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Abstract

The sphere packing bound, in the form given by Shannon, Gallager and Berlekamp, was recently extended to

classical-quantum channels, and it was shown that this creates a natural setting for combining probabilistic approaches

with some combinatorial ones such as the Lovász theta function. In this paper, we extend the study to the case of

constant composition codes. We first extend the sphere packing bound for classical-quantum channels to this case, and

we then show that the obtained result is related to a variation of the Lovász theta function studied by Marton. We then

propose a further extension to the case of varying channels and codewords with a constant conditional composition

given a particular sequence. This extension is then appliedto auxiliary channels to deduce a bound which can be

interpreted as an extension of the Elias bound.

I. I NTRODUCTION

The sphere packing bound has been recently extended to classical-quantum channels [2], [3, Sec. V] by resorting

to the first rigorous proof given for the case of classical discrete memoryless channels (DMC) by Shannon, Gallager

and Berlekamp [4]. That resulted in an upper bound to the reliability function of classical-quantum channels, which

is the error exponent achievable by means of optimal codes.

The classical proof given in [4] can be considered a rigorouscompletion of Fano’s first efforts toward proving

the bound [5, Ch. 9]. However, while Fano’s approach led to a tight exponent at high rates for general constant

composition codes, the proof in [4] only considers the case of the optimal composition. Shortly afterwards,

Haroutunian [6], [7], proposed a simple yet rigorous proof which gives the tight exponent for codes with general

(possibly non optimal) constant composition. However, a greedy extension of this proof to classical-quantum

channels does not give a good bound (see [8, Th. II.20 and page35]). This motivated the choice made in [2],

[3] to follow the approach of [4].

In this paper, we modify slightly the approach in [2], [3] to derive a sphere packing bound for classical-quantum

channels with constant composition codes. The main difference with respect to the classical case is in the resulting
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andreas.winter@uab.cat

Part of the results where first presented in [1].

May 16, 2018 DRAFT

http://arxiv.org/abs/1509.00715v1


2

possible analytical expressions of the bound, which does not seem to be expressible, in this case, in terms of the

Kullback-Leibler divegence and mutual information. In analogy with the results obtained in [9] [3, Sec. VI], we

then discuss the connections of the constant composition version of the bound with a quantity introduced by Marton

[10] as a generalization of the Lovász theta function for bounding the highest rate achievable by zero-error codes

with codewords of a given arbitrary composition. Finally, we propose an extension of the sphere packing bound

for varying channels and codewords with a constantconditionalcomposition from a given sequence, and we show

that this result includes as a special case a recently developed generalization of the Elias bound [11].

II. D EFINITIONS

Consider a classical-quantum channelC with input alphabetX = {1, . . . , |X |} and associated density operators

Sx, x∈X , in a finite dimensional Hilbert spaceH. The n-fold product channel acts in the tensor product space

H=H⊗n of n copies ofH. To a sequencex=(x1,x2,. . . ,xn) we associate the signal stateSx=Sx1
⊗Sx2

· · ·⊗Sxn
.

A block code withM codewords is a mapping from a set ofM messages{1, . . . ,M} into a set ofM codewords

x1, . . . ,xM and the rate of the code isR=(logM)/n.

We consider a quantum decision scheme for such a code (POVM) composed of a collection ofM positive

operators{Π1,Π2, . . . ,ΠM} such that
∑

Πm≤1, where1 is the identity operator. The probability that message

m′ is decoded when messagem is transmitted isPm′|m=TrΠm′Sxm
and the probability of error after sending

messagem is

Pe|m=1−Tr(ΠmSxm
) .

The maximum error probability of the code is defined as the largestPe|m, that is,

Pe,max=max
m

Pe|m.

In this paper, we are interested in bounding the probabilityof error for constant composition codes. Given a

compositionPn, we defineP(n)
e,max(R,Pn) to be the smallest maximum error probability among all codesof length

n, rateat leastR, and compositionPn. For a probability distributionP , we define the asymptotic optimal error

exponent with compositionP as

E(R,P )=limsup
n→∞

− 1

n
logP(n)

e,max(Rn,Pn), (1)

where the limsup is over all sequences of codes with ratesRn and compositionsPn such thatRn→R andPn→P

asn→∞. For channels with a zero-error capacity, the functionE(R,P ) can be infinite for ratesR smaller than

some given quantityC0(P ), which we can call the zero-error capacity of the channel relative toP . It is important

to observe that, as forC0, the valueC0(P ) only depends on the confusability graphG of the channel, for which

we could also call itC(G,P ) [12], [10].

To avoid unnecessary complications, we use a flexible notation in this paper. We keep it simple as far as possible,

progressively increasing its complexity by adding arguments to functions as their definitions become more general.

The meaning of all quantities will be clear from the context.
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III. SPHEREPACKING BOUND FORCONSTANT COMPOSITION CODES

Our main result is the following theorem.

Theorem 1:For all positive ratesR, distributionP , and positiveε<R, we have the bound

E(R,P )≤Ecc
sp(R−ε,P ),

whereEcc
sp(R,P ) is defined by the relations

Ecc
sp(R,P )=sup

ρ≥0
[Ecc

0 (ρ,P )−ρR] , (2)

Ecc
0 (ρ,P )=min

F

[

−(1+ρ)
∑

x

P (x) logTr(S
1

1+ρ

x F
ρ

1+ρ )

]

. (3)

the minimum being over all density operatorsF .

Proof: See Appendix A.

The bound is written here in terms of Rényi divergences. Forcommuting states, that is, classical channels, the

bound can be written in the more usual form in terms of Kullback-Leibler divergences and mutual information as

in [7]. In fact, assuming that the statesSx commute, let for notational convenienceW (y|x) be their eigenvalues,

which we interpret as classical probability distributions, indexing iny the output space. Then we can write (see [7,

Ch. 5, Prob. 23])

Ecc
0 (ρ,P )=min

F

[

−(1+ρ)
∑

x

P (x) logTr(S
1

1+ρ

x F
ρ

1+ρ )

]

(4)

=min
Q

[

−(1+ρ)
∑

x

P (x) log
∑

y

W (y|x) 1
1+ρQ(y)

ρ

1+ρ )

]

(5)

=min
V,Q

∑

x,y

P (x)V (y|x)
[

log
V (y|x)
W (y|x) +δ log

V (y|x)
Q(y)

]

(6)

=min
V

[D(V ||W |P )+δI(P,V )] , (7)

where theV (·|x) andQ run over probability distributions ony, I(P,V ) is the mutual information with the notation

of [7]

I(P,V )=
∑

x,y

P (x)V (y|x) log V (y|x)
∑

x′ P (x′)V (y|x′) , (8)

andD(V ||W |P ) is the conditional information divergence

D(V ||W |P )=
∑

x

P (x)
∑

y

V (y|x) log V (y|x)
W (y|x) . (9)

Hence, for classical channels, we have the more familiar form of the bound (see [7])

Ecc
sp(R,P )=sup

ρ≥0

[

min
V

(D(V ||W |P )+δI(P,V ))−ρR
]

(10)

= min
V :I(P,V )≤R

D(V ||W |P ). (11)
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This form of the bound emerges naturally in Haroutunian’s proof [6], [7], which is very simple and gives a very

intuitive interpretation of the resulting expression. Fora given rateR, one considers auxiliary channelsV such

that I(P,V )<R. Given codes with rateR and compositionP , by the strong converse to the coding theorem, the

probability of error over channelV for at least one codeword is nearly one. For that same codeword, the probability

of error over channelW can be lower bounded in terms of the Kullback-Leibler divergenceD(V ||W |P ), and this

leads to the sphere packing bound.

It is interesting to consider what happens in the case of non-commuting states. A reasoning similar to the one

described in the last paragraph can be applied to derive a bound which is the formal analog of the classical one in

the form given using equation (11), namely (see [8, Th. II.20])

E(R,P )≤ min
V :I(P,V )≤R

D(V ||S|P ) (12)

where now the minimum is over all set of density operatorsVx,

I(P,V )=H

(

∑

x

P (x)Vx

)

−
∑

x

P (x)H(Vx), with H(ρ)=−Trρ logρ, (13)

and

D(V ||S|P )=
∑

x

P (x)TrVx(logVx− logSx). (14)

The main difference with respect to the classical case, however, is that this bound does not have good properties

in the more general classical-quantum setting. For example, note that - as in the classical case - the bound is finite

only when theVx can be chosen so that supp(Vx)⊆supp(Sx). As a consequence, for pure-state channels the bound

is infinite for ratesR<I(P,S), which means that the bound is essentially trivial in this case. The reason for this

unexpected behavior can be traced back to a fundamental difference in the study of error exponents in the classical

and quantum binary hypothesis testing (see for example [13,Sec. 4.8]). A more detailed discussion of this issue

requires an inspection of the proof of the sphere packing bound and is thus deferred to Appendix C.

Now it is not difficult to show that after optimization of the composition we recover the original bound of [2],

[3]. In order to do this, note that

max
P

Ecc
sp(R)=sup

ρ≥0

[

max
P

Ecc
0 (ρ,P )−ρR

]

.

Then,

max
P
Ecc

0 (ρ,P )

=max
P

min
F

[

−(1+ρ)
∑

x

P (x) logTr(S
1

1+ρ

x F
ρ

1+ρ )

]

.

=min
F

max
P

[

−(1+ρ)
∑

x

P (x) logTr(S
1

1+ρ

x F
ρ

1+ρ )

]

=min
F

[

−(1+ρ)max
x

logTr(S
1

1+ρ

x F
ρ

1+ρ )

]

,
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where the minimum and the maximum can be exchanged due to linearity in P and convexity inF . The resulting

expression is in fact the coefficientE0(ρ) which defines the sphere packing bound as proved in [3, Th. 6].Hence,

this procedure allows us to recover the results of [2], [3] bynoticing that

E(R)=sup
P
E(R,P ) (15)

≤sup
P
Ecc

sp(R−ε,P ) (16)

=Esp(R−ε). (17)

Theorem 1 constitutes thus the most general form of the sphere packing bound, from which all other forms can be

derived.

IV. CONNECTIONS WITHMARTON’ S FUNCTION

The boundEcc
sp(R,P ) obtained in the previous section can be used as an upper boundfor the zero-error capacity

of the channel relative toP . Whenever the functionEcc
sp(R−ε,P ) is finite, in fact, then the probability of error at

rateR is non-zero. It is not difficult to observe that the smallest rateR∞(P ) at whichEcc
sp(R,P ) is finite can be

evaluated as

R∞(P )= lim
ρ→∞

Ecc
0 (ρ,P )

ρ

=min
F

[

−
∑

x

P (x) logTr(S0
xF )

]

,

whereS0
x is the projection onto the range ofSx. When optimized overP , we obtain the expression

R∞=min
F

max
x

log
1

Tr(S0
xF )

,

already discussed in [3]. Hence, we have the boundsC0(P )≤R∞(P ) andC0≤R∞.

It was observed in [9] and [3, Sec. VI] thatR∞ is related to the Lovász numberϑ [14]. Here, we observe that,

in complete analogy, the valueR∞(P ) is related to a variation of theϑ function introduced by Marton in [10] as

an upper bound toC(G,P ). Given a (confusability) graphG, Marton introduces the following quantity1:

ϑ(G,P )= min
{ux},f

∑

x

P (x) log
1

|〈ux|f〉|2
, (18)

where the minimum is over all representations{ux} of the graphG in the Lovász sense and over all unit norm

vectorsf . She then shows thatC(G,P )≤ϑ(G,P ).
Let us now compare this bound with the best bound onC(G,P ) that we can deduce from the sphere packing

bound usingR∞(P ). We enforce the notation writingR∞({Sx},P ) to point out the dependence ofR∞(P ) on the

1We use the notationϑ(G,P ) in place of Marton’sλ(G,P ) to preserve a higher coherence with the context of this paper. For the same

reason, in what follows we also use, as in [3], a logarithmic version of the ordinary Lovászϑ function, that is, ourϑ corresponds tologϑ in

Lovász’ notation.

May 16, 2018 DRAFT
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channel statesSx. For a given confusability graphG, the best upper bound toC(G,P ) is obtained by minimizing

R∞({Sx},P ) over all possible channels with confusability graphG. We may then define

ϑsp(G,P )= inf
{Sx}

R∞({Sx},P ) (19)

= inf
{Ux},F

∑

x

P (x) log
1

Tr(UxF )
, (20)

where{Ux} now runs over all sets of projectors with confusability graph G. Then we have the boundC(G,P )≤
ϑsp(G,P ).

The quantityϑsp(G,P ) is the constant composition analog of the formal quantityϑsp(G) defined in [3, Sec. VI].

In that case it was observed by Schrijver and by Duan and Winter [15] that in factϑsp(G) = ϑ(G) (with our

logarithmic definition ofϑ, see footnote 1). We have the analogous result for constant compositions.

Theorem 2:For any graphG and compositionP , ϑsp(G,P )=ϑ(G,P ).

Proof: It is obvious thatϑsp(G,P )≤ϑ(G,P ), since the right hand side of (18) is obtained by restrictingthe

operators in the right hand side of (20) to have rank one.

We now prove the converse inequality (cf. [15]). Let{Ux} andF be a representation ofG and a state respectively.

Let first |ψ〉∈H⊗H′ be a purification ofF obtained using an auxiliary spaceH′, so thatTr(UxF )=Tr(Ux⊗
1H′ |ψ〉〈ψ|). Let then

|wx〉=
Ux⊗1H′ |ψ〉
‖Ux⊗1H′ |ψ〉‖ . (21)

It is not difficult to check that{wx} is an orthonormal representation ofG and thatTr(UxF )=Tr(Ux⊗1H′ |ψ〉〈ψ|)=
|〈wx|ψ〉|2, for all x. Hence, the orthormal representation{wx} and the unit norm vectorψ satisfy

∑

x

P (x) log
1

Tr(UxF )
=
∑

x

P (x) log
1

|〈wx|ψ〉|2
, (22)

which implies thatϑ(G,P )≤ϑsp(G,P ).

We can now discuss another interesting issue about the use ofthe quantityϑ(G,P ). When we are interested in

boundingC0, we can use the boundC0≤ϑ(G) or we can also use the bound2 C0≤maxP ϑ(G,P ). Marton [10]

states that this does not make a difference since - “as is easily seen” -maxP ϑ(G,P )=ϑ(G). However, a proof of

this statement does not seem to follow easily from the definitions. It can in fact be written as

max
P

min
{ux},f

∑

x

P (x) log
1

|〈ux|f〉|2
= min

{ux},f
max
x

log
1

|〈ux|f〉|2
(23)

= min
{ux},f

max
P

∑

x

P (x) log
1

|〈ux|f〉|2
(24)

and, in order to prove the equality, we would need to exchangethe maximization overP with the minimization

over representations and handles. It is not clear in Marton’s paper what argument she used to motivate it. We use

Theorem 2 to prove this statement.

Theorem 3:For any graphG, maxP ϑ(G,P )=ϑ(G).

2Note thatC0=maxP C0(P ), since the number of compositions is polynomial in the block-length.

May 16, 2018 DRAFT
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Proof: For any representation{Ux} of G and density operatorF , define the functionf(x)=TrUxF , and denote

the set of all functionsf obtained in this way by OR(G). The proof of Theorem 2 shows that anyf ∈OR(G) can

be realized by rank-one projectionsUx= |ux〉〈ux| and a pure stateF= |f〉〈f |, in a space of dimension at most|X |
(namely the span of the|ux〉). In particular, it follows that OR(G) is closed and compact.

Furthermore, it is convex: namely, considerfi(x) = TrU
(i)
x F (i) for representations{U (i)

x } of G and density

operatorsF (i), i=1,2. Then, for0≤p≤1, let Ux=U
(1)
x ⊕U (2)

x andF =pF (1)⊕(1−p)F (2), which has associated

f(x)=TrUxF =pf1(x)+(1−p)f2(x), i.e. pf1+(1−p)f2∈OR(G).

Now define the quantity

J(f,P )=
∑

x

P (x) log
1

f(x)
, (25)

for compositionsP and functionsf ∈OR(G). The theorem is equivalent to the statement that

max
P

min
f∈OR(G)

J(f,P )= min
f∈OR(G)

max
P

J(f,P ), (26)

since the left hand side equalsmaxP ϑ(G,P ) by Theorem 2, and the right hand side equalsϑ(G) by [3, Th. 8].

But (26) is an instance of the minimax theorem. Indeed, both the domains off andP are convex and compact,

and the functionalJ is convex in the former and concave (in fact affine linear) in the latter.

We close this section with a simple yet useful result which wewill need in the next section. This is the analogous

of [3, Th. 10] for the constant composition setting.

Theorem 4:For any pure-state channel we have the inequalityEcc
sp(R∞(P ),P )≤R∞(P ).

Proof: For a pure state channel, sinceS
1

1+ρ

x =Sx=S
0
x, we have

Ecc
0 (ρ,P )=min

F

[

−(1+ρ)
∑

x

P (x) logTr(S
1

1+ρ

x F
ρ

1+ρ )

]

=min
F

[

−(1+ρ)
∑

x

P (x) logTr(SxF
ρ

1+ρ )

]

≤min
F

[

−(1+ρ)
∑

x

P (x) logTr(S0
xF )

]

=(1+ρ)R∞(P ),

from which we easily deduce the statement by definition ofEcc
sp(R,P ).

V. CONDITIONAL COMPOSITIONS

A. Conditional Sphere Packing Bound

We now develop an extension of the sphere packing to handle the case of varying channels with aconditional

compositionconstraint on the codewords. Although this setting can appear artificial, the bound will prove useful

when applied to auxiliary channels in a procedure that can beconsidered as an evolution of the method used

in [3, Sec. VIII] along the same lines taken in [11]. Here we assume that we have a finite setA of possible

states and a different channelCa, for each statea∈A. The communication is governed by a sequence of states

May 16, 2018 DRAFT
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a=(a1, . . . ,an)∈An (known to both encoder and decoder) with compositionPn, which determines the channels to

use. In particular, channelCai
is used at time instanti. The composition constraint in this case is that all codewords

have conditional compositionVn givena, which means that any codeword has a symbolx in a fractionVn(x|a)
of the nPn(a) positions whereai=a. We then assume that, asn→∞, Pn→P andVn→V .

Remark 5:Note that this general scenario includes the ordinary constant composition situation considered before,

which is obtained for example whenP (a)=1 for somea anda=(a,a, . . . ,a). Note that it also includes the study

of the parallel use ofK>1 channels, which can be recovered by settingP (a)=1/K,∀a, and normalizing the block

lengths by a factorK.

For a givenP andV , let nowE({Ca},R,V |P ) be the optimal asymptotic error exponent achievable by codes

with asymptotic conditional compositionV with respect to a sequence with asymptotic compositionP using the

set of channels{Ca}, a∈A. Then we have the following result.

Theorem 6:We have the inequality

E({Ca},R,V |P )≤Ecc
sp({Ca},R−ε,V |P ), (27)

whereEcc
sp({Ca},R,V |P ) is defined by

Ecc
sp({Ca},R,V |P )=sup

ρ≥0
[Ecc

0 ({Ca},ρ,V |P )−ρR] , (28)

Ecc
0 ({Ca},ρ,V |P )=

∑

a

P (a)Ecc
0 (Ca,ρ,V (·|a)), (29)

andEcc
0 (Ca,ρ,V (·|a)) is the coefficientEcc

0 of the sphere packing bound for channelCa with compositionV (·|a),
as defined in (3).

Proof: See Appendix B.

We observe that the functionEcc
sp({Ca},R,V |P ) is finite for all ratesR>R∞({Ca},V |P ) where

R∞({Ca},V |P )= lim
ρ→∞

Ecc
0 ({Ca},ρ,V |P )

ρ
(30)

= lim
ρ→∞

∑

a

P (a)
Ecc

0 (Ca,ρ,V (·|a))
ρ

(31)

=
∑

a

P (a)R∞(Ca,V (·|a)). (32)

Furthermore, it is not difficult to show, using the same procedure used in Theorem 4, that for pure-state channels

we have the inequality

Ecc
sp({Ca},R∞({Ca},V |P ),V |P )≤R∞({Ca},V |P ). (33)

B. Improvement of the Sphere-Packed Umbrella Bound

We can now combine the bound derived above with the ideas presented in [16], [3] and [17], much in the same

way as done in [11] [18], to obtain a bound on the reliability of a channelC using auxiliary classical-quantum

channels{C̃a}. We limit here the discussion to the case of a pure-state channel with statesSx = |ψx〉〈ψx| and

May 16, 2018 DRAFT
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pure-states auxiliary channels{C̃a}. The general case will become clear in the next section wherewe reformulate

this bound in terms of codedistances, reinterpreting it as a generalization of the Elias bound.

For aρ≥1, we define the setΓ(ρ) of admissible pure-state auxiliary channelsC̃ with statesS̃x= |ψ̃x〉〈ψ̃x| such

that

|〈ψ̃x|ψ̃x′〉|≤|〈ψx|ψx′〉|1/ρ, ∀x,x′∈X . (34)

For anya∈A we choose an auxiliary pure state channelC̃a∈Γ(ρ) with statesS̃a,x=|ψ̃a,x〉〈ψ̃a,x|. Given a sequence

a=(a1, . . . ,an)∈An and a sequencex=(x1 . . . ,xn)∈Xn, let

ψ̃a,x= ψ̃a1,x1
⊗·· ·⊗ ψ̃an,xn

. (35)

Now, given two sequencesx=(x1, . . . ,xn) andx′=(x′1, . . . ,x
′
n), we can use these auxiliary channels to bound the

overlap|〈ψx|ψx′〉|2 as

|〈ψx|ψx′〉|2≥|〈ψ̃a,x|ψ̃a,x′〉|2ρ. (36)

This will allow us to boundE(R,P ) for the original channel using the bound (see for example [3,Th. 12])

E(R,P )≤− 1

n
log max

m 6=m′

|〈ψxm
|ψxm′

〉|2+o(1) (37)

≤− ρ

n
log max

m 6=m′

|〈ψ̃a,xm
|ψ̃a,xm′

〉|2+o(1). (38)

We could use the extension of the sphere packing bound considered in this section to upper bound the right hand

side of the last equation as done in [3, Sec. VIII] if all codewordsxm had the same conditional composition given

the sequencea. Since the sequencea is arbitrary, we choose it so that this condition is met by at least a large

enough subsetT of codewords, and we only apply the sphere packing bound to this subsetT . In order to do this,

we adopt an idea proposed by Blahut [17] in a generalization of the Elias bound and already considered for a

further generalization in [11], [18].

Given a code withM=enRn codewords of compositionPn, assume that there exists a conditional composition

V̂n(a|x) :X 7→A (i.e., nPn(x)V̂n(a|x) is an integer) such that

Rn>I(Pn, V̂n), (39)

whereI(Pn, V̂n) is the mutual information with the notation of [7]. Define then

P̂n(a)=
∑

x

Pn(x)V̂n(a|x) (40)

(that we will write asPnV̂n = P̂n) and and letVn(x|a) = Pn(x)V̂n(a|x)/P̂n(a), so thatP̂nVn = Pn. Note that

I(Pn, V̂n)=I(P̂n,Vn).

Then, (see [17, proof of Th. 8], or [18, Lemma 3]) there is at least one sequencea of compositionP̂n such

that there is a subsetT of at least|T |=en(Rn−I(P̂n,Vn)−o(1)) codewords with conditional compositionVn givena.

Since we are interested in the limit asn→∞, we directly work with the asymptotic rateR, compositionsP and

P̂ and matrixV , and we neglect the constraint thatnPn(x), nPn(x)V̂n(a|x) etc. are integers.

May 16, 2018 DRAFT
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Now, we can use the conditional sphere packing bound introduced in this section to bound the probability of

error of the subcodeT of rate R̃=R− I(P̂n, Vn)− o(1) used over the varying channelC̃a1
, · · · , C̃an

. For these

codewords used over this varying channel, there is a decision rule such that ([19], [3, Sec. VIII])

P̃e,max≤(|T |−1) max
m 6=m′∈T

|〈ψ̃a,xm
|ψ̃a,xm′

〉|2 (41)

≤en(R−I(P̂ ,V )+o(1)) max
m 6=m′∈T

|〈ψ̃a,xm
|ψ̃a,xm′

〉|2. (42)

On the other hand, asn→∞, Theorem 6 with ratẽR gives

− 1

n
log P̃e,max≤Ecc

sp({C̃a}, R̃−ε,V |P̂ )+o(1) (43)

≤Ecc
sp({C̃a},R−I(P̂ ,V )−ε,V |P̂ )+o(1). (44)

Putting together equations (38), (42) and (44), we obtain

E(R,P )≤ρ[Ecc
sp({C̃a},R−I(P̂ ,V )−ε,V |P̂ )+R−I(P̂ ,V )]. (45)

Since the choice ofρ, of the channels{C̃a}∈Γ(ρ) and of the distributionŝP ,V can be optimized, we have, in

analogy with [3, Th. 11],

Theorem 7:For a pure-state channel, the reliability function with constant compositionP satisfiesE(R,P )≤
Ecc

spu(R,P ) where

Ecc
spu(R,P )=inf ρ[Ecc

sp({C̃a},R−I(P̂ ,V )−ε,V |P̂ )+R−I(P̂ ,V )], (46)

the infimum being overε>0, ρ≥1, auxiliary pure-state channels̃Ca∈Γ(ρ), and auxiliary distributionŝP andV

such thatP̂ V =P .

Remark 8:Note that for the choiceA=X , V (a|x)=P (a), ∀a, we haveI(P,V )=0. We can also notice that

the optimization of the channels̃Ca will give C̃a= C̃, ∀a, for an optimalC̃. With this constraint onV , the bound

E(R,P ) is weakened to

inf ρ[Ecc
sp(C̃,R−ε,P )+R], (47)

where the infimum is now only overρ≥1 and C̃∈Γ(ρ). This is a constant composition version of the bound in [3,

Th. 11].

C. Connection with the Elias Bound

In the same way as [3, Th. 11] generalizes the results of [3, Sec. III], it possible to reinterpret the idea used to

obtain Theorem 7 as a generalization of the Elias bound presented in [11] and [18]. For this purpose, it is useful

to introduce a notion of distance between symbols and distance between sequences, and then restate our bound as

a bound on the minimum distance of codes. Finally, bounds on the reliability function can be obtained by relating

the minimum distance to the probability of error (see [18, Sec. VI] for details).
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Let d be a functiond :X ×X →R
+∪{∞} such that

d(x,x′)≥0

d(x,x′)=d(x′,x) ∀x,x′

d(x,x)=0.

We call this functiond a “distance” although, as seen above, we do not really require all the properties of a distance.

We stress thatd is allowed to take value∞ for some pairs of symbols, a case which is of practical interest in our

context. We extend the distance to sequences of symbols defining, for x=(x1, . . . ,xn) andx′=(x′1, . . . ,x
′
n),

d(x,x′) :=

n
∑

i=1

d(xi,x
′
i). (48)

Note in particular thatd(x,x′)=∞ iff d(xi,x′i)=∞ for at least onei.

For a given codeC, we define its minimum distance as

dmin(C) := min
x,x′∈C,x 6=x′

d(x,x′). (49)

For a compositionP , we define

d(R,n,P ) :=max
C

dmin(C), (50)

where the maximum is over all codes of lengthn, rate at leastR, and compositionP . For a fixedR, we then define

δ∗(R,P ) := limsup
n→∞,{Pn}

1

n
d(Rn,n,Pn), (51)

whereRn→R andPn→P asn→∞.

Note that we can drop the constant composition constraint defining

d(R,n) :=max
C

dmin(C), (52)

and, correspondingly,

δ∗(R) :=limsup
n→∞

1

n
d(R,n). (53)

Then we have

δ∗(R) :=max
P

δ∗(R,P ). (54)

We want to use our results to bound the quantityδ∗(R,P ). In order to do this we proceed in a similar way as done

in Section V-B. Note that this corresponds to what done in [18] with two variations; 1) we use general auxiliary

classical-quantum channels in place of the so called representations composed of vectors, and 2) we replace the

Lovász-like trick of [18, Lemma 2] with the sphere packing bound.

Given the distanced and aρ≥1, we define the setΓ(ρ) of admissible auxiliary channels̃C with statesS̃x such

that

Tr

√

S̃x

√

S̃x′ ≤e−d(x,x′)/ρ. (55)
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We then consider again as in Section V-B the subcodeT of codewords with compositionPn all with the same

conditional compositionVn given the sequencea. For anya∈A we choose an auxiliary channelC̃a∈Γ(ρ) with

statesS̃a,x and for anx∈T we define

S̃a,x= S̃a1,x1
⊗·· ·⊗ S̃an,xn

. (56)

Note that this implies that for two sequencesx andx′,

Tr

√

S̃a,x

√

S̃a,x′ ≤e−d(x,x′)/ρ. (57)

Consider now an optimal decision scheme for the states associated to the subcodeT , that is, S̃a,x, x∈T . The

extension of (42) [19] says that for such a set of states, there exists a measurement such that

P̃e,max≤en(R−I(P̂ ,V )+o(1)) max
m 6=m′∈T

Tr

√

S̃a,xm

√

S̃a,xm′
. (58)

But, again, we can use the conditional sphere packing bound to lower bound the probability of error of the subcode

T as

− 1

n
log P̃e,max≤Ecc

sp({C̃a},R−I(P̂ ,V )−ε,V |P̂ )+o(1). (59)

Combining equations (57), (58) and (59) we obtain

1

n
min
m 6=m′

d(xm,xm′)≤ρ(Ecc
sp({C̃a},R−I(P̂ ,V )−ε,V |P̂ )+R−I(P̂ ,V ))+o(1), (60)

which asymptotically gives the following result.

Theorem 9:For a distanced and assuming the above definitions, we have the inequality

δ∗(R,P )≤Ecc
spu(R,P ), (61)

whereEcc
spu(R,P ) is defined in (46).

As mentioned, this bound is an extension of [18, Th. 6]. To seethis, we can consider the particular case in which

we restrict the attention to pure-state auxiliary channelswith statesS̃a,x= |ψ̃a,x〉〈ψ̃a,x| and then study the smallest

rate for which the boundEcc
spu(R,P ) (with this additional constraint) is finite. First note thatfor fixed channels

{C̃a}, distributionsP̂ andV , andε sufficiently small, the quantity on the right hand side of equation (46) is finite

for R>R∞({C̃a},V |P̂ )+I(P̂ ,V ). Furthermore, whenR approaches this value from the right, using equation (33),

the right hand side of equation (46) is upper bounded by2ρR∞({C̃a},V |P̂ ). So, forR>R∞({C̃a},V |P̂ )+I(P̂ ,V )

we have the bound

δ∗(R,P )≤2ρR∞({C̃a},V |P̂ ). (62)
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For pure state auxiliary channels we can write

R∞({Ca},V |P̂ )=
∑

a

P (a)R∞(Ca,V (·|a)) (63)

=
∑

a∈X

P̂ (a)min
Fa

[

−
∑

x

V (x|a) logTr(S̃0
a,xFa)

]

(64)

=min
{Fa}

∑

a,x∈X

P̂ (a)V (x|a) log 1

〈ψ̃a,x|Fa|ψ̃a,x〉
(65)

≤min
{fa}

∑

a,x∈X

P̂ (a)V (x|a) log 1

|〈ψ̃a,x|fa〉|2
, (66)

where the last step we have enforced minimization over rank one operatorsFa= |fa〉〈fa|. Optimizing now overρ,

P̂ andV such thatP̂V =P , and the auxiliary vectors{ψ̃a,x}, and comparing with the definition ofϑ(ρ,V |P̂ ) used

in [18], we deduce that the bound of Theorem 9 includes, as a particular case, the bound presented in [18, Th. 6]

as a generalization of the Elias bound for general, possiblyinfinite, distances3. Hence, it includes in particular all

previously known extensions as discussed in [18].
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APPENDIX A

PROOF OFTHEOREM 1

The structure of the proof is the same as in [4], and [3, Th. 5] with some technical changes which are required

for dealing with general compositions. While introducing this changes, we also considerably simplify some of the

technicalities with respect to [3, Th. 5] in order to give a simpler yet more transparent proof of both this and the

original theorem.

From the definition ofE(R,P ), there exists a sequence of codes of block-lengthsn=1,2, . . . with ratesRn→R,

compositionsPn→P and with probabilities of errorP(n)
e,max such that

E(R,P )=limsup
n→∞

− 1

n
logP(n)

e,max.

We first observe that we can just focus on the subset of input symbols withP (x)>0 and assume without loss of

generality thatPn(x)=0 if P (x)=0. This technicality is needed after equation (76) below and can be motivated

as follows. LetX0 be the subset ofX such thatP (x)= 0 if and only if x∈X0. Then, for for any sequence of

3Note that the definition ofΓ(ρ) in [18] is slightly different than here, so that the parameter ρ here corresponds to the parameterρ/2 there.
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compositionsPn→P , for all x∈X0 we can write thatPn(x)≤εn/|X0|, whereεn→0 asn→∞. Any codeword with

compositionPn will contain symbols inX0 in at mostnεn positions. There are only nearlyenH(εn) choices for these

positions and, for each such choice there are only at most|X0|nεn possible combinations of symbols inX0. Hence,

from a code with rateRn and compositionPn we can extract a subcode with rateR′
n=Rn−H(εn)−εn log |X0|

such that each symbol inX0 appears precisely in the same positions in all codewords. Wecan then boundE(R,P )

by bounding the probability of error for this subcode since,given thatεn→0, we have(R′
n−Rn)→0. However,

in the chosen subcode each symbol inX0 appears in the same positions in all codewords, and can thus be replaced

with any symbol inX\X0 without affecting the probability of error.

For every fixedn, the idea is again as in previous proofs to consider a binary hypothesis test between a properly

selected code signalSxm
and an auxiliary density operatorF =F⊗n. The main difference with respect to [3, Th.

5] is in the choice ofF and, as a consequence, in some technical details.

Let n be fixed and letM be the number of codewords, that isM=enRn. For anym=1, . . .,M consider a binary

hypothesis test betweenSxm
and an auxiliary stateF =F⊗n. We assume that the supports of the two operators

are not disjoint and, with the notation used in [3], we define the quantity

µ(s)=µSxm ,F (s)

=logTrS1−s
xm
F s.

Note that, setting

µSx,F (s)=log
(

TrS1−s
x F s

)

, (67)

we can write

µSxm ,F (s)=log
n
∏

i=1

TrS1−s
xm,i

F s

=log
∏

x

(

TrS1−s
x F s

)nPn(x)

=n
∑

x

Pn(x)µSx,F (s). (68)

Applying [3, Th. 4], we find that for eachs in (0,1), either

Tr[(1−Πm)Sxm
]>

1

8
exp

[

µ(s)−sµ′(s)−s
√

2µ′′(s)
]

(69)

or

Tr[ΠmF ]>
1

8
exp

[

µ(s)+(1−s)µ′(s)−(1−s)
√

2µ′′(s)
]

. (70)

As in [3, Th. 5], this can be converted in a relation betweenP
(n)
e,max andRn in the form that either

P
(n)
e,max>

1

8
exp

[

µ(s)−sµ′(s)−s
√

2µ′′(s)
]

(71)

or

Rn<− 1

n

[

µ(s)+(1−s)µ′(s)−(1−s)
√

2µ′′(s)− log8
]

. (72)
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Note that due to (68), the right hand side of (72) only dependson n, s, Pn, andF . Let then this quantity be

calledRn(s,Pn,F ), that is,

Rn (s,Pn,F )=− 1

n

(

µ(s)+(1−s)µ′(s)−(1−s)
√

2µ′′(s)− log8
)

. (73)

We can use this equation to writeµ′(s) in terms ofRn(s,Pn,F ). Using (68), we can state our conditions by saying

that either

Rn<Rn(s,Pn,F ) (74)

or
1

n
log

1

P
(n)
e,max

<− 1

1−s
∑

x

Pn(x)µSx,F (s)−
s

1−sRn(s,Pn,F )+
1

n

(

2s
√

2µ′′(s)+
log8

1−s

)

. (75)

At this point we introduce the variation with respect to [3].For anyF , one of the two conditions above must

be satisfied and, in [3], the choice ofF was made which guaranteed the best bound for theoptimal compositions

Pn. Here, instead, the compositionsPn are forced to tend to a given compositionP and we have to chooseF

accordingly. For a givens∈(0,1), let Fs be the operator defined by

Fs=argmin
F

−
∑

x

P (x) log(TrS1−s
x F s). (76)

Note that this choice guarantees that for allx with P (x)> 0, Sx and F have non-disjoint supports. Since we

assumed thatPn(x)=0 wheneverP (x)=0, the requirement thatSxm
andF have non-disjoint support is satisfied

for all sequencesxm with compositionPn, and henceµ(s) is a finite quantity for alls∈(0,1).

We will now relate the choice ofs to the rateR and then useFs in place ofF for the chosens (it must be

clear, however, thatµ′(s) andµ′′(s) are computed by holdingF fixed). Note that we can write

Rn(s,Pn,Fs)=−
∑

x

Pn(x)
[

µSx,Fs
(s)+(1−s)µ′

Sx,Fs
(s)
]

+
1√
n
(1−s)

√

2
∑

x

Pn(x)µ′′
Sx,Fs

(s)+
1

n
log8. (77)

For any fixeds, the last two terms on the right hand side vanish asn→∞, andPn in the first term tends toP .

Hence, it is useful to define the quantity

R∗(s,P )= lim
n→∞

Rn(s,Pn,Fs) (78)

=−
∑

x

P (x)
[

µSx,Fs
(s)+(1−s)µ′

Sx,Fs
(s)
]

(79)

and compare this quantity to the rateR which we are considering, which is the limit of theRn’s.

We first observe that, for anyx andF , µSx,F (s) is a non-positive convex function ofs for all s∈(0,1), which

implies that for anyF we have

µSx,F (s)+(1−s)µ′
Sx,F (s)≤µSx,F (1

−)

≤0.

Hence, bothR∗(s,P ) andRn(s,Pn,Fs) are non-negative quantities. Furthermore, it is not difficult to see thatFs is

continuous ins in the interval0<s<1, and so isR∗(s,P ). Hence,R∗(s,P ) is a continuous non-negative function
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of s in the interval0<s< 1, and we can compare this function with the asymptotic rateR. We only have three

possible situations:

1) R>sups∈(0,1)R
∗(s,P );

2) R≤ infs∈(0,1)R
∗(s,P );

3) infs∈(0,1)R
∗(s,P )<R≤sups∈(0,1)R

∗(s,P ).

Assume case 1) is verified. Fix an arbitrarys∈ (0,1). SinceRn→R andRn(s,Pn,Fs)→R∗(s,P )<R, Rn>

Rn(s,Pn,Fs) for all n large enough. Hence, equation (74) is not satisfied and thus equation (75) is. Sinces is

fixed andRn(s,Pn,Fs)≥0, asn goes to infinity we find

1

n
log

1

P
(n)
e,max

<− 1

1−s
∑

x

Pn(x)µSx,Fs
(s)− s

1−sRn(s,Pn,Fs)+o(1) (80)

≤− 1

1−s
∑

x

Pn(x)µSx,Fs
(s)+o(1) (81)

and in the limit, sincePn→P ,

E(R,P )≤Ecc
0

(

s

1−s ,P
)

. (82)

Since this holds for arbitrarys∈(0,1), we have

E(R,P )≤ lim
s→0

Ecc
0

(

s

1−s ,P
)

=0,

where the last step is deduced by noticing thatEcc
0 (ρ,P ) is continuous atρ= 0 and that the argument of the

minimization in the definition ofEcc
0 (ρ,P ) is a non-negative quantity which, forρ=0, vanishes for allF with full

support4. This proves the theorem in case 1) sinceEcc
sp(R−ε,P )≥0.

Assume now that case 2) is satisfied, which means by definitionof R∗(s,P ) that, for anys∈(0,1), we have

R≤−
∑

x

P (x)
[

µSx,Fs
(s)+(1−s)µ′

Sx,Fs
(s)
]

.

Now, sinceµSx,F (s) is convex and non-positive for allF , it is possible to observe thatµSx,Fs
(s)−sµ′

Sx,Fs
(s)≤0,

which implies that−µ′
Sx,Fs

(s)≤−µSx,Fs
(s)/s. Thus, for alls∈(0,1),

R≤
∑

x

P (x)

(

−1

s
µSx,Fs

(s)

)

≤ 1−s
s

Ecc
0

(

s

1−s,P
)

.

Calling nowρ=s/(1−s), we find that for allρ>0

R≤ Ecc
0 (ρ,P )

ρ
.

4Note, however, that forρ>0 there is a unique optimalF , which makesFs well defined.
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Hence, for anyε>0, we find

Ecc
sp(R−ε,P )=sup

ρ>0
(Ecc

0 (ρ,P )−ρ(R−ε))

≥sup
ρ>0

(ρε).

This means thatEcc
sp(R−ε,P ) is unbounded for anyε>0, which obviously implies thatE(R,P )≤Ecc

sp(R−ε,P )
for all positiveε, proving the theorem in this case.

Finally, assume that case 3) above is satisfied. Then, for anyε>0 small enough, there is ās such thatR∗(s̄,P )=

R−ε. For this fixed valuēs, since againRn→R andRn(s̄,Pn,Fs̄)→R∗(s̄,P )=R−ε, Rn>Rn(s̄,Pn,Fs̄) for all

n large enough. Hence, fors= s̄, for all n large enough equation (74) is not satisfied and thus (75) is. This implies

that, for alln large enough

1

n
log

1

P
(n)
e,max

<− 1

1− s̄
∑

x

Pn(x)µSx,Fs̄
(s̄)− s̄

1− s̄Rn(s̄,Pn,Fs̄)+
1

n

(

2s̄
√

2µ′′(s̄)+
log8

1− s̄

)

. (83)

In the limit asn→∞ the last term vanishes,Rn(s̄,Pn,Fs̄)→R∗(s̄,P )=R−ε andPn→P . We thus conclude that

E(R,P )≤− 1

1− s̄
∑

x

P (x)µSx,Fs̄
(s̄)− s̄

1− s̄ (R−ε)

=Ecc
0

(

s̄

1− s̄ ,P
)

− s̄

1− s̄(R−ε)

≤sup
ρ≥0

(Ecc
0 (ρ,P )−ρ(R−ε))

=Ecc
sp(R−ε,P ).

This holds for allε>0 small enough and hence, sinceEcc
sp(R,P ) is non increasing inR, it holds for allε∈(0,R).

This concludes the proof.

APPENDIX B

PROOF OFTHEOREM 6

The proof is obtained by introducing a variation in the proofof theorem 1 presented in Appendix A. In particular,

we use a different operatorF which we choose so as to take into account the state dependentstructure of the

communication process.

From the hypotheses, the communication is governed by the sequence of statesa=(a1, . . . ,an) with composition

Pn, wherePn →P , and codes are considered with conditional compositionsVn given a, whereVn → V . Here

again, as in the other proof, we can assume thatVn(x|a)=0 if P (a)=0 or V (x|a)=0. The structure of the proof

remains unchanged with the only difference that, instead ofbuildingF usingn identical copies of a single density

operatorsF , we can use|A| different operatorsFa, a∈A to build F as

F =Fa1
⊗Fa2

⊗·· ·⊗Fan
. (84)
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Then we can still use the two equations (71) and (72) to bound the probability of error as a function of the rate,

with the difference that the functionµ(s) now reads

µSxm ,F (s)=n
∑

a,x

Pn(a)Vn(x|a)µSx,Fa
(s). (85)

For a givena∈A and fixeds, we then choose

Fa,s=argmin
F

−
∑

x

V (x|a) log(TrS1−s
x F s), (86)

again ensuring thatµSxm ,F (s) is finite. The rest of the proof follows essentially identical with the obvious differences

due to the use of quantitiesEcc
0 (Ca,ρ,V (·|a)) in place ofEcc

0 (ρ,P ) used before.

APPENDIX C

A REMARK ON HAROUTUNIAN ’ S PROOF OF THESHERE PACKING BOUND

As mentioned, a greedy extension of Haroutunian’s proof of the sphere packing bound to quantum channels, as

outlined in equation (12), gives a bound which is in general weak. The reason why this happens in the quantum case

and not in the classical one can be traced back to a fundamental difference in the solution to the quantum binary

hypothesis testing problem in those two contexts. In fact, as seen from equations (69) and (70), the key ingredient

in the proof of the sphere packing bound is a binary hypothesis test to distinguish the stateSxm
from the auxiliary

stateF . Here, a fundamental difference with the classical counterpart is related to the roles of the Kullback-Leibler

discrimination and Renyi divergence in the expression for the error exponents in binary hypothesis testing. This

difference was already observed in [20, Sec. 4, Remark 1] and[13, Sec. 4.8] and leads to the mentioned difference

in the expressions for the sphere packing bound. We discuss it here in detail for completeness.

In a binary hypothesis testing between two density operatorsA andB, based onn independent extractions, the

error exponents of the first and second kind can be expressed parametrically as (see [13], [3])

− 1

n
logPe|A=−µ(s)+sµ′(s)+o(1) (87)

− 1

n
logPe|B=−µ(s)−(1−s)µ′(s)+o(1) (88)

where

µ(s)=logTrA1−sBs. (89)

Upon differentiation, one finds

− 1

n
logPe|A=− logTr(A1−sBs)+Tr

[

A1−sBs

TrA1−sBs
(logBs− logAs)

]

+o(1) (90)

− 1

n
logPe|B=− logTr(A1−sBs)+Tr

[

A1−sBs

TrA1−sBs

(

logA1−s− logB1−s
)

]

+o(1) (91)
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In the classical case,A andB commute. We can then define the density operatorVs =
A1−sBs

TrA1−sBs and use the

propertieslogBs− logAs=logA1−sBs− logA and logA1−s− logB1−s=logA1−sBs− logB to obtain

− 1

n
logPe|A=TrVs(logVs− logA)+o(1) (92)

=D(Vs||A)+o(1) (93)

and

− 1

n
logPe|B=TrVs(logVs− logA)+o(1) (94)

=D(Vs||B)+o(1) (95)

However, ifA andB do not commute, the above simplification is not possible. This discussion extends without

fundamental differences to the binary hypothesis test between the stateSxm
and the auxiliary stateF with the

exponents expressed as in equations (69) and (70). If we assume that all theSx operators andF commute, the

exponents of the binary hypothesis test used in the sphere packing bound can be expressed in terms of Kullback-

Leibler divergences. For a givens, instead of a single density operatorVs we will have aVx,s for eachx, defined as

Vx,s=S
1−s
x F s/Tr(S1−s

x F s). It then turns out that the optimalF to use, that is the operatorFs defined in equation

(76), is such that (see [5, eq. (9.50)], [21, Cor. 3])

Fs=
∑

x

P (x)Vx,s (96)

and this leads exactly to the usual expression of the sphere packing bound in terms of Kullback-Leibler expressions

as in Haroutunian’s roof (see in particular [6, eq. (19)] and[5, eqs. (9.23), (9.24)]). In the non commutative case,

however, this simplification is not possible and this implies that we cannot express the sphere packing bound using

the Kullback-Leibler divergence in the standard way.
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