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Quickest Sequence Phase Detection
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Abstract—A phase detection sequence is a length-n cyclic
sequence, such that the location of any length-k contiguous
subsequence can be determined from a noisy observation of that
subsequence. In this paper, we derive bounds on the minimal
possible k in the limit of n → ∞, and describe some sequence
constructions. We further consider multiple phase detection

sequences, where the location of any length-k contiguous subse-
quence of each sequence can be determined simultaneously from
a noisy mixture of those subsequences. We study the optimal
trade-offs between the lengths of the sequences, and describe
some sequence constructions. We compare these phase detection
problems to their natural channel coding counterparts, and show
a strict separation between the fundamental limits in the multiple
sequence case. Both adversarial and probabilistic noise models
are addressed.

I. INTRODUCTION

A magician enters the room with a 32-card deck. He invites

five volunteers to the stage and claims he will read their minds.

Another volunteer is asked to cut the deck a few times and pass

the top five cards to the volunteers, one for each. “Now I need

you to think about your card and I will tell what it is,” the

magician says. Silence. “Please concentrate! Think harder.”

A long pause. “Okay, the weather is not good today. It is

interfering with the brainwaves between us. I need you to

work with me a bit,” the magician begs. “Could the people

with red cards move one step closer to me?” Another long

pause. “Hmm, you have the six of clubs. You have the five of

spades...” Sure enough, he gets them all!

This is Diaconis’ mind-reading trick [1], [2]. The magic

makes use of a binary de Bruijn sequence of order 5 [3],

which is a length-32 circulant binary sequence such that every

length-5 binary string occurs as a contiguous subsequence

exactly once. The magician enters the room with the 32 cards

prearranged such that their color (black/red) corresponds to the

de Bruijn sequence. Cutting the deck only shifts the sequence

cyclically. By the property of de Bruijn sequence, knowing the

colors reveals the location (or phase) of the 5 contiguous cards

inside the deck, hence uniquely determines their identities.

More generally, this trick can be performed with k volunteers

and a deck of size n = 2k, by using a de Bruijn sequence of

order k, which is a binary sequence such that every length-

k binary string occurs as a contiguous subsequence exactly

once [3].
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Suppose now that some of the volunteers are not collabo-

rative and may lie when asked about their card color. Can the

magician still guess the cards correctly? In other words, can

one design a length-n sequence such that the set of all length-k
contiguous subsequences forms a good error-correcting code?

Besides its appeal as a card trick, such a sequence can also be

useful e.g. for phase detection in positioning systems. Imagine

that a satellite sends the length-n sequence periodically. A user

hearing a noisy chunk of the sequence would like to figure

out the location of his chunk within the original sequence,

so as to measure the transmission delay and compute his

distance to the satellite. Fixing the sequence length n (which

results in a given ambiguity of the distance estimation), it is

clearly desirable to minimize k, as this results in the fastest

positioning. Clearly, k cannot be smaller than logn, and this

lower bound can be achieved in case there is no noise, by

using a de Bruijn sequence of order k. As we shall see, in the

noisy case k = O(log n) is also sufficient, and we will in fact

be interested in characterizing the exact constant log n
k , which

will be referred to as rate.

In reality, positioning systems typically employ multiple

satellites, each transmitting its own length-ni sequence. Se-

quences get combined through a multiple access channel

(MAC) when reaching the user. Upon hearing a length-k
chunk of the combined sequence, the user wishes to measure

his distance to all of the satellites by locating the chunk

within each one of the sequences. We note that existing

techniques (such as GPS [4]) typically employ sequences (e.g.

Gold codes [5]) that possess good autocorrelation and cross-

correlation properties, and use k = N · n1 = · · · = N · nL,

for some repetition factor N ≥ 1. From our perspective,

these systems hence operate at zero rates. In fact, when the

repetition factor N > 1, this does not precisely fall under

our setup; we further remark on this in Example 1. In what

follows, we focus on fast positioning at non-zero rates. We

are interested in characterizing the optimal trade-offs among
(
logn1

k , · · · , lognL

k

)
that ensure successful detection, as well

as in constructing sequences that achieve the optimal trade-

offs.

In what follows, we refer to the first problem, which only

involves a single-sequence design, as point-to-point phase

detection. We refer to the second problem as multiple access

phase detection. Different noise models are considered: the ad-

versarial noise and the probabilistic noise. For the probabilistic

noise, different error criteria are discussed: the vanishing error

criterion and the zero error criterion. These models are defined

formally in the sequel. We also compare the phase detection

problems to their natural channel coding counterparts.

http://arxiv.org/abs/1605.09038v2
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A. Point-to-Point Phase Detection

In Sections II, III, and IV, we consider point-to-point phase

detection.

An (n, k) point-to-point phase detection scheme consists of

• a sequence xn , (x1, x2, . . . , xn) ∈ Xn, and

• a detector m̂ : Yk → [n] ∪ e, where [n] , {1, 2, . . . , n}
and e is an error symbol.

We assume that the detector observes a noisy version yk

of the sequence xm+k−1
m , and attempts to correctly identify

the phase m. Clearly, any reliable scheme would require k ≥
log|X | n. Thus, it is natural to define the efficiency of a scheme

as the excess multiplicative factor it uses over the minimal

possible, i.e., k/ log|X | n. However, for comparison to channel

coding, it would be more convenient to work with the inverse

of this quantity and take logarithms in base 2, namely work

with the rate

R ,
log2 n

k
.

We note that any phase detection scheme induces a codebook1

C = {xm+k−1
m : m ∈ [n]} ⊆ X k of rate R. Here and

throughout indices are taken cyclically, modulo the set [n].
Also, we assume throughout that k ≤ n.

We discuss three distinct models: the adversarial noise

model in Section II, the probabilistic noise with vanishing

error in Section III, and the probabilistic noise with zero error

in Section IV. For convenience, let the function φ(m;xn)
return the length-k contiguous subsequence of xn starting

at phase m, i.e., φ(m;xn) = xm+k−1
m . We will typically

omit the dependence on the sequence xn, and simple write

φ(m;xn) = φ(m).

For the adversarial noise model, we assume that X = Y =
{0, 1} and the observation sequence yk is obtained from φ(m)
by flipping at most pk bits, where m is the correct phase,

and p is fixed and given. We define the minimum distance of

a scheme as the minimum Hamming distance of its induced

codebook. A rate R is said to be achievable in this setting if,

for a divergent sequence of k’s, there exist (n, k) schemes with
logn
k ≥ R, such that m can be recovered from yk without error.

Namely, we require the scheme to have a minimum distance

d > 2pk. The capacity of adversarial phase detection Cad(p)
is defined as the supremum over all achievable rates2.

Several works have addressed this noise model in the

literature. The trade-off between the rate and the minimum

distance of the code was studied in [6], [7]. Kumar and Wei

provided a lower bound on d in the regime of d ≤
√
k for

m-sequences, which are generated by linear feedback shift

registers [6]. Some explicit sequence constructions were also

provided in [8]–[12]. By a concatenation of an optimal binary

channel code with the Reed–Solomon code, Berkowitz and

Kopparty have recently constructed a phase detection scheme

with nonzero rate and nonzero relative distance [12]. For

1The codebook is treated as a multiset, namely there might be repetitions
in its elements.

2Here we define capacity asymptotically. Note that similarly to adversarial
channel coding, it is not guaranteed short sequences with rate above the
capacity do not exist.

generalization to two dimensional phase detection, see [13]–

[16].

In Section II, we focus on the tradeoff between the rate and

the minimum distance in the asymptotic limit. We note that a

codebook induced by any phase detection scheme can be used

as a channel code in the standard binary adversarial channel

model [17]. The capacity of the latter setup is unknown.

Clearly however, any upper bound for that capacity, such

as the MRRW upper bound [18], also serves as an upper

bound for Cad(p). The best known binary adversarial channel

coding lower bound is given by Gilbert and Varshamov [19],

[20]. Applying the Lovász local lemma [21], we show in

Section II-A that this rate is also achievable for adversarial

phase detection. In Section II-B, we characterize the family of

linear phase detection schemes and study their performance.

For the probabilistic noise model with vanishing error cri-

terion, we assume that the phase is uniformly distributed, i.e.,

M ∼ Unif[n]. We further assume that the noisy observation

yk is obtained from φ(m) via a discrete memoryless channel

p(y|x). The probability of error is defined as

P (k)
e = P{M 6= m̂(Y k)}.

A rate R is said to be achievable if, for a divergent se-

quence of k’s, there exist (n, k) schemes with logn
k ≥ R

and limk→∞ P
(k)
e = 0. The vanishing error capacity of

probabilistic phase detection Cve is defined as the supremum

over all achievable rates.

As before, the codebook induced by any phase detection

scheme is also a channel code. Thus, the Shannon capacity

of the channel p(y|x) is an upper bound for Cve. In Sec-

tion III-A, we show that in fact Cve equals the Shannon

capacity. Moreover, we present in Section III-B a concatenated

construction with O(k log k) complexity that achieves the

capacity of probabilistic phase detection. As a consequence,

this construction also establishes the equivalence between

channel coding and phase detection for this noise model.

For the probabilistic noise model with zero error criterion,

we again assume that the noisy observation yk is obtained

from φ(m) via a discrete memoryless channel p(y|x). A rate

R is said to be achievable if, for a divergent sequence of k’s,

there exist (n, k) schemes with log n
k ≥ R such that the phase

m can be recovered with zero error for any m ∈ [n]. Similar to

Shannon’s zero error channel coding [22], achievable rates can

be equivalently defined on the confusion graph G = (X , E)
associated with the channel p(y|x). Here the vertex set is X
and two distinct vertices are connected (u, v) ∈ E if they may

result in the same output, i.e., there exists a y ∈ Y such that

pY |X(y|u) > 0 and pY |X(y|v) > 0. Let Gk = (X k, Ek) be

the k-fold strong product of G, where two distinct vertices are

connected (uk, vk) ∈ Ek if for all i ∈ [k], either ui = vi or

(ui, vi) ∈ E. Then, a rate R is achievable if and only if, for

a divergent sequence of k’s, there exist (n, k) schemes with
logn
k ≥ R such that (φ(m), φ(m′)) /∈ Ek for any two distinct

phases m,m′ ∈ [n], or in other words, the induced codebook

forms an independent set of Gk. The zero error capacity

Cze(G) is defined as the supremum over all achievable rates.
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We note the distinction between phase detection and channel

coding under the zero error criterion. For zero error channel

coding (in contrast to vanishing error and adversarial channel

coding) if a rate R is achievable at some length k, it is also

achievable for all multiples of k (by concatenation) and thus

for a divergent sequence of k’s. However, this argument cannot

be applied to the phase detection setting, since concatenating

the codewords of two induced codebooks may not necessarily

result in a new codebook that can be chained up into a single

sequence. Nevertheless, and despite the fact that the zero error

channel capacity is generally unknown, we show in Section IV

that the zero error capacity for phase detection coincides with

its channel coding counterpart.

B. Multiple Access Phase Detection

In Sections V and VI, we consider multiple access phase

detection. We only discuss the two-user case for simplicity.

But all the results extend to more users.

An (n1, n2, k) multiple access phase detection scheme

consists of

• two sequences xn1

1 = (x11, x12, . . . , x1,n1
) ∈ Xn

1 and

xn2

2 = (x21, x22, . . . , x2,n2
) ∈ Xn

2 , and

• a detector that declares two phase estimates m̂1 : Yk →
[n1] ∪ {e} and m̂2 : Yk → [n2] ∪ {e}.

We assume that the detector observes yk, which is the

output of a discrete memoryless multiple access channel

(X1 × X2, p(y|x1, x2),Y) with the two inputs φ1(m1) =
φ1(m1;x

n1

1 ) , (x1,m1
, x1,m1+1, . . . , x1,m1+k−1) and

φ2(m2) = φ2(m2;x
n2

2 ) , (x2,m2
, x2,m2+1, . . . , x2,m2+k−1),

and attempts to correctly identify the phases (m1,m2).
Similar to the point-to-point case, we define the rates of the

two sequences as

R1 ,
log2 n1

k
and R2 ,

log2 n2

k
.

We note that every multiple access phase detection scheme

induces two (multiset) codebooks

C1 = {φ1(m1) : m1 ∈ [n1]} ⊆ X k
1 (1)

and

C2 = {φ2(m2) : m2 ∈ [n2]} ⊆ X k
2 (2)

of rates R1 and R2 respectively.

We discuss two different error criteria: the vanishing error

criterion in Section V and the zero error criterion in Sec-

tion VI.

Under the vanishing error criterion, we assume that the

phase pair (M1,M2) is uniformly distributed over [n1]× [n2].
The probability of error is defined as

P (k)
e = P{(M1,M2) 6= (m̂1(Y

k), m̂2(Y
k))}.

A rate pair (R1, R2) is said to be achievable if, for a divergent

sequence of k’s, there exist (n1, n2, k) schemes with logn1

k ≥
R1, logn2

k ≥ R2, and limk→∞ P
(k)
e = 0. The vanishing error

capacity region Cve is defined as the closure of the set of

achievable rate pairs.

In Section V-A, we establish the vanishing error capacity

region of multiple access phase detection. This region turns

out to be strictly included, in general, in the capacity region

of its channel coding counterpart. This is in contrast to all

models in the point-to-point case, in which phase detection

either achieves the same best known rate or shares the same

capacity as its channel coding counterpart. Due to the lack of

synchronization between sequences, a phase detection scheme

achieves at best the usual MAC capacity region without

the time-sharing random variable. In Section V-B, we pro-

vide a low-complexity (O(k log k)) sequence construction that

achieves any rate pair in the capacity region.

Under the zero error criterion, a rate pair (R1, R2) is said

to be achievable if, for a divergent sequence of k’s, there exist

(n1, n2, k) schemes with logn1

k ≥ R1 and logn2

k ≥ R2 such

that (m1,m2) can be recovered from yk with zero error for

any pair (m1,m2) ∈ [n1] × [n2]. The zero error capacity

region Cze is defined as the closure of the set of achievable rate

pairs. We note that the problem of zero error phase detection in

MACs is generally very difficult, as it is at least as hard as the

zero error MAC coding problem, which in turn is open even

in the simplest cases, e.g., the binary adder channel [23]–[28].

Nevertheless, in Section VI-A, we demonstrate the distinction

between the phase detection and the channel coding problems,

by showing a separation between their capacity regions.

In Sections VI-B and VI-C, we restrict our attention to a

simple channel model, the modulo-2 addition channel with

X1 = X2 = Y = {0, 1} and Y = X1⊕X2. For this channel, a

rate pair (R1, R2) is achievable if every element in the sumset

Csum , {φ1(m1)⊕ φ2(m2) : m1 ∈ [n1],m2 ∈ [n2]} (3)

can be uniquely expressed as an element in the induced

codebook C1 plus an element in the induced codebook C2.

Note that Csum is defined as a regular set with distinct elements

(rather than a multiset). Hence, any C1 and C2 induced by a

valid scheme must also have distinct elements.

Clearly, the zero-error channel coding capacity region

{(R1, R2) : R1 +R2 ≤ 1} is an outer bound for that of phase

detection. In Section VI-B, we establish the achievability of

this region by a random construction that exploits properties of

linear codes, in a way that resembles Wyner’s linear Slepian–

Wolf codes [29]. We further provide in Section VI-C an

explicit sequence construction that achieves this region, by ex-

ploiting properties from finite field theory. As an consequence,

the induced code from our phase detection sequences can be

used for channel coding and achieve any rate pair in the zero-

error capacity region, without using time sharing3.

II. POINT-TO-POINT: ADVERSARIAL NOISE

In this section we discuss the adversarial noise model. We

first examine whether the adversarial phase detection schemes

achieve the best known rate for adversarial channel coding,

namely the Gilbert–Varshamov (GV) bound [19], [20].

3For other channel codes that achieve this region without using time sharing,
see for example [30], [31]. For a channel code that achieves the rate pair
(1/2, 1/2) with the same codebook, see [23], [32] for a construction utilizing
the parity check matrix of a BCH code.
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A. Fundamental Limit

Theorem 1. An (n, k) point-to-point phase detection scheme

with minimum distance d exists if

n ≤ 2k

16k
∑d

i=0

(
k
i

) . (4)

Corollary 1. The capacity for adversarial phase detection is

lower bounded by

Cad(p) ≥ 1− h(2p),

where h(·) is the binary entropy function.

We show the existence of a good sequence using the

probabilistic method. We note that while several different

proofs of the GV bound exist [19], [20], [33], none of them

seem to directly extend to our setting. This is simply due to

the fact that there is a dependence between the codewords in

the induced codebook. To alleviate this technical difficulty, we

need the following well-known lemma.

Lemma 1 (Lovász Local Lemma [21]). Let A1, . . . , AN be

a set of “bad” events with P(Aj) ≤ q < 1, where each event

Aj is mutually independent of all but at most L of the other

events. If 4qL ≤ 1, then

P
{
∩Nj=1A

c
j

}
> 0.

Proof of Theorem 1: We generate the phase detection

sequence Xn i.i.d.∼ Bern(1/2) and apply minimum distance

detection. Let {Aj} be the collection of events where the

Hamming distance between a pair of codewords wt
(
φ(m1)⊕

φ(m2)
)
≤ d where m1 < m2. We have

P(Aj)
(a)
= P{wt(Zk) ≤ d, Zk i.i.d. ∼ Bern(1/2)}

=
d∑

i=0

(
k

i

)
1

2k
,

where (a) follows since for any two distinct phases m1 6= m2,

the sum of the two codewords φ(m1) ⊕ φ(m2) is i.i.d.∼
Bern(1/2) even if they are overlapping subsequences of Xn.

Now each Aj is mutually independent of all other events,

except for a set of at most 4kn events. This is because the

random variable φ(m1) ⊕ φ(m2) is mutually independent of

all Xi’s with i ∈ [n] \ {m1 − k + 1,m1 − k + 2, . . . ,m1 +
k − 1} \ {m2 − k + 1,m2 − k + 2, . . . ,m2 + k − 1}, which

excludes at most 4kn events. Applying Lemma 1, the phase

detection sequence Xn has minimum distance greater than d
with positive probability

P

{

∩
1

2
n(n−1)

j=1 Ac
j

}

> 0

if

16kn
d∑

i=0

(
k

i

)
1

2k
≤ 1, (5)

or equivalently the condition in (4). This completes the proof

of Theorem 1.

Proof of Corollary 1: Set d = 2pk in (4). Applying the

Hamming ball volume approximation

2pk
∑

i=0

(
k

i

)

≤ 2kh(2p)

and plugging R = log n
k in (5), we have

R ≤ 1− h(2p)− log(16k)

k
.

Letting k →∞, it follows that a rate R is achievable if R <
1− h(2p).

Remark 1. In the standard channel coding setup, a random

codebook attains the GV bound with high probability. In

contrast, the probability of randomly drawing a good scheme

for our setup is exponentially small. This is most obvious in

the noiseless case (p = 0), where it is well known that the

fraction occupied by de Bruijn sequences among all sequences

vanishes exponentially fast [3].

B. Linear Phase Detection Schemes

Theorem 1 and Corollary 1 showed the existence of a good

adversarial phase detection scheme. Now, we discuss explicit

constructions of such schemes. First, we ask whether phase

detection schemes are “equivalent” to error-correcting codes

in a certain sense. Clearly, any adversarial phase detection

scheme induces a codebook that can be used as an error-

correcting code for the corresponding adversarial channel cod-

ing problem. The converse direction seems more challenging.

Given an error-correcting code, is it possible to “chain up”

all or a sizable fraction of its codewords to create a sequence,

and use the decoding rule as the detector? If so, what structure

should such a code possess? In the following, we answer these

questions for the class of linear error-correcting codes.

First, we note that in order to induce any error-correcting

code with minimum distance d > 1, the phase detection se-

quence xn should not contain 0k as a contiguous subsequence,

for otherwise a shift by one from that position would create

a codeword that is at distance 1 from 0k. Following that, an

(n, k) phase detection scheme is said to be linear if C ∪{0k},
namely its induced codebook together with the zero codeword,

forms a linear code. Let r be the dimension of this linear

code. Then, the length of the linear phase detection sequence

is n = 2r − 1.

Theorem 2. A phase detection scheme with n = 2r − 1
is linear if and only if it is generated by a linear feedback

shift register (LFSR) with a primitive characteristic polynomial

a(z) =
∑r−1

i=0 aiz
i + zr over GF (2), i.e.,

xr+j =

r−1∑

i=0

aixi+j , j ∈ [n]. (6)

Corollary 2. The non-zero codewords of a linear code of

dimension r can be chained up to a sequence of length 2r−1 if
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and only if any r contiguous columns of the generator matrix

Gr×k = [g1,g2, . . . ,gk] are linearly independent, and

gr+j =

r−1∑

i=0

aigi+j , j ∈ [k − r], (7)

where ai’s are the coefficients of a primitive polynomial

a(z) =
∑r−1

i=0 aiz
i + zr over GF (2).

Proof of Theorem 2: To prove sufficiency, suppose

that xn is generated by an LFSR with a primitive charac-

teristic polynomial in (6) and a nonzero initial state vector

(x1, x2, . . . , xr). Then, every length-r string except 0r occurs

exactly once in xn (see [34, Theorem 8.33]). It follows that

for any distinct codewords φ(m1) = ck and φ(m2) = dk,

there exists φ(m3) = ek such that cj + dj = ej for j ∈ [r].
For r < j ≤ k, cj + dj = ej follows since the sequence is

generated by an LFSR of degree r.

For necessity, let xn be a sequence associated with a linear

phase detection scheme. We show that the first r columns

g1, . . . ,gr of the generator matrix Gr×k = [g1,g2, . . . ,gk]
must be linearly independent. Assuming that contrary, there

exist f1, . . . , fr ∈ {0, 1} not all zero such that

r∑

i=1

figi = 0. (8)

Let [x1, . . . , xk] = [u1, . . . , ur]Gr×k. Multiplying both sides

of (8) by [u1, . . . , ur], we have
∑r

i=1 fixi = 0. Applying this

to every codeword in C, and recalling that the codewords are

all contiguous subsequences of xn, we have

r∑

i=1

fixi+j = 0, j ∈ [n].

Let i0 = max{i ∈ [r] : fi = 1}. If i0 = 1, then xn has to be

0n, in contradiction. For i0 > 1, we have

xj+i0 =

i0−1∑

i=1

fixi+j , j ∈ [n],

which implies xn is generated by an LFSR of degree i0−1 <
r. But this contradicts the fact that xn is of length 2r− 1 and

all codewords φ(m),m ∈ [n], are distinct.

Now, since the first r columns of Gr×k are linearly inde-

pendent, there exist a0, . . . , ar−1 such that

gr+1 =
r−1∑

i=0

aigi+1.

From this it follows that (6) holds and xn is generated by an

LFSR. Finally, an LFSR sequence is of maximum length if

and only if the characteristic polynomial is primitive.

Proof of Corollary 2: The sufficiency follows since for a

linear code, the relation (7) implies (6). The necessity follows

the same way as the necessity in Theorem 2.

Remark 2. As an application of Theorem 2, we can design

a card trick for adversarial crowds. Picking the primitive

polynomial a(z) = z5 + z4 + z2 + z + 1 and k = 9, we get

a sequence of length n = 31 and minimum distance d = 3.

Ordering cards according to this sequence, the magician can

now correct one lie out of 9 contiguous color reads.

Remark 3. When the characteristic polynomial of the LFSR

is irreducible but not primitive, the sequence it generates has

length t, which equals the order of the characteristic polyno-

mial. Depending on the initial state xr, the LFSR generates

one out of s = 2r−1
t disjoint sequences xt(1), . . . , xt(s). The

length-k contiguous subsequences of each sequence C(i) =
{xm+k−1

m (i) : m ∈ [t]} together with the zero codeword form

a linear code ∪si=1C(i) ∪ {0k}. Conversely for a linear code,

if the first r columns of its generator matrix are linearly

independent and (7) holds with ai’s being the coefficients of

an irreducible but not primitive polynomial of order t, then

its nonzero codewords can be partitioned into s equal size

subsets, each of which can be chained up to a phase detection

sequence.

We now provide two results on the performance of linear

phase detection schemes. In Theorem 3, we cite a known

result from [34, Theorem 8.85] on asymptotic relative distance,

which improves upon [6, Theorem 1]. Then, inspired by a

linear programing bound for LDPC codes [35], we provide in

Theorem 4 an upper bound on the sequence length of a linear

phase detection scheme of a given minimum distance, using

the linear programing method originated by Delsarte [36].

Theorem 3 (Theorem 8.85 [34]). For every (n, k) linear phase

detection scheme, for every m ∈ [n],
∣
∣
∣
∣
wt(xm+k−1

m )− k

2

∣
∣
∣
∣
≤ √n

(
logn

π
+ 1

)

.

In particular, for (n, k) such that limk→∞
√
n logn
k = 0, the

relative distance of the induced code converges to

lim
k→∞

d

k
=

1

2
. (9)

Remark 4. We note a similar result in [6, Theorem 1], which

claims (9) for every 0 < µ ≤ 1 and k = µn. Theorem 3

improves upon [6] by allowing k to be sublinear in n.

For the next result, we need the following definitions. For

t ∈ [k] and z ∈ R, let

Kt(z) =

t∑

j=0

(−1)j
(
z

j

)(
l − z

t− j

)

be the Krawtchouk polynomial [37, Ch. 5. § 2] [38], where

the binomial coefficient for z ∈ R is defined as
(
z
i

)
=

z(z−1)(z−2)···(z−i+1)
i ! . For large k, the exponent of Kt(z) can

be approximated as [35, Equation (40)]

1

k
logK⌊pk⌋(⌊λk⌋) = h(p) + Int(p, λ) + o(1),

where

Int(p, λ)

=

∫ λ

0

log

(

1− 2p+
√

(1 − 2p)2 − 4(1− y)y

2(1− y)

)

dy. (10)
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Theorem 4. Every (n, k) linear phase detection scheme with

length n = 2r − 1 and minimum distance d = 2t + 1 must

satisfy

2r · K
2
t (ic)

(
(k−r)/c2

i

)
c2i

(
k
t

) ≤ 2k

for every i ∈ [k] such that ic2 ≤ k − r. Here c is the number

of nonzero coefficients of the characteristic polynomial a(z) =
∑r

j=0 ajz
j .

Remark 5. Compared to Delsarte’s linear programing bound

for channel codes [36], the bound in Theorem 4 can sometimes

be better. For example, when r = 20, t = 5, and c = 3, the

linear programing bound yields k ≥ 41, while Theorem 4

requires k ≥ 42. We note, however, that with further opti-

mization for these specific parameters, the best known channel

coding upper bound is k ≥ 43 [39].

Remark 6. For low-complexity LFSR implementation, it

may be desirable to choose a characteristic polynomial with

low coefficient weight. According to a conjecture in finite

field theory [40], [41], there are infinitely many primitive

polynomials with coefficient weight c = 3. For this class

of primitive polynomials, Theorem 4 implies that when the

adversarial channel can flip at most a fraction p of the inputs,

the rate of the linear phase detection scheme must satisfy

max
0≤µ≤ 1−R

9

{

2µ log 3 + h
(

9µ
1−R

)
(1−R)

9 + 2 Int(p, 3µ)
}

≤ 1− h(p)− R, (11)

where Int(p, 3µ) is given in (10). This bound can sometimes

be better than the second MRRW bound [18], which is the best

known asymptotic upper bound for binary channel codes. For

example, when p = 0.05, the second MRRW bound requires

R ≤ 0.6927. However, p = 0.05 and R = 0.6927 violate

condition (11) when µ = 0.03073.

Proof of Theorem 4: Following the same line of rea-

soning as in Section II-C (29)–(36) and (48)–(49) of [35], we

have for every α ∈ [k],

2r · K
2
t (α)Bα
(
k
t

) ≤ 2k, (12)

where Bα is the number of codewords of weight α in the

dual code of the linear code induced by the phase detection

scheme. Now we show that when the coefficient weight of

the characteristic polynomial is c, for every i ∈ [k] such that

ic2 ≤ k − r, we can lower bound

Bic ≥
(
(k − r)/c2

i

)

c2i. (13)

To that end, note that our (k − r)× k parity check matrix,

which is also the generator matrix of the dual code, can be

written in the following form







1 a1 · · · ar−1 1 0 0 · · · 0
0 1 a1 · · · ar−1 1 0 · · · 0
...

...
...

...
...

...
...

...
...

0 0 · · · 0 1 a1 · · · ar−1 1








.

A weight ic codeword of the dual code could come from

the sum of i rows of H whose nonzero elements (the 1’s)

are in disjoint columns. We lower bound the number of such

codewords. First, we select an arbitrary row from the (k − r)
rows. Since each row of H has weight c, the locations of the

1’s in the chosen row overlap that of at most c2 rows (including

itself). Then a second row is chosen from the (k − r − c2)
remaining non-overlapping rows. We continue in this manner

until we obtain i rows (we will not exhaust all rows provided

that ic2 ≤ k − r). Hence, the number of choices is lower

bounded by

1

i !
(k − r)(k − r − c2) · · · (k − r − (i − 1)c2)

=

(
(k − r)/c2

i

)

c2i,

which establishes (13). Plugging (13) into (12) with α = ic
completes the proof.

III. POINT-TO-POINT: PROBABILISTIC NOISE,

VANISHING ERROR

In this section we discuss the probabilistic noise model with

a vanishing error criterion. We first show that the capacity

in this case coincides with the Shannon capacity of the

observation channel. We then proceed to describe a low-

complexity coding construction, based on a concatenation of

a channel code and a de Bruijn sequence, that approaches this

fundamental limit.

A. Fundamental Limit

Theorem 5. The vanishing error capacity for probabilistic

phase detection over a channel p(y|x) is

Cve = max
p(x)

I(X ;Y ).

Before we proceed to the proof, we need a technical lemma.

We denote the typical set of length-k vectors corresponding

to (X,Y ) by

T (k)
ǫ (X,Y )

:=
{

(xk, yk) :

∣
∣
∣
∣

#{i : (xi, yi) = (x, y)}
n

− p(x, y)

∣
∣
∣
∣

≤ ǫp(x, y) for all x ∈ X , y ∈ Y
}

.

Lemma 2 (Lemma 24.2 [42]). Let (X,Y ) ∼ p(x, y) 6=
p(x)p(y) and (Xn, Y n) ∼ ∏n

i=1 pX,Y (xi, yi). If ǫ > 0 is

sufficiently small, then there exists γ(ǫ) > 0 that depends only

on p(x, y) such that

P{(Xm+k−1
m , Y k) ∈ T (k)

ǫ (X,Y )} ≤ 2−kγ(ǫ) (14)

for every m > 1. Moreover, for non-overlapping sequences,

i.e., for k + 1 ≤ m ≤ n− k + 1,

P{(Xm+k−1
m , Y k) ∈ T (k)

ǫ (X,Y )} ≤ 2−k(I(X;Y )−δ(ǫ)),
(15)

where δ(ǫ) tends to zero as ǫ→ 0.
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Proof of Theorem 5: Clearly, any phase detection se-

quence is also a channel code. Thus, the above rate cannot

be exceeded. We proceed to prove the achievability. Recall

φ(m) = xm+k−1
m .

Phase detection sequence generation. We generate the se-

quence Xn i.i.d.∼ p(x).

Detection. Upon receiving yk, the detector declares m̂ is the

phase estimate if it is the unique phase such that (φ(m̂), yk) ∈
T (k)
ǫ (X,Y ); otherwise—if there is none or more than one—it

declares an error.

Analysis of the probability of error. Without loss of gener-

ality, we assume the phase M = 1. The detector makes an

error only if one or more of the following events occurs:

E1 = {(φ(1), Y k) /∈ T (k)
ǫ (X,Y )},

E2 = {(φ(m), Y k) ∈ T (k)
ǫ (X,Y ) for some m 6= 1}.

By the law of large numbers, P(E1) tends to zero as k →∞.

For the second term, we have

P(E2)

≤
(

k∑

m=2

+

n∑

m=n−k+2

)

P{(φ(m), Y k) ∈ T (k)
ǫ (X,Y )}

+
n−k+1∑

m=k+1

P{(φ(m), Y k) ∈ T (k)
ǫ (X,Y )}

(a)
= 2(k − 1)2−kγ(ǫ) + (2kR − 2k + 1)2−k(I(X;Y )−δ(ǫ)),

which tends to zero as k → ∞ if R < I(X ;Y )− δ(ǫ). Here

the first and the second terms in (a) follow from (14) and (15)

respectively. Letting ǫ→ 0 completes the proof.

Example 1. Consider the case of GPS signaling. For GPS, the

binary (BPSK) symbol duration is about 1µsec, and the length

of the underlying Gold code sequence is n = 1023. Consider

a typical observation time of 1 second, which corresponds to a

repetition factor N ≈ 1000 and k ≈ 1e6 binary observations.

A correlator receiver can thus increase the SNR by about 60dB

by coherently integrating over this sequence (assuming symbol

timing has been recovered). Due to the good autocorrelation

structure of the Gold code, an SNR of 30dB is typically

sufficient in order to distinguish the correct phase (out of

the 1023 possibilities, and typically also over several Doppler

hypotheses), with a small enough error probability. Namely,

one can operate at an SNR of −30dB, and provide positioning

with uncertainty of 1023µsec; multiplied by the speed of

light, this yields a positioning modulo ≈ 30, 000 km, which

is sufficient as it is of the same order of the distance to the

satellites.

Let us now show that one can significantly improve sensi-

tivity using a more general phase detection sequence. Using

the same observation period of 1 second, let us assume a much

lower SNR of −44dB. Using the Gaussian capacity formula

and Theorem 5, we have that

logn

k
≈ 1

2
log2(1 + SNR)

can be asymptotically achieved. Using our k = 1e6 and solv-

ing for n, we get that the largest n that can be supported is n ≈
4e8. Since this large n is also (much) larger than k, we can

in principle design a phase detection sequence with roughly

these parameters that attains a low error probability. This will

reliably find our distance to the satellite with an uncertainty of

about 120 billion km, a huge overkill, but saves 14dB in the

SNR relative to the competing GPS solution operating with the

same observation time. To make the comparison more precise,

one should look more carefully at many important details

such as the exact error probability performance, the effect

of multiple Doppler hypotheses, complexity of detection, and

accounting for multiple satellites. Most of these issues are

beyond the scope of this paper. In the next subsection and in

Secion VI we discuss the issues of complexity and multiple

sequences.

B. A Low-Complexity Construction

Now we present a sequence construction with low-

complexity detection that achieves the capacity asymptotically.

The construction consists of three main ingredients:

1) a de Bruijn sequence with an efficient decoding algo-

rithm [43],

2) a capacity achieving low-complexity code, e.g. a polar

code [44], that protects the de Bruijn sequence against

noise, and

3) an i.i.d. synchronization sequence, which is known at

the detector a priori, that allows the detector to find the

block boundary.

The details are as follows.

Phase detection sequence design. We design a de Bruijn

sequence u2r of order r according the method in [43]. To en-

code it to a phase detection sequence xn, we let r = sl, where

s and l are integers. The de Bruijn sequence is chopped up

into length-s chunks, each of which is encoded into a length-t
codeword using a channel code of rate Rch = s/t. Then, a

synchronization sequence b3τ is generated i.i.d.∼ p(x), where

the parameter τ is a linear function of t, i.e., τ = c1t + c2
for some constants c1 > 0 and c2. Below we use τ = t, but

τ 6= t will prove useful later in Section V-B. This sequence

b3τ is inserted every l blocks. The middle chunk of the

synchronization sequence b2ττ+1 is given to the detector. The

chunks bτ and b3τ2τ+1 play the role of “guarding bits” between

codewords and the middle chunk b2ττ+1. Their purpose is to

simplify the analysis of the error probability event associated

with the synchronization detection (later denoted E1), as will

become clear in the sequel. This is illustrated in Figure 1.

Detection. We choose the length of the detection window

to be

k = lt+ 3τ +max{t, τ}. (16)

The extra max{t, τ} symbols are the margin to ensure there

are l complete channel code blocks and a complete synchro-

nization sequence in the received sequence. Upon receiving

yk, the detector first finds an ŵ1 ∈ {0} ∪ [k − τ ] such that
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de Bruijn seq.

u2r

r = ls

ŵ2s+ 1

3τ

channel code

s

t

xn

ŵ2t+ ⌈ ŵ2

l ⌉3τ + 1

3τ

m̂

(l + 1)t

yk

lt+ 3τ +max{t, τ}

ŵ1 + 1

block

boundary

Fig. 1. Construction for probabilistic phase detection.

(b2ττ+1, y
ŵ1+τ
ŵ1+1 ) ∈ T

(τ)
ǫ (X,Y ). If there are more than one,

it chooses the smallest index. It declares an error if there

is none. This determines the block boundary of the channel

code blocks, i.e., a complete block starts from index (ŵ1 − τ
mod t) + 1 in yk. By design, there are at least l complete

channel code blocks in yk (the dashed-line parts in yk of

Figure 1). The detector then applies the channel decoder to

recover l blocks of messages. This corresponds to ls = r
contiguous bits in the de Bruijn sequence (the dashed-line parts

in the u sequence of Figure 1), which uniquely determines the

location of these bits usŵ2+r
sŵ2+1 via the de Bruijn decoder of [43].

The phase estimate is then declared as

m̂ = ŵ2t+

⌈
ŵ2

l

⌉

3τ + 1− (ŵ1 − τ mod t).

Analysis of the probability of error. For clarity of notation,

we set τ = t in the following analysis. Similar analysis can

be done for other linear functions of t. Let W1 be the actual

index of the noisy version of Bτ in Y k. The detector makes

an error only if at least one of the following events occurs:

E1 = {W1 6= Ŵ1},
E2 = {an error in channel decoding}.

Given Ec1 ∩Ec2 , the de Bruijn decoder can figure out the phase

of the decoded r bits with zero error. Since we are using a

good channel code, we have P(E2 ∩ Ec1) → 0 as t → ∞.

To bound P(E1), assume for convenience and without loss of

generality that W1 = t− 1. We have

P(E1) = P{(B2t
t+1, Y

w1+t
w1+1 ) ∈ T (t)

ǫ for some w1 6= t− 1}

≤
t−2∑

w1=0

P{(B2t
t+1, Y

w1+t
w1+1 ) ∈ T (t)

ǫ }

+
2t−2∑

w1=t

P{(B2t
t+1, Y

w1+t
w1+1 ) ∈ T (t)

ǫ }

+

k−t∑

w1=2t−1

P{(B2t
t+1, Y

w1+t
w1+1 ) ∈ T (t)

ǫ }

(a)

≤ (t− 1)2−tγ(ǫ) + (t− 1)2−tγ(ǫ)
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+ ((l + 1)t+ 2)2−t(I(X;Y )−δ(ǫ)),

which, for fixed l, tends to zero as t → ∞. Here, the first

term in (a) follows from Lemma 2 and the fact that B2t
t+1 and

its preceding guarding block Bt are i.i.d.∼ p(x). The second

term follows since B2t
t+1 and its succeeding guarding block

B3t
2t+1 are i.i.d.∼ p(x). The third term follows by virtue of

the packing lemma [42, Lemma 3.1], since any length-t chunk

from two channel code blocks is independent of B2t
t+1. Note

the role of the “guarding bits” here is to make sure Y w1+t
w1+1

never overlaps with both B2t
t+1 and a codeword, as we cannot

generally assume too much about the statistics of a specific

codeword. Therefore, the probability of error averaged over

all possible realizations of B3t tends to zero as t → ∞. It

follows that a good deterministic sequence b3t exists (in fact,

most choices are good).

Rate. By design, the rate of the sequence is

R =
logn

k

=
log
[
2r lt+3τ

ls

]

lt+ 3τ +max{t, τ} (17)

(a)
=

log
[

2r (l+3)t
ls

]

(l + 4)t

= Rcode

(

1− 4

l + 4

)

+
Rcode

s(l + 4)
log

[
1

Rcode

(

1 +
3

l

)]

,

which, for fixed Rcode and l, tends to Rcode

(

1− 4
l+4

)

as

s→∞. Choosing a large l and a capacity achieving code for

the underlying channel p(y|x) ensures the rate of the phase

detection sequence can be as close to Cprob as desired. Note

that in step (a), we set τ = t. But one can verify that the rate

approaches capacity Cprob for other choices of τ .

Complexity. Finding the block boundary is O(k) complexity.

Recalling that r is linear in k and using the method of [43],

decoding the de Bruijn sequence is O(k log k) complexity.

There exist capacity achieving channel codes with O(k log k)
decoding complexity, e.g., polar codes [44]. Therefore, the

overall detection complexity is O(k log k).

Remark 7. For future reference, we refer to the above

construction an (Rch, l, t, τ) point-to-point phase detection

sequence. Once these four parameters are given, s = tRch, r =
ls, and both k and R can be expressed as in (16) and (17). As

shown above, an (Rch, l, t, τ) point-to-point phase detection

sequence has detection complexity O(k log k). Moreover, for

τ = c1t+c2 with some constants c1 > 0 and c2, the achievable

rate of the sequence satisfies

lim
l→∞

lim
t→∞

R(Rch, l, t, τ) = Rch.

This construction will also prove useful in Section V-B.

Remark 8. It appears plausible that the synchronization

sequence could be discarded, and that the codeword boundary

could be determined as part of the detection process. This

coding scheme, in a sense, shows the equivalence between

error-correcting codes and phase detection schemes for the

probabilistic setting.

Remark 9. Our analysis for the point-to-point phase detection

problem in the probabilistic noise model assumed a uniformly

distributed phase, which in channel coding terms corresponds

to an average error probability criterion. In channel coding,

the capacity under a more stringent maximal error probability

criterion remains the same; this is easily shown by throwing

away the worse half of a good average error probability

codebook. In the sequence phase detection problem however,

it is not immediately clear whether the capacity remains the

same, as throwing bad codewords can significantly shorten the

sequence. However, using our specific construction above and

using a maximal error capacity achieving channel code (which

may increase the detection complexity), we can show that the

resulting phase detection sequence is capacity achieving under

maximal error probability criterion.

IV. POINT-TO-POINT: PROBABILISTIC NOISE,

ZERO ERROR

In this section, we consider zero error phase detection. Let

α(G) denote the independence number of a graph G, i.e., the

cardinality of a maximum independent set of G. Then, the

Shannon capacity of a graph G can be defined as [22]

C(G) , sup
k

logα(Gk)

k
= lim

k→∞

logα(Gk)

k
,

where Gk is the k-fold strong product of G (see definition

in Section I-A). It is well known that C(G) is the zero error

capacity of any channel p(y|x) with confusion graph G. An

explicit expression for C(G) is unknown. Nevertheless, the

following theorem shows that C(G) is also the fundamental

limit in the zero error phase detection setting.

Theorem 6. The zero error capacity for phase detection in a

channel with confusion graph G coincides with the Shannon

capacity of this graph, i.e.,

Cze(G) = C(G).

Proof: Again, the induced codebook of every phase

detection scheme is also a good channel code for the same

confusion graph, and thus Cze(G) ≤ C(G). For the other

direction, we show that every channel code of rate R can be

used to construct a phase detection scheme with the same rate

in the asymptotic limit.

To this end, we first note that the rate logα(G) can be

readily achieved. This can be done by employing a one-shot

zero error channel code of the same rate (which exists by

definition), and using it to construct a de Bruijn sequence of

alphabet size α(G) and order k (cf. the existence of de Buijn

sequences of any alphabet size and any order [45]). When

C(G) > logα(G), which means that the graph capacity can

be achieved only by block coding over the product graph, then

concatenating a length-k zero error channel code according to

a de Bruijn sequence of alphabet size α(Gk) (a naive extension
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of the one-shot approach above) does not immediately work

(see also Remark 10). This is because the phase detector

may not always know where a complete codeword starts or

ends, which may result in detection errors. In what follows,

we design a novel zero error synchronization sequence that

enables the detector to determine the block boundary without

error, and with vanishing loss in rate.

Augmented codebook and synchronization sequence. For

any G with C(G) > 0, there exist two distinct vertices

β, γ ∈ X such that (β, γ) /∈ E. Let C(t) be a zero error channel

code of length t and rate Rch = 1
t log |C(t)|. We create an

augmented codebook by sandwiching each codeword between

two guarding γ’s, i.e.,

C̃(t+2) = {(γ, ct, γ) : ct ∈ C(t)}.
The sequence

βt+2 = (β, . . . , β
︸ ︷︷ ︸

t+2

)

will be used as the synchronization sequence.

Phase detection sequence design. We take a de Bruijn se-

quence with alphabet size |C(t)| and order r. We associate each

symbol in the de Bruijn alphabet with a different codeword

in the augmented codebook C̃(t+2) (note that |C̃(t+2)| = |C(t)|
by design). Then, similar to the concatenated structure in Fig-

ure 1, we concatenate (in a sequential manner) the augmented

codewords according to the de Bruijn sequence. Between every

r consecutive blocks of augmented codewords, we insert a

synchronization block βt+2. This way, the de Bruijn sequence

of length |C(t)|r is mapped to a phase detection sequence xn

of length n = (r+1)(t+2)
r |C(t)|r.

Detection. We choose the length of the detection window

to be

k = (r + 2)(t+ 2).

This ensures that the window will contain r complete code-

word blocks and one complete synchronization block. For each

w1 ∈ {0} ∪ [k − t− 2], define

Sy(w1) ,

{

ut+2 ∈ X t+2 :

t+2∏

i=1

pY |X(yw1+i |ui) > 0

}

as the set of input sequences that may result in the output

sequence yw1+t+2
w1+1 . The detector finds a ŵ1 ∈ {0}∪ [k− t−2]

such that βt+2 ∈ Sy(w1). If there are more than one, it chooses

the smallest index. It declares an error if there is none. If ŵ1

is found, then the first complete block starts from index (ŵ1

mod t+2)+1 of yk. Knowing the block boundary, the detector

can then decode the r codewords from C(t). This corresponds

to r contiguous symbols in the de Bruijn sequence, which

uniquely determine the starting position ŵ2+1 in the de Bruijn

sequence. Then, the phase estimate is declared as

m̂ =

(

ŵ2 +

⌈
ŵ2

r

⌉)

(t+ 2) + 1− (ŵ1 mod t+ 2).

Error Analysis. The crucial part of the error analysis is

to show the synchronization sequence βt+2 can be detected

with zero error. Once the block boundary is found, the r

codewords can be decoded with zero error, and the location

of the corresponding r symbols in the de Bruijn sequence can

also be found with zero error.

To see the scheme ensures zero error detection of βt+2,

we show that for all m ∈ [n] such that xm+t+1
m 6= βt+2,

(xm+t+1
m , βt+2) /∈ Et+2, where Et+2 is the edge set of Gt+2.

There are two cases. When xm+t+1
m is a complete block, we

have xm = xm+t+1 = γ and hence (xm+t+1
m , βt+2) /∈ Et+2

since (β, γ) /∈ E. When xm+t+1
m consists of two (partial)

blocks, we know at least one block must be a codeword block.

Thus, considering the last symbol of the first block and the

first symbol of the second block, we know at least one is γ.

This implies (xm+t+1
m , βt+2) /∈ Et+2. In summary, βt+2 is

never confusable with other xm+t+1
m at the detector.

Rate. By design, the rate of the scheme is

R =
log
(

(r+1)(t+2)
r |C(t)|r

)

(r + 2)(t+ 2)

=
r log |C(t)|

(r + 2)(t+ 2)
+

log
(

(r+1)(t+2)
r

)

(r + 2)(t+ 2)

=
r t

(r + 2)(t+ 2)
Rch +

log
(

(r+1)(t+2)
r

)

(r + 2)(t+ 2)
,

which tends to Rch as r → ∞ and t → ∞. Therefore, by

choosing a zero error capacity achieving channel code, the

phase detection scheme achieves C(G).

Remark 10. Suppose C(G) is achieved by a finite block code

of length s > 1 (e.g., for the pentagon graph [46]). In this

case, generating a phase detection sequence using a de Bruijn

sequence with codewords of the capacity achieving code as

symbols, cannot work. To see this, recall that the induced

codebook associated with any zero error phase detection

sequence forms a zero error channel code of the same rate.

However, a simple calculation shows that this rate is equal to
log n

log (n/s) ·C(G), which exceeds the capacity C(G) for s > 1.

V. MULTIPLE ACCESS: PROBABILISTIC NOISE,

VANISHING ERROR

So far in all the models we have discussed, phase detection

either achieves the best known achievable rate of its channel

coding counterpart, or shares the same capacity as that of

channel coding. In this section, we encounter the first model,

the multiple access phase detection with vanishing error,

whose capacity region is strictly included in that of its channel

coding counterpart.

A. Fundamental Limit

Theorem 7. The vanishing error capacity region Cve for phase

detection over the channel p(y|x1, x2) is the set of all rate

pairs (R1, R2) such that

R1 ≤ I(X1;Y |X2),

R2 ≤ I(X2;Y |X1),

R1 +R2 ≤ I(X1, X2;Y )

(18)
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for some p(x1)p(x2).

Remark 11. We note that this region is not convex in general.

Compared to the usual MAC capacity region, which is the

convex hull of Cve, this region can be a strict subset (see,

for example, the push-to-talk MAC with binary inputs and

output, given by p(0|0, 0) = p(1|0, 1) = p(1|1, 0) = 1 and

p(0|1, 1) = 1/2 [47, Problem 3.2.6]).

Proof of Theorem 7: We prove the achievability through

random sequence generation and joint typicality detection.

Sequence generation. Fix a pmf p(x1)p(x2). Let n1 = 2kR1

and n2 = 2kR2 . We generate the two sequences Xn1

1 i.i.d. ∼
p(x1) and Xn2

2 i.i.d. ∼ p(x2).

Detection. Upon receiving yk, the detector declares the

phase estimate (m̂1, m̂2) ∈ [n1]× [n2] if it is the unique pair

such that (φ1(m̂1), φ2(m̂2), y
k) ∈ T (k)

ǫ (X1, X2, Y ); if there

is none or more than one, it declares an error.

Analysis of the probability of error. Without loss of gener-

ality, we assume that the correct phase pair is (M1,M2) =
(1,M2). the detector makes an error only if one or more of

the following events occur:

E1 = {(φ1(1), φ2(M2), Y
k) /∈ T (k)

ǫ },
E2 = {(φ1(m1), φ2(M2), Y

k) ∈ T (k)
ǫ for some m1 6= 1},

E3 = {(φ1(1), φ2(m2), Y
k) ∈ T (k)

ǫ for some m2 6= M2},
E4 = {(φ1(m1), φ2(m2), Y

k) ∈ T (k)
ǫ

for some m1 6= 1 and m2 6= M2}.
By the law of large number, P(E1) tends to zero as k → ∞.

For E2, we have

P(E2) ≤
n1−k+1∑

m1=k+1

P{(φ1(m1), φ2(M2), Y
k) ∈ T (k)

ǫ }

+

k∑

m1=2

P{(φ1(m1), φ2(M2), Y
k) ∈ T (k)

ǫ }

+

n1∑

m1=n1−k+2

P{(φ1(m1), φ2(M2), Y
k) ∈ T (k)

ǫ }

(a)

≤ (2kR1 − 2k + 1)2−kI(X1;Y |X2) + 2(k − 1)2−kγ1(ǫ),

which tends to zero as k →∞ if R1 < I(X1;Y |X2)− δ(ǫ).
Here the first term in (a) follows since φ1(m1) in that range

does not overlap with the right chunk φ1(1) and the probability

can be bounded by the packing lemma [42, Lemma 3.1]. The

second term in (a) corresponds to the overlapping chunks and

the probability is bounded by Lemma 2 with Xm+k−1
m ←

φ1(m1), Y
k ← (φ2(M2), Y

k). We can similarly show that

P(E3) tends to zero as k →∞ if R2 < I(X2;Y |X1) − δ(ǫ).
For E4, there are four different cases:

• There are (2kR1−2k+1)(2kR2−2k+1) pairs (m1,m2)
such that neither φ1(m1) nor φ2(m2) overlaps with the

right chunks. By the packing lemma, we can bound

P{(φ1(m1), φ2(m2), Y
k) ∈ T (k)

ǫ } ≤ 2−kI(X1,X2;Y ).

• There are 2(k−1)(2kR2−2k+1) pairs (m1,m2) such that

φ1(m1) overlaps with the right chunk while φ2(m2) does

not. Applying Lemma 2 first and then the packing lemma

(note the independence between φ1(m1) and φ2(m2) for

any m1 and m2), we have

P{(φ1(m1), φ2(m2), Y
k) ∈ T (k)

ǫ }
= P{(φ1(m1), Y

k) ∈ T (k)
ǫ }

· P{(φ1(m1), φ2(m2), Y
k) ∈ T (k)

ǫ

∣
∣

(φ1(m1), Y
k) ∈ T (k)

ǫ }
≤ 2−k(γ2(ǫ)+I(X2;Y |X1)).

• There are 2(k− 1)(2kR1 − 2k+ 1) pairs (m1,m2) such

that φ2(m2) overlaps with the right chunk while φ1(m1)
does not. Similarly, we have

P{(φ1(m1), φ2(m2), Y
k) ∈ T (k)

ǫ }
≤ 2−k(γ3(ǫ)+I(X1;Y |X2)).

• The rest 4(k − 1)2 pairs are such that both φ1(m1)
and φ2(m2) overlap with the right chunks. We note that

the event {(φ1(m1), φ2(m2), Y
k) ∈ T (k)

ǫ (X1, X2, Y )}
implies {(φ1(m1), Y

k) ∈ T (k)
ǫ (X1;Y )}. Thus, we can

bound the error as

P{(φ1(m1), φ2(m2), Y
k) ∈ T (k)

ǫ }
≤ P{(φ1(m1), Y

k) ∈ T (k)
ǫ }

≤ 2−kγ2(ǫ).

Combining all four cases, we have P(E4) tends to zeros as k →
∞ if R1 +R2 < I(X1, X2;Y )− δ(ǫ), R1 < I(X1;Y |X2)−
δ(ǫ), and R2 < I(X2;Y |X1)− δ(ǫ). Letting ǫ→ 0 completes

the proof of the achievability.

For the converse, we wish to show for any (2kR1 , 2kR2 , k)
multiple access phase detection scheme with vanishing proba-

bility of error limk→∞ P
(k)
e = 0, the rate pair (R1, R2) ∈ Cve.

Given the two sequences xn1

1 and xn2

2 , the joint distribution

of (M1,M2, Y
k) is

1

2k(R1+R2)

k−1∏

i=0

pY |X1,X2
(y1+i |x1,m1+i, x2,m2+i).

By Fano’s inequality, we have H(M1,M2|Y k) ≤ k(R1 +

R2)P
(k)
e + 1 ≤ kǫk, where ǫk tends to zero as k → ∞. We

bound the sum rate as follows

k(R1 +R2)

= H(M1,M2)

(a)

≤ I(M1,M2;Y
k) + kǫk

=

k−1∑

i=0

I(M1,M2;Y1+i |Y i) + kǫk

(b)

≤
k−1∑

i=0

I(M1,M2, Y
i, x1,M1+i, x2,M2+i;Y1+i) + kǫk

(c)
=

k−1∑

i=0

I(x1,M1+i, x2,M2+i;Y1+i) + kǫk,



12

where (a) follows from Fano’s inequality and (c) follows since

(M1,M2, Y
i)→ (x1,M1+i, x2,M2+i)→ Y1+i form a Markov

chain due to the memorylessness of the channel. Note here in

both (b) and (c), xj,Mj+i is a function of Mj that takes value

xj,mj+i when Mj = mj for j = 1, 2. Now we bound the

individual rate as follows

kR1 = H(M1 |M2)

(c)

≤ I(M1;Y
k |M2) + kǫk

=

k−1∑

i=0

I(M1;Y1+i |M2, Y
i) + kǫk

≤
k−1∑

i=0

I(Y i,M1,M2, x1,M1+i;Y1+i |x2,M2+i) + kǫk

=

k−1∑

i=0

I(x1,M1+i;Y1+i |x2,M2+i) + kǫk,

where (c) follows since H(M1|Y k,M2) ≤ H(M1,M2|Y k) ≤
kǫk. Now flipping the role of 1 and 2, we have

kR2 ≤
k−1∑

i=0

I(x2,M2+i;Y1+i |x1,M1+i) + kǫk.

Now we introduce a time-sharing random variable Q ∼
Unif[k], which is independent of (M1,M2, Y

k). We can write

R1 +R2 ≤ I(x1,M1+Q, x2,M2+Q;Y1+Q |Q) + ǫk,

R1 ≤ I(x1,M1+Q;Y1+Q |x2,M2+Q, Q) + ǫk,

R2 ≤ I(x2,M2+Q;Y1+Q |x1,M1+Q, Q) + ǫk.

Note that P{Y1+Q = y|x1,M1+Q = x1, x2,M2+Q = x2} =
p(y|x1, x2), which is distributed according to the channel

conditional pmf. Hence, we identify X1 = x1,M1+Q, X2 =
x2,M2+Q, and Y = Y1+Q to obtain

R1 +R2 ≤ I(X1, X2;Y |Q) + ǫk

≤ I(Q,X1, X2;Y ) + ǫk
(d)
= I(X1, X2;Y ) + ǫk,

where (d) follows since Q→ (X1, X2)→ Y form a Markov

chain. We similarly obtain

R1 ≤ I(X1;Y |X2) + ǫk,

R2 ≤ I(X2;Y |X1) + ǫk.

Note that since M1 and M2 are independent and uniform over

[n1] and [n2], M1 + Q and M2 + Q are independent, and

so are x1,M1+Q and x2,M2+Q. Therefore, we can restrict the

inputs to independent distribution p(x1)p(x2). Letting k →∞
completes the proof of the converse.

Remark 12. We note the connection between the above

converse proof, and that of the totally asynchronous MAC [48],

[49]. Unlike channel coding in the usual (synchronous) MAC

setting, where the two inputs can be correlated through the

time-sharing random variable Q, the two inputs x1,M1+Q and

x2,M2+Q in the phase detection setting are independent even

with the time-sharing random variable. Therefore, while the in-

put pmf for the channel coding problem is p(q)p(x1|q)p(x2|q),

it is p(x1)p(x2) in the phase detection setting. This essentially

results in the strict gap between the capacity regions of the two

problems (see also Remark 11).

Remark 13. One can similarly show that the vanishing

error capacity region for phase detection in the L-user MAC

p(y|x1, . . . , xL) is the set of rate tuples (R1, . . . , RL) such

that
∑

i∈J
Ri ≤ I(XJ ;Y |XJ c) for every J ⊆ [L] (19)

for some
∏L

i=1 p(xi). Here XJ = {Xi : i ∈ J }.

B. A Low-Complexity Construction

In this section, we build on the point-to-point phase de-

tection sequence construction in Section III-B and provide an

O(k log k) complexity sequence construction that achieves any

rate pairs (R1, R2) ∈ Cve. The construction consists of several

ingredients:

1) the vanishing error capacity achieving phase detection

sequence for a point-to-point channel p(y|x), as given

in Section III-B,

2) the rate-splitting [50] technique, which is a point-to-

point channel coding technique for achieving arbitrary

rate pairs in the MAC region without time sharing, and

3) a novel symbol-by-symbol mapping that enables rate-

splitting in the phase detection setting.

Details are as follows.

Rate splitting. In the random coding scheme, we simulta-

neously detect the phases m1 and m2 by checking typicality

of all possible pairs via brute force. In practice, it is unclear

whether simultaneous detection can be implemented at low

complexity. In our design, we circumvent this difficulty by em-

ploying the rate splitting technique of [50], which transforms

the MAC coding problem into three point-to-point channel

coding problems. Fix a pmf p(u)p(v)p(x2) and a function

x1(u, v). We target the rate pair

R1 = I(U ;Y ) + I(V ;Y |X2, U),

R2 = I(X2;Y |U).
(20)

It is known [50] that for any rate point (I1, I2) ∈ Cve, there

exists a pmf p(u)p(v)p(x2) and a function x1(u, v) such that

I1 = R1 and I2 = R2.

Sequence construction. We design three vanishing error

phase detection sequences for three point-to-point channels

U → Y , X2 → (Y, U), and V → (Y, U,X2) respectively, each

according to the construction in Section III-B. Specifically,

unu , xn2

2 , and vnv are (I(U ;Y ), l, t, tu), (I(X2;Y |U), l, t, t2),
and (I(V ;Y |U,X2), l, t, tv) point-to-point phase detection se-

quences, respectively (see Remark 7 for the definition of an

(Rch, l, t, τ) point-to-point phase detection sequence).

Given unu and vnv , we form an x1 sequence of length nunv

through the symbol-by-symbol mapping

x1,m1
= x1(umu

, vmv
) for m1 ∈ [nunv], (21)
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where

mu = m1 (mod nu),

mv = m1 (mod nv).

Note that when nu and nv are relatively prime, each phase

m1 ∈ [nunv] corresponds to a distinct phase pair (mu,mv).
Moreover, the way the u and the v sequences are ordered

ensures that any length-k chunk of the x1 sequence is formed

from a length-k chunk of the u sequence and a length-k chunk

of the v sequence. Such an xnunv

1 sequence simulates the

channel output when the two phase detection sequences unu

and vnv go through a deterministic MAC x1(u, v). Finally,

recall that any tu (and tv) that is a linear function of t results

in the same asymptotic rate of the phase detection sequence

(cf. Section III-B). Hence, by adjusting the parameters tu and

tv, it is always possible to make nu and nv relatively prime.

Detection. The way the u, x2, v sequences are designed

allows multiple access phase detection through successive

point-to-point phase detection in the channels U → Y ,

X2 → (Y, U), and V → (Y, U,X2). We choose the length

of the detection window to be

k = lt+ 3max{tu, tv, t2}+max{t, tu, tv, t2}

and successively detect the phases in the order m̂u → m̂2 →
m̂v. The phase of the x1 sequence is declared to be the

unique m̂1 ∈ [nunv] such that m̂1 (mod nu) = m̂u and m̂1

(mod nv) = m̂v .

Analysis of the probability of error. By the analysis in the

point-to-point case, the probability of error for detecting each

sequence P(Ej), j = 1, 2, 3, tends to zero as t → ∞. By

successive cancellation, the total probability of error P(E) ≤
P(E1) + P(E2) + P(E3), which tends to zero as t→∞.

Rate. Letting t → ∞ and then l → ∞, the rates of the u,

x2, and v phase detection sequences approach, respectively,

Ru = I(U ;Y ),

R2 = I(X2;Y |U),

Rv = I(V ;Y |U,X2).

Moreover, we have

R1 =
logn1

k

=
lognunv

k

=
lognu + lognv

k
= Ru +Rv

= I(U ;Y ) + I(V ;Y |U,X2),

which, together with R2, is exactly our target rate pair (20).

Complexity. Each of the three point-to-point phase detection

sequence has detection complexity O(k log k). Therefore, the

total complexity of the multiple access detection complexity

is also O(k log k).

Remark 14. The original symbol-by-symbol mapping in the

channel coding setting, which maps

x1i = x1(ui, vi),

does not provide the desired relation R1 = Ru + Rv in

the sequence setting. This is because knowing the phase mu

simultaneously reveals the phase mv . In contrast, the mapping

in (21) ensures that for each phase mu ∈ [nu], all possible

phases mv ∈ [nv] appear in the x1 sequence. This creates the

independence between the two phases Mu and Mv.

Remark 15. Rate splitting can be generalized to L-user

MACs. More precisely, one can split Xj , j ∈ [L − 1], into

two auxiliary layers Uj and Vj , and keep XL unsplit. It

is shown [50] that there exists a successive decoding order

that achieves any rate tuple in the L-user MAC region (19).

Together with the symbol-by-symbol mappings xj(uj , vj) ap-

plied as in (21), we can design a rate-optimal low-complexity

phase detection scheme for an L-user MAC.

VI. MULTIPLE ACCESS: PROBABILISTIC NOISE,

ZERO ERROR

In this section, we consider zero error phase detection

in multiple access channels. We first demonstrate a strict

separation between the channel coding setting and the phase

detection setting in Section VI-A. Then, we restrict our at-

tention to zero error phase detection in the modulo-2 addition

MAC in Sections VI-B and VI-C. We note that for channel

coding in the modulo-2 addition MAC, any rate pair in the

zero-error capacity region {(R1, R2) : R1 + R2 ≤ 1} can

be achieved by time sharing between two rate-one codes.

However, time sharing is not applicable in the phase detection

scenario. Thus, our sequence design requires different ideas.

A. Separation Between Phase Detection and Channel Coding

Let us consider again the push-to-talk MAC (see definition

in Remark 11). The zero error capacity region for channel

coding is the set of rate pairs (R1, R2) such that

R1 +R2 ≤ 1. (22)

To see this, first note that the two corner points (0, 1) and (1, 0)
can be achieved with zero error using any channel code of rate

1, and other points are achievable by time sharing. Moreover,

since the output alphabet is binary, the rate region (22) is also

an outer bound.

For zero error phase detection, a simple outer bound of Cze

is its vanishing error counterpart Cve, which is shown to be

the rate region (18) in Theorem 7. For any rate pair (R1, R2)
in the rate region (18),

R1 +R2 ≤ I(X1, X2;Y )

= H(Y )−H(Y |X1, X2)

(a)

≤ 1− pX1
(1)pX2

(1)

(b)

≤ 1.
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For equalities in both (a) and (b) to hold, we must have

pX1
(1) = 0, pX2

(1) = 1/2 or pX1
(1) = 1/2, pX2

(1) = 0,

which correspond to the two corner points (0, 1) and (1, 0)
respectively. Any other input pmf p(x1)p(x2) results in a sum

rate strictly less than 1. Therefore, other than the two corner

points, the rate pair (R1, R2) along the line R1 + R2 = 1 is

not achievable in the phase detection setting, which establishes

the separation.

B. Fundamental Limit for Modulo-2 Addition MAC

Theorem 8. The zero error capacity region Cze for multiple

access phase detection over the channel Y = X1 ⊕X2 is the

set of rate pairs (R1, R2) such that

R1 +R2 ≤ 1.

Proof: As argued above, this rate region is an outer bound

since any codebooks induced by the zero error phase detection

scheme can be used for the zero error channel coding problem.

In what follows, we prove the achievability of this region using

properties of linear codes, in a way that resembles Wyner’s

linear code for the Slapian–Wolf problem [29].

We choose the first sequence xn1

1 to be a linear sequence

generated by LFSR with a primitive characteristic polynomial

a(z) =
∑r−1

i=0 aiz
i + zr over GF (2) (cf. Section II-B). Then,

for r ≤ k ≤ n1, the induced codebook together with the all-

zero codeword C1 ∪ {0k} form a linear code. Let H(k−r)×k

be a parity check matrix of this linear code. This allows us to

define 2k−r cosets

C(sk−r) = {ak : Hak = sk−r} ⊆ {0, 1}k.
Clearly, the linear code belongs to the zero coset C1∪{0k} =
C(0k−r).

Now, suppose there exist a sequence xn2

2 such that each

length-k chunk φ2(m2) of the sequence belongs to a different

non-zero coset C(sk−r) with sk−r 6= 0k−r. Then, the phase

pair (m1,m2) can be recovered with zero-error from their

sum through successive cancellation detection as follows. We

take H(φ1(m1) ⊕ φ2(m2)) = 0k−r ⊕Hφ2(m2) , sk−r . By

design, there is only one chunk of xn2

2 that belongs to the

coset C(sk−r). This uniquely determines the phase m2. Once

φ2(m2) is recovered, we know φ1(m1) = yk⊕φ2(m2). Then

by design, m1 can be uniquely determined by its first r bits.

We now proceed to show the existence of such a sequence

xn2

2 , using Lovász local lemma (Lemma 1). We generate Xn2

2

i.i.d. uniform. Let the “bad” events be Aj = {Hφ2(m2) =
Hφ2(m

′
2) for some m2 6= m′

2}. Since φ2(m2) ⊕ φ2(m
′
2) is

i.i.d. uniform whether or not the two chunks overlap, the

probability that the sum falls in the null space of H is

P(Aj) = P{H(φ2(m2)⊕ φ2(m
′
2)) = 0k−r} = 1

2k−r
.

Now each Aj is mutually independent of all other events,

except for a set of at most 4kn2 events. This is because the

random variable φ2(m2)⊕φ2(m
′
2) is mutually independent of

all X2i’s with i ∈ [n2]\{m2−k+1,m2−k+2, . . . ,m2+k−
1}\{m′

2−k+1,m′
2−k+2, . . . ,m′

2+k−1}, which excludes

at most 4kn2 events. Applying Lemma 1, the sequence Xn2

2

exists with positive probability

P

{

∩
1

2
n2(n2−1)

j=1 Ac
j

}

> 0

if

16kn22
−(k−r) ≤ 1,

or equivalently

logn2

k
+

r

k
≤ 1− log (16k)

k
.

By the definition of the rates, R2 = logn2

k and R1 = logn1

k =
log(2r−1)

k ≈ r
k . Letting k → ∞, we conclude that a good

sequence xn2

2 exists if R1 +R2 < 1.

C. Sequence Construction for Modulo-2 Addition MAC

In this Section, we show that not only does the sequence

xn2

2 from the previous section exists, but it can also be a

linear sequence. Moreover, we provide an explicit sequence

construction that achieves any rate pair (R1, R2) ∈ Cze.

Sequence Construction. Let a1(z), a2(z) ∈ F2(z) be two

distinct primitive polynomials of degree r1 and r2 respectively.

Let xn1

1 and xn2

2 be the two linear sequences generated by

the a1(z) and a2(z) respectively (cf. Section II-B). Letting

k ≥ r1 + r2, the rates of the two sequences are

R1 =
log(2r1 − 1)

k
≈ r1

k

and

R2 =
log(2r2 − 1)

k
≈ r2

k
.

Analysis of Detectability. We need to show that every

element in Csum can be uniquely expressed as an element in C1
plus an element in C2 (see definitions of C1, C2, and Csum in (1),

(2) and (3) respectively). Let us first recall some definitions

and facts from the LFSR theory [34].

A one-sided infinite binary sequence x = {xi}i∈N is said

to be an LFSR sequence if it satisfies the recursion xr+j =
∑r−1

i=0 aixi+j , for all j ∈ N. The polynomial a(z) = zr +
∑r−1

i=0 aiz
i is a characteristic polynomial of x. The first r bits

(x1, . . . , xr) is the initial state of x.

Let S(a(z)) = {x : a(z) is a characteristic polynomial of

x}. Then S(a(z)) contains 2r sequences, each corresponding

to an r-bit initial state. One can check that S(a(z)) is an r
dimensional vector space over F2. Define S(a1(z))+S(a2(z))
= {x ⊕ y : x ∈ S(a1(z)),y ∈ S(a2(z))}. When a1(z) and

a2(z) are relatively prime, we have [34, Theorems 8.54, 8.55]

S(a1(z)) ∩ S(a2(z)) = {0}, (23)

S(a1(z)) + S(a2(z)) = S(a1(z)a2(z)). (24)

This is exactly the case for our construction, since a1(z) and

a2(z) are distinct primitive polynomials and hence relatively

prime.

Now suppose that there exists a nonzero ck ∈ C1 ∩ C2.

One can find an x ∈ S(a1(z)) such that xk = ck, since
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the first r1 bits of x can be arbitrary and the rest k − r1
bits are generated by the same polynomial a1(z). Similarly

there is a y ∈ S(a2(z)) such that yk = ck. Note that

x ⊕ y ∈ S(a1(z)a2(z)) by (24) and that a1(z)a2(z) is a

polynomial of degree r1+r2 ≤ k. The first k bits xk⊕yk = 0k

fully determines the whole sequence, hence x ⊕ y = 0. It

follows that x = y and x,y ∈ S(a1(z)) ∩ S(a2(z)), which

contradicts (23) since x and y are nonzero sequences starting

with ck 6= 0k. This proves that C1 ∩ C2 = ∅. Notice that

Ci ∪ {0k} is a linear code, and thus a vector space over F2

(cf. Theorem 2). For two vector spaces A and B, we know

dim(A) + dim(B) = dim(A ∩ B) + dim(A+ B). Therefore

every element in Csum can be uniquely expressed as ck1 ⊕ ck2 ,

where cki ∈ Ci, i = 1, 2.

Remark 16. Here the crucial property is that a1(z) and

a2(z) are relatively prime. In order to generalize to more

than two users, one can choose L distinct primitive polyno-

mials a1(z), . . . , aL(z). This ensures they are relative prime.

Thus (23) and (24) generalize as

S(a1(z)) ∩ · · · ∩ S(aL(z)) = {0},
S(a1(z)) + · · ·+ S(aL(z)) = S(a1(z) · · ·aL(z)).

Constructing the phase detection sequences from these poly-

nomials and following a similar analysis, one can show that

the zero error capacity region for phase detection in the L-user

modulo-2 addition MAC is the set of rate tuples (R1, . . . , RL)
such that

∑L
i=1 Ri ≤ 1.

VII. FUTURE RESEARCH

There are several remaining questions. In adversarial point-

to-point channel coding, it is easy to show that the GV bound

can be attained using linear codes. Is it also true that a linear

phase detection scheme can achieve that bound? Furthermore,

since sequence design is more difficult than codebook design,

can we obtain upper bounds on Cad(p) that are tighter than

the ones obtained for the adversarial channel coding setup?

In the zero error point-to-point setup, we have shown how to

achieve C(G) in the limit of long sequences. However, when

C(G) = α(G), this can be achieved in finite length. Suppose

that C(G) > α(G) and is achieved by a finite length channel

block code. Does there exists a finite length phase detection

sequence of rate exactly C(G)?
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