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On Sequential Locally Repairable Codes

Wentu Song, Kai Cai and Chau Yuen

Abstract

We consider the locally repairable codes (LRC), aiming gusatial recovering multiple erasures. We define (thek, r, t)-
SLRC (Sequential Locally Repairable Codes) agrark] linear code where any/ (< t) erasures can be sequentially recovered,
each one by (2 < r < k) other code symbols. Sequential recovering means that #seersymbols are recovered one by one,
and an already recovered symbol can be ugedrecover the remaining erased symbols. This importarivexing method, in
contrast with the vastly studied parallel recovering, igently far from understanding, say, lacking codes coms$ed for arbitrary
t > 3 erasures and bounds to evaluate the performance of such.code

We first derive a tight upper bound on the code rateof, r, t)-SLRC fort = 3 andr > 2. We then propose two constructions
of binary (n, k,r,t)-SLRCs for generat, ¢ > 2 (Existing constructions are dealing with< 7 erasures). The first construction
generalizes the method of direct product construction. Sem®nd construction is based on the resolvable confignsatind yields
SLRCs for anyr > 2 and oddt > 3. For both constructions, the rates are optimalifer {2, 3} and are higher than most of the
existing LRC families for arbitrary > 4.

Index Terms

Distributed storage, locally repairable codes, paraliebrery, sequential recovery.

|. INTRODUCTION

To avoid the inefficiency of straightforward replication déita, various coding techniques are introduced to theilaliséd
storage system (DSS), among which the linear locally repéercodes, also known as locally recoverable codes (LRE) [3
[4], attracted much attention recently. Roughly speakidinear LRC with localityr is an [n, k] linear code such that the
value of each coordinate (code symbol) can be computed fhenvdlues of at most other coordinates.

In a DSS system where a LRCis used, the information stored in each storage node camelspto one coordinate af.
Hence, eactsingle node failure (erasure) can be recovered by a set of at mosher nodes. However, it is very common
that two or more storage nodes fail in the system. This proplghich has become a central focus for the LRC society, are
recently investigated by many authqes.g. [6}-[21]). Basically, when multiple erasures occur, the recoveriagggmance
can be heavily depends on the recovering strategy in useresegvering the erasures simultaneously or one by one. The
two strategies were first distinguished parallel approachand sequential approactin [17]. Comparing with the parallel
approach, the sequential approach recovery erasures ooeebgnd hence the already fixed erasure nodes can be used in the
next round of recovering. Potentially, for the same LRCngdhe sequential approach can fix more erasures than usng th
parallel approach, and hence the sequential approach itea bandidate than the parallel approach in practice. Newelue
to technique difficulties, this more important approach aéra far from understood, say, lacking of both code constins
and bounds to evaluate the code performance. In contrdstthétvastly studied parallel approath{§L6], existing work on
the sequential approach up to date are limited to dealinly tvit 7 erasures. For example, the casel ef 2 are considered
in [17], where the authors derived upper bounds on the caogeasawell as minimum distance and also constructed a family
of distance-optimal codes based on Turan graphs. For ttie @e, they proved that:

k r
n = r4+2 (2)
The original version of this work [18], firstly considerecethase of = 3 and gave both constructions and code rate bounds
for ¢t € {2,3} (in a more generalized manner of functional recoveyii@f great relevance to the present work are the results
recently obtained in_[20] and[21], where the authors derimdower bound on code length of binary codefor ¢ = 3 and
an upper bound on code rate lmhary codefor ¢t = 4. A couple of optimal or high rate constructions were prodide these
two papers, say, rate-optimal codes for {2, 3,4}, and high rate codes for= 2 andt € {5,6,7}. Here, we note that, by
using orthogonal Latin squares, the authors’in [20] gaventeresting construction of sequential locally recovezatades for
any odd¢ > 3 with ratek/n =1/ (1 + % + T%) Obviously, the SLRCs can deal with anyrasures and having high code
rate and are highly desired in both theory and practices.
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A. Our Contribution

In practice, high rate LRCs are desired since they mean lovagé overhead. In this work, we are interested in the high
rate LRCs for sequential recovering ahy 3 erasures, by defining the:, &, r, t)-SLRC (Sequential Locally Repairable Code)
as an[n, k] linear code in which any’ (¢’ < t) erased code symbols can be sequentially recovexaeh oneby at most
r (2 <r < k) other symbols. Our first contribution is an upper bound ondbee rate for(n, k,r,¢)-SLRC with¢ = 3 and
anyk > r > 2. The bound is derived by using a graph theoretical methad,vea associate eadm, k, r, t)-SLRC with a set
of directed acyclic graphs, called repair graphs, and theaio the bound by studying the structural properties ofsihvealled
minimal repair graph The sprit of this method lies i [23]_[24]. For general> 5, deriving an achievable, explicit upper
bound of the rate ofn, k, r, t)-SLRC seems very challenging, and we give some discussimh€@njectures on this issue.

Then we construct two families of binaly., k, r, t)-SLRC. The first family, which contains the productefcopies of the
binary [r + 1, r] single-parity code[[10] as a special case, is for any pe@sititegers (> 2) andt, and has rate
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wherem is any given positive integer satisfyirtg< 2™ — 1 and supp, (s) is the support of then-digit binary representatiﬂn
of s. The second family is constructed for any> 2 and any odd integet > 3 and is based omesolvable configurations

This family has code rate
k t—1 [17\"
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which is the same with the Latin square-based code conettuct{20]. Fort € {2, 3}, the code rates of these two constructions
are optimal.

A basic and important fact revealed by our study is: the sefigleapproach can have much better performance than elrall
approach, e.g, for the direct product of copies of the binarnyjr + 1, r] single-parity code, it can recoven erasures with
locality » by the parallel approach 0], bat® — 1 erasures with the same locality by the sequential approach.

)

B. Related Work

Except that mentioned previously, most existing work foengn, k] linear LRCs with parallel approach. Inl[7], the authors
defined and constructed tfie ¢ + 1), code for which each code symbelis contained in a punctured code (local code) with
length < r+¢ and minimum distance: ¢ + 1. Clearly, for such codes, artyerased code symbols can be recovered in parallel
by at mosttr other code symbols, among which, each erased symbol carcbeered by at most symbols. The code rate
of this family satisfies[[14]

k r

- < .

n_r+t 2)
Another family is the codes with locality and availabilityt [8], [9], for which, each code symbol hasdisjoint recovering
sets of size at most. An upper bound on the code rate of such codes is proved in [10]
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Unfortunately, fort > 3, the tightness of bound(3) is not known and most of existiogstruction have rate - (e,

see [12], [15], [16]. Constructions with rate- - are proposed only for some very special values, €:@.k,r,t) =
(271 —1,2" —1,7,r+1) [16]. The third family of parallel recovery LRC is proposed[B], in which, for any setz C [n] of
erasures of size at mostand anyi € F, theith code symbol has a recovering set of size at mastntained in[rn]\E. The
fourth family, called codes with cooperative local repa@rproposed in[[13] and defined by a stronger condition: eatiset
of t code symbols can beooperativelyrecovered from at most other code symbols. For this family, an upper bound of the
code rate with exactly the same form Bb (2) is derived [13]f@yconstructing LRCs with high code ra(te.g.,% > 1) s

r+t
still an interesting open problem, both for parallel reagvand for sequential recovery.
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C. Organization

The rest of this paper is organized as follows. In SectiorwH, define the(n, k, r, t)-SLRC and then present some basic
and useful facts. In section Ill, we first investigate ther(imal) repair graphs of the SLRC and then prove the upper ¢houn
on the code rate ofn, k, r,t)-SLRC fort € {2,3}. Before constructing the first family of SLRC in Section V, ¥iest study
an example in Section IV. Then, the second family of SLRC isstaucted in Section VI. Finally, the paper is concluded in
Section VII.

1The m-digit binary representation of any positive integer 2™ — 1 is the binary vecto\m, Am—1,- - , A1) € Z5* such thats = Z;.”:l 22971,



D. Notations

For any positive integen, [n] := {1,2,--- ,n}. For any set4, |A| is the size (the number of elements) 4f If B C A
and|B| = t, then B is called at-subset ofA. For any real number, [z] is the smallest integer greater than or equatto
If C is an|[n, k] linear code and4 C [n], thenC|4 denotes the punctured code by puncturing coordinates s [n]\ A. For
any codewordr = (z1, z2, - ,2n) € C, SUpfx) := {i € [n];x; # 0} is the support ofe.

[1. PRELIMINARY
A. Sequential Locally repairable code (SLRC)

Let C be an[n, k] linear code over the finite fiel# andi € [n]. A subsetR C [n]\{i} is called arecovering sebf : if
there exists am; € F\{0} for eachj € R such thaty; = 3, pa;z; for all v = (21,22, ,z,) € C. Equivalently, there
exists a codeworg in the dual codeCt such that supfy) = RU {i}.

Definition 1 (Sequential Locally Repairable Codéjor any E C [n], C is said to be(FE,r)-recoverable ifE can be
sequentially indexed, sa¥ = {i1,i2,--- ,%g|}, such that each, € E has a recovering se, C E U {iy, - ,i¢_1} of
size|R,| < r, whereE := [n]\E; C is called an(n, k, r, t)-sequential locally repairable code (SLR@r simply (r,¢)-SLRC)
if Cis (E,r)-recoverable for eaclt’ C [n] of size |E| < ¢, wherer is called the locality ofC.

As a special case of Definitidd 1, if for eadh C [n] of size |E| < t and each € E, i has a recovering st C E of size
|R| < r, thenC is called an(n, k, r, t)-parallel locally repairable code (PLRC)This special case is first considered/in [6].

By the definition, we can have < k for any (n, k, r, t)-SLRC. Throughout this paper, we assume that a recoveringiset
has size2 < |R| < r < k. The following equivalent form of Definitiohl1 will be frequ#y used in our paper.

Lemma 2:C is an(n, k,r,t)-SLRC if and only if for any nonempty C [n] of size |E| < ¢, there exists an € E such
that: has a recovering set C [n|\E.

Proof: Let C be an(n,k,r,t)-SLRC and® # E C [n] of size |E| < t. Then by Definitior(IL,E can be sequentially
indexed ast = {i1,12,--- ,% g} such thati; has a recovering set; C [n]\E.

Conversely, for anyE C [n] of size |E| < t, by assumption, one can find @n € E such thati; has a recovering
set Ry C [n]\E. Further, sincdE\{i1}| < |E| < t, then by assumption, there exists ane E\{i1} such thatiy has a
recovering setRs C [n]\ (E\{i1}) = E U {i1}. Similarly, we can find anz € E\{i1,i>} such thati; has a recovering set
R3 € E U {iy,i2}, and so on. TherZ can be sequentially indexed & = {i;, s, - .||} such that eachi, € E has a
recovering set?, C E U {iy,--- ,i;_1}. So by definitior1LC is an(n, k,r,t)-SLRC. [ ]

The following lemma gives a sufficient condition @f ¢)-SLRC, which reflects the difference between the sequemstialvery
and the parallel recovery.

Lemma 3:Supposgn] = AU B and AN B = (). Supposé,t2 > 0 andC is an|n, k] linear code such that
(1) For any nonemptys C A of size |E| < t;, there exists an € E such thati has a recovering sek C A\ E;

(2) For any nonemptyr C A of size|E| < t; + t2 + 1, there exists a € E such thati has a recovering sk C [n]\E;
(3) For any nonempty C B of size |E| < t,, there exists an € E such thati has a recovering s&® C B\ F;;

(4) For any nonemptyr C B of size |E| < t; + t2 + 1, there exists an € E such thati has a recovering sk C [n]\E.
ThenC is an (r,t)-SLRC witht = ¢; + to + 1.

Proof: We prove, by Lemmal2, that for any nonemgfyC [n] of size |E| < t; + t2 + 1, there exists an € FE such
that: has a recovering sk C [n]\ E. Obviously, it holds wherE? C A or E C B (by condition (2) or (4). So we assume
ENA+#(andE N B # (). Consider the following two cases.

Case 10 < |E N A| < t;. By condition (1), there exists anc E such thati has a recovering seR C A\E C [n]\E.

Case 2 /ENA| > t;. Since|E| < t1 +t2+1andANB =0, then0 < |E N B| < 3. By condition (3), there exists an
i € F such thati has a recovering st C B\E C [n]\E.

The proof is completed by combining the above cases. [ |

B. Repair Graph and Minimal Repair Graph

Let G = (V,€) be a directed, acyclic graph, wheyeis the vertex set and is the (directed) edge set. A directed edge
from vertexu to v is denoted by an ordered pair= (u, v), wherew is called thetail of e andv the headof e. Moreover,u
is called anin-neighborof v andv an out-neighborof «. For eachv € V, let In(v) and Oufv) denote the set of in-neighbors
and out-neighbors of respectively. If Ifv) = 0, we callv a source otherwise,v is called aninner vertex Denote by $G)
the set of all sources afr. For anyE C V, let

out(E) = | J Out(w)\E. (4)
veEE
By (@), we haveE N Out(E) = ). For anyv € V, denote
Ouf(v)= | J Out(u)\Out(v) (5)

u€eOut(v)



i.e., Out(v) is the set of alw € V such thatw is an out-neighbor of some € Out(v) but not an out-neighbor of.
As an example, consider the graph depicted in [Hig. 1, wheteces are indexed by1,2,---,16}. Then Out3) = {9, 10},
Out(4) = {10,11} and Out(3) = {13,15,16}. Let E = {3,4}. Then OutE) = {9,10,11}.
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Fig 1. An example repair graph with = 16, » = 2 and |S(G)| = 8.

Definition 4 (Repair Graph):Let C be an(n, k,r,t)-SLRC andG = (V, £) be a directedacyclic graph such that = [n].
G is called arepair graphof C if for all inner vertexi € V, In(¢) is a recovering set of.

Obviously, an(n, k,r,t)-SLRC may have many repair graphs(lfis an (n, k, r, t)-SLRC, we usually uséG; A € A} to
denote the set of all repair graphs ©f where A is some proper index set. It should be noted that the repaphgdefined
here has subtle differences with the recovering graph d&fimg10], e.g., it must be acyclic and am, k, r,¢)-SLRC may
have many repair graphs such that for eaeh[n], at most one recovery set ofis considered in each repair graph. The key
ingredient of our technique is the so-callednimal repair graphas defined follows.

Let C be an(n, k,r,t)-SLRC and{Gx; A € A} be the set of all repair graphs 6f Recall that for eact\ € A, S(G,) is
the set of all sources affy. Denote

5* 2 min{|S(Gy)|; A € A} (6)

Definition 5 (Minimal Repair Graph)A repair graphGy,, Ao € A, is called aminimal repair graphof C if [S(G,)| = §*.
Remark 6:1t is easy to see that angn, k,r,¢)-SLRC has at least one minimal repair graph by noticing that set
{IS(GA)|; A € A} C [n] is finite.

Ill. AN UPPERBOUND ON THE CODE RATE

Before proposing the main result of this section, we need fingestigate properties of the minimal repair graphs of
(n,k,r,t)-SLRC.

A. Properties of the Minimal Repair Graph

In this subsection, we always assume tfas an(n, k,r,t)-SLRC andG,, = (V,€) is a minimal repair graph of. The
following two results are of fundamental.

Lemma 7:
(n—8")r > |€]. )
Proof: By the definition,G, hasn — 0* inner vertices and each of them has at most-neighbors, and hence the result
follows. [ ]
Lemma 8:
k< 6" (8)

Proof: According to Definitior#, for eachi € [n], the jth code symbol of is a linear combination of the code symbols
in In(). In other words, the code symbols of(Ji spans the code symbols ¢j} U In(j). Moreover, sincgz,, is acyclic,
then inductively, the code symbols of&,,) spansC, which provest < |[S(G),)| = ¢*. [ |

The following is a key lemma to investigate the structure=gf .
Lemma 9:For any E C [n] of size |E| < t,

[OU(E)| > |E N S(Gx)l- 9)
Proof: Suppose, on the contrary, there existsfan= {iy, iz, - ,iry} C [n] such that|E| = ¢’ < ¢ and |Out(E)| <
|[ENS(Gy,)|. By definition of (n, k,r,t)-SLRC, we can leR, C EU{iy,--- ,i,—1} be a recovering set af for each? € [t'].

We can construct a grapfd,, from G,, by deleting and adding edges as follows: First, for each £ U Out(E) and
j € In(i@), delete(s, 7) if it is an edge ofG,, and denote the resulted graph@g ; Second, for eacly € £ and eachy € Ry,



add a directed edge fropnto i, and let the resulted graph I6e,, . Clearly, G, is acyclic becausér,, is acyclic. Moreover,
since Ry C EU {iy,--- i1} for eacht € [t'], then by construction(s,, is also acyclic.

We declare thatz,, is a repair graph of and|S(Gy,)| < |S(G., )|, which contradicts to the minimality af,.

In fact, by construction, &»,) = (S(G»,)\E) U Out(E). Then for each inner nodeof G,,, we have the following two
cases:

Case 1i € E. Theni = i, for somel € [t'] and by the construction aF,,, In(i) = R, is a recovering set of.

Case 2:i is an inner vertex of7y, andi ¢ Out(E). Then consideringsy,, In(i) C E = [n]\E is a recovering set of.

So In(7) is always a recovering set of Hence,G ), is a repair graph of.

On the other hand, note that by definitionG3,) N Out(E) = # and E N Out(E) = (). So if we assume thdOut(E)| <
|ENS(G)y,)|, then we have

S(Gx,)] = [(S(Gx)\E) U Out(E)|
= [(S(Gx,)\E)| + |Out(E)|
= |(S(Gx)| = [ENS(Gx,)| + |Out(E)|
< S(Gxo)l5 (10)
which completes the proof. [ |

The following example illustrates the construction@f, in the proof of Lemmalo.

Example 10:Consider the graph in Fifl 1, which we denote(as here. Suppose it is a repair graph ofra= 2,¢ = 3)-
SLRC. We can see thd®, 3} is a recovering set df, {3,4} is a recovering set of(0, and etc.

Let F = {2,3,9} and assume the recovering sets208 and9 are {1, 10}, {12,13} and {11, 14}, respectively. Then we
can construct a grap&'y, as follows. Since OY¥) = {10}, thus, in the first step, we delete edges9), (3,9), (3,10) and
(4,10); and in the second step, we add edges), (10,2), (12,3), (13,3),(11,9) and (14,9). The resulted grapld,, is
shown in Fig[2. We can see thi@8(G», )| = [(S(Gx,)\F) UOut(E)| = [{1,4,5,6,7,8,10}| = 7 < 8 = |S(G),)|- So the
graph in Fig[l is not a minimal repair graph.
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Fig 2. Construction of7,, from the graph in Figl11.

The following two corollaries give some explicit structupmoperties of the minimal repair graphs @i, &, r, t)-SLRC.
Corollary 11: If t > 3, for anyv € S(G,,), the following hold:
1) [Out(v)| > 1.
2) If Out(v) = {v'}, then Out(v) = Out(v’) # 0.
3) If Out(v) = {v1} and Outv;) = {v2}, then Outvy) # 0.
4) 1f Out(v) = {v1} and Oufvy) = {v2}, then|Out(u)| > 2 for any sourceu € In(vs).
5) If v, w are two distinct sources arf@ut(v)| = |Out{w)| = 1, then Outv) # Out{w).
Proof: We can prove all claims by contradiction.
1) Suppose otherwis®ut(v)| = 0. Let E = {v}. Then,|Out(E)| = |Out(v)] = 0 < 1 = |[{v}| = |E N S(G»,)|, which
contradicts to Lemm@l 9.
2) SinceGy, is acyclic and Ouw) = {v'}, then from [5), Out(v) = Out(+’). If Out(v') = (), then by lettingF = {v,v'},
we have|Out(E)| = || = 0 < 1 = [{v}| = |[EN S(G,)|, which contradicts to Lemnd 9.
3) If Out(vy) = 0, then by lettingE = {v,v;,v2}, we have|Out(E)| = |0] = 0 < 1 = |[{v}| = |E N S(G),)|, which
contradicts to Lemm@l 9.
4) By assumption, we can see that# v. Suppose otherwisfOut(u)| = 1. Then Oufu) = {v2} sinceu € In(vs). Let
E = {v,v1,u}. We have|Out(E)| = |[{v2}| = 1 < 2 = |{v,u}| = |[E N S(G,,)|, which contradicts to Lemnid 9.

5) Suppose otherwise Quf) = Outf(w) = {v1}. Let E = {v,w}. Then we haveOut(E)| = [{v1}| =1 < 2 = |[{v,w}| =
|E N S(G,,)|, which contradicts to Lemmid 9. [
We give in the below an example and a counterexample of miniepair graph that can be verified by Corollaryl 11.

Example 12:Consider the repair grapfi,, in Fig.[3, where the vertex set I8 = {1,2,---,15}. We can check that
|Out(E)| > |ENS(G,,)| for eachE C [n] of size |E| < t. Corresponding to items 1)) of Corollary[I1, we can check:



1) For everyv € S(G,), |Out(v)| > 1.

2) Forv =5 andv’ = 10, we have Ou) = {v'} and Out(v) = Out(v’) = {12,13}.

3) Forv =1, v; =8 andvs = 11, we have Ouw) = {v1}, Out(v1) = {v2} and Outwv,) = {14}.

4) Forv =1, v; =8 andvs = 11, we haveu = 6 € In(v) is a source anfOut(u)| = [{10,11}| > 2.
5) Forv =1 andw = 5, we have|Out(v)| = |Ouf(w)| = 1 and Oufv) = {8} # Out(w) = {10}.

O .6 @O 6 6 O

Fig 3. An example repair graptiy, = (V,€), whereV = {1,2,---,15}.

Example 13:Any one of the following five observations, which violate® thorresponding five cases of Lemind 11, can
show that the graph in Fi] 1 is not a minimal repair graph.
1) For the source = 1, we have Oufl) = 0.
2) For the source = 2, we have Oy®) = {9} and Out9) = 0.
3) For the source = 5, we have Out) = {11}, Out(11) = {13} and Out13) = 0.
4) For the sourcer = 6, we have Ous) = {12}, Out(12) = {14} and there is another souree= 8 < In(14) such that
Out(8) = {14}.
5) For the two sources = 6 andw = 7, we have Oui6) = Out(7) = {12}.
Remark 14:In Corollary[11, claim 1) holds for all > 1, since the contradiction is derived from a subBeof size1. And
claims 2), 5) hold for alt > 2 since the contradictions are derived from subsets of Zize
Corollary 15: Suppose > 3 andv € S(G»,) such that Ouw) = {v1,v2}. Then the following hold:
1) OUI(’Ul) #( or OUI(’UQ) # 0.
2) If {v1} = Out(u) for some source:, then Outwvs) # 0.
3) If {v1} = Out(u) for some source:, then|Out(w)| > 2 for any sourcew € In(vs).
Proof: All the claims can be proved by assuming the converse andsitgpa properE as in the proof of LemmBa_11
and then derive a contradiction.
1) Suppose otherwise Qut) = Out(ve) = . We let E = {v,v1,v2} and have|Out(E)| = [f] = 0 < 1 = [{v}]| =
|E N S(G,,)|, which contradicts to Lemm(d 9.
2) Suppose otherwise Qut) = (. Similarly, we can get a contradiction by lettirfg = {u, v, v2}.

3) Suppose otherwise there exist a soutcsuch that Outw) = {v2}. A contradiction can be obtained by lettig =
{u, v, w}. [ |
We give in the below an example and a counterexample of miniepair graph that can be verified by Corollaryl 15.
Example 16:Again consider the repair grapfi,, in Fig.[3. Letv = 3, v; = 8 andwvy = 9. Thenv € S(G,,) and

Out(v) = {v1,v}. Corresponding to items 1B8) of Corollary[I5, we can check:
1) Out(vl) = OUT(UQ) = {11} # @
2) Foru =1, we have{v;} = Out(u) and Outv,) = {11} # 0.
3) Forw =4, we can see that € In(vq) is a source andOut(w)| = {9, 10,12}| > 2.
Example 17:Let G be a repair graph as shown in Hid. 4. Then any one of the faligwliree observations, which violates
the corresponding three cases of Corollary 15, can show@hatnot a minimal repair graph.
1) There exists a sourae= 5 such that Out) = {9, 10} and Ouf9) = Out(10) = .
2) There exists a sourae= 2 such that Ou2) = {7,8}, and a source, = 1 such that Outl) = {7} and Out8) = 0.
3) There exist three sources= 2, v = 1 andw = 3 such that OuR) = {7,8}, Out(1) = {7} and Ouf3) = {8}.

B. Upper Bound on the Code Rate for, &, r, 3)-SLRC

In this subsection, we assurdés an(n, k,r, 3)-SLRC andG ), = (V, £) is a minimal repair graph af. Recall that $G )
is the set of all sources aF,,. We divide G, ) into four subsets as follows.

A={v e S(Gy,): [Outv)] > 3, (11)

B = {v e S(G,); [Out(v)| = 2}, (12)
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Fig 4. An example repair graph with = 12 andr = 2.

Oy = {v € S(Gy,); |Out(v)| = 1 and |Out (v)| = 1} (13)
and
Oy = {v € S(Gy,); |Out(v)| = 1 and |Out (v)| > 2}. (14)
Clearly, A, B, C; and C; are mutually disjoint. Moreover, by 1), 2) of Corolldryl11((S,,) = AU B U C; U Cs. Hence,
0" = [S(Gx,)| = [Al + B + [C1| + | Cal. (15)

We define three types of edges@f,,, denoted by red edge, green edge and blue edge respecisdlyows.
Firstly, an edge is called med edgeif its tail is a source. For each € S(G),), let Eed(v) be the set of all red edges whose

tail is v and denote
Ered = U gred(v)-
vES(Gag)

Then &eq is the set of all red edges. Clearlyieq(v)| = |Out(v)| and Eed(w) N Ered(v) = @ for any sourcew # v. So by

(I1)-(14), we have

Eed = > |0Oul(v)| > 3|A| +2|B| + |C1| + |Cal. (16)
’UGS(GAO)

Secondly, an edge is calledyeeen edgéf its tail is the unique out-neighbor of some sourc&lnJCs. For eactv € C1UCS,,
let Egreev) be the set of all green edges whose talil is the unique outiheigof v. Clearly, |Egeedv)| = |OUt (v)]. Let

Egreen= U 5greer(v)
veC1UCy
be the set of all green edges. Note that ¥ w € Cy U Cs, then by 5) of Corollary 11y’ # w’, wherev'(resp.w’) is the
unique out-neighbor of(resp.w). S0 Egreerv) N Egreed w) = 0. Hence, by[(IB) and(14),

|Egreer = Z |Out(v)| > |C1| + 2|Cs- 17)
veC1UC
Thirdly, suppose: € £ is not a green edge ande B U (. e is called ablue edge belonging teo if one of the following
two conditions hold:
(a) v € B and the tail ofe belongs to Oyw).
(b) v € C; and the tail ofe belongs to Out(v).
Let Exue(v) be the set of all blue edges belongingu@nd let

Eblue = U Eplue(v)

veBUC,
be the set of all blue edges. Then we have the following lemma.
Lemma 18:The number of blue edges is lower bounded by

Bl + |C1]
—

|5blue| > (18)

Proof: It is sufficient to prove : i) For each € B U C, there exists at least one blue edge belonging;tand ii) Each
blue edge belongs to at mostdifferentv € B U C;. To prove these two statements, we will use the definitionedf eédge,
green edge and blue edge repeatedly.

We first prove i) by considering the casesw& B andv € (.

Let v € B, and we look for a blue edge belonging ¢o In this case, by[{12), we can assume @ut= {vy,v2} (see
Fig.[B(a). Then, by 1) of Corollary 15, Out;) # @ or Ouf(vs) # (. Without loss of generality, assume Qut) # () and
vy € Out(vq). Consider(vq,vs). If it is not a green edge, then by definition, it is a blue edg®hging tov. So we assume



that (v, v3) is a green edge. Then by definitiofy; } = Out(u) for someu € C; U Cs. By 2) of Corollary[Ih, Outw,) # 0

and we can let, € Out(vs), as illustrated in Fig15(a). Considér., v,). By 3) of Corollary(Ib,/Out(w)| > 2 for any source
w € In(ve), which implies(v2, v4) is not a green edge. Se2, v4) is a blue edge belonging ta Hence, for each € B, we

can always find a blue edge belonginguto

@ @ ®

AA T A

N
z
L

Fig 5. Two local graphs.

Now, letv € C; and we look for a blue edge belongingitoBy (13), we can assume Qu) = {v;} and Out(v) = {v;} (see
Fig[B(b)). By 3) of Corollary[11, we have O(ty) # 0. Let v3 € Out(v,). Note that by 4) of Corollarf11Out(u)| > 2 for
any sourceu € In(vy) (see Fig[b(b) as illustration), which impli€ss, v3) is not a green edge. S@-,v3) is a blue edge
belonging tov. Hence, for eachy € C;, we can always find a blue edge belongingvto

By the above discussion, statement i) holds.

Let (v/,u”) be a blue edge anfl be the set of alb € B U C; such that(«’, «"") belongs tov. To prove statement ii), we
prove that there is aimjection, namelyy, from S to In(u’). Then ii) follows from the fact that Ifu') has size at most. The
injection of o(v) can be constructed as follows:dfe B, simply letp(v) = v. If v € Oy, let p(v) = v/, where{v'} = Out(v).

It is easy to see that(v) is an injection (noticing 5) of Corollafy"11), which commstthe proof of statement ii). [ |

Example 19:Consider the repair graph in Figl 3. We hade= {2,4,7}, B = {3,6}, C; = {1} andC, = {5}, and the
edges with tails from 1 to 7 are red edges, as illustrated gn[@i

Moreover, one can check th8feed1) = {(8,11)} and&yreed 5) = {(10,12), (10, 13)}. As for blue edges, sincee C; and
11 € Out(1), then(11,14) € Euue(1); Sincell € Out(6) and6 € B, then(11,14) € Epye(6); Since3 € B and9 € Out(3),
then (9,11) € Epue(3). One can check thapue(l) = Epe(6) = {(11,14)} and Emwe(3) = {(9,11)}. The green edges and
blue edges are also illustrated in Hig. 6.

Fig 6. lllustration of red edge, green edge and blue edge oinmail repair graph.

Now, we can propose our main theorem of this section.
Theorem 20:For (n, k, r, 3)-SLRC, we havé
2
5§< T>. (19)
n r+1

2k+[£]
e |

2|n the original version[[18] of this paper, bourld[19) wasserted equivalently in terms of the code lengthnas k + [



Proof: By definition, we can easily see théq, Egreen and Epiue are mutually disjoint. Then by (15)-(1L8), we have

1E] > |Ered| + |5greer{ + [Eoluel
> (3JA| +2[B[ + |C1] + [C2)

Bl +|C
+(|Cll+2|02|)+w

= 2(JA[ + |B] + |C1] + |C2])

B|+|C
+ (141 + jopl + LI,

r|A| + r|Cq| 4+ |B| + |C1|
T
|[A| + |Cs| + |B| + |Ch|
T

=26 +

> 20" +
—opr O
T
That is, |€| > 26* + 57 Combining this with Lemmal7, we have

(n—=206r>|& > 26"+ 5—
r
So

*

(n—0")r > 25" + 5—
r

Solving n from the above equation, we have

25* )
n> o Rl (20)
T
By Lemma[8,6* > k. So [20) implies that
2k + &
n>k+ R
"
2

Hence,

; ( ; >2
Y < ,
n - \r+1

which proves the theorem. [ |
We will later construct two families ofn, k, r, 3)-SLRCs achieving[{19) and hence show the tightness of thimdbo

C. Code Rate fofn, k,r,2)-SLRC

In this subsection, we give a new proof of the boubH (1) for thek,r,2)-SLRC using the similar techniques as in
Subsection B. Assume thétis an(n, k,r,2)-SLRC andG,, = (V,£) is a minimal repair graph of.
Proof of Bound(@): By RemarkKI# and 1) of Corollafy 111, each sourcesgf has at least one out-neighbor. Létbe
the set of sources that has only one out-neighbor anéldgte the set of all edges called red edges, such that the tail of
e is a source. Then the number of red edges is

|Eredl = [A] + 2[S(Ga,)\A| = 26" — |A]. (21)

For eachv € A, let v’ be the unique out-neighbor ofand£yeedv) be the set of all edges whose taikis By Remar 1#
and 2) of Corollaryll, OGfv) = Out(v') # 0. SO |Egreedv)| = |OUL(v’)| > 1. Let Egreen be the set of all green edges. For
any two differentv;, v, € A, let v}, v} be the unique out-neighbor ef, v2, respectively. By Remark14 and 5) of Corollary
@3, v} # vh. S0 Egreedv1) N Egreer(v2) = 0. Hence,

|Egreer = U Egreer(V)

veEA

= Z |Egreer(v)| = | Al. (22)

veEA




10

Clearly, Eed N Egreen= 0. Then by [21) and(22),
|5| Z |5red| + |5greer{ Z 25*-
On the other hand, by Lemnia 7,

(n—=206)r > |€&].
So (n — §*)r > 26*, which impliesn > §* + % > k+ 2 (Lemmal®. Hence,£ < 5 Which completes the proof. m
022 122 222 a ar 222
/ / / / / /
021 121 221 021 ag 221
/ / / / /
020 120 220 020 120 220
012 112 212 as as 212
/ / / 7/ / /
011 111 211 011 Qy 211
/ / / V4 / /
010 110 210 010 110 210
002 102 202 002 102 202
/ / / / /
001 101 201 ay 101 201
/ / / / /
000 100 200 000 100 200
(a) (b)

Fig 7. (a) The index set @g, where(is, i2,41) is simply written asisisii; (b) The recovering setRq,- - -, R7 of a1, - -, a7, where Ry ={(000), (002)},
Ry ={(010), (011)}, R3={(020), (021)}, R4 ={(011), (211)}, Rs ={a2, (212)}, Re ={(021), (221)} and R7={a3, (222)} drawn in heavy lines.

IV. AN EXAMPLE OF SLRC

In order to have a better understanding of the binary)-SLRC constructed in the next section, we give an example in
this section. Letr = 2, m = 3 andC be the product code of. copies of the binaryr + 1, r| single parity check code. Then
C has lengthn = (r + 1)? = 27 and dimensiork = 73 = 8. It is convenient to us&3 = {(is, i2,1); i1, %2, i3 € Z3} instead
of [n] as the index set of the coordinatesfand letZi = {(is,i2,%1);i1,%2,i3 € Z2} be the information set of. Here,
Zs ={0,1,2} andZ, = {0, 1} are simply viewed as two sets afld C Zs (no algebraic meaning is considered here

The index setZ3 is depicted in Fig[d7(a). By definition, each code symbol (dawate) ofC can be recovered by all the
other symbols on the same (red, green or blue) line. Henoh, eade symbol o€ hasm = 3 disjoint recovering sets (red,
green and blue) of size = 2, andC can recover any erasures by parallel recovery. However, we can preee [details in
the next sectignthat it can recover any= 2"* — 1 = 7 erasures by sequential recovery. For example, consideraanre of7
code symbols, sayy = {aq, - ,ar}, whereay = (001), az = (012), ag = (022), oy = (111), a5 = (112), ag = (121) and
ar = (122), as illustrated in FidJ7(b). We can select a sequence ofegtr setsk; = {(000), (002)}, Re = {(010), (011)},
R3 = {(020), (021)}, Ry = {(011),(211)}, R5 = {aq, (212)}, Rg = {(021),(221)} and R; = {as3, (222)} (see Fig[¥7(b). It
is easy to check thak,, - - - , R7 sequentially repaifay, - -, ar}.

In general, by puncturing properly, we can obtaifr, t)-SLRC for anyt € {1,2,--- ,6}. As an example, we construct an
(r,5)-SLRC as follows. For each € Z; = {0, 1}, let

AJ = {(jai27i1);7;27i1 S Zg}

and let
A=AgUAy,

B = {(Q,ig,il);ig € 7o andil S Zg}
= {(200), (201), (202), (210), (211), (212)}.

Let @ = AU B, as depicted in Fid.]8. Then, the punctured c6iie is an (n’, k,r,5)-SLRC, withn’ = || = 24.
In fact, one can see that the following items hold.
i) For any nonemptyy C A of size |E| < t; = 3, there exists am € E such thatx has a recovering se® C A\ E.
ii) For any nonemptyE C A of size|E| <t =5, there exists am € E such thatx has a recovering set C Q\E.
iii)  For any nonemptyE C B of size |E| <ty = 1, there exists am € E such thatn has a recovering s&R C B\ E.
iv)  For any nonemptyy C B of size |E| <t =5, there exists am € FE such thatw has a recovering sdt C Q\E.
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In the above, item$), iii), iv) can be easily verified. For example, one can see that the ymedctode€’| 4, andC|4, are
both (r,3)-SLRC and(C|p is a(r,1)-SLRC, hence i) and iii) hold. From Figl 8, one can see thahé€aci,,i;) € B has a
recovery set (red lineR = {(0,42,1), (1,i2,41)} € A, hence iv) holds. To prove ii), we consider the following teases:

1) E C Ay or E C A;. Without loss of generality, assune C A;. If E C {(120),(121), (122)}, then each(1,2,7) €

E has a recovery set (green lind) = {(1,0,¢),(1,1,i)} € Q\E; Otherwise, there exists &l,i2,i1) € E N
{(100), (101), (102), (110), (111), (112)} which has a recovery set (red lin& = {(0, iz, 1), (2,42,71)} C Q\E.
2) ENAy #0andENA; # 0. Since|E| <5, then|ENAy| <3 or|ENA;| < 3. Note that botlC| 4, andC|4, are(r,3)-
SLRCs, by Lemmal2, there exists ane E andj € {0,1} such thatx has a recovering sét C A;\E C A\E C Q\E.
Then, by Lemmal3(C|, is an(n’, k,r,5)-SLRC. The generalization of this example as well as the &mnoof will be given
in the next section.

022 122
/ /
021 121
/ /
020 120
012 112 212
/ / /
011 111 211
/ / /
010 110 210
002 102 202
/ / /
001 101 201
/ / /
000 100 200

Fig 8. Graphical illustration of a subset ﬂfg

V. CONSTRUCTION OF(n, k,r,t)-SLRC

In this section, we construct a family of binafy, k, r, t)-SLRC for any positive integers (> 2) andt. It will be shown
that the code rate of this family is greater thaf;, and in particular, fort € {2,3}, it achieves the boundgl(1) ard{19),
respectively.

We first need introduce some notations. For any positivegerer and m, wherer > 2, let Z, = {0,1,---,» — 1} and
Z" = {(im, bm—1s-"11); bmsim—1," -+, 01 € Z,}. Here,Z, is simply viewed as a setwithout any algebraic meaningSo
Ly C Zpy1 ={0,1,--- ,r—1,7}. We will usec, 3, v, etc, to denote elements (points) &f’, ;. Note that by the notation,
for eacha = (i, tm—1, - i1) € Z, and? € [m], i, is the ¢th coordinate ofx from the right.

For eacha = (i, im—1,- -+, 11) € Z",, we let

U (a) = {¢ € [m];ie =1}, (23)
and
T (0) = {C € [m];ic € Z,}. (24)
Further, we let
L (@)= { (s Jm—1 1) €L e =i, VLET™ (a)}. (25)
Clearly, U™ (a) N T™(a) = 0 and U™ () U T m’(a) [m]. Moreover, for eachn € Z7",\Z", U™ (a) # 0 and
LM (a) # 0. In particular, ifa = (r,7,--- ,r), thenU™ (a) = [m] and £™) ( ) =7Zm.

As an example, let = 2, m = 6 anda =(1,0,2,1,1,2) e[ 7$. ThenU™) (o) = {4,1}, T"™)(a) = {6,5,3,2} and
L) () = {(1,0,i4,1,1,41);44,41 € Zo} = {(1,0,0,1,1,0), (1,0 0,1,1,1) (1,0,1,1,1,0),(1,0,1,1,1,1)}.

Note that for any integes such thatd < s < 2™ — 1, s has a uniquen-digit binary representation, say\\,, A\pm—1 -+ A1).
That is, (Am, Am—1,- - A1) €{0,1}™ ands = >, ; M\2~1. Denote by supp(s) the support o Ay, Apu—1, - -+, A1). Let

™ ={aeczm ;U™ (a)=supp,(s)} (26)

and

o — i, (27)

S
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For example, suppose = 2, m = 6 and s = 22. Then (010110) is the unique6-digit binary representation of and
supp,,(s) = {5,3,2}. From [28), we havé“ég) = {(i6,2,14,2,2,11); 16, 14,11 € Lo}

Clearly, T{™ T{™ ... 7{™ are mutually disjoint andl'{"™| = rm—IsPR.(3)| for s = 0,1,---,2™ — 1. In particular,
ITy™| =™ and|T'5) || = 1. Moreover, by definition, we have(™ =T\ = zm andQSl) | =z .

For any positive integers (> 2) andt¢, we can always pick an integer such thatt < 2™ — 1 and, using the above
notations, define a matrth(m) = (ha,p) satisfying the following two properties.

(1) The rows of ™ are indexed by \Q{™ and the columns of7{"™ are indexed by2{"™;
(2) For eachy € Q"\Q™ andg e Q™
1 it Bec™ () U{als

wf = 28
7 {0, Otherwise (28)

It should be noted thatt(™ = (h, 5) is anh x n binary matrix, whereh = ’Qim)\ﬂg’”)‘, n= ‘ng)‘. The sub-matrix
of H™, formed by the columns indexed 1§\ Q{™, is a permutation matrix. Hence, rafk{™ ) = h.
Theorem 21:Let Ct(m) be the binary code that has a parity check maHgS(”). ThenCt(m) is an(n, k,r,t)-SLRC with

t

n=r" ; m (29)
and
k=M, (30)
Hence, the code rate ¢f™ is
k 1

n Yo T oD
wherer (> 2) andt are any positive integers and is any integer satisfying < 2™ — 1.
Remark 22:We have some remarks about the construction.
1) The example codes given in the last section are @3@? for r = 2, m = 3 andt = 7,5 respectively. In general, for
t=2"—1, itis easy to check thdﬂéﬁ’ill =774 andcé’,fll is the product ofn copies of the[r + 1, ] binary code.
If t <2m —1, thenC™ is the punctured code @\ , with respect ta{™ .

2
2) Fort € {2,3}, we can letm = 2 and from [31), the code rates of our construction afe and (TTH) respectively,

which are optimal according t@1(1) and{19). Ror 4, by (31), the code rate (ﬂt(m) is higher than.’ for all r > 2.

3) It was shown in[[10] that’élff),l has localityr and availabilitym, which implies that it can recover. erasures with
locality  using the parallel approach. In contrast, by Thedrem 2Ahritrecover = 2™ — 1 erasures with the same locality
when using the sequential approach, which is a significavarastdge of the product code for the sequential recovery. In
particular, the product of two copies of tfie+ 1, r] binary code is not optimal (in rate) among codes with logalignd
availability ¢ = 2 [12], but optimal amondr, ¢ = 3)-SLRCs.

In the rest of this section, we will prove Theorém 21. To prdv&tct(m) is an (r,t)-SLRC, we will prove a more general
claim, say, for any binary linear cod® if C has a parity check matri¥/ which contains all rows OHt(m) (not necessarily
H = Ht(m)), thenC is an(r,t)-SLRC. We first make some clarifications on the constructiptvim simple remarks.

Remark 23:Let C be a binary linear code. If the code symbolsCoére indexed bﬁgm), then, by construction oHt(m),

C has a parity check matrix which contains all rowsffbfm) if and only if for eacha e ng)\Qém),

ta= S ap (32)

BeL™ (a)

If the code symbols o€ are indexed byS, whereS # ng), thenC has a parity check matrix which contains all rows of
=™ if and only if there is a bijection) : {™ — S such that for each € Q{"\Q{™,

Ty(a) = Z Ty (B)- (33)
BELM™ (o)
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Remark 24:Sincel <t < 2™ — 1, we can find ang € [m] such thae™o—1 —1 <¢ <2mo0 — 1, Lett; =2™~! —1 and
to=t—1t; —1. Then0 <ty <t; <2m~1 _1 and ng) can be partitioned into two disjoint nonempty subsets

ty
A=a =]
s=0

and
t

B=0"\A= |J (™.
s=t1+1
Moreover, noticing that supp(s) € {1,2,---,mg — 1} for 0 < s < ¢;, then A can be partitioned inte mutually disjoint
nonempty subsets, according to the values ofrthy¢h coordinatefrom the righy of its elements, as follows.

A] = {(imaim—la"' 7il) S A7 imozj}a v.? S ZT"

In the following, if there is no other specification, we alwagssume that is a binary linear code and has a parity check
matrix which contains all rows oHt(m). Without loss of generality, we assume that the code symbi(s are indexed by
ng). To prove Theorerh 21, we need the following three lemmas.

Lemma 25:Supposen > 1. With notations in Remark 24, the following hold.

1) For eachj<Z,, the punctured cod€|; has a parity check matrix which contains all rows/d 1’”’1).
2) If to > 1, the punctured codé|s has a parity check matrix which contains all rowsfdifzm’l).
Proof: For eachj € Z, 41 = {0,1,--- ,r}, let

. m—1 m
wj . Z7"-‘-1 — Z7"-*-1

be such that);(a) = (im—1," s imos J tmo—1," -+, 41) TOr €acha € (im—1, "+, img» tmg—1, -+, 1) € Z;’f;ll. That is, ¢, () is
obtained by inserting as a coordinate between tfe,—1)th andmgth coordinate(from the righ} of «.
1) For eachj € Z,, it is a mechanical work to check that; induces a bijection betweeﬂg”_l) and A; such that for
eacha € Q""" Y,
£ (j(0)) = {;(8); 8 € LD (a)}.

SinceC has a parity check matrix containing all rowstm), then by [[3R), we have

Tapj(a) = Z xrp

BreL™ (v;(a))

= Z Tap; (B)-

peLm="1(a)

Hence, by Remark 23] 4, has a parity check matrix which contains all rows]ﬁ&flm’l).
2) Recall thatt; = 2me~! — 1. Then for eachs € {t; + 1,t; +2,--- ,t}, we have

SUpR, (s) = supR, 1 (s") U {mo},
(m—1)

wheres’ = s —2mo—1 ¢ [0,1,--- t}. So similar to 1), we can check thdi. induces a bijection betwee,, and
B = ng)\Qg”) such that for eacl € QE?il)\Qémfl),

BeL(m—1 (a)

m—1)
5 .

Hence, by Remark23}|5 has a parity check matrix which contains all rowsH
For eacha = (i, im—1,---,i1) €Z)",; andl & [m], let

Lg):{(lm, o 'aié-i-lai;?if—la o '72.1);1'2627""1}' (34)

That is, L' consists ofa as well as the points ii;", ; which differs froma only at the/th coordinate(from the righy.
Lemma 26:For eacha € ng) and/ € [m], if LY ng), thenR = Lg)\{a} is a recovering set od.
Proof: Let
& = (i s Geg1, 00, 00-1, ,01)-

Then by [3%),

L((yé) = {a07a17" : aaT}a
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wherea; = (im, - ,te41,J,%—1,- - ,i1) for eachj € Z, 1 anda = «,.
From [Z5), it is easy to see that

r—1
L (o) = [ £ (ay) (35)
j=0
and for distinctjy, jo € Z,,
E(m) (ajl) N ‘C(m) (ajl) = @ (36)

So combining[(3R),[{35) and (B6), we have

BeLlm™ (ay)

( Z xﬁ)
BeL™ (o))
which is equivalent tqnoticing thatC is a binary codg

Lo = Z Zp.

peLi\{a}

I
-

T

J
r

Il
= o

I
8
°

Note that from |13|4),L§f) has sizer + 1. SOR = Lg)\{a} has sizer, hence is a recovering set of [ |
Lemma 27:For any nonemptyZ C Q{™\Q™ | there exists am € E which has a recovering sét C Q\"™)\ E.
Proof: Let s be the smallest number such thaN TS™ + §. SinceE € Q{™\Q\™, thens > 1 and supp,(s) # 0.
Hence, we can always findéec supp,(s) and as’ < s such that

supp,,(s) = supp,,(s’) U {¢}. (37)

Pick « € ENT{™. Then by [ZB),U"™ (a) = supp,(s). Further, by [34) and(37)U™ (8) = supp, (s') for each
B e Lg)\{a}. Then again by[(26), we have

L\ o} T, (38)
Sinces’ < s and s is the smallest number such thatn T{™ # ¢, then E N T = (). Hence,
L\{a} cTU\E C QU\E € f™\E,

and by Lemma26R = L\ {a} is a recovering set of. [
Now, we can prove Theorem21.
Proof of Theoreni 21:By the construction, it is easy to see that the code Iengthf’@? is

™|

n =

|
M~

)

»
(=)

=l

m—Isupp,,(s)|

@
Il
o

Lo
m
=T _
Zo rIsupPR,, (s)] 7
s=

and the dimension af\™ is
k= ‘Q(()m)‘ =r".

So the code rate is
k 1

=
) o TR
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We then need to prove théfm) is a(r,t)-SLRC. It is sufficient to prove that for any binary linear ead if C has a parity
check matrix containing all rows of{t(m), thenC is an(r, t)-SLRC. We will prove this by induction om.
First, form = 1, sincel < ¢ < 2™ — 1, we havet = 1. By (Z8) and[Z)I"\") = Z,, T\") = {r} andQ\" = Z,.,,. So

Hl(l) = (1717' o 71)1><(’r+1)'

Clearly, the binary linear codé with parity check matrix containingfl(l) is a(r,1)-SLRC.

Now, supposen > 1 and the induction assumption holds for all < m and#’ < 2™ — 1. We considern andt¢ < 2™ — 1.
Using the same notations as in Remiark 24, we have the folepfaar claims.

i) For any nonemptyy C A of size |E| < t;, there exists amv € E such thatx has a recovering set C A\FE.

i) For any nonemptyF C A of size|E| < t, there exists am € F such thate has a recovering sdt C ng)\E.

iii)  For any nonemptyE C B of size |E| < t,, there exists am € E such thate has a recovering s&k C B\ F.

iv)  For any nonempty C B of size |E| < t, there exists amv € E such thate has a recovering se® C ng)\E.

We will prove them one by one as follows.

i): Since E'C A and, by Remark244 =J[Z) A;, then ENA;, #0 for somejo € Z,. By 1) of LemmaZbC|4,, has a
parity check matrix containing all rows dﬂ(l’" 1). So by induction assumptiol| 4, is an(r,t;)-SLRC. Moreover, since
|ENAj,| <|E|<t1, hence, by LemmB] 2, there exists ark ENA;, such thate has a recovering se8C A;\EC A\E.

ii): According to Remark24{ A;;j € Z,} is a partition ofA. We can consider the following two cases.

Case 1: There argy, j; € Z,, j1 # jo, such thatE N A;, # 0 and EN A;, # (. According to Remark 24, < 2™ — 1 =
2t1 4+ 1. Then eithefEN A, | <ty or |[ENAj,| < ¢1. Without loss of generality, assum& N A, | < ¢;. Similar to the proof
of 1), C|a,, is an(r,t1)-SLRC and there exists am € E'N A;, such thatn has a recovering sek C A;, \E C A\FE.

Case 2:E C A;, for somej; € Z,. In this case, ifEﬂng) = (. Then the expected exists by Lemm&327. So We assume
ENQ{™ +# (. Pick ana € EN QY. Recall thatt; = 2m0~1 — 1. By (34), we can check that{™ ¢ Q™ UF§ ", and
LY N A, = {a}. SinceE C A4;,, thenR = LT\ {a} C Qgﬁ)l\E C O™\ E. By LemmaZ®,R is a recovering set of.

iii): If t3 =0, the claim is naturally true. Assume > 1. By 2) of Lemmd2b( | has a parity check matrix containing all
rows of Ht(zm’l). So by induction assumptio@, 5 is an(r,t2)-SLRC. Hence, by Lemmid 2, there exists@® E such that
a has a recovering se® C B\ E.

iv): In this case, by the deflnltlon oB, we haveE N Q = (). Hence, by LemmA27, there exists are £ such thato
has a recovering sek C Q \E
Combining i)-iv) and by LemmaAl3, the result follows. |

VI. CONSTRUCTION FROMRESOLVABLE CONFIGURATIONS

In [20], by using¢—3 mutually orthogonal latin squares (MOLS) of orderthe authors construct a family of binary
(r,t)-SLRC with k& = r? and code ratel = 1/(1+ =2 + %) for odd ¢. A limitation of this construction i < 7 + 2,
since, a necessary condition of existibngOLS of orderr (r>1) is £<r—1 [25]. In this section, by using the resolvable
configurations, we give a new family of binafy, t)-SLRC achieving the same raﬁe: 1/(1 + % + T%) for any r and any
oddt > 3 (not limited byt < r + 2). First, we introduce a definition [25],[26].

Definition 28: Let X be a set oft elements, called points, and be a collection of subsets of, called lines. The pair
(X,A) is called a(k:—1,b,) configurationif the following three conditions hold.
(1) Each line containg points;
(2) Each point belongs to—1 lines;
(3) Every pair of distinct points belong to at most one line;
Clearly, condition (3) is equivalent to the following cotidn.
(3) Every pair of distinct lines have at most one point in common
The configuration X, A) is calledresolvable if further
(4) Alllines in A can be partitioned into—1 parallel classes, where a parallel class is a set of lindsptdition X .

For any (k;—1,b,) resolvable configuratiofX,.4), one can see thatk and each parallel class contains= £ lines.
So,b = £(t — 1) = s(t — 1) in such a case. As usual, the incidence matrix ofta ;,b,) configuration(X, A), where
X ={z1, -,z and A = {A,,---, Ay}, is defined as & x k binary matrix}/ = (m; ;) such that

1, if x; € Ag;
Mij = ;
0, otherwise

Clearly, any configuration is uniquely determined by itsidience matrix.



16

Example 29:We can check that the following matrix determinegka 1, b,.) resolvable configuratiofX,.A) with k =9,
t—1=4,b=12andr = 3. Clearly,{ A1, As, A3}, {A4, A5, Ag}, {A7, As, Ag} and{ Ao, A11, A12} are four parallel classes
of (X,.A) and any pair of lines in different parallel classes have osietpn common.

1110 0 00 0 O
0001 1 1000
0000 O0O0OT1T11
100 1 001 O0O0
01001 0010
0 01 001001
M= 100 0 010 1O0
010100001
001 010100
100 01 00 01
010001100
001 100010

Resolvable configurations was recently used for constrgctddes whose information symbols have localignd availability
t by Su [27]. The author also constructed some resolvable qumatfiions in the paper, for example, thie_1,b,.) resolvable
configurations withk = »™ andt — 1 < T::, wherem > 2 andr is a prime power. The following construction, using the
free Z,.-module [28], not only generalize the result bf[27], butoaénable us to constru¢k:_1,b,) resolvable configuration
for anyr,t > 2 (r need not be a prime power), and furti{er¢)-SLRCs for anyr > 2 and odd integet > 3.

Lemma 30:For anyr,t > 2, there exists &k;_1,b,.) resolvable configuration with = ™, wherem is an arbitrary integer
such thatm > log, t.

Proof: Consider the fre@,.-module X = Z!", whereZ, is the ring of integers module. For anya € Z"*, we usea(y)

to denote thejth coordinate of. For example, ifa = (i1, 2, - - ,im), thena(j) = ;.

For each nonempty C [m], let ag € Z* be such thatig(j) = 1 for j € S andag(j) = 0 otherwise. Let

A570 L {Z cagt € ZT}.

Clearly, Ag is a submodule oZ!" with r elements andls o N As/o = (0,0,---,0) for any two distinct nonempty subsets
S and S’ of [m]. Let

As = {Ags, £=0,1,--- 7™ 1 —1}

be the collection of all cosets ofs . Thena; —az € Ag forany ¢ € {0,1,--- ,r™~1 — 1} and anyas, s € Agy.
Note thatm > log,t (i.e.,t —1 < 2™ — 1) and [m] has2™ — 1 nonempty subsets. We can always pick 1 nonempty
subsets ofm], say S1, So, -+, S;—1. Let

t—1
A= [ As..
i=1

We claim that(X = Z!", A) is a (k;—1,b,) resolvable configuration, which can be seen as follows.
Firstly, noticing that for each nonempfyC [m], Ags is a partition ofX, then Conditions (1), (2), (4) of Definitidn 28 hold.
Secondly, ifS, S’ are two distinct nonempty subsets[ef] and/, ¢’ € {0,1,---,2™ — 1}, then we havéAs N As: | < 1.

Since, if otherwise, suppose;, as € Ag N Ag ¢, thenay —as € AsoNAg o= (0,0,---,0). Hence, we havey = as,
i.e. [As¢N As | < 1. Moreover, since for each nonemp$yC [m], Ag is a partition of X, so Condition (3) of Definition
holds, which completes the proof. [ |

In the rest of this section, we always assume {#%t.4) is a (k;—1,b.) resolvable configuration and = {A;,---, 4,}.
Firstly, we need a lemma for the property of the resolvablefigaration(X, .4) with odd .

Lemma 31:Let E be at-subset ofX andt¢ be an odd integer. Then there existsane A such thal E N A;| = 1.

Proof: Consider a parallel class ¢fX,.4). Since it is a partition ofX and|E| = ¢ is odd, there exists somg;, in the

class such thate N A, | is odd. If [E N A;,|=1, then we have done. So suppdse={i1,---,i;} and{ii, iz, i3} CENA;,.
Since each point belongs to- 1 lines, we can assumg belongs to lines4;,, A;,,---,A;,_,, whereA; ,A;,,--- A,
belong to different parallel classes. Moreover, since yeyir of distinct points belong to at most one line, thenis ¢
A;,,Wle{2,--- ,t—1} and each point,, £ {4, --,t}, belongs to at most one line fd,,,---, A, ,}. Hence, there exists a
line A; € {A,,,--+,4;, .} that contains no point ifis, - - -, 4, }. That is to sayE N A; ={i1}, which completes the proofm

From now on, we letX =[k] and Ay = {Ay,- -+, A}, Ao ={Asy1, - Aast 5 A1 ={Ap—2)s41, -, Ap} be thet —1
parallel classes ofX,.A). We further partition[s] into [ 2] nonempty subsets, sayy, - -+, B=y, such that B;[ < r for all
i€ {l,---,[2]}. Such a partition plays a subtle role in our constructionywdisbecome clear later. Now, IV = (w; ;) be

afs] xb matrix defined by
1, if J€ B
Wi,j = :
0, otherwise.
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Let M be the incidence matrix ofX,.4) and

M I OM@}>
H= : 39
<OEVk W Iy (39)

where I, denotes the x ¢ identity matrix andO,, denotes the/ x ¢’ all-zero matrix for any positive integersand ¢'.
Clearly, H hasb + [2] rows,n = k + b+ [2] columns and rank + [2].

As an example, consider the resolvable configurati§nA) in Example 2D. We have = £ = 3 and[£] = 1. So we can
constructW = (1,1,1,0,--- ,0)1x12 andlm = (1)1x1, and according td(39), further construct a matfixas in [40).

1 1100O0OO0OO0OO0O1O0O0OO0OO0OOOOO0OOO0OTO0OQO0
6o0o011100O0O01O0O0O0O0OO0OO0OSO0OO0OO0OO0OO®O0
0600000111001 O0O0O0O0O0O0O0O0OTO0OT®O
1 001001O0O0OO0OO0OO0O11TO0OOOOO®O®O0OTO0®O
010010010 O0O0O0OO0O1TO0O0O0OO0OOOGO0OO0OO®O
0oo01o0010O01O0O0O0O0OO0OD1TO0O0OO0OOOGO0OO0OO®O
M=]100O0OO0O1O01O0O0O0OO0OO0OOO0OT1TO0O0O0TO0O0OQO0 (40)
0610100001 0O0O0O0OO0OO0OO0OI1IO0O0O0®O0OO®O0
06o601o1o0o100O0O0OO0OO0OO0OO0OO0OO0OI1IO0O0®O0O®O0
1 00010O0OO0O1O0O0O0OO0OO0OO0OOO0OOT1TTO0OTGO0®O
010001 10O0O0O0O0O0O0ODO0OO0OO0OO0ODOT1TQO0O®O
oo011o00010O0O0O0O0O0ODO0OO0OO0OO0ODOOO0OT1IO0
0o0000O0O0OO0OOOTI1TT1TT1TO0O0O0OO0OO0OO0OTO0OTO0OTO01

Let C be a binary linear code with parity check matik as [40). Then from the first2 rows of H, we can see that the
coordinatel has4 disjoint recovering sets, i.e{2,3,10}, {4,7,13}, {6,8,16} and {5,9, 19}, and the coordinaté0 has a
recovering sef{1,2,3} C {1,---,9}. Moreover, from the last row off, we can see thafl1, 12,22} is a recovering set of
10 and {10, 11,12} is a recovering set of2. In general, we have the following lemma.

Lemma 32:Let C be ann, k] binary linear code with parity check matri&f as in [40). Then, the following hold.

1) Eachie[k] hast—1 disjoint recovering sets, i.e4;, U{k+j,}\{:}, where4;,, {=1,---,¢t —1, are lines containing.

2) Eachie{k+1,---, k+b} has a recovering sk C [k].

3) Eachie{k+1,---, k+s} has a recovering s®® C{k+1, - - -, k+s}U{k+b+1, - n}\{i}.

4) Eachie{k+b+1,---,n} has a recovering se8C {k+1, ---, k+s}.

Proof: 1) and 2) are obtained by considering the firstows of H; 3) and 4) are obtained by considering the a5t

rows of H. [ |

Theorem 33:If ¢ is odd, then the binary linear codkwith parity check matrixd as in [39) is an(n, k,r, t)-SLRC with

rate
k t—1 1\ !
n r r

Proof: By the construction¢ has block length

n=k+b+|]

(2 3)

and dimensiom — (b + [£]) = k. So the code rate is

We now prove, according to Lemrha 2, that for aiyC [n] with |E| < ¢, there exists am € E such that has a recovering
setR C [n]\E. Consider the following cases.

Case L:E N [k] = 0. Then we haveF C {k+1,---,n}. If EN{k+1,--- k+ b} # 0, then by 2) of Lemm&32, each
ie ENn{k+1,---,k+ b} has a recovering st C [k] C [n]\E; Otherwise,E C {k+b+1,---,n}, then by 4) of Lemma
[32, eachi € E has a recovering se® C {k+1,---,k+s} C{k+1,---, k+ b} C [n]\E.

Case 2:E N [k] # 0. Pick ani; € EN [k]. Let

RZ:AJ'@ U{k+]5}\{ll}a ézla"'vt_lv (41)
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whereA;, ---, A;, , are thet—1 lines containing,. By 1) of Lemmd3RR;, - - , R,_, aret—1 disjoint recovering sets af.
If Ry C [n]\F for somele{1,---,t—1}, then we are done. So we assuiie) R, # () for all £€{1,---,t—1}. Since allRs
are disjoint, sQF| =t, |[ENRy|=1,¢(=1,--,t—1,andE C {i1 } (Uz;i Rg). We have the following three subcases:

Case 2.1:EN Ry C [k],Vle{1,---,t—1}. ThenE C [k]. Since|E| =t is odd, by Lemm&31|E N A;| = 1 for some
A; € A. Let ENA; = {iz}. By 1) of Lemmd3R,R = A4; U {k + i}\{i2} C [n]\E is a recovering set of;.

Case 2.2.EN Ry, C [k] and EN Ry, ¢ [k] for some{¢;,¢,} C {1,---,t—1}. Without loss of generality, assume
io € ENRy C [k] and EN Ry ¢ [k]. Then according to(341), we havé N Ry = {k + j»}. By 1) of Lemma 3R, we can
let Ry,---, R;_, aret—1 disjoint recovering sets ok, where Ry = A;, U {k + ji}\{i2} and R, = Aj; U {k + j;}\{i2},
¢=2,---,t—1, such that4;, together withA;,---, A; are thet —1 lines containing» (see FigLH. Note thatA;, is the
only line containing both; andiy, one can see thdti, iz, k + jo} N R, = 0,V¢ € {2,---,t — 1}. Since|E| = t, then there
exists anlg € {2,---,t — 1} such that’ N R, = . Hence,R) C [n]\E is a recovering sets af.

Case 2.3ENR, ¢ [k] forall £ € {1,---,t—1}. Then we haveNR,={k+j,}. Note thatd;,, -+, A4j, , belong to distinct
parallel classes (since all of them contaii Without loss of generality, we assurde, € A, (€ {1, ---,t—1}. Thenj; < s and
§<je<bl=2---,t—1.By 3) of Lemmd3Rk+j; has arecovering sét C {k+1, - - -, kts A k+b+1, - - n}\{j1} C[n]\ E.

By the above discussion, for ady C [n] of size|E| < ¢, there exists am € E such that has a recovering st C [n]\E.
So by LemmaXR( is an(n, k,r,t)-SLRC. ]

Fig 9. lllustration of points and recovering sel = A;,U{k+j,}\{i1},£=1,--- ,t—1, aret—1 recovering sets afi; R andR), = Ajéu{k—i-jé}\{ig},
{=2---,t—1, aret — 1 recovering sets ofa.

VII. CONCLUSIONS ANDFUTURE WORK

In this paper, we investigated sequential locally repdéraiodes (SLRC) by proposing an upper bound on the code rate of
(n, k,r,t)-SLRC fort = 3, and constructed two families df, k, r,t)-SLRC forr, ¢t > 2 (for the second familyt is odd).
Both of our constructions have code rate - and are optimal fot € {2, 3} with respect to the proposed bound.

It is still an open problem to determine the optimal code w@ftén, k, r,t)-SLRCs for generat, i.e., ¢t > 5. Here, we
conjecture that an achievable upper bound of the code rate, &t r, t)-SLRCs has the following form:

-1
k i a;
- <1 — 42
- < ( +; w) : (42)
wherem = [log, k], all a; > 0 are integers such thaf;" | a; = ¢. This conjecture can be verified fore {1,2,3,4}, for

which the values of then-tuple (a1, - - - , a,,), denoted by, for eacht, are listed in the following table, where, the cases of
t = 2,3 are due to[[1l7] and this work, respectively. The case &f4 (for binary code) is recently due to Balaji et &[21].

t a1 a2 as -+  Gm
1 1 0 O 0
2 2 0 0 0
3 2 1 0 0
4 2 2 0 0
Table 1. The known values ef; = (a1,a2, -, am).

It is very hard to give the explicit values ef, for generalt > 5, even a LP-based or recursive formulationcgf seems

difficult. Further, we conjecture that; = (2,2,1,0,---,0) andag = (2,3,1,0,---,0). We would like to take the above
problems our future work.
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