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Abstract—We consider the effect of log-likelihood ratio sat-
uration on belief propagation decoder low-density parity-check
codes. Saturation is commonly done in practice and is known to
have a significant effect on error floor performance. Our focus
is on threshold analysis and stability of density evolution.

We analyze the decoder for standard low-density parity-
check code ensembles and show that belief propagation decoding
generally degrades gracefully with saturation. Stabilityof density
evolution is, on the other hand, rather strongly effected by
saturation and the asymptotic qualitative effect of saturation is
similar to reduction by one of variable node degree.

We also show under what conditions the block threshold for the
saturated belief propagation corresponds with the bit threshold.

I. I NTRODUCTION

Standard belief propagation (BP) decoding of binary low-
density parity-check (LDPC) codes involves passing messages
typically representing log-likelihood ratios (LLRs) which can
take any value inR , R ∪ {±∞} [1]. The asymptotic
analysis developed for BP decoding of LDPC codes inherently
assumes that the messages have unbounded magnitude. In
practice, however, decoders typically use uniformly quantized
and bound LLRs. Density evolution can be applied directly
to such decoders but analysis is often difficult and there are
few general results. Hence, it is of interest to understand the
effect of saturation of LLR magnitudes as a perturbation of
full belief propagation. We call such a saturated decoder asa
saturatingbelief propagation decoder (SatBP). Note that the
decoder is strictly speaking not a BP decoder, but we adhere
to the BP nomenclature as we view SatBP as a perturbation
of BP.

In the design of capacity-achieving codes it is helpful to
understand how practical decoder concessions, like saturation,
affect performance. For this purpose, we will analyze the
SatBP decoder in the asymptotic limit of the blocklength going
to infinity. In particular, if LLRs are saturated at magnitude
K then how much degradation from the BP threshold should
be expected. Naturally, one expects that asK → +∞, that
one can reliably transmit arbitrarily close to the BP threshold
[1]. We will see that this is not entirely correct and that, in
particular, saturation can undermine the stability of the perfect
decoding fixed point if, for example, the fraction of degree
two variable nodes in an irregular ensemble is non-zero. Our
analysis shows that when the minimum variable node degree
is at least three then there exists a large but finite saturation
valueK such that the SatBP decoder can achieve arbitrarily

small bit error rate whenever the full BP decoder can achieve
arbitrarily small bit error rate. Furthermore, a more careful
stability analysis shows that in fact one can achieve reliability
in terms of the block error rate.

A. Related Work

The papers [2]–[5] consider the effect of saturation on
error floor performance. It is observed in these works that
saturation can limit the ability of decoding to escape trapping
set behavior, thereby worsening error floor performance. In
[6], [7] some decoder variations are given that help reduce
error floors. Here we see an explicit effort to ameliorate
the effect of saturation. A related but distinct direction was
taken in [8]. There the authors made modifications to discrete
node update rules so as to reduce error floor failure events.
They fine tune finite state message update rules to optimize
performance on a particular graph structure. There have been
other works that examine the effects of practical concessions.
In [9] the authors consider the effect of quantization in LDPC
coded flash memories. In [10] and[11] the effects of saturation
and quantization are modeled as noise terms. Finally, in [12]
an analysis is done to evaluate the effect on capacity on
quantization of channel outputs. Although we take a different
approach in this paper by focusing on asymptotic behavior,
the fundamental conclusion is similar to the error floor results
in [2]–[5]: saturation can dramatically effect the stability of
the decoder.

The paper is organized as follows. In the next section we
will briefly review the standard asymptotic analysis of the
BP decoder using density evolution (DE). Then in sections
III and IV we will introduce the SatBP decoder and perform
perturbation analysis on the SatBP decoder using the Wasser-
stein metric [13]. In section V we will use stability analysis
to examine block thresholds for SatBP. We will see that in
many cases the block threshold will correspond with the bit
threshold, but the conditions required are more stringent than
in the non-saturated decoder case.

II. BP DECODING, DENSITY EVOLUTION AND THE

WASSERSTEINDISTANCE

In this section we briefly review the BP decoder and the
DE analysis [14] in the case of transmission over a general
BMS channel using standard LDPC code ensemble. Most of
the material presented here can be found in [1].
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We assume transmission over a BMS channel. LetX(=
±1) denote the input and letY be the output. Further, let
p(Y = y |X = x) denote thetransition probabilitydescribing
the channel. We generally characterize a BMS channel by its
so-calledL-distribution,c. More precisely,c is the distribution
of

ln
p(Y |X = +1)

p(Y |X = −1)

conditioned thatX = +1. Generally, we may assume that

Y = ln
p(Y |X = +1)

p(Y |X = −1)
.

The symmetry of the channel isp(Y = y |X = x) = p(Y =
−y |X = −x) and the resulting densitiesc are symmetric,
[1], which meanse−

1
2xc(x) is an even function ofx.

GivenZ distributed according toc, we writec to denote the
distribution oftanh(Z/2), and|c| to denote the distribution of
| tanh(Z/2)|. We refer to these as theD and|D| distributions
respectively. We use|C| to denote the corresponding cumula-
tive |D| distribution, see [1, Section 4.1.4]. Under symmetry,
the distribution of|Z| determines the distribution ofZ.

For threshold analysis of LDPC ensembles we typically con-
sider a parameterizedfamily of channels. We write{BMS(σ)}
to denote the family parameterized by the scalarσ. Often
it will be more convenient to denote this family by{cσ},
i.e., to use the family ofL-densities which characterize the
channel family. One natural candidate for the parameterσ
is the entropy of the channel denoted byh. Thus, we also
consider the characterization of the family given by BMS(h).

A. Degradation, Symmetric Densities and Functionals of Den-
sities

Let pZ |X(z |x) denote the transition probability associated
to a BMS channelc′ and letpY |X(y |x) denote the transition
probability of another BMS channelc. We then say thatc′ is
degradedwith respect toc if there exists a channelpZ |Y (z | y)
so that

pZ |X(z |x) =
∑

y

pY |X(y |x)pZ |Y (z | y).

We will use the notationc ≺ c
′ to denote thatc′ is degraded

with respect toc (as a mnemonic think ofc as the erasure
probability of a BEC and replace≺ with ≤).

A useful characterization of degradation, see [15], [1, The-
orem 4.74], is thatc ≺ c

′ is equivalent to
∫ 1

0

f(x)|c|(x)dx ≤
∫ 1

0

f(x)|c′|(x)dx (1)

for all f(x) that are non-increasing and concave on[0, 1].
In particular, this characterization implies thatF (a) ≤ F (b)
for a ≺ b if F (·) is either the Battacharyya or the entropy
functional. This is true since both are linear functionals of the
distributions and their respective kernels in the|D|-domain are
decreasing and concave, see [1]. An alternative characteriza-
tion [1] of degradation in terms of the cumulative distribution
functions|C|(x) and |C′|(x) is that for allz ∈ [0, 1],

∫ 1

z

|C|(x)dx ≤
∫ 1

z

|C′|(x)dx. (2)

A BMS channel family{BMS(h)}h
h

is said to beordered
(by degradation) ifh1 ≤ h2 implies ch1 ≺ ch2 . (The reverse
order,h1 ≥ h2, is also allowed but we generally stick to the
stated convention.)

Definition 1 (Symmetric Densities):Let A denote anL-
distribution in R = R ∪ {±∞}. ThenA is symmetricif it
satisfies the following condition for every bounded, continuous
function f : R 7→ R,

∫

f(x)dA(x) =

∫

e−xf(−x)dA(x). (3)

We say that anL-density a is symmetric if a(−y) =
a(y)e−y. We recall that all densities which stem from BMS
channels are symmetric, see [1, Sections 4.1.4, 4.1.8 and
4.1.9]. �

Functionals of densities often used in analysis are the
Battacharyya, the entropy, and the error probability functional.
For a densitya, these are denoted byB(a), H(a), andE(a),
respectively and are defined by

B(a) = E(e−y/2), H(a) = E(log2(1+e
−y))

E(a) = P{y < 0}+ 1

2
P{y = 0}.

wherey is distributed according toa. Note that these defini-
tions are valid even ifa is not symmetric, although they lose
some of their original meaning. We will apply these definitions
to saturated densities that are not necessarily symmetric.It
is not hard to see thatE(a) ≤ B(a) for any densitya not
necessarily symmetric. Hence in the paper the main functional
of interest is the Battarcharyya parameter.

B. BP Decoder, DE analysis and the Wasserstein metric

The definition of the standard BP decoder can be found
in [1]. The asymptotic performance of the BP decoder is
given by the DE technique [1], [14]. Throughout the paper
we will consider standard LDPC code ensembles as specified
by their degree distributions [1]. The analysis can be applied
to more sophisticated structures, but we restrict to this case for
simplicity of presentation. Thus we letλ(·) andρ(·) represent
the variable node and check node degree profile respectively.
The ensemble is then denoted by(λ, ρ).

Definition 2 (DE for BP Decoder cf. [1]):For ℓ ≥ 1, the
DE equation for a(λ, ρ) ensemble is given by

xℓ = c⊛ λ(ρ(xℓ−1)).

Here, c is the L-density of the BMS channel over which
transmission takes place andxℓ is the density emitted by
variable nodes in theℓ-th round of density evolution. Initially
we havex0 = ∆0, the delta function at0. The operators⊛ and
� correspond to the convolution of densities at variable and
check nodes, respectively, see [1, Section 4.1.4]. The notation
ρ(xℓ−1) represents the weighted check node convolution of the
densityxℓ−1. E.g., if ρ(x) = xdr−1, thenρ(xℓ−1) = x

�dr−1
ℓ−1 .

�

Discussion: For (dl, dr)−regular codes, the DE equation is
given byxℓ = c⊛ (x�dr−1

ℓ−1 )⊛dl−1. The DE analysis is simpli-
fied when we consider the class of symmetric message-passing
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decoders. The definition of symmetric message-passing de-
coders can be found in [1]. Note that this definition of
symmetry pertains to the actual messages in the decoder and
not to the densities which appear in the DE analysis. We will
see later that the saturated decoder is a symmetric message-
passing decoder and hence its DE analysis is simplified by
restricting to the use of the all zero (actually we use+1 for
’zero’) codeword.

Definition 3 (BP Threshold):Consider an ordered and
complete channel family{ch}. Let xℓ(h) denote the distri-
bution in theℓ-th round of DE when the channel isch. Then
theBP thresholdof the (λ, ρ) ensemble is typically defined as

h
BP(λ, ρ, {ch}) = sup{h : xℓ(h)

ℓ→∞→ ∆+∞}.
Here ∆+∞ is the delta function at infinity representing the
perfect decoding density. An equivalent definition is

h
BP(λ, ρ, {ch}) = sup{h : E(xℓ(h))

ℓ→∞→ 0}.
The later form is more convenient for our purposes and it is
the one we shall adopt. �

We will also say that for a given channelc, the BP decoder is
successfulif and only if E(xℓ(h))

ℓ→∞→ 0 or B(xℓ(h))
ℓ→∞→ 0.

In other words, for any givenǫ > 0, there existsℓ such that
B(xℓ(h)) < ǫ.

In the sequel we will use the Wasserstein metric to measure
distance between distributions. We recall the definition of
the Wasserstein metric below. For more properties of the
Wasserstein metric see [16].

Definition 4 (Wasserstein Metric – [17, Chapter 6]):Let
|a| and |b| denote two |D|-distributions. The Wasserstein
metric, denoted byd(|a|, |b|), is defined as

d(|a|, |b|) = sup
f(x)∈Lip(1)[0,1]

∣

∣

∣

∫ 1

0

f(x)(|a|(x)−|b|(x))dx
∣

∣

∣
, (4)

where Lip(1)[0, 1] denotes the class of Lipschitz continuous
functions on[0, 1] with Lipschitz constant1.

In [18] it is shown that the Wasserstein distance is equivalent
to theL1 norm of the difference between the|D|-distributions.
�

III. SATURATED BELIEF PROPAGATION DECODING

In this section we introduce the saturated BP decoder. More
precisely, we consider decoding with BP update rules at the
nodes but the outgoing messages are restricted to the domain
[−K,K] for someK > 0 by saturation.

A. Saturated Decoder

Definition 5 (Saturation):We define thesaturationopera-
tion at±K for someK ∈ R

+, denoted⌊·⌋K, by

⌊x⌋K = min(K, |x|) · sgn(x), (5)

where

sgn(x) =

{

−1, x < 0

1, x ≥ 0
.

Definition 6 (Saturated BP Decoder):Consider the stan-
dard (dl, dr)-regular ensemble. The saturated BP decoder is
defined by the following rules. Letφ(ℓ)(µ1, . . . , µdr−1) and
ψ(ℓ)(µ1, . . . , µdl−1) denote the outgoing message from the
check node and the variable node side respectively. Abusing
the notation above,µ1, . . . , µ. denotes the incoming messages
on both the check node and the variable node side. Then,

φ(ℓ)(µ1, . . . , µdr−1) =

⌊

2 tanh−1

(

dr−1
∏

i=1

tanh(µi/2)

)⌋

K

,

ψ(ℓ)(µ1, . . . , µdl−1) =

⌊

µ0 +

dl−1
∑

i=1

µi

⌋

K

,

whereµ0 is the message coming from the channel. Also, we
setφ(0)(µ1, . . . , µdr−1) = 0.

Lemma 7 (SatBP Decoder is symmetric):The SatBP de-
coder given in Definition 6 is a symmetric message-passing
decoder.

Proof: From Definition 4.83 in [1] it is not hard to see
that variable-node symmetry is satisfied forℓ = 0. In general,
variable node symmetry is the following condition (forℓ ≥ 1)
on the message update function

ψ(ℓ)(−µ0,−µ1, . . . ,−µdl−1) = −ψ(ℓ)(µ0, µ1, . . . , µdl−1).

Since⌊x⌋K = −⌊−x⌋K we see that variable node symmetry
is preserved by saturation. Letb1 ∈ {±1}, . . . , bdr−1 ∈ {±1},
then by Definition 4.83 in [1], for the check node symmetry
we have

φ(ℓ)(b1µ1, . . . , bdr−1µdr−1)

= min
(

2 tanh−1
(

dr−1
∏

i=1

tanh(|µi|/2)
)

,K
)

sgn
(

dr−1
∏

i=1

biµi

)

= min
(

2 tanh−1
(

dr−1
∏

i=1

tanh(|µi|/2)
)

,K
)

sgn
(

dr−1
∏

i=1

µi

)

dr−1
∏

i=1

bi

= φ(ℓ)(µ1, . . . , µdr−1)
(

dr−1
∏

i=1

bi

)

.

and we see again that symmetry is preserved by saturation.
Discussion:The symmetry of the message-passing decoder

together with symmetry of the channel allows us to use the all-
zero codeword assumption. This along with the concentration
results (see Theorem 4.94 in [1]) allows to write down the
density evolution of the SatBP decoder in the usual way.
Note that if messages entering a check node are saturated
in magnitude atK then outgoing messages are automatically
saturated atK. This holds not just for BP but for many
message passing algorithms such as the min-sum algorithm.
Our analysis has two parts: bounding the effect of saturation
over finitely many iterations and stability analysis. For the
bounding analysis we focus on BP although the technique can
be easily extended to other decoders. In the stability analysis
we explicitly relax the assumptions to cover a variety of check
node updates.

Given X ∼ a, let ⌊a⌋K denote the distribution of⌊X⌋K.
Note that the saturation operation can be viewed as a channel
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takingX to ⌊X⌋K. We have immediately

a ≺ ⌊a⌋K .
In general⌊a⌋K will not be symmetric even ifa is symmetric
since we will not typically have⌊a⌋K(−K) = e−K⌊a⌋K(K).
If a is symmetric then we will have

⌊a⌋K(−K) ≤ e−K⌊a⌋K(K). (6)

Although using lemma 7 one can write down the DE
recursion for the SatBP decoder, we know that in general
the densities will not be symmetric. Two of the most useful
properties of DE for BP are that it preserves both symmetry
of densities and ordering by degradation. These propertiesare
sacrificed by saturation, but can be recovered with a slight
variation. There are two alternatives for this. One is to place
the saturated probability mass at±z instead at±K wherez is
chosen according to the actual LLR conditioned on magnitude
K. The second alternative is to slightly degrade the density
by moving some probability mass fromK to −K. This can
be interpreted operationally as flipping the sign of a message
with magnitudeK with some probabilityγ. The flipping rate
γ is chosen so that the resulting probability that the sign of
the message is incorrect ise−K/(1 + e−K). In generalγ is
upper bounded by this value and for largeK this is a small
perturbation. Of the two approaches the second is inferior in
that it degrades the channel more than the first. On the other
hand, the second approach preserves ordering by degradation
while the first does not. We shall adopt the second approach.

Let us introduce the notationD(p, z) to denote the density

D(p, z) = p∆−z + (1− p)∆z .

Here ∆z (∆−z ) is the delta function atz (−z). We will
sometimes denotep∆−z as D−(p, z) and (1 − p)∆z as
D+(p, z). When (p, z) is clear from context we may drop it
from the notation. Using this notation we have for symmetric
a,

⌊a⌋K = γD(q, z)(x) + a(x)1{|x|<K} (7)

whereγ = Pa{|x| ≥ K} andγq = Pa{x ≤ −K}.
Lemma 8 (Symmetric SatBP):Given a symmetric densitya

we define

⌊a⌋Ksym
= γD(p, z)(x) + a(x)1{|x|<K}

wherep = e−K/(1 + e−K) andγ = Pa{|x| ≥ K}. Then,

(i) ⌊a⌋Ksym
is a symmetricL-density.

(ii) ⌊a⌋K ≺ ⌊a⌋Ksym
.

Proof: Part (i) is immediate. To prove part (ii) we note
that comparing with the non-symmetrized case we see that
p ≥ q . Thus, ⌊a⌋Ksym

can be realized by taking messages
with distribution⌊a⌋K and flipping the sign of a message with
magnitudeK by a quantityλ with λ determined by

p =
e−K

1 + e−K
= λ(1− q) + (1− λ)q .

As a consequence of Lemma 8, we will term the operation
used to obtain⌊a⌋Ksym

from a assymmetric-saturation.

We summarize all the claims above in the following.
Corollary 9 (Degradation Order):For symmetric a we

have
a ≺ ⌊a⌋K ≺ ⌊a⌋Ksym

.

It is fairly intuitive that asK becomes larger, the density
⌊a⌋Ksym

should become close to the densitya. This is the
content of the next lemma which uses the Wasserstein distance
between distributions.

Lemma 10:Let a be a symmetricL-density. Then,

d(a, ⌊a⌋Ksym
) ≤ 1− tanh(K/2),

whered(·, ·) is the Wasserstein distance defined previously.
Proof: For any 0 ≤ z < K we havePa{x ≤ z} =

P⌊a⌋K{x ≤ z} = P⌊a⌋Ksym
{x ≤ z} and for anyz ≥ K we have

1 = P⌊a⌋K{x ≤ z} = P⌊a⌋Ksym
{x ≤ z} . Since tanh(x/2) is

increasing andtanh(−x/2) = − tanh(x/2) we have

|⌊A⌋Ksym|(z) = 1{z<tanh(K/2)}|A|(z) + 1{z≥tanh(K/2)} .

By [18], we have that the Wasserstein distance is equivalentto
the L1 norm of the difference between the|D|-distributions.
Clearly, the distance is bounded by1− tanh(K/2).

Let T (·) denote a DE iteration for the full BP decoder, i.e.,

T (c, x) = c⊛ λ(ρ(x)).

Definition 11 (DE for Sym. and Non-Sym. Saturation):
Consider a BMS channel withL-density c. Let ∆0 denote
the perfectly noisy channel. Letx(0) = ∆0. Then the DE for
symmetric SatBP decoder is defined as,

x
(ℓ) = ⌊c⊛ λ(ρ(x(ℓ−1)))⌋Ksym.

The DE for non-symmetric SatBP decoder is defined as,

x
(ℓ) = ⌊c⊛ λ(ρ(x(ℓ−1)))⌋K.

Finally, we use the notationSKsym(c, x) = ⌊T (c, x)⌋Ksym
and

SK(c, x) = ⌊T (c, x)⌋K. �

Now imagine that we run both the full DE and symmetric sat-
urated DE starting with the density∆0. In the next lemma we
show that at every iteration the order of degradation between
the full DE and symmetric saturated DE is preserved. We will
use the notationT (ℓ)(c,∆0) to denote theℓ iteration of the
full DE. More precisely,T (ℓ)(c,∆0) = T (c, T (ℓ−1)(c,∆0)).
As a shorthand, we will useT (ℓ)(c,∆0) = T (T (ℓ−1)(c,∆0)).
We similarly defineS(ℓ)

Ksym
(c,∆0) andS(ℓ)

K (c,∆0).
Lemma 12 (Degradation Order under DE):For anyℓ ≥ 0

we have
T (ℓ)(c,∆0) ≺ S

(ℓ)
Ksym

(c,∆0).

Proof: Let x(ℓ) denote the DE for usual BP decoder and
z
(ℓ) denote the DE for the symmetric saturation operation.

Sincex(0) = z
(0) = ∆0, we have thatx(1) = c and z

(1) =
⌊c⌋Ksym

. From corollary 9 we get thatx(1) ≺ z
(1). Now, since

DE preserves the order of degradation, we get

x
(2) = T (c, x(1)) ≺ T (c, z(1))

Lem.9≺
⌊

T (c, z(1))
⌋

Ksym

= z
(2).

Continuing, for allℓ we getT (ℓ)(c,∆0) ≺ S
(ℓ)
Ksym

(c,∆0).
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We now estimate the distance between the densities appearing
in the DE of standard BP and the DE of the symmetric
saturation operation. For this we again use the Wasserstein
distance defined previously (for symmetric densities).

Lemma 13 (Distance Between Symmetric SatBP and BP):
Considerℓ iterations of the DE for the standard BP and the
symmetric saturation operation. Then

d(T (ℓ)(c,∆0), S
(ℓ)
Ksym

(c,∆0)) ≤ 2e−K+ℓ·ln(2(dl−1)(dr−1)).

Proof: Let T (·) andSKsym(·) be defined as in lemma 12
and consider the Wasserstein distance between them. We have,

d(T (ℓ)(c,∆0), S
(ℓ)
Ksym

(c,∆0))

= d(T (T (ℓ−1)(c,∆0)), SKsym(S
(ℓ−1)
Ksym

(c,∆0)))

Trian. ineq.
≤ d(T (T (ℓ−1)(c,∆0)), T (S

(ℓ−1)
Ksym

(c,∆0)))

+ d(T (S
(ℓ−1)
Ksym

(c,∆0)), SKsym(S
(ℓ−1)
Ksym

(c,∆0)))

(viii), Lem. 13 in [18]
≤ αℓd(T

(ℓ−1)(c,∆0), S
(ℓ−1)
Ksym

(c,∆0))

+ d(T (S
(ℓ−1)
Ksym

(c,∆0)), SKsym(S
(ℓ−1)
Ksym

(c,∆0)))

(a)

≤ αℓd(T
(ℓ−1)(c,∆0), S

(ℓ−1)
Ksym

(c,∆0)) +

(

1− tanh
(K

2

)

)

,

where

αℓ = 2(dl − 1)

dr−1
∑

j=1

(1−B
2(a))

dr−1−j
2 (1−B

2(b))
j−1
2 ,

≤ 2(dl − 1)(dr − 1)

where a = T (ℓ−1)(c,∆0) and b = S
(ℓ−1)
Ksym

(c,∆0) and dl
and dr correspond to the average variable node and check
node degrees. Also, the inequality(a) is obtained by using
lemma 10.

Continuing with the above inequality we get,

d(T (ℓ)(c,∆0), S
(ℓ)
Ksym

(c,∆0))

≤ (1−tanh
(K

2

)

)(1+αℓ+αℓαℓ−1+. . .+αℓαℓ−1 · · ·α2),

From the bound onαℓ we obtain (1+αℓ+αℓαℓ−1+ . . .+
αℓαℓ−1 · · ·α2) ≤ (2(dl − 1)(dr − 1))ℓ.

Combining with1− tanh(K/2) ≤ 2e−K we get,

d(T (ℓ)(c,∆0), S
(ℓ)
Ksym

(c,∆0)) ≤ 2e−K+ℓ·ln(2(dl−1)(dr−1)).

The above gives us a bound on theB(S
(ℓ)
Ksym

(c,∆0)). Using
(ix) Lemma 13 in [18] we get,

B(S
(ℓ)
Ksym

(c,∆0)) ≤ B(T (ℓ)(c,∆0))

+ 2
√

d(T (ℓ)(c,∆0), S
(ℓ)
Ksym

(c,∆0))

≤ B(T (ℓ)(c,∆0)) + 2
√
2e

−K+ℓ·ln(2(dl−1)(dr−1))

2 . (8)

Discussion: In the sequel, we will denoteK by Kv to
distinguish between the saturation levels appearing at variable
nodes, check nodes and the channel. To summarize, we show
that forKv large enough, for every iteration the Battacharyya
parameter of the symmetric saturated DE remains close to the

Battacharyya of the full DE. In the next section we will relate
the symmetric saturated DE to the non-symmetric saturated
DE to show that the Battacharyya parameter for the SatBP
decoder can also be made small by choosingKv large enough.

IV. CONVERGENCE OFNONSYMMETRIZED SATURATED

DE

The results of the previous section show that, when trans-
mitting below the threshold of the full BP decoder and using
sufficiently many iterations, the Battacharrya parameter of the
densities in the symmetric SatBP decoder can be small by
choosingKv large enough. More precisely, consider trans-
mission over a general BMS channelc such that we are
transmitting below the BP threshold of the channel family. Let
us assume transmission using(λ, ρ) ensemble with average
variable node and check node degree given bydl anddr re-
spectively. Then, given anǫ > 0, there existsℓ0(c, ǫ) ∈ N such
that for all ℓ ≥ ℓ0, B(T (ℓ)(c,∆0)) ≤ ǫ/2. Then, by choosing
Kv large enough, specificallyKv > K0 , l0(c, ǫ) ln(2(dl −
1)(dr − 1)) + 2 ln 4

√
2

ǫ , we have thatB(S
(ℓ)
Ksym

(c,∆0)) ≤ ǫ.

A. Non-symmetrized SatBP Decoder

We now show that the Battacharrya parameter for the non-
symmetric SatBP decoder can also be made small by choosing
Kv large enough. We first consider a fixed computation tree
and then average over the tree ensemble.

We begin with an operational description of symmetrization.
Consider a fixed treeT of depthℓ. Let Y denote the vector of
received LLR values associated to the variable nodes under the
all-zero codeword assumption. In addition, for each variable
node we assume an independent random variable uniformly
distributed on[0, 1]. We denote the vector of these variables by
Z = {Zv}, wherev is the index for the variable nodes. Now,
the node operations correspond to BP except that outgoing
messages from the variable nodes are magnitude saturated
at Kv. The independent random variables are used for the
flipping operation. The flipping probability for each node is
determined by density evolution. If the outgoing message has
magnitudeKv then its sign is flipped ifZv < λv whereλv is
the appropriate flipping probability.

Let the received LLR magnitude of a variable nodev be
x. The probability with which we flip the bit is such that the
final error probability is equal to e−Kv

1+e−Kv . For received LLR
magnitude ofx, the probability that it is received correctly is

1
1+e−x . As a consequence we get,

e−Kv

1 + e−Kv = λv
1

1 + e−x
+ (1− λv)

e−x

1 + e−x
,

whereλv is the flipping probability of variable nodev and
x ≥ Kv. Solving we getλv = e−Kv

1+e−Kv
1−e−x+Kv

1−e−x ≤ e−Kv

1+e−Kv .
Thus the probability that a variable node, with a received LLR
magnitude greater thanKv, is not flipped is at least 1

1+e−Kv ≥
1− e−Kv

.
Let us denote the outgoing message at the variable node by

x. From the above we see that the distribution of the outgoing
messagex is S

(ℓ)
Ksym

(c,∆0)). Let us consider the conditional
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distributionp(x |Y, Z). We obtainS(ℓ)
Ksym

(c,∆0)) by averaging
overY , Z and the code ensemble. LetAKv denote the event
that Zv ≥ 1 − e−Kv

for eachv. This is clearly independent
of the received values. Assuming a fixed computation treeT
(i.e., we suppress dependence onT in the notation) we have

p(x |Y ) = p(x |Y,AKv )p(AKv )+p(x |Y, ĀKv)(1−p(AKv )),

where ĀKv denotes the complement event and, by indepen-
dence, we can averaging overY to obtain

p(x) = p(x |AKv )p(AKv ) + p(x | ĀKv )(1 − p(AKv ))

hence

p(x |AKv ) =
p(x) − p(x | ĀKv )(1− p(AKv ))

p(AKv)

Now p(x |AKv ) is the distribution of the non-symmetric SatBP
decoder. Intuitively one expectsp(x | ĀKv ) to be inferior
(higher probability of error, larger Battacharyya parameter)
to p(z |AKv), but this appears difficult to prove. We have,
however,p(AKv ) ≥ (1−e−Kv

)|V (T)| ≥ 1−e−Kv |V (T)| where
|V (T)| is the number of variable nodes in the tree.

The above analysis is summarized in the following lemma.

Lemma 14 (SatBP Decoder versus Symmetrized SatBP):
For any0 < ǫ < 1 andℓ ∈ N, there exists aKv large enough
such that

B(S
(ℓ)
K (c,∆0)) ≤

1

1− ǫ
B(S

(ℓ)
Ksym

(c,∆0)).

Proof: From the above analysis we have that for a fixed
treeT of depthℓ,

p(x |AKv ) =
p(x) − p(x | ĀKv )(1− p(AKv ))

p(AKv)

≤ p(x)

p(AKv )
≤ p(x)

1− e−K |V (T)| .

where p(x |AKv ) is the distribution of the non-symmetric
SatBP decoder. For any fixed number of iterations, the to-
tal maximum number of variable nodes in a computation
tree is fixed. Hence we can takeKv large enough so that
e−Kv |V (T)| < ǫ for all T. Note that the requiredKv grows
linearly in the number of iterations. Averaging over the tree
ensemble and multiplying by the kernele−x/2, we get the
desired result.
Discussion:Let us summarize. From the above analysis we
have that for any0 < ǫ < 1/2, there existsKv > 0, large
enough such that the Battacharyya parameter of the SatBP
decoder is upper bounded byǫ. Note that the value ofKv

depends on the number of iterations of the full BP required
to get its Battacharyya parameter to be at the mostǫ/2. So
given a channelc such that the BP decoder is successful when
transmitting overc, the number of such iterations required is
fixed. Call it ℓ0(c, ǫ). Then, from the above analysis we have
that forKv ≥ K0 , l0(c, ǫ) ln(2(dl − 1)(dr − 1)) + 2 ln 8

√
2

ǫ ,
B(S

(ℓ)
K (c,∆0)) ≤ ǫ. Note that we can make the Battacharyya

as small as desired by increasing the number of iterations and
consequently increasingKv. But then the saturation valueKv

becomes infinite. Hence to make the Battacharyya arbitrarily

small we now need to show that once the Battacharyya param-
eter is made small enough, by choosingKv large but fixed,
then the subsequent iterations of the SatBP decoder will drive
the Battacharyya parameter down to zero. This is the content
of the stability analysis done in the next section. We will see
that in order to make the Battacharyya parameter arbitrarily
small, it is sufficient to bring it close to the stability region. By
choosingǫ according to equation (13) and arguments following
it, we can chooseKv large enough so that we are guaranteed
to be in the stability region. Furthermore, we have thatK0,
defined above, now depends only on the channelc and the
degree distribution.

V. STABILITY ANALYSIS OF THE SATBP DECODER

An important part of the asymptotic analysis of LDPC codes
involves the analysis of the convergence of DE to a zero error
state. In this section we analyze the stability of the SatBP.We
begin with some necessary conditions.

For stability of the zero error condition there must exist a
positive invariant set of zero error distributions, i.e., asubsetS
of distributions so thatE (s) = 0 for all s ∈ S andSK(c, s) ∈
S. Existence ofS follows easily from the compactness of the
space of densities and continuity of DE.

Lemma 15:Assume the channelc has support at−L, L >
0. In an irregular ensemble with minimum variable degreedl
the support of all densities inS must lie in [L/(dl − 2),∞].

Proof: It is obvious thatS = ∅ in an irregular ensemble
with dl = 1, so we assumedl ≥ 2. We usea(ℓ) and b

(ℓ) to
denote the density of the message coming out of the variable
nodes and check nodes respectively in the density evolution
process. We claim that ifa(ℓ) has support on(−∞, zℓ] with
zℓ > 0 then a

(ℓ+1) has support on(−∞, zℓ+1] with zℓ+1 =
zℓ− (L− (dl − 2)zℓ). To see the claim note thatb(ℓ) also has
support on(−∞, zℓ] and it follows thata(ℓ+1) has support on
(−∞, zℓ+1] wherezℓ+1 = (dl− 1)zℓ−L = zℓ− (L− zℓ(dl−
2)).

Assumea(0) ∈ S has support on(−∞, z0] where z0 <
L/(dl − 2) and defineδ := L− (dl − 2)z0 > 0. By the above
claim it follows from an inductive argument thata(ℓ) ∈ S

has support on(−∞, zℓ] wherezℓ is a decreasing sequence
satisfying zℓ ≤ z0 − ℓδ. For ℓ large enough the right hand
side is negative, implying a non-zero error probability, and
we obtain a contradiction with the definition ofS.

A. Failure of Stability with Degree Two

From Lemma 15 we immediately have
Lemma 16:In an irregular ensemble withλ2 > 0 no

invariant setS exists for any value ofKv < ∞ unless the
channel is the BEC.

Proof: If dl = 2 and the channel is not the BEC and
hence has support on(−∞, 0), then Lemma 15 shows that
there can be no positive invariant zero-error set of distributions
with support on[−Kv,Kv] for Kv <∞.

In the case of the BEC it can be seen that saturated DE
matches unsaturated DE except that the mass at+∞ in
unsaturated DE is not placed at+Kv. Hence, stability is
unaffected by saturation. If the channel has unbounded support
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on (−∞, 0], then there is no possibility of stability under
saturation no matter what the degree. A condition on the finite
channel support is given in the section on stability with degree
at least three.

B. Near Stability

Even though stability with saturation cannot be achieved in
irregular ensembles with degree two variable nodes, it is not
surprising that for largeKv the residual error rate can be made
very small. For sufficiently largeKv the residual error rate will
have no practical consequence. In this section we quantify the
residual error rate.

The stability analysis of standard irregular ensembles under
BP decoding rests on the relations

B(c⊛ λ(a)) = B (a)λ(a) (9)

and
B (ρ(a)) ≤ 1− ρ(1−B (a)) . (10)

Equality (9) continues to hold without symmetry ofa or c. The
inequality (10), however, does not hold without symmetry. In
Appendix A we prove a more general form of the following.

Lemma 17:Let the incoming L-densities at a degreed+1
check node bea1, ..., ad and let b be the outgoing density.
Then

B (b) ≤
d
∑

i=1

B (ai) .

Discussion:The above result holds for a wide range of check
node update operations including BP and the min-sum decoder.

Throughout this section we will usea (b) to denote the
density coming out of a variable node (check node). We also
usea(n) and b

(n) to denote the densities coming out of the
variable nodes and check nodes at thenth iteration of the
saturated DE recursion. We prove the following result,

Lemma 18:Consider an irregular ensemble with minimum
variable node degreedmin ≥ 2. Assumeλ2ρ′(1)B (c) < 1.
Then, there exists a constantx∗, a constantN, and a constant
C(dmin) such that, for allKv large enough, if for somen0 we
haveB (a(n0)) ≤ x∗ thenB (a(n)) ≤ C(dmin)e

−Kv/2 for all
n ≥ n0+N. Moreover, ifdmin > 2 we can haveC(dmin) = 3.

Proof: To incorporate saturation into the analysis based
on the Battacharyya parameter we have the inequality for any
K > 0,

B (⌊a⌋K) ≤ B (a) + e−K/2.

Indeed, we have

B (⌊a⌋K) = eK/2

∫ −K

−∞
a(x)dx +

∫ +∞

−∞
1{|x|<K}a(x)e

−x/2dx

+ e−K/2

∫ ∞

K

a(x)dx

≤
∫ −K

−∞
a(x)e−x/2dx+

∫ +∞

−∞
1{|x|<K}a(x)e

−x/2dx

+

∫ ∞

K

a(x)e−x/2dx+ e−K/2

= B(a) + e−K/2, (11)

where the last inequality follows sincee−K/2
∫∞
K

a(x)dx ≤
e−K/2

∫∞
−∞ a(x)dx = e−K/2. As a result of the saturation of

messages, we see that the minimum value of the Battacharyya
parameter is equal toe−K/2 and we can therefore not hope to
reach a smaller value.

Minimum variable node degree equal to 2:Let us assume
dmin = 2, i.e.,λ2 > 0. Let a(n0) be anyL-density which need
not be symmetric. Consider

g(x) := λ2 B(c)ρ′(1) + (1− λ2)B(c)(ρ′(1))2x .

Since λ2 B(c)ρ′(1) < 1, there exists anx∗ > 0 such that
g(x∗) < 1. Choosex∗ such thatg(x∗) < 1 andρ′(1)x∗ < 1.
Now assumeB(a(n0)) ≤ x∗. ChooseKv large enough such
that 1

1−g(x∗)e
−Kv/2 < x∗.

Let us perform the saturated DE recursion once. We have,

B(a(n0+1)) = B(⌊c⊛ λ(ρ(a(n0)))⌋Kv )
(11)
≤ B(c⊛ λ(ρ(a(n0)))) + e−Kv/2

= B(c)λ
(

∑

i

ρiB((a(n0))�(i−1))
)

+ e−Kv/2

Lemma 17
≤ B(c)λ

(

B(a(n0))
∑

i

(i − 1)ρi

)

+ e−Kv/2

sinceρ′(1)B (a(n0))<1

≤ λ2 B(c)ρ′(1)B (a(n0))

+ (1 − λ2)B(c)(ρ′(1)B (a(n0)))2 + e−Kv/2

= g
(

B (a(n0))
)

B (a(n0)) + e−Kv/2

≤ g(x∗)B (a(n0)) + e−Kv/2 (12)

≤ g(x∗)x∗ + e−Kv/2

≤ x∗,

where the last inequality follows from the choice ofKv.
By induction, the above inequality givesB (a(n)) ≤ x∗ for

all n ≥ n0. Consider anyn = n0 + k. Also by induction on
(12), we get

B(a(n0+k)) ≤ x∗(g(x∗))k + e−Kv/2
k−1
∑

j=0

(g(x∗))j

= x∗(g(x∗))k + e−Kv/2 1− (g(x∗))k

1− g(x∗)
.

It follows that anyǫ > 0 and allk large enough we have

B(a(n0+k)) ≤ e−Kv/2 1− ǫ

1− g(x∗)
.

Minimum variable node degree equal to 3:Let us now
assume that the minimum variable node degree is 3. Let us
denote,

f(x) = λ3 B(c)ρ′(1)2x+ (1− λ3)B(c)ρ′(1)3x2. (13)

Choosex∗ > 0 such thatf(x∗) ≤ 1/2 andρ′(1)x∗ < 1. Let
n0 be such thatB(a(n0)) ≤ x∗. ChooseKv large enough so
that 2e−Kv/2 < x∗. Following the previous analysis, we have
for all n ≥ n0

B (a(n+1)) ≤λ3 B(c)(ρ′(1)B (a(n)))2

+ (1− λ3)B(c)(ρ′(1)B (a(n)))3 + e−Kv/2
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A little algebra then shows that there existsN > n0 so that
for all n ≥ N we have

B (a(n)) ≤ 3e−Kv/2 (14)

B (b(n)) ≤ 3ρ′(1)e−Kv/2 (15)

whereb(n) denotes the density coming out of the check nodes.
Also, (15) follows from (14) and Lemma 17.
The “near stability” analysis done above can clearly not show
convergence to zero error although it can be used to show
convergence to relatively small error rate. As we showed
above, unlike the unsaturated case, zero error rate convergence
cannot be achieved with the saturated decoder when degree
two variable nodes are included. For degree three and higher,
stability can be shown but a refined analysis is needed.

C. Stability Analysis with Minimum Variable Node Degree
Equal to Three

In this section we consider irregular ensembles where the
minimum variable node degree is at least three. We generalize
the standard stability analysis by separating out the saturated
probability mass and tracking it through the variable node and
check node updates. For simplicity we shall restrict to right
regular ensembles. We show that convergence to zero error
rate occurs and that convergence is exponential in iteration.
In the unsaturated case this can be achieved with degree
two variable nodes and with degree three and above doubly
exponential convergence occurs. In subsequent sections we
show that double exponential convergence can be attained
in the saturated case for degree four and above although a
modification is needed for degree four. For degree three doubly
exponential convergence can be recovered but only with the
dramatic and likely impractical step of erasing all received
values near the end of the decoding.

We assume regular check nodes with degreedr and we let
Kp denote the magnitude of an outgoing message when all
incoming messages have magnitudeKv. Although we focus
on BP-like decoding our analysis applies to other algorithms
such as min-sum, in which case we haveKp = Kv. In
general, ifK1, ...,Kdr−1 are incoming message magnitudes at
a check node then we assume that the corresponding outgoing
magnitudeKout satisfies

− ln

dr−1
∑

i=1

e−Ki ≤ Kout ≤ min
i
{Ki} (16)

Both conditions are satisfied by BP and min-sum. E.g., for
BP we can write explicitlytanh(Ki/2) = (1− e−Ki/2)/(1 +
e−Ki/2) and then some algebra1 gives us (16). We note in
passing that the left inequality implies− ln

∑dr−1
i=1 e−λKi ≤

λKout for all λ ∈ [0, 1]. We will make use of the caseλ = 1
2 .

Messages entering a check node updatea have the form

a = γD(p,Kv) + γ̄m

1Indeed, it is not hard to see that1−e
−Kout

1+e−Kout
=

1−
∑

i e
−Ki+A

1+
∑

i e
−Ki+B

, where

A,B ≥ 0. Furthermore, one can show thatA(1 +
∑

i
e−Ki) ≥ B(1 −

∑
i
e−Ki), which implies that 1−e

−Kout

1+e−Kout
≥

1−
∑

i e
−Ki

1+
∑

i e−Ki
giving us the

inequality.

wherem is supported on(−Kv,Kv) and has total mass1 (if
it has zero probability we havēγ = 0.)

Messages entering a variable node updateb have the form

b = γD(p,Kp) + γ̄m

whereKp ≤ Kv is the outgoing magnitude at a check when
all incoming magnitudes equalKv and m is supported on
(−Kp,Kp). From (16) we havee−Kp ≤ (dr − 1)e−Kv

. We
assumeKv > 2 ln(dr − 1) large enough so that2Kp > Kv.
In the subsequent analysis we also assume that the support of
the channelc is restricted to(−Kc,Kc) where we assume that
Kc ≤ 2Kp −Kv.

The analysis tracks the quantitiesγp and γ̄B (m). For
stability we aim to show that both quantities converge to
0. Note that this implies thatγ → 1. In the standard
stability analysis of irregular ensembles and full BP, one tracks
the Battacharyya parameter of the density through the DE
iterations when the density is near∆∞. At the check node the
Battacharyya parameter undergoes a constant factor gain with
a factor ofρ′(1). On the variable node side the parameter is
raised to the power of the minimum variable node degree less
one, and scaled the channel Battacharyya. Thus, one arrives
at the stability conditionλ2ρ′(1)B (c) < 1. If the minimum
variable node degree is three then the update bound takes the
form B (a(ℓ+1)) ≤ CB (a(ℓ))

2
, for some positive constantC,

and one obtains doubly exponential decay inB (a(ℓ)). For the
saturated case we accomplish something similar, although the
conditions are different. As a first step we show that we still
have constant factor gain at check nodes.

1) Check Node Analysis:We assume a right regular en-
semble with check degreed+ 1. Let us represent the density
entering the check node asγD(p,Kv) + γ̄m wherem is a
density supported on(−Kv,Kv). Then the density emerging
out of the check node is given byγ′D(p′,Kp) + γ̄′m′ ,

(γD(p,Kv)+ γ̄m)�d, whereKp is the magnitude of the check
output when all inputs areKv, which satisfiesKv − ln d ≤
Kp ≤ Kv, and support ofm′ is also(−Kp,Kp). Let us now
perform the computation explicitly. In this section we useD

to denoteD(p,Kv). We have,

(γD(p,Kv) + γ̄m)�d =

d
∑

k=0

(

d

k

)

γkγ̄d−k
D

�k
� m

�d−k

= γ̄dm�d +

d−1
∑

k=1

(

d

k

)

γkγ̄d−k
D

�k
� m

�d−k + γdD�d

where we have separated out two of the terms from the sum.
Although we have indicated that density evolution for check
node update is associative, which it is for min-sum and sum-
product algorithms, we do not actually require the associative
property and a densityD�k

�m
�d−k can simply be understood

as the outgoing one corresponding tok incoming messages
from densityD andd− k messages from densitym.

By Lemma 24 we have for1 ≤ k ≤ d− 1,

B (D�k
� m

�d−k) ≤ (1 + k(e
Kv

2 B (D)− 1))(d− k)B (m)

≤ ke
Kv

2 B (D)(d− k)B (m) .
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A little algebra shows that

d−1
∑

k=1

(

d

k

)

γkγ̄d−kk(d− k) = γγ̄d(d − 1)

and we now obtain

B

(

d−1
∑

k=1

(

d

k

)

γkγ̄d−k
D

�k
� m

�d−k
)

≤ γγ̄d(d− 1)e
Kv

2 B (D)B (m) .

Lemma 24 also gives

B (m�d) ≤ dB (m) ,

so we now have

B

(

d−1
∑

k=0

(

d

k

)

γkγ̄d−k
D

�k
� m

�d−k
)

≤ d
(

(d− 1)γe
Kv

2 B (D) + 1
)

γ̄B (m) .

We haveγ′D(p′,Kp) = γdD�d so p′ = 1−(1−2p)d

2 ≤ dp
where we have used Lemma 23 to obtain the last inequality.

We summarize the results as follows.
Lemma 19:Let the incoming density to a degreed + 1

check node beγD(p,Kv) + γ̄m. Then the outgoing density
γ′D(p′,Kp) + γ̄′m′ satisfies the following

[

γ̄′ B(m′)
γ′p′

]

≤ d

[

ξ 0
0 1

] [

γ̄B(m)
γp

]

whereξ =
(

(d− 1)γe
Kv

2 B (D(p,Kv)) + 1
)

.

In the stability region we will have the boundξ ≤ 3 so we
see that we have been able to obtain a linear growth bound
for the check node density evolution update.

2) Variable Node Analysis:Consider a variable node of
degreed+ 1 and incoming density

b = γD(p,Kp) + γ̄m.

The outgoing density from the variable node has the form

a = γ′D(p′,Kv) + γ̄′m′.

The densitya is the saturation of

d−2
∑

k=0

(

d

k

)

γkγ̄d−k
c⊛ D

⊛k ⊛m
⊛(d−k)

+ dγ̄γd−1
c⊛ D

⊛d−1 ⊛m+ γdc⊛ D
⊛d

(17)

where in this section we useD to denoteD(p,Kp). In
particularγ′p′ is the total mass of this density on(−∞,−Kv]
andγ′m′ is the restriction of this density to(−Kv,Kv).

We see in the above decomposition that incoming messages
either have magnitudeKp, i.e. are drawn fromD, or they are
drawn fromm and therefore take values in(−Kp,Kp). We
can define a type for an outgoing message consisting of a
triple of non-negative integers(n−, nm, n+) wheren−+nm+
n+ = d. Here n− represents the number of−Kp incoming
messages,n+ the number of+Kp incoming messages, andnm

the number of incoming message drawn fromm that comprise
the outgoing message. Our analysis will pay special attention

to the terms withnm = 0 and nm = 1 which is why we
distinguished these terms.

A handy elementary result is the following.
Lemma 20:If a, b ≥ 0 andk ≤ d then

d−k
∑

i=0

(

d

i

)

ad−ibi ≤
(

d

k

)

ak(a+ b)d−k

Proof: For i ≤ d− k we have,
(

d

i

)

≤
(

d

i

)(

d− i

k

)

=

(

d

k

)(

d− k

i

)

.

and the lemma follows from the binomial theorem. We remark
that there is an alternate form since

(

d
k

)

=
(

d
d−k

)

.

Let us consider the three parts of (17). The first part com-
prises messages types(n−, nm, n+) wherenm ≥ 2. The sec-
ond part comprises messages types(n−, nm, n+) with nm = 1
and the third part comprises messages types(n−, nm, n+) with
nm = 0. We will consider the contribution of each part toγ′p′

and toγ̄′m′.
Let us first considerγ′p′. We use the bound

∫ −K

−∞ a(x)dx ≤
e−

K
2 B(a), which is valid for any density and anyK ≥ 0,

Lemma 20 and the multiplicative property of Battacharyya
parameter at the variable node side to obtain

∫ −Kv

−∞

d−2
∑

k=0

(

d

k

)

γkγ̄d−k
c⊛ D

⊛k ⊛m
⊛(d−k)(x)dx

≤ e−
Kv

2
d(d − 1)

2
(γ̄B(m))2 B(c)B(b)d−2 . (18)

Now we consider contributions fromnm = 1. A message of
type (n−, 1, n+) has value at most(n+−n−)Kp+(Kp+Kc)
and at least(n+−n−)Kp− (Kp+Kc). Recall that(−Kc,Kc)
is the channel support. Hence ifn+−n− > 0 then the message
has value greater than−Kv and if n+ − n− < −1 then the
message has value less than−Kv. If n+ − n− = 0 then the
message has value less than−Kv only if the contribution from
c⊛m is less than−Kv. If n+ − n− = −1 then the message
can have value less than−Kv only if the contribution from
c⊛m is less than0. Hence, we obtain
∫ −Kv

−∞
c⊛m⊛ D

d−1(x)dx ≤


























∑

d−4
2

j=0

(

d−1
j

)

pd−1−j p̄j

+
(d−1

d−2
2

)

p
d
2 p̄

d−2
2 E(c⊛m) d even

∑

d−3
2

j=0

(

d−1
j

)

pd−1−j p̄j

+
(d−1

d−1
2

)

p
d−1
2 p̄

d−1
2 e−

Kv

2 B(c⊛m) d odd

(19)

Note that for the cased even, we useE(c⊛m) to bound the
contribution from(c ⊛ m)(x) for x ≤ 0. Now we consider
contributions fromnm = 0. A message of type(n−, 0, n+)
has value at most(n+ − n−)Kp + (Kc) and at least(n+ −
n−)Kp − (Kc). Hence ifn+ − n− ≥ 0 then the message has
value greater than−Kv and ifn+−n− < −1 then the message
has value less than−Kv. If n+ −n− = −1 then the message
can have value less than−Kv only if the contribution fromc
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is less than0. Hence, we obtain
∫ −Kv

−∞
c⊛ D

d(x)dx ≤






∑

d−2
2

j=0

(

d
j

)

pd−j p̄j d even
∑

d−3
2

j=0

(

d
j

)

pd−j p̄j +
(

d
d−1
2

)

p
d+1
2 p̄

d−1
2 E(c) d odd

(20)

Using the boundE(c⊛m) ≤ B(c⊛m) and Lemma 20 we
obtain from (19)

∫ −Kv

−∞
c⊛m⊛ D

d−1(x)dx ≤
{(d−1

d−2
2

)

p
d
2 (p+B(c⊛m)) d even

(d−1
d−1
2

)

p
d−1
2 (p+ e−

Kv

2 B(c⊛m)) d odd

and using the boundE(c) ≤ 1 and Lemma 20 we obtain from
(20)

∫ −Kv

−∞
c⊛ D

d(x)dx ≤
(

d

⌊d−1
2 ⌋

)

p⌈
d+1
2 ⌉ .

Combining the above into (17) we have

γ′p′ ≤e−Kv

2
d(d − 1)

2
(γ̄B(m))2 B(c)B(b)d−2

+ d

(

d− 1

⌊d−1
2 ⌋

)

(γp)⌊
d
2 ⌋
(

(γp) +B(c)(γ̄B(m))
)

+

(

d

⌊d−1
2 ⌋

)

(γp)⌈
d+1
2 ⌉

≤e−Kv

2
d(d − 1)

2
(γ̄B(m))2 B(c)B(b)d−2

+ (d+ 1)(4γp)⌊
d
2 ⌋+1 + d(4γp)⌊

d
2 ⌋ B(c)(γ̄B(m))

(21)

where we have used
(

d
⌊ d−1

2 ⌋
)

≤ 2d−1. We note that whend is

odd we can add another factor ofe−
Kv

2 to the last term.
Now we consider the contribution tōγ′m′. Let us introduce

the notation⌊a⌋◦K(x) = a(x)1{|x|<K}. First we note that the
contribution to B(m′) from types with nm ≥ 2 is upper
bounded by

B
(

d−2
∑

k=0

(

d

k

)

γkγ̄d−k
c⊛ D

⊛k ⊛m
⊛(d−k)

)

≤

d(d− 1)

2
(γ̄B(m))2 B(c)B(b)d−2,

where we applied Lemma 20.
Let us introduce the notationq = e

Kp

2 p and q̃ = e−
Kp

2 p̄.
Note that for any densitya we haveB(a⊛∆K) = e−KB(a).

Now we consider the contribution from types withnm = 1.
A type (n−, 1, n+) will have a non-zero contribution only if
the interval centered on(n+ − n−)Kp of width 2(Kc + Kp)
intersects(−Kv,Kv). Note thatm′ = ⌊c⊛m⊛ D

d−1⌋◦Kv .
Since we assume2Kp ≥ Kc +Kv andKp ≤ Kv we obtain

B(⌊c⊛m⊛ D
d−1⌋◦Kv ) ≤

B(c)B(m)







∑
d
2

j= d−2
2

(

d−1
j

)

qd−1−j q̃j d even
∑

d+1
2

j= d−3
2

(

d−1
j

)

qd−1−j q̃j d odd

Using the inequality2
(d−1

d−3
2

)

≥
(d−1

d−1
2

)

for odd d we can write
this as

B(⌊c⊛m⊛ D
d−1⌋◦Kv)

≤B(c)B(m)

{(d−1
d
2

)

(qq̃)
d−2
2 (q + q̃) d even

(d−1
d−3
2

)

(qq̃)
d−3
2 (q + q̃)2 d odd

=B(c)B(m)

{(d−1
d
2

)

(pp̄)
d−2
2 B(D(p,Kp)) d even

(d−1
d−3
2

)

(pp̄)
d−3
2 B(D(p,Kp))2 d odd

≤B(c)B(m)

{

(4p)
d−2
2 B(D(p,Kp)) d even

2(4p)
d−3
2 B(D(p,Kp))2 d odd

Finally we consider the contribution from types withnm =
0. A type (n−, 0, n+) will have a non-zero contribution only if
the interval centered on(n+−n−)Kp of width 2Kc intersects
(−Kv,Kv). Hence we obtain

B(⌊c⊛ D
d⌋◦Kv )

≤B(c)







(

d
d
2

)

q
d
2 q̃

d
2 d even

∑

d+1
2

j= d−1
2

(

d
j

)

qd−j q̃j d odd

=B(c)

{
(

d
d
2

)

(pp̄)
d
2 d even

(

d
d−1
2

)

(pp̄)
d−1
2 B(D(p,Kp)) d odd

≤B(c)

{

(4p)
d
2 d even

(4p)
d−1
2 B(D(p,Kp)) d odd

To get the final bound onγ′B(m′) we need to multiply the
above bounds bydγ̄γd−1 when nm = 1 and by γd when
nm = 0. In the next section we will useB(D(p,Kp)) ≤ B(b)
to further bound the above expressions.

D. Stability with Minimum Degree3.

Let us assume that the minimum variable node degree, given
by d+ 1, is at least three and a right regular degreedr + 1.

In view of (14) and (15) we may assumeB (a(n)) ≤ 3e−
Kv

2

which impliesB (b(n)) ≤ 3dre
−Kv

2 , γ(n)p(n)e
Kv

2 ≤ 3e−
Kv

2

andB(m(n)) ≤ 3e−
Kv

2 for all n ≥ N for someN ∈ N. Here
we use the notation,a(n) = γ(n)D(p(n),Kv) + γ̄(n)m(n). We
assumeKv large enough so that for alld we have

d(d− 1)

2
B(c)B(b(n))d−2 ≤ 1.

We put together everything done previously to bound the
contributions to the density coming out of the variable nodes
at the(n + 1)th iteration. To do this, we first use the check
node analysis in Lemma 19 with incoming density given by
a
(n). Then, using the variable node analysis of the previous

section we obtain

γ(n+1)p(n+1) ≤e−Kv

2 (drξγ̄
(n)

B(m(n)))2

+(d+1)(4drγ
(n)p(n))⌊

d
2 ⌋+1

+d(4drγ
(n)p(n))⌊

d
2 ⌋B(c)drξ(γ̄

(n)
B(m(n))),

(22)
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γ̄(n+1)
B(m(n+1)) ≤(drξγ̄

(n)
B(m(n)))2

+2dB(c)drξ(γ̄
(n)

B(m(n))(dr4γ
(n)p(n))⌊

d−2
2 ⌋

B(b(n))

+B(c)(dr4γ
(n)p(n))⌊

d
2 ⌋

(23)

To obtain the second inequality we useB(b(n)) ≤ 1, where
we assumeKv large enough so that3dre−

Kv

2 ≤ 1.
Now for any ǫ > 0 we chooseKv large enough so that

(dr4γ
(n)p(n)) < 1 and for alld ≥ 2 we have

ǫ ≥(drξ)
2γ̄(n) B(m(n)) + 2dB(c)drξB(b(n)),

ǫ ≥e−Kv

2 B(c)4dr,

ǫ ≥e−Kv

2 4dr(d+ 1)
(

1 +B(c)drξ(γ̄
(n)

B(m(n)))
)

,

which then yields
[

γ̄B (m)

e
Kv

2 γp

](n+1)

≤ ǫ

[

1 1
1 1

] [

γ̄B (m)

e
Kv

2 γp

](n)

, (24)

where [·](n) denotes the values at thenth iteration. We
summarize our findings in the following.

Theorem 21:Consider an irregular ensemble with check
regular degreedr and minimum variable node degree at least
three. If a channelc is below the BP threshold then it is below
the threshold for SatBP forKv sufficiently large.

Proof: Assume the channelc is below the BP thresh-
old. Let x∗ be the constant of Lemma 18. Under BP we
haveB(T (ℓ)(c,∆0)) < x∗/2 for someℓ large enough. By
Lemma 14 and Lemma 13 we haveB(S

(ℓ)
Kv (c,∆0)) ≤ x∗

for Kv large enough. By Lemma 18, and assumingKv

large enough, we haveB(S
(n)
Kv (c,∆0)) ≤ 3e−

Kv

2 for all n
large enough. The stability analysis above then implies that
limn→∞ E (S

(n)
Kv (c,∆0)) = 0.

VI. B LOCK THRESHOLDS ANDSPEED OFCONVERGENCE

Thresholds for iterative coding systems are usuallybit
thresholds. In some cases one can show that the iterative
block error rate has the same threshold [19], [20]. For standard
irregular ensembles it is sufficient that variable node degrees
are at least three. The key observation for degree three
and above is that below the bit threshold the bit error rate
converges to zero doubly exponentially in iteration. One can
maintain tree-like neighborhoods with blocklength growing
exponentially in iteration and therefore the block error rate
can be shown to converge to zero. In [19] it was shown
that degree two variable nodes connected in an accumulate
structure could be admitted while retaining the block threshold
result provided an appropriate update schedule was adopted.
The key idea there was that, by effectively updating a stringof
degree two updates in sequence for each iteration, one could
achieve exponential decay in error probability with as large
and exponent as required.

In this section we consider the impact of saturation on the
block threshold. The stability analysis for ensembles withmin-
imum variable node degree three shows exponential decay in
iteration of bit error probability with arbitrarily large exponent.
Consequently, we can show for a suitable ensemble that the

block threshold coincides with the bit threshold. Neverthe-
less, saturation has a pronounced effect on stability and we
observe this especially in the conditions required for doubly
exponential convergence of the bit error probability. We show
that doubly exponential convergence occurs for SatBP with
minimum variable node degree five. With minimum variable
node degree four doubly exponential convergence does not
occur but can be recovered the addition of a single extra LLR
magnitude and a two-tiered saturation. For minimum variable
degree three doubly exponential convergence of the bit error
rate can be recovered with a more radical modification of the
decoding process (erase received values once the bit error rate
is sufficiently small.)

Let us briefly review the standard block threshold argu-
ments. For further details we refer to [19], [20]. Density
evolution gives the bit error ratePb(ℓ) as a function of
iteration assuming tree-like neighborhoods up to iteration ℓ.
For block lengthn the block error rate, assuming tree-like
neighborhoods, is upper bounded bynPb(ℓ). For the block
error rate analysis we require thatall computation trees are
tree-like. This is accomplished through an expurgation or
modification of the standard ensemble. The simplest approach,
and the one we adopt, is to considern = n(ℓ) large enough so
that the fraction of variable nodes whose neighborhoods are
not tree-like tends to zero asℓ gets large. Then, we modify
the code by declaring the associated bits as known and set
to 0. This lowers slightly the rate of the code and in effect
modifies slightly the degree structure. The net effect is an
improvement in bitwise performance. Asymptotically in large
ℓ the modification is negligible so that full rate is recovered.

The basic calculation is as follows. Consider a computation
tree associated toℓ iterations. LetMℓ denote the number of
variable nodes in the computation tree. Letn ≫ Mℓ denote
the block length. It is not difficult to see that there exists a
constantγ independent ofℓ andn such that the probability
that the neighborhood is tree like is at least

(1− γ
Mℓ

n
)Mℓ ≥ (1− γ

M
2
ℓ

n
)

Now, we have a bound of the formM2
ℓ ≤ eMℓ (whereM

depends on the degree structure) and we choosen = eNℓ

whereN > M. ThusN depends only on the degree structure
of the code. It then follows that the fraction of variable nodes
whose neighborhoods are not tree-like is tending to0 in ℓ.
To show that the block threshold equals the bit threshold it
remains only to show that

lim
ℓ→∞

eNℓPb(ℓ) = 0.

It is sufficient therefore to show that

lim inf
ℓ→∞

(− lnPb(ℓ)) > N .

Let us considerE(ℓ) :=
[

1 1
]

[

γ̄B (m)

e
Kv

2 γp

](ℓ)

. We clearly

have

Pb(ℓ) ≤ E(ℓ) = γ̄(ℓ)B (m(ℓ)) + e
Kv

2 γ(ℓ)p(ℓ).
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From the previous analysis we know that there exists an
ℓ0 such thatE(ℓ0) is small. Recursing equation (24), we get
E(ℓ + ℓ0) ≤ (2ǫ)ℓE(ℓ0) = E(ℓ0)e

−ℓ ln(1/(2ǫ)). We can now
makeǫ arbitrarily small by choosingKv large enough. Hence
for sufficiently largeKv we obtain

lim inf
ℓ→∞

(− lnE(ℓ)) > N

thus establishing the desired result.

A. Variable nodes with Minimum Degree at least 5

In this section we show that SatBP does achieve doubly
exponential convergence inℓ of the error probability when
the variable node degrees are at least five.

The rate of convergence depends largely on the variable
node update. It is clear from (21) that, even with degree three,
γ′p′ has quadratic dependence onγp andγ̄B(m). For doubly
exponential convergence we can admit linear dependence of
γ̄B(m) on γp, but the dependence on̄γB(m) must be of
higher order. Let us make this more precise.

As before we assumeKv andN large enough so that for
all d andn ≥ N we haved(d−1)

2 B(c)B(b(n))d−2 ≤ 1 and
(4drγ

(n)p(n)) < 1. Then from (22) and (23), assumingd ≥ 4,
we get

e
Kv

2 γ(n+1)p(n+1) ≤ (drξγ̄
(n)

B(m(n)))2

+e−Kv

(4dre
Kv

2 γ(n)p(n))3

+e−
Kv

2 (4dre
Kv

2 γ(n)p(n))2 B(c)drξ(γ̄
(n)

B(m(n))),
(25)

γ̄(n+1)
B(m)(n+1) ≤ (drξγ̄

(n)
B(m(n)))2

+2dB(c)drξ(γ̄
(n)

B(m(n))e−
Kv

2 (dr4e
Kv

2 γ(n)p(n))B(b(n))

+e−Kv

B(c)(dr4e
Kv

2 γ(n)p(n))2,
(26)

from which we easily obtain that forKv large enough we have

γ̄(n+1)
B(m)(n+1) + e

Kv

2 γ(n+1)p(n+1) ≤
2(drξ)

2(γ̄(n)B(m)(n) + e
Kv

2 γ(n)p(n))2,

which yields doubly exponential convergence in the iterations.

B. Decoder Alteration for Degree Four

When d = 3 (degree four) the SatBP decoder does not
yield doubly exponential stability convergence. The limiting
effect arises in the variable node analysis from messages of
type (n− = 0, nm = 1, n+ = 2) which contribute a linear
dependence ofB(m′) on B(m). This occurs because0 <
2Kp − (Kp +Kc) < Kv. If the support ofm were reduced to
[−λKv, λKv] where2Kp − (λKv +Kc) > Kv then this term
would be eliminated and doubly exponential convergence can
be recovered.

Thus, for minimum degree four we consider a two step sat-
uration at variable nodes where all messages with magnitude
at leastKv are saturated toKv and messages with magnitude
betweenλKv andKv are saturated toλKv. Hence, for this
section we assume the inequality

2Kp −Kv ≥ Kc + λKv .

We assumeλ ∈ (12 , 1] and note that the above inequality then
impliesKc ≤ (1− λ)Kv.

Note that an equivalent interpretation under scaling of the
saturation levels is that we append an additional magnitude
level to the SatBP decoder. Under this interpretation we
identify λKv with Kv andKv with λ−1Kv where magnitudes
above this level are saturated toλ−1Kv. Under this interpre-
tation the modification appears as an improvement on SatBP
and, using this perspective, it is relatively easy to reproduce the
results on the approximation of BP by the saturating decoder.
Let us make this more precise. For notational purposes we
will adhere to the original interpretation.

Let
⌊

⌊a⌋
⌋

λ,K
denote the double saturation ofa and let

⌊

⌊a⌋
⌋

λ,Ksym
denote the symmetrized version. LetSλ,Ksym denote

the corresponding one step density evolution update. We easily
obtain the following generalization of Lemma 10

d(a,
⌊

⌊a⌋
⌋

λ,Ksym
) ≤ d(a, ⌊a⌋λKsym

) ≤ 1− tanh(λK/2),

wherea is any symmetricL-density. It is not hard to see that
we can also obtian the following generalization of Lemma 13,

d(T (ℓ)(c,∆0), S
(ℓ)
λ,Ksym

(c,∆0)) ≤ 2e−λK+ℓ·ln(2(dl−1)(dr−1)).

The relationship between the symmetrized decoder and the
non-symmetrized version as analyzed in in Lemma 14 remains
essentially unchanged and we have that for any0 < ǫ < 1 and
ℓ ∈ N, there exists aKv large enough such that

B(S
(ℓ)
λ,K(c,∆0)) ≤

1

1− ǫ
B(S

(ℓ)
λ,Ksym

(c,∆0)).

We can now focus our attention on the stability analysis.
Let a be a density supported on[−Kv,Kv]. Then we have the
two bounds,

B(
⌊

⌊a⌋
⌋

λ,Kv) ≤ e
Kv

−λKv

2 B(⌊a⌋Kv ), (27)

B(
⌊

⌊a⌋
⌋

λ,Kv) ≤ B(a) + e−
λKv

2 . (28)

The first (multiplicative) inequality is new and will be used
to establish doubly exponential convergence. Indeed, since
e

Kv
−λKv

2 ≥ 1, we have

B(
⌊

⌊a⌋
⌋

λ,Kv) ≤ e
Kv

−λKv

2 e
Kv

2

∫ −Kv

−∞
a(x)dx

+

∫ λKv

−Kv

e−
x
2 a(x)dx + e

Kv
−λKv

2

∫ Kv

λKv

e−
x
2 a(x)dx

+ e
Kv

−λKv

2 e−
Kv

2

∫ ∞

Kv

a(x)dx ≤ e
Kv

−λKv

2 B(⌊a⌋Kv).

The second (additive) inequality allows us to reproduce the
near stability analysis of Section V-B to obtain as in the
derivation of 14 and 15 for the doubly saturated decoder the
bounds

B (a(n)) ≤ 3e−λKv/2 (29)

B (b(n)) ≤ 3ρ′(1)e−λKv/2 . (30)

which hold forn ≥ N (for someN ∈ N) andKv large enough
assuming the channel is below the BP threshold.

We assume that no additional saturation is performed at
the check node so, in particular, Lemma 19 still applies. In
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the variable node analysis we note that (21) still applies.
The change in the analysis concerns the bound onγ̄′m′

in the variable node analysis. New considerations apply to
the inner saturation of the densitym′. Further note that the
incoming densities in to the variable nodes have support on
±Kp∪(−λKv, λKv). First we note the contribution from types
with nm ≥ 2. Let the notation

⌊

⌊a⌋
⌋◦
λ,Kv denote the density on

the support[−λKv, λKv] which is equivalent, in this case,
to the support on(−Kv,Kv). Using analysis in the previous
section and the inequality (27) we get,

B

(

⌊

⌊
d−2
∑

k=0

(

d

k

)

γkγ̄d−k
c⊛ D

⊛k ⊛m
⊛(d−k)⌋

⌋◦
λ,Kv

)

≤

e
Kv

−λKv

2
d(d− 1)

2
(γ̄B(m))2 B(c)B(b)d−2.

Now we consider the contribution from types withnm = 1.
A type(n−, 1, n+) can have a non-zero contribution tom′ only
if the interval centered on(n+−n−)Kp of width 2(Kc+λKv)
intersects(−Kv,Kv). Since we assume2Kp ≥ Kc+Kv+λKv

andKp ≤ Kv we obtain

B(⌊c⊛m⊛ D
d−1⌋◦Kv ) ≤

B(c)B(m)







∑

d
2

j= d−2
2

(

d−1
j

)

qd−1−j q̃j d even
(d−1

d−1
2

)

q
d−1
2 q̃

d−1
2 d odd,

where recall thatq = e
Kp

2 p andq̃ = e−
Kp

2 p̄. Again, combining
the above with (27), we obtain

B

(

⌊

⌊c⊛m⊛ D
d−1⌋
⌋◦
λ,Kv

)

≤

e
Kv

−λKv

2 B(c)B(m)

{(

d−1
d
2

)

(pp̄)
d−2
2 B(D(p,Kp)) d even

(d−1
d−1
2

)

(pp̄)
d−1
2 d odd.

Finally we consider the contribution from types withnm =
0. A type (n−, 0, n+) will have a non-zero contribution tom′

only if the interval centered on(n+ − n−)Kp of width 2Kc

intersects(−Kv,Kv). Hence we obtain

B(⌊c⊛ D
d⌋◦Kv ) ≤ B(c)







(

d
d
2

)

q
d
2 q̃

d
2 d even

∑

d+1
2

j= d−1
2

(

d
j

)

qd−j q̃j d odd

which gives

B(
⌊

⌊c⊛ D
d⌋
⌋◦
λ,Kv )

≤B(c)

{(

d
d
2

)

(pp̄)
d
2 d even

e
Kv

−λKv

2

(

d
d−1
2

)

(pp̄)
d−1
2 B(D(p,Kp)) d odd

Sinceλ > 1
2 we can assume ford ≥ 3 and forKv large

enough that,

e
Kv

−λKv

2
d(d− 1)

2
B(c)B(b)d−2

(30)
≤ e−

2λ−1
2 Kv d(d − 1)

2
3ρ′(1)B(c)B(b)d−3

≤1.

Also,

B(
⌊

⌊c⊛m⊛ D
d−1⌋
⌋◦
λ,Kv) ≤

e
Kv

−λKv

2 B(c)B(m)

{(d−1
d
2

)

(pp̄)
d−2
2 B(D(p,Kp)) d even

(d−1
d−1
2

)

(pp̄)
d−1
2 d odd

≤ e
Kv

−λKv

2 B(c)B(m)

{

(4p)
d−2
2 d even

(4p)
d−1
2 d odd.

Finally,

B(
⌊

⌊c⊛ D
d⌋
⌋◦
λ,Kv ) ≤ B(c)

{

(4pp̄)
d
2 d even

e−
2λ−1

2 Kv

3ρ′(1)(4p)
d−1
2 d odd

≤ (4p)⌊
d−1
2 ⌋.

To get the final bound onγ′B(m′) we need to multiply the
above bounds bydγ̄γd−1 when nm = 1 and by γd when
nm = 0. For Kv large enough we can make4γp ≤ 1. Thus
we get,

γ̄′ B(m′) ≤ B(c)
(

(γ̄B(m))2+de
Kv

−λKv

2 B(c)(γ̄B(m))(4γp)

+ (4γp)
)

Assumingd ≥ 3 we also have from the previous analysis,

γp′ ≤e−Kv

2
d(d− 1)

2
(γ̄B(m))2 B(c)B(b)d−2

+ (d+ 1)(4γp)⌊
d
2 ⌋+1 + d(4γp)⌊

d
2 ⌋ B(c)(γ̄B(m)).

Thus we now obtain quadratic dependence and hence doubly
exponential convergence even when minimum variable node
degree is four.

C. Decoder Alteration for Degree Three

In this section we will show that when the minimum
variable node degree is 3, we can still have doubly exponential
convergence of the bit error rate which implies an exponential
(in blocklength) convergence of the block error rate with a
decoder alteration. In this case, however, we require an itera-
tion dependent alteration of the decoder. We alter the decoder
only after the error rate is sufficiently small. Hence, for the
analysis we assume operation in the near stability region. More
precisely, we haveB (a) ≤ 3e−Kv/2, wherea is the outgoing
density at the variable nodes. Sincea = γD(p,Kv) + γ̄m, we
further haveγ̄B (m) ≤ 3e−Kv/2 andγp ≤ 3e−Kv/2.

We note that the previous technique of saturation at two
levels does not yield the quadratic dependence we seek for
the termB(m′). Indeed, any incoming density having the type
(n− = 0, nm = 1, n+ = 1) will always contribute to the
outgoing density of typem′, implying linear dependence of
B(m′) on B(m). To show doubly exponentially fast conver-
gence of the bit error rate, we modify the decoder as follows.
After the messages have become reasonably good, i.e., we are
in the near stability region, we erase the channel information.
The intuition is that at this point the extrinsic information is
good enough for successful decoding. Then for every incoming
message we make a hard-decision to either+1 or −1 based
on the sign of its LLR value. The decoding algorithm then
proceeds in a manner similar to the erasure decoder [1]. Let
us explain this in more detail.

The decoder has now three messages{−1, 0,+1}. At the
variable node side, there is an erasure message on the outgoing

13



edge if and only if all the incoming messages are erasures or
there is exactly one+1 and−1 message. The outgoing edge
carries a−1 message if and only if all incoming messages are
−1 or one message is an erasure and the other is−1. At the
check node side, the outgoing message is an erasure if at least
one incoming message is an erasure, else the outgoing message
is the product of the incoming messages. We can now write the
density evolution equation analysis for this decoder as follows.
Let xℓ andyℓ represent the probability of the messages0 and
−1, respectively, coming out of the variable node. Also, let
wℓ and zℓ represent the probability of the messages0 and
−1, coming out of the check node respectively. Since we are
in the near stability region, it is not hard to see thatx0 ≤
γ̄B (m) ≤ ce−Kv/2 and y0 ≤ B (a) ≤ ce−Kv/2. Indeed,
y0 =

∫

x<0
a(x)dx ≤

∫

x≤0
a(x)e−x/2dx ≤ B(a). From the

decoder rules we immediately get,

xℓ
(a)

≤w2
ℓ + zℓ,

yℓ =z
2
ℓ + wℓzℓ,

wℓ =1− (1 − xℓ−1)
dr−1 ≤ (dr − 1)xℓ−1,

zℓ
(b)

≤1− (1 − yℓ−1)
dr−1 ≤ (dr − 1)yℓ−1,

wheredr is the check node degree. To obtain(a) we simply
upper bound the probability of message with value+1 by 1.
At the check node side, the outgoing message is−1 if there are
odd number of incoming messages that are−1. This implies
that at least one incoming message must be−1 and hence we
obtain inequality(b).

Combining the four inequalities above, it is not hard to see
thatxℓ+yℓ ≤ C(xℓ−2+yℓ−2)

2 for some positive constantC.
This impliesxℓ + yℓ ≤ (Ax0)

2n/2

, whereA is some positive
constant andn is the number of iterations of the erasure
decoder. Hence we obtain the doubly exponential convergence.

VII. T HRESHOLD FOR THESATBP DECODER AND

CHANNELS WITH INFINITE SUPPORT

Consider a channel family, BMS(h), ordered byh and let
h

BP(λ, ρ) denote the BP threshold when transmitting over this
channel family using a(λ, ρ) ensemble. Also, a priori the
channel has support on(−∞,∞).

Let us describe the analysis of the SatBP decoder in this
case. Consider transmission over a channel withL-densityc.
From the previous analysis we have that the channel support
must be finite for stability of the perfect decoding fixed point
when we use the SatBP decoder. As a result, we saturate the
channelc to a valueKc ≤ 2Kp −Kv before we feed it to the
SatBP decoder. The valueKp is defined in section V-C. Thus
we consider transmission over a channel⌊c⌋Kc .

For the purpose of analysis we also consider the correspond-
ing symmetric channel, achieved via flipping as explained
previously. Denote it by⌊c⌋Kc

sym. We have the following
lemma.

Lemma 22 (Stability Condition for Sym. Sat. Channels):
Consider transmission over a general BMS channelc using
(λ, ρ) ensemble. Letc ∈ BMS(h) be such that it satisfies the
following stability condition,

(λ′(0)ρ′(1))(B(c) + 2e−Kc/2) < 1.

Then, the full BP decoder is successful when transmitting
over the symmetric channel⌊c⌋Kc

sym. Furthermore, the loss
in capacity is also bounded by2ln 2e

−Kc/2.
Proof: We bound the Wasserstein distance between the

DE with channelc and DE with channel⌊c⌋Kc
sym as follows,

d(T (ℓ)(c,∆0), T
(ℓ)(⌊c⌋Kc

sym,∆0)) =

d(T (c, T (ℓ−1)(c,∆0)), T (c, T
(ℓ−1)(⌊c⌋Kc

sym,∆0)))+

d(T (c, T (ℓ−1)(⌊c⌋Kc
sym,∆0)), T (⌊c⌋Kc

sym, T
(ℓ−1)(⌊c⌋Kc

sym,∆0)))
(vi,viii), Lem. 13 in [18]

≤ αℓd(T
(ℓ−1)(c,∆0), T

(ℓ−1)(⌊c⌋Kc
sym,∆0))

+ 2d(c, ⌊c⌋Kc
sym)

= αℓd(T
(ℓ−1)(c,∆0), T

(ℓ−1)(⌊c⌋Kc
sym,∆0))+2(1−tanh(

Kc

2
)),

where

αℓ = 2(dl − 1)

dr−1
∑

j=1

(1−B
2(a))

dr−1−j
2 (1−B

2(b))
j−1
2 ,

wherea = T (ℓ−1)(c,∆0) and b = T (ℓ−1)(⌊c⌋Kc
sym,∆0) and

dl anddr correspond to the average variable node and check
node degrees. Following the same steps as in the proof of
lemma 13 we get

B(T (ℓ)(⌊c⌋Kc
sym,∆0))

≤ B(T (ℓ)(c,∆0)) + 2
√
2e

−Kc+ℓ·ln(2(dl−1)(dr−1))

2 .

Thus, for anyξ > 0, we can chooseKc large enough, such
thatB(T (ℓ)(⌊c⌋Kc

sym,∆0)) ≤ ξ for all ℓ ≥ ℓ0. Hereℓ0 is such
thatB(T (ℓ0)(c,∆0)) ≤ ξ/2.

Let us denotexℓ = B(T (ℓ)(⌊c⌋Kc
sym,∆0)). Using extremes

of information combining [1] we getxℓ ≤ B(⌊c⌋Kc
sym)λ(1 −

ρ(1 − xℓ−1)). Expanding around zero, we getxℓ ≤
B(⌊c⌋Kc

sym)λ
′(0)ρ′(1)xℓ−1 + O(x2ℓ−1). Using the hypothesis

of the lemma, lemma 10 and (ix), Lem. 13 in [18] we have,
B(⌊c⌋Kc

sym)λ
′(0)ρ′(1) < 1. Hence, there existsη > 0 such

thatB(⌊c⌋Kc
sym)λ

′(0)ρ′(1)+η < 1. From above we know that
there existsℓ (and consequentlyKc large enough) such that
the second order termO(x2ℓ−1) is upper bounded byηxℓ−1.
Thus we getxℓ ≤ (B(⌊c⌋Kc

sym)λ
′(0)ρ′(1) + η)xℓ−1 < xℓ−1.

Thusxℓ → 0 asℓ→ ∞ and we get the lemma.
The loss in capacity is bounded by using the Wasserstein

distance. Thusd(c, ⌊c⌋Kc
sym) ≤ 1 − tanh(Kc/2) implies

H(⌊c⌋Kc
sym) ≤ H(c) + 2

ln 2e
−Kc/2. Above we have used

1 − tanh(Kc/2) ≤ 2e−Kc

and (ix), Lem. 13 in [18]. Thus,
1− H(⌊c⌋Kc

sym) ≥ 1− H(c)− 2
ln 2e

−Kc/2.
From the above lemma and the analysis in section IV we

get2 B(T (ℓ)(⌊c⌋Kc ,∆0)) ≤ 1
1−ǫ B(T (ℓ)(⌊c⌋Kc

sym,∆0)), for
any 0 < ǫ < 1. Since c ≺ ⌊c⌋Kc ≺ ⌊c⌋Kc

sym
, we have

H(⌊c⌋Kc) ≤ H(⌊c⌋Kc
sym) which implies that1 − H(⌊c⌋Kc) ≥

1− H(c)− 2
ln 2e

−Kc/2.

2Recall that we associated a uniform random variable to each variable node
which were used for the flipping operations for outgoing messages from the
variable node side. For the present case, we can associate a random variable to
each channel input which is used for the flipping operation for symmetrizing
the saturated channel. These two operations are independent of each other. In
section IV the eventAKv now corresponds to the event that there are no flips
at both the variable node and channel input. This probability will be lower
bounded by1− 2e−K

v
|V (T)|.
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Note that the stability analysis of section V does not rely
on the symmetry of the channel. The symmetry allows us to
that Battacharyya parameter of the channel is less than one,
which is then used to show bounds. In the present case, since
B(⌊c⌋Kc) ≤ B(c)+ e−Kc/2 we can proceed with the stability
analysis as before and conclude that the SatBP decoder is
successful when we first truncate the channel to a large but
finite support. Furthermore, this truncation causes minimal
loss in the maximum number of information bits that can
be transmitted. Finally, we can also say that for any channel
c ≺ c

BP such thatB(c) <B(cBP)−2e−Kc/2, the SatBP decoder
is successful over the truncated channel. Thus, the loss in the
BP threshold is also upper bounded byCe−Kc/2 for some
constantC. Note that the threshold for the SatBP decoder is
now defined with respect to the fixed point with Battacharyya
parameter equal toe−Kv/2.

VIII. C ONCLUSIONS ANDOUTLOOK

In this paper we perform perturbation analysis of the
standard LDPC code ensemble and BP decoder combination.
Specifically, we show that saturating the messages arising
in the BP decoding process affects the final success of the
decoder. For general irregular LDPC code ensembles with
minimum variable node degree three, we show that the sat-
uration of the messages still allows for successful decoding as
long as the saturation levelKv is large enough. More precisely,
whenever the channel is below the BP threshold, then there
exists a saturation valueKv, which is large enough but finite,
such that the SatBP decoder is also below its threshold. The
stability of the SatBP decoder requires the support of the
channel to be finite. In the case of channels with infinite
support, we show that by saturating the channel first to a large
enough value, we sacrifice little in terms of capacity. Then,on
the saturated channel, the SatBP decoder is successful. Thus
there is minimal sacrifice in the BP threshold of the LDPC
code ensemble when we consider the SatBP decoder.

When the minimum variable node degree is two the sat-
urated decoding system fails to have stability of perfect
decoding. We show that the perfect decoding fixed point
(the delta function atKv) cannot be a stable fixed point of
DE for the SatBP decoder unless the channel is the erasure
channel. The key issue is that a density update at a degree two
node variable nodes is convolution with the channel density.
Repeatedk times, this involves to convolution of the channel
density with itselfk times. In general this is equivalent to a
channel density with support widthk times wider than the
original channel. If the incoming density is saturated thenfor
k large enough a positive error probability is unavoidable. If
the code structure (e.g. protograph designs) ensures that the
number of successive degree two node updates in the density
evolution is bounded, then the expansionk is bounded and
one can again recover stability with large enough saturation.
Essentially, what is required is that each degree two variable
node subgraph connected component (asymptotically a tree)
have bounded size.

To give a more detailed indication of how this can work we
consider the min-sum decoder and show that perfect decoding

can be invariant even in the presence of degree two variable
nodes. Let the maximum component size be denoted byA. For
an edgee connected to a degree two variable node let2Le+1
denote the maximum path length to the edge of the connected
component. Note thatLe + 1 ≤ A. To show invariance of a
perfect decoding we assume2(Kv−AKc)−Kc ≥ Kv. Assume
in some iteration that the following hold,

• The incoming message to a degree two variable node with
edgese1, e2 on edgeei is at leastKv − LeiK

c.
• Incoming messages on a degree three or higher variable

node are at leastKv −AKc.

It is easy to check that this implies perfect decoding. Proceed-
ing to the next iteration we obtain,

• The outgoing message on a degree two variable node on
edgee2 is at leastKv − (Le1 +1)Kc (and vice-versa for
e1.)

• Outgoing messages on a degree three or higher variable
node are at leastKv.

Now consider the subsequent incoming messages to the vari-
able nodes. The minimum outgoing message from the previous
iteration is at leastKv−AKc so incoming messages to a degree
three or higher variable node are at leastKv −AKc. Consider
edgee1 attached to a degree two variable node. The longest
path, not traversinge1, from its neighboring check node to
a leaf check of the degree two connect component has edge
length at most2Le1 . Hence the minimum incoming message
to the neighbor check node not frome1 is Kv − Le1K

c. The
minimum incoming message on edgee1 to the degree two
variable node is therefore at leastKv − Le1K

c. Thus, under
the stated assumptions the above perfect decoding conditions
are invariant.

Future Directions:

To complete the story of the analysis of the BP decoder
under practical considerations, it would be nice to have the
analysis of the quantized BP decoder. Thus, the messages are
only allowed to take certain values on the real line. Every
message is quantized to a bin and only the bin value is passed
around. For the ease of analysis one can assume a uniformly
quantized message space. It is not hard to see that such a
quantized BP decoder is symmetric. Thus the standard DE
analysis is applicable to the quantized BP decoder. A clear
next step would be to see if the analysis performed for the
SatBP decoder goes through for the quantized BP decoder. If
yes, then it would be nice to see a unified perturbation analysis
of saturated and quantized messages.

A nice side-effect of the analysis done above is that when
there are degree three variable nodes present in the LDPC
code, it is perhaps better to erase the channel information at
those bits completely (after enough iterations are performed)
to allow faster convergence to the correct codeword. This
sheds some light on the practical design of BP decoders under
saturation of messages. Could we glean similar lessons for
practical decoder design when we consider the saturated and
quantized BP decoder?

Another research direction would be to quantify the sat-
uration and quantization levels in terms of gap to capacity.

15



Specifically, what should be the scaling of the saturation and
quantization value when we backoff, say,δ from the BP
capacity,hBP. It seems intuitive that as we backoff more from
h

BP we should be able to attain the same error rate with smaller
values of the saturation level and larger levels of quantization.
In other words, as the gap to capacity increases, we should
require lesser number of bits in the binary representation of
the messages to get the desired error rate.

APPENDIX A
BATTACHARRYA PARAMETER INEQUALITY – LEMMA 17

We require the following inequality
Lemma 23:Let p1, ..., pk each lie in[0, 1]. Then

1−∏k
i=1(1 − 2pi)

2
≤

k
∑

i=1

pi

Proof: We have equality whenpi = 0 for each i.
Differentiating the left hand side with respect topj we obtain
∏

{i∈[1:k]\j}(1 − 2pi) which has magnitude at most1 and
differentiating the left hand side with respect topj we obtain
1. The inequality therefore follows by integration.

The following generalizes Lemma 17.
Lemma 24:Let D1, D2, ...Dk be L-densities of the form

Di = D(pi,K) and let a1, . . . , ad−k be L-densities. We do
not assume that any of these densities are symmetric. Letb

denote the density emerging from a check node update when
the incoming densities areD1, ..., Dk, a1, . . . , ad−k, then

B (b) ≤
(

1 +

k
∑

i=1

(eK/2
B (Di)− 1)

)(

d−k
∑

i=j

B (aj)
)

.

(This holds even ifk = 0 in which case we have only the
second factor.) This generalizes a result from [21].

Proof: By averaging, we see that it is sufficient to prove
the lemma for the caseai = D(qi, zi). With this assumption
the outgoing message is of the formb = D(s, r) where

s =
1− (

∏k
i=1(1− 2pi))(

∏d−k
j=1 (1− 2qj))

2
,

and we haver ≤ min{K, q1, ..., qd−k} ande−r/2 ≤ ke−K/2+
∑d−k

j=1 e
−qi/2. We haveB (b) = ser/2 + (1 − s)e−r/2.

Define

P =
1−∏k

i=1(1− 2pi)

2
, Q =

1−∏d−k
j=1 (1− 2qj)

2

Then we have

1− s = PQ+ (1− P )(1 −Q) .

We claim the inequality

B (b) ≤ (PeK + (1− P ))(Qer/2 + (1−Q)e−r/2) .

The claim follows from collecting terms and notingeKer/2 ≥
e−r/2, which is obvious, andeKe−r/2 ≥ er/2, which follows
from Kv ≥ r.

We now apply Lemma 23 to the left factor to obtain

PeK + (1− P ) = 1 + P (eK − 1)

≤ 1 + (

k
∑

i=1

pi)(e
K − 1)

= 1 +

k
∑

i=1

(

eK/2(pie
K/2 + (1− pi)e

−K/2)− 1
)

= 1 +
k
∑

i=1

(eK/2
B (Di)− 1) .

Using qj ≤ r and
∑d−k

j=1 e
−qj/2 ≥ e−r/2 and applying

Lemma 23 to the right factor we obtain

Qer/2 + (1 −Q)e−r/2 = e−r/2 +Q(2 sinh(r/2))

≤ e−r/2 + (

d−k
∑

j=1

qj)(2 sinh(r/2))

≤
d−k
∑

j=1

e−qj/2 +

d−k
∑

j=1

qj(2 sinh(qj/2))

=

d−k
∑

i=1

B (aj) .
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