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The MIMO Wiretap Channel Decomposed
Anatoly Khina, Yuval Kochman, and Ashish Khisti

Abstract—The problem of sending a secret message over
the Gaussian multiple-input multiple-output (MIMO) wiret ap
channel is studied. While the capacity of this channel is known, it
is not clear how to construct optimal coding schemes that achieve
this capacity. In this work, we use linear operations along with
successive interference cancellation to attain effectiveparallel
single-antenna wiretap channels. By using independent scalar
Gaussian wiretap codebooks over the resulting parallel channels,
the capacity of the MIMO wiretap channel is achieved. The
derivation of the schemes is based upon joint triangularization of
the channel matrices. We find that the same technique can be used
to re-derive capacity expressions for the MIMO wiretap channel
in a way that is simple and closely connected to a transmission
scheme. This technique allows to extend the previously proven
strong security for scalar Gaussian channels to the MIMO case.
We further consider the problem of transmitting confidential
messages over a two-user broadcast MIMO channel. For that
problem, we find that derivation of both the capacity and a
transmission scheme is a direct corollary of the proposed analysis
for the MIMO wiretap channel.

Index Terms—Wiretap channel, MIMO channel, confidential
broadcast, successive interference cancellation, dirty-paper cod-
ing, matrix decomposition.

I. I NTRODUCTION

The wiretap channel, introduced by Wyner [1], is composed
of a sender (“Alice”) who wishes to convey data to a legitimate
user (“Bob”), such that the eavesdropper (“Eve”) cannot
recover (almost) any information of these data. The capacity of
this channel [1], [2] equals to a mutual-information difference,
and was extended to the Gaussian case in [3]. Let the channels
from Alice to Bob and Eve be given by

yB = hBx+ zB,

yE = hEx+ zE ,

where hB and hE are complex scalar gains,zB and zE
are mutually-independent circularly-symmetric Gaussianzero
mean unit variance noises and the transmission is subject to
a unit power constraint. Then, the capacity is achieved by a
Gaussian input:

CS(hB, hE) = I (x; yB)− I (x; yE) (1a)

=
[

log
(

1 + |hB|2
)

− log
(

1 + |hE |2
)]

+
, (1b)

where[a]+ , max{0, a} is the positive-part operation.
The vector extension of this result, the multiple-input

multiple-output (MIMO) Gaussian wiretap channel or the

The material in this paper was presented in part at the2014 IEEE
International Symposium of Information Theory (ISIT), Honolulu, HI, USA,
and at the2015 IEEE ISIT, Hong Kong.

multiple-input multiple-output multiple-eavesdropper (MI-
MOME) channel [4]–[6], is given by

yB = HBx+ zB , (2a)

yE = HEx+ zE , (2b)

wherex, yB andyE are complex-valued vectors with dimen-
sions of the number of antennas in the terminals of Alice,
Bob and Eve, denoted byNA, NB, andNE, respectively. The
channel matricesHB andHE have the corresponding dimen-
sions. The additive noise vectorszB and zE are mutually
independent, i.i.d., circularly-symmetric Gaussian withzero
mean unit element variance.

The secrecy capacity of this scenario for the case where the
input is subject to an averagecovariance constraint1

K , E
[

xx†
]

� K̄ , (3)

and the case where the input is subject to a total (over all
antennas) power constraintP :

trace(K) ≤ P,

was established in [6] and [4]–[6], respectively. Under a
covariance constraint, this capacity is given by the difference
of mutual informations to Bob and Eve, optimized over
all Gaussian channel inputs that satisfy the respective input
constraint:

CS(HB,HE , K̄) = max
K�K̄

IS(HB,HE ,K) , (4)

where

IS(HB,HC ,K) , I(HB ,K)− I(HE ,K), (5)

and

I(H,K) , log
∣

∣I + HKH †
∣

∣ (6)

is the Gaussian vector mutual information (MI), and|A|
denotes the determinant ofA. Later, Bustinet al. [7] provided
an explicit solution to the maximization problem under the
covariance constraint (4). A closed-form solution for the
wiretap capacity under a total power constraint is yet to be
found, although a numerical algorithm that approaches the
global optimum was recently proposed [8]. We note that the
capacity under a total power constraint can be written as
the union of achievable regions under a covariance constraint
(see [9, Lemma 1]):

CS(HB,HE , P ) = max
K̄ : trace{K̄}=P

CS(HB,HE , K̄) . (7)

Hence, we shall concentrate on the covariance constrained
setting in this paper.

1A � 0 denotes thatA is a positive semidefinite matrix.A � B means
that (A− B) � 0.
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The confidential broadcast channel offers a natural extension
to the wiretap channel setting. In the confidential broadcast
setting, Alice wishes to convey different data to two users
(“Bob” and “Charlie”), such that (almost) no information can
be recovered by one user about the data intended for the other
user. That is, for the data that are intended for Bob, Charlieacts
as the eavesdropper (“Eve” in the wiretap setting), whereasfor
the data intended for Charlie, Bob takes the role of Eve.

The capacity region of the Gaussian MIMO confidential
broadcast channel, a scenario considered first in [10], was
determined by Liuet al. [11] to be rectangular under the
covariance constraint (3). Namely, it is given by all rate pairs
(RB, RC) satisfying

RB ≤ CS

(

HB,HC , K̄
)

, (8a)

RC ≤ CS

(

HC ,HB, K̄
)

, (8b)

where HC is the channel matrix to Charlie replacingHE

in (2b), andCS(HB,HC , K̄) is the capacity of the MIMO
wiretap channel defined in (4). The converse is immediate,
as both users achieve their maximal possible secrecy rates
simultaneously; it is the direct part that is quite striking.

Although capacity is well understood, it is less clear how to
construct codes for wiretap and confidential broadcast chan-
nels. For the scalar Gaussian case, various approaches have
been suggested, see, e.g., [12]–[18] and references therein.
However, assuming that we have such a code for the scalar
case, it is not clear how to construct a capacity-achieving
scheme for the MIMO setting.

In this work we present an approach that reduces these
MIMO secrecy problems to scalar Gaussian ones by means
of matrix decompositions, specifically joint unitary triangu-
larizations [19]. The decompositions yield a layered coding
scheme, where the secrecy capacity is approached by means
of a scalar wiretap code in each layer and successive inter-
ference cancellation (SIC) at the receiver. The contribution
of such an approach to the MIMO wiretap channel can be
compared to that of singular-value decomposition (SVD) based
schemes [20], or Vertical Bell-Laboratories Space–Time (V-
BLAST) and decision feedback equalization (GDFE) schemes
[21]–[24], to MIMO communication without secrecy con-
straints.

Beyond the architectural merit, our approach yields two
more fruits. First, it enables us to revisit the capacity results
for the MIMO wiretap and confidential MIMO broadcast
channels. In that respect, we establish the optimal covariance
matrix for the MIMO wiretap channel as well as an expression
for the secrecy capacity in terms of the generalized singular
values of suitably defined matrices. This re-derives a result by
Bustin et al. [7], which was based on elaborate information-
theoretic considerations, using a direct linear-algebraic ap-
proach. Turning to the confidential broadcast channel, we are
able to re-derive (8) almost as a corollary of the analysis
applied to the MIMO wiretap channel, also explaining the role
of dirty-paper coding in this setup.

Second, reducing the MIMO problem to a scalar one allows
us to leverage recent advances in the secrecy analysis of
the scalar Gaussian wiretap channel: whereas we concentrate

in this paper on constructingweak secrecyschemes, namely
schemes for which

I (xn;yn
B) ≤ nǫ, (9)

we show that in fact a special matrix triangularization allows
to achievestrong secrecyguarantees for the MIMO wiretap
channel, i.e.,

I (xn;yn
B) ≤ ǫ, (10)

where both (9) and (10) hold for anyǫ > 0 and large enough
blocklengthn.

An outline of this paper is as follows. We start by reviewing
the relevant unitary matrix decompositions in Section II.
These decompositions are used to re-derive the MIMO wiretap
capacity expressions in Section III. We further recall how these
decompositions allow to construct capacity-achieving schemes
for the MIMO channel without secrecy in Section IV. We
extend this framework to work for the MIMO wiretap setting
in Section V. Layered dirty-paper coding (DPC) [25] variants
of this scheme are discussed in Section VI and are also shown
to be capacity achieving. Finally, these schemes are utilized,
along with the results of Section III, to construct a simple proof
of the capacity region of the confidential MIMO broadcast
setting as well as providing a layered-DPC scheme that attains
it in Section VII.

II. U NITARY MATRIX TRIANGULARIZATION

In this section we briefly review some important matrix de-
compositions which will be used in the sequel. In Section II-A
we recall the generalized triangular decomposition (GTD),
and some of its important special cases which include the
SVD, QR decomposition, and geometric mean decomposition
(GMD).2 Joint unitary triangularizations of two matrices are
discussed in Section II-B.

Throughout this paper, we shall only need to decompose
full-rank matrices with equal or more rows than columns.

A. Single Matrix Triangularization

The following definitions are used in this section.

Definition 1 (Multiplicative majorization; see [27]). Let x

and y be two N -dimensional vectors of positive elements.
Denote byx̃ and ỹ the vectors composed of the entries ofx

andy, respectively, ordered non-increasingly. We say thatx

majorizesy (x � y) if they have equal products:

N
∏

j=1

xj =
N
∏

j=1

yj ,

and their (ordered) elements satisfy, for any1 ≤ ℓ < N ,

ℓ
∏

j=1

x̃j ≥
ℓ
∏

j=1

ỹj .

Definition 2 (Singular values; see [28]). Let A be a full-rank
matrix of dimensionsM × N , whereM ≥ N . Then, the

2See [26] for a geometrical interpretation of these decompositions.
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singular values (SVs) ofA are the positive solutionsσ of the
equation

∣

∣A†A− σ2I
∣

∣ = 0.

Let the SV vectorσ(A) be composed of all SVs (including
their algebraic multiplicity), ordered non-increasingly.

The following is a straightforward extension of the defini-
tion of triangular matrices to non-square ones.

Definition 3 (Generalized Upper-Triangular Matrix). An
M ×N matrix is said to be generalized upper triangular if

Ti,j = 0 , ∀i > j ; i = 1, . . . ,M ; j = 1, . . . , N.

We use these definitions to characterize the set of all
possible diagonals achievable via unitary triangularization, as
follows.

Theorem 1 (Generalized Triangular Decomposition). Let A
be a full-rank matrix of dimensionsM ×N , whereM ≥ N ,
andt be anN -dimensional vector of positive elements. A GTD
of the matrixA is given by

A = UTV †, (11)

whereU andV are unitary matrices of dimensionsM×M and
N ×N , respectively, andT is a generalized upper-triangular
matrix with a prescribed set of diagonal valuest, i.e.,

Tii = ti , i = 1, . . . , N ,

Tij = 0 , ∀i > j .

Such a decomposition exists if and only if the vectort is
majorized byσ(A):

σ(A) � t .

In other words, the singular values are an extremal case for
the diagonal of all possible unitary triangularizations.

The necessity of the majorization condition was proven by
Weyl [29]. Horn further showed that for anyr that is majorized
by σ, there exists an upper triangular matrix with diagonalr

and SV vectorσ [30]. The sufficiency of the majorization
condition as it appears in Theorem 1 was proved in [31]–[33],
where also explicit constructions of the decomposition were
introduced.

We now recall three important special cases of the GTD.
1) SVD (See, e.g., [28]):Here the resulting matrixT in

(11) is adiagonalmatrix, and its diagonal elements are equal
to the singular values of the decomposed matrixA.

2) QR Decomposition (See, e.g., [28]):In this decompo-
sition, the matrixV in (11) equals to the identity matrix and
hence does not depend on the matrixA. This decomposition
can be constructed by performing Gram–Schmidt orthonor-
malization on the (ordered) columns of the matrixA.

3) GMD (See [31], [34], [35]): The diagonal elements of
T in this decomposition are all equal to the geometric mean
of its singular valuesσ(A), which is real and positive. Note
that this decomposition always exists ifA is full rank (since
the vector of the SVs ofA necessarily majorizes the vector
of the diagonal elements ofT), but is not unique.

B. Joint Matrix Triangularization

The existence condition for a joint unitary triangularization
of two matrices is similar to that of the GTD in Theorem 1,
where the singular values are replaced by the generalized
singular values (GSVs), and the diagonal ofT is replaced by
the ratio of the diagonals of the resulting generalized triangular
matrices. These quantities are defined below.

Definition 4 (Generalized singular values [28], [36]). For any
(ordered) matrix pair(A1,A2), the GSVs are the non-negative
solutionsµ of the equation

∣

∣

∣
A

†
1A1 − µ2A

†
2A2

∣

∣

∣
= 0.

Let the GSV vectorµ(A1,A2) be composed of all GSVs (in-
cluding their algebraic multiplicity), ordered non-increasingly.

A characterization of the possible joint unitary triangular-
izations of two matrices with prescribed diagonal ratios is
provided in the following theorem.

Theorem 2 (Joint unitary triangularization [19]). Let A1 and
A2 be two full-rank matrices of dimensionsM1 × N and
M2 × N , respectively, whereM1,M2 ≥ N , and t be an
N -dimensional vector of positive elements. A joint unitary
triangularization of the matricesA1 andA2 is given by

A1 = U1T1V†, (12a)

A2 = U2T2V†, (12b)

where U1, U2 and V are unitary matrices of dimensions
M1 ×M1, M2×M2 andN×N , respectively, andT1 andT2

are generalized upper-triangular matrices (recall Definition 3)
with a prescribed set of diagonal ratiost, i.e.,

T1;ii

T2;ii
= ti , i = 1, . . . , N ,

Tk;i,j = 0 , k = 1, 2 , ∀i > j .

Such a joint decomposition exists if and only if the vectort is
majorized by the GSV vectorµ(A1,A2):

µ(A1,A2) � t . (13)

In other words, the GSVs are an extremal case for the
diagonal ratios of all possible joint unitary triangularizations.
The joint unitary decomposition that corresponds to these
extremal values is the GSVD.

Following the exposition in [37], [38], we next review the
two forms of the GSVD — diagonal and triangular. The
diagonal representation of the GSVD is better known. For a
matrix pair (A1,A2) it is given by [28], [36]:

A1 = U1D1X
†, (14a)

A2 = U2D2X
†, (14b)

whereU1 andU2 are unitary,X is invertible, andD1 andD2

are generalized diagonal matrices (viz.,Dk;i,j = 0 for i 6= j,
whereDk;i,j is the(i, j) entry ofDk) with positive diagonal
values satisfying:

D
†
1D1 +D

†
2D2 = I , (15)
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the ratios of which are equal to the GSVs:

D1;ii

D2;ii
= µi (A1,A2) , i = 1, . . . , N,

and are assumed, w.l.o.g., to be ordered non-increasingly.
To obtain the triangular form of the GSVD, apply a QL
decomposition3 to X, to attain:

A1 = U1D1TV †

, U1T1V†, (16a)

A2 = U2D2TV †

, U2T2V†, (16b)

where T is upper triangular andV is unitary. By denoting
T1 , D1T and T2 , D2T, we attain the triangular form of
the GSVD, which is, in turn, a special case of (12).

III. T HE MIMO W IRETAP CAPACITY REVISITED

In this section we re-derive the explicit capacity expression
of Bustin et al. [7] for the MIMO wiretap channel under
a covariance constraint (3) in terms of the GSVD. While
we do not establish a new capacity result, our approach of
simultaneous unitary triangularization will lead to a simplified
representation of the optimal covariance matrix as well as
layered coding schemes, as will be discussed in the subsequent
sections.

The following augmented matrix structure, which serves
as the MIMO channel analogue of the minimum mean
square error (MMSE) variant of decision feedback equalization
for linear time-invariant systems [39], will be instrumental
throughout this work.

Definition 5 (Effective MMSE channel matrix). Let H be a
channel matrix of dimensionsNB × NA and let K be the
NA × NA input covariance matrix used over this channel.
Then, the correspondingeffective MMSE channel matrixis
the (NA +NB)×NA matrix

G (H,K) ,

(

HK 1/2

I

)

, (17)

where I is the identity matrix of dimensionNA and K1/2 is
any matrixB satisfyingBB† = K .4

This definition naturally lends itself to an MMSE (capacity-
achieving) variant of the V-BLAST/GDFE scheme [24], as will
be described in Section IV. See also [40], [19], [26] for further
explanations.

Construct the effective MMSE matricesGB = G(HB,K)
andGE = G(HE ,K), whereK is subject to the constraining
matrix K̄ (3): K � K̄ .

Now, apply some joint unitary triangularization (11):

GB = UBTBV†
A , (18a)

GE = UETEV†
A , (18b)

3This decomposition is similar to the QR decomposition, onlyinstead of
an upper-triangular matrix, the resulting matrix is lower triangular. This can
be achieved, e.g., by applying Gram–Schmidt triangularization to the columns
of a matrix, from last to first.

4Such aB can always be constructed, e.g., using the Cholesky decompo-
sition or unitary diagonalization.

where UB, UE and VA are unitary, andTB and TE are
generalized upper triangular (recall Definition 3).

Let {bi} and {ei} denote the diagonal values ofTB and
TE , respectively, where, as explained in Section II-B, these
values can be designed by varyingVA. Using the fact that the
absolute value of a determinant of a unitary matrix is equal
to 1, and the fact that the determinant of a triangular matrixis
equal to the product of its diagonal values, the Gaussian MI
(6) can be expressed as:

I(HB,K) = log
∣

∣

∣
G

†
BGB

∣

∣

∣
(19a)

=
∑

log b2i , (19b)

and similarly for Eve:

I(HE ,K) = log
∣

∣

∣
G

†
EGE

∣

∣

∣

=
∑

log e2i .

Hence, their difference (5) is given by

IS(HB,HE ,K) =

NA
∑

i=1

log
b2i
e2i

. (20)

Note that the expression in (20) holds for any unitary matrix
VA in (18). Indeed, as we shall see later, this flexibility in
choosingVA can lead to different design tradeoffs in our
layered coding schemes. Nevertheless, to derive an explicit
capacity expression we specializeVA to be the right unitary
matrix of the GSVD (16), until the end of the section. The
corresponding GSVs are hence equal to

µi (HB,HE ,K) , µi (GB,GE)

=
bi
ei

,

where we use the notationµi (HB ,HE ,K) to emphasize the
dependence inK . Without loss of generality, we assume that
the GSV vector is non-increasing.

In terms of the GSVs, we can rewrite (4) as:

CS(HB,HE , K̄) = max
K�K̄

NA
∑

i=1

log µ2
i (HB ,HE ,K) .

Indeed, in these terms the MIMO wiretap capacity can be
expressed as follows.

Theorem 3 (MIMO wiretap capacity under a covariance con-
straint [7]). The secrecy capacity under a covariance matrix
constraintK̄ is given by

CS(HB,HE , K̄) =

NA
∑

i=1

[

logµ2
i

(

HB,HE , K̄
)]

+
(21a)

=

LB
∑

i=1

logµ2
i

(

HB,HE , K̄
)

. (21b)

This explicit capacity expression along with the optimal
covariance matrixK � K̄ were established by Bustinet al. [7]
using the channel enhancement technique along with vector
extensions of the mutual information–minimum mean-square
error (I–MMSE) relation. We present an alternative proof of
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this result using a direct approach: once the optimization
problem (4) is stated, it can be solved by linear algebra and
elementary calculus only. The key to our proof is the following
lemma.

Lemma 1. Let K̄ and K be two matrices satisfying
0 � K � K̄ . Then for alli = 1, . . . , NA,

∣

∣logµi(HB,HE , K̄)
∣

∣ ≥ |logµi(HB,HE ,K)| .

That is, as we “decrease” the input covariance, the GSVs
move towardsµi = 1. The proof, which appears in Ap-
pendix A, uses standard matrix calculus to show that the
differential of the i-th GSV, dµi, with respect to a change
in the covariance matrixdK , is given by

dµi =
(

µ2
i − 1

)

· γi(dK) ,

whereγi(dK) ≥ 0 for dK � 0. Or to put it differently,dµi > 0
for µi > 1, anddµi < 0 for µi < 1.

By Lemma 1, clearly Theorem 3 gives an upper bound on
the capacity. To see that it is achievable, consider the matrix:

K = K̄1/2VAIBV†
AK̄1/2†

, (22)

whereVA is the right unitary matrix of the triangular form
of the GSVD (16),IB is a diagonal matrix whose firstLB

diagonal values (corresponding to GSVs that are greater than
1) are equal to 1, and the remainingLE — to 0. Trivially,
K � K̄ . The choice ofK effectively truncates the GSVs of̄K :

logµ2
i (HB,HC ,K) =

[

logµ2
i

(

HB ,HC , K̄
)]

+
.

This is formally proved in Appendix B.

Remark1. The optimal covariance matrixK (22) is denoted
by K∗

x in [7], where it is given in terms of the diagonal form
of the GSVD (14):5

K = K̄1/2
Y

[

(

Y
†
BYB

)−1

0LB×LE

0LE×LB
0LE×LE

]

Y†K̄†/2
, (24)

whereY = X−† andX is the right invertible matrix of (14),
YB is the sub-matrix composed of the firstLB columns ofY,
and 0m×n denotes the all-zero matrix of dimensionsm× n.
Comparing (22) and (24), it is evident that using the triangular
form of the GSVD indeed simplifies the representation over
using the diagonal one.

Remark2. One may wonder why, of all possible choices of
VA, the capacity is given in terms of the GSVD. An intuitive
reason is as follows. By the majorization condition (13), the
GSV vector is extremal among all possible diagonals. In
particular, for anyVA,

NA
∑

i=1

[

logµ2
i

]

+
≥

NA
∑

i=1

[

log
b2i
e2i

]

+

.

Thus, the sum (21a) is larger than the sum over diagonal ratios
induced by other triangular decompositions.

5In [7] a specific choice ofK1/2 was used: the matrixB that satisfies
BB = K .

Remark 3. Using (7), the capacity of the MIMO wiretap
channel under a power constraintP can be written as

CS(HB,HC , P ) = max
K :trace{K}=P

NA
∑

i=1

[

logµ2
i (HB,HC ,K)

]

+
.

Remark4. For the optimalK (22), all the GSVs are greater
or equal to 1. To the contrary, assume that some are strictly
smaller than 1; then, we can use a matrixK with the
appropriate directions “nullified”. Such a “truncated” matrix
will satisfy the covariance constraint while improving the
achievable secrecy rate of the scheme, in contradiction to
the assumption.A fortiori, under a power constraint, the
power saved by such a truncation can be allocated to “useful”
directions.

IV. SCALAR TRANSMISSION OVERMIMO CHANNELS

In this section we briefly review the connection between ma-
trix decompositions and scalar transmission schemes, without
secrecy requirements. For a more thorough account, the reader
is referred to [19], [26], [40].

In this work we shall assume all the scalar codes to be
Gaussian, as defined next.

Definition 6 (Gaussian codebook). A Gaussian codebook
of length n, rate R and powerP − ǫ, where ǫ > 0,
consists of

⌈

2nR
⌉

codewords of lengthn, denoted by
xn (1) , xn (2) , . . . , xn

(⌈

2nR
⌉)

. The entries of all the code-
words, {xt (i) |t = 1, . . . , n ; i = 1, . . . ,

⌈

2nR
⌉

}, are i.i.d.
with respect to a Gaussian distribution with zero mean and
varianceP − ǫ.

Remark5. In the sequel, with a slight abuse of notation, we
shall refer to such codes as Gaussian codes of powerP (where
ǫ will serve as an implicit design parameter).

Consider the channel (2a). Construct the effective MMSE
matrix GB = G(HB,K) as in Definition 5, and choose some
unitary matrixVA.

Apply the GTD (11) toGB with VA as the right matrix:

GB = UBTBV†
A. (25)

Now let x̃ be a vector of standard Gaussian variables, and set

x = K1/2VAx̃ . (26)

Denote byŨB theNB×NA upper-left sub-matrix ofUB, and
define

T̃B = Ũ
†

BHBK1/2VA. (27)

The following lemma, whose proof can be found in [24],
[40, Lemma III.3], [41, Appendix I], provides the connection
between the elements ofTB and T̃B.

Lemma 2. Denote by[TB] the NA × NA upper-triangular
sub-matrix composed of the firstNA rows ofTB (25).6 Then,
T̃B (27) is equal to

T̃B = [TB]− [TB]
−†.

6Since TB is full rank, [TB] is full rank too, and hence also invertible.
Further, its diagonal elements are greater or equal to 1 due to the blockI in
the construction ofGB .
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In particular,

T̃B;i,j =

{

TB;i,j i < j

TB;i,j − 1/TB;i,j i = j
(28)

whereTB;i,j and T̃B;i,j are the(i, j) entries of the matrices
TB and T̃B, respectively.

Let

ỹB = Ũ
†

ByB (29a)

= Ũ
†

BHBK1/2VAx̃+ Ũ
†

BzB (29b)

= T̃Bx̃+ z̃B . (29c)

SinceŨB is not unitary, the statistics of̃zB , Ũ
†

BzB differ
from those ofzB, and its covariance matrix is given by
K z̃B

, ŨBŨ
†

B. Now, for i = 1, . . . , NA, define [recall (28)]

y′B;i = ỹB;i −
NA
∑

ℓ=i+1

TB;i,ℓx̃ℓ (30a)

= T̃B;i,ix̃i +

i−1
∑

ℓ=1

T̃B;i,ℓx̃ℓ + z̃B;i (30b)

, T̃B;i,ix̃i + zeff
B;i , (30c)

z̃B;i and zeff
B;i are thei-th entries of the vectors̃zB andzeff

B ,
respectively, andzeff

B;i ,
∑i−1

ℓ=1 T̃B;i,ℓx̃ℓ + z̃B;i is the resulting
total effective noise vector.

In this scalar channel from̃xi to y′B;i, resulting after the
subtraction of the previously recovered symbols{x̃ℓ|ℓ > i},
we view the remaining symbols{x̃ℓ|ℓ < i} as “interference”,
z̃B;i — as “noise”, and their sumzeff

B;i — as “effective noise”.
The resulting signal-to-interference-and-noise ratio (SINR) is
given by:

SINRB;i ,
(T̃B;i,i)

2

Kzeff
B
;i,i

,
(T̃B;i,i)

2

Kz̃B ;i,i +
i−1
∑

ℓ=1

(T̃B;i,ℓ)2
,

whereKzeff
B
;i,j andKz̃B ;i,j denote the(i, j) entries ofK z̃B

andKzeff
B

, respectively. The following key result achieves the
mutual information [24], [40, Lemma III.3], [41, Appendix I]
and is based on Lemma 2.7

I
(

x̃i;yB

∣

∣

∣
x̃NA

i+1

)

= I
(

x̃i; y
′
B;i

)

(31a)

= log(1 + SINRB;i) (31b)

= log
(

b2i
)

, (31c)

where {bi} are the diagonal values ofTB (25) [mind the
difference from the diagonal values ofT̃B (28)], which satisfy

b2i = 1 + SINRB;i (32)

7Note that, even though̃zB has dependent components, the entries of the
effective noisezeff

B , are independent.
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Fig. 1: Layered-SIC scheme.̃̂xℓ denotes the decoded symbol
x̂ℓ at the receiver.

and
NA
∑

i=1

log
(

b2i
)

=

NA
∑

i=1

log (1 + SINRB;i)

= I(HB,K),

which equals the channel capacity for the optimalK .
The analysis above immediately gives rise to the following

scheme, depicted also in Fig. 1, which is, in turn, a variant of
the renowned V-BLAST/GDFE scheme [21]–[24].

Scheme(Layered-SIC).
Offline:
• Select an admissibleNA × NA input covariance matrix

K that satisfies the input constraint.8

• Construct the effective MMSE matrix (17):GB =
G(HB,K).

• Select a unitary triangularization (11) and apply it to the
matrixGB, as in (25), to obtain the unitary matricesUB

andVA, and the generalized upper-triangular matrixTB.
• Denote theNA diagonal elements ofTB by {bi}.
• Denote byŨB theNB×NA upper-left sub-matrix ofUB,

and construct the corresponding matrixT̃B according to
(27): T̃B = Ũ

†

BHBK1/2VA.

8More generally, any numberN ≥ rank{K} of scalar codebooks can be
used; see [40], [19] for details.
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Fig. 2: Layered-SIC scheme for the MIMO wiretap channel. We assume hereN = NA = NB = NE, for ease of presentation.

• ConstructNA scalarGaussian codesof lengthn and unit
power that are good for SNRs{b2i−1}, i.e., codes of rates
close to

{

Ri

∣

∣Ri = log
(

b2i
)

, i ∈ {1, . . . , NA}
}

. (33)

Alice: At each time instantt = 1, . . . , n:

• Forms the vector̃x of lengthNA, by taking one sample
from each codebook.

• Attains the vectorx by multiplying x̃ by VA andK1/2:

x = K1/2VAx̃. (34)

• Transmitsx.

Bob:

• At each time instantt = 1, . . . , n, receivesyB and forms
ỹB according to (29):

ỹB = Ũ
†

ByB

= T̃Bx̃+ z̃B .

• Decodes then-length codewords using SIC, from last
(i = NA) to first (i = 1): Assuming correct decoding of
all codebooksi+ 1, . . . , NA, Bob formsy′B;i (30):

y′B;i = T̃B;i,ix̃i + zeff
i ,

and recovers̃xi.

By the analysis above, the scheme is optimal in the sense
that the sum of codebook rates can approach the channel
capacity.

Remark6. The SIC procedure and the performance analysis
of the scheme implicitly assume that the yet-undecoded code-
books can be considered as AWGN, and consequently that
each codebook should be capacity achieving for an AWGN
channel. This is indeed true for Gaussian codes (recall Defi-
nition 6) but not for any single-user scalar capacity-achieving
codes as is discussed in Section VIII.

V. M ULTI -STREAM SCHEMES FOR THE

MIMO W IRETAP CHANNEL

Equipped with the results presented in the previous sec-
tions, we describe how to construct multi-stream schemes that
achieve the capacity of the MIMO wiretap channel.

We first describe a scheme in which the channel to Eve
is effectively diagonalized, in Section V-A. This particular
choice facilitates the proof of both weak and strong secrecy
guarantees over this channel. We then extend this result in
Section V-B, by proving that any joint triangularization (12)
can be used to construct a multi-stream capacity-achieving
scheme.

A. Orthogonalizing Eve’s Channel

We now present a simple adaptation of the layered-SIC
scheme of Section IV to the MIMO wiretap setting, depicted
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also in Fig. 2, that achieves the secrecy capacity of the channel
using scalar wiretap codes.

To this end, we note that the layered-SIC scheme is
capacity-achieving (without secrecy constraints) for anychoice
of VA in (25). In particular, we can choose this matrix to be
the unitary matrix that diagonalizes Eve’s effective channel
matrix, namely, the right matrix of the SVD of Eve, denoted
by V̆A:

HEK1/2 = ŬED̆EV̆
†

A . (35)

Applying thisV̆A to HE (followed byK1/2) provides effective
parallel scalar independent channels to Eve, of SNRs{d2i },
where{di} are the diagonal values ofDE , which constitute
the singular values ofHEK1/2.

The following simple lemma summarizes the connection
between the SVDs of the effective channel matrix (35) and
the effective MMSE channel matrixGE(HE ,K).

Lemma 3 (Connection to effective MMSE matrix). The SVD
of the effective MMSE matrixGE = G(HE ,K) (recall
Definition 5) is given by

GE = UEDEVA, (36)

whereDE is a generalized diagonal matrix (viz.,DE;i,j = 0
for i 6= j); denote its diagonal elements by{ei}.

The SVD ofGE (36) is connected to the SVD ofHEK1/2

(35) as follows. Definedi = 0 for i > NA, and note that
ei = 1 for i > NA. Define furtherΛE as the generalized
diagonal matrix of dimensionsNE × NA whose diagonal is
equal to

(

d1

e1
, . . . , dr

er

)

, wherer = min{NA, NE}. Then,

1) V̆A = VA, i.e.,GE andHEK1/2 are diagonalized by the
same right matrix.

2) 1 + d2i = e2i , i = 1, . . . , NA.
3) ŨE = ŬEΛE , whereŨE is theNE ×NA upper-left sub-

matrix of UE .

The respective decomposition ofGB is as in (25), where the
diagonal values of the resulting generalized triangular matrix
TB are{bi}.

Since Eve observes parallel independent channels, using
scalar wiretap codes over these channels, that are matched to
the SNRs to Eve,{d2i }, guarantees the secrecy of the scheme.
Moreover, by using wiretap codes that work with respect to
the SNRs to Bob of (32), the secrecy capacity is achieved.
This is formally stated in the following theorem.

Theorem 4. The layered-SIC scheme of Section IV
achieves the secrecy capacity under a covariance constraint
CS (HB,HE K̄) by using:

• The optimal input covariance matrixK of (22).
• ChoosingVA of the SVD ofHEK1/2 (35).
• Scalar Gaussian capacity-achieving wiretap codes that

are designed for the Bob–Eve SNR-pairs
{(

b2i − 1, d2i
)}

.

Proof: The proof easily follows by noting that the result-
ing channel to Eve is diagonal, i.e., parallel scalar AWGN
channels. Hence, by using independent (wiretap) Gaussian
codes, secrecy is guaranteed over the parallel channels. By

combining the result of Section IV for SIC for MIMO channels
without secrecy, correct decoding at Bob’s end is guaranteed.

Codebook construction:NA Gaussian codebooks{Ck|k =
1, . . . , NA} of length n are generated independently, as

in Definition 6. CodebookCk contains
⌈

2nRk

⌉

×
⌈

2nR̃k

⌉

codewords. Each codeword withinCk is assigned a unique
index pair (mk, fk), where mk ∈

{

1, . . . ,
⌈

2nRk

⌉}

and

fk ∈
{

1, . . . ,
⌈

2nR̃k

⌉}

. With a slight abuse of notation, we
shall refer to such codes as wiretap Gaussian codes of rate-
pairs

{(

Rk, R̃k

)}

.

Let ǫ > 0. Then the rates are chosen as9

Rk = log
b2k

1 + d2k
− 2ǫ = log

b2k
e2k

− 2ǫ, (37a)

R̃k = log(1 + d2k) + ǫ = log e2k + ǫ. (37b)

Encoding (Alice): ConstructsNA codewords{x̃k ∈ Ck|k =
1, . . . , NA} as follows.x̃k is chosen fromCk according to the
sub-messagemk intended to Bob and a fictitious sub-message
fk which is chosen uniformly at random. The transmitted
signal at every time instant,x, is then constructed as in the
layered-SIC scheme of Section IV.

Decoding (Bob): Bob performs SIC decoding as in the
layered-SIC scheme of Section IV to recover{(mk, fk)}, and
discards{fk}. Since Rk + R̃k < log b2k for every k, the
decoding error probability of Bob can be made arbitrarily
small by taking a large enoughn.

Secrecy analysis (Eve):The resulting channel to Eve (35)
(depicted also in Fig. 2b) is diagonal:

ỹE = D̆Ex̃+ z̃E ,

wherez̃E is AWGN with zero mean and identity covariance
matrix. That is, the effective channel to Eve comprises inde-
pendent AWGN channels. Over the resulting scalar AWGN
channels, wiretap Gaussian codes are known to attain strong
secrecy [42], wherẽRk is chosen to be (slightly) above the
channel resolvability, i.e., R̃k = log(1 + d2k) + ǫ for ǫ > 0.
This is a stronger requirement, as opposed to the choice
R̃k = log(1 + d2k) − ǫ for ǫ > 0, which facilitates an easier
proof of weak secrecy guarantees for this channel (see, e.g.,
[43, Ch. 22]).

Total rate: By using (20), (37a), the total rate is equal to

R =

NA
∑

k=1

Rk

=

NA
∑

k=1

(

log
b2k
e2k

− 2ǫ

)

= IS (HB,HE ,K)− 2NAǫ.

By choosing the optimalK , and taking a large enoughn, this
rate can be made arbitrarily close to the secrecy capacityCS

while guaranteeing both weak and strong secrecy.

Remark7. In the proofs to follow, with a slight abuse of
notation, we shall state the sizes of the codebook without

9To establish weak secrecy,̃Rk can be relaxed tõRk = log e2k − ǫ. The
choice in (37b) allows to establish strong secrecy, as is further explained in
the sequel.
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explicitly using the ceiling operation⌈·⌉, as its effect becomes
negligible for large values ofn.

Remark8. In the celebrated SVD-based scheme for MIMO
channels of Telatar [20], the SVD is applied to thephysical
channel matrixH = UDV†

A. The transmitted signal is then
formed according to (26), where the non-unitary matrixK1/2

(over the effective diagonal channelD) is diagonal, with
entries set by the water-filling solution. Thus, the SVD plays
two roles: it serves both for reducing the coding task to thatof
coding over scalar channels and for constructing the optimal
input covariance matrix.

In contrast, in (35) the SVD is applied to theeffective
channel matrixHEK1/2, which already includes the non-
unitary “coloring” partK1/2. Thus, it is only used for reducing
the coding task. This form is more general, in the sense that
it allows for a choice ofK that is not related to a diagonal
decomposition of the channel, e.g., subject to individual power
constraints, or where the target expression is different, e.g., an
MI difference as in this work. Finally, note that the rate of
(20) can be achieved using the proposed scheme, even ifK is
suboptimal (when exact calculation of the optimalK is hard).

B. General Multi-Stream Scheme

We next show that, in fact, secrecy capacity can be achieved
using the layered-SIC scheme and scalar wiretap codes for any
choiceVA, and by this generalizing the result of Section V-A
to transmission that is not necessarily orthogonal over Eve’s
channel. Specifically, we show that the secrecy capacity can
be achieved using any joint triangularization of the effective
MMSE channel matrices (18) (any unitary matrix VA at
the encoder). In the general case, Eve’s resulting matrix is
triangular and hence denoted byTE , as in (18b). The diagonal
values ofTE are denoted by{ei}. The resulting family of
schemes includes two important special cases, discussed in
Section V-C, in addition to the one introduced in Section V-A.

Theorem 5. The layered-SIC scheme of Section IV
achieves the secrecy capacity under a covariance constraint
CS (HB,HE K) by using:

• The optimal input covariance matrixK of (22).
• Any joint unitary triangularization(18).
• Scalar Gaussian capacity-achieving wiretap codes

that are designed for the Bob–Eve SNR-pairs
{(

b2i − 1, e2i − 1
)}

, where{bi} and {ei} are defined as
in Section III.

We use the following result, proved in Appendix C, for
the proof of this theorem, which extends beyond the Gaussian
wiretap setting, for both the discrete and the continuous cases.

Proposition 1. Let p(yB|x) and p(yE |x) be the transition
distributions for the legitimate user (“Bob”) and the eaves-
dropper (“Eve”), respectively, of a memoryless wiretap chan-
nel, wherex is the transmitted signal, andyB andyE are the
channel outputs to Bob and Eve, respectively. Let a superposi-
tion coding scheme be defined by codes{x̃i : i = 1, . . . , NA}
and a scalar functionϕ such that

x = ϕ (x̃1, . . . , x̃NA
) . (38)

Then, forǫ > 0, however small, and for any joint distribution
p(x̃1, . . . , x̃NA

), there exists a scheme which achieves weak
secrecy, with thek-th codebook conveying a rate:

Rk = I(x̃k; yB|x̃NA

k+1)− I(x̃k; yE |x̃NA

k+1)− ǫ. (39)

Remark9. The secrecy-proof of this result uses a “genie-
aided” argument: in the mutual information of thek-th code-
word recovered by Eve, we provide all previous codewords
{x̃ℓ| ℓ = k + 1, . . . , NA} as “genie”, even though Eve
cannot recover these messages. Bob, on the other hand, uses
successive decoding to recover the messages. Thus, the allo-
cation of rates{Rk} in (39) guarantees that all the messages
(m1, ..mNA

) remain jointly secured from the eavesdropper’s
channel output sequence.

Proof of Theorem 5: We specialize the general su-
perposition coding framework of Proposition 1 to the linear
encoder structure and independent Gaussian distributionsof
(x̃1, . . . , x̃NA

). Use

x = ϕ (x̃1, . . . , x̃NA
)

= K1/2VAx̃ ,

in (38), where the vector̃x is composed of one symbol from
each codebook:̃x = (x̃1, . . . , x̃k)

T .10

Each codebook is a scalar Gaussian wiretap codebook of
average unit power. The achievable secrecy rate of codebook
k = 1, . . . , NA is given by (39):

Rk = I
(

x̃k; yB

∣

∣

∣
x̃
NA

k+1

)

− I
(

x̃k; yE

∣

∣

∣
x̃
NA

k+1

)

− ǫ (40a)

= I
(

x̃k; y
′
B;k

)

− I
(

x̃k; y
′
E;k

)

− ǫ (40b)

= log
(

b2k
)

− log
(

e2k
)

− ǫ (40c)

= log
b2k
e2k

− ǫ , (40d)

where (40c) and (40b) are due to (31a) and (31c), respectively.
Thus, using the result of (20), we can achieve

R =
N
∑

k=1

Rk

=

N
∑

k=1

[

log
b2k
e2k

]

+

− ǫ

= IS (HB,HE ,K) ,

and for the optimal covariance matrixK the scheme ap-
proaches the secrecy capacity.

C. Important Special Cases

We now present “special” choices ofVA which provide
various advantages.

1) Orthogonalizing Eve’s channel:The scheme of Sec-
tion V-A is a special case of proposed scheme in this sub-
section, since, as explained in Lemma 3, the unitary matrix
VA of the SVD ofHEK1/2 is identical to that of the SVD of
GE (18b).

10Here, in contrast to Appendix C, boldface letters representspatial vectors
and time indices are suppressed.
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2) Orthogonalizing Bob’s channel — Avoiding SIC:Per-
forming SIC adds complexity to the decoder, as well as
introduces potential error propagation. We can avoid this by
performing SVD with respect to Bob’s channel, as opposed to
Eve’s channel, as done in Section V-A. That is, chooseVA

such that

GB = UBDBV†
A,

whereDB is diagonal. As happens with Eve in Section V-A,
Bob obtains a diagonal equivalent channel, where each sub-
stream can be decoded independently.

3) Avoiding individual bit-loading: When using (non-
secret) communication schemes based on SVD or QR, as in
the layered-SIC scheme, the effective sub-channel gains{bi}
are different in general. This requires, in turn, a bit-loading
mechanism and the design of codes of different rates matching
these gains. By using the GMD, described in Section II-A,
instead, a constant diagonal is achieved, which translates
into equal SNRs for all parallel channels. This suggests, in
turn, that bit-loading can be avoided altogether and that the
codewords sent over the resulting sub-channels can be drawn
from the same codebook.

A similar result can be achieved for the wiretap setting.
To this end we require the usage of a modular scheme that
transforms good AWGN codes of a rate close tolog(b2)
for Bob into wiretap codes of rates close to{log(b2/e2i )}.
This way, after applying the GMD toGB , the same AWGN
codebook can be used over all sub-channels, where for each
sub-channel a different transformation into a wiretap codeis
used, that depends on its effective SNR to Eve(e2i−1). Indeed,
such a modular approach exists; see Section VIII.

Remark10. It is possible to use the same wiretap code without
assuming the modular wiretap code construction, by using a
joint matrix decomposition that achieves constant diagonals for
both triangular matrices simultaneously. A construction that
essentially achieves this property was proposed in [26].

VI. D IRTY-PAPER CODING BASED SCHEMES

In this section we construct the DPC counterparts of the
layered-SIC scheme for Gaussian MIMO channels with and
without secrecy constraints. In these variants the successive
decoding process of the scalar codes is replaced with a
successive encoding one; consequently, all (scalar) codebooks
can be recovered in parallel and independently of each other.
The latter makes these variants useful for more complex
settings, such as the confidential MIMO broadcast setting
treated in Section VII. We start by presenting the DPC-based
schemes without secrecy constraints, in Section VI-A. We
then construct a variant for the MIMO wiretap setting, in
Section VI-B, which again achieves the secrecy capacity of
the channel.

A. Without Secrecy Constraints

We now briefly review the DPC variant of the layered-SIC
scheme, which is based in turn on [44], [45] (see also [40]).

Scheme(Layered-DPC).
Offline:
• Select an admissibleNA × NA input covariance matrix

K that satisfies the input constraint.
• Construct the effective MMSE matrix (17):GB =

G(HB,K).
• Select a unitary triangularization (11) and apply it to the

matrixGB, as in (25), to obtain the unitary matricesUB

andVA, and the generalized upper-triangular matrixTB.
• Denote theNA diagonal elements ofTB by {bi}.
• Denote byŨB theNB×NA upper-left sub-matrix ofUB,

and construct the corresponding matrixT̃B according to
(27): T̃B = Ũ

†

BHBK1/2VA.
• ConstructNA scalardirty-paper codes[25] of lengthn —

codes generated via random binning with respect to i.i.d.
Gaussian distributions. Codebooki (1 ≤ i ≤ NA) is
constructed for a channel with AWGN of unit power,
SNR (b2i − 1), interference [recall (28)]

NA
∑

ℓ=i+1

TB;i,ℓx̃ℓ (41)

which is available as side information at the transmitter,
and rateRi close tolog(b2i ) [recall (33)].

Alice: At each time instantt = 1, . . . , n:
• Generates̃xi from last (i = NA) to first (i = 1), where

x̃i is generated according to the message to be conveyed
and the interference (41).

• Formsx̃ with entries{x̃i}.
• Attains the vectorx by multiplying x̃ by VA and K1/2

as in (34).
• Transmitsx.
Bob:
• At each time instantt = 1, . . . , n, receivesyB and forms

ỹB according to (29):

ỹB = Ũ
†

ByB

= T̃Bx̃+ z̃B.

• Decodes the codebooks using dirty-paper decoders, where
x̃i is decoded from̃yB;i.

By using good dirty-paper codes, capacity is achieved; see,
e.g., [40].

We further note that codeword̃xi is recovered from̃yB;i

regardless of whether the other codewords{x̃j |j 6= i} were
recovered or not.

B. MIMO Wiretap Channel

By replacing the dirty-paper scalar codes in the layered-
DPC scheme of VI-A with scalar dirty-paper wiretap codes
[46], [47], a scheme that approaches the MIMO wiretap
secrecy capacity can be constructed.

Theorem 6. The layered-DPC scheme of Section VI-A
achieves the secrecy capacity under a covariance constraint
CS (HB,HE K̄) by using:

• The optimal input covariance matrixK of (22).



11

• Any joint unitary triangularization(18).
• Scalar Gaussian dirty-paper wiretap codes, where thei-th

codebook (i = 1, . . . , NA) is designed for

– Bob’s SNR of(b2i − 1) and interference signal
∑NA

ℓ=i+1 TB;i,ℓx̃ℓ.

– Eve’s SNR of(e2i − 1).

– Rate close toRi = log(b2i /e
2
i ).

We next prove the existence of such codes and consequently
also the result of Theorem 6.

Proof: The proof follows by a standard extension of the
proof of Theorem 5 to the dirty-paper case [25], [46], [47].

Codebook construction:For eachk = 1, . . . , NA, we gen-
erate a codebookCk of 2n(Rk+R̃k) sub-codebooks, wheren is
length of the codewords. Each such sub-codebook is assigned
a unique index pair(mk, fk), wheremk ∈ {1, 2, . . . , 2nRk}
and fk ∈ {1, 2, . . . , 2nR̃k}, and contains2n[R

U

k
−(Rk+R̃k)]

codewords. Each codeword within codebookk is generated
independently in an i.i.d. manner with respect to a Gaussian
distributionp(uk) with parameters dictated by

uk = T̃B;k,kx̃k + αk

NA
∑

ℓ=k+1

T̃B;k,ℓx̃ℓ , (42a)

αk ,
b2k − 1

b2k
, (42b)

for zero mean unit power i.i.d. Gaussian random variables
{x̃k|k = 1, . . . , NA}.

Note that since in this case the interference (available as
side information to Alice) in sub-channelk is composed of
messages{xℓ|ℓ = 1, . . . , NA}, the information carried by the
sets{x̃ℓ|ℓ = 1, . . . , NA} and{uℓ|ℓ = 1, . . . , NA} is the same.

Let ǫ > 0. Then the rates are chosen as

Rk , I (uk;yB)− I
(

uk;yE , u
NA

k+1

)

− ǫ

=
[

I (uk;yB)− I
(

uk; u
NA

k+1

)]

− I
(

uk;yE

∣

∣

∣
u
NA

k+1

)

− ǫ

= I
(

x̃k;yB

∣

∣

∣
x̃
NA

k+1

)

− I
(

x̃k;yE

∣

∣

∣
x̃
NA

k+1

)

− ǫ

= log
b2k
e2k

− ǫ, (43a)

R̃k , I
(

uk;yE

∣

∣

∣
u
NA

k+1

)

− ǫ = I
(

x̃k;yE

∣

∣

∣
x̃
NA

k+1

)

− ǫ

= log e2k − ǫ, (43b)

RU
k , I (uk;yB)− ǫ

= log

(

b2k +

NA
∑

ℓ=k+1

|TB;k,ℓ|2
)

− ǫ . (43c)

Encoding (Alice): Encoding is carried in a successive
manner, from last (k = NA) to first (k = 1). Within codebook
k, the index of the sub-codebook to be used is determined
by the secret messagemk and a fictitious messagefk drawn
uniformly over their respective ranges. The codeworduk,
within sub-codebook(mk, fk) that is selected, is the one that
is jointly typical with the side information

∑NA

ℓ=k+1 T̃B;k,ℓx̃ℓ.
If no such codeworduk exists, then the first codeword is
selected.

Decoding (Bob): Bob recovers(mk, fk) using standard
dirty-paper decoding as in Section VI-A, and discardsfk. The
error probability can be made arbitrarily small by taking a
large enoughn.

Secrecy analysis (Eve):As in the proof of Proposition 1,
we provide{uℓ|ℓ = k+1, . . . , NA} as a genie for the secrecy
analysis ofuk. By recalling that{x̃ℓ|ℓ = k + 1, . . . , NA} and
{uℓ|ℓ = k + 1, . . . , NA} carry the same information, and the
linear relation in the definition ofuk (42a), the secrecy analysis
reduces to the analysis in the proof of Proposition 1, as appears
in Appendix C, specialized to the Gaussian case.

VII. C ONFIDENTIAL BROADCAST AS A CONSEQUENCE

In this section we consider the two-user MIMO confidential
broadcast scenario. Namely, “Eve” is replaced with “Charlie”
in (2b), and the corresponding noise, output and channel
matrix are denoted byzC , yC andHC , respectively.

We next show that, under the covariance matrix constraint,
the rectangular capacity region (8), that was established in
[11], can be attained as a natural extension of the capacity
derivation for the MIMO wiretap channel and the layered DPC
scheme proposed in Sections III and VI, respectively.

A. Capacity Region

We saw in Section III that in order to achieve the secrecy
capacity where Charlie takes the role of Eve, the GSVD
needs to be applied to(GB,GC) and only the sub-channels
corresponding to GSVs that are greater than 1 (corresponding
to sub-channels with greater SNR to Bob than to Charlie) need
to be used, and the rest — nullified.

However, we note that, if we were interested in confidential
communication with Charlie rather than with Bob, we would
get the same solution with the roles ofHB andHC reversed.
This, in turn, means inversion of the GSVs:

logµi(HC ,HB, K̄) = − logµi(HB ,HC , K̄).

In these terms, we can write the rectangular capacity-region
of the confidential broadcast channel (8), established firstin
[11], as follows.

Theorem 7. The capacity region of the confidential MIMO
broadcast channel under an input covariance constraintK̄ is
given by all rates(RB, RC) satisfying:

RB ≤
NA
∑

i=1

[

logµ2
i

(

HB ,HC , K̄
)]

+
, (44a)

RC ≤
NA
∑

i=1

[

− logµ2
i

(

HB,HC , K̄
)]

+
. (44b)

Remark 11. Similarly to the MIMO wiretap channel, the
capacity region under a power constraintP is just the union
of all (rectangular) regions under a covariance constraintwith
small enough trace.

The converse part of this result is trivial by Theorem 3,
since both users attain their individual secrecy capacities. For
the direct part, it is tempting to think that since different
GSVs are nullified for Bob and for Charlie, Alice can achieve
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their optimal rates simultaneously by communicating over
orthogonal “subspaces”. However, since the matricesTB and
TC are not diagonal, these “subspaces” are not orthogonal,
and some more care is needed.

To this end, in the next section we put into force the layered-
DPC scheme of Section VI, which allows to recover the
sub-message transmitted over each sub-channel independently,
without the recovery of other sub-messages (in contrast to the
layered-SIC scheme). This property is required by at least one
of the users — Bob or Charlie — as each of them recovers only
a subset of all the transmitted sub-messages. The derivation
of the scheme thus provides a constructive proof for the direct
part of Theorem 7, which is an alternative to the proof in [11].

B. Capacity Achieving Schemes

In view of Theorem 2 and the schemes developed for the
MIMO wiretap channel, the result of Section III has a rather
intuitive interpretation:VA of the GSVD is the precoding
matrix that designs the ratios between{bi} and {ci} to be
as large as possible ({ci} replacing{ei}), which corresponds
to maximizing the achievable secrecy rate to Bob. In order
to achieve Bob’s secrecy capacity, only the sub-channels for
which the secrecy rate is positive (bi > ci) need to be utilized.
Allocating the remaining sub-channels to Charlie, on the other
hand, attains Charlie’s optimal covariance matrix.

Combining the two gives rise to the following scheme,
which is a straightforward adaptation of the layered-DPC
scheme of Section VI for the wiretap channel.

Scheme(Confidential broadcast via layered-DPC).
Offline:
• Construct the effective MMSE matrix (17):̄GB ,

G(HB, K̄) and ḠC , G(HC , K̄), where K̄ is the
constraining matrix.

• Apply the triangular form of the GSVD (16) to
(ḠB, ḠC) as in (25), to obtain the unitary matrices
UB, UC and VA, and the generalized upper-triangular
matricesTB andTC .

• Denote the diagonal elements ofTB and ofTC by {bi}
and{ci}, respectively.

• Denote further the (first) number of indices for which
bi > ci by LB. The remainingLC = NA − LB indices
satisfy ci ≥ bi.

• Denote byŨB the upper-leftNB×LB sub-matrix ofUB,
and by ŨC — the upper-rightNC × LC sub-matrix of
UC .

• ConstructT̃B and T̃C as in (27):

T̃B = Ũ
†

BHBK1/2VA ,

T̃C = Ũ
†

CHCK1/2VA .

• ConstructNA good scalar dirty-paper wiretap codes of
unit power and lengthn, denoted by{x̃i|i = 1, . . . , NA}
(with the time index omitted to simplify notation), gen-
erated via random binning with respect to i.i.d. Gaussian
distributions, as follows.

– The firstLB codes are intended for Bob: Codebook
x̃i (1 ≤ i ≤ LB) of a rate close toRi = log

(

b2i /c
2
i

)

is constructed for an AWGN channel to Bob of SNR
b2i − 1, and interference:

NA
∑

ℓ=i+1

TB;i,ℓx̃ℓ ,

and for an AWGN channel to Charlie of SNRc2i −1.
– The remainingLC codes are intended for Charlie:

Codebookx̃i (LB + 1 ≤ i ≤ NA) of a rate close
to Ri = log

(

c2i /b
2
i

)

is constructed for an AWGN
channel to Charlie of SNRc2i − 1 and interference:

NA
∑

ℓ=i+1

TC;i,ℓx̃ℓ ,

and for an AWGN channel to Bob of SNRb2i − 1.
Alice: At each time instantt = 1, . . . , n:
• Generates̃xi from last (i = NA) to first (i = 1), where

x̃i is generated according to the message to be conveyed
and the signals{x̃ℓ|ℓ = i+ 1, . . . , NA}.

• Formsx̃ with entries{x̃i}.
• Attains the vectorx by multiplying x̃ by VA and K1/2

as in (34).
• Transmitsx.
Bob:
• At each time instantt = 1, . . . , n, receivesyB and forms

ỹB according to (29):

ỹB = Ũ
†

ByB

= T̃Bx̃+ z̃B.

• Decodes codebooksi = 1, . . . , LB using dirty-paper
decoders, wherẽxi is decoded from̃yB;i.

Charlie:
• At each time instant forms

ỹC = Ũ
†

CyC

= T̃C x̃+ z̃C .

• Decodes codebooksi = LB + 1, . . . , NA using dirty-
paper decoders, wherẽxi is decoded from̃yC;(i−LB).

The following theorem proves that this scheme allows both
users to attain their respective secrecy capacitiessimultane-
ously, providing a proof for Theorem 7.

Theorem 8. The layered-DPC confidential broadcast scheme
achieves the secrecy capacity region under a covariance
constraint(44) by:

• Using scalar Gaussian dirty-paper wiretap codes in-
tended for Bob, as follows, where thei-th codebook
(i = 1, . . . , LB) is designed for:

– Bob’s SNR of(b2i − 1) and interference signal
∑NA

ℓ=i+1 TB;i,ℓx̃ℓ.

– Charlie’s SNR of(c2i − 1).

– Rate close toRi = log(b2i /c
2
i ).

• Using scalar Gaussian DPC wiretap codes intended for
Charlie, as follows, where thei-th codebook (i = LB +
1, . . . , NA) is designed for:
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– Charlie’s SNR of (c2i − 1) and interference
∑NA

ℓ=i+1 TC;i,ℓx̃ℓ.

– Bob’s SNR of(b2i − 1).

– Rate close toRi = log(c2i /b
2
i ).

Proof sketch: We start by noting that since the capacity
region is rectangular, it suffices to show how to approach the
corner point of this region. The proof relies on the fact that
in the layered-DPC scheme for the MIMO wiretap channel
of Section VI, each sub-codebook is recovered independently,
regardless of the other sub-codebooks. Hence, the proof of the
decodability and secrecy analysis for Charlie are the same as
in the proof of Theorem 6 (with Charlie being the “legitimate”
user). In the treatment for Bob, a small variation is needed:
the interference over sub-channeli (1 ≤ i ≤ LB) is composed
of both, messages intended for Charlie,x̃NA

LB+1, and messages
intended for Bob,̃xLB

i+1. Thus, the DPC for Bob is carried with
respect to both of these interferences, and the decodability and
secrecy analysis follow as in the proof of Theorem 6.

Remark12 (Replacing DPC with SIC). DPC was used in the
layered-DPC scheme for both users. However, in the proposed
scheme one may use SIC instead of DPC for Charlie, as
is done in the layered-SIC scheme for the MIMO wiretap
problem. Alternatively, by using lower-triangular matrices
instead of upper-triangular ones in (18) (which corresponds to
switching roles between Bob and Charlie in the construction
of the scheme), one can use SIC for Bob and DPC for Charlie.
This phenomenon was also observed by Liuet al. [11].
Unfortunately, this scheme does not allow, in general, to avoid
DPC for both of the users.

Remark13 (Other choices of precoding matrices). In Sec-
tion V-C, different choices ofVA were proposed for the
MIMO wiretap problem: diagonalizing eitherTB or TC ,
which corresponds to avoiding SIC by Bob or guaranteeing
strong secrecy, respectively; or, by balancing all the SNRs
of the sub-channels to Bob, which allows using the same
codebook over all sub-channels and avoiding bit-loading / rate
allocation. The analog in the case of confidential broadcastcan
be achieved by applying block diagonal unitary operations,in
addition to the matrixVA that is dictated by the GSVD, where
the blocks correspond to the sub-channels that are allocated to
Bob and to Charlie, of dimensionsLB × LB andLC × LC ,
respectively. However, whereas we can avoid SIC and DPC
at Bob’s end in the layered confidential broadcast scheme by
diagonalizing his channel, we cannot achieve this result for
both Charlie and Bob simultaneously, as DPC needs to be
employed for at least one of the users.

VIII. D ISCUSSION: FROM RANDOM ENSEMBLES TO

SPECIFIC CODES

In this work, we have demonstrated how scalar codes can
be used for some MIMO secrecy scenarios. Throughout the
work, we have assumed that these scalar codes are taken
from a random Gaussian ensemble, suitable in an appropriate
sense (with or without secrecy constraints, with or withoutside
information). One may be interested in a stronger result, where
any scalar codes that are good in the appropriate sense can

be used, without worrying about the way they were created.
Further, it is desirable to construct MIMO secrecy schemes
using any standard(non-secrecy) scalar codes that are good
for communication over the (non-secrecy) AWGN channel.
To that end, one may hope to combine the approach of the
current work with procedures that construct scalar wiretap
codes from non-secrecy ones, such as [12] (which is based
upon similar techniques for discrete wiretap channels proposed
in [48], [49]). Unfortunately, as we report in [50], there are
some obstacles.

Surprisingly, the problem lies already in the use of scalar
codes for MIMO communications without secrecy constraints.
Recall the V-BLAST/GDFE schemes presented in Section IV
and depicted in Fig. 1. Such schemes are widely accepted
in the literature as capacity achieving, without proposing
any treatment or analysis for specific codes. In practice,
such schemes are used in conjunction with arbitrary scalar
codebooks, e.g., one-dimensional constellations with some
error-correction code [27]; however, the combination doesnot
necessarily approach capacity even if the individual codesdo.
Indeed, for some specific channel matrices, the scheme might
perform very poorly. To see this, consider (30). This is a
multiple-access channel (MAC) from the inputsx̃1, . . . , x̃i to
the outputy′B;i. The SIC decoder treating all inputs as noise is
equivalent to a stage of a successive-decoding procedure for
the MAC. For the MAC, in turn, not any collection of good
AWGN codes achieves capacity (see, e.g., [51]). For example,
assume that a MAC is given by

yB = x1 + x2 + z.

Now further assume that the two codebooks are nested lattices.
In that case (up to shaping), any possible point ofx1 + x2 is
also a point of the higher-rate code, thus one codebook cannot
be decoded without the other. The problem is not restricted to
integer coefficient ratios but affects performance for coeffi-
cients close to any “simple” ratio; see, e.g., [52, Section III].

Returning back to the multi-stream schemes for the MIMO
wiretap setup of Section V, the decoder of Bob will also
incur the same difficulty discussed above when generalizing
to arbitrary scalar codes. Furthermore, the same issue arises
in our secrecy analyses (except when Eve’s channel is or-
thogonalized, as in Section V-A): We successively provide
Eve with previous messages as a “genie” side information.
As a result the proof hinges on Eve’s disability to perform
a successive decoding process in the presence of interference
from yet undecoded messages. Here also this interference is
taken to be Gaussian and alignment might help Eve.

To conclude, of the two ingredients needed for adjusting
anycodes that are good for communication over scalar AWGN
channels to the MIMO wiretap channel, the secrecy part can
be treated by the procedure of [12]. The remaining problem is
similar to the one in SIC without secrecy constraints. Indeed,
obtaining good scalar Gaussian codes that approach capacity
under SIC (without secrecy) from arbitrary scalar Gaussian
codes remains an interesting open problem.
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APPENDIX A
PROOF OFLEMMA 1

The following proposition will be used in the proof of
Lemma 1.

Proposition 2. LetA1 andA2 bem1×n andm2×n full-rank
matrices, respectively, wherem1 ≥ n andm2 ≥ n. Consider
the generalized eigenvalue (GEV) problem:

A
†
1A1y = λA†

2A2y .

Then, the generalized eigenvalues of(A†
1A1,A

†
2A2), {λi},

are the GSVs of(A1,A2), {µi}, and the generalized eigen-
vectors are the corresponding columns of

Y = X−†.

Furthermore, the differential of the GEVλ in terms of the
differentials ofA†

1A1 and ofA†
2A2 is given by

dλ =
y†
(

d(A†
1A1)− λd(A†

2A2)
)

y

y†A
†
1A1y

. (45)

Proof: The first part of the proposition easily follows from

G
†
BGBY = XD2

B ,

G
†
EGEY = XD2

E .

The proof of the differential identity (45) can be derived by
standard eigenvalue perturbation analysis; see, e.g., [53].

Consider now the diagonal variant of the GSVD ofGB =
G(HB,K) andGE = G(HE ,K) (14):

GB = UBDBX
†, (46a)

GE = UEDEX
†, (46b)

and denote the squared GSV vector byλ, i.e., the vector whose
entries satisfy:

λi , µ2
i .

Note further that0 < µi, λi < ∞, sinceGB andGE are of
full rank [recall (17)].

Following (20), the MI difference in terms of{λi} is equal
to

IS(HB,HE ,K) =
∑

logλi .

By applying the result of Proposition 2 to the effective
channel matrices of (46), we obtain the following lemma.

Lemma 4. The differential of the GSVλi (i = 1, . . . , NA), in
terms of the differential of the covariance matrixK , is given by

e2i dλi = (λi − 1)y†
iB

−1(dK)B−†yi ,

where B = K1/2, e is the diagonal ofDE , and yi is the
corresponding generalized eigenvector corresponding toλi.

Proof: PerturbingK results in the following differentials
of G†

BGB andG†
EGE (46) :

2d(G†
BGB) = B−1(dK)H†

BHBB + B†H†
BHB(dK)B−†,

(47a)

2d(G†
EGE) = B−1(dK )H†

EHEB + B†H†
EHE(dK)B−†.

(47b)

Substituting (47) in (45), gives rise to

2e2idλi = y
†
i

(

B−1(dK)(H†
BHB − λiH

†
EHE)B

+ B†(H†
BHB − λiH

†
EHE)(dK)B−†

)

yi

= y
†
i

(

B−1(dK)B−†B†(H†
BHB − λiH

†
EHE)B

+ B†(H†
BHB − λiH

†
EHE)BB−1(dK)B−†

)

yi

= 2(λi − 1)y†
iB

−1(dK)B−†yi ,

as desired.

Corollary 1. If dK is positive semidefinite, then the sign of
dλi equals the sign ofλi − 1.

The result of Lemma 1 follows immediately from this
corollary.

APPENDIX B
TRUNCATION OF GENERALIZED SINGULAR VALUES

Apply the triangular variant of the GSVD (16) to the
matricesGB = G(HB,K) andGE = G(HE ,K), as in (17)
and (18):

GB ,

(

HBK1/2

I

)

= UBDBTV †
A , (48a)

GE ,

(

HEK1/2

I

)

= UEDETV †
A . (48b)

Using any unitary matrixQ instead ofI in the definition of
GB andGE , has no effect on the resulting matricesVA, T,
DB andDE :

(

HBK1/2

Q

)

= UQ
BDBTV †

A ,

(

HEK1/2

Q

)

= UQ
EDETV †

A .

Furthermore, the upper-leftNB × NA andNB × NE of the
resulting left unitary matricesUQ

B and UQ
E , respectively, are

equal to those ofUB andUE of (48).
Using the last observation withQ = V†

A and (48) for the
matrices

GV
B ,

(

HBK1/2VA

I

)

=

(

HBK1/2

V†
A

)

VA ,

GV
E ,

(

HEK1/2VA

I

)

=

(

HEK1/2

V†
A

)

VA ,

gives rise to the GSVD ofGV
B andGV

E :

GV
B , UV

BDBT , (49a)

GV
E , UV

EDET , (49b)

whereUV
B andUV

E are unitary (and theirNB ×NA andNE×
NA upper-left sub-matrices are equal to those ofUB andUE ,
respectively).

That is, the GSVD ofGV
B andGV

E is achieved by applying
a QR decomposition to each of them.
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The representation in (49) allows us to incorporate a trun-
cation operation:

G′
B ,

(

HBK1/2VAIB
I

)

= U′
BD

′
BT′ (50a)

G′
E ,

(

HEK1/2VAIB
I

)

= U′
ED

′
ET′ , (50b)

where U′
B and U′

E are unitary having the same firstLB

columns asUV
B and UV

E , respectively;T′, D′
B andD′

E have
the same firstLB columns asT, DB andDE , respectively,
whereas the remainingLE = NA − LB columns are all zero
except for the diagonal elements, which are equal to 1:

D′
B;i,j = D′

E;i,j = T ′
i,j = 1, i = j, j > LB ;

D′
B;i,j = D′

E;i,j = T ′
i,j = 0, i 6= j, j > LB .

The latter is easily seen by noting that the QR decomposition
carries out a Gram–Schmidt process over the columns of
the decomposed matrices, and hence the firstLB columns
remain the same after applyingIB, whereas the structure of
the remaining columns is trivial due to the nullification of the
lastLE columns ofHBK1/2VA.

We note that (50) is the GSVD ofG′
B andG′

E up to the
normalization property (15), which has no effect on the GSVs
and can be achieved by a multiplication by anNA × NA

diagonal matrix with its firstLB entries equal to 1 and the
remaining entries — to1/

√
2.

The desired result is established by noting thatK1/2 =

K̄1/2VAIB, and that the firstLB GSVs of(G′
B,G

′
E) are equal

to the firstLB GSVs of(GB ,GE) (the GSVs that are greater
than 1) and the remaining GSVs of(G′

B,G
′
E) are equal to 1.

APPENDIX C
PROOF OFPROPOSITION1

In this appendix, with a slight abuse of notation, we denote
by boldface lettersn-length sequences, withn being the block
length (in contrast to the other parts of the paper, where
boldface letters denote spatial vectors).

Proof of Proposition 1: Denote

R̃k , I(x̃k; yE |x̃NA

k+1)− ǫ. (51)

The codebooks are generated sequentially, from last (k =
NA) to first (k = 1), as follows. Fork = NA, construct
the codebookCNA

of 2n(RNA
+R̃NA

) codewords, that are
generated independently with i.i.d. entries with respect to
p (x̃NA

). For k ∈ {1, . . . , NA − 1}, for each (already gen-
erated) codeword set(x̃k+1, . . . , x̃NA

) ∈ Ck+1 × · · · × CNA
,

generate a codebook of2n(Rk+R̃k) codewords with re-
spect to

∏n
i=1 p (x̃k|x̃k+1(i), . . . , x̃NA

(i)), wherex̃ℓ(i) is the
i-the letter of the codeword̃xℓ. Within each codebook,
each codeword is assigned a unique index pair(mk, fk)

where mk ∈ {1, 2, . . . , 2nRk} and fk ∈ {1, 2, . . . , 2nR̃k}.
Each codeword is selected according to the secret mes-
sage mk and a fictitious messagefk drawn uniformly
over its range. The transmitted codeword is therefore

x = ϕ (x̃1(m1, f1), . . . , x̃NA
(mNA

, fNA
)). Bob’s decoding is

based on successive decoding starting from the last message
(k = NA) and proceeding to the first (k = 1).

Since

Rk + R̃k = I
(

x̃k; yB

∣

∣

∣
x̃
NA

k+1

)

− 2ǫ (52a)

< I
(

x̃k; yB

∣

∣

∣
x̃
NA

k+1

)

, (52b)

the decoding of each combined message(mk, fk) succeeds
with arbitrarily high probability, asn → ∞.

In order to satisfy the secrecy constraint, the following
condition must hold, for anỹǫ > 0 and large enoughn:

1

n
H (m1, . . . ,mNA

|yE ,C) ≥
1

n
H(m1, . . . ,mNA

)− ǫ̃ ,

whereC = {C1, . . . ,CNA
} denotes the overall collection of

theNA codebooks.
It suffices to show that for anyǫ′ > 0, and large enoughn,

1

n
H(mk|yE ,m

NA

k+1,C) ≥
1

n
H(mk)− ǫ′

is satisfied for eachk.
Note that

H
(

mk

∣

∣

∣
yE ,m

NA

k+1,C
)

≥ H
(

mk

∣

∣

∣
yE , x̃

NA

k+1,C
)

= H
(

mk, x̃k

∣

∣

∣
yE , x̃

NA

k+1,C
)

−H
(

x̃k

∣

∣

∣
mk,yE , x̃

NA

k+1,C
)

= H
(

x̃k

∣

∣

∣
yE , x̃

NA

k+1,C
)

−H
(

fk

∣

∣

∣
mk,yE , x̃

NA

k+1,C
)

.

Due to (51), in our construction the eavesdropper can decode
fk with probability going to 1, given

(

mk,yE , x̃
NA

k+1,C
)

, and
hence the second term is vanishingly small. Thus, we are left
with

H
(

mk

∣

∣

∣
yE ,m

NA

k+1,C
)

≥ H
(

x̃k

∣

∣

∣
yE , x̃

NA

k+1,C
)

− nǫ′n

= H
(

x̃k
1

∣

∣

∣
x̃NA

k+1,yE ,C
)

−H
(

x̃k−1
1

∣

∣

∣
x̃NA

k ,yE ,C
)

− nǫ′n .

Since the two equivocations are the same quantity up to an
index shift, it suffices to show that forδ1 > 0 andδ2 > 0 that
vanish withǫ and large enoughn,

k
∑

ℓ=1

[

I
(

x̃ℓ; yB

∣

∣

∣
x̃
NA

ℓ+1

)

− I
(

x̃ℓ; yE

∣

∣

∣
x̃
NA

ℓ+1

)]

− δ1 (53a)

≤ 1

n
H
(

x̃k
1

∣

∣

∣
x̃NA

k+1,yE ,C
)

(53b)

≤
k
∑

ℓ=1

I
(

x̃ℓ; yB

∣

∣

∣
x̃
NA

ℓ+1

)

− I
(

x̃ℓ; yE

∣

∣

∣
x̃
NA

ℓ+1

)

+ δ2 . (53c)

To establish (53b) we use the fact that the sequencesx̃ℓ are
selected independently giveñxNA

ℓ+1, so that, for large enough
n, the following chain of inequalities holds

H
(

x̃k
1

∣

∣

∣
x̃NA

k+1,yE ,C
)

(54a)

= H
(

x̃k
1

∣

∣

∣
x̃NA

k+1,C
)

− I
(

x̃k
1 ;yE

∣

∣

∣
x̃NA

k+1,C
)

(54b)

=

k
∑

ℓ=1

[

H
(

x̃ℓ

∣

∣

∣
x̃NA

ℓ+1,C
)

− I
(

x̃ℓ;yE

∣

∣

∣
x̃NA

ℓ+1,C
)]

(54c)
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=

k
∑

ℓ=1

[

nI
(

x̃ℓ; yB

∣

∣

∣
x̃
NA

ℓ+1

)

− 2ǫ− I
(

x̃ℓ;yE

∣

∣

∣
x̃NA

ℓ+1,C
) ]

(54d)

≥ n

k
∑

ℓ=1

[

I
(

x̃ℓ; yB

∣

∣

∣
x̃
NA

ℓ+1

)

− I
(

x̃ℓ; yE

∣

∣

∣
x̃
NA

ℓ+1

)

− 3ǫ
]

, (54e)

where (54d) follows from (52a), and to establish (54e) we use
the fact that the channel is memoryless along with standard
typicality arguments [54].

To establish (53c), we use [55, Lemma 1], by substituting:

•S =

k
∑

ℓ=1

(

Rℓ + R̃ℓ

)

• u = x̃
NA

k+1

• v = x̃
k
1 • z = yE

•L , (mk
1 , f

k
1 ) ∈ [1, 2nS]

The conditions for the lemma hold since

H
(

x̃
k
1

∣

∣

∣
x̃
NA

k+1, yE ,C
)

= H
(

L
∣

∣

∣
x̃
NA

k+1, yE ,C
)

,

and

S =

k
∑

ℓ=1

(

Rℓ + R̃ℓ

)

(55a)

=

[

k
∑

ℓ=1

I
(

x̃ℓ; yB

∣

∣

∣
x̃
NA

ℓ+1

)

]

− 2ǫ (55b)

>

[

k
∑

ℓ=1

I
(

x̃ℓ; yE

∣

∣

∣
x̃
NA

ℓ+1

)

]

+ δ (55c)

= I
(

x̃
k
1 ; yE

∣

∣

∣
x̃
NA

k+1

)

+ δ , (55d)

where (55c) follows from the fact that the communication rate
Rℓ of each sub-channel must be positive (andǫ andδ are small
enough, andn is sufficiently large), else it is not used. Since
we have proved (53b) and (53c), the secrecy analysis is now
complete.

Remark 14. For the special case of mutually independent
(x̃1, . . . , x̃NA

), there is no need to generate a different
codebookCk for each selection of preceding codewords
(x̃k+1, . . . , x̃NA

), and the same codebook can be applied
regardless of the other codewords.
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