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Abstract—We consider the effect of log-likelihood ratio sat- small bit error rate whenever the full BP decoder can achieve
uration on belief propagation decoder low-density paritycheck arbitrarily small bit error rate. Furthermore, a more caref

codes. Saturation is commonly done in practice and is knownot - giap5ijity analysis shows that in fact one can achieve rifiigh
have a significant effect on error floor performance. Our focis .
in terms of the block error rate.

is on threshold analysis and stability of density evolution

We analyze the decoder for standard low-density parity-
check code ensembles and show that belief propagation dednd
generally degrades gracefully with saturation. Stabilityof density A. Related Work
evolution is, on the other hand, rather strongly effected by The papers[[2]5[5] consider the effect of saturation on

saturation and the asymptotic qualitative effect of saturdion is . .
similar to reduction by one of variable node degree error floor performance. It is observed in these works that

We also show under what conditions the block threshold for te ~ Saturation can limit the ability of decoding to escape tragp
saturated belief propagation corresponds with the bit threshold. set behavior, thereby worsening error floor performance. In

[6], [[7] some decoder variations are given that help reduce
error floors. Here we see an explicit effort to ameliorate
the effect of saturation. A related but distinct directioasn
taken in [8]. There the authors made modifications to discret
Standard belief propagation (BP) decoding of binary lowiode update rules so as to reduce error floor failure events.
density parity-check (LDPC) codes involves passing messaghey fine tune finite state message update rules to optimize
typically representing log-likelihood ratios (LLRs) whican performance on a particular graph structure. There have bee
take any value inR £ R U {+oco} [I]. The asymptotic other works that examine the effects of practical concessio
analysis developed for BP decoding of LDPC codes inherently [9] the authors consider the effect of quantization in DP
assumes that the messages have unbounded magnitudecotfed flash memories. In[10] ahd[11] the effects of satomati
practice, however, decoders typically use uniformly qizeat and quantization are modeled as noise terms. Finally, ih [12
and bound LLRs. Density evolution can be applied directlygn analysis is done to evaluate the effect on capacity on
to such decoders but analysis is often difficult and there agaantization of channel outputs. Although we take a difiere
few general results. Hence, it is of interest to understéued tapproach in this paper by focusing on asymptotic behavior,
effect of saturation of LLR magnitudes as a perturbation ¢ifie fundamental conclusion is similar to the error floor lssu
full belief propagation. We call such a saturated decodex asn [2]-[5]: saturation can dramatically effect the statyilof
saturatingbelief propagation decoder (SatBP). Note that thiae decoder.
decoder is strictly speaking not a BP decoder, but we adhereThe paper is organized as follows. In the next section we
to the BP nomenclature as we view SatBP as a perturbati@il briefly review the standard asymptotic analysis of the
of BP. BP decoder using density evolution (DE). Then in sections
In the design of capacity-achieving codes it is helpful {filland [V]we will introduce the SatBP decoder and perform
understand how practical decoder concessions, like s&ya perturbation analysis on the SatBP decoder using the Wasser
affect performance. For this purpose, we will analyze thstein metric [13]. In sectiofiV we will use stability analysi
SatBP decoder in the asymptotic limit of the blocklengtmgoi to examine block thresholds for SatBP. We will see that in
to infinity. In particular, if LLRs are saturated at magniudmany cases the block threshold will correspond with the bit
K then how much degradation from the BP threshold shouldreshold, but the conditions required are more stringean t
be expected. Naturally, one expects thatkas— +oo, that in the non-saturated decoder case.
one can reliably transmit arbitrarily close to the BP thdgh
[1]. We will see that this is not entirely correct and that, in
particular, saturation can undermine the stability of tbefgrct
decoding fixed point if, for example, the fraction of degree
two variable nodes in an irregular ensemble is non-zero. Ourln this section we briefly review the BP decoder and the
analysis shows that when the minimum variable node degfe& analysis[[14] in the case of transmission over a general
is at least three then there exists a large but finite satratBMS channel using standard LDPC code ensemble. Most of
value K such that the SatBP decoder can achieve arbitrartlye material presented here can be foundn [1].

|. INTRODUCTION

II. BP DECODING, DENSITY EVOLUTION AND THE
WASSERSTEINDISTANCE
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We assume transmission over a BMS channel. Ke¢t= A BMS channel family{BMS(h)}! is said to beordered
+1) denote the input and leY” be the output. Further, let (by degradation) ifa; < h, impliesc,, < cp,. (The reverse
p(Y =y | X = z) denote theransition probabilitydescribing order,h; > h,, is also allowed but we generally stick to the
the channel. We generally characterize a BMS channel by #sted convention.)
so-calledL-distribution,c. More preciselyg is the distribution  Definition 1 (Symmetric Densitiesj:et A denote anL-

of distribution inR = R U {£oco}. Then A is symmetricif it
p(Y| X =+1) satisfies the following condition for every bounded, coutins
b X =) function f : R s R,
conditioned thatX = +1. Generally, we may assume that /f(:v)dA(x) _ /e*””f(—x)dA(x). 3)
y - P X =FD
p(Y|X =-1) We say that anL-density a is symmetricif a(—y) =
The symmetry of the channel jgY = y| X = z) = p(Y = a(y)e¥. We recall that all densities which stem from BMS
_y|X — —.T) and the resumng densities are SymmetriC, channels are SymmetriC, seel [1, Sections 414, 4.1.8 and
[1], which means:—2c(z) is an even function of:. 4.1.9]. n

Given Z distributed according to, we writec to denote the ~ Functionals of densities often used in analysis are the
distribution oftanh(Z/2), and|¢| to denote the distribution of Battacharyya, the entropy, and the error probability fiomet|.
|tanh(Z/2)|. We refer to these as tHe and |D| distributions For a densitya, these are denoted B (a), H(a), and &(a),
respectively. We us@| to denote the corresponding cumulatespectively and are defined by
tive | D] distribution, seel]1, Section 4.1.4]. Under symmetry, o —y/2 _ —
the distribution of|Z| determines the distribution of. B(a) =E(c*"?), H(a) = E(logy(1+¢™))

For threshold analysis of LDPC ensembles we typically con- ¢(a) =P{y <0} + l]p{y =0}
sider a parameterizéedmily of channels. We writd BMS(c)} 2
to denote the family parameterized by the scatarOften wherey is distributed according ta. Note that these defini-
it will be more convenient to denote this family bfc,}, tions are valid even i is not symmetric, although they lose
i.e., to use the family ofL-densities which characterize thesome of their original meaning. We will apply these defimiso
channel family. One natural candidate for the parameterto saturated densities that are not necessarily symmaéric.
is the entropy of the channel denoted hy Thus, we also is not hard to see that(a) < %(a) for any densitya not
consider the characterization of the family given by BM)S( necessarily symmetric. Hence in the paper the main funation

of interest is the Battarcharyya parameter.
A. Degradation, Symmetric Densities and Functionals of-Den

sities N - ~ B. BP Decoder, DE analysis and the Wasserstein metric
Letpz| x(z|x) denote the transition probability associated

, . The definition of the standard BP decoder can be found
to a BMS channet’ and letpy | x (y | ) denote the transition ; [1]. The asymptotic performance of the BP decoder is
probability of another BMS channel We then say that’ is ' ymp P

. . ) given by the DE techniqué [1][_[14]. Throughout the paper
gggirr]?[edN|th respect ta if there exists a channpl |y (= | ) we will consider standard LDPC code ensembles as specified

by their degree distribution§][1]. The analysis can be &pipli
pzix(z]z) = Zpy (x| z)pz)v(2]y). to more sophisticated structures, but we restrict to thie dar
y simplicity of presentation. Thus we Ie{-) andp(-) represent
We will use the notatiort < ¢’ to denote that’ is degraded the variable node and check node degree profile respectively
with respect toc (as a mnemonic think of as the erasure The ensemble is then denoted by, p).
probability of a BEC and replace with <). Definition 2 (DE for BP Decoder cf[[1]):For ¢ > 1, the
A useful characterization of degradation, [15], [1,-Th®E equation for &\, p) ensemble is given by
. L )
orem 4.74], If that < ¢’ is equw;alent to %o = ¢ ® A(p(xe_1)).
/ f(@)]e|(z) dz S/ f(@)|d|(z) dz (1) Here, c is the L-density of the BMS channel over which
0 0 transmission takes place and is the density emitted by
for all f(z) that are non-increasing and concave [0Nl]. 4 aple nodes in thé-th round of density evolution. Initially
In parUcngr, this phar_actenzaﬂon implies th&fa) < F(b) we havex, — Ao, the delta function ab. The operators and
for a = b if E('_) IS elther the Battacharyya or t,he entropyy correspond to the convolution of densities at variable and
fu_nc_tlongl. This is true since l:_)oth are Imgar funcnone_ﬂm check nodes, respectively, séé [1, Section 4.1.4]. Thetinota
dlstr|but|_ons and their respective kernels in tmjdomam are p(xe_1) represents the weighted check node convolution of the
o_Iecreasmg and concave, seé [1]. An alternat_lve Char_aﬂte”densityw_l. E.g. if p(z) = gdr—1 then p(xe_1) = ijrl.
tion [1] of degradation in terms of the cumulative distrilout

: . , n
functions|€|(x) and|e’|(x) is that for allz < [0, 1], Discussion For (d;, d,.)—regular codes, the DE equation is
given byx, = c® (x_d{“l)®dl‘1. The DE analysis is simpli-

1 1
!
/Z |€](z)dz < /Z |&|(z) da. (@) fied when we consider the class of symmetric message-passing



decoders. The definition of symmetric message-passing debefinition 6 (Saturated BP DecoderConsider the stan-
coders can be found inJ[1]. Note that this definition oflard (d;, d.)-regular ensemble. The saturated BP decoder is
symmetry pertains to the actual messages in the decoder dafined by the following rules. Lep® (u1,. .., uq, 1) and
not to the densities which appear in the DE analysis. We Will') (111, ..., ug,—1) denote the outgoing message from the
see later that the saturated decoder is a symmetric messatpeck node and the variable node side respectively. Abusing
passing decoder and hence its DE analysis is simplified the notation abovey, ..., u. denotes the incoming messages
restricting to the use of the all zero (actually we usé for on both the check node and the variable node side. Then,
'zero’) codeword. d—1
Definition 3 (BP Threshold)Consider an ordered and () _ -1 .

complete channel family{c,}. Let x,(h) denote the distri- o7y pa ) = {Manb <}:[1 tanh(uz/2)>J ’
bution in thel-th round of DE when the channel ¢g. Then di—1 *
the BP thresholdof the (A, p) ensemble is typically defined as o (b1, pdy—1) = PO + Z uiJ ’

=1 K

h* (A, p, {ca}) = sup{h : x¢(h) “° Ay}
] ) o ] where is the message coming from the channel. Also, we
Here A, . is the delta function at infinity representing th%et¢(0) (41 s pig,—1) = 0.

perfect decoding density. An equivalent definition is Lemma 7 (SatBP Decoder is symmetridhe SatBP de-
Be(\, p, {ca}) = sup{h : €(x¢(h)) topo 03. gggg(rjgven in Definitio 16 is a symmetric message-passing
The later form is more convenient for our purposes and it is  Proof: From Definition 4.83 in[[1] it is not hard to see
the one we shall adopt. B that variable-node symmetry is satisfied foe 0. In general,
We will also say that for a given channglthe BP decoder is variable node symmetry is the following condition (foe 1)

{— 00

successfuif and only if &(x,(n)) “=5° 0 or B(x,(h)) ‘=5 0. on the message update function

In other words, for any givem > 0, there exist¢ such that ©
B(xe(h)) < e. Y (—po, =gy ooy —Ha—1) = = (R0, i1y Hdy—1)-
In the sequel we will use the Wasserstein metric to measwg,ce |z]x = —|—x|k we see that variable node symmetry

distance between distributions. We recall the definition (pg preserved by saturation. Lt € {£1},...,bg,_1 € {1}

the Wasse_rstein _metric below. For more properties of thean by Definition 4.83 in[[1], for the check node symmetry
Wasserstein metric see [16]. we have

Definition 4 (Wasserstein Metric +[17, Chapter 6])et
la| and |b| denote two|D|-distributions. The Wassersteing*) (bypii,. .., ba, —1ta. 1)

metric, denoted byi(|al, |b]), is defined as dp—1 d,—1
1 = min (2 tanhfl( H tanh(|ui|/2)),K)sgn( H biui)
Aol o)) = sup | [ (@)(lal(a) - [ol(0) 8], (@) = =
(z)etip(1)[0,1)" Jo dr.—1 -1 d.—1

dT
. —1 o
where Lip(1)[0, 1] denotes the class of Lipschitz continuous™ ™™ (2 tanh ( H tanh(|ﬂi|/2))’K)bgn( H “i) Hbi
functions on|0, 1] with Lipschitz constant. =t . ==l
In it is shown that the Wasserstein distance is equntale T
[IEI d = (b(l) (Mh 7Md7‘—1)( H bz)
i=1

to the L; norm of the difference between thB|-distributions.
]
and we see again that symmetry is preserved by saturasion.
I1l. SATURATED BELIEF PROPAGATION DECODING Discussion:The symmetry of the message-passing decoder
In thi . introd th turated BP decoder. M togqetherwith symmetry of the channel allows us to use the all
n this section we introduce the saturate ecoder. MoJ& 4 codeword assumption. This along with the concentratio

precisely, we consider decoding with BP update rules at t Ssults (see Theorem 4.94 inl [1]) allows to write down the

nodes but the outgoing messages are restricted to the do”baénsity evolution of the SatBP decoder in the usual way.
[-X, K] for someK > 0 by saturation. Note that if messages entering a check node are saturated
in magnitude af< then outgoing messages are automatically

A. Saturated Decoder saturated ati. This holds not just for BP but for many
Definition 5 (Saturation):We define thesaturationopera- Mmessage passing algorithms such as the min-sum algorithm.
tion at +K for someK € R*, denoted|- |k, by Our analysis has two parts: bounding the effect of saturatio
over finitely many iterations and stability analysis. Foe th
lz]k = min(K, |z]) - sgn(z), (5) bounding analysis we focus on BP although the technique can
where be easily extended to other decoders. In the stability aigly
we explicitly relax the assumptions to cover a variety ofadhe
sen(z) = {—17 <0 node updates.
1, x>0 Given X ~ a, let |a], denote the distribution of X | k.

Note that the saturation operation can be viewed as a channel



taking X to | X |k. We have immediately We summarize all the claims above in the following.
Corollary 9 (Degradation Order):For symmetric a we
a<lalk- have
In general|a], will not be symmetric even if is symmetric a<|aJg < lalk,,,
since we will not typically havega|, (—K) = e ¥ |a] (K).

If a is symmetric then we will have It is fairly intuitive that asK becomes larger, the density

LaJKSym should become close to the density This is the
la](—K) < e ¥|a]« (K). (6) content of the next lemma which uses the Wasserstein distanc

, , between distributions.
Although using lemmd]7 one can write down the DE Lemma 10:Let a be a symmetrid.-density. Then
recursion for the SatBP decoder, we know that in general '

the densities will not be symmetric. Two of the most useful d(a, LaJKSym) <1 -—tanh(K/2),
properties of DE for BP are that it preserves both symmet\c‘)llh d is the W i di defined ous
of densities and ordering by degradation. These propeties ere ("_') Is the Wasserstein distance defined previously.
sacrificed by saturation, but can be recovered with a slight Proof: For any0 < z < K we haveP.{z < z} =
variation. There are two alternatives for this. One is tecpla 2l (¥ = 23 = Plaj, {2 < #} and for anyz > K we have
the saturated probability mass-at instead at-K wherez is | = Plaj, {# < 2} = Pl {x < 2}. Sincetanh(z/2) is
chosen according to the actual LLR conditioned on magnituifiereasing andanh(—z/2) = — tanh(z/2) we have

K. The second alternative is to slightly degrade the density
by moving some probability mass frold to —K. This can

be interpreted operationally as flipping the sign of a messaBy [18], we have that the Wasserstein distance is equivaent
with magnitudeK with some probabilityy. The flipping rate the L, norm of the difference between th®|-distributions.

~ is chosen so that the resulting probability that the sign @learly, the distance is bounded by- tanh(K/2). ]
the message is incorrect is /(1 + e~ X). In generaly is Let T'(-) denote a DE iteration for the full BP decoder, i.e.,
upper bounded by this value and for larfethis is a small
perturbation. Of the two approaches the second is infenior i T(e,x) = c® Alp(x))-

that it degrades the channel more than the first. On the othepefinition 11 (DE for Sym. and Non-Sym. Saturation):

hand, the second approach preserves ordering by degnadatignsider a BMS channel witti-density c. Let A, denote

while the first does not. We shall adopt the second approagfe perfectly noisy channel. L&t® = A,. Then the DE for
Let us introduce the notatioP(p, z) to denote the density symmetric SatBP decoder is defined as,

[ Kyl (2) = Lfzctann(k/2)} R (2) + Liz>tanh(k/2)} -

D(p,z) =pA_.+ (1 —pA.. x®) = lc® )\(p(x(g_l)))JKSym.

Here A. (A_. ) is the delta function at (-z). We will The DE for non-symmetric SatBP decoder is defined as,
sometimes denot@A_. as D_(p,z) and (1 — p)A, as

D. (p,z). When (p, z) is clear from context we may drop it xO = lc@A(p(x“"1)) k.
from the notation. Using this notation we have for Symmetril‘—;inally

we use the notatiodi,,,(c,x) = [T'(c,x)]i, , and
a sym

: Sk(e,x) = |T(¢, %)) . -
lalx = 7D(q,2)(x) + a(@)L{jz) <k} (7) Now imagine that we run both the full DE and symmetric sat-
urated DE starting with the density,. In the next lemma we
wherey = P.{|z[ > K} andyq = P.{z < —K}. _ show that at every iteration the order of degradation betwee
Lemma 8 (Symmetric SatBPEiven a symmetric density e fy|| DE and symmetric saturated DE is preserved. We will
we define use the notatio’¥)(c, Ay) to denote the/ iteration of the
_ full DE. More precisely,7) (c, Ag) = T(c, T V(c, Ag)).
2y =D 2)(@) + 2@} fei <k As a shorthand, we will us@“((")(c, )AO) = (T(T(f‘”Ec, Aoig.

wherep = e ¥/(1 + e ) andy = Pa{|z| > K}. Then, We similarly defineSy (c, Ag) and S’ (c, Ag).
0] LaJKSym is a symmetricL-density. Lemma 12 (Degradétion Order under DEJor any/ > 0
(i) la]g < LaJKSym. we have ,
Proof: Part (i) is immediate. To prove part (ii) we note 7" (c, Ao) < S}&Sym(ca Ao).

that comparing with the non-symmetrized case we see that
p > q. Thus, LaJKSym can be realized by taking messages,
with distribution |a]  and flipping the sign of a message WichSinC

magnitudeK by a quantityA with A determined by

Proof: Let x¥) denote the DE for usual BP decoder and
denote the DE for the symmetric saturation operation.
ex(® = z(0 = A, we have thak® = ¢ andz(?) =
clx,,,- From corollan® we get that") < z(!). Now, since

e K DE preserves the order of degradation, we get
p=—x=M1-¢q¢) +(1-Ng. P 9 9
L+e Lem
g XD =T(c,xY)<T(c,zV) =< {T(c, z(l))JK =z®,
As a consequence of Lemria 8, we will term the operation o
used to obtair[ajKsym from a assymmetric-saturation Continuing, for all¢ we getT ) (c, Ag) < S}(fs)ym(c, Ap). H



We now estimate the distance between the densities apgeaBattacharyya of the full DE. In the next section we will relat

in the DE of standard BP and the DE of the symmetrithe symmetric saturated DE to the non-symmetric saturated

saturation operation. For this we again use the WasserstBiE to show that the Battacharyya parameter for the SatBP

distance defined previously (for symmetric densities). decoder can also be made small by choo&ifigarge enough.
Lemma 13 (Distance Between Symmetric SatBP and BP):

ConSiderf iterations Of the DE fOI‘ the Standard BP and the |V CONVERGENCE OFNONSYMMETR|ZED SATURATED

symmetric saturation operation. Then DE
d(T9¢c, AO),SI(fs)ym(c,Ao)) < 2~ KAEI2(di—1)(d-—1)), The results of the previous section show that, when trans-

_ _ . mitting below the threshold of the full BP decoder and using
Proof. Let T() and SKSV."‘(').be defined as in IemrﬂE-Ilzsufficiently many iterations, the Battacharrya parametéhe
and consider the Wasserstein distance between them. We ha)é?lsities in the symmetric SatBP decoder can be small by

d(TP(c, Ag), S) (¢, Ag)) choosingK" large enough. More precisely, consider trans-

(-1 g (—1) mission over a general BMS channelsuch that we are

=d(T(T" " (c, Do), Skem(Sky,, (€, D0))) transmitting below the BP threshold of the channel familgt L

Trian. ineq. (-1 (t—1) us assume transmission usify, p) ensemble with average
< dT(T (c, AO))’T(SKSym (c; A0))) variable node and check node degree givernipgndd,. re-
+ d(T(SI(é;ml)(Ca Ao)), SKsym(SI((gs;ml)(c’ Ao))) spectively. Then, given jm> 0, there existdo(c, €) € N such

iy, Lem. 13 in [ZA] that for all £ > £y, B(T(c, Ag)) < ¢/2. Then, by choosing
< apd(T" 1 (c, Ao), S, P (e, Ao)) K" large enough, specificallK? > Ko £ Io(c, €) In(2(d; —

_ 42 @)
AT e Ao)), Sn(S D (€ A))) D(d = 1)) +2In T, we have thats(Sig,,, (¢, S0)) < €

(@) )
< apd(T Y (c, AO),SI(f;ml)(c, Ao)) + <1 — tanh (%)) , A. Non-symmetrized SatBP Decoder

We now show that the Battacharrya parameter for the non-

where symmetric SatBP decoder can also be made small by choosing
a1 ) doie ) i K" large enough. We first consider a fixed computation tree
ap=2(d; —1) Y (1-B*(a)) "2 (1-B°(b)) >, and then average over the tree ensemble.
= We begin with an operational description of symmetrization
<2(d - 1)(d, — 1) Consider a fixed tre@ of depth/. Let Y denote the vector of

_ m(e—1) -1 received LLR values associated to the variable nodes uhder t
wherea = T (c,Ao) and b = SKS_}/m (c;Ao) and d; all-zero codeword assumption. In addition, for each végiab
and d, correspond to the_ average vgrlable_node and_Cher%de we assume an independent random variable uniformly
node degrees. Also, the inequalify) is obtained by using gigyripyted on0, 1]. We denote the vector of these variables by
Iemmal_]])_. ) ) ) 7z ={Z,}, wherev is the index for the variable nodes. Now,
Continuing with the above inequality we get, the node operations correspond to BP except that outgoing
(T c, Ao),S;(f) (c, Ap)) messages from the variable nodes are magnitude saturated
Izym at KV. The independent random variables are used for the
< (1—tanh (5))(1+ag+agag_1+. ..Fapap_q---as), flipping operation. The flipping probability for each node is
determined by density evolution. If the outgoing message ha
From the bound oy, we obtain (1+as+asar—1+...+ magnitudeK® then its sign is flipped iZ, < A, where\, is
agap—1 -+ ag) < (2(d; = 1)(d, - 1))". the appropriate flipping probability.
Combining with1 — tanh(K/2) < 2¢™* we get, Let the received LLR magnitude of a variable nodée
d(TO(c, A), SI(f) (¢, Ag)) < 26~ KHEIR(I—1)(dr—1)), z. The probability_\_/vith which we f[igvthe bit is su_ch that the
m final error probability is equal . For received LLR
B magnitude ofr, the probability that it is received correctly is

The above gives us a bound on msr(é)ym(ca Ay)). Using As a consequence we get,
(ix) Lemma 13 in [18] we get,

1
1+e—="

—K"v 1 e~
¢ L S S )
B(SK,, (€ Ao)) < BT (e, Ao)) e = Mo T - M=
+ 2\/d(T(£)(C’A0)vSI(<ES)ym(C’ Ay)) where \, is the flipping probabﬂi}y olf vircifllpule nodfngnd
¢ —K+¢-In(2(dj —1)(dr —1)) X 2 Kv. SOIV|ng we get)\v = 1ie*KU _1676,36 S 1ie*Kv .
< BT (c, Ag)) +2v2e ? - (8)  Thus the probability that a variable node, with a receive@LL

Discussion In the sequel, we will denot& by K* to Magnitude greater thad®, is not flipped is at leas = >
distinguish between the saturation levels appearing alviar 1 — e K
nodes, check nodes and the channel. To summarize, we sholet us denote the outgoing message at the variable node by
that for K large enough, for every iteration the Battacharyya From the above we see that the distribution of the outgoing
parameter of the symmetric saturated DE remains close to thessager is SI(fs)ym(c, Ay)). Let us consider the conditional

5



distributionp(z | Y, Z). We obtainSI(fs)ym(c, Ay)) by averaging small we now need to show that once the Battacharyya param-
overY, Z and the code ensemble. Ldi. denote the event eter is made small enough, by choosiK§ large but fixed,
that Z, > 1 — e X' for eachw. This is clearly independent then the subsequent iterations of the SatBP decoder wik dri
of the received values. Assuming a fixed computation free the Battacharyya parameter down to zero. This is the content
(i.e., we suppress dependence®iin the notation) we have of the stability analysis done in the next section. We wik se

. that in order to make the Battacharyya parameter arbigraril
p(x|Y) = pla]Y, Axe )p(Axe) +p(@ [V Ak )(L=p(Ak)), - gmall it is sufficient to bring it close to the stability regi By
where Ax. denotes the complement event and, by indepe@hoosing: according to equatiofi (13) and arguments following

dence, we can averaging ovErto obtain it, we can choos&" large enough so that we are guaranteed
_ to be in the stability region. Furthermore, we have that
p(z) = p(z| Ak )p(Axe) + p(z | Akv)(1 — p(Ax»)) defined above, now depends only on the charnehd the
hence degree distribution.
- Axo)(1 — p(Age
p(x| Axv) = p@) —plz |p(1}fl )() P(Ax)) V. STABILITY ANALYSIS OF THE SATBP DECODER
Kv

_ o ) An important part of the asymptotic analysis of LDPC codes
Now p(z | Ak ) is the distribution of the non-symmetric SatBRp,q|ves the analysis of the convergence of DE to a zero error

decoder. Intuitively one expects(z | Ak+) to be inferior giate |n this section we analyze the stability of the SaEe.
(higher probability of error, larger Battacharyya paraengt begin with some necessary conditions.

to p(z| Axv), but this appears difficult to prove. We have, por stapility of the zero error condition there must exist a

howeverp(Ak.) > (1—e*")V(DI > 1—eK"|V(T)| where positive invariant set of zero error distributions, i.esubsets

[V(T)| is the number of variable nodes in the tree. of distributions so thatt (s) = 0 for all s € 8 and Sk (c,s) €
The above analysis is summarized in the following lemmg. gyistence ofs follows easily from the compactness of the

) space of densities and continuity of DE.
Lemma 14 (SatBP Decoder versus Symmetrized SatBP): | amma 15:Assume the channelhas supportat L, L >

For any0 < e < 1and/ ¢ N, there exists & large enough | an irregular ensemble with minimum variable degige
such that the support of all densities i& must lie in[L/(d; — 2), oc].
1 ¢ Proof: It is obvious thatS = () in an irregular ensemble
B(SY (c, An)) < —— B(S) (¢, Ag)). , ' g
(S, Ao)) < 1—¢ (Skom (€ B0)) with d; = 1, so we assumd; > 2. We usea® andb(® to
Proof: From the above analysis we have that for a fixedenote the density of the message coming out of the variable

tree T of depth?, nodes and check nodes respectively in the density evolution
_ process. We claim that §(“) has support orf—oo, z,] with
p(z| Ags) = p(e) —p(z| Ax-)(1 — p(Ak-)) 2y > 0 thena™) has support or{—oo, 2o, 1] With 2,1 =
p(Ake) 2p— (L — (d; — 2)z). To see the claim note that?) also has
p(x) p(x) support on(—oo, z;] and it follows thata(“*1) has support on
- p(AKv) - 1- €_K|V(T)| ' (—OO, Zg+1] Whereng = (dl — 1)2:[ —L=z- (L — Zg(dl —

where p(x | Ak») is the distribution of the non-symmetricz))' ©
SatBP decoder. For any fixed number of iterations, the to-ASSumea™ < 8 has support or(—oo, z] where zo <

tal maximum number of variable nodes in a computatioh/ (¢ —2) and define) := L —(d; —2)zo > 0. By th? above
tree is fixed. Hence we can také€” large enough so that claim it follows from an inductive argument that®) < §

e~K"[V(T)| < e for all T. Note that the required” grows has support or{—o0, z¢] wherez, is a decreasing sequence

linearly in the number of iterations. Averaging over theetreSaisfyingze < z — £o. For ¢ large enough the right hand

ensemble and multiplying by the kernet®/2, we get the side is negative, implying a non-zero error probabilitydan
desired result. m e obtain a contradiction with the definition 8f [ |

Discussion:Let us summarize. From the above analysis we
have that for any0 < ¢ < 1/2, there existsK” > 0, large A. Failure of Stability with Degree Two
enough such that the Battacharyya parameter of the SatBirom Lemmd 5 we immediately have

to get its Battacharyya parameter to be at the m@st SO channel is the BEC.

given a channet such that the BP decoder is successful when  proof: If ¢, = 2 and the channel is not the BEC and

transmitting overc, the number of such iterations required isience has support oft-00,0), then Lemma 25 shows that
fixed. Call it {o(c, €). Then, from the above analysis we havénere can be no positive invariant zero-error set of distiims

that for K» > Ko 2 lo(c, €) In(2(d; — 1)(dy — 1)) +2In 22, yiith support on[—K”, K*] for K® < cc. n
%(S}(f) (c,Ap)) < e. Note that we can make the Battacharyya In the case of the BEC it can be seen that saturated DE
as small as desired by increasing the number of iteratiods anatches unsaturated DE except that the mass+@&t in
consequently increasing®. But then the saturation vald€” unsaturated DE is not placed atK". Hence, stability is
becomes infinite. Hence to make the Battacharyya arbigrariinaffected by saturation. If the channel has unboundedmstipp




on (—o0,0], then there is no possibility of stability underwhere the last inequality follows sinae ¥/2 fg’ a(z)dx <
saturation no matter what the degree. A condition on theefini¢ =%/ [*_a(z)dz = e */2. As a result of the saturation of
channel support is given in the section on stability withréeg messages, we see that the minimum value of the Battacharyya

at least three. parameter is equal to-¥/2 and we can therefore not hope to
reach a smaller value.
B. Near Stability Minimum variable node degree equal to Pet us assume

o _ _ dmin = 2, 1.€., A2 > 0. Let a(™) be anyL-density which need
Even though stability with saturation cannot be achieved [{}; e symmetric. Consider

irregular ensembles with degree two variable nodes, it ts no
surprising that for larg&® the residual error rate can be made  g(z) := A2 B(c)p'(1) + (1 — X2) B(c)(p'(1))%z .

O . . .
very small. For sufficiently largK® the residual error rate will Since A2 B(c)p/(1) < 1, there exists an* > 0 such that

hav_e no practical consequence. In this section we quaithtfy tg(x*) < 1. Chooser* such thatg(z*) < 1 and p/(1)z* < 1.
residual error rate.

o . . ow assum (n0)y < z*. ChooseK" large enough such
The stability analysis of standard irregular ensemblesun hat — L :f((vaﬂ <)$: * g 9

. . 1—g(x*)
BP decoding rests on the relations Let lj]é perform the saturated DE recursion once. We have,
B(c® Aa)) =B (a)A(a) 9) B(am+D) = B(lc® Mp(a™))) k)

@ N
and < B(c® A(p(a"))) + ¢ K2

B(p(a) <1—p(l—B()). (10) | U
= %(C)/\(Zpi %((a(”o))(l—l))) 1 KY/2

Equality [9) continues to hold without symmetry2br c. The
inequality [20), however, does not hold without symmetry. |

AppendixA we prove a more general form of the following. Lemnéam%(c))\(%(a("")) Z(i — l)pi) + e K2
Lemma 17:Let the incoming L-densities at a degrée- 1 i
check node be,...,a; and letb be the outgoing density. sincep’ (1) B (a™0))<1
Then ] < Ao B(c)p'(1)B (al™))
B (b) < 3 (a,). (1= 2) B! (1) B (@) + 7K
=1 — (%(a(nO)))%(a(n‘)))—l-e_K /2

%) B (a(m0)) 4 ¢~K"/2 (12)

Discussion:The above result holds for a wide range of check (
(l'*)(E* +6—Kv/2

<
node update operations including BP and the min-sum decoder
Throughout this section we will use (b) to denote the ;
density coming out of a variable node (check node). We also -
usea™ andb(™ to denote the densities coming out of thevhere the last inequality follows from the choice If.
variable nodes and check nodes at tith iteration of the By induction, the above inequality gives (a(™)) < z* for

saturated DE recursion. We prove the following result, all n > ng. Consider anyn = ng + k. Also by induction on
Lemma 18:Consider an irregular ensemble with minimungI2), we get

variable node degreénmin > 2. Assumel.p’(1)B (c) < 1. o1

Then, there exists a constarit, a constantV, and a constant %(a(no-l-k)) < x*(g(x*))k L e K2 Z(g(x*))j

C'(dmin) such that, for allK” large enough, if for some, we
have B (a(™)) < zx then®B (a™) < C(dmin)e X"/2 for all

§=0
_kj2l = (g(@)"

n > no+ N. Moreover, ifdmin > 2 we can have’ (dmin) = 3. =z*(g(z*))* +e -
Proof: To incorporate saturation into the analysis based 1—g(z%)
on the Battacharyya parameter we have the inequality for altyfollows that anye > 0 and allk large enough we have
K >0, v 1—e¢
B ((a)y) < B () + e 2 BEm) <
Indeed, we have Minimum variable node degree equal to Bet us now
K Too assume that the minimum variable node degree is 3. Let us

B (lalk) = eK/Q/ a(x)dx —i—/ ]l{|m|<K}a(:c)efm/2d:c denote,
- o F(@) = A3 B)p (122 + (1 — A3) Bo)p' (1322, (13)
+e_K/2/ a(z)dx
K Choosez* > 0 such thatf(z*) < 1/2 andp/(1)z* < 1. Let

—-K +oo (no) < r*. Ch K | h
—2/2 —/2 no be sugu:h thatB(al™0)) < z*. ChooseK" large enough so
= Lma(x)e dz + Lml{‘w‘<K}a(I)e 9T thatoe—K'/2 < o, Following the previous analysis, we have
00 for all n > ng
+ / a($)6_1/2dl’ + e_K/2 (n+1) / (n)y\2
K B (2" <X B (1) B (")
= %(a) +e s (11) + (1 _ )\3) %(C)(p/(l) B (a(n)))3 + e—K”/2



A little algebra then shows that there exi®{s> n, so that wherem is supported orf{—K", K") and has total mask (if

for all n > N we have it has zero probability we have = 0.)
B (a(”)) < 3e-K°/2 (14) Messages entering a variable node updalt@ve the form
B (b(™M) < 3p/(1)e K"/2 (15) b=~D(p,K”) +ym

whereb(™) denotes the density coming out of the check nodeshere K» < K is the outgoing magnitude at a check when
Also, (I3) follows from [1#) and Lemmall7. B all incoming magnitudes equdl” and m is supported on
The “near stability” analysis done above can clearly nowsho —K?, K?). From [16) we havee X" < (d, — 1)e X", We
convergence to zero error although it can be used to shassumeK® > 21In(d, — 1) large enough so thatK? > K@.
convergence to relatively small error rate. As we showead the subsequent analysis we also assume that the support of
above, unlike the unsaturated case, zero error rate cameeg the channet is restricted ta —K¢, K¢) where we assume that
cannot be achieved with the saturated decoder when dedgkge< 2K? — K?.
two variable nodes are included. For degree three and higherThe analysis tracks the quantitieg and 75 (m). For
stability can be shown but a refined analysis is needed.  stability we aim to show that both quantities converge to
0. Note that this implies thaty — 1. In the standard
C. Stability Analysis with Minimum Variable Node Degreétability analysis of irregular ensembles and full BP, anaeks
Equal to Three the Battacharyya parameter of the density through the DE
In this section we consider irregular ensembles where ffigrations when the density i net,. At the check node t_he .
minimum variable node degree is at least three. We general ttacharyya parameter undergoes a constant factor gin wi

, X . :
the standard stability analysis by separating out the atadr a factor ofp’(1). On the varlgple node §|de the parameter is

probability mass and tracking it through the variable noaie aralsed to the power of the minimum variable node degree I(_ass
check node updates. For simplicity we shall restrict to trigt?ne’ and scaled the channel Battacharyya. Thus, one arrives

regular ensembles. We show that convergence to zero er%ﬁhe stability condltl(_)me’(l)% (c) < 1. If the minimum
rate occurs and that convergence is exponential in iteratid@able n(g)de degree is tlh“;e then the update bound takes the
In the unsaturated case this can be achieved with degfem ® (a*") < C'®B (a®)”, for some pos!nvezconstanl,
two variable nodes and with degree three and above douBRjd One obtains doubly exponential decaiirta'*)). For the
exponential convergence occurs. In subsequent sections Sgirated case we accomplish something similar, althdugh t
show that double exponential convergence can be attairf@pditions are dlfferent..As a first step we show that we still
in the saturated case for degree four and above although@/® constant factor gain at check nodes.
modification is needed for degree four. For degree threelgoub 1) Check Node AnalysisWe assume a right regular en-
exponential convergence can be recovered but only with th@mble with check degreé+- 1. Let us represent the density
dramatic and likely impractical step of erasing all recdiveentering the check node asD(p,K") + ym wherem is a
values near the end of the decoding. density supported o(—K",K"). Then the density emerging

We assume regular check nodes with degteand we let Out of the check node is given by’ D(p',K?) + o/m’ £
K” denote the magnitude of an outgoing message when @0 (p; K*)+7m)®?, whereK? is the magnitude of the check
incoming messages have magnitusé. Although we focus Output when all inputs ar&®, which satisfiesK” — Ind <
on BP-like decoding our analysis applies to other algorghmi<” < K", and support ofn’ is also (—K?, K”). Let us now
such as min-sum, in which case we hali@ — Kv. In Perform the computation explicitly. In this section we use

general, ifKy, ..., Kq,_1 are incoming message magnitudes 4¢ denoteD(p, K¥). We have,

a check node then we assume that the corresponding outgoing d
magnitudeK,,: satisfies (vD(p,K") 4+ ym)B? = Z </‘j> Akyd-kDEF g mBd—k
dr—1 k=0
_ —Ki « < mi ) d—1
In ; e < Kout < miln{Kz} (16) — 79mBd Z <Z> Nhyd=kpBk g mBd—k | dpEd
k=1

Both conditions are satisfied by BP and min-sum. E.g., for
BP we can write explicitiytanh(K;/2) = (1 — e~ %/2) /(1 + where we have separated out two of the terms from the sum.
e~%i/2) and then some algelfrajives us [(IB). We note in Although we have indicated that density evolution for check
passing that the left inequality implies In Zf;;l e i < node update is associative, which it is for min-sum and sum-
MKoy for all A € [0,1]. We will make use of the case= 1. product algorithms, we do not actually require the assiveiat
Messages entering a check node updakave the form  property and a densitpE*mmE4—* can simply be understood
as the outgoing one corresponding Aoncoming messages
from densityD andd — k messages from density.

By LemmaZ2# we have fot < k <d — 1,

a=~D(p,K") +7m

1 o — e Kout 172157Ki+A
Indeed, it is not hard to see th e Fow = 15y, e Kit B’ i
A,B > 0. Furthermore, one can show that(l + 3, e ¥i) > B(1 — B (Dk md—k) <(1+ k(eKT B (D) —1))(d — k) B (m)

K. . . " — e~ Kout 1—Z,E’K'L ..
S, e~ Ki), which implies that L R 2 1% 9ving us the K
i e +> e N 2 —
inequality. ke’ B (D)(d — k)5 (m).

where

IN



A little algebra shows that to the terms withn,, = 0 and n,, = 1 which is why we

de1 distinguished these terms.
Z <d> V59 Fk(d — k) = v3d(d — 1) A handy elementary result is the following.
—\k Lemma 20:1f a,b > 0 andk < d then
and we now obtain d—k /o d
d—1 a]d*ibi < ak(a—l—b)d*k
A\ _krd—kpy@k Bd—k Z <Z) B (k)
B (; (k)w F47D m ) i=0

Ko Proof: Fori < d — k we have,
<Ayd(d—1)e’= B (D)B (m).

s ORGICONGICH!

Hd <
B (m™) < dB (m), and the lemma follows from the binomial theorem. We remark

so we now have that there is an alternate form sin¢®) = (,“,) . [
=1 /o Let us consider the three parts 6f17). The first part com-
B (Z (k) AR yd=kpEk md"“) prises messages typés_, ny, n.) Wheren,, > 2. The sec-
k=0 ond part comprises messages types, nm,, ny) with n, =1
< d((d _ 1)76%” B (D) + 1)1 B (m). and the third part comprises messages types nm, ny) with
nm = 0. We will consider the contribution of each part¢’

We havey/D(p/,KP) = ’}/dDd sop = 1*(1272p)d < dp and tO’?In’?/. - x
where we have used Lemrhal 23 to obtain the last inequality. I;(et us first consider’p’. We use the bound  a(z)dx <
We summarize the results as follows. e~z B(a), which is valid for any density and ani > 0,
Lemma 19:Let the incoming density to a degrek+ 1 Lemma[20 and the multiplicative property of Battacharyya
check node beyD(p,K") + ym. Then the outgoing density parameter at the variable node side to obtain

7' D(p',KP) +~4'm’ satisfies the following <o
- d
¥ B(m)] _ 6 0] [7B(m) / > (k) Y*5i=kc @ DO @ m®@=h) (1)dx
~'p 0 1 Yp — k=0
xv d(d —1)

v -5 - 2 d—2
where¢ = ((d —1)ye™s B (D(p,K?)) +1). <e 5 (7 B(m))"B(c) B(b)™ . (18)
In the stability region we will have the bourd< 3 so we

see that we have been able to obtain a linear growth bOL@pe (n_.1,n,) has value at mosin, — n_)K? + (K? + K¢
—y Ly 104 + = =

for the check node density evolution update. v b qec ¢ Trc
2) Variable Node Analysis:Consider a variable node orand at leastn,. —n_ K- (K +K )- Recall that(—K*, K)
degreed + 1 and incoming density is the channel support. Henceif. —n_ > 0 then the message

has value greater thanK” and if ny — n_ < —1 then the

N8W we consider contributions from,, = 1. A message of

b=~D(p,KP) 4+ ym. message has value less thai". If n, —n_ = 0 then the
. . . message has value less thaK" only if the contribution from

The outgoing density from the variable node has the form c®mis less than-K*. If n, —n_ = —1 then the message
a=+D({p K" ++'m. can have value less thanK" only if the contribution from

L . c® m is less thar). Hence, we obtain
The densitya is the saturation of

—Kv
d—2 )
> (d) +Fydkc @ DPF @ m®(d—H) [ _come D4 (z)dw <
o\ (17) . -
Z 2 (d_l)pd_l_JﬁJ
+d" " le® D @ m + % ® DV =0 LIV (19)
) . . +(a2)p2p = E(c®m) d even
where in this section we us® to denote D(p,KP?). In waz)
particulary’p’ is the total mass of this density dr-oo, —K"] 20 (L Hpt i
— d—1 d—1

J

and~'m’ is the restriction of this density to-K", K"). +(i })prT e B(c®m) dodd

We see in the above decomposition that incoming messages
either have magnitudE?, i.e. are drawn fronD, or they are Note that for the casé even, we use®(c ® m) to bound the
drawn fromm and therefore take values i+K?, K?). We contribution from(c ® m)(z) for x < 0. Now we consider
can define a type for an outgoing message consisting ofcentributions fromn,, = 0. A message of typén_,0,n )
triple of non-negative integer$._, ny,, n+) wheren_ +n,+ has value at mostny — n_)KP + (K°) and at leas{n, —
ny = d. Heren_ represents the number ofK? incoming n_)K?P — (K¢). Hence ifn;. — n_ > 0 then the message has
messagesy; the number oft K? incoming messages, amg, value greater thar KV and ifn,. —n_ < —1 then the message
the number of incoming message drawn fronthat comprise has value less thanK". If n,. —n_ = —1 then the message
the outgoing message. Our analysis will pay special atientican have value less thanK® only if the contribution fromc



is less thar0. Hence, we obtain

—Kv
/ c® D¥(z)dx <
Zg (f)pdfjf)j d even
Y520 (PP + (uLa)p™ p'F €(c) d odd
(20)

Using the boundf(c® m) < B(c®m) and Lemm&20 we
obtain from [19)

_KvV
/ c®m® D (z)dr <
(d 2)p2 (p—l—fB(c@m))
(d Np'F (p+ e B(com)) dodd

and using the bound(c) < 1 and Lemm&20 we obtain from

@)
/. C*Z J>”r%'

d—1
o)

15
Combining the above intd_(17) we have
K d(d—1)

d even

K

c® D¥(z)dx < <

(7% (m))* B(c) B(b) ™

v'p' <e”

_1)

(7%B(m))* B(c) B(b)~

+(d+ 1)(dyp) I+ 4 d(4yp) 2] B(c) (5B (m))
(21)

where we have useqd 1J < 2d—1 We note that whem is

odd we can add another factor ef = to the last term.

Now we consider the contribution t8m’. Let us introduce
the notation|a] () = a(z)1y,<x}- First we note that the
contribution to B(m’) from types withn, > 2 is upper
bounded by

=2
32 ()
k=0
d(d—1)
2
where we applied Lemn{aR0.
Let us introduce the notation = eK;p andg = e~ 2p;3
Note that for any density we haveB(a® Ak) = e K B(a).
Now we consider the contribution from types with, = 1.
A type (n_,1,n4) will have a non-zero contribution only if
the interval centered ofn; — n_)K? of width 2(K® + K?)
intersects(—K?,K¥). Note thatm’ = [c@®m® DI1|,,.
Since we assumgK? > K<+ K¥ and K? < K¥ we obtain

k<d—k

vFyi=kc @ DBk @ m®<d*k)) <

(7%B(m))* B(c) B(b)"?,

B(lceoma DIt y,) <

10

22__( ; Ng4=179§  d even
z?l e ()¢9 d odd

%(C)%(m){

J

Using the inequalit2 (4-2) > (1) for odd d we can write
this as
B(lc®m® D L,)
<monim { ()L
Bl (A o
<m0 A o

Finally we consider the contribution from types with, =
0. A type (n—,0,n4 ) will have a non-zero contribution only if
the interval centered ofn;. —n_ )K? of width 2K¢ intersects
(-=K",K"). Hence we obtain

B([c® D))

d even
d odd

d even
(D(p,KP)) d odd

To get the final bound oR’ B (m’) we need to multiply the
above bounds bylyy?~! whenn, = 1 and by~¢ when
nm = 0. In the next section we will us& (D(p, K?)) < B(b)
to further bound the above expressions.

D. Stability with Minimum Degre8.

Let us assume that the minimum variable node degree, given
by d + 1, is at least three and a right regular degiget 1
In view of (I3) andIIIB) we may assurii(a (")) < 3e Tv
which implies B (b(")) < 3d,.e™ M pMe's < 3e~
andB(m(™) < 3¢~ "= for all n > N for someN & N. Here
we use the notatiors™) = ~(™) D(p(™ K?) 4 5™m™), We
assumeK? large enough so that for all we have
d(d—1)
2
We put together everything done previously to bound the
contributions to the density coming out of the variable reode
at the (n + 1)th iteration. To do this, we first use the check
node analysis in Lemnfal9 with incoming density given by
a(™), Then, using the variable node analysis of the previous
section we obtain
A () () <=5

KY K
2, 2

B(c)B(bM)=2 < 1.

(dr&5™ B(m(™)))>
+(d+1) (4dyy Mp) LEIH

+d(4d,A™p) 2 B(c)d, £ (7 B(m™)),
(22)



) B(m ) <(d, &5 B(m™))? block threshold coincides with the bit threshold. Neverthe
+2dB(c)d, (7™ %(m(n))(dA,y(n)p(n))L%J B(b(™) less, saturation has a pronounced effect on stability and we

(n) ()[4 observe this especially in the conditions required for dpub

+B(c)(drdyp) exponential convergence of the bit error probability. Wevsh

(23) that doubly exponential convergence occurs for SatBP with

To obtain the second inequality we uZ&b(™) < 1, where minimum variable node degree five._ With minimum variable
we assumé® large enough so thaidre*% <1 node degree four doubly exponent_lgl convergence does not
Now for any e > 0 we chooseK" large enough so that occur but can be recovered the addition of a single extra LLR

— ~—

(d,4~™Mp(m) Z 1 and for alld > 2 we have magnitude and a two-tiered saturation. For minimum vaeiabl
" - degree three doubly exponential convergence of the bit erro
€ >(d&)*7™ B(m™) + 2dB(c)d,.£ B(b™), rate can be recovered with a more radical modification of the

e >~ % B(c)dd decoding process (erase received values once the bit ateor r
T " is sufficiently small.)

€e>e” 2 4d,(d+ 1)(1 + Q%(c)d@(ﬁ(”) %(m(")))), Let us briefly review the standard block threshold argu-

ments. For further details we refer t6 [19], [20]. Density

evolution gives the bit error raté”,(¢) as a function of

P%J(m)] (n+1) ) F 1} P% (m)] (n) iteration assuming tree-like neighborhoods up to iteratio

which then yields

KY 11 KY (24) For block lengthn the block error rate, assuming tree-like
esp esp neighborhoods, is upper bounded by, (¢). For the block
where [](") denotes the values at theth iteration. We error rate analysis we require thall computation trees are
summarize our findings in the following. tree-like. This is accomplished through an expurgation or
Theorem 21:Consider an irregular ensemble with checkhodification of the standard ensemble. The simplest approac
regular degreel, and minimum variable node degree at leagtnd the one we adopt, is to considet= n(¢) large enough so
three. If a channel is below the BP threshold then it is belowthat the fraction of variable nodes whose neighborhoods are
the threshold for SatBP fdk* sufficiently large. not tree-like tends to zero asgets large. Then, we modify
Proof: Assume the channel is below the BP thresh- the code by declaring the associated bits as known and set
old. Let z* be the constant of Lemma]18. Under BP wé0 0. This lowers slightly the rate of the code and in effect
have B(T“)(c, Ay)) < z*/2 for some/ large enough. By modifies slightly the degree structure. The net effect is an
LemmalT# and LemmA L3 we ha®(S\)(c,A)) < z* improvement in bitwise performance. Asymptotically indar
for K large enough. By Lemm& 8, and assuming ¢ the modification is negligible so that full rate is recovered

large enough, we hav%(S}(g)(c Ag)) < 3¢=% for all n The basic calculation is as follows. Consider a computation
large enough. The stability analysis above then implies tH5&€€ associated t6 iterations. LetM, denote the number of
lim.,_, @(SI((n) (c, Ag)) = 0. variable nodes in the computation tree. kets> M, denote

the block length. It is not difficult to see that there exists a
constanty independent of andn such that the probability

VI. BLOCK THRESHOLDS ANDSPEED OFCONVERGENCE that the neighborhood is tree like is at least

Thresholds for iterative coding systems are usudlly )
thresholds. In some cases one can show that the iterative (1 _vﬂ)m > (1 _7&)
block error rate has the same threshold [19]] [20]. For steshd n B n
irregular ensembles it is sufficient that variable node degr Now, we have a bound of the ford2 < M (where M

are at least three. The key observation for degree thr&@pends on the degree structure) and we choose ¢V’
and above is that below the bit threshold the bit error ralhere N > M. Thus N depends only on the degree structure
converges to zero doubly exponentially in iteration. One Cay the code. It then follows that the fraction of variable eed
maintain tree-like neighborhoods with blocklength grogin,,ose neighborhoods are not tree-like is tending) tim .

exponentially in iteration and therefore the block erroerar, show that the block threshold equals the bit threshold it
can be shown to converge to zero. [n1[19] it was showR mains only to show that

that degree two variable nodes connected in an accumulate

structure could be admitted while retaining the block thodg lim eV¢P,(¢) = 0.
result provided an appropriate update schedule was adopted =0

The key idea there was that, by effectively updating a stoihg It is sufficient therefore to show that
degree two updates in sequence for each iteration, one could

achieve exponential decay in error probability with as darg liminf(—1In £ (¢)) > N
and exponent as required.

In this section we consider the impact of saturation on the . 5B (m) ©
block threshold. The stability analysis for ensembles with- ~ Let us considet(¢) := [1 1] [eg ] - We clearly
imum variable node degree three shows exponential decayhyye w
iteration of bit error probability with arbitrarily largexponent. }
Consequently, we can show for a suitable ensemble that the  P,(¢) < E(£) = 59 B (m©) + = 4O p®.
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From the previous analysis we know that there exists &ke assume\ € (%, 1] and note that the above inequality then
o such thatE(¢y) is small. Recursing equation (24), we geimplies K¢ < (1 — A\)K".
E(l + ly) < (20)'E(ly) = E(fo)e~t™1/(29)) We can now  Note that an equivalent interpretation under scaling of the
makee arbitrarily small by choosind large enough. Hence saturation levels is that we append an additional magnitude
for sufficiently largeK” we obtain level to the SatBP decoder. Under this interpretation we
. identify AKV with KV andK" with A\~'K" where magnitudes
henig.}f(_ mE(e) > N aboveythis level are saturated X0 'K". Under this i?\terpre-

thus establishing the desired result. tation the modification appears as an improvement on SatBP
and, using this perspective, it is relatively easy to repoedhe
A. Variable nodes with Minimum Degree at least 5 results on the approximation of BP by the saturating decoder

In this section we show that SatBP does achieve doubl'fet us make this more precise. For notational purposes we

. . . Wil adhere to the original interpretation.
exponential convergence it of the error probability when .
. , Let [a] denote the double saturation af and let
the variable node degrees are at least five. A K i :

The rate of convergence depends largely on the variatie) MK d€Note the symmetrized version. L${ k., denote
node update. It is clear froffi{R1) that, even with degreesthrdh€ corresponding one step density evolution update. W eas
exponential convergence we can admit linear dependence of d(a, laﬂx ) <dla, a)y, ) < 1— tanh(AK/2),

7%B(m) on «p, but the dependence ofnB(m) must be of Feym o
higher order. Let us make this more precise. wherea is any symmetricL-density. It is not hard to see that

As before we assumK" and N large enough so that for we can also obtian the following generalization of Lenimh 13,

all d andn > N we have=Y 8(c) B(b(™)?~2 < 1 and

> 5 < (0) () < 9= AK+LIn(2(d;—1)(d,—1))
(4d,v™p™) < 1. Then from [2R) and(23), assuming> 4, d(T™(¢, Do), 53 Koy(S: Do) < 2e ‘
we get The relationship between the symmetrized decoder and the

K' (nt1) (nt1) () (2 non-symmetrized version as analyzed in in Lenimda 14 remains

ey P < (dr&y™ B(m™)) essentially unchanged and we have that for@ryc < 1 and

e K (4d, e T A mpm)3 ¢ € N, there exists & large enough such that
-X B () (n)y2 ~(n) (n) ‘ 1 ¢
e 2 (dye s )T B()dr (7 B(m (gg B(S\k (e, A0) < 77— B(S\k,,, (¢, Ao)).
’7(”“) %(m)(nJrl) < (drﬁ(") %(m(")))2 We can now focus our attention on the stability analysis.

. S Ky (m) (n) Let a be a density supported daK”, K”]. Then we have the
+2dB(c)d &(7"™ B(m"™)e™ T (dpde T ™) B(B™)  two bounds,

-K’ g d,4 K2 (n),(n)y2 KY - AKY
+e (c)(drde ™ v "pt™)2, 6 B(la), ) Se 7 B(lalg) 27)
_AKY
from which we easily obtain that fd{" large enough we have B(|a) A,Kv) <Ba) +e 2. (28)
,ﬁ/(nJrl) %(m)(nJrl) +8KTU,Y(n+1)p(n+l) < The first (multiplicative) inequality is new and will be used

) v ) to establish doubly exponential convergence. Indeed,esinc
2(c€)* (YW B(m)™ 4 e Ty WpM)2 KK S e have

which yields doubly exponential convergence in the iterai -K"

al ) Se Eet a(x)dx

— 00

B(|
B. Decoder Alteration for Degree Four AK® K"
x KY—-AKY x
When d = 3 (degree four) the SatBP decoder does not +/ e 2a(x)dx+e 2 / e"2a(x)dx
A

yield doubly exponential stability convergence. The lingt K - K
effect arises in the variable node analysis from messages of o e*K—;/ a(z)dr < e B(|a)g.)
type (n— = 0,nm = 1,ny = 2) which contribute a linear v

dependence of3(m’) on B(m). This occurs because < The second (additive) inequality allows us to reproduce the
2K? — (KP + K¢) < K. If the support ofm were reduced to near stability analysis of Sectidn_WB to obtain as in the
[-AKY, AK"] where2K? — (AK" + K¢) > K" then this term derivation of (T# and 15 for the doubly saturated decoder the
would be eliminated and doubly exponential convergence cbounds
be recovered. v
Thus, for minimum degree four we consider a two step sat- B (a(n)) < e/ (29)
uration at variable nodes where all messages with magnitude B (b)) < 3p/(1)e /2, (30)

at leastK" are saturated t&” and messages with magnitude , . "
between\K" and KV are saturated taK". Hence, for this which hold forn > N (for someN < K) andK® large enough

section we assume the ineaualit assuming the channel is below the BP threshold.
q y We assume that no additional saturation is performed at
2KP — K" > K+ AK". the check node so, in particular, Lemmd 19 still applies. In

12



the variable node analysis we note that](21) still apphes KV AKY B

The change in the analysis concerns the bound”yon’

in the variable node analysis. New considerations apply
the inner saturation of the density’. Further note that the
incoming densities in to the variable nodes have support

+KPU(—AK", AK"). First we note the contribution from types_.

with nm > 2. Let the notation|a JJ/\ «» denote the density on
the support{—AK?, AK"”] which is equivalent, in this case
to the support or{—K",K"). Using analysis in the previous
section and the inequalitf_(R7) we get,

d—2
%<hz (i),yk,yd ke @ D®K @ m®(d— k)JJAKU> <

k=0
eK“—;\KU d(d — 1)
2

Now we consider the contribution from types with, = 1.

Atype(n_,1,ny) can have a non-zero contributionrtd only

if the interval centered ofny —n_ )K? of width 2(Kc+\K")

intersecty —K", K"). Since we assumzK? > K4+K"+\K"
andK? < K" we obtain

(7B (m))* B(c) B(b) .

Z-%, ,2 q¥=1=1g deven
%(c) B(m) dz;%,(l jd,)l
(i1)g =g d odd

where recall thag = eKTpp andg = e—KTpﬁ. Again, combining
the above with[{27), we obtain

%([c@m@Dd IJJ)\Kv) <
(“2) (pp) =" B(D(p,K?)) d even

—1

(d Hp) = d odd

Finally we consider the contribution from types with, =
0. A type (n_,0,n4) will have a non-zero contribution te’
only if the interval centered ofin; — n_)K? of width 2K¢
intersects(—K", K"). Hence we obtain

KY-AKY

%(C)%(m){

d even

B(|lc® DJg.) < B(c) { ey

which gives 2
%([c@ DdJJA K”)
(%)(pp) d even
<B(c) { S () (p) T B(D(p,KP))  d odd

Since A > % we can assume fad > 3 and forK" large
enough that,

KY—AKY d(d - 1)
e 2 5

B(c) B(b)?2

22 —1 -v —
<e K d(dTl)&)'(l)%(c)%(b)d_?’

<1.
Also,

B([cem®D ]

IN

AK®)

13

(“s) (0p) T B(D(p,K?)) d even
1)

(vD) 7" d odd
to : io
eK” —2)\K” %(C) %(m) (4p) i d even
o (4p)= d odd
Finally,
, (4pp) 2 d even
% @ Dd < % 221 v d—1
(L JJA k) < B(C) {eTK 3p'(1)(4p) = d odd
< (4p)L 7

To get the final bound oR’ B (m’) we need to multiply the
above bounds bylyy?~! whenn, = 1 and by~¢ when
nm = 0. For KV large enough we can makeyp < 1. Thus
we get,

v

7 B(m’) < B(e)((7B(m))*+de™ + B(c)(7 B(m)) (4p)
+ (4719))

Assumingd > 3 we also have from the previous analysis,
d(d—1)
2

vy <e T (5 B(m))? B(c) B(b)? 2

+(d+1)(dyp) LT + d(4yp) L2 B(c) (3 B(m)).
Thus we now obtain quadratic dependence and hence doubly

exponential convergence even when minimum variable node
degree is four.

C. Decoder Alteration for Degree Three

In this section we will show that when the minimum
variable node degree is 3, we can still have doubly expoalenti
convergence of the bit error rate which implies an expomaénti
(in blocklength) convergence of the block error rate with a
decoder alteration. In this case, however, we require aa-ite
tion dependent alteration of the decoder. We alter the decod
only after the error rate is sufficiently small. Hence, foe th
analysis we assume operation in the near stability regiareM
precisely, we havés (a) < 3¢~X"/2, wherea is the outgoing
density at the variable nodes. Since- yD(p, K”) +ym, we
further havey B (m) < 3e~K"/2 and~p < 3¢ K'/2.

We note that the previous technique of saturation at two
levels does not yield the quadratic dependence we seek for
the term®B(m’). Indeed, any incoming density having the type
(n. = 0,nm = 1,ny = 1) will always contribute to the
outgoing density of typen’, implying linear dependence of
B(m’) on B(m). To show doubly exponentially fast conver-
gence of the bit error rate, we modify the decoder as follows.
After the messages have become reasonably good, i.e., we are
in the near stability region, we erase the channel inforomati
The intuition is that at this point the extrinsic informatics
good enough for successful decoding. Then for every incgmin
message we make a hard-decision to eithéror —1 based
on the sign of its LLR value. The decoding algorithm then
proceeds in a manner similar to the erasure decdder [1]. Let
us explain this in more detail.

The decoder has now three messaged,0,+1}. At the
variable node side, there is an erasure message on themyitgoi



edge if and only if all the incoming messages are erasuresTdren, the full BP decoder is successful when transmitting
there is exactly one-1 and —1 message. The outgoing edgever the symmetric channgk|k.,,. Furthermore, the loss
carries a—1 message if and only if all incoming messages ai@ capacity is also bounded %e‘KC/Q.

—1 or one message is an erasure and the otherlisAt the Proof: We bound the Wasserstein distance between the
check node side, the outgoing message is an erasure if ait I€4S with channek and DE with channe|c|k-,,, as follows,

one incoming message is an erasure, else the outgoing reess © ©

is the product of the incoming messages. We can now write tﬁz% (¢ Ao), T (le) xegm: Do) =

density evolution equation analysis for this decoder devie.  d(T(c, T~V (c, Ag)), T'(c, T~V (c| Keom: D0)) )+

Let 2, andy, represent the probability of the messagesnd d(T(CaT(Z_l)(LCJKCSymaAO))aT(\_CJKCSVWT(Z_l)(\_CJKCSym, Ao)))

—1, respectively, coming out of the variable node. Also, Ieri vii), Lem. 13 in [I8]

sym

w, and z, represent the probability of the messagesnd < ard(TY 1 (e, o), T V([ c) keyms Do)
—1, coming out of the check node respectively. Since we are +2d(c, |c|key,)
in the near stability region, it is not hard to see that < ’ o c

v v K
7B (m) < ce /2 andyy < B(a) < ce ¥/2. Indeed, :agd(T(gil)(C,Ao),T(Eil)(\_CJKcsym,Ao))+2(1—tanh(T)),
vo = [,_pal@)de < [ _ja(z)e*/?dz < B(a). From the

decoder rules we immediately get, where
d—1

(@) drj i1
Ty Swf—i—zb aé:2(dl_1)2(1_%2(a)) 2 (1_%2@)) 2,
Yo =27 + weze, =
we =1 = (1= z)%" ' < (dy — Daps wherea = T ~Y(c,Ag) andb = T~V ([c]ke,,,, Ao) and

) o ’ d; andd, correspond to the average variable node and check
20 <1 — (1 =y )Tt < (d, — Dye_1, node degrees. Following the same steps as in the proof of

whered,. is the check node degree. To obtdir) we simply lemm we get

upper bound the probability of message with vahie by 1. B(T(|c)keym Ao))

At the check node side, the outgoing messagelisf there are ®

odd number of incoming messages that are This implies < B(T(c, Ao)) +2v2e
that at least one incoming message must-leand hence we Thus, for any¢ > 0, we can choos&*¢ large enough, such

—K+¢£-In(2(d; —1)(dr—1))
2

obtain inequality(b). that B(T (| c|key,m Ao)) < & for all £ > £y. Herel, is such
Combining the four inequalities above, it is not hard to sqgatqg(T(fo)(C, Ag)) < &/2.
thatz, +y, < C(2¢-2 +ye—2)° for some positive constadt.  Let us denoter, = B(T(|c| ke, Ao)). Using extremes

This impliesz, + v < (A:cO)Q"/2, where A is some positive of information combining[[l1] we get; < B(|c]ke,,,)A(1 —
constant andn is the number of iterations of the erasurg(1 — z,_,)). Expanding around zero, we get, <
decoder. Hence we obtain the doubly exponential convesgemns (| c|k-,,,)A' (0)p’(1)z,—1 + O(z7_,). Using the hypothesis
of the lemma, lemmf_10 and (ix), Lem. 13 [n[18] we have,
VIl. THRESHOLD FOR THESATBP DECODER AND B([c|ken,)N(0)7/(1) < 1. Hence, there existy > 0 such
CHANNELS WITH INFINITE SUPPORT that B ([ c|xke,,,) A (0)p'(1)+n < 1. From above we know that

Consider a channel family, BMB), ordered byh and let there exists’ (and consequentlk¢ large enough) such that
h®" (), p) denote the BP threshold when transmitting over thife second order terr®(z2_,) is upper bounded by, ;.
channel family using ), p) ensemble. Also, a priori the Thus we getr, < (B(|c]key,) X (0)0/(1) + n)xe—1 < w41
channel has support dn-co, c0). Thusz, — 0 as¢ — co and we get the lemma.

Let us describe the analysis of the SatBP decoder in thisThe loss in capacity is bounded by using the Wasserstein
case. Consider transmission over a channel Wittiensityc.  distance. Thusd(c, lc)key,) < 1 — tanh(K</2) implies
From the previous analysis we have that the channel supgq(lchKcsym) < H(o) + %e_Kc/z_ Above we have used

must be finite for stability of the perfect decoding fixed goiry _ tanh(K</2) < 2¢~K and (ix), Lem. 13 in[[1B]. Thus,

when we use the SatBP decoder. As a result, we saturate fh—eH(LcJ Kegm) > 1 — H(c) — Zye K2 -
sym/ — n "

channelc to a valueK* < 2K” — K before we feed it to the  From the above lemma and the analysis in sedfioh IV we
SatBP decoder. The valué€® is defined in sectioh ' VAC. Thus geE BTO(|cke, Ag)) < ﬁ %(T“)(LCJKcSym,Ao)), for

we consider transmission over a chanpellke. any 0 < ¢ < 1. Sincec < [c|ge < [c|ge. , We have
sym

_ For the purpose of anaIyS|s_We alsq cor_15|d_erthe correspopfhcj k) < H(|c|ke.,,) which implies thatl — H(|c|k:) >

ing symmetric channel, achieved via flipping as explained | H(c) — 2 e K2

previously. Denote it by|c]|k-,,. We have the following In2 '

lemma. 2Recall that we associated a uniform random variable to eadhble node
Lemma 22 (Stability Condition for Sym. Sat. Channels): which were used for the flipping operations for outgoing rages from the

Consider transmission over a general BMS channabing Variable node side. For the present case, we can assocadam variable to
each channel input which is used for the flipping operatiansfonmetrizing

(A, p) ensemble. Let € BMS(h) be such that it satisfies thee saturated channel. These two operations are indepeatieach other. In

sym*

following stability condition, sectio 1V the eventik+ now corresponds to the event that there are no flips
K /2 at both the variable rlode and channel input. This probgbilill be lower
(N(0)p' (1)) (B(c) + 2e7K/2) < 1. bounded byl — 2¢=X" |V (T).
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Note that the stability analysis of sectibd V does not relgan be invariant even in the presence of degree two variable
on the symmetry of the channel. The symmetry allows us tmdes. Let the maximum component size be denoted.l#or
that Battacharyya parameter of the channel is less than oae,edge: connected to a degree two variable node2let + 1
which is then used to show bounds. In the present case, sidemote the maximum path length to the edge of the connected
B(|c]ke) < B(c)+ e K/2 we can proceed with the stability component. Note thak, + 1 < A. To show invariance of a
analysis as before and conclude that the SatBP decodepésfect decoding we assug<” — AK®)—K* > K". Assume
successful when we first truncate the channel to a large liitsome iteration that the following hold,

finite support. Furthermore, this truncation causes mihima , The incoming message to a degree two variable node with
loss in the maximum number of information bits that can  edgese;, e, on edgee; is at leastk? — Le,KC.

be transmitted. Finally, we can also say that for any channel, Incoming messages on a degree three or higher variable
¢ < c® such thatB(c) < B(c®)—2e~K/2, the SatBP decoder node are at leagt” — AKE.

is successful over the truncated channel. Thus, the lodgein f; js easy to check that this implies perfect decoding. Redee
BP threshold is also upper bounded by —X/2 for some ing to the next iteration we obtain,

constantC. Note that the threshold for the SatBP decoder is
now defined with respect to the fixed point with Battacharyya *
parameter equal te~X"/2,

The outgoing message on a degree two variable node on
edgee, is at leastk” — (L., + 1)K (and vice-versa for
61.)

« Outgoing messages on a degree three or higher variable
VIII. CONCLUSIONS ANDOUTLOOK node are at leask".

In this paper we perform perturbation analysis of thNow consider the subsequent incoming messages to the vari-

standard LDPC code ensemble and BP decoder combinati_%'ﬂl.e r_10d_es. The minimum outgoing message from the previous
Specifically, we show that saturating the messages arisifg 2tion is atleask” — AK€ so incoming messages to a degree
in the BP decoding process affects the final success of thEe€ O higher variable node are at leBist— AK*. Consider
decoder. For general irregular LDPC code ensembles whA9eer attached.to a degre(_a two .var|ablle node. The longest
minimum variable node degree three, we show that the sB@th, not traversing,, from its neighboring check node to
uration of the messages still allows for successful de@dm a leaf check of the degree two connect component has edge

long as the saturation lev&l” is large enough. More precisely, €9th at moseL.,. Hence the minimum incoming message

whenever the channel is below the BP threshold, then thdfeth® neighbor check node not from is K — L., K<. The

exists a saturation valu?, which is large enough but finite, MNIMuUM incoming message on edge to the degree two

such that the SatBP decoder is also below its threshold. TYiable node is therefore at ledst’ — L., K®. Thus, under
stability of the SatBP decoder requires the support of wihfge _state_d assumptions the above perfect decoding comslitio
channel to be finite. In the case of channels with infini@"® Nvarant.
support, we show that by saturating the channel first to @larg
enough value, we sacrifice little in terms of capacity. Them, Future Directions:
the saturated channel, the SatBP decoder is successfd. Thulo complete the story of the analysis of the BP decoder
there is minimal sacrifice in the BP threshold of the LDP@nder practical considerations, it would be nice to have the
code ensemble when we consider the SatBP decoder.  analysis of the quantized BP decoder. Thus, the messages are

When the minimum variable node degree is two the sainly allowed to take certain values on the real line. Every
urated decoding system fails to have stability of perfeetessage is quantized to a bin and only the bin value is passed
decoding. We show that the perfect decoding fixed poiatound. For the ease of analysis one can assume a uniformly
(the delta function aiK”) cannot be a stable fixed point ofquantized message space. It is not hard to see that such a
DE for the SatBP decoder unless the channel is the erasgt@antized BP decoder is symmetric. Thus the standard DE
channel. The key issue is that a density update at a degree twalysis is applicable to the quantized BP decoder. A clear
node variable nodes is convolution with the channel densityext step would be to see if the analysis performed for the
Repeated: times, this involves to convolution of the channeSatBP decoder goes through for the quantized BP decoder. If
density with itselfk times. In general this is equivalent to ayes, then it would be nice to see a unified perturbation aisalys
channel density with support width times wider than the of saturated and quantized messages.
original channel. If the incoming density is saturated then A nice side-effect of the analysis done above is that when
k large enough a positive error probability is unavoidable. there are degree three variable nodes present in the LDPC
the code structure (e.g. protograph designs) ensureshbatdode, it is perhaps better to erase the channel information a
number of successive degree two node updates in the dentityse bits completely (after enough iterations are peréahm
evolution is bounded, then the expansibris bounded and to allow faster convergence to the correct codeword. This
one can again recover stability with large enough saturaticsheds some light on the practical design of BP decoders under
Essentially, what is required is that each degree two viriasaturation of messages. Could we glean similar lessons for
node subgraph connected component (asymptotically a treejctical decoder design when we consider the saturated and
have bounded size. guantized BP decoder?

To give a more detailed indication of how this can work we Another research direction would be to quantify the sat-
consider the min-sum decoder and show that perfect decodingtion and quantization levels in terms of gap to capacity.
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Specifically, what should be the scaling of the saturatioth an <14 i }
guantization value when we backoff, say,from the BP - pi

capacity,h®". It seems intuitive that as we backoff more from k

h®” we should be ablt_e to attain the same error rate W|ti_1 _smaller —14 Z(eK/2(pieK/2 F (1= pi)e K2y - 1)
values of the saturation level and larger levels of quatitina

In other words, as the gap to capacity increases, we should
require lesser number of bits in the binary representation o =1+ Z(eKN B (D;) —1).
the messages to get the desired error rate.

i=1

APPENDIXA Using ¢; < r and Zd Fe=4i/2 > ¢=7/2 and applying
BATTACHARRYA PARAMETER INEQUALITY — LEMMa[IZ ~ LemmalZB to the right factor we obtain
We require the following inequality Qe"? + (1 —Q)e "/? = e "/2 4 Q(2sinh(r/2))

Lemma 23:Let py, ..., pr, €ach lie in[0, 1]. Then

IN

d—k
—r/2 _ .
111" (1— 2 k e +(qu)(251nh(r/2))
Hzflz( pi) < ;pz =

d—k d—k
Proof: We have equality wherp; = 0 for eachi. < Z T4 Z ¢j(2sinh(g;/2))
Differentiating the left hand side with respect;ip we obtain ;:; =1
f?e 111 (1 — 2pi) which has magnitude at most and _ Z% A
erentiating the left hand side with respectzpwe obtain J
1. The inequality therefore follows by integration. |
The following generalizes Lemnfia]l7. u

Lemma 24:Let D1, D-,...D, be L-densities of the form
D; = D(p;,K) and letay,...,aq—; be L-densities. We do
not assume that any of these densities are symmetricb Let
denote the density emerging from a check node update whé&d T. Richardson and R. Urbankéfodern Coding Theory Cambridge

University Press, 2008.
the Incommg densities arB, ..., Dy, a1, . .., a4, then [2] X. Zhang and P. Siegel, “Will the real error floor pleasanst up?” in
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