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Abstract

The sphere packing bound, in the form given by Shannon, @alland Berlekamp, was recently extended to
classical-quantum channels, and it was shown that thises@anatural setting for combining probabilistic appraech
with some combinatorial ones such as the Lovasz thetaitimcin this paper, we extend the study to the case of
constant composition codes. We first extend the spherenmbkiund for classical-quantum channels to this case, and
we then show that the obtained result is related to a vaniafdhe Lovasz theta function studied by Marton. We then
propose a further extension to the case of varying chanmelscadewords with a constant conditional composition
given a particular sequence. This extension is then apptiealixiliary channels to deduce a bound which can be
interpreted as an extension of the Elias bound.

I. INTRODUCTION

The sphere packing bound has been recently extended ticalagsantum channelsl[2],][3, Sec. V] by resorting

to the first rigorous proof given for the case of classicatidite memoryless channels (DMC) by Shannon, Gallager
and Berlekamp_[4]. That resulted in an upper bound to thals#ify function of classical-quantum channels, which

is the error exponent achievable by means of optimal codes.

The classical proof given iri_[4] can be considered a rigormuspletion of Fano's first efforts toward proving

the boundl[[5, Ch. 9]. However, while Fano’s approach led taghttexponent at high rates for general constant
composition codes, the proof inl[4] only considers the cabdhe optimal composition. Shortly afterwards,
Haroutunian([8], [[7], proposed a simple yet rigorous prodiich gives the tight exponent for codes with general
(possibly non optimal) constant composition. However, aedy extension of this proof to classical-quantum
channels does not give a good bound (see [8, Th. 11.20 and B&Be This motivated the choice made inl [2],

[3] to follow the approach of [4].

In this paper, we modify slightly the approach lin [2]] [3] tertve a sphere packing bound for classical-quantum

channels with constant composition codes. The main diffsgavith respect to the classical case is in the resulting
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possible analytical expressions of the bound, which do¢seem to be expressible, in this case, in terms of the
Kullback-Leibler divegence and mutual information. In gy with the results obtained in[9]][3, Sec. VI], we
then discuss the connections of the constant compositioveof the bound with a quantity introduced by Marton
[10] as a generalization of the Lovasz theta function fourmting the highest rate achievable by zero-error codes
with codewords of a given arbitrary composition. Finallyg wropose an extension of the sphere packing bound
for varying channels and codewords with a constantditionalcomposition from a given sequence, and we show

that this result includes as a special case a recently deselgeneralization of the Elias bound|[11].

II. DEFINITIONS

Consider a classical-quantum chan@elvith input alphabett ={1,...,|X|} and associated density operators
Sz x€ X, in a finite dimensional Hilbert spack. The n-fold product channel acts in the tensor product space
H=H®" of n copies ofH. To a sequence=(z1,z2,...,7,) We associate the signal stalg=95,, 5, - @95, .

A block code withM codewords is a mapping from a set &f message$l,...,M} into a set ofM codewords
x1,...,zp and the rate of the code B=(log M)/n.

We consider a quantum decision scheme for such a code (POWMpased of a collection ofif positive
operators{Il;,II,...,II5/} such that) II,, <1, wherel is the identity operator. The probability that message
m' is decoded when message is transmitted isP,,,/|,,, = TrIl,» Sz,, and the probability of error after sending
messagen is

Pejmn =1~ Tt (I, Sa,,) -

The maximum error probability of the code is defined as thgdstPy,,, that is,
Pe,max= mn%X Pe\m-

In this paper, we are interested in bounding the probabdityerror for constant composition codes. Given a
compositionP,,, we definePé’fn)qa(R,Pn) to be the smallest maximum error probability among all coafelength
n, rateat least R, and compositionP,. For a probability distributionP?, we define the asymptotic optimal error

exponent with compositio® as

1
E(R, P)=limsup —— log P{") . Ry, P, 1)

n—00 n

where the limsup is over all sequences of codes with rRteand compositiong’, such thatk,, — R and P, — P
asn—oo. For channels with a zero-error capacity, the functiof?, P) can be infinite for rates? smaller than
some given quantity”y(P), which we can call the zero-error capacity of the channeltined to P. It is important
to observe that, as faf, the valueCy(P) only depends on the confusability graphof the channel, for which
we could also call itC(G, P) [12], [10].

To avoid unnecessary complications, we use a flexible motai this paper. We keep it simple as far as possible,
progressively increasing its complexity by adding arguteea functions as their definitions become more general.

The meaning of all quantities will be clear from the context.
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IIl. SPHEREPACKING BOUND FORCONSTANT COMPOSITION CODES

Our main result is the following theorem.

Theorem 1:For all positive ratesR, distribution P, and positivez < R, we have the bound
E(R,P)<Eg(R—¢,P),

where EG(R, P) is defined by the relations

p>
E§(p, P)=min | ~(1+p) ZP )Vog Tr(Sa " FT65) | . (3)

the minimum being over all density operatdrs
Proof: See AppendifCA. [ |
The bound is written here in terms of Rényi divergences. d@anmuting states, that is, classical channels, the
bound can be written in the more usual form in terms of Kulkbheibler divergences and mutual information as
in [7]. In fact, assuming that the statés commute, let for notational convenien®(y|z) be their eigenvalues,
which we interpret as classical probability distributipimslexing iny the output space. Then we can write (see [7,
Ch. 5, Prob. 23])

ES%(p,P)= Inln —(1+p) ZP )log Tr (.S, ST Fﬁ) 4)
=min —(1+p)ZP(w)logZW(ylw)ﬁQ(y)l_pp)] (5)
— min AV (ula V(y|z) V(y|z)
PV 1) o s ©
=min [D(V||W|P)+8I(P,V)], @)

where thel/(-|2) and@ run over probability distributions op, I(P, V) is the mutual information with the notation
of [[7]

Viylz)
P(z)V (y|x)log ; (8)
)= 2 PV llnlee G
and D(V||W|P) is the conditional information divergence
Viylx)
D(V|W|P)= P(z V(ylz)lo x . 9
(V[[w|P) ; ()%: (yl)gW(y|w) 9)
Hence, for classical channels, we have the more familianfof the bound (see [7])
ES(R, P)=sup [mvm (D(V|[W|P)+8I(P,V))—pR (10)
p=>0
= DVIWIP). (11)
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This form of the bound emerges naturally in Haroutuniansopt6], [7], which is very simple and gives a very
intuitive interpretation of the resulting expression. Fogiven rateR, one considers auxiliary channéls such
that I(P,V) < R. Given codes with rat&z and compositionP, by the strong converse to the coding theorem, the
probability of error over channéf for at least one codeword is nearly one. For that same codewua probability
of error over channelV can be lower bounded in terms of the Kullback-Leibler diesrceD(V'||W|P), and this
leads to the sphere packing bound.

It is interesting to consider what happens in the case ofawnmuting states. A reasoning similar to the one
described in the last paragraph can be applied to derive adowhich is the formal analog of the classical one in

the form given using equatiof ({L1), namely (s€e [8, Th. ).20

E(R,P)< i D(V||S|P 12
(B.P)<  min D |I5]P) (12)
where now the minimum is over all set of density operaidys
=H (ZP(M) ~N " P@)H(V,), with H(p)=—Trplogp, (13)
and
D(V||S|P) ZP ) Tr V, (log Vi, —log Sy ). (14)

The main difference with respect to the classical case, hexvés that this bound does not have good properties
in the more general classical-quantum setting. For examiplie that - as in the classical case - the bound is finite
only when theV, can be chosen so that sypp) Csupf.S..). As a consequence, for pure-state channels the bound
is infinite for rateskR < I(P, S), which means that the bound is essentially trivial in thisecalhe reason for this
unexpected behavior can be traced back to a fundamentatatiffe in the study of error exponents in the classical
and quantum binary hypothesis testing (see for exaniple 38, 4.8]). A more detailed discussion of this issue
requires an inspection of the proof of the sphere packingqib@and is thus deferred to Appendix C.

Now it is not difficult to show that after optimization of th@mposition we recover the original bound of [2],
[3]. In order to do this, note that

max Eg(R)=sup [m};ax ES%(p,P)— pR} :

p=>0

Then,

maxEg(p, P)

= Inax InlIl

—(1+p) ZP )log Tr (.S, Fﬁ) .

—(1+p) ZP )log Tr(Sa77 FT7)

= mln max

l

:InFin { (1I+p) InaxlogTr(S F+)} ,
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where the minimum and the maximum can be exchanged due taritynén P and convexity inF'. The resulting
expression is in fact the coefficiefh,(p) which defines the sphere packing bound as provedlin [3, THH&jce,

this procedure allows us to recover the results_of [2], [3]nojicing that

E(R)=supFE(R,P) (15)
P
<supEgy(R—¢,P) (16)
P
=FE(R—¢). (17)

Theorenfll constitutes thus the most general form of the sptecking bound, from which all other forms can be

derived.

IV. CONNECTIONS WITHMARTON’'S FUNCTION

The boundEg5(R, P) obtained in the previous section can be used as an upper lhoutite zero-error capacity
of the channel relative t&. Whenever the functiofigi(R —¢, P) is finite, in fact, then the probability of error at
rate R is non-zero. It is not difficult to observe that the smalleeii?.. (P) at which ES(R, P) is finite can be

evaluated as

CC
Roo(P)= lim E%p. P)
p—00 p

—mln ZP Yog Tr(SYF) |,
whereSY is the projection onto the range 6f,. When optimized ovel, we obtain the expression

Ry = m};nmaxlog Tr(S0F)’

already discussed inl[3]. Hence, we have the boutidd) < R (P) and Cy < Roo
It was observed in|9] and [3, Sec. VI] th#k,, is related to the Lovasz numbér[14]. Here, we observe that,
in complete analogy, the valuR..(P) is related to a variation of thé function introduced by Marton ir [10] as

an upper bound t@’(G, P). Given a (confusability) graplir, Marton introduces the following quan

(G, P)= min ZP )log (18)

1
{us b [(ual £
where the minimum is over all representations, } of the graphG in the Lovasz sense and over all unit norm
vectorsf. She then shows tha&t (G, P) <v¥(G, P).
Let us now compare this bound with the best boundti7, P) that we can deduce from the sphere packing

bound usingR..(P). We enforce the notation writin.. ({S: }, P) to point out the dependence &, (P) on the

lWe use the notatiom)(G, P) in place of Marton'sA\(G, P) to preserve a higher coherence with the context of this pdfmrthe same
reason, in what follows we also use, aslin [3], a logarithmécsion of the ordinary Lovas# function, that is, oun) corresponds tdog® in
Lovasz’ notation.
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channel states,. For a given confusability grap@¥, the best upper bound ©G(G, P) is obtained by minimizing
R ({Sz},P) over all possible channels with confusability grafhWe may then define

. 1

where{U,} now runs over all sets of projectors with confusability gra&p. Then we have the bound(G, P) <
Usp(G, P).

The quantitydsp(G, P) is the constant composition analog of the formal quantigyG) defined in [3, Sec. VI].
In that case it was observed by Schrijver and by Duan and W{ifs] that in factdsp(G) =9(G) (with our
logarithmic definition ofi, see footnoté€]1). We have the analogous result for constanpasitions.

Theorem 2:For any graphG and compositionP, ¥s,(G, P)=9(G, P).

Proof: It is obvious thatdsp(G, P) <¥(G, P), since the right hand side df (118) is obtained by restrictimg
operators in the right hand side 6f{20) to have rank one.

We now prove the converse inequality (Cf.[15]). &£, } and F’ be a representation ¢f and a state respectively.
Let first |p) e H ® H' be a purification ofF’ obtained using an auxiliary spaé¢, so thatTr(U,F)=Tr(U, ®

Ty ) (1]). Let then
Uz®11?-[’|¢>

Wy)=——"
S [r=y P
It is not difficult to check thaf{w, } is an orthonormal representation@fand thatTy (U, F)=Tr(U, @ 13/ |1) (¢])=

(21)

|(w,|1)|?, for all z. Hence, the orthormal representatifm, } and the unit norm vectop satisfy

1
;P( logTrUF ZP log O (22)

which implies that}(G, P) <dsp(G, P). [ |
We can now discuss another interesting issue about the ube @fuantityd(G, P). When we are interested in

boundingCy, we can use the bound, <¥(G) or we can also use the bolihdy <maxp J(G, P). Marton [10]

states that this does not make a difference since - “as ifyes®in” - maxp (G, P)=9(G). However, a proof of

this statement does not seem to follow easily from the défimst It can in fact be written as

1 1
max min P(r)log ———— = min maxlog —— (23)
B iy 2 Ple)log s = i malog T
1
= min max » P(x)log ——F—F— 24
Coipy s 2 P oe T 2

x

and, in order to prove the equality, we would need to exchahgemaximization over® with the minimization
over representations and handles. It is not clear in Mastpaper what argument she used to motivate it. We use
Theoreni P to prove this statement.

Theorem 3:For any graph, maxp (G, P)=9%(G).

2Note thatCp=maxp Co(P), since the number of compositions is polynomial in the blkzigth.
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Proof: For any representatiofl/, } of G and density operatdr, define the functiorf (z)=TrU,F, and denote
the set of all functiong’ obtained in this way by OR). The proof of Theorerhl2 shows that ajfif OR(G) can
be realized by rank-one projectiobs = |u,.)(u,| and a pure stat&'=|f)(f|, in a space of dimension at mgst|
(namely the span of thg:.)). In particular, it follows that ORG) is closed and compact.

Furthermore, it is convex: namely, considg(z) :TrUS)F(i) for representation:{Um(i)} of G and density
operatorsF(), i=1,2. Then, for0<p<1, let U, =U" & U and F=pF® & (1 —p)F®, which has associated
F@)=TrU, F=pfi(z)+ (1 —p) fa(x), i.e.pfi +(1—p) f2€OR(G).

Now define the quantity

ZP log (25)

for compositionsP and functionsf € OR(G). The theorem is equivalent to the statement that

mng'ergll?r(lG)J(f’ P):fe%lllqr(lG)mng(f, P), (26)

since the left hand side equalsaxp9(G, P) by Theoreni R, and the right hand side equil&) by [3, Th. 8].

But (28) is an instance of the minimax theorem. Indeed, blo¢hdomains off and P are convex and compact,
and the functionall is convex in the former and concave (in fact affine linear)he katter. [ ]

We close this section with a simple yet useful result whichwileneed in the next section. This is the analogous
of [3, Th. 10] for the constant composition setting.

Theorem 4:For any pure-state channel we have the inequai§( R (P), P) < Roo(P).

1
Proof: For a pure state channel, sinfg™” =S5, =59, we have

Egc(p,P):m;n (14p) ZP )log Tr(S277 FT7)

=min |—(1+)p) ZP )1og Tr (S, F1+P)

<min |—(1+p) ZP )log Tr(SOF)

from which we easily deduce the statement by definitior§ff( 2, P). [ |

V. CONDITIONAL COMPOSITIONS
A. Conditional Sphere Packing Bound

We now develop an extension of the sphere packing to handledke of varying channels withcanditional
compositionconstraint on the codewords. Although this setting can appetificial, the bound will prove useful
when applied to auxiliary channels in a procedure that carcdresidered as an evolution of the method used
in [8, Sec. VIII] along the same lines taken in [11]. Here wewase that we have a finite sgt of possible

states and a different channg)}, for each state: €.4. The communication is governed by a sequence of states
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a=(as,...,a,)€A™ (known to both encoder and decoder) with compositityn which determines the channels to
use. In particular, channél,, is used at time instarit The composition constraint in this case is that all codelsor
have conditional compositiol,, given a, which means that any codeword has a symbah a fractionV,, (x|a)

of the nP,(a) positions wherei; =a. We then assume that, as— o, P, —» P andV,, —» V.

Remark 5:Note that this general scenario includes the ordinary estistomposition situation considered before,
which is obtained for example whef(a)=1 for somea anda=(a,a,...,a). Note that it also includes the study
of the parallel use o >1 channels, which can be recovered by settiig)=1/K,Va, and normalizing the block
lengths by a factoi¥'.

For a givenP andV, let now E({€,}, R,V |P) be the optimal asymptotic error exponent achievable by £ode
with asymptotic conditional compositiori with respect to a sequence with asymptotic composifioasing the
set of channeld€,}, ac.A. Then we have the following result.

Theorem 6:We have the inequality
E({€.}, R, V|P) < Eg({€.}, R—¢,VIP), (27)
where Eg5({€, }, R, V|P) is defined by

Eg({€a} R VIP)—bup[ESC({C b VIP)—pR], (28)

ESE({€a},p,VIP)=>_ P(a)ES(Ca,p,V (]a)), (29)

and E§S(C,,p,V (-]a)) is the coefficientES® of the sphere packing bound for chand@gl with compositionV'(-|a),
as defined in[{3).
Proof: See AppendixB. ]
We observe that the functioAgi({€.}, R, V'|P) is finite for all ratesR > R ({C.},V|P) where
CC,
m EO ({Ca}ap7V|P)

Roo({Ca}7V|P): 1_)00 p (30)
aapv (|a))

—plgrgOZP P (31)

D MLCLNCR) (32

Furthermore, it is not difficult to show, using the same pthre used in Theoref 4, that for pure-state channels
we have the inequality
Eg({€a}, Roo({€a}, VIP), VIP) < Roo ({€a}, V|P). (33)

B. Improvement of the Sphere-Packed Umbrella Bound

We can now combine the bound derived above with the ideagptex in [16], [3] and[[17], much in the same
way as done in[[11]([18], to obtain a bound on the reliabilifysochannel€ using auxiliary classical-quantum

channels{C,}. We limit here the discussion to the case of a pure-staterehamith statesS, = |+, )(1,| and
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pure-states auxiliary channel€,}. The general case will become clear in the next section wivereeformulate
this bound in terms of coddistancesreinterpreting it as a generalization of the Elias bound.

For ap>1, we define the sef(p) of admissible pure-state auxiliary channélsvith statesS, = [¢,.) (1,.| such
that

(o [t )| < | (W [100)| P, Va,2’ € X. (34)

For anyac.A we choose an auxiliary pure state chanbigt I'(p) with statesS,, .= |1, ) (Y| Given a sequence

a=(a,...,a,) €A™ and a sequence=(x;...,z,)€X™, let

";a,mzial,zl@"'@?&an,zn- (35)

Now, given two sequences=(z1,...,2,) andz’=(z},...,2] ), we can use these auxiliary channels to bound the

overlap| (x| )|? as

(W ltpar)|* 2| (tha,altha.a) . (36)

This will allow us to boundE(R, P) for the original channel using the bound (see for exanigle[8,12])
B(R,P) <~ log ma (b, bz, ) +o(1) @)
<~ Llog max [{tPa s, [Pas,, ) +o(L). (38)

We could use the extension of the sphere packing bound amesidn this section to upper bound the right hand
side of the last equation as donelin [3, Sec. VIII] if all codedlsx,,, had the same conditional composition given
the sequence. Since the sequenae is arbitrary, we choose it so that this condition is met byeatst a large
enough subsel of codewords, and we only apply the sphere packing boundisostibset7. In order to do this,
we adopt an idea proposed by Blahuti[17] in a generalizatiothe Elias bound and already considered for a
further generalization in_[11]/ [18].

Given a code withM =e™®» codewords of compositiof,,, assume that there exists a conditional composition
V(alz): X — A (i.e., nP,(x)V,(a|z) is an integer) such that

whereI(Pn,Vn) is the mutual information with the notation of| [7]. Define the
Po(a)=)_ Pu(2)V,(alz) (40)

(that we will write asP,V,, = P,) and and letV, (z|a) = P,(z)V;(alz)/P,(a), so thatP,V, = P,. Note that
(P, Vi) =1(Py, V).

Then, (see[[17, proof of Th. 8], of [18, Lemma 3]) there is atsteone sequenae of composition?, such
that there is a subs@t of at least| 7| =¢"(Fn—1(Pn.Va)—o(1)) codewords with conditional compositidn, givena.
Since we are interested in the limit as— oo, we directly work with the asymptotic rat®, compositionsP and

P and matrixV/, and we neglect the constraint thab, (), n.P,(x)V; (a|z) etc. are integers.
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10

Now, we can use the conditional sphere packing bound intreediun this section to bound the probability of

error of the subcod§™ of rate R= R —I(P,,V,) —o(1) used over the varying channé},, ,--- ,€, . For these

codewords used over this varying channel, there is a decrsile such that ([19], 13, Sec. VIII])

Ise,maxg (|T| - 1)m;nn%)é7_|<12’a,mm |1/~’a,mm/>|2 (41)
< MB=I(P,V)+o(1)) b o |Paws V2. 42
<e pnax (Yo, |z, )| (42)

On the other hand, as— co, Theoren{ 6 with rateR gives
1. - o .
—ElOgPe,maXS Eg({€a}, R—¢,VIP)+o(1) (43)

<ES{&},R—I(P,V)—¢e,V|P)+o(1). (44)

Putting together equationis (38), 142) ahd](44), we obtain

E(R,P)<plES({€a}, R—I(P,V)—¢e,V|IP)+R—I(P,V)]. (45)

Since the choice op, of the channeld€,} € T'(p) and of the distributions?, V' can be optimized, we have, in
analogy with [3, Th. 11],

Theorem 7:For a pure-state channel, the reliability function with stamt compositionP satisfiesE (R, P) <
EG(R, P) where

EE(R,P)=inf p| EBE({C,.},R—I(P,V)—¢,V|P)+R—I(P,V)], (46)

the infimum being ovee >0, p>1, auxiliary pure-state channels, €T'(p), and auxiliary distributions® and V/
such thatPV = P.

Remark 8:Note that for the choiced=2X, V (a|x) = P(a), Ya, we havel(P,V)=0. We can also notice that
the optimization of the channe&, will give €, =C, Va, for an optimalC. With this constraint ori/, the bound
E(R,P) is weakened to

infp[Escg(@,R—s,P)+R], (47)

where the infimum is now only over>1 and@:el“(p). This is a constant composition version of the bound In [3,
Th. 11].

C. Connection with the Elias Bound

In the same way as[[3, Th. 11] generalizes the resultslof [8, B¢ it possible to reinterpret the idea used to
obtain Theorem]7 as a generalization of the Elias bound pteden [11] and[[1B]. For this purpose, it is useful
to introduce a notion of distance between symbols and disthetween sequences, and then restate our bound as
a bound on the minimum distance of codes. Finally, boundserreliability function can be obtained by relating

the minimum distance to the probability of error (seel [18;.S4] for details).

May 16, 2018 DRAFT



11

Let d be a functiond: X x X - Rt U{oo} such that
d(z,z')>0
d(z,2")=d(z',x) Vo
d(z,z)=0.
We call this function? a “distance” although, as seen above, we do not really reallithe properties of a distance.

We stress thatl is allowed to take valuec for some pairs of symbols, a case which is of practical irsteire our

context. We extend the distance to sequences of symbolsrdgfor x =(x1,...,2,) anda’ = (a,...,2},),

d(z,x") ::id(xi,gc;). (48)
i=1

Note in particular thati(xz,z’') =0 iff d(z;,z;)=00 for at least one.

For a given code, we define its minimum distance as

. — 4 !/
dmin(C) .—w,w/ggg#wld(m,w ). (49)
For a compositionP, we define
d(R,n,P) ::mémxdmin(C), (50)

where the maximum is over all codes of lengthrate at leasR, and compositior. For a fixedR, we then define
1
0*(R,P):= limsup —d(R,,n,P,), (51)
n—oo0,{P,} T
whereR,, — R and P, — P asn— cc.

Note that we can drop the constant composition constraifinidg

d(R,n):= max dmin(C), (52)
and, correspondingly,
0" (R):= liyrlisolip %d(R, n). (53)
Then we have
0*(R) ::Inlsaxé*(R,P). (54)

We want to use our results to bound the quantityR, P). In order to do this we proceed in a similar way as done
in Section[V-B. Note that this corresponds to what don€_ir] [4#h two variations; 1) we use general auxiliary
classical-quantum channels in place of the so called reptaons composed of vectors, and 2) we replace the
Lovasz-like trick of [18, Lemma 2] with the sphere packinguid.

Given the distancé and ap>1, we define the seff(p) of admissible auxiliary channe with statesS, such

that
Tr \/ gm \/ Sm/ Sefd(m,m,)/p. (55)
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We then consider again as in Sectlon V-B the subcdef codewords with compositio®,, all with the same
conditional compositiori/;,, given the sequence. For anya A we choose an auxiliary channg), eI'(p) with

statesS‘a,m and for anz €7 we define

Sa,m:gahml ®"'®S’amzn. (56)

Note that this implies that for two sequencesandx’,

Tr\/Sa.e\/Saz < U@2)/0, (57)

Consider now an optimal decision scheme for the states iassddo the subcodg, that is,Sa,m, xzecT. The

extension of[(4R)[[19] says that for such a set of statesgtkgists a measurement such that

I5e,ma><§ en(R_I(p’V)-’_O(l)) ;ﬂaXTTT \ ga,wm \ ga,w ,- (58)
m#m/ € m

But, again, we can use the conditional sphere packing baufmier bound the probability of error of the subcode
T as
- % log Pemax< ESS({€a}, R—I(P,V) —¢,V|P)+o0(1). (59)

Combining equationg (57)_(b8) arld [59) we obtain

L. A&, @) < p(EE{C0}, R—I(P,V) =, V|P)+ R—T(P,V)) +0(1), (60)

n m#m/’
which asymptotically gives the following result.

Theorem 9:For a distancel and assuming the above definitions, we have the inequality
0" (R, P)<EG(R, P), (61)

where EG (R, P) is defined in [(45).

As mentioned, this bound is an extensionl[ofi[18, Th. 6]. Tothéx we can consider the particular case in which
we restrict the attention to pure-state auxiliary chanméth statesga,m=|1ﬁw><zﬁa,w| and then study the smallest
rate for which the boundig; (R, P) (with this additional constraint) is finite. First note tHar fixed channels
{€,}, distributionsP andV, ande sufficiently small, the quantity on the right hand side of aipn [48) is finite
for R>R..({€,},V|P)+I1(P,V). Furthermore, wheiR approaches this value from the right, using equafioh (33),
the right hand side of equation {46) is upper bounded®§.. ({€.},V|P). So, forR> R ({€,},V|P)+1(P,V)
we have the bound

0*(R, P)<2pRoo ({€.}, V| P). (62)
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For pure state auxiliary channels we can write

~({€a},VIP) ZP oo (€0, V (-]a)) (63)
:ZP( mm ZV x|a) 1ogTr(S27IFa) (64)
aceX
=min P(a)V (z]a)log ——————— 65
s 3 P (”ngmwwm (65)
. 1
<min » P(a)V(z|a)log ———"—, (66)
Ua} e [(Ya,zlfa)|?

where the last step we have enforced minimization over rar&kaperatord, =|f,){f.|. Optimizing now overp,

P andV such thatPV = P, and the auxiliary vector§i, ..}, and comparing with the definition af(p, V| P) used

in [18], we deduce that the bound of Theorem 9 includes, asrticplar case, the bound presented[inl[18, Th. 6]
as a generalization of the Elias bound for general, posilfigite, distanc& Hence, it includes in particular all

previously known extensions as discussed_in [18].
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APPENDIXA

PROOF OFTHEOREMI[I]

The structure of the proof is the same aslih [4], and [3, Th. i) wome technical changes which are required
for dealing with general compositions. While introducimgstchanges, we also considerably simplify some of the
technicalities with respect t0][3, Th. 5] in order to give epler yet more transparent proof of both this and the
original theorem.

From the definition ofE(R, P), there exists a sequence of codes of block-lengths,2,... with ratesR, — R,
compositionsP,, — P and with probabilities of erroPéfln)an such that

E(R,P)=limsup —— 1og Pé )

n—00

We first observe that we can just focus on the subset of inpubsels with P(x) >0 and assume without loss of
generality thatP, (z) =0 if P(z)=0. This technicality is needed after equatiénl(76) below aad lIse motivated

as follows. LetX, be the subset ot such thatP(x)=0 if and only if x € X,. Then, for for any sequence of

3Note that the definition of'(p) in [18] is slightly different than here, so that the parametéiere corresponds to the parametg there.
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compositionsP, — P, for all z€ X, we can write thaf, (z) <e,,/|Xy|, wheree,, —0 asn— oo. Any codeword with
compositionP,, will contain symbols inX, in at mostne,, positions. There are only near$ (=) choices for these
positions and, for each such choice there are only at f¢$t~ possible combinations of symbols it},. Hence,
from a code with rateR?,, and composition?,, we can extract a subcode with ra®, = R,, — H(e,,) — e, log|Ap|
such that each symbol i, appears precisely in the same positions in all codewordscalighen bound (R, P)
by bounding the probability of error for this subcode sing®en thate,, —0, we have(R), — R,,) — 0. However,
in the chosen subcode each symboRin appears in the same positions in all codewords, and can thusptaced
with any symbol inX\ A, without affecting the probability of error.

For every fixedn, the idea is again as in previous proofs to consider a bingppthesis test between a properly
selected code signd,, and an auxiliary density operatd® = F®". The main difference with respect tol [3, Th.
5] is in the choice off’ and, as a consequence, in some technical details.

Let n be fixed and let\/ be the number of codewords, thati=e"#». For anym=1,...,M consider a binary
hypothesis test betwee$,,, and an auxiliary statd”= F®". We assume that the supports of the two operators

are not disjoint and, with the notation used lin [3], we define guantity
u(s)=ps,,, F(s)
=logTr S, *F*.

Note that, setting
pis, p(s)=log (TrSL°F*), (67)

we can write

ps,,, #(s)=log[ [ Trs} < F°

=1

~log[] (Tr 5L s Fs)"
=n) _ Pu(x)ps, r(s)- (68)
Applying [3, Th. 4], we find that for each in (0,1), either
T (1~ T0y) 8, | > < oxp () — 2 (5) — 53/207(5)| (69)
or
T [, F > < oxp () + (1= ) (5) — (1= 5)V/2357(5) (70)
As in [3, Th. 5], this can be converted in a relation betwé’é?;?,ax and R,, in the form that either
P> 5 exp [u(s) =50 (5) =5/ 20| 71)
or
Rov< = a(s) 4 (1= ) (5) — (1~ 5) y/37(5) ~ log8] (72)
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Note that due to[(@8), the right hand side [bfl(72) only depemt®, s, P,, and F'. Let then this quantity be
called R, (s, P,, F), that is,

1
Ry (5, P F) == (1a(s) (1= )14 ()= (1 = 5) /244" (5) ~log8 ). (73)
We can use this equation to writé(s) in terms ofR,, (s, P,,, F'). Using [€68), we can state our conditions by saying
that either
R, <R,(s,Py,F) (74)
or
1 s 1 log8
1 Po( — Ru(s,P.,F)+— | 2s7/2u" 75
108 g < S B s ) - Tl P (VAT )9

At this point we introduce the variation with respect td [Bbr any F', one of the two conditions above must
be satisfied and, ir_[3], the choice 6f was made which guaranteed the best bound forofitenal compositions
P,. Here, instead, the compositio#3, are forced to tend to a given compositiéhand we have to choosE

accordingly. For a gives € (0,1), let F; be the operator defined by
—argmm ZP Ylog(Tr SE=5F*). (76)

Note that this choice guarantees that for alwith P(xz) >0, S, and F' have non-disjoint supports. Since we
assumed thaP,, (r) =0 wheneverP(x)=0, the requirement tha$,,  and F have non-disjoint support is satisfied
for all sequences:,,, with compositionP,,, and henceu(s) is a finite quantity for alls€(0,1).

We will now relate the choice of to the rateR and then uséF, in place of F' for the chosens (it must be

clear, however, that'(s) and u(s) are computed by holding’ fixed). Note that we can write

1
B ) == 30 Pao) [ (9)+ 050, (9] + = _WZP Wy () logs. (77)

For any fixeds, the last two terms on the right hand side vanismas oo, and P,, in the first term tends td.

Hence, it is useful to define the quantity

R*(S,P):nlirrgoRn(s,Pn,Fs) (78)
:—ZP (5., () + (1= 8)is, ., (5)] (79)

and compare this quantity to the ralewhich we are considering, which is the limit of thg,’s.
We first observe that, for any and F', us, r(s) is a non-positive convex function affor all s€(0,1), which

implies that for anyF" we have

ps, r(8)+(1—s)us, p(s) <ps, r(17)

<0.

Hence, bothR*(s, P) and R, (s, P,,, Fs) are non-negative quantities. Furthermore, it is not diffitusee thatF; is

continuous ins in the interval0 <s <1, and so iskR* (s, P). Hence,R*(s, P) is a continuous non-negative function
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of s in the interval0 < s <1, and we can compare this function with the asymptotic fatéNVe only have three
possible situations:

1) R>sup,e(o,1) (s, P);

2) R<inf.c(o1) R*(s,P);

3) infee(o,1) R* (s, P) <R<supye(o,1) B (s, P).

Assume case 1) is verified. Fix an arbitrary (0,1). SinceR,, — R and R, (s, P, Fs) = R*(s,P) <R, R, >
R, (s, Py, Fy) for all n large enough. Hence, equatidn(74) is not satisfied and thuatien [75) is. Since is
fixed anan(s,Pn,Fs) >0, asn goes to infinity we find

S
1y Py % Ro(5, Py, Fy) +0(1 80
- gP 1—32 )ps, . (s) = 7 Bls )+o(1) (80)

e,max

< 1_SZP s, . (s)+o(1) (81)

and in the limit, sinceP,, — P,
E(R,P)<E® (%,P) . (82)
— S

Since this holds for arbitrary< (0,1), we have

< : cC S
E(R,P) < lim Ef <1_S,P)
:()7

where the last step is deduced by noticing th&f(p, P) is continuous afp=0 and that the argument of the
minimization in the definition ofE5%(p, P) is a non-negative quantity which, fer=0, vanishes for allF" with full
suppoH This proves the theorem in case 1) sinc§(R—¢, P) >0.

Assume now that case 2) is satisfied, which means by defirtid* (s, P) that, for anys< (0,1), we have
R<— ZP (s, 7. (8)+(1=s)us, £ (5)].

Now, sinceys, r(s) is convex and non-positive for alf, it is possible to observe thats, r,(s)—sus, g (s)<0,

which implies that—ys . (s) <—pus, r.(s)/s. Thus, for alls€(0,1),

R<ZP <——usm,Fs( ))

<1—s cc s p
~ s 1—s’ '

Calling nowp=s/(1—s), we find that for allp>0

op

“Note, however, that fop> 0 there is a unique optimaF’, which makesFs well defined.

May 16, 2018 DRAFT



17

Hence, for any >0, we find

Eg(R—¢,P) :Si% (ESS(p,P)—p(R—¢))
p

>sup(pe).
p>0

This means thatigs(R — ¢, P) is unbounded for any >0, which obviously implies thati(R, P) < EgS(R —¢, P)
for all positivee, proving the theorem in this case.

Finally, assume that case 3) above is satisfied. Then, foe atlysmall enough, there is &such thatkR*(s, P)=
R—e. For this fixed valuss, since agail?,, — R and R,,(§, P,,Fs)— R*(5,P)=R—¢, R, >R, (5, P,,F5s) for all
n large enough. Hence, fer=3, for all n large enough equatioh ([74) is not satisfied and thuk (75)his ihplies

that, for alln large enough

1 5 1 log8
1 - P Rn _7P’n.7F§ - 2_ 2”_ — . 83
nogp<n> _SZ s 1 (6) - TR P F) 1 (VTG ) (69

In the limit asn— oo the last term vanishes,,(s, P, F5s) — R*(5,P)=R—¢ and P,, — P. We thus conclude that

e

B(RP)< ;P(x)usx,&(g) -

_ cc S _ S _
_EO (l_gap) 1 (R 5)
<sup (E5°(p, P) — p(R—¢))
p=>0

=Eg(R—¢,P).

This holds for alls >0 small enough and hence, singg5(R, P) is non increasing iz, it holds for all € (0, R).

This concludes the proof.

APPENDIXB

PROOF OFTHEOREM[G]

The proof is obtained by introducing a variation in the probtheoreni]L presented in Appendik A. In particular,
we use a different operatd¥ which we choose so as to take into account the state depestiaoture of the
communication process.

From the hypotheses, the communication is governed by thgesee of stateg=(a4,...,a,) with composition
P,, where P, — P, and codes are considered with conditional compositigngiven a, whereV,, — V. Here
again, as in the other proof, we can assume Wat:|a) =0 if P(a)=0 or V(z|a)=0. The structure of the proof
remains unchanged with the only difference that, insteabudtling F' usingn identical copies of a single density

operatorsF, we can useé.A| different operatordy,, a€.A to build F as

F=F, ®F,® --®F,,. (84)
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Then we can still use the two equationsl(71) dnd (72) to bohadptobability of error as a function of the rate,

with the difference that the function(s) now reads

ps,,, F()=n>_ Pu(a)Va(zla)ps, r,(s). (85)
For a givena € A and fixeds, we then choose

F,s :arg;nin—;‘/(ﬂa) log(Tr SL™5F%), (86)

again ensuring thats,  r(s) is finite. The rest of the proof follows essentially identisith the obvious differences

due to the use of quantitieS;%(C,,p,V (-|a)) in place of E§S(p, P) used before.

APPENDIXC

A REMARK ON HAROUTUNIAN’S PROOF OF THESHERE PACKING BOUND

As mentioned, a greedy extension of Haroutunian’s proohefdphere packing bound to quantum channels, as
outlined in equation (12), gives a bound which is in generdikv The reason why this happens in the quantum case
and not in the classical one can be traced back to a fundahtiffiésence in the solution to the quantum binary
hypothesis testing problem in those two contexts. In fagtseen from equations (69) and](70), the key ingredient
in the proof of the sphere packing bound is a binary hyposhesit to distinguish the staf, from the auxiliary
stateF'. Here, a fundamental difference with the classical coyatetris related to the roles of the Kullback-Leibler
discrimination and Renyi divergence in the expression ffigr érror exponents in binary hypothesis testing. This
difference was already observed in[20, Sec. 4, Remark 1][EBdSec. 4.8] and leads to the mentioned difference
in the expressions for the sphere packing bound. We distumsé in detail for completeness.

In a binary hypothesis testing between two density opesatoand B, based om independent extractions, the

error exponents of the first and second kind can be expressathptrically as (seé [13],1[3])

~~ logPeja=—p(s)+ 57 (s) + (1) (87)
~logPeyy = —pls) — (1= s} () +o(1) (88)

where
p(s)=logTr A'~*B*. (89)

Upon differentiation, one finds

1 1-s ps
_ﬁ log Pe‘Az—logTr(Al_sBs)-l-Tr {W (1OgBS —IOgAS):| +0(1) (90)
1 1—s5 s s 1—s 1—s
—ElogPe‘B:—logTr(A B®)+Tr {W (logA'~*—log B'*) | +0(1) (91)
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In the classical cased and B commute. We can then define the density oper&tos % and use the

propertieslog B* —log A* =log A'*B* —log A andlog A'~* —log B'~*=log A'~*B* —log B to obtain

—%1ogPe|A:TrVS(long—logA)—i-o(l) (92)
=D(V4||A)+o0(1) (93)
and
—%1ogPe|B=I&~VS(1ogVS—1ogA)+o(1) (94)
=D(V;||B) +o(1) (95)

However, if A and B do not commute, the above simplification is not possiblesTdiscussion extends without
fundamental differences to the binary hypothesis test éetwthe stateS,, and the auxiliary statg” with the
exponents expressed as in equatign$ (69) (70). If wenasthat all theS, operators and” commute, the
exponents of the binary hypothesis test used in the spheténgabound can be expressed in terms of Kullback-
Leibler divergences. For a giveninstead of a single density operaldr we will have aV,, , for eachz, defined as
Ves=SI7sFs/Tr(SL1=2F*). It then turns out that the optimal to use, that is the operatdi, defined in equation
(79), is such that (se&l[5, eq. (9.50)]. 21, Cor. 3])

Fo=Y P(x)Ves (96)

and this leads exactly to the usual expression of the splasidry bound in terms of Kullback-Leibler expressions
as in Haroutunian’s roof (see in particular [6, eq. (19)] #bidegs. (9.23), (9.24)]). In the non commutative case,
however, this simplification is not possible and this implteat we cannot express the sphere packing bound using

the Kullback-Leibler divergence in the standard way.
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