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Abstract

In this paper, we initiate a first information-theoretic study on multilevel NAND
flash memory channels [2] with intercell interference. More specifically, for a multi-
level NAND flash memory channel under mild assumptions, we first prove that such a
channel is indecomposable and it features asymptotic equipartition property; we then
further prove that stationary processes achieve its information capacity, and conse-
quently, as the order tends to infinity, its Markov capacity converges to its information
capacity; eventually, we establish that its operational capacity is equal to its infor-
mation capacity. Our results suggest that it is highly plausible to apply the ideas
and techniques in the computation of the capacity of finite-state channels, which are
relatively better explored, to that of the capacity of multilevel NAND flash memory
channels.

Index Terms: mutual information, capacity, flash memory channels, finite-state channels.

1 Introduction

As our world is entering a mobile digital era at a lightening pace, NAND flash memories
have been seen in a great variety of real-life applications ranging from portable consumer
electronics to personal or even enterprise computing. The insatiable demand of greater
affordability from consumers has been driving the industry and academia to relentlessly
make use of aggressive technology scaling and multi-level per cell techniques in the bit-
cost reduction process. On the other hand though, as their costs continually reduce, flash
memories have been more vulnerable to various device or circuit level noises, such as energy
consumption, inter-cell interference and program/erase cycling effects, due to the rapidly
growing bit density, and maintaining the overall system reliability and performance has
become a major concern.

To combat this increasingly imminent issue, various fault-tolerance techniques such as
error correction codes have been employed. Representative work in this direction include
BCH codes [26] and LDPC codes [29, 8], rank modulation [17] and constrained codes [23]
and so on. The use of such techniques certainly boosts the overall system performance,
however, at the expense of reduced memory storage efficiency. As the level of sophistication
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of such performance boosting techniques drastically escalates, it is of central importance to
know their theoretical limit in terms of achieving the maximal cell storage efficiency.

Recently, there have been a number of attempts in response to such a request; see,
e.g., [8, 7, 5, 20, 27] and references therein. Particularly, in [8], the authors have mod-
elled NAND flash memories as communication channels that can capture the major data
distortion noise sources including program/erase cycling effects and inter-cell interference
in information-theoretic terms. In this direction, slight yet important modifications to en-
hance the mathematical tractability of the channel model in [8] have been made in [2], where
multiple communication channels with input inter-symbol interference that are expected to
be more amenable to theoretical analysis were explicitly spelled out. On the other hand,
with [2] primarily focusing on the optimal detector design, an information-theoretic analysis
of the communication channel capacity, which translates to the theoretical limit of memory
cell storage efficiency, is still lacking.

Our primary concern in this paper is essentially the one dimensional causal channel
model proposed in [2], which, mathematically, can be characterized by the following system
of equations (for justification of such a mathematical formulation of the channel, see [2]):

Y0 = X0 +W0 + U0,

Yn = Xn + AnXn−1 +Bn(Yn−1 − En−1) +Wn + Un, n ≥ 1, (1)

where

(i) {Xi} is the channel input process, taking values from a finite alphabet X 4
= {v0, v1, · · · , vM−1},

and {Yi} is the channel output process, taking values from R.

(ii) {Ai}, {Bi}, {Ei} and {Wi} are i.i.d. Gaussian random processes with mean 0 and
variance σ2

A, 0 < σ2
B < 1, σ2

E and 1, respectively;

(iii) {Ui} is an i.i.d. random process with the uniform distribution over (α1, α2), α1, α2 > 0;

(iv) {Ai}, {Bi}, {Ei}, {Wi}, {Ui} and {Xi} are mutually independent.

The major differences between our model and that in [2] are as follows:

• As in most practical scenarios, our channel model has a “starting” time 0, when the
channel is not affected by inter-cell interference;

• An extra assumption in our channel model is that σ2
B is upper bounded by 1. As

established in Lemma 2.1, such an extra assumption will guarantee the boundedness
of the channel output power, and thereby the “stability” of the channel.

Our ultimate goal is to compute the operational capacity C of the channel (1), which, roughly
speaking, is defined as the highest rate at which information can be sent with arbitrarily
low probability of error. The presence of input and output memory in the channel, however,
makes the problem extremely difficult: computing the capacity of channels with memory is a
long open problem in information theory. One of the most effective strategies to attack such
a difficult problem is the so-called Markov approximation scheme, which has been extensively
exploited in the past decades for computing the capacity of families of finite-state channels
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(see [1, 28, 14] and references therein). Roughly speaking, the Markov approximation scheme
says that, instead of maximizing the mutual information over general input processes, one
can do so over Markovian input processes of order m to obtain the so-called m-th order
Markov capacity. The effectiveness of this approach has been justified in [6], where, for a
class of finite-state channels, the authors showed that as the order m tends to infinity, the
sequence of the Markov capacity will converge to the real capacity of the memory channel. It
is plausible that the Markov approximation scheme can be applied to other memory channels
as well; as a matter of fact, the main result of the present paper is to confirm this for our
channel model.

Recently, much progress has been made in computing the Markov capacity of finite-state
channels; in particular, a generalized Blahut-Arimoto algorithm and a randomized algorithm
have been respectively proposed in [28] and [14], which, under certain conditions, promise
convergence to the the Markov capacity. Though there are numerous issues that need to be
addressed to justify the applications of the above-mentioned algorithms to our model, the
first and foremost question is whether the Markov capacity converges to the real capacity at
all. The affirmative answer given in this work, together with other similarities between the
channel models, suggests such a framework “transplantation” is indeed plausible.

The recursive nature of our channel permits a reformulation into a channel with “state”:
Given the channel input and output (xi, yi) at time i, the behavior of our channel in the
future does not depend on the channel inputs and outputs before time i; put if differently,
(xi, yi) can be regarded as the state for the channel at time i + 1. Despite the similarities,
such a reformulated channel posed new challenges compared with the well-known finite-
state channels: The most serious one is that our channel output alphabet is infinite, and as
a consequence, the “indecomposability” property of our channel, albeit very similar to that
of a finite-state channel, is not uniform over all possible channel states; ripple effects of this
issue include a number of technical issues, such as the asymptotic equipartition property and
even the existence of some fundamental quantities like mutual information rate and capacity.

Which is the reason that in our treatment, some non-trivial technical issues have to
be circumvented: We will prove that our channel is “indecomposable” in the sense that
the behavior of our channel in the distant future is little affected by the channel state in
the earlier stages, and a much finer analysis is needed to deal with the above-mentioned
non-uniformity issue. The second issue is that the lack of the stationarity of the output
process makes it difficult to establish the asymptotic equipartition property for the output
process. For this, we observe that the asymptotic mean stationarity [13] of the output
process makes it possible to apply tools from ergodic theory to establish the existence of the
mutual information rate of our channel and further the asymptotic equipartition property of
the output process. Another issue is to mix the “blocked” processes to obtain a stationary
process achieving the information capacity, for which we find an adaptation of Feinstein’s
method [10] as a solution.

The remainder of this paper is organized as follows. In Section 2, we show that the
channel (1) is indecomposable, which, among many other applications, ensures the existence
of the information capacity of the channel. In Section 4, we show that, when the input {Xn}
process is stationary and ergodic, {Yn} and {Xn, Yn} possess the asymptotic equipartition
property. In Section 5, the information capacity is shown to be equal to the stationary
capacity and Markov capacity approaches to the information capacity as the Markov order
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goes to infinity. Eventually, the operational capacity is shown to be equal to the information
capacity.

2 Indecomposability

In this section, we will prove that our channel (1) is “indecomposable” in the sense that, in
the distant future, it is little affected by the channel state in the earlier stages. Taking the
forms of several inequalities in Lemma 2.4, the indecompoposability property, among many
other applications, will ensure that the information capacity of our channel is well-defined.

To avoid the notational cumbersomeness in the computations, we write

Ŵi = Xi + AiXi−1 +Wi −BiEi−1 + Ui.

It then follows from a recursive application of (1) that

Yn = Ŵn +BnYn−1 =
n∑

i=k+2

Ŵi

n∏
j=i+1

Bj + Yk+1

n∏
i=k+2

Bi. (2)

The following lemma gives an upper bound on the moments of the output of the channel (1).

Lemma 2.1. There exist M2 > 0 and β > 2 such that for any n and xn0 ,

E[|Yn|β|Xn
0 = xn0 ] ≤M2,

and consequently,
E[|Yn|β] ≤M2.

Proof. In this proof, we will simply replace “Xn
0 = xn0 ” in the conditional part of an expec-

tation by xn0 .
It follows from Minkowski’s inequality that for any p ≥ 1

(E[|Yn|p|xn0 ])
1
p ≤ (E[|Ŵn|p|xn0 ])

1
p + (E[|Bn|p|xn0 ])

1
p (E[|Yn−1|p|xn0 ])

1
p

≤ (E[|Ŵn|p|xn0 ])
1
p + (E[|Bn|p])

1
p (E[|Yn−1|p|xn0 ])

1
p ,

where we have used the independence between Bn and Yn−1, and the independence between
Bn and Xn

0 . Since σ2
B < 1, there exists β ∈ (2, 3) such that E[|Bn|β] < 1. Let

ρ = E[|Bn|β]
1
β , M0 = max{|α1|, |α2|, |vi|, i = 0, · · · ,m− 1}. (3)

Then, from Minkowski’s inequality and Assumptions (i)-(iv), it follows that

(E[|Ŵn|β|xn0 ])
1
β ≤ (|xn|β])

1
β + (E[|Anxn−1|β])

1
β + (E[|Wn|β])

1
β + (E[|BnEn|β])

1
β + (E[|Un|β])

1
β

≤ 2M0 +M0(E[|An|β])
1
β + (E[|Wn|β])

1
β + (E[|Bn|β])

1
β (E[|En|β])

1
β

(a)

≤ 2M0 +M0(E[|An|4])
1
4 + (E[|Wn|4])

1
4 + (E[|Bn|4])

1
4 (E[|En|4])

1
4 ,
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where (a) follows from the inequality (E[|X|p])
1
p ≤ (E[|X|q])

1
q for 0 < p < q. Letting

M1 = 2M0 +M0(3σ4
A)

1
4 + 3

1
4 + (3σ4

B)
1
4 (3σ4

E)
1
4 , we then have

E[|Ŵn|β|xn0 ]
1
β ≤M1,

where we have used the fact that the 4-th moment of a Gaussian random variable with mean
0 and variance σ2 is 3σ4.

Therefore,

(E[|Yn|β]|xn0 ])
1
β ≤M1 + ρ(E[|Yn−1|β|xn−1

0 ])
1
β , (4)

which implies that

(E[|Yn|β|xn0 ])
1
β ≤ M1

n−1∑
i=0

ρi + ρn(E[|Y0|β|x0])
1
β

≤ M1/(1− ρ) + ρn(E[|Y0|β|x0])
1
β .

It then follows from

E[|Y0|β|x0]
1
β ≤ (|x0|β)

1
β + E[|W0|β]

1
β + E[|U0|β]

1
β ≤ 2M0 + E[|W0|4]

1
4 ,

that there exists M2 > 0 such that for all xn0 ,

E[|Yn|β|xn0 ] ≤M2,

which immediately implies that
E[|Yn|β] ≤M2.

Lemma 2.1 immediately implies the following corollary.

Corollary 2.2. {Y 2
n } is uniformly integrable and there exists constant M3 > 0 such that

E[Y 2
n |Xn

0 = xn0 ] ≤M3, (5)

and consequently,
E[Y 2

n ] ≤M3. (6)

Proof. The desired uniform integrability immediately follows from Theorem 1.8 in [21] and
Lemma 2.1, and the inequality (5) follows from the well-known fact that for any β > 2,

E[Y 2
n |Xn

0 = xn0 ]
1
2 ≤ E[Y β

n |Xn
0 = xn0 ]

1
β ,

which immediately implies (6).

One consequence of Corollary 2.2 is the following bounds on the entropy of the channel
output.

5



Corollary 2.3. For all 0 ≤ m ≤ n,

0 < H(Y n
m) ≤ (n−m+ 1) log 2πeM3

2
,

where M3 is as in Corollary 2.2.

Proof. For the upper bound, we have

H(Y n
m) ≤

n∑
i=m

H(Yi) ≤
(n−m+ 1) log 2πeM3

2
, (7)

where (7) follows from the fact that Gaussian distribution maximizes entropy for a given
variance.

For the lower bound, using the chain rule for entropy and the fact that conditioning
reduces entropy, we have

H(Y n
m) ≥ H(Y n

m|Xn
m)

≥
n∑

k=m

H(Yi|Xn
m, Yi−1)

≥
n∑

k=m

H(Yi|X i
i−1, Yi−1, Ei, Bi, Ui)

(a)
=

n∑
k=m

H(Wi|X i
i−1, Yi−1, Ei, Bi, Ui)

(b)
=

n∑
i=m

H(Wi)

=
(n−m+ 1) log 2πe

2
> 0,

where we have used (1) and Assumption (iv) in deriving (a) and (b).

Fix k ≥ 0, and for any xk ∈ X and ỹk ∈ R, define

Ỹk+1 = Xk+1 + Anxk +Bn(ỹk − Ek) +Wk+1 + Uk+1, (8)

Ỹn = Xn + AnXn−1 +Bn(Ỹn−1 − En−1) +Wn + Un, n ≥ k + 1. (9)

Roughly speaking, {Ỹn} “evolves” in the same way as {Yn}, however with different “condi-
tions” at time k. And similarly as in (2), we have

Ỹn =
n∑

i=k+2

Ŵi

n∏
j=i+1

Bj + Ỹk+1

n∏
i=k+1

Bi. (10)

Below, we will use f (or p) with subscripted random variables to denote the corresponding
(conditional) probability density function (or mass function). For instance, fYn|Xn

k ,Yk
(yn|xnk , yk)
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denotes the conditional density of Yn given Xn
k = xnk and Yk = yk. We may, however, drop

the subscripts when there is no confusion and similar notational convention will be followed
throughout the remainder of the paper.

We are now ready for the following lemma that establishes the “indecomposability” of our
channel. Roughly speaking, the following lemma states that our channel is indecomposable
in the sense that the output of our channel in the “distant future” is little affected by the
“initial” inputs and outputs. Compared with the indecomposability property of finite-state
channels [11], our indecomposability does depend on the initial channel inputs and outputs;
as a result, a much finer analysis is needed to deal with this non-uniformity issue when one
applies Lemma 2.4.

Lemma 2.4. a) For any k ≤ n, xnk , yk and ỹk, we have∫ ∞
−∞

∣∣∣fYn|Xn
k ,Yk

(yn|xnk , yk)− fỸn|Xn
k ,Ỹk

(yn|xnk , ỹk)
∣∣∣ dyn ≤ σ

2(n−k)
B (y2

k + ỹ2
k).

b)For any k ≤ n, xnk , yk and ỹk, we have∫ ∞
−∞

y2
n

∣∣∣fYn|Xn
k ,Yk

(yn|xnk , yk)− fỸn|Xn
k ,Ỹk

(yn|xnk , ỹk)
∣∣∣ dyn ≤ 3σ

2(n−k)
B (y2

k + ỹ2
k).

c) For any k, n, xn and yn and x̂n0 , we have∫ ∞
−∞

∣∣∣fYn|Xn
0
(ŷ|x̂n0 )− fYn+k+1|Xn+k+1

n+1 ,Xn,Yn
(ŷ|x̂n0 , xn, yn)

∣∣∣ dŷ ≤ σ2n
B (σ2

Ax
2
n + 2σ2

B(y2
n + σ2

E)).

d) For any k ≤ n and any xn0 with pXn
0
(xn0 ) > 0, we have∫ ∞

−∞

∣∣∣fYn|Xn
0
(yn|xn0 )− fYn|Xn

n−k
(yn|xnn−k)

∣∣∣ dyn ≤ σ2k
B (2σ2

Ax
2
n−k + 2σ2

B(2M3 + 2σ2
E)),

where M3 is as in Corollary 2.2.

Proof. a) Conditioned on Xn
k = xnk , Bn

k+2 = bnk+2, Un
k+1 = unk+1, Ek = ek, Yk = yk, and

Ỹk = ỹk, Yn and Ỹn are Gaussian random variables with mean
∑n

i=k+1(xi +ui)
∏n

j=i+1 bj and
respective variances

σ2(bnk+2, u
n
k+1) = Var(Yn|xnk , yk, ek, bnk+2, u

n
k+1), σ̃2(bnk+2, u

n
k+1) = Var(Ỹn|xnk , ỹk, ek, bnk+2, u

n
k+1).

Note that conditioned on xnk , b
n
k+2, u

n
k , ek, yk and ỹk, {Ŵi : i = k+2, · · · , n} and {Yk+1, Ỹk+1}

are independent, which implies that

σ2(bnk+2, u
n
k+1) =Var

(
n∑

i=k+2

Ŵi

n∏
j=i+1

bj|xnk , bnk+2, u
n
k+1

)
+ Var

(
Yk+1

n∏
j=k+2

bj|xnk , yk, bnk+2, u
n
k+1, ek

)

and

σ̃2(bnk+2, u
n
k+1) =Var

(
n∑

i=k+2

Ŵi

n∏
j=i+1

bj|xnk , bnk+2, u
n
k+1

)
+ Var

(
Ỹk+1

n∏
j=k+2

bj|xnk , ỹk, bnk+2, u
n
k+1, ek

)
.
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So, we have

|σ2(bnk+2, u
n
k+1)− σ̃2(bnk+2, u

n
k+1)|

=

∣∣∣∣∣Var

(
Yk+1

n∏
j=k+2

bj|xnk , yk, bnk+2, u
n
k+1, ek

)
− Var

(
Ỹk+1

n∏
j=k+2

bj|xnk , ỹk, bnk+2, u
n
k+1, ek

)∣∣∣∣∣
= (
∣∣y2
k − ỹ2

k

∣∣)σ2
B

n∏
j=k+2

b2
j

≤ (y2
k + ỹ2

k)σ
2
B

n∏
j=k+2

b2
j . (11)

Now, with the following easily verifiable fact

σ2(bnk+2, u
n
k+1) ≥ Var(Wn) = 1 and σ̃2(bn1 , u

n
0 ) ≥ Var(Wn) = 1, (12)

we conclude that∫ ∞
−∞

∣∣∣fYn|Xn
k ,Yk

(yn|xnk , yk)− fỸn|Xn
k ,Ỹk

(yn|xnk , ỹk)
∣∣∣ dyn

≤ E

{∫ ∞
−∞
|f(yn|xnk , yk, Ek, Bn

k+2, U
n
k+1)− f(yn|xnk , yk, Bn

k+2, U
n
k+1, Ek)| dyn

}
(a)

≤ E

{
|σ2(Bn

k+2, U
n
k+1)− σ̃2(Bn

k+2, U
n
k+1)|min(σ2(Bn

k+2, U
n
k+1), σ̃2(Bn

k+2, U
n
k+1))

σ2(Bn
k+2, U

n
k+1)σ̃2(Bn

k+2, U
n
k+1)

}
(b)

≤ E

{
(y2
k + ỹ2

k)σ
2
B

n∏
j=k+2

B2
j

}
= (y2

k + ỹ2
k)σ

2(n−k)
B , (13)

where (a) follows from the well-known fact [22]∫ ∞
−∞

∣∣∣∣∣ 1√
2πσ2

1

e
− (x−µ)2

2σ21 − 1√
2πσ2

2

e
− (x−µ)2

2σ22

∣∣∣∣∣ dx ≤ |σ2
1 − σ2

2|min{σ2
1, σ

2
2}

σ2
1σ

2
2

.

and (b) follows from (11) and (12).
b) The proof of b) is similar to a) and the only difference lies in the derivation of (13),

which is given as follows:∫ ∞
−∞

y2
n

∣∣∣fYn|Xn
k ,Yk

(yn|xnk , yk)− fỸn|Xn
k ,Ỹk

(yn|xnk , ỹk)
∣∣∣ dyn

≤ E

{∫ ∞
−∞

y2
n|f(yn|xnk , yk, Ek, Bn

k+2, U
n
k+1)− f(yn|xnk , yk, Bn

k+2, U
n
k+1, Ek)| dyn

}
(a)

≤ 3E
{
|σ2(Bn

k+2, U
n
k+1)− σ̃2(Bn

k+2, U
n
k+1)|

}
≤ 3E

{
(y2
k + ỹ2

k)σ
2
B

n∏
j=k+2

B2
j

}
= 3(y2

k + ỹ2
k)σ

2(n−k)
B ,

8



where (a) follows from the fact that (see Appendix A for the proof)∫ ∞
−∞

x2

∣∣∣∣∣ 1√
2πσ2

1

e
− (x−µ)2

2σ21 − 1√
2πσ2

2

e
− (x−µ)2

2σ22

∣∣∣∣∣ dx ≤ 3|σ2
1 − σ2

2|. (14)

c) This follows from a completely parallel argument as in a).
d) From the assumptions in the channel (1) and Lemma 2.2, it follows that∫
y2
n−kfYn−k|Xn

n−k
(yn−k|xnn−k)dyn−k (15)

=
∑

x̃n−k−1
0

P (Xn−k−1
0 = x̃n−k−1

0 , Xn
n−k = xnn−k)

∫
y2
n−kfYn−k|Xn−k

0
(y|x̃n−k−1

0 , xnn−k)dyn−k

P (Xn
n−k = xnn−k)

=
∑

x̃n−k−1
0

P (Xn−k−1
0 = x̃n−k−1

0 , Xn
n−k = xnn−k)

∫
y2
n−kfYn−k|Xn−k

0
(y|x̃n−k−1

0 , xn−k)dyn−k

P (Xn
n−k = xnn−k)

=
∑

x̃n−k−1
0

P (Xn−k−1
0 = x̃n−k−1

0 , Xn
n−k = xnn−k)E[Y 2

n−k|x̃n−k−1
0 , xn−k]

P (Xn
n−k = xnn−k)

≤M3.

We then have∫ ∞
−∞

∣∣∣fYn|Xn
0
(yn|xn0 )− fYn|Xn

n−k
(yn|xnn−k)

∣∣∣ dyn
=

∫ ∞
−∞

∣∣∣∣∫ fYn−k|Xn−k
0

(ŷn−k|xn−k0 )fYn−k|Xn
n−k

(ỹn−k|xnn−k)

× (fYn|Xn
n−k,Yn−k

(yn|xnn−k, ŷn−k)− fYn|Xn
n−k,Yn−k

(yn|xnn−k, ỹn−k))dŷn−kdỹn−k
∣∣∣ dyn

≤
∫
fYn−k|Xn−k

0
(ŷn−k|xn−k0 )fYn−k|Xn

n−k
(ỹn−k|xnn−k)

×
∫ ∞
−∞

∣∣∣fYn|Xn
n−k,Yn−k

(yn|xnn−k, ŷn−k)− fYn|Xn
n−k,Yn−k

(yn|xnn−k, ỹn−k)
∣∣∣ dyndŷn−kdỹn−k

(a)

≤
∫
fYn−k|Xn−k

0
(ŷn−k|xn−k0 )fYn−k|Xn

n−k
(ỹn−k|xnn−k)σ2k

B (y2
n−k + ỹ2

n−k)dŷn−kdỹn−k

≤ 2σ2k
B M3, (16)

where (a) follows from Statement a) in Lemma 2.4.

One of the consequences of Lemma 2.4 is the following proposition:

Proposition 2.5. a) Let X2n+1
n+1 be an independent copy of Xn

0 . Then for any k ≤ n, any
x ∈ X and y ∈ R, we have

|I(Xn
0 ;Y n

0 )− I(X2n+1
n+1 ;Y 2n+1

n+1 |Xn = x, Yn = y)|
≤ 2(k + 1) logM + (n− k)(σ2

Ax
2 + 2σ2

B(y2 + σ2
E))σ2k

B logM.
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b) Let {Xn} be a stationary process. Then there exist positive constants M4,M5,M6,M7,M8

and M9 such that for any m ≤ k ≤ n∣∣I(Xn
0 ;Y n

0 )− I(Xm+n
m ;Y m+n

m )
∣∣

≤ 3(k + 1) log 2πeM3

n+ 1
+ 2M3πe(M8 + 3M9)σ2k

B

+
1

n+ 1
(M4 +M5M3) +

(
M6 +

4M1M3M7

(1− σB)2
+

12M3M7

(n+ 1)(1− σ2
B)

)
σ2k
B . (17)

Proof. a) To prove a), we adapt the classical argument in the proof of Theorem 4.6.4 in [11]
as follows.

Using the chain rule for mutual information, we have

I(Xn
0 ;Y n

0 ) = I(Xk
0 ;Y n

0 ) + I(Xn
k+1;Y n

k+1|Xk
0 , Y

k
0 ) + I(Xn

k+1;Y k
1 |Xk

0 ).

It can be verfied that given Xk
0 , X

n
k+1 and Y k

0 are independent, which implies that

I(Xn
k+1;Y k

0 |Xk
0 ) = 0.

Since Xi takes at most M values, we deduce that

|I(Xk
0 ;Y n

0 )| ≤ (k + 1) logM,

which further implies that

I(Xn
0 ;Y n

0 ) ≤ (k + 1) logM + I(Xn
k+1;Y n

k+1|Xk
0 , Y

k
0 ). (18)

Similarly, we have, for any x, y

I(X2n+1
n+1 ;Y 2n+1

n+1 |Xn = x, Yn = y) (19)

≥ −(k + 1) logM + I(X2n+1
n+k+2;Y 2n+1

n+k+2|X
n+k+1
n+1 , Y n+k+1

n+1 , Xn = x, Yn = y). (20)

It follows from the definition of conditional mutual information that

I(Xn
k+1;Y n

k+1|Xk
0 , Y

k
0 ) =

∑
xk0

p(xk0)

∫
fY k0 |Xk

0
(yk0 |xk0)I(Xn

k+1;Y n
k+1|xk0, yk0)dyk0

=
∑
xk0

p(xk0)

∫
fYk|Xk

0
(yk|xk0)I(Xn

k+1;Y n
k+1|xk0, yk)dyk (21)

and

I(X2n+1
n+k+2; Ỹ 2n+1

n+k+2|X
n+k+1
n+1 , Y n+k+1

n+1 , Xn = x, Yn = y)

=
∑
xk0

pXn+k+1
n+1 |Xn,Yn(xk0|x, y)

∫ {
fY n+k+1

n+1 |Xn+k+1
n+1 ,Xn,Yn

(yk0 |xk0, x, y)

× I(X2n+1
n+k+2;Y 2n+1

n+k+2|X
n+k+1
n+1 = xk0, Y

n+k+1
n+1 = yk0 , Xn = x, Yn = y)

}
dyk0

=
∑
xk0

pXn+k+1
n+1

(xk0)

∫
fYn+k+1|Xn+k+1

n+1 ,Xn,Yn
(yk|xk0, x, y)I(Xn

k+1;Y n
k+1|xk0, yk))dyk, (22)

10



where (22) follows from
pXn+k+1

n+1 |Xn,Yn(·) = pXn+k+1
n+1

(·)

and

pX2n+1
n+k+2,Y

2n+1
n+k+2|X

n+k+1
n+1 ,Y n+k+1

n+1 ,Xn,Yn
(·) = pX2n+1

n+k+2,Y
2n+1
n+k+2|X

n+k+1
n+1 ,Yn+k+1

(·) = pXn
k+1,Y

n
k+1|X

k
0 ,Yk

(·).

Now, combining (18), (19), (21) and (22), we conclude that

|I(X2n+1
n+1 ;Y 2n+1

n+1 |Xn = x, Yn = y)− I(Xn
0 ;Y n

0 )|

≤2(k + 1) logM +
∑
xk0

p(xk0)

∫
I(Xn

k+1;Y n
k+1|xk0, yk)

∣∣∣fYk|Xk
0
(yk|xk0)− fYn+k+1|Xn+k+1

n+1 ,Xn,Yn
(yk|xk0, x, y)

∣∣∣ dyk
(a)

≤2(k + 1) logM + (n− k) logM × (σ2
Ax

2 + 2σ2
B(y2 + σ2

E))σ2k
B ,

where (a) follows from Statement c) in Lemma 2.4 and

I(Xn
k+1;Y n

k+1|xk1, yk) ≤ H(Xn
k+1) ≤ (n− k) logM.

b) To prove b), it suffices to establish that for any m ≤ k ≤ n,

1

n+ 1
|H(Y n

0 )−H(Y m+n
m )| ≤ (k + 1) log 2πeM3

n+ 1
+
M4 +M5M3

n+ 1

+

(
2M3M6 +

4M1M3M7

(1− σB)2
+

12M3M7

(n+ 1)(1− σ2
B)

)
σ2k
B (23)

and

1

n+ 1
|H(Y n

0 |Xn
0 )−H(Y m+n

m |Xm+n
m )| ≤ 2(k + 1) log 2πeM3

n+ 1
+ 2M3πe(M8 + 3M9)σ2k

B .

(24)

Proof of (23). Note that for any k,

H(Y k−1
0 ) ≥ H(Y k−1

0 |Y n
k )

≥ H(Y k−1
0 |Xn

0 , Y
n
k )

= H(Y k−1
0 |Xk

0 , Yk) (25)

= H(Y k
0 |Xk

0 )−H(Yk|Xk
0 ),

where (25) follows from that Y k−1
0 is independent of (Xn

k+1, Y
n
k+1) given (Xk

0 , Yk). Then it
follows from Corollary 2.3 that∣∣H(Y k−1

0 |Y n
k )
∣∣ ≤ (k + 1) log 2πeM3

2
,

which further implies that

1

n+ 1
|H(Y n

0 )−H(Y m+n
m )|

≤ 1

n+ 1
|H(Y k−1

0 |Y n
k )−H(Y m+k−1

m |Y m+n
m+k )|+ 1

n+ 1
|H(Y n

k )−H(Y m+n
m+k )|

≤ (k + 1) log 2πeM3

n+ 1
+

1

n+ 1
|H(Y n

k )−H(Y m+n
m+k )|. (26)
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Then we have
1

n+ 1
|H(Y n

k )−H(Y m+n
m+k )|

≤ 1

n+ 1

∫
|fY nk (ynk ) log fY nk (ynk )− fYm+n

m+k
(ynk ) log fYm+n

m+k
(ynk )|dynk

≤ 1

n+ 1
D(fY nk (·)||fYm+n

m+k
(·)) +

1

n+ 1

∫ ∣∣∣fY nk (ynk )− fYm+n
m+k

(ynk )
∣∣∣ ∣∣∣log fYm+n

m+k
(ynk )

∣∣∣ dynk .
Using the data processing inequality for relative entropy and the fact (see Appendix B for
the proof) that there exist positive constants M4,M5 such that for any k ≤ n, any y and
xnk−1,

| log fYm+k−1|Xm+n
m+k−1

(y|xnk−1)| ≤M4 +M5y
2, (27)

we deduce
1

n+ 1
D(fY nk (·)||fYm+n

m+k
(·))

≤ 1

n+ 1
D(pXn

k−1
(·)fYk−1|Xn

k−1
(·)||pXm+n

m+k−1
(·)fYm+k−1|Xm+n

m+k−1
(·))

=
1

n+ 1

∑
xnk−1

pXn
k−1

(xnk−1)

∫
fYk−1|Xn

k−1
(y|xnk−1) log

pXn
k−1

(xnk−1)fYk−1|Xn
k−1

(y|xnk−1)

pXm+n
m+k−1

(xnk−1)fYm+k−1|Xm+n
m+k−1

(y|xnk−1)
dy

=
1

n+ 1

∑
xnk−1

pXn
k−1

(xnk−1)

∫
fYk−1|Xn

k−1
(y|xnk−1) log

fYk−1|Xn
k−1

(y|xnk−1)

fYm+k−1|Xm+n
m+k−1

(y|xnk−1)
dy

(a)

≤ 1

n+ 1

∑
xnk−1

pXn
k−1

(xnk−1)

∫
fYk−1|Xn

k−1
(y|xnk−1)| log fYm+k−1|Xm+n

m+k−1
(y|xnk−1)|dy

≤ 1

n+ 1

∑
xnk−1

pXn
k−1

(xnk−1)

∫
fYk−1|Xn

k−1
(y|xnk−1)(M4 +M5y

2))dy

≤ 1

n+ 1
(M4 +M5M3), (28)

where (a) follows from the fact that fYk−1|Xn
k−1

(y|xnk−1) ≤ 1. Moreover, from the fact (see

Appendix B for the proof) that there exist positive constants M6,M7 such that for any
m ≤ n and any ynm, ∣∣log fYm+n

m
(ynm)

∣∣ ≤ (n−m+ 1)M6 +M7

n∑
i=m

y2
i , (29)

it follows that

1

n+ 1

∫ ∣∣∣fY nk (ynk )− fYm+n
m+k

(ynk )
∣∣∣ ∣∣∣log fYm+n

m+k
(ynk )

∣∣∣ dynk
≤ 1

n+ 1

∫
|fY nk (ynk )− fYm+n

m+k
(ynk )|(nM6 +M7

n∑
i=k

y2
i )dy

n
k

≤ M6

∫
|fY nk (ynk )− fYm+n

m+k
(ynk )|+ M7

n+ 1

n∑
i=k

∫
dynk |fY nk (ynk )− fYm+n

m+k
(ynk )|y2

i dy
n
k . (30)
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Note that∫
|fY nk (ynk )− fYm+n

m+k
(ynk ))|y2

i dy
n
k

≤
∑
xn0

p(xn0 )

∫
|fY nk |Xn

0
(ynk |xn0 )− fYm+n

m+k |X
m+n
m

(ynk |xn0 )|y2
i dy

n
k

=
∑
xn0

p(xn0 )

∫
|fYk|Xk

0
(yk|xk0)− fYm+k|Xm+n

m
(yk|xn0 )|y2

i

n∏
j=k+1

fYj+1|Xj
j−1,Yj−1

(yj|xjj−1, yj−1)dynk

=
∑
xn0

p(xn0 )

∫
|fYk|Xk

0
(yk|xk0)− fYm+k|Xm+n

m
(yk|xn0 )|y2

i

i∏
j=k+1

fYj |Xj
j−1,Yj−1

(yj|xjj−1, yj−1)dyik

=
∑
xn0

p(xn0 )

∫
|fYk|Xk

0
(yk|xk0)− fYm+k|Xm+n

m
(yk|xn0 )|y2

i fYi|Xi
k,Yk

(yi|xik, yk)dykdyi

=
∑
xn0

p(xn0 )

∫
|fYk|Xk

0
(yk|xk0)− fYm+k|Xm+n

m
(yk|xn0 )|E[Y 2

i |X i
k = xik, Yk = yk]dyk

(a)

≤
∑
xn0

p(xn0 )

∫
|fYk|Xk

0
(yk|xk0)− fYm+k|Xm+n

m
(yk|xn0 )|

(
2M1

(1− σB)2
+ 2σ

2(i−k)
B y2

k)

)
dyk

=
∑
xn0

p(xn0 )

∫
fY0|X0(y|x0)fYm|Xm+n

m
(ỹ|xn0 )dydỹ

×
∫
|fYk|Xk

0 ,Y0
(yk|xk0, y)− fYm+k|Xm+k

m ,Ym
(yk|xk0, ỹ)|

(
2M1

(1− σB)2
+ 2σ

2(i−k)
B y2

k)

)
dyk

(b)

≤
∑
xn0

p(xn0 )

∫
fY0|X0(y|x0)fYm|Xm+n

m
(ỹ|xn0 )

(
2M1

(1− σB)2
(y2 + ỹ2)σ2k

B + 6(y2 + ỹ2)σ2i
B

)
dydỹ

=

(
2M1σ

2k
B

(1− σB)2
+ 6σ2i

B

)
(E[Y 2

0 ] + E[Y 2
m])

(c)

≤ 4M1M3

(1− σB)2
σ2k
B + 12M3σ

2i
B ,

where (a) follows from the same argument in the proof of (4), (b) follows from Statements
a) and b) in Lemma 2.4 and (c) follows from Corollary 2.2. A similar argument can be used
to establish that ∫

|fY nk (ynk )− fYm+n
m+k

(ynk )|dynk ≤ 2M3σ
2k
B ,

which, together with (30), further implies that

1

n+ 1

∣∣∣∣∫ (fY nk (ynk )− fYm+n
m+k

(ynk )) log fYm+n
m+k

(ynk )

∣∣∣∣ dynk
≤ 2M6M3σ

2k
B +

M7

n+ 1

n∑
i=k

(
4M1M3

(1− σB)2
σ2k
B + 12M3σ

2i
B

)
≤

(
2M3M6 +

4M1M3M7

(1− σB)2
+

12M3M7

(n+ 1)(1− σ2
B)

)
σ2k
B . (31)
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The desired (23) then follows from (26), (28) and (31).
Proof of (24). One easily checks that there exist positive constants M8,M9 such that for
any i, and any xii−1, y,

E[Y 2
i |Yi−1 = y,X i

i−1 = xii−1] ≤M8 +M9y
2,

which immediately implies that

H(Y 2
i |Yi−1 = y,X i

i−1 = xii−1) ≤ 1

2
log 2πe(M8 +M9y

2)
(a)

≤ πe(M8 +M9y
2), (32)

where (a) follows from the inequality that log x ≤ x for x > 0.
For any k ≤ i < j, we have

|H(Yj|Xj
j−1, Yj−1)−H(Yi|X i

i−1, Yi−1)|

= |
∑
xk0

pXj
j−k

(xk0)

∫
fYj−1|Xj

j−k
(y|xk0)H(Yj|Xj

j−1 = xkk−1, Yj−1 = y)dy

−
∑
xk0

pXi
i−k

(xk0)

∫
fYi−1|Xj

i−k
(y|xk0)H(Yi|X i

i−1 = xkk−1, Yi−1 = y)|dy

(a)
= |
∑
xk0

pXk
0
(xk0)

∫
H(Y2|X2

1 = xkk−1, Y1 = y)(fYj−1|Xj
j−k

(y|xk0)− fYi−1|Xj
i−k

(y|xk0))|dy

(b)

≤
∑
xk0

pXk
0
(xk0)

∫
πe(M8 +M9y

2)
∣∣∣fYj−1|Xj

j−k
(y|xk0)− fYi−1|Xj

i−k
(y|xk0))

∣∣∣ dy
=
∑
xk0

pXk
0
(xk0)

∫
fYj−k|Xj

j−k
(y1|xk0)fYi−k|Xi

i−k
(y2|xk0)

×
∫
|fYj−1|Xj

j−k,Yj−k
(y|xk−1

0 , y1)− fYi−1|Xj
i−k,Yj−2

(y|xk−1
0 , y2))πe(M8 +M9y

2)dydy1dy2

=
∑
xk0

pXk
0
(xk0)

∫
fYj−k|Xj

j−k
(y1|xk0)fYi−k|Xi

i−k
(y2|xk0)(y2

1 + y2
2)σ2k

B πe(M8 + 3M9)dy1dy2 (33)

≤ 2M3πe(M8 + 3M9)σ2k
B ,

where (a) follows from the stationarity of {Xn} and Assumptions (i),(ii),(iii),(iv) and (33)
follows from Statements a) and b) in Lemma 2.4 and (b) follows from (32) and

H(Y2|X2
1 = xkk−1, Y1 = y) ≥ 0.
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It then follows that

1

n+ 1
|H(Y n

0 |Xn
0 )−H(Y m+n

m |Xm+n
m )|

≤ |H(Y k−1
0 |Xk

0 )−H(Y m+k−1
m |Xm+k−1

m )|
n+ 1

+
1

n+ 1

n∑
i=k

|H(Yi|X i
i−1, Yi−1)−H(Yi+m|Xm+i

i+m−1, Ym+i−1)|

≤ 2(k + 1) log 2πeM3

n+ 1
+

1

n+ 1

n∑
i=k

|H(Yi|X i
i−1, Yi−1)−H(Yi+m|Xm+i

i+m−1, Ym+i−1)|

≤ 2(k + 1) log 2πeM3

n+ 1
+

2M3πe(M8 + 3M9)(n− k + 1)σ2k
B

n+ 1

≤ 2(k + 1) log 2πeM3

n+ 1
+ 2M3πe(M8 + 3M9)σ2k

B , (34)

as desired

The information capacity of the channel (1) is defined as

CShannon = lim
n→∞

Cn+1, (35)

where

Cn+1 =
1

n+ 1
sup
p(xn0 )

I(Xn
0 ;Y n

0 ).

One consequence of Proposition 2.5 is the existence of the limit in (35).

Theorem 2.6. The limit in (35) exists and therefore CShannon is well-defined for (1).

Proof. Fix s, t ≥ 0, and let p∗ and q∗ be input distributions that achieve Cs+1 and Ct+1,
respectively. From now on, we assume

Xs+t+1
0 ∼ p∗(xs0)× q∗(xs+t+1

s+1 ); (36)

in other words, Xs
0 and Xs+t+1

s+1 are independent and distributed according to p∗ and q∗,
respectively. Using (36) and the assumptions of the channel (1), we have

I(Xs+t+1
s+1 ;Y s+t+1

s+1 |Xs
0 , Y

s
0 ) = I(Xs+t+1

s+1 ;Y s+t+1
s+1 |Xs, Ys).

Since

I(Xs+t+1
s+1 ;Y s+t+1

s+1 |Xs, Ys) =
∑
xs

pXs(xs)

∫
fYs|Xs(ys|xs)I(Xs+t+1

s+1 ;Y s+t+1
s+1 |xs, ys)dys,
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we have

I(Xs+t+1
s+1 ;Y s+t+1

s+1 |Xs
0 , Y

s
0 ) = I(Xs+t+1

s+1 ;Y s+t+1
s+1 |Xs, Ys)

=
∑
xs

pXs(xs)

∫
fYs|Xs(ys|xs)I(Xs+t+1

s+1 ;Y s+t+1
s+1 |xs, ys)dys

(a)

≥
∑
xs

pXs(xs)

∫
fYs|Xs(ys|xs)

{
I(X t

0;Y t
0 )− 2(k + 1) logM

−(t− k) logM × (σ2
Ax

2
s + 2σ2

B(y2
s + σ2

E))σ2k
B

}
dys

= I(X t
0;Y t

0 )− 2(k + 1) logM

− (t− k) logM × (σ2
AE[X2

s ] + 2σ2
B(E[Y 2

s ] + σ2
E))σ2k

B

≥ I(X t
0;Y t

0 )− 2(k + 1) logM

− (t− k) logM × (σ2
AM0 + 2σ2

B(M3 + σ2
E))σ2k

B , (37)

where (a) follows from Statement a) in Proposition 2.5. Therefore,

(s+ t+ 2)Cs+t+2 ≥ I(Xs+t+1
0 ;Y s+t+1

0 )

≥ I(Xs
0 ;Y s

0 ) + I(Xs+t+1
s+1 ;Y s+t+1

s+1 |Xs
0 , Y

s
0 )

≥ (s+ 1)Cs+1 + (t+ 1)Ct+1 − 2(k + 1) logM

− (t− k) logM × (σ2
AM0 + 2σ2

B(M3 + σ2
E))σ2k

B . (38)

So,

Cs+t+2 ≥
s+ 1

s+ 1 + t+ 1
Cs+1 +

t+ 1

s+ 1 + t+ 1
Ct+1

− 2(k + 1) logM

t+ s+ 2
− logM × (σ2

AM0 + 2σ2
B(M3 + σ2

E))σ2k
B .

For any fixed ε0 > 0, let k be such that

logM × (σ2
AM0 + 2σ2

B(M3 + σ2
E))σ2k

B ≤
ε0

2

and then let t > k be such that

2(k + 1) logM

t+ s+ 2
≤ ε0

2
.

Then for k and t chosen above, we obtain that

(s+ t+ 2)

{
Cs+t+2 −

ε0

s+ t+ 2

}
≥ (s+ 1)

{
Cs+1 −

ε0

s+ 1

}
+ (t+ 1)

{
Ct+1 −

ε0

t+ 1

}
.

By Lemma 2 on Page 112 of [11], lim
n→∞

{Cn − ε0/n} exists and furthermore

lim
n→∞

Cn = lim
n→∞

{
Cn −

ε0

n

}
= sup

n

{
Cn −

ε0

n

}
= sup

n→∞
Cn.

The proof of the theorem is then complete.
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3 Asymptotic Mean Stationarity

One of the main tools that will be used in this work is the so-called asymptotic mean
stationarity [12], a natural generalization of stationarity, mostly due to the fact that the
output process of our channel is asymptotically mean stationary, rather than stationary.
In this section, we give a brief review of notions and results relevant to asymptotic mean
stationarity.

Let {Yn} be a real-valued random process over the probability space (Ω,F , P ). And for

n ∈ N , {0, 1, 2, . . . }, define Ŷn : RN → R as the usual coordinate function on RN by

Ŷn(x) = xn for x = (x0, x1, x2, . . . ) ∈ RN.

Let RN denote the product Borel σ-algebra on RN. By Kolmogorov’s extension theorem [9],
there exists an induced probability measure PY on (RN,RN) such that for any n ∈ N and
any Borel set B ⊂ Rn,

P ((Y1, · · · , Yn) ∈ B) = PY ((Ŷ1, · · · , Ŷn) ∈ B).

So, for ease of presentation only, we sometimes treat the process {Yn} as a function defined
as above on the sequence space RN equipped with the product Borel σ-algebra RN and the
induced measure PY .

Let T : RN → RN be the left shift operator defined by

Tx = (x1, x2, · · · ) for x = (x0, x1, x2, · · · ) ∈ RN.

A probability measure µ on RN is said to be asymptotically mean stationary if there exists a
probability measure µ̄ such that for any Borel set A ⊂ RN,

µ̄(A) = lim
n→∞

1

n

n∑
i=1

µ(T−iA); (39)

And µ̄ in (39), if it exists, is said to be the stationary mean of µ. The process {Yn} is said
to be asymptotically mean stationary if the associated measure PY is asymptotically mean
stationary.

In the remainder of this paper, we will use subscripted probability measure to emphasize
the one with respect to which an expectation is computed; for instance, for a random variable
X,

Eµ(X) =

∫
Xdµ, and Hµ(X) =

∫
− log fX(X)dµ.

The following theorem gives an analog of Birkhoff’s ergodic theorem for asymptotically
mean stationary processes.

Theorem 3.1. [12] Suppose that PY is asymptotically mean stationary with stationary mean
P̄Y . If EP̄Y [|Y0|] <∞, then

lim
n→∞

1

n

n∑
i=1

Yi exists PY − a.s.
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The following two theorems relate convergences with respect to the measure PY and its
asymptotic mean P̄Y .

Theorem 3.2. [12] If PY is an asymptotically mean stationary with stationary mean P̄Y ,
then

lim
n→∞

1

n

n∑
i=1

Yi exists PY − a.s. if and only if lim
n→∞

1

n

n∑
i=1

Yi exists P̄Y − a.s.

Also, if the limiting function as above is integrable (with respect to PY or P̄Y ), then

EPY

[
lim
n→∞

1

n

n∑
i=1

Yi

]
= EP̄Y

[
lim
n→∞

1

n

n∑
i=1

Yi

]
.

In the following, we will use f̄Y n0 (·) to denote the density of the probability measures
P̄Y (Y n

0 ∈ ·) with respect to the (n+ 1)-dimensional Lebesgue measure on Rn+1.

Theorem 3.3. [3] Suppose that PY is asymptotically mean stationary with stationary mean
P̄Y , and suppose that for each n, there exists k = k(n) such that IPY (Y n

1 ;Y ∞k+n+1|Y n+k
n+1 ) is

finite. If for some shift invariant random variable Z (i.e., Z = Z ◦ T ),

lim
n→∞

1

n
log f̄(Xn

1 ) = Z, P̄Y − a.s.,

then we have

lim
n→∞

1

n
log f(Xn

1 ) = Z, PY − a.s.

4 Asymptotic Equipartition Property

Throughout this section, we assume that the input process {Xn} is a stationary and ergodic
process. As in the previous section, for ease of presentation only, we can assume the process
{Xn, Yn} is defined on the sequence space X N × RN equipped with the natural product σ-
algebra. Let PXY denote the probability measure on X N×RN induced by {Xn, Yn}. We will
show in this section that PXY is asymptotically mean stationary with stationary mean P̄XY ,
which can be used to establish the asymptotic equipartition property of {Yn} and {Xn, Yn}.

For notational simplicity, we often omit the subscripts from the measure associated with
a given process when the meaning is clear from the context; e.g., PXY may be simply written
as P . As opposed to that under the measure P , an expectation under P̄ will always be
emphasized by an extra subscripted P̄ , i.e., EP̄ . Here, we note that P is the “original”
meansure, and EP in this section is the same as E in other sections.

Theorem 4.1. PY (·) and PXY (·) are asymptotically mean stationary and ergodic.

Proof. Asymptotic mean stationarity. We first prove that PY is asymptotically mean
stationary. To show this, it suffices to show that

lim
k→∞

P (Y k+n
k+1 ∈ A) exists for any n and any Borel set A ∈ Rn. (40)
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We will only show (40) for the case when n = 1, since the proof for a generic n is rather
similar. To this end, consider |P (Yk+1 ∈ A)− P (Yk ∈ A)|. Given Xk+1

1 = xk0, X0 = x̃0, Y0 =
ỹ0, Yk+1 is the output of (1) at time k + 1 starting with

Y1 = x1 + A1x̃0 +B1(ỹ0 − E1) +W1 + U1.

Note that

P (Yk+1 ∈ A) =
∑
x̃0,xk0

pXk+1
1

(xk0)pX0|Xk+1
1

(x̃0|xk0)

∫
fY0|X0(ỹ|x̃0) pYk+1|Xk+1

1 ,X0,Y0
(A|xk0, x̃0, ỹ)dỹ.

Similarly,

P (Yk ∈ A) =
∑
xk0

pXk
0
(xk0)pYk|Xk

0
(A|xk0)

=
∑
x̃0,xk0

pXk+1
1

(xk0)pX0|Xk+1
1

(x̃0|xk0)

∫
fY0|X0(ỹ|x̃0) pYk+1|Xk+1

1
(A|xk0)dỹ,

where {Yn} satisfies (1) with the initial condition Y1 = X1 +W1 + U1.
So, we have

|P (Yk+1 ∈ A)− P (Yk ∈ A)|

≤
∑
x̃0,xk0

pXk+1
1

(xk0)pX0|Xk+1
1

(x̃0|xk0)

∫
fY0|X0

(ỹ|x̃0)|pYk+1|Xk+1
1 ,X0,Y0

(A|xk0, x̃0, ỹ)− pYk|Xk
0
(A|xk0)|dỹ

≤
∑
x̃0,xk0

pXk+1
1

(xk0)pX0|Xk+1
1

(x̃0|xk0)

∫
fY0|X0

(ỹ|x̃0)

∫
|fYk+1|Xk+1

1 ,X0,Y0
(y|xk0, x̃0, ỹ)− fYk+1|Xk

0
(y|xk0)|dydỹ

(a)

≤
∑
x̃0,xk0

pXk+1
1

(xk0)pX0|Xk+1
1

(x̃0|xk0)

∫
fY0|X0

(ỹ|x̃0)(σ2
Ax̃

2
0 + 2σ2

B(ỹ2
0 + σ2

E))σ2k
B dỹ

= (σ2
AE[X2

0 ] + 2σ2
B(E[Y 2

0 ] + σ2
E))σ2k

B

≤ (σ2
AM0 + 2σ2

B(M3 + σ2
E))σ2k

B , (41)

where (a) follows from Statement c) in Lemma 2.4.
So, the sequence P (Yk ∈ A) converges exponentially, which justifies (40) for n = 1. A

similar argument can be applied to show that PXY (·) is also asymptotically mean stationary.
Ergodicity. As the ergodicity of PY follows from that of PXY , we only prove the ergodicity
of PXY . To show the ergodicity, from [12], it suffices to establish that

lim
n→∞

1

n+ 1

n∑
k=0

P (Xm1
0 = xm1

0 , Xk+m2
k+1 = x̂m2

1 , Y m1
0 ∈ D, Y k+m2

k+1 ∈ D2)

= P (Xm1
0 = xm1

0 , Y m1
0 ∈ D)P̄ (Xm2

1 = x̂m2
1 , Y m2

1 ∈ D2), (42)

for any m1,m2, xm1
0 and x̂m2

1 , any Borel sets D ⊂ Rm1+1 and D̂ ⊂ Rm2 . In the following, we
only prove (42) for m1 = 0 and m2 = 1, the proof for general m1 and m2 being similar. Let ε
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be an arbitrary positive number. Then we have, for any k̂ with 2σ2k̂
B M3 ≤ ε and sufficiently

large k,

P (X0 = x,Xk+1 = x̂, Y0 ∈ D, Yk+1 ∈ D̂)

=
∑
xk1

pXk+1
0

(x, xk1, x̂)

∫
Y0∈D

fY0|X0(y0|x)dy0

∫
yk+1∈D̂

fYk+1|Xk+1
0 ,Y0

(yk+1|x, xk1, x̂, y0)dyk+1

(a)

≥
∑
xk1

pXk+1
0

(x, xk1, x̂)

∫
Y0∈D

fY0|X0(y0|x)dy0

∫
yk+1∈D̂

fYk+1|Xk+1

k−k̂
(yk+1|xkk−k̂, x̂)dyk+1 − 2σ2k̂

B M3

=
∑
x̃k̂+1
1

pX0,Xk
k−k̂

,Xk+1
(x, x̃k̂+1

1 , x̂)

∫
Y0∈D

fY0|X0(y0|x)dy0

∫
yk+1∈D̂

fYk+1|Xk+1

k−k̂
(yk+1|x̃k̂+1

1 , x̂)dyk+1

−2σ2k̂
B M3

=
∑
x̃k̂+1
1

pX0,Xk
k−k̂

,Xk+1
(x, x̃k̂+1

1 , x̂)pY0|X0(D|x)P (Yk+1 ∈ D̂|Xk+1

k−k̂ = x̃k̂+1
1 x̂)− 2σ2k̂

B M3

(b)

≥
∑
x̃k̂+1
1

pX0,Xk
k−k̂

,Xk+1
(x, x̃k̂+1

1 , x̂)pY0|X0(D|x)P̄ (Yk+1 ∈ D̂|Xk+1

k−k̂ = x̃k̂+1
1 x̂)− ε− 2σ2k̂

B M3

≥
∑
x̃k̂+1
1

pX0,Xk
k−k̂

,Xk+1
(x, x̃k̂+1

1 , x̂)pY0|X0(D|x)P̄ (Yk+1 ∈ D̂|Xk+1

k−k̂ = x̃k̂+1
1 x̂)− 2ε,

where (a) follows from Statements c) and d) in Lemma 2.4 and (b) follows from the fact that
for sufficiently large k,∣∣∣P̄ (Yk+1 ∈ D̂|Xk+1

k−k̂ = x̃k̂+1
1 x̂)− P̄ (Yk+1 ∈ D̂|Xk+1

k−k̂ = x̃k̂+1
1 x̂)

∣∣∣ ≤ ε.

Then it follows from the ergodicity of {Xn} that

lim
n→∞

1

n+ 1

n∑
k=0

P (X0 = x,Xk+1 = x̂, Y0 ∈ D, Yk+1 ∈ D̂)

≥ lim
n→∞

1

n+ 1

n∑
k=0

∑
x̃k̂+1
1

pX0,X
k+1

k−k̂
(x, x̃k̂+1

1 , x̂)pY0|X0(D|x)P̄ (Yk+1 ∈ D̂|Xk+1

k−k̂ = x̃k̂+1
1 x̂)− 2ε

=
∑
x̃k̂+1
1

P (X0 = x)pXk+1

k−k̂
(x̃k̂+1

1 , x̂)pY0|X0(D|x)P̄ (Yk+1 ∈ D̂|Xk+1

k−k̂ = x̃k̂+1
1 x̂)− 2ε,

= P (X0 = x0, Y0 ∈ D)P̄ (Xk+1 = x̂1, Yk+1 ∈ D̂)− 2ε. (43)

Through a parallel argument, we can show that

lim
n→∞

1

n+ 1

n∑
k=0

P (X0 = x0, Xk+1 = x̂1, Y0 ∈ D, Yk+1 ∈ D̂)

≤ P (X0 = x0, Y0 ∈ D)P̄ (Xk+1 = x̂1, Yk+1 ∈ D̂) + 2ε. (44)

Then the desired result follows from (43) and (44).
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Using Corollary 2.2, we can prove the following result, which strengthens (40) and whose
proof can be found in Appendix B.

Lemma 4.2. For any fixed n,

lim
k→∞

fY k+nk
(·) = f̄Y n0 (·), (45)

and furthermore
EP̄ [Y 2

i ] = lim
n→∞

EP [Y 2
i ] <∞.

Using Theorem 3.3, we can prove the following lemma, which will be used to prove the
asymptotic equipartition property for the output {Yn} of the channel (1).

Lemma 4.3. There exists some constant a such that

lim
n→∞

1

n+ 1
log f(Y n

0 ) = a, P − a.s.

Proof. In order to invoke Theorem 3.3, we need to prove that for any n, there exists k(n)
such that

I(Y n
0 ;Y ∞n+k(n)+1|Y

n+k(n)
n+1 ) <∞. (46)

and

lim
n→∞

1

n+ 1
log f̄(Y n

0 ) = a, P̄ − a.s. (47)

Proof of (46). To show (46), it suffices to show that

H(Y n
0 |Y

n+k(n)
n+1 ) <∞ and H(Y n

0 |Y ∞n+1) > −∞.

Using the fact that conditioning reduces entropy, we have

H(Y n
0 |Y

n+k(n)
n+1 ) ≤ H(Y n

0 )
(a)

≤ n+ 1

2
log 2πeM3,

where (a) follows from Corollary 2.3. Similarly,

H(Y n
0 ) ≥ H(Y n

0 |Y ∞n+1) ≥ H(Y n
0 |X∞0 , Y ∞n+1)

(a)
= H(Y n

0 |Xn+1
0 , Yn+1)

= H(Y n+1
0 |Xn+1

0 )−H(Yn+1|Xn+1
0 )

(b)
> −∞,

where (a) follows from the fact that Y n
0 is independent of (X∞n+2, Y

∞
n+2) given (Xn+1

0 , Yn+1)
and (b) follows from Corollary (2.3).
Proof of (47). Let

HP̄ (Y n
0 ) , EP̄ [− log f̄(Y n

0 )].

To establish (47), we will apply the generalized Shannon-McMillan-Breiman theorem (The-
orem 1 in [3]), for which we need to verify that {Yi} under the probability measure P̄ is
stationary and ergodic and

∣∣HP̄ (Yn|Y n−1
0 )

∣∣ <∞.
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From Lemma 4.1 it follows that {Yi} under the probability measure P̄ is stationary and
ergodic. From Lemma 4.2 it follows that EP̄ [Y 2

i ] ≤M3. Then

HP̄ (Y n
0 ) ≤

n∑
i=0

HP̄ (Yi)
(a)

≤ n+ 1

2
log 2πeM3 <∞, (48)

where (a) follows from the the fact that Gaussian distribution maximizes entropy for a given
variance.

Since f(Y k+n
k ) ≤ 1, by (45), we have

HP̄ (Y n
0 ) = EP̄ [− log f̄(Y n

0 )] ≥ 0. (49)

Combining (48) and (49), we deduce∣∣HP̄ (Yn|Y n−1
0 )

∣∣ ≤ HP̄ (Y n
0 ) +HP̄ (Y n−1

0 ) <∞,

as desired.

We are now ready to prove the asymptotic equipartition property for {Yn} and {Xn, Yn}.

Theorem 4.4. The following two limits exist

H(Y ) , lim
n→∞

1

n+ 1
H(Y n

0 ), H(X, Y ) , lim
n→∞

1

n+ 1
H(Xn

0 ;Y n
0 ),

and therefore,

I(X;Y ) = lim
n→∞

1

n+ 1
I(Xn

0 ;Y n
0 )

also exists. Moreover,

lim
n→∞

− 1

n+ 1
log fY n0 (Y n

0 ) = H(Y ), P − a.s.

and

lim
n→∞

− 1

n+ 1
log fXn

0 ,Y
n
0

(Xn
0 , Y

n
0 ) = H(X, Y ), P − a.s.

Proof. We only show the existence of H(Y ), the proof of that of H(X, Y ) being com-
pletely parallel. Apparently, the existence of H(Y ) and H(X, Y ) immediately implies that
of I(X;Y ).

By Lemma 4.2, we have EP̄ [Y 2
n ] < ∞. Then it follows from the Birkhoff’s ergodic

theorem [9] that

lim
n→∞

1

n+ 1

n∑
i=0

Y 2
i exists, P̄ − a.s.

and

EP̄

[
lim
n→∞

1

n+ 1

n∑
i=0

Y 2
i

]
= EP̄ [Y 2

1 ].
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From Theorems 3.1 and 3.2, it follows that

lim
n→∞

1

n+ 1

n∑
i=0

Y 2
i exists, P − a.s.

and

EP

[
lim
n→∞

1

n+ 1

n∑
i=0

Y 2
i

]
= EP̄ [Y 2

1 ].

And from Lemma 4.2, it follows that

EP

[
lim
n→∞

1

n+ 1

n∑
i=0

Y 2
i

]
= lim

n→∞

1

n+ 1

n∑
i=0

EP [Y 2
i ] = EP̄ [Y 2

1 ].

As shown in Lemma 4.3, we have

lim
n→∞

1

n+ 1
log fY n0 (Y n

0 ) = a, P − a.s.

It then follows from (29) and the general dominated convergence theorem [25] that

EP

[
lim
n→∞

1

n+ 1
log f(Y n

0 )

]
= lim

n→∞
EP

[
1

n+ 1
log f(Y n

0 )

]
= lim

n→∞

H(Y n
0 )

n+ 1
= H(Y ),

which implies that a = H(Y ) and thereby yields the desired convergence.

5 Main Results

The stationary capacity CS and the m-th order Markov capacity C
(m)
Markov of our channel are

defined as
CS = sup

X
I(X;Y ) and C

(m)
Markov = sup

X
I(X;Y ),

where the first supremum is taken over all the stationary and ergodic processes and the
second one is over all the m-th order stationary and ergodic Markov chains. Now we are
ready to state our main theorem, which relates various defined capacities above.

Theorem 5.1.
C = CShannon = CS = lim

m→∞
C

(m)
Markov.

Our theorem confirms that for the channel (1), the operational capacity can be ap-
proached by the Markov capacity, which justifies the effectiveness of the Markov approxima-
tion scheme in terms of computing the operational capacity.
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Proof. To prove the theorem, it suffices to prove that

CS ≤ C ≤ CShannon ≤ CS = lim
m→∞

C
(m)
Markov.

Proof of CS ≤ C. This follows from a usual “achievability part” proof: For any rate
R < CS and ε > 0, choose a stationary ergodic input process Xn such that R < I(X;Y )− ε.
As shown in Theorem 4.4, {Xn, Yn} satisfies the AEP, we can complete the proof of the
achievability by going through the usual random coding argument.

Proof of C ≤ CShannon. This follows from a usual “converse part” proof.
Proof of CShannon ≤ CS. The proof is similar to the one in [10], so we just outline the

main steps.
Step 0. First of all, for any ε > 0, choose l such that

σ2l
B ≤

ε

2(σ2
AM

2
0 + 2σ2

B(M3 + σ2
E)) logM

, (50)

and then N and XN
0 ∼ p(xN0 ) such that

l

N
≤ ε

4 logM
,

1

N + 1
I(XN

0 ;Y N
0 ) ≥ CShannon − ε. (51)

Step 1. Now, let {X̂n} be the “independent block” process defined as follows:

(i) (X̂k(N+1), · · · , X̂(k+1)(N+1)−1) are i.i.d. for k = 0, 1, · · · ;

(ii) (X̂0, · · · , X̂N) has the same distribution as (X0, X1, · · · , XN).

And let Ŷ be the output obtained by passing X̂ through the channel (1). Let ν be indepen-

dent of {X̂n} and uniformly distributed over {0, 1 · · · , N}, and let X̄n = X̂ν+n. It can be
verified that {X̄n} is a stationary and ergodic process.

Step 2. Let {Ȳn} be the output obtained by passing the stationary process {X̄n} through
the channel (1). Letting

I(X̄; Ȳ ) = lim
n→∞

1

n+ 1
I(X̄n

0 ; Ȳ n
0 ),

we will show that

I(X̄; Ȳ )− 1

N + 1
I(XN

0 ;Y N
0 ) ≥ −ε, (52)

which, by the arbitrariness of ε, will imply the claim.
Note that it can be verified that

pX̄n
0
(xn0 )fȲ n0 |X̄n

0
(yn0 |xn0 ) =

N∑
k=0

1

N + 1
P (X̄n

0 = xn0 |ν = k)fȲ n0 |X̄n
0
(yn0 |xn0 )

=
N∑
k=0

1

N + 1
P (X̂k+n

k = xn0 |ν = k)fȲ n0 |X̄n
0
(yn0 |xn0 )

=
N∑
k=0

1

N + 1
P (X̂n

(k),0 = xn0 |ν = k)fȲ n0 |X̄n
0
(yn0 |xn0 ),
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where X̂(k),n , X̂k+n. For k = 0, 2, · · · , N , let Ŷ(k) = {Ŷ(k),n} denote the output process

obtained by passing the process X̂(k) = {X̂(k),n} through the channel (1). Then it follows
from Lemma 2 in [10] that

I(X̄; Ȳ ) =
1

N + 1

N∑
j=0

I(X̂(k); Ŷ(k)),

where

I(X̂(k); Ŷ(k)) = lim
n→∞

1

n+ 1
I(X̂n

(k),0; Ŷ n
(k),0).

To prove (52), it suffices to establish that for any k,

I(X̂(k); Ŷ(k)) ≥
1

N + 1
I(XN

0 ;Y N
0 )− ε. (53)

The proof of (53) for a general k are similar, so in the following we only show it holds true
for k = 0. Here, we note that when k = 0,

I(X̂(k); Ŷ(k)) = I(X̂; Ŷ ) = lim
l→∞

1

l(N + 1)
I(X̂

l(N+1)−1
0 ; Ŷ

l(N+1)−1
0 ).

Using the chain rule for mutual information, we have

I(X̂
l(N+1)−1
0 ; Ŷ

l(N+1)−1
0 ) ≥

l∑
i=1

I(X̂
i(N+1)−1
(i−1)(N+1); Ŷ

i(N+1)−1
(i−1)(N+1)|X̂

(i−1)(N+1)−1
0 , Ŷ

(i−1)(N+1)−1
0 ),

which means that, to prove (53), it suffices to show that

1

N + 1
I(X̂

i(N+1)−1
(i−1)(N+1); Ŷ

i(N+1)−1
(i−1)(N+1)|X̂

(i−1)(N+1)−1
0 , Ŷ

(i−1)(N+1)−1
0 ) ≥ 1

N + 1
I(X̂N+1

0 ; Ŷ N+1
0 )− ε.

Without loss of generality, we prove this holds true for i = 2. Note that

I(X̂2N+1
N+1 ; Ŷ 2N+1

N+1 |X̂
N
0 , Ŷ

N
0 ) =

∑
xN0

pX̂N
0

(xN0 )

∫
fŶ N0 |X̂N

0
(yN0 |xN0 )I(X̂2N+1

N+1 ; Ŷ 2N+1
N+1 |x

N
0 , y

N
0 )dyN0

=
∑
xN0

pX̂N
0

(xN0 )

∫
fŶ N0 |X̂n

0
(yN0 |xN0 )I(X̂2N+1

N+1 ; Ŷ 2N+1
N+1 |xN , yN)dyN0

=
∑
xN

pX̂N
0

(xN0 )

∫
fŶN |X̂N (yN |xN)I(X̂2N+1

N+1 ; Ŷ 2N+1
N+1 |xN , yN)dyN .

It follows from Statement a) in Proposition 2.5 that

|I(X̂2N+1
N+1 ; Ŷ 2N+1

N+1 |xN , yN)− I(X̂N+1
0 ; Ŷ N+1

0 )|
≤ 2(l + 1) logM + (N − l) logM × (σ2

Ax
2
N + 2σ2

B(y2
N + σ2

E))σ2l
B ,
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which implies that

I(X̂2N+1
N+1 ; Ŷ 2N+1

N+1 |X̂
N
0 , Ŷ

N
0 ) ≥

∑
xN

pXN (xN)

∫
fYN |XN (yN |xN)

×
{
I(X̂N+1

0 ; Ŷ N+1
0 )− 2(l + 1) logM −

[
(N − l) logM × (σ2

Ax
2
N + 2σ2

B(y2
N + σ2

E))σ2l
B

]}
dyN

(a)

≥ I(X̂N+1
0 ; Ŷ N+1

0 )− 2(l + 1) logM − {(N − l) logM × (σ2
AM

2
0 + 2σ2

B(M3 + σ2
E))σ2l

B

}
,

where (a) follows from Corollary 2.2. Now, with (50) and (51), we conclude that

1

N + 1
I(X̂2N+1

N+1 ; Ŷ 2N+1
N+1 |X̂

N
0 , Ŷ

N
0 ) ≥ 1

N + 1
I(X̂N+1

0 ; Ŷ N+1
0 )− ε

=
1

N + 1
I(XN+1

0 ;Y N+1
0 )− ε,

as desired.
Proof of CS = limm→∞C

(m)
Markov. To prove this, we only need to show that for any ε > 0,

one can find an m-th order stationary and ergodic Markov chain X̃ such that

I(X̃; Ỹ ) ≥ CS − ε,

where Ỹ is the output process obtained when passing X̃ through the channel (1).
First of all, let X be a stationary process such that

I(X;Y ) ≥ CS − ε/3.

Now, construct the m-th order stationary and ergodic Markov chain X̃ by setting

P (X̃m
0 = xm0 ) = P (Xm

0 = xm0 ),

and let Ỹ be the output processes obtained by passing X̃ through the channel (1).
It follows from Statement b) in Proposition 2.5 that for any m, i ≥ 0,

1

m+ 1
I(X̃

(i+1)m+1
im+i ; Ỹ

(i+1)m+1
im+i )− 1

m+ 1
I(X̃m

0 ; Ỹ m
0 )

≥ −3(k + 1) log 2πeM3

n+ 1
− 2M3πe(M8 + 3M9)σ2k

B

− 1

m+ 1
(M4 +M5M3)−

(
2M3M6 +

4M1M3M7

(1− σB)2
+

12M3M7

(m+ 1)(1− σ2
B)

)
σ2k
B .

Choosing m and k sufficiently large, we have

1

m+ 1
I(X̃

(i+1)m+1
im+i ; Ỹ

(i+1)m+1
im+i ) ≥ 1

m+ 1
I(X̃m

0 ; Ỹ m
0 )− ε

3
,
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which, together with the chain rule for entropy and the fact that H(X̃
(i+1)m+i
im+i ) = H(X̃m

0 ),
implies that

H(X̃|Ỹ ) = lim
s→∞

1

s(m+ 1)
H(X̃

s(m+1)−1
0 |Ỹ s(m+1)−1

0 )

= lim
s→∞

1

s(m+ 1)

s−1∑
i=0

H(X̃
(i+1)m+i
im+i |X̃ im+i−1

0 , Ỹ
s(m+1)−1

0 )

≤ lim
s→∞

1

s(m+ 1)

s−1∑
i=0

H(X̃
(i+1)m+i
im+i |Ỹ (i+1)m+i

im+i )

= lim
s→∞

1

s(m+ 1)

s−1∑
i=0

{
H(X̃

(i+1)m+i
im+i )− I(X̃

(i+1)m+i
im+i ; Ỹ

(i+1)m+i
im+i )

}
≤ lim

s→∞

1

s(m+ 1)

s−1∑
i=0

{
H(X̃m

0 )− I(X̃m
0 ; Ỹ m

0 ) + ε
}

=
1

m+ 1
H(X̃m

0 |Ỹ m
0 ) +

ε

m+ 1

=
1

m+ 1
H(Xm

0 |Y m
0 ) +

ε

m+ 1
. (54)

Now, choosing m sufficiently large such that

1

m+ 1
H(Xm

0 |Y m
0 ) ≤ H(X|Y ) + ε/3,

and using (54) and the stationary property of X, we deduce that

I(X̃; Ỹ ) = H(X̃)−H(X̃|Ỹ )

≥ H(X̃)− 1

m+ 1
H(Xm

0 |Y m
0 )

= H(X̃m|X̃m−1
0 )− 1

m+ 1
H(Xm

0 |Y m
0 )− ε

m+ 1

= H(Xm|Xm−1
0 )− 1

m+ 1
H(Xm

0 |Y m
0 )− ε

m+ 1

≥ H(X)− 1

m+ 1
H(Xm

0 |Y m
0 )− ε

m+ 1

≥ H(X)−H(X|Y )− ε

3
− ε

m+ 1
≥ I(X;Y )− 2ε/3

≥ CS − ε,

as desired.

6 Conclusion and Future Work

In this paper, via an information-theoretic analysis, we prove that, for a recently proposed
one dimensional causal flash memory channel [2], as the order tends to infinity, its Markov

27



capacity converges to its operational capacity, which translates to the theoretical limit of
memory cell storage efficiency.

The aforementioned result serves as a first step to the journey of investigating whether the
ideas and techniques in the theory of finite-state channels can be instrumental to compute
the capacity of flash memory channels. A natural follow-up question in the future is the
concavity of the mutual information rate of flash memory channels with respect to the
parameters of an input Markov process, which is a much desired property that will help
ensure the convergence of the capacity computing algorithms in [28, 14]. Here, we note
that the concavity of the mutual information rate has been established for special classes of
finite-state channels [15, 18, 19].

Further investigations are needed to be conducted to see whether the ideas and tech-
niques developed in this work can be applied/adapted to the two dimensional model in [2],
a more realistic channel model for flash memories. Our preliminary investigations indicate
that despite some technical issues such as anti-causality (which naturally arises in a two di-
mensional channel), the framework laid out in this work, coupled with a possible conversion
from two dimensional models to one dimensional models via appropriate re-indexing, will
likely encompass an effective approach to two dimensional flash memory channels.

Appendices

A Proof of (14)

The proof follows from a similar argument in [22]. Without loss of generality, we assume

0 < σ1 < σ2 and let φ(x;σ, µ) = 1√
2πσ2

1

e−
(x−µ)2

2σ2 . Then

∫ ∞
−∞

x2

∣∣∣∣∣ 1√
2πσ2

1

e
− (x−µ)2

2σ21 − 1√
2πσ2

2

e
− (x−µ)2

2σ22

∣∣∣∣∣ dx
=

{∫
{x:φ(x;σ1,µ)>φ(x;σ2,µ)}

+

∫
{x:φ(x;σ1,µ)<φ(x;σ2,µ)}

}
x2 |φ(x;σ1, µ)− φ(x;σ2, µ)| dx

= 2

∫
{x:φ(x;σ1,µ)>φ(x;σ2,µ)}

(φ(x;σ1, µ)− φ(x;σ2, µ)) dx+

∫ ∞
−∞

x2(φ(x;σ2, µ)− φ(x;σ1, µ))dx

≤ σ2
2 − σ2

1 + 2
σ2 − σ1

σ1σ2

∫ ∞
−∞

x2

√
2π
e
− (x−µ)2

2σ21 dx

≤ σ2
2 − σ2

1 + 2
σ3

1(σ2
2 − σ2

1)

(σ1 + σ2)σ1σ2

≤ 3|σ2
1 − σ2

2|.

B Proofs of (27) and (29)

We first conduct some preparatory computations before the proofs.
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Note that given En
1 = en1 , Un

0 = un0 , Xn
0 = xn0 and Yi−1 = yi−1, Yi is a Gaussian random

variable with density

f(yi|yi−1, x
i
i−1, ei, ui) =

1√
2π(σ2

Ax
2
i−1 + σ2

B(yi−1 − ei)2 + 1)
e
− (yi−xi−ui)

2

2(σ2
A
x2
i−1

+σ2
B

(yi−1−ei)2+1) .

Clearly, f(yi|yi−1, x
i
i−1, ei, ui, yi−1) ≤ 1 and for i ≥ 1,

fYi|Xi
i−1,Yi−1

f(yi|yi−1, x
i
i−1) =

∫
deiduifUi(ui)fEi(ei)f(yi|yi−1, x

i
i−1, ei, ui, yi−1)

=

∫
deidui

fUi(ui)fEi(ei)√
2π(σ2

Ax
2
i−1 + σ2

B(yi−1 − ei)2 + 1)
e−

(yi−xi−ui)
2

2

≥
∫
deidui

fUi(ui)fEi(ei)√
2π(σ2

Ax
2
i−1 + σ2

B(yi−1 − ei)2 + 1)
e−

3(y2i +x
2
i+u

2
i )

2

≥
∫
deidui

fUi(ui)fEi(ei)√
2π(σ2

AM
2
0 + 2σ2

B(y2
i−1 + e2

i ) + 1)
e−

3(y2i +2M2
0 )

2

≥
∫ 1

−1

fEi(ei)dei
1√

2π(σ2
AM

2
0 + 2σ2

B(y2
i−1 + 1) + 1)

e−
3(y2i +2M2

0 )

2 ,

where M0 is as in (3).
Proof of (27) For any M̃ > 0, we have

fYm+k−1|Xm+n
m+k−1

(y|xnk−1)

=
∑

x̃m+k−2
0

{
pXm+k−2

0 |Xm+n
m+k−1

(x̃m+k−2
0 |xnk−1)

×
∫
fYm+k−2|Xm+k−2

0
(ỹ|x̃m+k−2

0 )fYm+k−1|Xm+k−1
m+k−2 ,Ym+k−2

(y|x̃m+k−2, xk−1, ỹ)

}
dỹ

≥
∑

x̃m+k−2
0

{
pXm+k−2

0 |Xm+n
m+k−1

(x̃m+k−2
0 |xnk−1)

×
∫
fYm+k−2|Xm+k−2

0
(ỹ|x̃m+k−2

0 )

∫ 1

−1
fEi(ei)dei√

2π(σ2
AM

2
0 + 2σ2

B(ỹ2 + 1) + 1)
e−

3(y2+2M2
0 )

2

}
dỹ

≥
∑

x̃m+k−2
0

{
pXm+k−2

0 |Xm+n
m+k−1

(x̃m+k−2
0 |xnk−1)

×
∫ M̃

−M̃
fYm+k−2|Xm+k−2

0
(ỹ|x̃m+k−2

0 )

∫ 1

−1
fEi(ei)dei√

2π(σ2
AM

2
0 + 2σ2

B(ỹ2 + 1) + 1)
e−

3(y2+2M2
0 )

2

}
dỹ

≥
∑

x̃m+k−2
0

{
pXm+k−2

0 |Xm+n
m+k−1

(x̃M+k−2
0 |xnk−1)P (|Ym+k−2| ≤ M̃ |Xm+k−2

0 = x̃m+k−2
0 )

×
∫ 1

−1
fEi(ei)dei√

2π(σ2
AM

2
0 + 2σ2

B(M̃2 + 1) + 1)
e−

3(y2+2M2
0 )

2

 .
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It then follows from Corollary (2.2) and the Markov inequality that

P (|Ym+k−2| ≤ M̃ |Xm+k−2
0 = x̃m+k−2

0 ) ≥ 1−
E[Y 2

m+k−2|Xm+k−2
0 = x̃m+k−2

0 ]

M̃2
≥ 1− M3

M̃2
.

If M̃ is chosen such that for all x̃m+k−2
0

P (|Ym+k−2| ≤ M̃ |Xm+k−2
0 = x̃m+k−2

0 ) ≥ 1/2,

we then have

log fYm+k−1|Xm+n
m+k−1

(y|xnk−1) ≥ log

∫ 1

−1
fEi(ei)dei

2
√

2π(σ2
AM

2
0 + 2σ2

B(M̃2 + 1) + 1)
e−3M2

0 − 3y2.

The desired result then follows by choosing

M4 =

∣∣∣∣∣∣log

∫ 1

−1
fEi(ei)dei

2
√

2π(σ2
AM

2
0 + 2σ2

B(M̃2 + 1) + 1)
e−3M2

0

∣∣∣∣∣∣ and M5 = 3.

Proof of (29). Note that

f(ym+n
m ) =

∑
xm+n
0

p(xm+n
0 )

∫
f(ym−1|xm−1

0 )f(ym+n
m |xm+n

0 , ym−1)dym−1

=
∑
xm+n
0

p(xm+n
0 )

∫
f(ym−1|xm−1

0 )
m+n∏
i=m

f(yi|yi−1, x
i
i−1)dym−1

=
∑
xm+n
0

p(xm+n
0 )

∫
f(ym−1|xm−1

0 )
m+n∏
i=m

f(yi|yi−1, x
i
i−1)dym−1

=
∑
xm+n
0

p(xm+n
0 )

∫
f(ym−1|xm−1

0 )
m+n∏
i=m

∫
f(ei)f(ui)f(yi|yi−1, x

i
i−1, ui, ei)dym−1.

It then follows that f(ym+n
m ) ≤ 1 and a similar argument as in the proof of (27) that for
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sufficiently large M̃ ,

f(ym+n
m ) ≥

∑
xm+n
0

p(xm+n
0 )

∫
f(ym−1|xm−1

0 )
m+n∏
i=m

∫ 1

−1
fEi(ei)dei√

2π(σ2
AM

2
0 + 2σ2

B(y2
i−1 + 1) + 1)

e−
3(y2i +2M2

0 )

2 dym−1

≥

∑
xm−1
0

p(xm−1
0 )

∫
f(ym−1|xm−1

0 )

∫ 1

−1
fEm(em)dem√

2π(σ2
AM

2
0 + 2σ2

B(y2
m−1 + 1) + 1)

e−
3(y2m+2M2

0 )

2

 dym−1

×

(
m+n∏
i=m+1

∫ 1

−1
fEi(ei)dei√

2π(σ2
AM

2
0 + 2σ2

B(y2
i−1 + 1) + 1)

e−
3(y2i +2M2

0 )

2

)

≥

∑
xm−1
0

p(xm−1
0 )

∫ M̃

−M̃
f(ym−1|xm−1

0 )

∫ 1

−1
fEm(em)dem√

2π(σ2
AM

2
0 + 2σ2

B(y2
m−1 + 1) + 1)

e−
3(y2m+2M2

0 )

2

 dym−1

×

(
m+n∏
i=m+1

∫ 1

−1
fEi(ei)dei√

2π(σ2
AM

2
0 + 2σ2

B(y2
i−1 + 1) + 1)

e−
3(y2i +2M2

0 )

2

)

≥

 ∫ 1

−1
fEm(em)dem√

8π(σ2
AM

2
0 + 2σ2

B(M̃2 + 1) + 1)
e−

3(y2m+2M2
0 )

2


×

(
m+n∏
i=m+1

∫ 1

−1
fEi(ei)dei√

2π(σ2
AM

2
0 + 2σ2

B(y2
i−1 + 1) + 1)

e−
3(y2i +2M2

0 )

2

)
.

Now, we have

0 ≥ log f(Y m+n
m )

≥ log

∫ 1

−1
fEm(em)dem√

8π(σ2
AM

2
0 + 2σ2

B(M̃2 + 1) + 1)
e−

3(y2m+2M2
0 )

2

+ log

{
m+n∏
i=m+1

∫ 1

−1
fEi(ei)dei√

2π(σ2
AM

2
0 + 2σ2

B(y2
i−1 + 1) + 1)

e−
3(y2i +2M2

0 )

2

}

= −
m+n∑
i=m

3Y 2
i + 6M2

0

2
+ (n+ 1) log

(∫ 1

−1
f(e1) de1√

2π

)
− log 2(σ2

AM
2
0 + 2σ2

B(M̃2 + 1) + 1)

2

− 1

2

m+n∑
i=m+1

log(1 + σ2
AM

2
0 + 2σ2

B(Y 2
i−1 + 1))

(a)

≥ −
m+n∑
i=m

3Y 2
i + 6M2

0

2
+ (n+ 1) log

(∫ 1

−1
f(e1) de1√

2π

)
− log 4(σ2

AM
2
0 + 2σ2

B(M̃2 + 1) + 1)

2

− 1

2

m+n∑
i=m+1

(σ2
AM

2
0 + 2σ2

B(Y 2
i−1 + 1))

where we have used the well-known inequality log(1 + z) ≤ z for any z > −1 to derive (a).
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The desired (29) then follows by choosing

M6 =
(6 + σ2

A)M2
0

2
+

2σ2
B + log 4(σ2

AM
2
0 + 2σ2

B(M̃2 + 1) + 1)

2
+

∣∣∣∣∣log

(∫ 1

−1
f(e1) de1√

2π

)∣∣∣∣∣
and

M7 =
3 + 2σ2

B

2
.

C Proof of Lemma 4.2

For simplicity, we prove Lemma 4.2 for n = 1, the proof for a general n being similar.
Conditioned on xn0 , b

n
1 and un0 , Yn is a Gaussian random variable with mean

n∑
i=0

(xi + ui)
n∏

j=i+1

bj

and variance
n∏
j=1

b2
j +

n∑
i=1

(x2
i−1σ

2
A + biσ

2
E + 1)

n∏
j=i+1

b2
j ≥ 1.

Let φ(y;µ, σ2) be the Gaussian density with mean µ and variance σ2. Then the density of
Yn is

fYn(y) = E

[
φ

(
y;

n∑
i=0

(Xi + Ui)
n∏

j=i+1

B2
j ,

n∏
j=1

B2
j +

n∑
i=1

(X2
i−1σ

2
A +B2

i σ
2
E + 1)

n∏
j=i+1

B2
j

)]
.

Since the processes {Xn}, {Un} and {Bn} are all stationary, fYn(y) can be written as the
following

fYn(y) = E

φ
y;

0∑
i=−n

(Xi + Ui)

0∏
j=i+1

Bj ,

0∏
j=−n+1

B2
j +

0∑
i=−n+1

(X2
i−1σ

2
A +B2

i σ
2
E + 1)

0∏
j=i+1

B2
j

 .
Since

0∑
i=−∞

E

[∣∣∣∣∣(Xi + Ui)
0∏

j=i+1

Bj

∣∣∣∣∣
]
≤ 2M0

0∑
i=−∞

0∏
j=i+1

(EB2
j )

1
2 ≤ 2M0

0∑
i=−∞

σ−iB <∞,

it follows from Theorem 3.1 in [24] that with probability 1,

0∑
i=−n

(Xi + Ui)
0∏

j=i+1

Bj

converges.
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For any ε > 0,

∞∑
n=1

P

(
0∏

j=−n+1

B2
j > ε

)
≤

∞∑
n=1

E
[∏0

j=−n+1 B
2
j

]
ε

=
∞∑
n=1

σ2n
B

ε
<∞.

Then it follows from the Borel-Cantelli lemma that with probability 1,

0∏
j=−n+1

B2
j → 0. (55)

Clearly, with probability 1,

0∑
i=−n+1

(X2
i−1σ

2
A +Biσ

2
E + 1)

0∏
j=i+1

B2
j →

0∑
i=−∞

(X2
i−1σ

2
A +Biσ

2
E + 1)

0∏
j=i+1

B2
j . (56)

From (55) and (56), we have that with probability 1,

0∏
j=−n+1

B2
j +

0∑
i=−n+1

(X2
i−1σ

2
A +Biσ

2
E + 1)

0∏
j=i+1

B2
j →

0∑
i=−∞

(X2
i−1σ

2
A +Biσ

2
E + 1)

0∏
j=i+1

B2
j .

Since

E

[
0∑

i=−n+1

(X2
i−1σ

2
A +B2

i σ
2
E + 1)

0∏
j=i+1

B2
j

]
≤

−1∑
i=−n+1

(M2
0σ

2
A + σ2

Bσ
2
E + 1)σ−2i

B

≤
−1∑

i=−∞

(M2
0σ

2
A + σ2

Bσ
2
E + 1)σ−2i

B ,

it follows from Fatou’s lemma [21] that

E

[
0∑

i=−∞

(X2
i−1σ

2
A +Biσ

2
E + 1)

0∏
j=i+1

B2
j

]
≤

−1∑
i=−∞

(M2
0σ

2
A + σ2

Bσ
2
E + 1)σ2i

B ,

which further implies that, with probability 1,

0∏
j=−∞

B2
j

0∑
i=−∞

(X2
i−1σ

2
A +Biσ

2
E + 1)

0∏
j=i+1

B2
j <∞.

It then follows from the bounded convergence theorem [21] that

fYn(y)→ E

[
φ

(
y;

0∑
i=−∞

(Xi + Ui)
0∏

j=i+1

Bj,
0∏

j=−∞

B2
j +

0∑
i=−∞

(X2
i−1σ

2
A +B2

i σ
2
E + 1)

0∏
j=i+1

B2
j

)]
.
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Let

g(y) = E

[
φ

(
y;

0∑
i=−∞

(Xi + Ui)
0∏

j=i+1

Bj,

0∏
j=−∞

B2
j +

0∑
i=−∞

(X2
i−1σ

2
A +B2

i σ
2
E + 1)

0∏
j=i+1

B2
j

)]
.

Then for any Borel set A ∈ R,∫
A

f̄Y0(y) dy
(a)
= P̄ (Y1 ∈ A) = lim

n→∞
P (Yn ∈ A) = lim

n→∞

∫
A

fYn(y) dy
(b)
=

∫
A

lim
n→∞

fYn(y) dy =

∫
A

g(y) dy,

where (a) follows from Theorem 4.1 and (b) follows from fYn(y) ≤ 1 and the bounded
dominated convergence theorem [21]. Therefore, f̄Y0(y) = g(y) = limn→∞ fYn(y), which
implies that P (Yn = ·) converges weakly to P̄ (Y0 = ·). As shown in Corollary 2.2, {Y 2

n }
under the probability measure P is uniformly integrable. Then from Theorem 3.3 in [4], it
follows that

EP̄ [Y 2
n ] = lim

n→∞
E[Y 2

n ] ≤M3 <∞.
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