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Identifiability for Blind Source Separation of
Multiple Finite Alphabet Linear Mixtures

Merle Behr, Axel Munk

Abstract—We give under weak assumptions a complete com-
binatorial characterization of identifiability for linear mixtures
of finite alphabet sources, with unknown mixing weights and
unknown source signals, but known alphabet. This is based
on a detailed treatment of the case of a single linear mixture.
Notably, our identifiability analysis applies also to the case of
unknown number of sources. We provide sufficient and necessary
conditions for identifiability and give a simple sufficient criterion
together with an explicit construction to determine the weights
and the source signals for deterministic data by taking advantage
of the hierarchical structure within the possible mixture values.
We show that the probability of identifiability is related to the
distribution of a hitting time and converges exponentially fast to
one when the underlying sources come from a discrete Markov
process. Finally, we explore our theoretical results in a simulation
study. Our work extends and clarifies the scope of scenarios for
which blind source separation becomes meaningful.

Index Terms—Blind source separation; BSS; finite alphabet
signals; single mixture; instantaneous mixtures; Markov pro-
cesses, stopping time

I. INTRODUCTION

A. Problem description

In this work we are concerned with identifiability in a
particular kind of blind source separation (BSS) motivated by
different applications in digital communication (see e.g., [1]–
[3]), but also in cancer genetics (see e.g., [4]–[7]). A prominent
example is the separation of a mixture of audio or speech
signals, which has been picked up by several microphones,
simultaneously (see e.g., [8]). In this case the different speech
signals correspond to the sources and the recordings of the
microphones to the mixture of signals with unknown mixture
weights. From this mixture the individual signals have to be
separated.

More generally, in BSS problems one observes P mixtures
of N sources and aims to recover the original sources from
the available observations. In this paper we focus on the linear
case (for the non-linear case see e.g., [9], [10]), where the
blindness refers to the fact that neither the sources nor the
mixing weights are known. We also treat the case of unknown
number of sources.

A minimal requirement underlying any recovery algorithm
for sources and mixture weights (in a deterministic or noisy
setting) to be valid is identifiability, i.e., the unique decom-
position of the mixture into sources and mixing weights.
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Without any additional information on the source signals S
identifiability cannot hold, of course, as from a linear system
X = AS the matrices A and S are not uniquely determined,
in general. In particular this applies to single linear mixtures
(P = 1). However, if we assume that the values of the
sources are attained in a known finite set of real numbers
(finite alphabet), then BSS identifiability holds under certain
conditions, which is necessary for any recovery algorithm to
be valid.

Therefore, the aim of this work is to give a comprehensive
discussion of such conditions. We are able to give (under weak
assumptions) a complete combinatorial characterization of
identifiability. From this we derive sufficient conditions, which
are easy to verify. Moreover, these conditions yield an explicit
construction to recover sources and weights in the noiseless
case from the deterministic mixture. More specifically, using
the notation

v = (vi)1≤i≤n = (v1, . . . , vn)>, V = (Vij) 1≤i≤n
1≤j≤m

for a vector v ∈ Rn and a matrix V ∈ Rn×m with n rows
and m columns and Vi·, V·j for the corresponding row and
column vectors, respectively, we assume from now on that the
observed signal is linked to the sources via

X = AS (1)

where X is the deterministic mixture, A =
(Apn)1≤p≤P, 1≤n≤N are the unknown mixing weights,
S = (S1·, . . . , SN ·)

> ∈ ΩN×T are the unknown source
signals, and Ω := {ω1, . . . , ωk} ⊂ R is a known alphabet,
i.e., the set of possible values the sources can attain. The row
vectors Sn· with 1 ≤ n ≤ N denote the single source signals
(of length T ) and the row vectors Ap· with 1 ≤ p ≤ P denote
the mixing vectors (of length N ) of the different mixtures.

In an observational model we often have Y = X+ε where ε
is some random noise term with zero mean. All identifiability
results for (1) transfer to this situation as well, of course.
However, we stress that the primarily aim of this paper is not
to provide a method which reconstructs the mixing weights A
and the sources S from the (possibly) noisy observations Y ,
but rather to clarify the scope of scenarios under which this is
possible. To this end, we will analyze necessary and sufficient
conditions under which the decomposition in (1) is unique.

For the moment, we assume that the number of sources N is
known. However, we point out that most of our results remain
true even when N is unknown (see Section VIII), a case which
has never been treated before to best of our knowledge.
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B. Related Work

As far as we are aware of, identifiability of model (1)
has not yet been considered in the literature in this general
form, although various special cases and variations of this BSS
problem have been addressed. The particular case of a binary
alphabet, i.e., when k = 2 and {ω1, ω2} = {−1, 1}, has been
considered in [11]–[15]. Diamantaras and Papadimitriou [16]
and Rostami et al. [17] assume the alphabet to be equally
spaced, i.e., {ω1, . . . , ωk} = {ω0, ω0 + T, ω0 + 2T, . . . , ω0 +
kT}. We consider arbitrary finite alphabets {ω1, . . . , ωk} ⊂
R. Moreover, several authors (e.g., [12], [16], [17]) assume
a specific distribution on the alphabet, e.g., uniform. Our
results show that it is already sufficient to observe some
specific combinations of alphabet values (which are minimal
conditions in a sense), hence we do not need to assume
such a specific distribution. Diamantaras [18] works with a
general finite alphabet as well but considers a mixture of two
sources, N = 2. Li et al. [19] gave necessary and sufficient
identifiability criteria for sparse signals, i.e., signals having
many zero entries, in contrast to our work. Although they
consider underdetermined mixtures, their results require at
least two sensors (P > 1) and do not hold for single linear
mixture (P = 1). Bofill and Zibulevsky [20] suggest for P = 2
a method for estimating the mixing weights for sparse signals
as well, although without giving any explicit identifiability
criteria. Diamantaras [14] considers a general finite alphabet
but assumes the mixing weights to be complex. Thus, he works
with a 2-dimensional signal. Combing the results from [14]
and [21] yields a sufficient identifiability criterion for finite
alphabet sources with complex mixing weights. However, this
result does not hold when the mixing weights are real as
considered here.

There are further variations of the BSS problem. Some of
them are associated with Independent Component Analysis
(ICA) (see e.g., [22]), which is based on the stochastic inde-
pendence of the different sources (assumed to be random). ICA
can be a powerful tool for (over)determined models (P ≥ N )
[22] and there are approaches for underdetermined multiple
linear mixture models (1 < N < P ) as well [23]. However,
ICA is not applicable for single linear mixtures (P = 1), as
the error terms of the single sources sum up to a single error
term such that stochastic independence of the sources becomes
irrelevant.

Also conceptually related is blind deconvolution (see e.g.,
[24], [25]), however, the convolution model makes analysis
and identifiability severely different [26].

Another related problem is non-negative matrix factorization
(see e.g., [27]–[29]), where one assumes (1), but instead of
S ∈ ΩN×T , both S and A are non-negative. Indeed, the
identifiability conditions derived in [28], [29] are quite related
in nature to ours in Section IV, where their simpliciality
condition on A corresponds to our condition (6) and their
separability condition on S corresponds to our assumption A3.
However, whereas their assumptions necessarily imply P > 1,
ours yield identifiability for single linear mixtures (P = 1),
explicitly exploring the finite alphabet.

For the non-blind scenario, i.e., when A in model (1) is

known, [30] considers identifiability in a probabilistic frame-
work.

To the best of our knowledge, a comprehensive characteri-
zation and unifying treatment of identifiability of the mixing
weights and the sources for model (1) has been elusive. This
issue is, however, fundamental for identifying the scope of
possible scenarios where recovery algorithms for S and A in
(1) are applicable (see, e.g., [12], [14], [15], [17]). In this sense
our work provides an almost "minimal" set of conditions under
which any recovery algorithm for the BSS problem only can
be expected to be valid; in the noiseless case as well as for
the case with random error.

C. Organisation of the paper

We will start our analysis by making two simplifications,
which lead to a better interpretation of the corresponding
identifiability conditions.

First, we will assume that P = 1, i.e., that we observe
a single linear mixture in (1). Clearly, when P increases the
identification problem becomes easier, as more mixtures of the
same sources are observed. Thus, the case P = 1 corresponds
to the most difficult scenario and therefore we treat this case
in detail. Generalizations to arbitrary P will then follow easily
from this case and are given in Section VI.

Second, we start with considering probability mixing
weights, i.e., Apn > 0 and

∑N
n=1Apn = 1 for all p =

1, . . . , P . This is because the corresponding identifiability con-
ditions have an easier interpretation when the mixing weights
are positive. When we allow for negative mixing weights, the
identifiability issue becomes slightly more difficult and the
corresponding conditions become more complicated. General-
izations to negative mixing weights are given in Section VII.

The paper is organized as follows. After introducing a
rigorous formulation of the problem and model (Section II),
we will give a necessary and sufficient identifiability criterion
for the mixing weights and the sources (Section III). To this
end, we will first characterize the identifiability issue as a
purely combinatorial problem. In Sections IV we will then
generalize a result from Diamantaras and Chassioti [13] in
order to derive a simple sufficient identifiability criterion.
This characterizes those source signal combinations which
make the variation of the mixture rich enough in order to
become identifiable. This condition also provides an explicit
construction (see the algorithm in Figure 2) for recovery of
the weights A and the sources S from the mixture X in (1).

In Section V we will shortly discuss how likely it is
for the identification criterion of Section IV to be satisfied
when the underlying sources S1·, . . . , SN · are discrete Markov
processes. To this end, we will bound the probability of
identification from below by a phase-type distribution. Using
a stopping time argument, we will show that the mixture
becomes identifiable exponentially fast, which reveals iden-
tifiability as less a critical issue in many practical situations
as one might expect.

Although, we assume the number of source components N
to be known, in Section VIII we show that most of our results
remain true even when N is unknown.
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In Section IX we simulate source signals from a two-
state Markov chain to illustrate how far our derived sufficient
identifiability conditions (Section IV) are from being necessary
in this setting. To this end, our results from Section III are
fundamental as they give an explicit way to decide whether
a given mixture is identifiable or not. Our simulation results
reveal the simple sufficient condition in Section IV as quite
sharp as we find that the number of observations needed for
this to hold is quite close to the actual number of observations
required for identifiability. This establishes the exponential
bound in Section V as a useful tool to estimate the required
number of observations guaranteeing identifiability with high
probability.

We conclude in Section X.

II. PROBLEM STATEMENT

As mentioned above, for ease of presentation, we start with
analyzing identifiability in (1) for single linear mixtures, i.e.,
P = 1 (for arbitrary P see Section VI) and probability mixing
weights (for arbitrary mixing weights see Section VII). To
this end, let A := {a ∈ RN : 0 < a1 < ... < aN <
1 and

∑N
n=1 an = 1} denote the set of positive (probability)

mixing vectors. Note that an 6= am for n 6= m is always
necessary to ensure identifiability of different sources Sn·, Sm·
(if an = am interchanging of Sn·, Sm· results in the same
mixture x). For given finite alphabet Ω = {ω1, . . . , ωk} ⊂ R,
with ω1 < . . . < ωk, number of sources N ∈ N, and number
of observations T ∈ N let the sources S = (S1·, . . . , SN ·)

> ∈
ΩN×T and the mixing weights a = (a1, . . . , aN ) ∈ A. Then
the observed values are given by x = aS, i.e.,

xt =

N∑
n=1

anSnt, t = 1, . . . , T. (2)

Definition II.1.
Let x = aS; (a, S) ∈ A × ΩN×T as in (2). Then we denote
the vector a and the matrix S as (jointly) identifiable from the
observational vector x when there exists exactly one (ã, S̃) ∈
A× ΩN×T such that x = ãS̃.

In other words, identifiability means that x = x̃ in (2)
implies that a = ã and S = S̃. For simplicity, we refer to
a and S being identifiable from x just by saying that (a, S)
is identifiable. The aim of this paper is to study under which
conditions (a, S) is identifiable from x.

Even though we assumes N to be known, most of our results
remain true when N is unknown, i.e., x = aS with (a, S) ∈⋃
N≥2(A× ΩN×T ) (see Section VIII).

Example II.2.
To illustrate the problem and notation, let us start with a
simple example of model (2), where N = 2 and the alphabet
is binary with Ω = {0, 1}. This means that we consider
mixing vectors of the form a = (a1, a2) with a1, a2 > 0,
a1 + a2 = 1 and two different sources S1· = (S11, . . . , S1T ),
S2· = (S21, . . . , S2T ) with Snt ∈ {0, 1} for n = 1, 2 and
t = 1, . . . , T . The question we would like to answer is, under
which conditions on a and S is (a, S) uniquely determined
via x = aS.

For a given observation xt the underlying source vector
S·t = (S1t, S2t)

> equals one of the four different values

(0, 0)>, (1, 0)>, (0, 1)>, (1, 1)> (3)

and hence,

xt ∈ {0, a1, a2, 1}. (4)

Clearly, if any two of the four values in the set on the r.h.s.
of (4) coincide, then two different source values in (3) lead to
the same mixture value for xt and hence the sources are not
identifiable, i.e., they cannot be distinguished. Consequently, a
necessary condition for identifiability is that all values in the
r.h.s. of (4) are different, which is equivalent to

a1 6= a2. (5)

In other words, it is necessary that the alphabet values in
ΩN are well separated via the mixing weights a ∈ A. A
generalization of this argument to arbitrary alphabets and
number of sources is done later in (6). Further, we may assume
w.l.o.g. a1 < a2, i.e., we denote that source as S1· which comes
with the smaller weight.

(5) alone, however, is necessary but not sufficient for iden-
tifiability. For instance, if S1t = S2t for all t = 1, . . . , T then
xt ∈ {0, 1} and hence, a is not identifiable from x. Thus, a
certain variability of the two sources S1· and S2· is necessary
to guarantee identifiability of a. In this simple example, it is
easy to check that a necessary and sufficient variability of S1·
and S2· is that S either takes the value (1, 0) (i.e., xt = a1

for some t) or (0, 1) (i.e., xt = a2 for some t) as by (5)
and a1 + a2 = 1 it follows that 0 < a1 < 1/2 < a2 < 1.
In other words, it is necessary that the mixing weight a1

(or a2 respectively) is seen somewhere in the mixture x on
its own, without the influence of the other mixing weight.
A generalization of these assumptions and this argument to
general systems (1) is done later in Theorem IV.1 and Theorem
VII.1, respectively.

III. A COMBINATORIAL CHARACTERISATION OF
IDENTIFIABILITY: GENERAL THEORY

In model (2) every observation xt, for t = 1, . . . , T , is given
by a linear combination of a ∈ A (unknown) with one of the
finitely many vectors in ΩN . So in order to identify S·t, we
have to determine the corresponding vector in ΩN . Note that
multiple observed values leave this identification problem in-
variant, i.e., do not contribute further to identifiability. Hence,
w.l.o.g. we assume all observations x1, . . . , xT to be pairwise
different. Note, that this implies T ≤ kN =

∣∣ΩN ∣∣.
Of course, when for a given mixing vector a ∈ A there

exist w′ 6= w′′ ∈ ΩN with aw′ = aw′′ and one observes
this value, it is not possible to identify the underlying sources
S1·, . . . , SN · uniquely. Consequently, a necessary condition for
identifiability is that those values are not observed, i.e., xt /∈
{aw : ∃w′ 6= w ∈ ΩN s.t. aw = aw′} for all t = 1, . . . , T .
For arbitrary sources this is comprised in the condition of a
positive alphabet separation boundary, i.e.,

ASB(a) := min
w′ 6=w∈ΩN

|aw − aw′| > 0. (6)
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Let STN be the collection of injective maps from {1, . . . , N}
to {1, . . . , T}, i.e., for ρ ∈ STN the vector (xρ(1), . . . , xρ(N))
corresponds to a selection of elements from (x1, . . . , xT ).

Theorem III.1.
Assume model (2) with x = (x1, . . . , xT ) = aS; (a, S) ∈
A×ΩN×T . Let E ∈ ΩN×N be an arbitrary but fixed invertible
N ×N matrix with elements in Ω. Assume that ASB(a) > 0
and

A 1.
there exists ρ ∈ STN such that (S1ρ(r), . . . , SNρ(r))

>
1≤r≤N =

E. Then (a, S) is identifiable if and only if
A 2.

there exists exactly one σ ∈ STN such that for ã :=
(xσ(1), . . . , xσ(N))E

−1

ã ∈ A and {x1, . . . , xT } ∈ {ãw : w ∈ ΩN}, (7)

i.e., ã is a valid mixing weight and can reproduce all obser-
vations.

For a proof see Appendix A-A.
Theorem III.1 is fundamental for the following as A2

provides a necessary and sufficient condition for identifiability
of (a, S), given A1 holds. In Section IV, it will serve to derive
a simple sufficient identifiability condition which is easy to
check.

Theorem III.1 is formulated for a fixed (but arbitrary)
invertible matrix E and the two identifiability conditions A1
and A2 depend on this matrix E in the following way: For
a given E imposing the conditions A1 and A2 restricts the
set of all possible mixtures A × ΩN×T to a smaller set that
depends on E in which all elements are identifiable. Thus,
different choices of E lead to different instances of Theorem
III.1, i.e., to different identifiable submodels. In the following,
we will discuss the role of E and conditions A1 and A2 more
detailed.

First, we consider A1. Assumption A1 says that the columns
of the fixed matrix E must appear somewhere in the columns
of the sources S. However, knowledge of where these columns
of E occur is not assumed, ρ can be an arbitrary map in
STN . Thus, A1 restricts the set of all sources to those where a
given set of alphabet combinations, namely the columns of E,
appears somewhere in the signal. Hence, in practice, it requires
pre-knowledge that certain combinations of values in ΩN are
present somewhere in the sources.

Without further restrictions on the matrix E, A1 simplifies
to rank(S) = N (in particular implying T ≥ N ), which is,
indeed, an almost minimal condition. By simple linear algebra,
it is easy to check that rank(S) < dim(span(A)) = N − 1
implies that for any a ∈ A exists an ã 6= a ∈ A such
that aS = ãS, i.e., (a, S) is not identifiable. When we
allow for arbitrary mixing weights (see Section VII), i.e., not
necessarily summing up to one, then by the same argument
rank(S) = N becomes even a necessary condition. Intuitively,
A1 ensures that the sources S1·, . . . , SN · differ sufficiently
such that one can identify a from their mixture. For instance,
if S1· = . . . = SN ·, it follows that x = S1·, irrespective of
a. Note that if kN different values x1, . . . , xt are observed,
i.e., T = kN (recall that w.l.o.g. in this section T equals

the number of pairwise different xt’s), then it must hold true
that {x1, . . . , xt} = {aw : w ∈ ΩN}. Thus, A1 follows
trivially for any invertible N ×N matrix E with elements in
Ω. However, A1 is a much weaker assumption than T = kN .

Second, we comment on assumption A2. Given A1, assump-
tion A2 reveals a as identifiable as soon as we can assign a
collection of observations to rows in E in a unique way. If
for some σ 6= ρ ∈ STN ã in A2 fulfills the conditions in (7),
ã is a different mixing weight which can produce the same
mixture x with some sources fulfilling A1 and hence, (a, S)
is not identifiable. However, if such a σ 6= ρ ∈ STN does not
exists, a is uniquely determined from x and identifiability of
S follows from ASB(a) > 0.

In Section IV we will show that for some specific choices
of E A2 always holds, i.e., A1 already implies identifiabiliy.
The following example shows that this is not true in general,
i.e., not for any choice of E.

Example III.2.
With the notation of (2) and Theorem III.1, let T = N = 3,

Ω = {0, 1, 21
6+
√

15
, 6}, a =

(
6−
√

15
30 , 6+

√
15

30 , 0.6
)

, and

S = E =

6 0 0
0 21

6+
√

15
0

0 0 1

 ,

i.e., ρ in A1 is the identity map and

x = aS =

(
6−
√

15

5
, 0.7, 0.6

)
.

For σ : (1, 2, 3) 7→ (3, 1, 2) we find that(
xσ(1), xσ(2), xσ(3)

)
E−1 = (0.1, 0.2, 0.7) =: ã,

which is a valid mixing weight. Hence, (a, S) is not identifi-
able.

As mentioned before, in Section IV we will show that
some specific choices of E already lead to uniqueness of the
selection σ in A2, and thus ensure identifiability. The following
remark illustrates how specific choices of rows in E fix some
subdomain of σ in A2.

Remark III.3.
If T = kN with x1 < . . . < xkN , then x1, the smallest
observed value, corresponds to the situation when all sources
S1t, . . . , SNt take the smallest value of the alphabet (denoted
with ω1), i.e., if E1· = (ω1, . . . , ω1), then for all σ satisfying
A2 σ(1) = 1. The second smallest observed value, x2,
corresponds to the situation when all sources S2t, . . . , SNt
take the smallest value ω1, but the source S1t with the
smallest weight a1 takes the second smallest value ω2, i.e., if
E2· = (ω2, ω1, . . . , ω1), then for all σ satisfying A2 σ(2) = 2.
Analogous holds for the largest observed value and the second
largest observed value.

IV. A SIMPLE SUFFICIENT IDENTIFIABILITY CRITERION

We have seen in Theorem III.1 that the problem of identify-
ing a and S from the observations x1, . . . , xT reduces to find
the corresponding observations xt for N linear independent
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rows of an invertible N × N matrix E with elements in Ω.
Remark III.3 points out that some observations xt can always
be uniquely assigned to source vectors (S1t, . . . , SNt)

> ∈ ΩN

and thus, limit the possible maps σ in A2. The next theorem
shows that there is even more structure in the observations
x1, . . . , xT and that certain variations in the sources, i.e.,
certain choices of E in A1, already ensure identifiability.
Moreover, the proof of the following theorem gives an explicit
construction of the unique (a, S) from x.

Theorem IV.1.
Assume model (2) with x = (x1, . . . , xT ) = aS; (a, S) ∈
A× ΩN×T . Furthermore, assume that ASB(a) > 0 and

A 3. there exists ρ ∈ STN such that(
S1ρ(r), . . . , SNρ(r)

)>
= sr, r = 1, . . . , N,

with (srn)1≤n≤N := (ω11n6=r + ω21n=r)1≤n≤N .
Then (a, S) is identifiable.

Before we give a proof (which is based on an explicit
algorithm to compute a from x1, . . . , xT ) we will discuss
relationships and differences between the previous results and
their assumptions A1 - A3.

Assumption A3 of Theorem IV.1 has a simple interpreta-
tion. It means that each of the mixing weights an appears
somewhere in the mixture on its own (without the influence
of any other mixing weight am 6= an) via the mixture value
xρ(n) = asn = (ω2 − ω1)an + ω1. For instance, if the
alphabet is of the form Ω = {0, 1, ω3, . . . , ωk} A3 simplifies
to the condition that the mixing weights appear somewhere
in the mixture, i.e., an ∈ {x1, . . . , xt} for all n = 1, . . . , N .
Intuitively, A3 means that for each n = 1, . . . , N there exists
one mixture observation xt such that only Snt is active (taking
the value ω2) and all other sources Smt with m 6= n are silent
(taking the value ω2). It is easy to check that the choice of
alphabet values ω1 and ω2 (the smallest and second smallest
alphabet value) in Theorem IV.1 can be replaced by ωk and
ωk−1 (the largest and second largest alphabet value).

Obviously, assumption A3 arises from assumption A1 for a
specific choice of E in Theorem III.1, namely with

E =

 s1

...
sm

 =


ω2 ω1 . . . ω1 ω1

ω1 ω2 . . . ω1 ω1

ω1 ω1
. . . ω1 ω1

ω1 ω1 . . . ω2 ω1

ω1 ω1 . . . ω1 ω2

 . (8)

Consequently, if the matrix in (8) is invertible, A3 implies
A1. The following Lemma shows that this holds under mild
conditions on Ω and N .

Lemma IV.2.
For model (2) let A3 be as in Theorem IV.1 and A1 as in

Theorem III.1.
If ω2 6= ω1(1−N), then A3 implies A1.

For a proof see Appendix A-B.
Figure 1 summarizes all relations between A1 - A3 in a

diagram.

A3

A1 (A2 ⇔ Identifiability)

ω2
6= ω1

(1
−N

) (Lemma IV.2) T
heorem

IV.1

Theorem III.1

Figure 1. Relation between A1, A2, and A3

Now we turn to the proof of Theorem IV.1, which is proven
by explicit recovery of (a, S). This generalizes an algorithm
of Diamantaras and Chassiot [13] for the binary alphabet Ω =
{−1, 1} to a general finite alphabet.

Proof of Theorem IV.1: Assumption A3 implies that

xρ(r) = asr, r = 1, . . . , N, (9)

and hence,

ar =
xρ(r) − ω1

ω2 − ω1
. (10)

Thus, it suffices to determine the map ρ and the values
xρ(1), . . . , xρ(N), respectively, in order to determine a. When a
is determined, identifiability of S follows from ASB(a) > 0.

Recall Remark III.3 and note that

xρ(1) = min({x1, . . . , xT }\{ω1}), (11)

which determines a1 as in (10). The following two lemmas
show that successively all the other ρ(r) (and hence ar) for
r = 2, . . . , N can be determined as well, which finishes the
proof.

Let B = B(N,Ω) be the N × kN -matrix, where the jth
column of B is the number j − 1 written in the positional
notation based on the number k, identifying 0 with ω1, 1 with
ω2, and so on, i.e.,

Bij =

k∑
r=1

ωr1b (j−1)mod ki

ki−1 c=r−1
, (12)

and d := aB the kN dimensional vector of all possible values
that x can take.

Lemma IV.3.
From a1, . . . , ar one can determine d1, . . . , dkr uniquely.

Lemma IV.4.
It holds that xρ(r) = min({x1, . . . , xT }\{d1, . . . , dkr−1}).

For proofs see Appendix A-C and A-D, respectively.

The proof of Theorem IV.1 gives an explicit recovery
construction for (a, S) which is summarized in Figure 2.
For noisy data one may use algorithm 2 to proceed similar
as Diamantaras and Chassiot [13] who suggest a clustering
approach for estimating a and S from noisy observations of
x. However, as the purpose of this paper is not to propose a
practical method for recovery from noisy data, but rather to
analyze the scope of scenarios under which this is possible
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Input: x1, . . . , xT
r = 1
G← {x1, . . . , xT } \ {ω1}
c1 ← minG
a1 ← c1−ω1

ω2−ω1

Determine d1, . . . , dk with Lemma IV.3 (using a1).
G← G \ {d1, . . . , dk}
while G 6= ∅ do

r = r + 1
cr ← minG
ar ← cr−ω1

ω2−ω1

Determine d1, . . . , dkr with Lemma IV.3 (using
a1, . . . , ar).

G← G \ {d1, . . . , dkr}
end while
N ← r
return N and a1, . . . , aN

Figure 2. Algorithm for weight identification in (2), with ω1 < . . . < ωk ,
under assumption A3 of Theorem IV.1.

in principle, we are not going to follow this approach here
further.

V. IDENTIFIABILITY FOR MIXTURES OF STOCHASTIC
PROCESSES

In this subsection we will shortly discuss how likely it is
for the identifiability condition of Theorem IV.1 to be satisfied
when (S1t, . . . , SNt)

>
t is a stochastic process. Therefore, let

sr be as in Theorem IV.1, and define the hitting times

Tr := min{t ∈ N : (S1t, . . . , SNt) = sr}, (13)

for r = 1, . . . , N , and the stopping time

T := max
r=1,...,N

Tr.

Then it follows from Theorem IV.1 that

P ((a, S) is identifiable)

≥P
(
∃ρ ∈ STN : (S1ρ(r), . . . , SNρ(r))

> = sr
)

=P (T ≤ T ) ≥ 1−
N∑
r=1

P (Tr > T ) .

(14)

Note that this bound only depends on the distributions of the
hitting times Tr, which are often explicitly known or good
estimates exist. A prominent class of examples for modeling
the distribution of the source signals are Markov processes
including iid sequences (see e.g., [4], [16], [17]).

Theorem V.1.
Assume that the source signals (S1t, . . . , SNt)

>
t in (2) con-

stitute an irreducible Markov process on the finite state space
ΩN , with transition matrix P = (pij)1≤i,j≤kN , where we
identify the first N states of ΩN with s1, . . . , sN from Theorem
IV.1. Let M ∈ N be such that PM > 0 and

Qr := (pij)1≤i,j 6=r≤kN , r = 1, . . . , N,

c := max
1≤r≤N

‖QMr 1‖∞.

Then c < 1 and, if ASB(a) > 0,

1− P((a, S) is identifiable) ≤ Ncb T
M c ≤ Nc

T−M
M . (15)

For a proof see Appendix A-E.

Example V.2 (Bernoulli Model).
Let us consider (2) for the simple case where we have two

sources S1· and S2· that can take two different values, i.e., Ω =
{ω1, ω2}. For instance, the source signals could come from a
binary antipodal alphabet (Ω = {−1, 1}) as they appear in
many digital modulated schemes.

If we assume that S1t and S2t are independent and identi-
cally distributed (i.i.d.) for all t = 1, . . . , T with P(Snt =
ω1) = p ∈ (0, 1) and P(Snt = ω2) = 1 − p =: q
for n = 1, 2 and t = 1, . . . , T , then (S1t, S2t)

>
t con-

stitutes an irreducible Markov process on the state space
{(ω2, ω1)>, (ω1, ω2)>, (ω1, ω1)>, (ω2, ω2)>} with transition
matrix

P =


pq pq p2 q2

pq pq p2 q2

pq pq p2 q2

pq pq p2 q2

 > 0.

Hence, M = 1,

Q1 = Q2 =

pq p2 q2

pq p2 q2

pq p2 q2

 ,

and c = qp+ p2 + q2 = 1− pq. Thus, Theorem V.1 yields

1− P((a, S) is identifiable) ≤ 2(1− pq)T .

In this simple setting we can even calculate the probability
of identifiability exactly. Note that (a, S) is identifiable if and
only if c1 = a1ω2 + a2ω1 or c2 = a1ω1 + a2ω2 is observed
as ω1 < c1 < ω1 + (ω2 − ω1)/2 < c2 < ω2 and

(a1, a2) =

(
c1 − ω1

ω2 − ω1
,
ω2 − c1
ω2 − ω1

)
=

(
ω2 − c2
ω2 − ω1

,
c2 − ω1

ω2 − ω1

)
.

Therefore,

1− P((a, S) is identifiable) = P(S11 = S21)T = (1− 2pq)T .

Example V.2 shows that the bound in Theorem V.1 does
not need to be sharp in general but captures the exponential
decay (in T ) well. This is mainly because in Theorem V.1 the
probability of (a, S) being identifiable is bounded using the
sufficient (and not necessary) identifiability condition A3 from
Theorem IV.1. In Section IX the gap between this bound and
the true probability P((a, S) is identifiable) in (15) is further
explored in a simulation study.

VI. MULTIPLE LINEAR MIXTURES

After analyzing the most difficult scenario of a single linear
mixture with P = 1 in (1), generalizations to arbitrary number
of mixtures P now follow easily. To this end, for a vector v
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let ‖v‖1 :=
∑n
i=1 |vi| denote the l1-norm and define the set

of P -mixtures as

AP := {A ∈ RP×N+ : ‖A·1‖1 < ... < ‖A·1‖1,
‖A1·‖1 = ... = ‖AP ·‖1 = 1}.

Again, note that ‖A·n‖1 6= ‖A·m‖1 for n 6= m is necessary to
ensure identifiability of different sources. Then for S ∈ ΩN×T

and A ∈ AP the observed values are given by X = AS, i.e.,

Xpt =

N∑
n=1

ApnSnt, t = 1, . . . , T, p = 1, . . . , P.

Identifiability means to decompose the matrix X ∈ RP×T
uniquely into matrices A ∈ AP and S ∈ ΩN×T for given
finite alphabet Ω = {ω1, . . . , ωk} with ω1 < . . . < ωk and
given T,N, P ∈ N. Analog to before we define the alphabet
separation boundary of a mixture matrix A ∈ AP as

ASB(A) := min
w′ 6=w∈ΩN

‖Aw −Aw′‖1.

Clearly, ASB(A) > 0 is a necessary condition on A for (S,A)
to be identifiable. Theorem III.1, Theorem IV.1, and Theorem
V.1 assume that P = 1. It is straight forward to check that
Theorem III.1 holds unchanged when P > 1 with A replaced
by AP . The same is true for Theorem IV.1, where in the proof
the minimum of a set of observations X·t must be replaces by
the minimum defined in terms of the ordering of

∑P
p=1Xpt.

Thus, clearly Theorem V.1 also holds unchanged when P > 1.

VII. ARBITRARY MIXING WEIGHTS

So far, we assumed the mixing weights to be positive and to
sum up to one. However, in some applications this assumption
is not satisfied (e.g., in digital communications [2]) and in the
following we discuss such generalizations. Let Ã ⊆ A0 :=
{a ∈ RN : a1 < . . . < aN} be an arbitrary subset of mixing
weights an ∈ R. Note that w.l.o.g. a1 < . . . < aN in order to
assign the mixing weight to a source.

It is easy to check that Theorem III.1 holds unchanged with
A replaced by Ã. Note, however, that if Ã ) A condition
A2 becomes more restrictive, i.e., a mixture (a, S) which is
identifiable with respect to A might not be identifiable with
respect to Ã.

Analogously, Theorem IV.1 can be generalized for Ã ) A,
where now the corresponding identifiability assumption A3
becomes more restrictive.

The following theorem considers the most general case of
arbitrary mixing weights in A0.

Theorem VII.1.
Assume model (2) x = aS with (a, S) ∈ A0 × ΩN×T .

Furthermore, assume that ASB(a) > 0 and there exists
ρ, µ ∈ STN+1 such that(

S1ρ(r), . . . , SNρ(r)
)>

= sr−1, r = 1, . . . , N + 1,(
S1µ(r), . . . , SNµ(r)

)>
= rr−1, r = 1, . . . , N + 1,

(16)

with sr, rr ∈ ΩN for r = 0, . . . , N defined as

(sr)i := ω21i=r + ωk1ai∗ar<0 + ω11ai∗ar>0
i6=r

,

(rr)i := ωk−11i=r + ω11ai∗ar<0 + ωk1ai∗ar>0
i 6=r

,

for i = 1, . . . , N and a0 := 1. Then (a, S) is identifiable.

The proof of Theorem VII.1 is given in Appendix A-F.
Recall that for positive mixing weights the identifiability

condition A3 in Theorem IV.1 had a very simple interpretation,
namely that each of the single mixing weights an appears
somewhere in the mixture x on its own, without the influence
of any of the other mixing weights am for m 6= n. The
interpretation of (16) is somewhat more difficult, but similar.
In the case of probability mixing weights a ∈ A as in
Theorem IV.1 both, the sum and the absolute sum of the
mixing weights were fixed via

∑N
n=1 an =

∑N
n=1 |an| = 1

and this determined the scaling in which the mixing weights
appear in the mixture x. Now for general mixing weights
a ∈ A0 as in Theorem VII.1 both, the sum and the absolute
sum (or equivalently the sum of the negative mixing weights
and the sum of the positive mixing weights) are unknown
and thus, additional conditions to determined these unknown
scaling parameters are needed. These correspond to s0 and r0.
They ensure that the smallest possible mixture value (which
corresponds to s0) and the largest possible mixture value
(which corresponds to r0) are observed and thus determine
the scaling parameters. Now analog to sn in A3 of Theorem
IV.1, sn and rn in (16) of Theorem VII.1 ensure that an
appears somewhere in the mixture x on its own and can thus
be determined. However, as the sign of an is now unknown,
too, we get the additional unambiguity that a mixture value can
be increased either by increasing a source which corresponds
to a positive mixing weight or by decreasing a source which
corresponds to a negative mixing weight.

From Theorem VII.1 it follows directly that Theorem V.1
holds with N replaced by 2N+2, when we allow for arbitrary
mixing weights in A0.

VIII. UNKNOWN NUMBER OF SOURCE COMPONENTS

So far, we assumed that the number of sources N is fixed
and known. Now we consider the case where N is unknown,
i.e. x = aS with

(a, S) ∈
⋃
N≥2

(A× ΩN×T ). (17)

While it is not clear how to generalize Theorem III.1 for (a, S)
as in (17), condition A3 in Theorem IV.1 is still sufficient for
identifiability when N is unknown.

To see this, note that the proof of Theorem IV.1 (in
particular Lemma IV.3) does not require the number of sources
N to be known, where N is determined via

N = min(r ∈ N≥2 s.t. {x1, . . . , xT } ⊂ {d1, . . . , dkr}),

and thus, we obtain the following theorem.

Theorem VIII.1.
Assume model (2) with x = (x1, . . . , xT ) = aS; (a, S) ∈
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⋃
N≥2(A × ΩN×T ). Furthermore, assume that ASB(a) > 0

and A3 holds. Then (a, S) (and thus N ) is identifiable.

Analogously, Theorem V.1 and Theorem VII.1 do not
require N to be known.

IX. SIMULATIONS

Finally, we explore in a simulation study how far as-
sumption A3 from Theorem IV.1 is from being necessary
when the sources come from an irreducible Markov process;
which corresponds to exploring the tightness of the bound in
Theorem V.1. To this end, Theorem III.1 is fundamental as it
enables us to explicitly examine identifiability of (a, S). We
consider an example with a binary alphabet Ω = {−2, 1} and
a mixture of N = 3 sources. The matrix E in Theorem III.1
was chosen randomly over the set of invertible N×N matrices
with elements in Ω. Simulation runs were always 1, 000.

First, we assume the mixing weights a = (0.2, 0.35, 0.45).
Note that aω 6= aω′ for all ω 6= ω′ ∈ {−2, 1}3, i.e.,
ASB(a) > 0.

A. Bernoulli Model

Assuming the sources to be i.i.d. for all n = 1, 2, 3 and
t = 1, . . . , T , with P(Snt = −2) = P(Snt = 1) = 0.5 we
find that (a, S) is already identifiable on average for t ≥ 4.39
observations. For the sufficient identifiability condition from
Theorem IV.1 to hold we find an average value of t ≥ 14.79
observations. Figure 3 shows the corresponding histograms
and cumulative distribution functions. The results indicate that
the number of observations needed for the sufficient identifi-
ability condition A3 from Theorem IV.1 to be satisfied is not
considerably higher then the actual number of observations
until (a, S) is identifiable and thus the bound in Theorem V.1
is quite sharp in this example.

Figure 3. Top row: histograms of number of observations until (a, S) is
identifiable (left) and until the sufficient identifiability condition from Theorem
IV.1 is fulfilled (right), bottom row: corresponding empirical cumulative
distribution function, with N = 3, Ω = {−2, 1}, a = (0.2, 0.35, 0.45)
and Snt i.i.d. on Ω.

B. Markov Model

We consider a more general Markov model for generating
the sources, i.e., we assume the sources to be independent
Markov processes on the state space Ω = {−2, 1} with
transition matrix

P =

(
p1 1− p1

1− p2 p2

)
. (18)

In Figure 4 we display the average numbers of observations
until (a, S) is identifiable and until the sufficient identifiability
condition A3 from Theorem IV.1 is fulfilled, respectively, for
each (p1, p2) ∈ {0.1, 0.15, 0.2, . . . , 0.8, 0.85, 0.9}2. Note that
p1 = 1−p2 corresponds to i.i.d. observations, with 1−P(Snt =
1) = P(Snt = −2) = p1.

Figure 4. Heat-maps of average number of observations until (a, S) is
identifiable (left) and until the sufficient identifiability condition from Theorem
IV.1 is fulfilled (right) in dependence of p1 and p2 from (18).

From Figure 4 we draw that identifiability is achieved faster
when p1 and p2 are close to 0.5, which corresponds to the
i.i.d. Bernoulli model from Section IX-A. This is explained
by condition A2 in Theorem III.1, where a richer variation
in the sources, i.e., many different observations x1, . . . , xT ,
reduces the set of possible valid mixing weights and thus favor
identifiability. The sufficient identifiability condition A3 from
Theorem IV.1, however, requires repeated occurrence of the
smallest alphabet values ω1. Consequently, small p1 and large
p2 discriminate against those variations.

C. Multiple Linear Mixtures

Now, we consider multiple linear mixtures, i.e., P > 1.
Therefore, for each run, we draw P mixing weights, each of
length N = 3, independently from the uniform distribution on
A (implying ASB(a) > 0). For the sources, we consider a
Bernoulli model as in Section IX-A.

We find that (a, S) is identifiable on average after t ≥
4.17, 4.07, 4.01, 3.99 for P = 1, 2, 3, 4 observations, revealing
that identifiability (condition A2 in Theorem III.1) depends
much more on the variability of the sources than on the
specific mixing weights. This is confirmed in Figure 5, which
shows the corresponding histograms and cumulative distri-
bution functions. The histograms and cumulative distribution
functions for P = 1 and P = 4 differ only slightly and for
P = 1 they look almost the same as in Figure 3, although in
Figure 3 a is fixed, whereas in Figure 5 it is random. For the
sufficient identifiability condition from Theorem IV.1 to hold
we find an average value of t ≥ 15.13 observations. Note that
this condition depends on the sources only and, thus, is the
same for all P .

D. Arbitrary Mixing Weights

Finally, we consider arbitrary mixing weights in A0. There-
fore, for each run, we draw mixing weights (P = 1,
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Figure 5. Top row: histograms of number of observations required until
(a, S) is identifiable (left) and until the sufficient identifiability condition A3
from Theorem IV.1 is fulfilled (right), bottom row: corresponding empirical
cumulative distribution function, with N = 3, Ω = {−2, 1}, a uniformly
distributed on A and Snt i.i.d. on Ω.

Figure 6. Top row: histograms of number of observations until (a, S) is
identifiable (left) and until the sufficient identifiability condition from Theorem
IV.1 is fulfilled (right), bottom row: corresponding empirical cumulative
distribution function, with N = 3, Ω = {−2, 1}, a uniformly distributed
on {a ∈ [−10, 10]N : a1 < . . . < aN} and Snt i.i.d. on Ω.

N = 3) independently from the uniform distribution on
{a ∈ [−10, 10]N : a1 < . . . < aN} and for the sources we
consider a Bernoulli model as in Section IX-A.

We find that (a, S) is identifiable on average after t ≥ 6.09
observations. Confirming, that identifiability, i.e., condition
A2 in Theorem III.1, is achieved slower, when we allow
for larger sets of possible mixing weights. For the sufficient
identifiability condition from Theorem VII.1 to hold we find
an average value of t ≥ 20.82 observations. Figure 6 shows the
corresponding histograms and cumulative distribution func-
tions.

In summary, our simulations show that the number of
observations needed for our simple sufficient identifiability
condition A3 to hold is relatively close to the actual number
of observations until (a, S) is identifiable and thus, serves
as a good benchmark criterion for identifiability. This can be
used as a simple proxy for validating the applicability of any
recovery procedure in practice.

X. CONCLUSIONS

In this paper we have established identifiability criteria for
single linear mixtures of finite alphabet sources as well as
its matrix analogue. We gave not only sufficient but also
necessary criteria for identifiability. Our work reveals the
identification problem as a combinatorial problem utilizing the
one to one correspondence between the mixture values and the
mixing weights. We generalized the method of Diamantaras
and Chassioti [13] to an arbitrary finite alphabet in order to
derive a simple sufficient identifiability criterion. The proof

uses the specific hierarchical structure of possible mixture
values leading to successive identification of the weights.
Thus, our results characterize and extend the range of settings
under which recovery algorithms (for statistical data) are
applicable.

Notably, we showed that our identifiability conditions ex-
tend to unknown number of sources N . This lays the foun-
dation to design algorithms to recover the number of active
sources from a mixture and sketches a road map to pursue
this in future research.

Finally, we showed that the probability of identifiability
converges exponentially fast to 1 when the underlying sources
come from a discrete Markov process. This provides a useful
and simple tool to pre-determine the required number of
observations in order to guarantee identifiability at a given
probability.

The derived sufficient identifiability conditions were briefly
investigated in a simulation study and the required sample size
for their validity was found to be quite close to the minimal
sample size for identifiability.

This work is intended to give a solid theoretical background
for a model that is used in a variety of applications in digital
communications, but also in bioinformatics.

APPENDIX A
PROOFS

A. Proof of Theorem III.1

Proof:
For σ ∈ STN we define xσ = (xσ(1), . . . , xσ(N)).

“⇐ ”
By assumption A1 xρ = aE, i.e., xρE−1 = a and, conse-
quently,

xρE−1 ∈ A and {x1, ..., xT } ∈
{

(xρE−1)ω : ω ∈ ΩN
}
,

which, by assumption A2, is not fulfilled for any other σ ∈
STN . Thus, a is uniquely determined. Moreover, as ASB(a) >
0, S is uniquely determined as well.
“⇒ ”
Assume A2 does not hold, i.e., there exists σ 6= ρ ∈ STN such
that ã := xσE−1 fulfills

ã ∈ A and {x1, ..., xT } ∈
{
ãω : ω ∈ ΩN

}
.

As we assume all observations to be pairwise different, ã 6= a
and ã with the corresponding S̃ lead to the same observations
x1, . . . , xT . Therefore, (a, S) is not identifiable.

B. Proof of Lemma IV.2

Proof: Obviously, A3 arises from A1 when we choose
the matrix E in Theorem III.1 as in (8). Hence, A3 implies
A1 if the matrix in (8) is invertible. (8) can be written asω1 . . . ω1

...
ω1 . . . ω1

− (ω1 − ω2)

1 . . . 0
...

0 . . . 1
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and consequently, the matrix in (8) has zero determinant if
and only if ω1 − ω2 is an eigenvalue ofω1 . . . ω1

...
ω1 . . . ω1

 ,

i.e., ω1 − ω2 = 0 or ω1 − ω2 = N · ω1. As ω1 < ω2 the
assertion follows.

C. Proof of Lemma IV.3

Proof: For r = N the assertion is obvious. So let r < N .
Then for i ∈ {1 . . . , kr} we have that

di =

r∑
j=1

ajBji +

N∑
j=r+1

ajω1 =

r∑
j=1

ajBji + ω1(1−
r∑
j=1

aj),

where Bji are the entries of the matrix B in (12).

D. Proof of Lemma IV.4

Proof: By definition xρ(r) = dkr−1+1. Therefore, xρ(r) ≥
min({x1, . . . , xT }\{d1, . . . , dkr−1}) and for i ∈ {kr−1 +
1, . . . , kN}

di − xρ(r) =

r−1∑
l=1

al(Bli − ω1) + ar(Bri − ω2)

+

N∑
l=r+1

al(Bli − ω1).

If Bri ∈ {ω2, . . . , ωk}, then obviously di−xρ(r) ≥ 0. If Bri =
ω1, then by definition of B there exists an s ∈ {r+1, . . . , N}
such that Bsi ∈ {ω2, . . . , ωk}, and therefore,

di − xρ(r) =

r−1∑
l=1

al(Bli − ω1) + ar(ω1 − ω2)

+ as (Bsi − ω1)︸ ︷︷ ︸
≥(ω2−ω1)

+

N∑
l=r+1,l 6=s

al(Bli − ω1)

≥
r−1∑
l=1

al(Bli − ω1) + (as − ar)︸ ︷︷ ︸
>0

(ω2 − ω1)︸ ︷︷ ︸
>0

+

N∑
l=r+1,l 6=s

al(Bli − ω1) ≥ 0.

Consequently, xρ(r) ≤ min({x1, . . . , xT }\{d1, . . . , dkr−1}).

E. Proof of Theorem V.1

Proof: Let Tr be as in (13) and let p0 be the initial
distribution of (S1t, . . . , SNt)

>
t . Define the stopped process

S̃rt :=

{
(S1t, . . . , SNt)

> if t < Tr

sr otherwise,

for r = 1, . . . , N , which is a Markov process as well (see e.g.,
[31, Proposition 4.11.1.]). It is obvious that for the Markov
process (S̃rt )t the state sr is absorbing and all other states are
transient. Moreover, when we reorder the states in ΩN such
that sr is the first state, the transition matrix of (S̃rt )t is given
by

P̃r =


1 0 . . . 0
p2r

Qr
pNr

 .

The distribution of Tr is a discrete phase type distribution (see
e.g., [32, Section 2.2.]), i.e.,

P(Tr > T ) = p0Q
T
r 1 ≤ ‖QTr 1‖∞. (19)

As PM > 0

P̃Mr =


1 0 . . . 0
s2r

... QM

sNr


with s2r, . . . , sNr > 0 for r = 1, . . . , N . Consequently, all
row sums of QMr are smaller than 1, i.e.,

cr := ‖QMr 1‖∞ < 1 (20)

and hence c = max1≤r≤N cr < 1.
Next, we show by induction that ‖QTr 1‖∞ ≤ c

bn/Mc
r for

all T ≥ M . For T = M this holds by definition. So assume
that ‖Qlr1‖∞ ≤ c

bl/Mc
r for all M ≤ l ≤ T and define A =

(aij)ij := QTr , i.e.,

max
i

∑
j

aij ≤ cbT/Mcr .

If b TM c = bT+1
M c, then

‖QT+1
r 1‖∞ = ‖AQr1‖∞ = max

i

∑
j

∑
k

aikqkj

= max
i

∑
k

aik
∑
j

qkj ≤ c
b T
M c
r = c

bT+1
M c

r ,

as maxi
∑
k aik ≤ c

b T
M c
r and

∑
j qkj ≤ 1.

If b TM c 6= b
T+1
M c, then b TM c + 1 = bT+1

M c and T + 1 =
M
⌊
T
M

⌋
+M , with Mb TM c =: l ∈ {M, . . . , T}. Therefore,

‖QT+1
r 1‖∞ = ‖QlrQMr 1‖∞ ≤ c

b l
M c+1
r = c

bT+1
M c

r .

With (19) and (14) it follows that

1− P((a, S) is identifiable) ≤ Ncb T
M c

and as

Ncb
T
M c

c
T
M

≤ N

c
<∞

the assertion follows.
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F. Proof of Theorem VII.1

Proof: Assume that ω2−ω1

ωk−ωk−1
≤ 1. Otherwise, we can

multiply all observations by −1, such that the new alphabet
becomes −ωk < . . . < −ω1, which then fulfills ω2−ω1

ωk−ωk−1
≤

1. Further, note that ASB(a) > 0 implies that an 6= 0 for
all n = 1, . . . , N . Let G := {x1, . . . , xT } be the set of the
pairwise different observations. (16) implies that there exist
i0, . . . , iN , j0, . . . , jN ∈ {1, . . . , T} such that xir = asr and
xjr = arr for r = 0, . . . , N .

First, note that

minG = xi0 = ωk

N∑
n=1
an<0

an + ω1

N∑
n=1
an>0

an,

maxG = xj0 = ω1

N∑
n=1
an<0

an + ωk

N∑
n=1
an>0

an

and thus

o+ :=

N∑
n=1
an>0

an =
ωk maxG− ω1 minG

ω2
k − ω2

1

,

o− :=

N∑
n=1
an<0

an =
ωk minG− ω1 maxG

ω2
k − ω2

1

.

If o− = 0, all weights are positive and, as o+ is identified and
thus w.l.o.g equal to one, Theorem IV.1 applies. Thus, assume
that o− < 0 and define G0 := G\{minG,maxG} and

Ñ0 := max{n = 1, . . . , N s.t. an < 0},
Ñ+

0 := Ñ0 + 1,

i.e., a1 < . . . < aÑ0
< 0 < aÑ+

0
< . . . < aN . Second, note

that analog to (11)

minG0 = min(xi
Ñ

+
0

, xjÑ0
), maxG0 = max(xj

Ñ
+
0

, xiÑ0
)

and thus
minG0 − ωko− − ω1o+

ωk − ωk−1
= min

(
ω2 − ω1

ωk − ωk−1
aÑ+

0
,−aÑ0

)
ωko+ + ω1o− −maxG0

ω2 − ω1
= min

(
−aÑ0

,
ωk − ωk−1

ω2 − ω1
aÑ+

0

)
.

Hence, if minG0−ωko−−ω1o+

ωk−ωk−1
< ωko++ω1o−−maxG0

ω2−ω1
we find

that

aÑ+
0

=
minG0 − ωko− − ω1o+

ω2 − ω1

and if minG0−ωko−−ω1o+

ωk−ωk−1
= ωko++ω1o−−maxG0

ω2−ω1
that

aÑ0
=

maxG0 − ωko+ − ω1o−
ω2 − ω1

.

Thus, we have identified the first weight, namely

a?1 :=

{
aÑ+

0
if minG1−ωko−−ω1o+

ωko++ω1o−−maxG1
< ωk−ωk−1

ω2−ω1

aÑ0
otherwise.

Now assume that we have identified l different weights,
a?1, . . . , a

?
l . If o− =

∑l
n=1
a?n<0

a?n, all the remaining weights

are positive and Theorem IV.1 applies. Thus assume that
o− <

∑l
n=1
a?n<0

a?n and define Gl := Gl−1\Rl−1, with

Rl−1 :=
⋃

ω′,ω′′∈Ω

ω∈Ωl

{
ω′(o− −

l∑
n=1
a?n<0

a?n) + ω′′(o+ −
l∑

n=1
a?n>0

a?n)

+ (a?1, ..., a
?
l )ω
}

and

Ñl := max{i = 1, ..., N s.t. an < 0 and an 6∈ {a?1, ..., a?l }},
Ñ+
l := min{n = 1, ..., N s.t. an > aÑl

and an 6∈ {a?1, ..., a?l }}.

Note that analog to Lemma IV.4

minGl = min(xi
Ñ

+
l

, xjÑl
), maxGl = max(xj

Ñ
+
l

, xiÑl
)

and thus

minGl − ωko− − ω1o+

ωk − ωk−1
= min

(
ω2 − ω1

ωk − ωk−1
aÑ+

l
,−aÑl

)
ωko+ + ω1o− −maxGl

ω2 − ω1
= min

(
−aÑl

,
ωk − ωk−1

ω2 − ω1
aÑ+

l

)
.

Hence, if minGl−ωko−−ω1o+

ωk−ωk−1
< ωko++ω1o−−maxGl

ω2−ω1
we find

that

aÑ+
l

=
minGl − ωko− − ω1o+

ω2 − ω1

and if minGl−ωko−−ω1o+

ωk−ωk−1
= ωko++ω1o−−maxGl

ω2−ω1
that

aÑl
=

maxGl − ωko+ − ω1o−
ω2 − ω1

.

Thus, we have identified the (l + 1)-th weight as

a?l+1 :=

{
aÑ+

l
if minGl−ωko−−ω1o+

ωko++ω1o−−maxGl
< ωk−ωk−1

ω2−ω1

aÑl
otherwise.

By induction, we can identify all weights and thus, by
ASB(a) > 0 the assertion follows.
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