〉+ |22〉 − |32〉+ |03〉 − i|13〉 − |23〉+ i|33〉

The quantum state of level 6 corresponding to this matrix
is

|Φ〉 = |00〉+ |10〉+ |20〉+ |30〉+ |40〉+ |50〉+ |01〉+ ζ6|11〉
+ζ26 |21〉+ ζ36 |31〉+ ζ46 |41〉+ ζ56 |51〉+ |02〉+ ζ26 |12〉+ ζ46 |22〉
+|32〉+ ζ26 |42〉+ ζ46 |52〉+ |03〉+ ζ36 |13〉+ |23〉+ ζ36 |33〉
+|43〉+ ζ36 |53〉+ |04〉+ ζ46 |14〉+ ζ26 |24〉+ |34〉+ ζ46 |44〉
+ζ26 |54〉+ |05〉+ ζ56 |15〉+ ζ46 |25〉+ ζ36 |35〉+ ζ26 |45〉+ ζ6|55〉
The second construction applies Lemma 1 to linear

codes with good minimum distance and dual distance.
As our classical codes are defined over prime fields Zp,
we consider level p only for primes p for the following
constrution.

Theorem 5. If C is a p-ary linear code of length n.
Let d and d⊥ be the minimum distance of C and its Eu-
clidean dual C⊥, respectively. If min{d, d⊥} > k+1, then
|Φ〉 = 1√

|C|

∑
c∈C |c〉 is k-uniform n-qudit quantum state

of level p.

Proof. It is clear that 〈Φ|Φ〉 is equal to 1. Define the map

ϕ from Zn
p to C given by ϕ(x) = 1/

√
|C| if x ∈ C and

0 otherwise. Consider a subset A of {1, 2, · · · , n} with
|A| = k.
Since d⊥ > k + 1, for every cA ∈ Zk

p there are exactly

|C|/pk vectors cĀ ∈ Zn−k
p such that (cA, cĀ) ∈ C. Thus,

If cA = c′A, one has

∑

cĀ∈Z
n−k
p

ϕ(cA, cĀ)ϕ(c
′
A, cĀ) =

∑

(cA,cĀ)∈C

1

|C|

=
|C|/pk
|C| =

〈Φ|Φ〉
pk

.

If cA 6= c′A, then the Hamming distance between
(cA, cĀ) and (c′A, cĀ) is at most k. This implies
that (cA, cĀ) and (c′A, cĀ) do not belong to C si-
multaneously for any cĀ ∈ Zn−k

p . In other words,

ϕ(cA, cĀ)ϕ(c
′
A, cĀ) = 0 for any cĀ ∈ Zn−k

p . In this case,

we have
∑

cĀ∈Z
n−k
p

ϕ(cA, cĀ)ϕ(c
′
A, cĀ) = 0. The desired

result follows from Lemma 1.

Remark 1. (i) In general, the construction in Theo-
rems 3 and Theorems 4 gives better results than
the one in Theorem 5. We will see this in Sections
3 and 4.

(ii) For the construction in Theorem 5, we require lin-
ear codes with both good minimum distance and
dual distance. Algebraic geometry codes provide
an excellent family of codes with good minimum
distance and dual distance [30]. We will illustrate
examples by algebraic geometry codes later in this
section and the next two sections.

Corollary 6. If there exists a p-ary [n, n/2,> k + 1]-
self-dual code, then

(i) there exists a k-uniform n-qudit quantum state of
level p;

(ii) there exists a (k−1)-uniform (n−1)-qudit quantum
state of level p.

Proof. Part (i) follows from Theorem 5 immediately.
For Part (ii), let C be a p-ary [n, n/2,> k+1]-self-dual

code. Without loss of generality, we may assume that
there is a codeword c of C such that the last coordinate
is not zero. Let C1 consist of all codewords of C whose
last coordinates are zero. Then C1 is p-ary linear code
of dimension n/2− 1, length n and minimum distance at
least k + 1. Delete the last coordinate of C1 to obtain a
p-ary [n− 1, n/2− 1,> k + 1]-linear code C2. It is clear
that the dual code C⊥

2 is the code obtained from C⊥ by
deleting the last coordinate. It is clear that C⊥

2 is a p-ary
[n− 1, n/2,> k]-linear code. Applying Theorem 5 to C2

gives the desired result of Part (ii).

Theorem 5 provides an explicit construction of k-
uniform quantum states . We give an example below.

Example 3. Consider the binary [8, 4, 4]-self-dual code
C with generator matrix




1 0 0 0 1 0 1 0
0 1 0 0 0 1 1 0
0 0 1 0 0 0 1 1
0 0 0 1 1 1 1 1




Then the 8-qudit state |v〉 = 1
4 (|00000000〉+|11111111〉+

|110000111〉 + |01001011〉 + |00101101〉 + |00011110〉 +
|11001100〉 + |10101010〉 + |10011001〉 + |01100110〉 +
|01010101〉 + |00110011〉 + |11100010〉 + |01111000〉 +
|11010001〉+ |10110100〉) is 3-uniform.

Remark 2. (i) Self-dual codes have been used to con-
struct k-uniform quantum states in [23, 29]. How-
ever, as we remarked, the construction in Theorem
4 gives better results than the one in Theorem 5.
Consequently, the construction in Theorem 4 gives
better results than those from self-dual codes.
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(ii) In fact, Theorem 5 does not require codes to be self-
dual. We now give an example showing that Theo-
rem 5 can give a better k-uniform quantum states
than those from self-dual codes. We illustrate this
by algebraic geometry codes in the following exam-
ple.

Example 4. We refer to [30] for background on algebraic
curves over finite fields and algebraic geometry codes. It
is well know that an algebraic curve over the Galois field
GF(q) of q elements with n rational points and genus g
gives a q-ary linear code C with parameters [n, k, n−k+
1−g] and its dual C⊥ with parameters [n, n−k, k+1−g]
for any g 6 k 6 n.

(i) By the online table [26], there is an algebraic curve
over Z5 with 10 rational points and genus 1. Thus,
one obtains a 5-ary [10, 5, 5] code C and its dual
code C⊥ also has parameters [10, 5, 5]. By Theo-
rem 5, one obtains a 4-uniform 10-qudit quantum
state of level 5. On the other hand, the optimal
5-ary self-dual code of length 10 has minimum dis-
tance 4 (see the online table [28]). Thus, applying
Corollary 6 gives only a 3-uniform 10-qudit quan-
tum state of level 5.

(ii) The above example is not a singularity. We can
find other examples showing that Theorem 5 can
give better result than Corollary 6. Here is another
example. By the online table [26], there is an al-
gebraic curve over Z7 with 16 rational points and
genus 2. Thus, one obtains a 5-ary [16, 8, 7] code C
and its dual code C⊥ also has parameters [16, 8, 7].
By Theorem 5, we get a 6-uniform 16-qudit quan-
tum state of level 7. On the other hand, the optimal
7-ary self-dual code of length 16 has minimum dis-
tance 6 (see the online table [28]). Thus, applying
Corollary 6 gives only a 5-uniform 16-qudit quan-
tum state of level 7.

IV. THE CASE WHERE n IS SMALL

For given d and n, one natural question is what is the
maximal k such that there exists a k-uniform n-qudit
quantum state of level d. This question motivates the
following definition.

Definition 2. For given positive integers n > 2 and
d > 2, define kd(n) to be the largest k such that there is
an n-qudit state of level d that is k-uniform.

One obvious upper bound on kd(n) is n/2. In this
section, we will study some lower bounds on kd(n) by
constructing k-uniform n-qudit quantum states of level
d via our results in Section 3. We discuss the cases for
small d and large d separately. Although our matrix con-
struction works well for composite levels d, for simplicity
we only consider the case where d = p is a prime number.

By Theorem 4, in order to construct a k-uniform quan-
tum state, it is sufficient to find an n × n zero-diagonal
matrix H satisfying that HA×Ā has rank k for any sub-
set A of {1, 2, . . . , n} with |A| = k. Through the random
matrix counting, we provide a sufficient condition for ex-
istence of such a matrix.

Lemma 7. The number of n× n zero-diagonal matrices
H over Zp satisfying that HA×Ā has rank k for any subset
A of {1, 2, . . . , n} with |A| = k is at least

p(
n

n/2)

(
1−

(
n

k

)(
1−

k−1∏

i=0

(
1− 1

pn−k−i

)))
. (1)

Proof. Consider the set S of n × n zero diagonal sym-
metric matrices over Zp. Then the cardinality of S
is p(

n
k). For a given subset A of {1, 2, . . . , n} with

|A| = k, the set {H ∈ S : HA×Ā is invertible}
has size

∏k−1
i=0 (p

n−k − pi) × p(
n

n/2)−k(n−k). This im-
plies that the set {H ∈ S : HA×Ā is not invertible}
has size p(

n
n/2) − p(

n
n/2)−k(n−k) ×

∏k−1
i=0 (p

n−k − pi). By
the union bound, the number of zero diagonal sym-
metric matrices H satisfying that, for any subset A of
{1, 2, . . . , n} with |A| = k, HA×Ā is invertible is at least

p(
n

n/2)−
(
n
k

) (
p(

n
n/2) − p(

n
n/2)−k(n−k) ×∏k−1

i=0 (p
n−k − pi)

)
.

The desired result follows.

Corollary 8. If the triple (n, k, p) satisfies
(
n
k

)
(pk−1) 6

(p− 1)pn−k, then there exists a k-uniform n-qudit quan-
tum state of level p.

Proof. Denote by Np(n, k) the number in (1). By The-
orem 4 and Lemma 7, it is sufficient to show that
Np(n, k) > 0 under the condition of this Corollary. In-
deed

Np(n, k) > p(
n

n/2)

(
1−

(
n

k

) k−1∑

i=0

1

pn−k−i

)

= p(
n

n/2)
(
1−

(
n

k

)
× 1

pn−k
× pk − 1

p− 1

)
> 0.

This completes the proof.

A. Small k

In [29], it was proved that for any n > 5, there exists a
2-uniform n-qudit quantum state of level 2. By using the
above corollary, we can extend this results largely. For
instance, we have the following result.

Theorem 9. For any prime p, there exists an integer
Mk such that for any n > Mk, one can construct a k-
uniform n-qudit of level p. Furthermore, one has the
following quantum states.

(i) For any n > 8 and integer k > 1, there exists a
3-uniform n-qudit quantum state of level p.
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(ii) For any n > 12, there exists a 4-uniform n-qudit
quantum state of level p.

(iii) For any n > 18, there exists a 5-uniform n-qudit
quantum state of level p.

Proof. Recall that Np(n, k) denotes the number in (1).
We also note that for fixed n and k, Np(n, k) monoton-
ically decreases when p increases. By Corollary 8, for
a fixed k, N2(n, k) > 0 for all sufficiently large n, i.e.,
there exists an integer Mk such that N2(n, k) > 0 for
any n > Mk. Hence, Np(n, k) > 0 for any p > 2 and
n > Mk. This completes the proof for the first part.
A simple calculation shows that N2(n, 3) > 0 for all

n > 12, Np(n, 3) > 0 for all n > 8. By computer search,
we find that kn(2) > 3 for 8 6 n 6 11 (see Table I below).
This completes the proof of Part (i).
The similar arguments apply to the proof of Parts (ii)

and (iii).

B. p = 2, 3, 5, 7

Through computer search, we are able to find some
lower bounds on kd(n). Due to our computation limita-
tion, n is limited to 24 or smaller. Table I provides lower
bounds on kp(n) via construction of Theorem 4. The
entries with “-” in Table I means that our computation
limit does not allow us to find a reasonable lower bound
on the corresponding kp(n).

Table I

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
k2(n) 1 1 1 2 3 2 3 3 3 3 4 4 4 4 4 4
k3(n) 1 1 2 2 3 3 3 3 4 4 4 4 5 5 5 5
k5(n) 1 1 2 2 3 3 3 4 4 4 5 5 5 5 6 6
k7(n) 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 7

n 18 19 10 21 22 23 24
k2(n) 5 5 5 5 5 5 6
k3(n) 5 5 - - - - -
k5(n) 6 - - - - - -
k7(n) 7 - - - - - -

Table I provides lower bounds kp(n) only for prime lev-
els p. As our Theorem 3 works well for composite levels
d, we give another table showing lower bounds kd(n) for
d = 4, 6, 8 and 9. Due to our computation limitation, we
compute kd(n) only up to n = 10.

Table II

n 2 3 4 5 6 7 8 9 10
k4(n) 1 1 1 2 3 2 3 3 3
k6(n) 1 1 1 2 3 2 3 3 3
k8(n) 1 1 1 2 3 2 3 3 3
k9(n) 1 1 2 2 3 3 3 3 4

In addition, we provide one matrix that gives a 3-
uniform 6-qudit quantum states of level 2. As our con-
struction in Theorem 4 is explicit, the quantum state can

be explicitly written down as long as the corresponding
matrix is known.




0 1 1 1 0 0
1 0 0 1 0 1
1 0 0 1 1 0
1 1 1 0 1 1
0 0 1 1 0 1
0 1 0 1 1 0




The corresponding quantum state for the above matrix
is

|Φ〉 = |000000〉+ |100000〉+ |010000〉 − |110000〉+ |001000〉
−|101000〉+ |011000〉+ |111000〉+ |000100〉 − |100100〉
−|010100〉 − |110100〉 − |001100〉 − |101100〉+ |011100〉
−|111100〉+ |000010〉+ |100010〉+ |010010〉 − |110010〉
−|001010〉+ |101010〉 − |011010〉 − |111010〉 − |000110〉
+|100110〉+ |010110〉+ |110110〉 − |001110〉 − |101110〉
+|011110〉 − |111110〉+ |000001〉+ |100001〉 − |010001〉
+|110001〉+ |001001〉 − |101001〉 − |011001〉 − |111001〉
−|000101〉+ |100101〉 − |010101〉 − |110101〉+ |001101〉
+|101101〉+ |011101〉 − |111101〉 − |000011〉 − |100011〉
+|010011〉 − |110011〉+ |001011〉 − |101011〉 − |011011〉
−|111011〉 − |000111〉+ |100111〉 − |010111〉 − |110111〉
−|001111〉 − |101111〉 − |011111〉+ |111111〉

The following Table III shows lower bounds on kd(n)
via our Corollary 6 and Theorem 5. Some of entries in
Table III are obtained via Corollary 6 from those best-
known self-dual codes in the online table [28], while some
others are obtained from Theorem 5 through algebraic
geometry codes and computer search. In particular, all
entries for p = 7 are obtained from algebraic geometry
codes. Note that in Table III some entries on kp(n) for
odd n are computed from Corollary 6(ii).

Table III

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
k2(n) 1 1 1 1 2 2 3 2 2 2 3 2 3 3 3 3
k3(n) 1 1 2 2 2 2 2 2 3 4 5 3 3 4 5 4
k5(n) 1 1 2 2 3 2 3 3 4 4 5 4 5 5 6 5
k7(n) 1 1 2 2 3 3 4 3 4 4 5 5 5 5 6 5

n 18 19 20 21 22 23 24
k2(n) 3 3 3 4 5 6 7
k3(n) 4 4 5 5 6 7 8
k5(n) 6 6 7 6 7 7 8
k7(n) 6 7 8 6 7 7 8

Remark 3. Comparing Tables I with III, we find that
Theorem 4 usually gives the same or better results than
Theorem 5. The only exceptional cases are k2(24) and
k7(8). This is due to the extreme example of binary
Golay [24, 12, 8]-self-dual code and MDS code Z7.
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C. Large level p

The main purpose of this subsection is to prove that,
for any given even n, we have kp(n) = n/2 for sufficiently
large prime p.

Theorem 10. For any given even integer n > 2, if an
odd prime p satisfies p >

(
n

n/2

)
+ 1, then kp(n) = n/2.

Proof. By Theorem 4 and Lemma 7, it is sufficient to
show that Np(n, n/2) > 0 under the condition of our
theorem. Indeed

Np(n, n/2) = p(
n

n/2)


1−

(
n

n/2

)
1−

n/2∏

i=1

(
1− 1

pi

)




> p(
n

n/2)


1−

(
n

n/2

) n/2∑

i=1

1

pi




> p(
n

n/2)

(
1−

(
n

n/2

)

p− 1

)
.

If p >
(

n
n/2

)
+ 1, then 1 − ( n

n/2)
p−1 > 0 and hence

Np(n, n/2) > 0. The desired result follows.

V. THE CASE WHERE n IS LARGE

For a fixed d > 2, to see how kd(n) varies as n tends
to infinity, we define the following asymptotic quantity.

Definition 3. For a given integer d > 2, define the
asymptotic quantity

λd = lim sup
n→∞

kd(n)

n

.

Obviously, λd ≤ 1/2. Again, we will study some lower
bounds on λd by constructing k-uniform n-qudit quan-
tum states of level d via our results in Section 3. In addi-
tion, we give existence bounds and constructive bounds
on λd separately. As one can expect, constructive bounds
are usually worse than existence bounds.

A. Existence bounds on λp

We first provide an existence bound via Lemma 7. For
any integer d > 2, the d-ary entropy function is defined
by

Hd(x) := x logd(d− 1)− x logd x− (1− x) logd(1− x).

By Stirling’s formula, we have

lim
n→∞

log2
(
n
k

)

n
= H2(λ) if k

n → λ.

Theorem 11. Let λ be a root of the equation H2(x) =
(1− 2x) log2 p. Then λp > λ.

Proof. Choose a very small ε ∈ (0, λ). Put k = ⌊(λ −
ε)n⌋. By Theorem 4 and Lemma 7, if we can show that
Np(n, k) > 0, there exists a k-uniform n-qudit quantum
state of level d. Note that

Np(n, k) = p(
n

n/2)

(
1−

(
n

k

)(
1−

k∏

i=1

(
1− 1

pn−k−i

)))

> p(
n

n/2)

(
1−

(
n

k

)
p−n+2k

k∑

i=1

1

pi

)

> p(
n

n/2)

(
1−

(
n
k

)
p−n+2k

p− 1

)
.

If

p >

(
n

k

)
p−n+2k + 1, (2)

then Np(n, k) > 0. Since

(1− 2(λ− ε)) logp −H2(λ− ε) > 0, (3)

the equation (3) holds for sufficiently large n. This im-
plies that λp > λ − ε for any small ε. Letting ε tend to
0 gives the desired result.

Based on Theorem 11, we provide a table for lower
bounds on λp for small p below.

Table IV

p 2 3 5 7 11 13 17
λp 0.1705 0.2461 0.3081 0.3360 0.3634 0.3714 0.3821

Next let us derive a lower bound on λp from self-dual
codes via Corollary 6.

Theorem 12. One has

λp > H−1
p

(
1

2

)
,

where H−1
p (y) is the inverse function of Hp(x).

Proof. By [25], there exists a family of p-ary self-dual
code achieving the Gilbert-Vrashamov bound, i.e., there
exists a family of p-ary [n, n/2,> k + 1]-self-dual code
such that limn→∞

k
n → δ, where Hp(δ) = 1

2 , i.e., δ =

H−1
p (12 ). It follows immediately that λp > δ = H−1

p (12 ).

Based on Theorem 12, we provide a table for lower
bounds on λp for small p below.

Table V

p 2 3 5 7 11 13 17
λp 0.110 0.159 0.210 0.237 0.268 0.278 0.293

Remark 4. Once again, the asymptotic result also shows
that our matrix constriction given in Theorem 4 is in
general better than the one from self-dual codes given in
Theorem 5.
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B. Constructive bounds on λp

Definition 4. Let p be a prime and let r > 2 be
an integer. A Zp-basis {α1, · · · , αr} of the Galois field
GF(pr) is called trace-orthogonal if Tr(αiαj) = 0 for all
1 6 i 6= j 6 r, where Tr is the trace map from GF(pr) to
Zp.

It is well known that there always exists a trace-
orthogonal basis of GF(pr) over Zp [27, Chapter 5]. Note
that if {α1, · · · , αr} is a trace-orthogonal basis of GF(pr)
over Zp, then Tr(α2

i ) 6= 0 for all 1 6 i 6 r. Otherwise,
one would have Tr(αix) = 0 for all x ∈ GF(pr) which is
impossible.
Now we fix a trace-orthogonal basis {α1, · · · , αr} of

GF(pr) over Zp. Let ai denote Tr(α2
i ). Then ai ∈ Zp \

{0}. Thus, every element of β of GF(pr) can be written
as a linear combination β =

∑r
i=1 biαi with bi ∈ Zp. We

denote by π(α) and π⊥(α) the vectors (b1, b2, . . . , br) ∈
Zr
p and (a1b1, a2b2, . . . , arbr) ∈ Zr

p, respectively. Extend

π and π⊥ to the maps from GF(pr)n to Zrn
p given by

π(u1, u2, . . . , un) = (π(u1), π(u2), . . . , π(un));

π−1(u1, u2, . . . , un) = (π⊥(u1), π
⊥(u2), . . . , π

⊥(un)).

Lemma 13. Let C be a linear code of length n over
GF(pr). If C⊥ is the dual code of C, then π⊥(C⊥) is the
dual code of π(C) ∈ Z

rn
p .

Proof. Let u = (u1, u2, . . . , un) ∈ C and v =
(v1, v2, . . . , vn) ∈ C⊥. Then we have

0 = Tr

(
n∑

i=1

uivi

)
=

n∑

i=1

r∑

j=1

r∑

ℓ=1

uijviℓTr(αjαℓ)

=

n∑

i=1

r∑

j=1

uijvijaj = π(u) · π⊥(v).

This means that π(C) and π⊥(C⊥) are orthogonal. Fur-
thermore, it is easy to see that the sum of their dimen-
sions over Zp is rn. This completes the proof.

It is a well-known result from algebraic geometry codes
that, for any prime power q, there exists a family of q2-
ary [n, n/2,> k + 1] codes {C} such that C⊥ also have
the same parameters [n, n/2,> k + 1] and limn→∞

k
n =

1
2 − 1

q−1 (see [30]). Furthermore, this family can be con-

structed in polynomial times.

Theorem 14. For any p > 5, one has a constructive
lower bound on λp given by

λp >
1

4
− 1

2(p− 1)
.

Proof. Consider a family of p2-ary [n, n/2,> k + 1]
codes {C} such that C⊥ also have the same parameters
[n, n/2,> k + 1] and limn→∞

k
n = 1

2 − 1
p−1 . Consider

a trace-orthogonal basis of GF(p2) over Zp and associ-
ated maps π and π⊥ defined in (4). Then both π(C) and

π⊥(C⊥) are p-ary [2n, n,> k + 1]-linear code. By The-
orem 5, we have a k-uniform rn-qudit quantum state of
level p. This gives λp > limn→∞

k
2n = 1

4 − 1
2(p−1) . This

completes the proof.

When p is small, the bound given in Theorem 14 can
be further improved by considering algebraic geometry
codes over larger extension GF(p2t) for t > 2.

Theorem 15. For any t > 2, one has a constructive
lower bound on λp given by

λp >
1

2t

(
1

2
− 1

pt − 1

)
.

Proof. The proof is almost identical to the one of Theo-
rem 14 except we consider algebraic geometry codes over
larger extension.
Consider a family of p2t-ary [n, n/2,> k+1] codes {C}

such that C⊥ also have the same parameters [n, n/2,>
k + 1] and limn→∞

k
n = 1

2 − 1
pt−1 . Consider a trace-

orthogonal basis of GF(p2t) over Zp and associated maps
π and π⊥ defined in (4). Then both π(C) and π⊥(C⊥)
are p-ary [2tn, tn,> k + 1]-linear code. By Theorem 5,
we have a k-uniform 2tn-qudit quantum state of level

p. This gives λp > limn→∞
k

2tn = 1
2t

(
1
2 − 1

pt−1

)
. This

completes the proof.

Finally, we provide a table for constructive lower
bounds on λp for primes p = 2, 3, 5, . . . , 23. Note that
the value t to obtain the optimal lower bound in Theo-
rem 5 may vary as p varies.

Table V

p 2 3 5 7 11 13 17
λp 0.060 0.094 0.125 0.167 0.2 0.208 0.219

t 3 2 1 1 1 1 1
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Appendix A: An example for k-uniform from

symmetric matrix

In this appendix, we provide one more matrix that
gives a 3-uniform 8-qudit quatum states of level 2. Thus,
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the quantum states can be explicitly written down as long
as the corresponding matrix is provided by Theorem 4.




0 1 1 0 0 1 1 0
1 0 1 0 0 1 0 1
1 1 0 1 1 0 1 1
0 0 1 0 1 0 0 1
0 0 1 1 0 1 1 1
1 1 0 0 1 0 0 1
1 0 1 0 1 0 0 0
0 1 1 1 1 1 0 0




|Φ〉 = |00000000〉+ |10000000〉+ |01000000〉 − |11000000〉
+|00100000〉− |10100000〉 − |01100000〉 − |11100000〉
+|00010000〉+ |10010000〉+ |01010000〉 − |11010000〉
−|00110000〉+ |10110000〉+ |01110000〉+ |11110000〉
+|00001000〉+ |10001000〉+ |01001000〉 − |11001000〉
−|00101000〉+ |10101000〉+ |01101000〉+ |11101000〉
−|00011000〉− |10011000〉 − |01011000〉+ |11011000〉
−|00111000〉+ |10111000〉+ |01111000〉+ |11111000〉
+|00000100〉− |10000100〉 − |01000100〉 − |11000100〉
+|00100100〉+ |10100100〉+ |01100100〉 − |11100100〉
+|00010100〉− |10010100〉 − |01010100〉 − |11010100〉
−|00110100〉− |10110100〉 − |01110100〉+ |11110100〉
−|00001100〉+ |10001100〉+ |01001100〉+ |11001100〉
+|00101100〉+ |10101100〉+ |01101100〉 − |11101100〉
+|00011100〉− |10011100〉 − |01011100〉 − |11011100〉
+|00111100〉+ |10111100〉+ |01111100〉 − |11111100〉
+|00000010〉− |10000010〉+ |01000010〉+ |11000010〉
−|00100010〉− |10100010〉+ |01100010〉 − |11100010〉
+|00010010〉− |10010010〉+ |01010010〉+ |11010010〉
+|00110010〉+ |10110010〉 − |01110010〉+ |11110010〉
−|00001010〉+ |10001010〉 − |01001010〉 − |11001010〉
−|00101010〉− |10101010〉+ |01101010〉 − |11101010〉
+|00011010〉− |10011010〉+ |01011010〉+ |11011010〉
−|00111010〉− |10111010〉+ |01111010〉 − |11111010〉
+|00000110〉+ |10000110〉 − |01000110〉+ |11000110〉
−|00100110〉+ |10100110〉 − |01100110〉 − |11100110〉
+|00010110〉+ |10010110〉 − |01010110〉+ |11010110〉
+|00110110〉− |10110110〉+ |01110110〉+ |11110110〉
+|00001110〉+ |10001110〉 − |01001110〉+ |11001110〉
+|00101110〉− |10101110〉+ |01101110〉+ |11101110〉
−|00011110〉− |10011110〉+ |01011110〉 − |11011110〉

+|00111110〉− |10111110〉+ |01111110〉+ |11111110〉
+|00000001〉+ |10000001〉 − |01000001〉+ |11000001〉
−|00100001〉+ |10100001〉 − |01100001〉 − |11100001〉
−|00010001〉− |10010001〉+ |01010001〉 − |11010001〉
−|00110001〉+ |10110001〉 − |01110001〉 − |11110001〉
−|00001001〉− |10001001〉+ |01001001〉 − |11001001〉
−|00101001〉+ |10101001〉 − |01101001〉 − |11101001〉
−|00011001〉− |10011001〉+ |01011001〉 − |11011001〉
+|00111001〉− |10111001〉+ |01111001〉+ |11111001〉
−|00000101〉+ |10000101〉 − |01000101〉 − |11000101〉
+|00100101〉+ |10100101〉 − |01100101〉+ |11100101〉
+|00010101〉− |10010101〉+ |01010101〉+ |11010101〉
+|00110101〉+ |10110101〉 − |01110101〉+ |11110101〉
−|00001101〉+ |10001101〉 − |01001101〉 − |11001101〉
−|00101101〉− |10101101〉+ |01101101〉 − |11101101〉
−|00011101〉+ |10011101〉 − |01011101〉 − |11011101〉
+|00111101〉+ |10111101〉 − |01111101〉+ |11111101〉
+|00000011〉− |10000011〉 − |01000011〉 − |11000011〉
+|00100011〉+ |10100011〉+ |01100011〉 − |11100011〉
−|00010011〉+ |10010011〉+ |01010011〉+ |11010011〉
+|00110011〉+ |10110011〉+ |01110011〉 − |11110011〉
+|00001011〉− |10001011〉 − |01001011〉 − |11001011〉
−|00101011〉− |10101011〉 − |01101011〉+ |11101011〉
+|00011011〉− |10011011〉 − |01011011〉 − |11011011〉
+|00111011〉+ |10111011〉+ |01111011〉 − |11111011〉
−|00000111〉− |10000111〉 − |01000111〉+ |11000111〉
−|00100111〉+ |10100111〉+ |01100111〉+ |11100111〉
+|00010111〉+ |10010111〉+ |01010111〉 − |11010111〉
−|00110111〉+ |10110111〉+ |01110111〉+ |11110111〉
+|00001111〉+ |10001111〉+ |01001111〉 − |11001111〉
−|00101111〉+ |10101111〉+ |01101111〉+ |11101111〉
+|00011111〉+ |10011111〉+ |01011111〉 − |11011111〉
+|00111111〉− |10111111〉 − |01111111〉 − |11111111〉
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