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The MIMO Wiretap Channel Decomposed
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Abstract—The problem of sending a secret message over multiple-input multiple-output multiple-eavesdroppeMI¢
the Gaussian multiple-input multiple-output (MIMO) wiret ap  MOME) channel [4]-]6], is given by
channel is studied. While the capacity of this channel is knon, it
is not clear how to construct optimal coding schemes that acave yp =Hpx + 25, (2a)
this capacity. In this work, we use linear operations along \ith —H 2b
successive interference cancellation to attain effectiveparallel Yp = HNExT + 2E, (2b)

single-antenna wiretap channels. By using independent slkeat wherez and are complex-valued vectors with dimen-
Gaussian wiretap codebooks over the resulting parallel chanels, ' Ys Ye P

the capacity of the MIMO wiretap channel is achieved. The sions of the number of antennas in the terminals of Alice,

derivation of the schemes is based upon joint triangularizéion of ~Bob and Eve, denoted by 4, Np, and Ng, respectively. The
the channel matrices. We find that the same technique can beed channel matricesl 5 andH gz have the corresponding dimen-

to re-derive capacity expressions for the MIMO wiretap chamel  sjons. The additive noise vectorss and zz are mutually

in a way that is simple and closely connected to a transmissio independent, i.i.d., circularly-symmetric Gaussian witro
scheme. This technique allows to extend the previously pren Lo -
mean unit element variance.

strong security for scalar Gaussian channels to the MIMO cas. ’ ] .
We further consider the problem of transmitting confidential The secrecy capacity of this scenario for the case where the
messages over a two-user broadcast MIMO channel. For that input is subject to an averag®variance constraifit

problem, we find that derivation of both the capacity and a N _

transmission scheme is a direct corollary of the proposed aatysis K=FE [fBiBT] =K, ©)

for the MIMO wiretap channel. . . .
P and the case where the input is subject to a total (over all

Index Terms—Wiretap channel, MIMO channel, confidential  antennas) power constraift
broadcast, successive interference cancellation, dirtgaper cod-
ing, matrix decomposition. trace{K) <P,

was established in[[6] and[4]2[6], respectively. Under a

covariance constraint, this capacity is given by the déffire

of mutual informations to Bob and Eve, optimized over
The wiretap channel, introduced by Wynler [1], is composedll Gaussian channel inputs that satisfy the respectivatinp

of a sender (“Alice”) who wishes to convey data to a legitienatconstraint:

user (“Bob”), such that the eavesdropper (“Eve”) cannot %

|. INTRODUCTION

recover (almost) any information of these data. The capadit Cs(Hp,He, K) = I&a% Is(Hp, He,K), @)
this channell[L],[[2] equals to a mutual-information diéface, \,nere

and was extended to the Gaussian casglin [3]. Let the channels

from Alice to Bob and Eve be given by Is(Hp,Heo,K) £ I(Hp,K) — I(Hg, K), (5)

and
yp = hpr + 2B,

yg = het + 28, I(H,K) £ log |l + HKH T| (6)

is the Gaussian vector mutual information (MI), and|

wallv-ind dent circularl tric G _ denotes the determinant &f. Later, Bustinet al. [[7] provided
are mutuaily-independent circularly-Symmetric oausaaro explicit solution to the maximization problem under the

mean unit variance qoises and the transrnis;ion is_ SubjemcI)Q/ariance constrainf](4). A closed-form solution for the
a unit power constraint. Then, the capacity is achieved by etap capacity under a total power constraint is yet to be

Gaussian input: found, although a numerical algorithm that approaches the
- ) B ) global optimum was recently proposéd [8]. We note that the
Cs(hp,hp) = I (z;yp) = I (z:yn) (12) capacity under a total power constraint can be written as
= [log (1 + |hB|2) — log (1 + |hE|2)} , (1b) the union of achievable regions under a covariance constrai
+ (see[[9, Lemma 1]):

where[a]+ £ max{0,a} is the positive-part operation. Cs(Hp,Hp,P)= max Cs(Hp,Hg,K). (7)
The vector extension of this result, the multiple-input K: traceg{K} =P
multiple-output (MIMO) Gaussian wiretap channel or theience, we shall concentrate on the covariance constrained
setting in this paper.
The material in this paper was presented in part at 2044 |[EEE

International Symposium of Information Theory (ISIHonolulu, HI, USA, 1A > 0 denotes thatA is a positive semidefinite matrixA < B means
and at the2015 IEEE ISIT Hong Kong. that (A — B) = 0.

where hp and hg are complex scalar gaingg and zg
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The confidential broadcast channel offers a natural exdansin this paper on constructinggeak secrecyschemes, namely
to the wiretap channel setting. In the confidential broadcaxhemes for which
setting, Alice wishes to convey different data to two users n m
(“Bob” and “Charlie”), such that (almost) no informationrca I (" y}) < ne, ©)

be recovered by one user about the data intended for the otj@rshow that in fact a special matrix triangularization aso

user. That iS, for the data that are intended for BOb, Chadis to achievestrong secrecyguarantees for the MIMO Wiretap
as the eavesdropper (“Eve” in the wiretap setting), whef@as channel, i.e.,

the data intended for Charlie, Bob takes the role of Eve.

The capacity region of the Gaussian MIMO confidential I(x";yp) <e, (10)
broadcast channel, a scenario considered firstin [10], WgRere both[{P) and(10) hold for ary> 0 and large enough
determined by Liuet al. [11] to be rectangular under theblocklengthn.
covariance constraintl(3). Namely,

ONst itis given by all rat&pa  an outline of this paper is as follows. We start by reviewing
(Rp, R¢) satisfying

the relevant unitary matrix decompositions in Sectloh II.
(8a) These decompositions are used to re-derive the MIMO wiretap
capacity expressions in Sectiod I1l. We further recall hbese
decompositions allow to construct capacity-achievingesubs
whore . s e chamnel maui to Crare repcitg, | 5% 18 MO S wuie seeeer I Seetmly. e
i , andCs(Hp,He, K) is th ity of the MIMO . _ ) : )
in @), andCs(Hp, Ho,K) is the capacity of the QSectlorﬂ}’. Layered dirty-paper coding (DPC)[25] var@ant

wiretap channel defined i](4). The converse is immediafg, = . )
as both users achieve their maximal possible secrecy ra?g his scheme are discussed in Seclioh VI and are also shown

simultaneously; it is the direct part that is quite striking 10 be capacity achieving. Finally, these schemes are eiliz

Although capacity is well understood, it is less clear how t%long with th? reSUlt.S of Sectignllll to constructa simplieqs

. ) . of the capacity region of the confidential MIMO broadcast
construct codes for wiretap and confidential broadcast-chan ... - .

. : setting as well as providing a layered-DPC scheme thanattai
nels. For the scalar Gaussian case, various approaches ri]tal\ﬁeSectionIE[l
been suggested, see, e.d.,|[12]+-[18] and references rtherei )
However, assuming that we have such a code for the scalar
case, it is not clear how to construct a capacity-achieving Il. UNITARY MATRIX TRIANGULARIZATION
scheme for the MIMO setting. In this section we briefly review some important matrix de-
In this work we present an approach that reduces theg@mpositions which will be used in the sequel. In SediioAlll-

MIMO secrecy problems to scalar Gaussian ones by meamg recall the generalized triangular decomposition (GTD),
of matrix decompositions, specifically joint unitary trgar  and some of its important special cases which include the
larizations [19]. The decompositions yield a layered cgdinSVD, QR decomposition, and geometric mean decomposition
scheme, where the secrecy capacity is approached by me@ND) A Joint unitary triangularizations of two matrices are
of a scalar wiretap code in each layer and successive intdiscussed in Sectidn IIB.
ference cancellation (SIC) at the receiver. The contrdsuti  Throughout this paper, we shall only need to decompose
of such an approach to the MIMO wiretap channel can Hell-rank matrices with equal or more rows than columns.
compared to that of singular-value decomposition (SVDgbdas
schemes[]20], or yertlcal BeII-Laborr_:Itor!es Space-Time (W Single Matrix Triangularization
BLAST) and decision feedback equalization (GDFE) schemes

211-24], to MIMO communication without secrecy con- The following definitions are used in this section.

straints. Definition 1 (Multiplicative majorization; see[[27])Let =
Beyond the architectural merit, our approach yields twand y be two N-dimensional vectors of positive elements.

more fruits. First, it enables us to revisit the capacityuliss Denote byz andy the vectors composed of the entriesaof
for the MIMO wiretap and confidential MIMO broadcastand y, respectively, ordered non-increasingly. We say that
channels. In that respect, we establish the optimal cavegia majorizesy (x > y) if they have equal products:
matrix for the MIMO wiretap channel as well as an expression N N
for the secrecy capacity in terms of the generalized simgula H zj = H v,

Jj=1 Jj=1

Rp < Cs (Hp,He,K) ,
Rec < Cs (He,Hp,K), (8b)

values of suitably defined matrices. This re-derives a tdsul
Bustin et al. [[7], which was based on elaborate information- . ]
theoretic considerations, using a direct linear-algebeg- 2and their (ordered) elements satisfy, for any ¢ < N,

proach. Turning to the confidential broadcast channel, e ar ¢ ¢
able to re-derive[{8) almost as a corollary of the analysis Ha?j > Hfj.
applied to the MIMO wiretap channel, also explaining thesrol j=1 j=1

of dirty-paper coding in this setup. Definition 2 (Singular values; se¢ [28]Let A be a full-rank

Second, reducing the MIMO problem to a scalar one alloWsatrix of dimensionsM x N. where M > N. Then. the
us to leverage recent advances in the secrecy analysis of ’ - ’

the scalar Gaussian wiretap channel: whereas we conaentraiSee [[26] for a geometrical interpretation of these decoritipns.



singular values (SVs) oA are the positive solutions of the B. Joint Matrix Triangularization

equation The existence condition for a joint unitary triangularipat
\ATA _ 02” —0. of two matrices is similar to that of the GTD in Theorém 1,
where the singular values are replaced by the generalized
Let the SV vectoro(A) be composed of all SVs (includingsingular values (GSVs), and the diagonalTofs replaced by
their algebraic multiplicity), ordered non-increasingly the ratio of the diagonals of the resulting generalizedhtridar

The following is a straightforward extension of the definimatrices. These quantities are defined below.

tion of triangular matrices to non-square ones. Definition 4 (Generalized singular valugs 28], [36For any
(ordered) matrix paifA+, As), the GSVs are the non-negative

Definition 3 (Generalized Upper-Triangular Matrix)An i .
f solutionsy of the equation

M x N matrix is said to be generalized upper triangular i
i 2ATAL| =
T;=0, Yi>j; i=1,...,M; j=1,...,N. AjAL —p"AjA, = 0.

We use these definitions to characterize the set of &fbtthe GSV vectop(A,, A;) be composed of all GSVs (in-
possible diagonals achievable via unitary triangulaigmatas cluding their algebraic multiplicity), ordered non-inasengly.

follows. A characterization of the possible joint unitary triangula

Theorem 1 (Generalized Triangular Decompositior)et A izations of two matrices with prescribed diagonal ratios is
be a full-rank matrix of dimensiond/ x N, whereM > N, provided in the following theorem.

aP(tjrf be at”?V:'_me’?s'O“g' vector of positive elements. A GTI?heorem 2 (Joint unitary triangularization [19])Let A; and
of the matrixA Is given by A5 be two full-rank matrices of dimension®; x N and
A = UTVT, (11) M2 x N, respectively, where\l;, M, > N, and t be an

_ _ _ _ N-dimensional vector of positive elements. A joint unitary
whereU andV are unitary matrices of dimensiodd x M and  triangularization of the matricedA; and A, is given by

N x N, respectively, and is a generalized upper-triangular

matrix with a prescribed set of diagonal valugsi.e., A =U T VT, (12a)
_ T
Tii = ti, i=1,...,N, Ar =UsToVT, (12b)
T;; =0, Vi>j. where Uy, Uy and V are unitary matrices of dimensions

. . ) . My x My, My x My and N x N, respectively, and’; andTo
Such a decomposition exists if and only if the vedtos gre generalized upper-triangular matrices (recall Defioit[3)
majorized byo (A): with a prescribed set of diagonal ratids i.e.,
A) - t. Ty.5i
a(A) = Luii oy i=1,...,N,
In other words, the singular values are an extremal case for : o
the diagonal of all possible unitary triangularizations. T;ij =0, k=1,2, Vi>j.
The necessity of the majorization condition was proven by,,ch g joint decomposition exists if and only if the veetis

Weyl [29]. Horn further showed that for amythat is majorized majorized by the GSV vect@r(A+, As):
by o, there exists an upper triangular matrix with diagonal '

and SV vectore [30]. The sufficiency of the majorization w(Ai,As) = ¢t. (13)
condition as it appears in Theoréin 1 was provedin [31]-[33],

where also explicit constructions of the decompositione/ver.In other \{vords, the GS.VS are an extremal case for the
introduced. diagonal ratios of all possible joint unitary triangulaiions.

We now recall three important special cases of the GTD.The joint unitary decomposition that corresponds to these

1) SVD (See, e.g.[ [28])Here the resulting matrixX in ex'I[:relrlnaI_valltJre]zs IS the.?SV.D. 717738  review th
(11) is adiagonalmatrix, and its diagonal elements are equal ollowing the exposition in[[37][138], we next review the

to the singular values of the decomposed maix two forms of the GSVD — diagonal and triangular. The

2) QR Decomposition (See, e.d. 28] this decompo- diag(_)nal _representa@io_n of the GSVD is bgtter known. For a
sition, the matrixV in (I) equals to the identity matrix andMalrix pair (A,, A;) it is given by [28], [36]:
hence does not depend on the matAix This decomposition A; = U;D; X, (14a)
can be constructed by performing Gram—-Schmidt orthonor- B
malization on the (ordered) columns of the matAx Az = UDoXF, (140)
3) GMD (Seel[31], [34], [35]): The diagonal elements of whereU; andU, are unitary,X is invertible, andD; andD,
T in this decomposition are all equal to the geometric meaie generalized diagonal matrices (vi2y.; ; = 0 for i # j,
of its singular valuesr(A), which is real and positive. Note where D,.; ; is the (i, j) entry of D) with positive diagonal
that this decomposition always existsAf is full rank (since values satisfying:
the vector of the SVs oA necessarily majorizes the vector i "
of the diagonal elements df), but is not unique. D;D; +D;D2 =1, (15)



the ratios of which are equal to the GSVs: where Ug, Ug and V4 are unitary, andTg and Ty are
Dy _ generalized upper triangular (recall Definitioh 3).
Dy, 1 (A1, Az), i=1,....N, Let {b;} and {e;} denote the diagonal values @fs and
’ T g, respectively, where, as explained in Secfion]ll-B, these

and are assumed, w.l.o.g., to be ordered non-increasingly} os can be designed by varyidg. Using the fact that the

To obtain _t_f(\i% triangular fqrm of the GSVD, apply a Qlgpgojute value of a determinant of a unitary matrix is equal
decompositioto X, to attain: to 1, and the fact that the determinant of a triangular masrix

A, =U, DTV equal to the product of its diagonal values, the Gaussian MI
52U,V (16a) (©) can be expressed as:
Ay = UsD,TV! I(Hp,K) = log ‘GgGB‘ (19a)

where T is upper triangular and/ is unitary. By denoting

X . and similarly for Eve:
T, £ DT andT, £ D,T, we attain the triangular form of imearty v

the GSVD, which is, in turn, a special case [ofl(12). I(Hp,K) = log ’GTEGE’
[1l. THE MIMO WIRETAP CAPACITY REVISITED = Zlog e?.

In thi§ section we re-derive the explicit capacity expr@ssi Hence, their differencé5) is given by
of Bustin et al. [7] for the MIMO wiretap channel under
a covariance constrainf](3) in terms of the GSVD. While Ja b?
we do not establish a new capacity result, our approach of Is(Hp,Hp, K) = Zloge_z'
simultaneous unitary triangularization will lead to a slifigd =t ’
representation of the optimal covariance matrix as well asNote that the expression in_(20) holds for any unitary matrix
layered coding schemes, as will be discussed in the subseqdéa in (L8). Indeed, as we shall see later, this flexibility in
sections. choosingV 4 can lead to different design tradeoffs in our
The following augmented matrix structure, which servégyered coding schemes. Nevertheless, to derive an explici
as the MIMO channel analogue of the minimum mea@@pacity expression we specialize, to be the right unitary
square error (MMSE) variant of decision feedback equatinat matrix of the GSVD [(IB), until the end of the section. The
for linear time-invariant systems$ [B9], will be instrumaht corresponding GSVs are hence equal to

throughout this work. i (Hp Hi K) 2 14 (Gp, Gr)
Definition 5 (Effective MMSE channel matrix)Let H be a b;

(20)

channel matrix of dimensiond’z x N4 and letK be the e’

N4 x N4 input covariance matrix used over this channel.h th tation (Hr. Hr K) hasize th
Then, the correspondingffective MMSE channel matriie '/ c'c We USE The No atign; (Hp, Hp, K) to emphasize the
the (N4 + Np) x N4 matrix dependence K. Without loss of generality, we assume that

the GSV vector is non-increasing.

G(H,K)2 (HK 1/2) (17)  'nterms of the GSVs, we can rewrifd (4) as:
) I 5 N
wherel is the identity matrix of dimensiotV, andK'/? is Cs(Hp,Hp,K) = Iglj}%izloguf (Hp,Hg, K).
any matrixB satisfyingBB" = K4 K53

This definition naturally lends itself to an MMSE (capacity—lndeed’ In these terms the MIMO wiretap capacity can be

achieving) variant of the V-BLAST/GDFE schenme[24], as W”Fxpressed as follows.
be described in Sectign]V. See als50][40].][18].][26] for et Theorem 3 (MIMO wiretap capacity under a covariance con-
explanations. straint [7]) The secrecy capacity under a covariance matrix
Construct the effective MMSE matric&s s = G(Hp,K) constraintK is given by
andGg = G(Hg,K), whereK is subject to the constraining Na
matriXK @): K < K Co(H H K _ 1 2 H H K 21
— . . o s(AB,AE,K)= ogu; (AB,AE, a
Now, apply some joint unitary triangularization {11): ( ) ; llog 1 ( )]+ (21a)
Gp =UpTpVi, (18a) Lo ~
; = logy; (Hp,Hg,K).  (21b)
Gg =UgTgV), (18b) im1
3This decomposition is similar to the QR decomposition, dnistead of This explicit capacity expression along with the optimal
an upper-triangular matrix, the resulting matrix is lowsargular. This can covariance matriX < K were established by Bustgt al. [7]
be achieved, e.g., by applying Gram—Schmidt trianguliamato the columns using the channel enhancement technique along with vector
of a matrix, from last to first. . . . S
4Such aB can always be constructed, e.g., using the Cholesky decom&:xtens'ons of the mu_tual information—minimum mean'square
sition or unitary diagonalization. error (I-MMSE) relation. We present an alternative proof of



this result using a direct approach: once the optimizatidkemark3. Using [1), the capacity of the MIMO wiretap
problem [4) is stated, it can be solved by linear algebra aoHannel under a power constraifitcan be written as
elementary calculus only. The key to our proof is the follogvi Na

lemma. Cs(Hp,He, P) = K-tral&aé—pz [log i (Hp,He, K)J

Lemma 1. Let K and K be two matrices satisfying

0<K =<K.Thenforalli=1,...,Nyu, )
Remark4. For the optimalK (22), all the GSVs are greater

\logm(HB, Hg, R)\ > [log u;(Hg,Hg, K)| . or equal to 1. To the contrary, assume that some are strictly
] ) . smaller than 1; then, we can use a matix with the
That is, as we “decrease” the input covariance, the GSYgpropriate directions “nullified”. Such a “truncated” miat
move towardsy; = 1. The proof, which appears in Ap-yyj|| satisfy the covariance constraint while improving the
pendix[A, uses standard matrix calculus to show that thghievable secrecy rate of the scheme, in contradiction to
differential of thei-th GSV, dy;, with respect to a changethe assumptionA fortiori, under a power constraint, the
in the covariance matri¥K, is given by power saved by such a truncation can be allocated to “useful”

directions.
dpi = (p7 = 1) - 7i(dK)

wherey;(dK) > 0 for dK = 0. Or to put it differentlydu; > 0 V. _SCALA_R TRANS_M'SS'O'\_' OVERMIMO C_HANNELS

for pi; > 1, anddp,; < 0 for p; < 1. In this section we briefly review the connection between ma-
By Lemmall, clearly Theorefd 3 gives an upper bound dfix decompositions and scalar transmission schemespufith

the capacity. To see that it is achievable, consider theixnatrS€Crecy requirements. For a more thorough account, theread

is referred to[[19],[[266],140].

VAIBVQKI/QT, (22) In this work we shall assume all the scalar codes to be

_ . ) ) ) Gaussian, as defined next.
whereV 4 is the right unitary matrix of the triangular form

of the GSVD [I6), 5 is a diagonal matrix whose first; Definition 6 (Gaussian codebook)A Gaussian codebook
diagonal values (corresponding to GSVs that are greater tf} length n, rate B and power P — ¢, wheree > 0,
1) are equal to 1, and the remainitig; — to 0. Trivially, Consists of [2"] codewords of lengthn, denoted by
K =< K. The choice oK effectively truncates the GSVs af: =" (1),2" (2),...,2" ([2"%]). The entries of all the code-
B words, {z; (i) [t = 1,...,n;4i = 1,...,[2"F]}, are ii.d.
log 7 (Hp,He, K) = [loguf (Hp, He, K)] - with respect to a Gaussian distribution with zero mean and
varianceP — e.

K — K1/2

This is formally proved in AppendikIB.
. . : . Remark5. In the sequel, with a slight abuse of notation, we
Remarkl. The optimal covariance matriK (22) is denoted shall refer to such codes as Gaussian codes of pswarhere

by K> in [[7], where it is given in terms of the diagonal form™ *. MRS )
of the GSVD mﬂ e will serve as an implicit design parameter).

Consider the channe[(Ra). Construct the effective MMSE
matrix Gg = G(Hpg,K) as in Definitior[}, and choose some
unitary matrixV 4.

Apply the GTD [11) toGz with V 4 as the right matrix:
ot . — . .
whereY = X~ T andX is the right invertible matrix of[(114), Gp = UBTBVTA- (25)

Y 5 is the sub-matrix composed of the fifsg columns ofY, ~ . ]
andO0,,,,, denotes the all-zero matrix of dimensionsx n. NOW letz be a vector of standard Gaussian variables, and set

—1
_ T _
K — K1/2Y [(YBYB) OLoxLg YTKT/27 24)

OLEXLB OLEXLE

Comparing[(2R) and(24), it is evident that using the tridagu x =KV & . (26)
form of the GSVD indeed simplifies the representation over _ .
using the diagonal one. Denote byU g the N x N4 upper-left sub-matrix ol 5, and

Remark2. One may wonder why, of all possible choices o?eflne ) y

V 4, the capacity is given in terms of the GSVD. An intuitive T = UBHBKl/QVA. 27)
reason is as follows. By the majorization conditionl(13kg thtne following lemma, whose proof can be found [[24],
GSV vector is extremal among all possible diagonals. m Lemma 111.3], [42. Appendix I], provides the connectio
particular, for any/4, between the elements dfz and T 5.

Na Lemma 2. Denote by[Tz] the Ny x N4 upper-triangular

Na b2
Z [log M?L = Z [log 6_12] : sub-matrix composed of the firdf, rows of T @)ﬁ Then,
=1 =1 o Ts @) is equal to
Thus, the suni{21a) is larger than the sum over diagonakratio ¥ Tal—[T ]—T
induced by other triangular decompositions. B B Bl

6Since T is full rank, [T ] is full rank too, and hence also invertible.
5In [7] a specific choice oK 1/2 was used: the matriB that satisfies Further, its diagonal elements are greater or equal to 1 altieet blockl in
BB = K. the construction ofG g.



In particular,

Bsi,j

~ T
Tpiij = {TB .
H2Y)

whereT’s.; ; and TB;M are the (i, j) entries of the matrices

Tp andT g, respectively.
Let

i< j
Y (28)
1/Tpu; i=3j

T
Encoder 1 b—)

EncoderN 4

Ky?Val =

TN,

(a) Transmitter

~ !/

- ~ 1

Yyp =Upyp (292)
—OLHEKY2V 43 + 0L 2p (29b)
=Tz +2p. (29c)

SinceUp is not unitary, the statistics dip £ U;zB differ

from those of zp, and its covariance matrix is given by

Kz, = UBUL. Now, fori = 1,..., N, define [recall [(ZB)]

= Ys; Z TR 0Ty (30a)
l=1+1
=TB.iiZ; + Z TB.ieT¢ + 2B (30b)
=1
= TB;i,z‘fi + ZeBﬁ;i ) (30c)

Zp.; and zerf;i are thei-th entries of the vectorsp and 2%
respectively, and%ﬁﬂ £ Ze;i TBM@ + Zp.; is the resulting
total effective noise vector.

In this scalar channel from¥; to y’;.,, resulting after the
subtraction of the previously recovered symbgis|¢ > i},
we view the remaining symbol§i,|¢ < i} as “interference",
Zp;i — as “noise”, and their sum%“l — as “effective noise”.
The resulting signal-to- interference-and-noise ratibNg is
given by:

(TB;i,i)Q

(1>

SINRp.;

Y1 Y1 Y1 T
—> B »|Decoder 1

. : TB;l,Z\I

: - 1

. Tpa Nyt

: -t <]

- Up . TN, |
YNp—1 UNa-1 YN INa-1

A <I|
TB.NA—1,NA

YNp gNA yEVA '%NA
—> » DecoderNy H——>»

(b) Receiver

Fig. 1: Layered-SIC schemé, denotes the decoded symbol

Z, at the receiver.

and

Na
> log (b7)
i=1

Na

= log(1+ SINRg,)

i=1

[I>

Ky

eff.; -
BLT

(Tyi)?

i1 ,
Kz, ..+ Z (Tg;ie)?

= I(Hp,K),

which equals the channel capacity for the optirdal
The analysis above immediately gives rise to the following
scheme, depicted also in FId. 1, which is, in turn, a varidnt o

where K zer,; ; and K5 ; ; denote the(i, j) entries ofK 5

the renowned V-BLAST/GDFE schenle [21]=[24].

andK zer, respectlvely The following key result ach|eves thecheme(Layered-SIC)

mutual |nformat|on[[Zl4
and is based on Lem

, Lemma 111.3][[41, AppendiXk |

1 (ImyB l+1) = I(fi;yj&i) (3la)
=log (b7), (31c)

where {b;} are the diagonal values dfz (25) [mind the
difference from the diagonal values f (28)], which satisfy

b? =1+ SINRg,; (32)

Offline:

o Select an admissiblé&/4 x N4 input covariance matrix
K that satisfies the input constrafht.

o Construct the effective MMSE matriX_(117)G g

G(Hp,K).

« Select a unitary triangularization (11) and apply it to the

matrix G g, as in [25h), to obtain the unitary matricels;
andV 4, and the generalized upper-triangular mafrix.
« Denote theN 4 diagonal elements of 5 by {b;}.
« Denote byUp the Nz x N4 upper-left sub-matrix ob) 5,
and construct the corresponding maffix according to

@D): Tr = UL HEK Y2V 4.

“Note that, even though z has dependent components, the entries of the 8More generally, any numbeN > rank{K} of scalar codebooks can be

effective noisezeB“, are independent.

used; se€ [40]/[19] for details.
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Fig. 2: Layered-SIC scheme for the MIMO wiretap channel. \&suane heréV = N4 = Np = Ng, for ease of presentation.

o ConstructN 4 scalarGaussian codesf lengthn and unit

By the analysis above, the scheme is optimal in the sense

power that are good for SNR#$? -1}, i.e., codes of rates that the sum of codebook rates can approach the channel

close to

{Ri|R; =1log (b7),i€{l,...,Na}}.

Alice: At each time instant = 1,...,n:
o Forms the vectofe of length N4, by taking one sample

from each codebook.
« Attains the vectorr by multiplying @ by V4 andK/2:

x =KV &, (34)
o Transmitsz.
Bob:
o Ateachtimeinstant=1,...,n, receivegy and forms
Y5 according to[(29):
oot
yp =Upyp
=TpZ+ 25.

(33)

capacity.

Remark6. The SIC procedure and the performance analysis
of the scheme implicitly assume that the yet-undecoded-code
books can be considered as AWGN, and consequently that
each codebook should be capacity achieving for an AWGN
channel. This is indeed true for Gaussian codes (recall Defi-
nition[8) but not for any single-user scalar capacity-adihig
codes as is discussed in Section VIII.

V. MULTI-STREAM SCHEMES FOR THE
MIMO W IRETAP CHANNEL

Equipped with the results presented in the previous sec-
tions, we describe how to construct multi-stream schems th
achieve the capacity of the MIMO wiretap channel.

We first describe a scheme in which the channel to Eve
is effectively diagonalized, in Sectidn_WA. This partiaul
choice facilitates the proof of both weak and strong secrecy
guarantees over this channel. We then extend this result in

. Decodes then-length codewords using SIC, from lastS€CtionV=B, by proving that any joint triangularizatidn2jl
(i = N4) to first (i = 1): Assuming correct decoding of €1 be used to construct a multi-stream capacity-achieving

all codebooks + 1,..., Na, Bob formsyj.; (30):

and recoverg;.

! T =~ eff
Ypi = Iii%i +2;

scheme.

A. Orthogonalizing Eve’s Channel

We now present a simple adaptation of the layered-SIC
scheme of Sectiop IV to the MIMO wiretap setting, depicted



also in Fig[2, that achieves the secrecy capacity of ther@lancombining the result of Sectign]V for SIC for MIMO channels

using scalar wiretap codes. without secrecy, correct decoding at Bob’s end is guarahntee
To this end, we note that the layered-SIC scheme isCodebook construction: N, Gaussian codebooK®; |k =

capacity-achieving (without secrecy constraints) forelngice 1,...,Na} of length n are generated independently, as

of V4 in (25). In particular, we can choose this matrix to bén Definition [8. CodebookC; contains [anq X [Q”Rk—l

the unitary matrix that diagonalizes Eve's effective chelnncogewords. Each codeword withigy, is assigned a unique

E1atvrix, namely, the right matrix of the SVD of Eve, denoteg,yex pair (mg, fi), where my, € {1’ o DanH and
yVa: fe€d1,..., [27F | L With a slight abuse of notation, we
HepKY/2 = UE]jE\“/L. (35) shall refer to such codes as wiretap Gaussian codes of rate-

pairs { (R,W Rk) }

. . ~ 1/2 . .
Applying thisV 4 to H g (followed byK /<) provides effective Let e > 0. Then the rates are chosefl as

parallel scalar independent channels to Eve, of SN&S,

2 2
where{d;} are the diagonal values @ g, which constitute Ry, = log i 5 — 2¢ = log b_,; — 2, (37a)
the singular values aofl K /2, i L +dj €k
The following simple lemma summarizes the connection Ry =log(1 +d2) + ¢ =loge: +e. (37b)

between the SVDs of the effective channel matfix] (35) and

the effective MMSE channel matrig s (Hs, K ). Encoding (Alice): ConstructsV4 codewordd zy, € Cx|k =

1,..., N4} as follows.z, is chosen fron,, according to the
Lemma 3 (Connection to effective MMSE matrix)The SVD sub-message:;, intended to Bob and a fictitious sub-message
of the effective MMSE matribGr = G(Hg,K) (recall f; which is chosen uniformly at random. The transmitted
Definition[3) is given by signal at every time instant;, is then constructed as in the
layered-SIC scheme of SectipnlIV.
Gp=UpDgVa4, (36) Decoding (Bob): Bob performs SIC decoding as in the

whereDy; is a generalized diagonal matrix (viz)p;,; = 0 |ayered-SIC scheme of Sectibnl IV to recoyény., fx)}, and
for i  j); denote its diagonal elements Hy; ). v discards{fx}. Since R, + R, < logb; for every k, the
The SVD oG (38) is connected to the SVD éfzK /2 decoding error probability of Bob can be made arbitrarily

(39) as follows. Definal; = 0 for i > N4, and note that Small by taking a large enough
e; = 1for i > Na. Define furtherA as the generalized Secrecy analysis (Eve)The resulting channel to EvVE_(35)

diagonal matrix of dimension®&’p x N4 whose diagonal is (depicted also in Fid. 2b) is diagonal:

equal to (%, e ZT) wherer = min{N4, Ng}. Then, Uy =Dp& + zp,
1) Vi=Va, ie, Gg andHEKl/2 are diagonalized by the wherezg is AWGN with zero mean and identity covariance
same right matrix. matrix. That is, the effective channel to Eve comprises inde
2) 1+d? =e?, i=1,...,Na. pendent AWGN channels. Over the resulting scalar AWGN
3) Ug = UgAg, whereUg is the Ng x N4 upper-left sub- channels, wiretap Gaussian codes are known to attain strong
matrix of Ug. secrecy [[42], whereR,, is chosen to be (slightly) above the

) . , ) channel resolvabilityi.e., R, = log(1 + d2) + € for ¢ > 0.
The respective decomposition Gfy is as in[2b), where the tpic is 5 stronger requirement, as opposed to the choice

diagonal values of the resulting generalized triangulatrima Ry, = log(1 + d2) — € for € > 0, which facilitates an easier

Ts are {bi}. . proof of weak secrecy guarantees for this channel (see, e.g.
Since Eve observes parallel independent channels, US@ Ch. 22)).
o

scalar wiretap codes over these channels, that are matche tal rate: By using [20), [37k), the total rate is equal to
the SNRs to Eve{d?}, guarantees the secrecy of the scheme.
Moreover, by using wiretap codes that work with respect to 4
the SNRs to Bob of[(32), the secrecy capacity is achieved. = ZRk
This is formally stated in the following theorem. =1

Na 2
b
Theorem 4. The layered-SIC scheme of Sectidn] IV = Z <log e—§ — 26)
achieves the secrecy capacity under a covariance constrain k=1 k

Cyg (HB,HE K) by using: =1Ig (HB,HE,K)—2NA6.

« The optimal input covariance mf\/tgb’( of (22). By choosing the optimaK, and taking a large enough this

» ChoosingV 4 qf the SVD_ OHEK _ (133); rate can be made arbitrarily close to the secrecy capagity

« Scalar Gaussian capacity-achieving wiretap coges thathile guaranteeing both weak and strong secrecy.  m
are designed for the Bob-Eve SNR'pa{"@i B 1’di)}' Remark7. In the proofs to follow, with a slight abuse of
Proof: The proof easily follows by noting that the resultnotation, we shall state the sizes of the codebook without

ing channel to Eve is diagonal, i.e., parallel scalar AWGN 9To establish weak secrec;, can be relaxed td;, = loge? — e. The

channels. HenC?* by USing independent (Wiretap) Gauss}ﬂ@ice in [37b) allows to establish strong secrecy, as ihdéuarexplained in
codes, secrecy is guaranteed over the parallel channels. tBysequel.



explicitly using the ceiling operatioft], as its effect becomes Then, fore > 0, however small, and for any joint distribution

negligible for large values of. p(X1,...,%Xn,), there exists a scheme which achieves weak
Remark8. In the celebrated SVD-based scheme for MIM@ecrecy, with thé:-th codebook conveying a rate:
channels of Telatai [20], the SVD is applied to thleysical Ry, = I(>~<k;YB|>~<in1) _ I(>~<k;}/E|>~<in1) e (39)

channel matrixH = UDV',. The transmitted signal is then

formed according td{26), where the non-unitary makix2 Remark9. The secrecy-proof of this result uses a “genie-

(over the effective diagonal chann®) is diagonal, with aided” argument: in the mutual information of tketh code-

entries set by the water-filling solution. Thus, the SVD glayword recovered by Eve, we provide all previous codewords

two roles: it serves both for reducing the coding task to tfiat {Z¢|¢ = k + 1,...,Na} as “genie”, even though Eve

coding over scalar channels and for constructing the optinf&nnot recover these messages. Bob, on the other hand, uses

input covariance matrix. successive decoding to recover the messages. Thus, the allo
In contrast, in [3b) the SVD is applied to theffective cation of rates{R;.} in (39) guarantees that all the messages

channel matrixHzK'/2, which already includes the non-(m1,..mxy,) remain jointly secured from the eavesdropper’s

unitary “coloring” partk */2. Thus, it is only used for reducing channel output sequence.

the coding task. This form is more general, in the sense that Proof of Theoren{]5: We specialize the general su-

it allows for a choice ofK that is not related to a diagonalperposition coding framework of Propositiéh 1 to the linear

decomposition of the channel, e.g., subject to individwal@  encoder structure and independent Gaussian distributibns

constraints, or where the target expression is differegt, an (X1,...,%n,). Use

MI difference as in this work. Finally, note that the rate of ~ ~
(20) can be achieved using the proposed scheme, everisif =T, IN,)
suboptimal (when exact calculation of the optirials hard). =KV, 3,

in 38), where the vectok is composed of one symbol from
each codebookt = (7,...,7%)"

We next show that, in fact, secrecy capacity can be achievedcach codebook is a scalar Gaussian wiretap codebook of
using the layered-SIC scheme and scalar wiretap codesyor aperage unit power. The achievable secrecy rate of codebook
choiceV 4, and by this generalizing the result of Section V-A = 1,..., N4 is given by [39):
to transmission that is not necessarily orthogonal overstEve
channel. Specifically, we show that the secrecy capacity can ~ Rr =1 (ik;YB iff;_‘l) -1 (ik;yE

B. General Multi-Stream Scheme

) — e (40a)

be achieved using any joint triangularization of the effect (e Crle oY

MMSE channel matrices[_(18)aqy unitary matrix V4 at =1 (Xk’zyB;k) ! (QXk’yE;k) ‘ (40b)
the encoder). In the general case, Eve’s resulting matrix is = log (bk) — log (ek) ¢ (40c)
triangular and hence denoted by;, as in [18b). The diagonal ~ log @ . (40d)
values of Ty are denoted bye;}. The resulting family of e? ’

k
schemes includes two important special cases, discusse%%rem and740b) are due [E(B1a) dAd31c), respagtivel
Sectior V-C, in addition to the one introduced in SechionV-Arp, s using the resul?[ oFT20), we can) achieve ), respeg

Theorem 5. The layered-SIC scheme of Sectidn] IV

N
achieves the secrecy capacity under a covariance constrain R = Z Ry
Cs (Hp,Hg K) by using: 1
« The optimal input covariance matrix of (22). N b2
« Any joint unitary triangularization(T8). = [1053 —’5} —€
o Scalar Gaussian capacity-achieving wiretap codes k=1 Gkl
that are designed for the Bob-Eve SNR-pairs =Is(Hp,HE,K),
.{(b? N .1’63 - 1)} where {b;} and {e;} are defined as and for the optimal covariance matrik the scheme ap-
in Sectior(T.

proaches the secrecy capacity. [ |
We use the following result, proved in Appendix C, for
the proof of this theorem, which extends beyond the Gaussian Important Special Cases

wiretap setting, for both the discrete and the continuosssa ; - . . .
We now present “special” choices &f,4 which provide

Proposition 1. Let p(yg|z) and p(yz|x) be the transition various advantages.

distributions for the legitimate user (“Bob”) and the eaves 1) Orthogonalizing Eve’'s channelThe scheme of Sec-
dropper (“Eve”), respectively, of a memoryless wiretap oha tion [ZA] is a special case of proposed scheme in this sub-
nel, wherer is the transmitted signal, angls andyx are the section, since, as explained in Lemfda 3, the unitary matrix
channel outputs to Bob and Eve, respectively. Let a superpog , of the SVD ofH ;K /2 is identical to that of the SVD of
tion coding scheme be defined by codés: i =1,...,Na} G (I80).

and a scalar functionp such that
10Here, in contrast to AppendiXIC, boldface letters represpatial vectors
= (T1,...,TN,)- (38) and time indices are suppressed.
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2) Orthogonalizing Bob’s channel — Avoiding SI®er- Scheme(Layered-DPC)
forming SIC adds complexity to the decoder, as well as Offline:
introduces potential error propagation. We can avoid tlyis b , Select an admissibl&/, x N4 input covariance matrix
performing SVD with respect to Bob’s channel, as opposed to K that satisfies the input constraint.
Eve’'s channel, as done in Sectibn V-A. That is, chovse . Construct the effective MMSE matri{_(17)Gs =
such that G(Hp,K).
« Select a unitary triangularization {11) and apply it to the
matrix G g, as in [2h), to obtain the unitary matricels;

whereDp is diagonal. As happens with Eve in Section V-A, andV 4, and the generalized upper-triangular mairi.

Bob obtains a diagonal equivalent channel, where each subt Denote the\; diagonal elements of ; by {b;}.
stream can be decoded independently. o Denote byUp the N x N4 upper-left sub-matrix ot 5,

3) Avoiding individual bitloading: When using (non-  2nd construct the corresponding matfix according to

5 il 1/2
secret) communication schemes based on SVD or QR, as in @0):Tp = UpHsK _/ Va.
the layered-SIC scheme, the effective sub-channel gdifjs ~ © COnstructV, scalardirty-paper code§25] of lengthn — -
are different in general. This requires, in turn, a bit-load codes generated via random binning with respect to i.i.d.
mechanism and the design of codes of different rates magchin ~ Gaussian distributions. Codeboak(l < i < Ny) is
these gains. By using the GMD, described in Secfion]ll-A, construgcted fqr a channel with AWGN of unit power,
instead, a constant diagonal is achieved, which translates SNR (b7 — 1), interference [recall(28)]
into equal SNRs for all parallel channels. This suggests, in

Gp =UpDpVi,,

turn, that bit-loading can be avoided altogether and that th Z TB.ieZ¢ (42)
codewords sent over the resulting sub-channels can be drawn (=i+1
from the same codebook. which is available as side information at the transmitter,

A similar result can be achieved for the wiretap setting.  and rateRr,; close tolog(b2) [recall (33)]
To this end we require the usage of a modular scheme thaljice: At each time instant — 1,.
transforms good AWGN codes of a rate close ltg(b?)
for_ Bob into wiretap .COdeS of rates close fiog(b*/e;)}. Z; is generated according to the message to be conveyed
This way, after applying the GMD t6€x g, the same AWGN and the interferenc&#1)
codebook can be used over all sub-channels, where for each -~ . entries {7} '
sub-channel a different transformation into a wiretap cisde . Attains the vectos by lm.ultiplying by V and K /2
used, that depends on its effective SNR to Eaxfe-1). Indeed, as in [33). A
such a modular approach exists; see Sed¢fion VIII.

o Generates; from last ¢ = NA) to f|rst (¢ = 1), where

o Transmitsz.
RemarklQ. It is possible to use the same wiretap code W|thout Bob:

assuming the modular wiretap code construction, by using a .
At each time instant = 1,. .., n, receivesy g and forms
joint matrix decomposition that achieves constant diatgfioa according to[[29):
both triangular matrices simultaneously. A constructibatt Yn 9 '
essentially achieves this property was proposed_in [26]. g = UTByB
=Tpa + 2p.
VI. DIRTY-PAPER CODING BASED SCHEMES o Decodes the codebooks using dirty-paper decoders, where
In this section we construct the DPC counterparts of the z; is decoded fromyg.;.

layered-SIC scheme for Gaussian MIMO channels with and
without secrecy constraints. In these variants the suieess By using good dirty-paper codes, capacity is achieved; see,
decoding process of the scalar codes is replaced withea., [40].
successive encoding one; consequently, all (scalar) cudksb ~ We further note that codeword; is recovered fromyg.;
can be recovered in parallel and independently of each .othegardless of whether the other codewofds|;j # i} were
The latter makes these variants useful for more complexcovered or not.
settings, such as the confidential MIMO broadcast setting
treated in Section V]I. We start by presenting the DPC-basgd MIMO Wiretap Channel
schemes without secrecy constraints, in Seclion VI-A. We
then construct a variant for the MIMO wiretap setting, irb
Section[VI-B, which again achieves the secrecy capacity
the channel.

By replacing the dirty-paper scalar codes in the layered-
C scheme of VI-A with scalar dirty-paper wiretap codes
, [47], a scheme that approaches the MIMO wiretap

secrecy capacity can be constructed.

) Theorem 6. The layered-DPC scheme of Sectibn VI-A
A. Without Secrecy Constraints achieves the secrecy capacity under a covariance constrain
We now briefly review the DPC variant of the layered-SI€’s (Hs, Hr K) by using:
scheme, which is based in turn dn44],][45] (see alsd [40]). « The optimal input covariance matrik of (22).
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« Any joint unitary triangularization(18). Decoding (Bob): Bob recovers(my, fi) using standard
« Scalar Gaussian dirty-paper wiretap codes, whereittie dirty-paper decoding as in Sectibn VI-A, and discafgsThe

codebook{=1,..., N,) is designed for error probability can be made arbitrarily small by taking a
— Bob’s SNR of (b2 — 1) and interference signal large enough.
ZéVZAiH Tp.ioe. Secrecy analysis (Eve)As in the proof of Propositiofl1,
] ) we provide{u,|¢ = k+1,..., N4} as a genie for the secrecy
— Eve's SNR ofe; — 1). analysis ofuy. By recalling that{x¢[¢{ =k + 1,..., N4} and
— Rate close taR; = log(b?/e?). {w|¢ =k +1,...,N4} carry the same information, and the

lri1t ear relation in the definition af, (423a), the secrecy analysis
reduces to the analysis in the proof of Proposifibn 1, asagpe
(ian Appendix[T, specialized to the Gaussian case. |

We next prove the existence of such codes and conseque
also the result of Theore 6.
Proof: The proof follows by a standard extension of th

proof of Theoreni) to the dirty-paper casel[25].1[46].J[47]. VII. CONFIDENTIAL BROADCAST AS ACONSEQUENCE

Codebook construction:For eachk = 1,..., N4, we gen-
erate a codebooR,, of 2"(Fx+1x) sub-codebooks, whereis In this section we consider the two-user MIMO confidential
length of the codewords. Each such sub-codebook is assighé@adcast scenario. Namely, “Eve” is replaced with “Cledrli
a unique index pai(my, fi), wheremy, € {1,2,...,27f} in (2H), and the corresponding noise, output and channel

and f, € {1,2,...,2"Fx} and contains2"Ri —(Rw+Fy)]  matrix are denoted by, yo andHe, respectively.

codewords. Each codeword within codebdoks generated We next show that, under the covariance matrix constraint,
independently in an i.i.d. manner with respect to a Gaussillf rectangular capacity regiofl (8), that was established i

distribution p(uy,) with parameters dictated by [11], can be attained as a natural extension of the capacity
derivation for the MIMO wiretap channel and the layered DPC

Na . . .
- - - scheme proposed in Sectidng Il dnd VI, respectively.
ug = T kXi + g Z TB:k,eXe (42a)
=k+1
b2 1 " A. Capacity Region
A
Ok = kbﬁ ) (42b) We saw in Sectiof TlI that in order to achieve the secrecy

. N ) _capacity where Charlie takes the role of Eve, the GSVD
fqr zero mean unit power i.i.d. Gaussian random variablggeds to pe applied t6G 5, G¢) and only the sub-channels
{%k[k=1,...,Na}. corresponding to GSVs that are greater than 1 (correspgndin

_Note that since in this case the interference (available @ssyb-channels with greater SNR to Bob than to Charlie) need
side information to Alice) in sub-channélis composed of {5 he ysed. and the rest — nullified.

messagega|( = 1,..., Na}, the information carried by the  However, we note that, if we were interested in confidential

sets{x¢|l = 1,..., Na} and{us[f = 1,..., Na} is the same. communication with Charlie rather than with Bob, we would
Let € > 0. Then the rates are chosen as get the same solution with the roles ldf; andH¢ reversed.
Ry 21 (upsyp)— 1 (UMY}L Uivfl) e This, in turn, means inversion of the GSVs:

log p1i(Ho, Hp,K) = —log i (Hg, He, K).
= [I(Uk§}’B) —I(Uk;ugfl)} _I(UkQYE‘Uinl) —¢ guilHo,Hp, K) gui(Hz, He, K)
In these terms, we can write the rectangular capacity-regio

- N s =N
=1 (XMYB’kal) -1 (Xk§YE ka1) — € of the confidential broadcast channl (8), established ifirst
b2 [17], as follows.
=log £ —, (43a)
e Theorem 7. The capacity region of the confidential MIMO
Re 27 (ug; ‘UNA e =TI (% ‘;(NA e broadcast channel under an input covariance constré&inis
y ( RYE k“) ( BYE k“) given by all rates(Rp, R¢) satisfying:
=loge; — e, (43b) N
A
R 21 (u;yp) — ¢ Rp < Z [log i (Hp, He, K)]+’ (442)
Na i=1
= log <bi + Z |TB:,k.,Z|2> —€. (43c) Na )
e Ro < [~logui (Hp,He,K)], . (44b)
=1

Encoding (Alice): Encoding is carried in a successive
manner, from |ast]<: NA) to first (k — 1) Within codebook Remark 11. S|m|lar|y to the MIMO Wiretap Channel, the
k, the index of the sub-codebook to be used is determiné@Pacity region under a power constraiftis just the union
by the secret message;, and a fictitious messagg, drawn of all (rectangular) regions under a covariance constraitht
uniformly over their respective ranges. The codewarg Small enough trace.
within sub-codebookmy, fi) that is selected, is the one that The converse part of this result is trivial by TheorEin 3,
is jointly typical with the side im‘ormatiorZéV:A,C+1 TB;kym. since both users attain their individual secrecy capacitier
If no such codewordu; exists, then the first codeword isthe direct part, it is tempting to think that since different
selected. GSVs are nullified for Bob and for Charlie, Alice can achieve
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their optimal rates simultaneously by communicating over is constructed for an AWGN channel to Bob of SNR

orthogonal “subspaces”. However, since the matritgsand b? — 1, and interference:

T are not diagonal, these “subspaces” are not orthogonal, Na

and some more care is needed. Z Tp.i vie
To this end, in the next section we put into force the layered- —_

DPC scheme of Sectioh VI, which allows to recover the
sub-message transmitted over each sub-channel indepbnden
without the recovery of other sub-messages (in contragtdo t
layered-SIC scheme). This property is required by at least o
of the users — Bob or Charlie — as each of them recovers only
a subset of all the transmitted sub-messages. The derivatio

and for an AWGN channel to Charlie of SNR— 1.

— The remainingL codes are intended for Charlie:
Codebookz; (Lp +1 < i < N,) of a rate close
to R; = log (c?/b?) is constructed for an AWGN
channel to Charlie of SNR? — 1 and interference:

of the scheme thus provides a constructive proof for thectlire Na
part of Theorerfl]7, which is an alternative to the proofin [11] Z Ty,
l=i+1

B. Capacity Achieving Schemes and for an AWGN channel to Bob of SN — 1.

In view of Theoren[ R and the schemes developed for theAlice: At each time instant =1,...,n:
MIMO wiretap channel, the result of Sectiénllll has a rather « Generates; from last ( = N4) to first ¢ = 1), where
intuitive interpretation:V 4 of the GSVD is the precoding Z, is generated according to the message to be conveyed
matrix that designs the ratios betweéb;,} and {¢;} to be and the signal§z¢|¢{ =i+1,...,Na}.

as large as possibl€d;} replacing{e;}), which corresponds « Formsx with entries{z;}.

to maximizing the achievable secrecy rate to Bob. In order. Attains the vectorr by multiplying € by V4 and K1/2

to achieve Bob’s secrecy capacity, only the sub-channels fo as in [3%).

which the secrecy rate is positive; > ¢;) need to be utilized. « Transmitsz.

Allocating the remaining sub-channels to Charlie, on thieeot  Bob:

hand, attains Charlie’s optimal covariance matrix. « Ateach time instant =1, ...,n, receivesy; and forms
Combining the two gives rise to the following scheme, g according to[(29):

which is a straightforward adaptation of the layered-DPC

scheme of Sectiop VI for the wiretap channel. Yp = U;yB
Scheme(Confidential broadcast via layered-DPC) =Tpx +2p.
Offline: ) « Decodes codebooks = 1,...,Lp using dirty-paper
« Construct the effective MMSE matri{_(IL7)G 5 = decoders, wherg; is decoded fronjz.;.
G(Hp,K) and G¢ £ G(H¢,K), whereK is the  Charlie:
constraining matrix. « At each time instant forms
« Apply the triangular form of the GSVD[(16) to ) s
(Gp,G¢) as in [25), to obtain the unitary matrices Yo =Ucyc
Ug, Ue and V4, and the generalized upper-triangular =T+ 2c.

matricesT g and T¢.

« Denote the diagonal elements B and of T¢ by {b;}
and{c;}, respectively.

« Denote further the (first) number of indices for which The following theorem proves that this scheme allows both
b; > ¢; by Lp. The remaininglLc = N4 — Lp indices users to attain their respective secrecy capacgiesiltane-
satisfy c; > b;. ously, providing a proof for Theorer] 7.

o Denote pnyB the upper-leftNg x L g sub-matrix ofUp, . .
and by Uy — the upper-rightNe x Lo sub-matrix of Theorem 8. The layered-DPC confidential broadcast scheme

Uo. achieve; the secrecy capacity region under a covariance
« ConstructT z andT¢ as in [27): constraint(44) by:
~ i o Using scalar Gaussian dirty-paper wiretap codes in-
Tp =UgHpK2Vy, tended for Bob, as follows, where theth codebook
To = OLHCKI/QVA. (1=1,...,Lp) is designed for:
— Bob’s SNR of(b? — 1) and interference signal
o ConstructN4 good scalar dirty-paper wiretap codes of Zé\[:‘i—&-l Tp.i.0dg.
unit power and length, denoted by{Z;|i = 1,..., N} o )
(with the time index omitted to simplify notation), gen- — Charlie'’s SNR of(c; —1).
erated via random binning with respect to i.i.d. Gaussian ~ — Rate close taR; = log(b?/c?).
distributions, as follows. « Using scalar Gaussian DPC wiretap codes intended for
— The first Lp codes are intended for Bob: Codebook  Charlie, as follows, where théth codebooki= Lp +
Z; (1 < i< Lp) of arate close td?; = log (b?/c?) 1,...,Ny) is designed for:

o Decodes codebooks = Lg + 1,..., N4 using dirty-
paper decoders, wherg is decoded fromjc,;_r,)-
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— Charlie's SNR of (¢2 — 1) and interference be used, without worrying about the way they were created.

ZéV:ﬁHTc;i,zie- Further, it is desirable to construct MIMO secrecy schemes

— Bob's SNR ofb2 — 1). using any stgndgrd(non-secrecy) scalar codes that are good
t; ) for communication over the (non-secrecy) AWGN channel.
- Rate close taR; = log(c; /b7). To that end, one may hope to combine the approach of the

Proof sketch: We start by noting that since the capacitfUment work with procedures that construct sca_llar _wiretap
region is rectangular, it suffices to show how to approach tf@des from non-secrecy ones, such [as [12] (which is based
corner point of this region. The proof relies on the fact thaPON Similar techniques for discrete wiretap channels pse
in the layered-DPC scheme for the MIMO wiretap channdl [48], [49]). Unfortunately, as we report in_[50], thereear
of Sectior(V], each sub-codebook is recovered indepengenfiome obstacles.
regardless of the other sub-codebooks. Hence, the probkof t Surprisingly, the problem lies already in the use of scalar
decodability and secrecy analysis for Charlie are the sanecades for MIMO communications without secrecy constraints
in the proof of Theorernl6 (with Charlie being the “legitimate Recall the V-BLAST/GDFE schemes presented in Sedfidn IV
user). In the treatment for Bob, a small variation is needeaind depicted in Figl]1l. Such schemes are widely accepted
the interference over sub-chanriél < i < Lp) is composed in the literature as capacity achieving, without proposing
of both, messages intended for Charlié’,gﬂ, and messagesany treatment or analysis for specific codes. In practice,
intended for Bob;;;ffl_ Thus, the DPC for Bob is carried withSuch schemes are used in conjunction with arbitrary scalar
respect to both of these interferences, and the decodednilit codebooks, e.g., one-dimensional constellations with esom
secrecy analysis follow as in the proof of Theorem 6. m error-correction code [27]; however, the combination doets

Remark12 (Replacing DPC with SIC)DPC was used in the necessarily approach c;a_tpacity even if the individual cattes .
layered-DPC scheme for both users. However, in the propoéggeed' for some specific channgl matnc.es, the scheme .m|ght
scheme one may use SIC instead of DPC for Charlie, 8@”“_””‘ very poorly. To see this, consu_jetII(SO). TP'S IS a
is done in the layered-SIC scheme for the MIMO wireta uIt|pIe-ac§:ess channel (MAC) from the inputs, ..., & to
problem. Alternatively, by using lower-triangular matasc € QUtpUtyB%i' The SIC decoder tref_;ltmg all mputs as noise 1
instead of upper-triangular ones [M118) (which corresscind equivalent to a stage of a successwe-decodmg_ procedure fo
switching roles between Bob and Charlie in the constructiéne MAC. For the.MAC, n turn, not any collection of good

of the scheme), one can use SIC for Bob and DPC for Charl%WGN codes achlevt_as c_apacny (see, elg.] [51]). For example
This phenomenon was also observed by lau al. [11]. assume that a MAC is given by

Unfortunately, this scheme does not allow, in general, tmdav
DPC for both of the users.

Remark13 (Other choices of precoding matricesh Sec-

tion N=Q, different choices ofV 4 were proposed for the )
MIMO wiretap problem: diagonalizing eitheT 5 or T, Now further assumethat_thetwo codebpoks are nested Elttlce
that case (up to shaping), any possible point:oft x5 is

which corresponds to avoiding SIC by Bob or guaranteeiﬁ X X
strong secrecy, respectively; or, by balancing all the SN 0 a point of the higher-rate code, thus one codebook ¢tanno

of the sub-channels to Bob, which allows using the sarg decoded without the other. The problem is not restriated t
codebook over all sub-channels and avoiding bit-loadirage r Nt€ger coefficient ratios but affects performance for Boef
allocation. The analog in the case of confidential broadzast CI€Nts close to any “simple” ratio; see, e.g., |[52, Sectidh |

be achieved by applying block diagonal unitary operatiims, Returning back to the multi-stream schemes for the MIMO
addition to the matri¥ 4 that is dictated by the GSVD, wherewiretap setup of Sectiof]V, the decoder of Bob will also
the blocks correspond to the sub-channels that are allbeate incur the same difficulty discussed above when generalizing
Bob and to Charlie, of dimensionss x Lp and Lo x Lo, to arbitrary scalar codes. Furthermore, the same issuesaris
respectively. However, whereas we can avoid SIC and DPT our secrecy analyses (except when Eve’s channel is or-
at Bob’s end in the layered confidential broadcast scheme tpgonalized, as in Sectidn VMA): We successively provide
diagonalizing his channel, we cannot achieve this result fve with previous messages as a “genie” side information.
both Charlie and Bob simultaneously, as DPC needs to B& a result the proof hinges on Eve’s disability to perform

Yyp =21+ T2 + 2.

employed for at least one of the users. a successive decoding process in the presence of intecéeren
from yet undecoded messages. Here also this interference is
VIIl. DI1SCUSSION FROM RANDOM ENSEMBLES TO taken to be Gaussian and alignment might help Eve.
SPECIFIC CODES To conclude, of the two ingredients needed for adjusting

In this work, we have demonstrated how scalar codes canycodes that are good for communication over scalar AWGN
be used for some MIMO secrecy scenarios. Throughout tbkeannels to the MIMO wiretap channel, the secrecy part can
work, we have assumed that these scalar codes are takerireated by the procedure 6f[12]. The remaining problem is
from a random Gaussian ensemble, suitable in an approprisitailar to the one in SIC without secrecy constraints. lafjee
sense (with or without secrecy constraints, with or withgide obtaining good scalar Gaussian codes that approach capacit
information). One may be interested in a stronger resulereh under SIC (without secrecy) from arbitrary scalar Gaussian
any scalar codes that are good in the appropriate sense cades remains an interesting open problem.
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APPENDIX A 2d(G1,Gg) = B~ (dK)HL,HEB + BTHI H(dK)B T,
PROOF OFLEMMA [T] (47b)

The following proposition will be used in the proof of Substituting[(4lr) in[{45), gives rise to
Lemmal].

Proposition 2. Let A; and A bem; xn andmq xn full-rank
matrices, respectively, where; > n and my > n. Consider +Bi(HLHE — )\iHTEHE)(dK)B_T)yi
the generalized eigenvalue (GEV) problem:

AlA 1y = MIAy.

2¢fdA; =y (B‘l(dK)(HEHB — \HLHE)B

—yl (B—l(dK)B—TBT(HgHB — \HELHE)B

+Bf(HLHE — MHLHE)BB 1 (dK)B~ 1)y,
Then, the generalized eigenvalues(@{A;, ATA,), {)\}, o o . . )
are the GSVs ofA;, As), {;;}, and the generalized eigen- =2(X —1)y;B7(dK)B™ 'y,
vectors are the corresponding columns of

as desired. [ |
Y=XT Corollary 1. If dK is positive semidefinite, then the sign of
Furthermore, the differential of the GEX in terms of the @i €quals the sign of; — 1.
differentials of AT A, and of AJA, is given by The result of Lemmd]1 follows immediately from this
; i i corollary.
Y (aafar) - Ad(A]A2))y .
A= ytATAy ' (45) APPENDIXB

TRUNCATION OF GENERALIZED SINGULAR VALUES

Proof: The first part of the proposition easily follows from . ,
Apply the triangular variant of the GSVD[(L6) to the

GLGRY = XD%, matricesGp = G(Hp,K) andG g = G(Hg,K), as in [I7)
GLGpY = XD%. and [18):
The proof of the differential identity (45) can be derived by Gg & (HBK1/2> = UBDBTVQ, (48a)
standard eigenvalue perturbation analysis; see, £.d., [58 !
Consider now the diagonal variant of the GSVD@f; = Gg £ (HETUQ) =UpDsTV,. (48Db)

C—;(HB7 K) andGE = G(HE, K) GE)
Using any unitary matrixQ instead ofl in the definition of

Gp = UpDpX', (462) Gp and Gy, has no effect on the resulting matrices, T,
Gp = UpDgXT, (46b) Dp andDg:
and denote the squared GSV vectory.e., the vector whose (HBKl/Q) _ U%DBTVL 7
entries satisfy: Q
1/2
22 (HES ) — USDETVY, .

Note further thatd < p;, \; < oo, sinceGpg and Gg are of Furthermore, the upper-lefi; x N4 and N x Ny of the

full rank [recall [T1)]. _ _ _ resulting left unitary matricet)$ and U, respectively, are
Following (20), the MI difference in terms df\;} is equal equal to those ol andUp of (@8).

to Using the last observation wit = V', and [48) for the
Is(Hp Hp, K) =Y log ;. matrices
i iti - v a (HeK'/?V, HpK'/?
By applying the result of Proposition] 2 to the effective Ggp = ( | ) = < v ) A,
channel matrices of (46), we obtain the following lemma. A
i i . v o (HeK'/2V, HpK'/?
Lemma 4. The differential of the GSX; (i = 1,...,N4), in Ggp = | = Vi Va,
terms of the differential of the covariance matkixis given by A
ives rise to the GSVD oGY, and GY.:
efdhi = (A — 1)y[B~'(dK)B Ty, , J P g
h 12 ¢ is the di | ofDp, and y, is th Gjs & UpDsT, (492)
whereB = K77, e is the diagonal ofDg, and y, is the G}géu\éDET, (49b)

corresponding generalized eigenvector corresponding;to

V \% : H
Proof: PerturbingK results in the following differentials WNereYs andUj; are unitary (and theivs x N4 and Ng x

of GLGB and GTEGE @s) : Ny upp_er-left sub-matrices are equal to thosdJef andUg,
respectively).
2d(GhLGp) = B H(dK)HLHEB + BTHLH 5 (dK )BT, That is, the GSVD ofGY, andGY, is achieved by applying

(47a) a QR decomposition to each of them.
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The representation ifi_(#9) allows us to incorporate a trum-= o (Z1(m1, f1),...,Zn,(mnN,, fn,)). Bob’s decoding is

cation operation: based on successive decoding starting from the last message
1/2 (k = N4) and proceeding to the firskt = 1).
G 2 (HBK | VAlB) Since
= URD,T (50a) Rp+ Ry =1 (Xk yB\ifffl) — 2¢ (52a)
1/2 - -
Qe (HEK | VA'B) <1 (xasys[x ). (52b)
=U,D,T, (50b) the decoding of each combined messdge;, fx) succeeds

, , ] ) . with arbitrarily high probability, as: — oc.
where Uy and U, are unitary having the same firdt In order to satisfy the secrecy constraint, the following

\% \% : ;
columns asJp andUj, respectively.T’, D}y andD}; have  congition must hold, for any > 0 and large enough:
the same firstL g columns asT, Dp and Dg, respectively,

whereas the remaininjz = N4 — L columns are all zero lH(ml,. Lmn,|Yg, €) > lH(ml,. MmN, — €,
except for the diagonal elements, which are equal to 1: n n

where€ = {€y,...,Cn,} denotes the overall collection of
, , ; Y the N4 codebooks.

Dpiij = DPpay =Ti; =0, i#J,J>Lp. It suffices to show that for any > 0, and large enough,

The latter is easily seen by noting that the QR decomposition 1
carries out a Gram—-Schmidt process over the columns of n
the decomposed matrices, and hence the first columns
remain the same after applyiig, whereas the structure of
the remaining columns is trivial due to the nullification bgt
last Lz columns ofH 5K /2V 4. H (mk’yE,mkal,e) >H (mk‘yE,ifCVfl,e)

We note that[{30) is the GSVD d&’; and G/; up to the
normalization propertyi{15), which has no effect on the GSVs = H (mk, ik’yE, T (“3’) - H (i’k‘mk, Y Tl @)
and can be achieved by a multiplication by afl x N4 - - -
diagonal matrix with its firstLz entries equal to 1 and the — H (mk‘yE’mkal’e) —H (fk‘mk’yE’mkal’e) :
remaining entries — td /v/2.

The desired result is established by noting tKdt? =
K 1/2v,4l B, and that the firsL 5 GSVs of(G’;, G’;) are equal

Dy =Dpay=Tiy =1, =7, > Lp;

1
H(mk|yE,mkN_’f‘l, C) > EH(mk) — ¢

is satisfied for eaclt.
Note that

Due to [51), in our construction the eavesdropper can decode
fr with probability going to 1, given my, vz, :E;’Li‘l, ¢), and
hence the second term is vanishingly small. Thus, we are left
with

K
to the firstLp GSVs of (G, Gg) (the GSVs that are greater
than 1) and the remaining GSVs @&';, G;) are equal to 1.

H (mk‘yE,m{jfl, e) > H (:Ek‘yE,:Einl, e) e,
APPENDIXC el N h1lon ,
PROOF OFPROPOSITIONT =H (wl‘wkflayEae) - H (331 ‘ka7yE’e) — e, .

In this appendix, with a slight abuse of notation, we denot§nce the two equivocations are the same quantity up to an
by boldface lettersi-length sequences, with being the block jnqex shift, it suffices to show that f@; > 0 andd, > 0 that
length (in contrast to the other parts of the paper, wheygnish withe and large enough

boldface letters denote spatial vectors).
Proof of Propositiori]l: Denote

)=

[ (xeivs|sin) — 1 (Rave|3ia)] -0 (539)

Ry 2 I(?k;YE|>~<in1) — €. (51) —1
. 1
The codebooks are generated sequentially, from Fast ( <—-H (ck’f’ckafl,yE, (2) (53b)
N,) to first (k = 1), as follows. Fork = N4, construct "k
the codebookCy, of 2"(F¥at7ns) codewords, that are <31 ()N(E;yB’;(évA) 7 (ie;yE iéVA) +6,. (53¢)
generated independently with i.i.d. entries with respect t et i i

XN, ). Fork 1,...,Nqg — 1}, f h (alread - .
p(y)- Fork € {1,..., Na b, for each (already gen To establish[{53b) we use the fact that the seque¢cese

erated) codeword s€ttyi1,...,Zn,) € Cri1 X -+ X Cnys . >

2 . lected ind dentl 4, so that, for | h
generate a codebook 02"(R’“+R’:3 codewords with re- Zetehceefoulgwfnpger;hz& Béfgilr\::?vﬁalitise(; h;dsor arge enoug
spect to[ [\, p (Xk|Tr+1(2), ..., TN, (0)), Wherez,(i) is the
i-the letter of the codewords,. Within each codebook, H(:ﬁ’f‘:ﬁi\[fl,yﬁe) (54a)
each codeword is assigned a unique index pair, i)
wheremy € {1,2,...,2"R) and f, € {1,2,...,2nfk}, :H(&:’f‘&;ﬁfl, )—I(:;,-’f;yE‘:z-gfl,e) (54b)
Each codeword is selected according to the secret mes-
sage m;, and a fictitious messagef; drawn uniformly  _ 3 {H (53@’55%1,@) —I(ie;yE‘fEZf‘pe)] (54c)
over its range. The transmitted codeword is therefore



_ 5]

k
{n[ (>~<g; yB}iﬁq) 21 (i‘g; yE}@;Vfl, e) }(54d)

=1

k
>0y [I (ig;yg‘iﬁq) .y (ig;yE‘iévfl) _ 36} . (54e)

=1 [71
where [54H) follows from[{52a), and to establish (54€e) we use
the fact that the channel is memoryless along with standard

typicality arguments [54]. [8]
To establish[(53c), we use [55, Lemma 1], by substituting:

(6]

k [
oS:Z(Rg-i-Re) ou=x7
=1 [20]
oV = )?]f ez =yp
o L& (mf, ff) € 1,2"] [11]
The conditions for the lemma hold since
<k|oN N [12]
H (x1 xkfl,yE, G) =H (L’xk_’f‘l,yE, @) ,
and [13]
k ~
$=>" (Re+ Re) (55a) [14]
=1
N [15]
= ZI(XEWB‘XHAl) — 2¢ (55b)
=1
k [16]
> lz I (Resye[3 )| +0 (55¢)
(= [17]
=1 (%bym[Ri ) +9. (55d)

where [[5BE) follows from the fact that the communicatiomerat[18
Ry of each sub-channel must be positive (arahdd are small

enough, andh is sufficiently large), else it is not used. Sincd!?
we have proved(53b) anf (33c), the secrecy analysis is now
complete. m [20]

Remark 14. For the special case of mutually independemsy
(X1,...,%Xn,), there is no need to generate a different
codebook €;, for each selection of preceding codeword
(Zk+1,.-.,&n,), and the same codebook can be appli
regardless of the other codewords.

2]

(23]
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