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Abstract

In this paper, we examine an input-constrained erasure channel and we character-
ize the asymptotics of its capacity when the erasure rate is low. More specifically,
for a general memoryless erasure channel with its input supported on an irreducible
finite-type constraint, we derive partial asymptotics of its capacity, using some series
expansion type formulas of its mutual information rate; and for a binary erasure chan-
nel with its first-order Markovian input supported on the (1,∞)-RLL constraint, based
on the concavity of its mutual information rate with respect to some parameterization
of the input, we numerically evaluate its first-order Markov capacity and further derive
its full asymptotics. The asymptotics obtained in this paper, when compared with the
recently derived feedback capacity for a binary erasure channel with the same input
constraint, enable us to draw the conclusion that feedback may increase the capacity
of an input-constrained channel, even if the channel is memoryless.

Index Terms: erasure channel, input constraint, capacity, feedback.

1 Introduction

The primary concern of this paper is the erasure channel, which is a common digital com-
munication channel model that plays a fundamental role in coding and information theory.
Throughout the paper, we assume that time is discrete and indexed by the integers. At time
n, the erasure channel of interest can be described by the following equation:

Yn = XnEn, (1)

where the channel input {Xn}, supported on an irreducible finite-type constraint S, is a
stationary process taking values from the input alphabet X = {1, 2, · · · , K} , and the erasure
process {En}, independent of {Xn}, is a binary stationary and ergodic process with erasure

∗A preliminary version of this work has been presented in IEEE ISIT 2014.
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rate ε , P (E1 = 0), and {Yn} is the channel output process over the output alphabet
Y = {0, 1, · · · , K}. The word “erasure” as in the name of our channel naturally arises if a
“0” is interpreted as an erasure at the receiving end of the channel; so, at time n, the channel
output Yn is nothing but the channel input Xn if En = 1, but an erasure if En = 0.

Let X ∗ denote the set of all the finite length words over X . Let F be a finite subset of X ∗,
and let S be the finite-type constraint with respect to F , which is a subset of X ∗ consisting
of all the finite length words over X , each of which does not contain any element in F as
a contiguous subsequence (or, roughly, elements in F are “forbidden” in S). The most well
known example is the (d, k)-run-length-limited (RLL) constraint over the alphabet {1, 2},
which forbids any sequence with fewer than d or more than k consecutive 1’s in between two
successive 2’s; in particular, a prominent example is the (1,∞)-RLL constraint, a widely
used constraint in magnetic recording and data storage; see [30, 31]. For the (d, k)-RLL
constraint with k <∞, a forbidden set F is

F = {2 1 · · · 1︸ ︷︷ ︸
l

2 : 0 ≤ l < d} ∪ {0 · · · 0︸ ︷︷ ︸
k+1

}.

When k =∞, one can choose F to be

F = {2 1 · · · 1︸ ︷︷ ︸
l

2 : 0 ≤ l < d};

in particular when d = 1, k = ∞, F can be chosen to be {22}. The length of F is defined
to be that of the longest words in F . Generally speaking, there may be many such F ’s
with different lengths that give rise to the same constraint S; the length of the shortest
such F ’s minus 1 gives the topological order of S. For example, the topological order of the
(1,∞)-RLL constraint, whose shortest F proves to be {22}, is 1. A finite-type constraint S
is said to be irreducible if for any u, v ∈ S, there is a w ∈ S such that uwv ∈ S.

As mentioned before, the input process X of our channel (1) is assumed to be supported
on an irreducible finite-type constraint S, namely, A(X) ⊆ S, where

A(X) , {xji ∈ X ∗ : pX(xji ) > 0}.

The capacity of the channel (1), denoted by C(S, ε), can be computed by

C(S, ε) = sup
A(X)⊆S

I(X;Y ),

where the supremum is taken over all stationary processes X supported on S. Here, we note
that input-constraints [50] are widely used in various real-life applications such as magnetic
and optical recording [31] and communications over band-limited channels with inter-symbol
interference [12]. Particularly, we will pay special attention in this paper to a binary erasure
channel with erasure rate ε (BEC(ε)) with the input supported on the (1,∞)-RLL constraint,
denoted by S0 throughout the paper.

When there is no constraint imposed on the input process X, that is, S = X ∗, it is well
known that C(S, ε) = (1−ε) logK; see Theorem 5.1. When ε = 0, that is, when the channel
is perfect with no erasures, C(S, ε) proves to be the noiseless capacity of the constraint

S, which can be achieved by a unique m-th order Markov chain X̂ with A(X̂) = S [33].
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On the other hand, other than these two above-mentioned “degenerated” cases, “explicit”
analytic formulas of capacity for “non-degenerated” cases have remained evasive, and the
problem of analytically characterizing the noisy constrained capacity is widely believed to
be intractable.

The problem of numerically computing the capacity C(S, ε) seems to be as challenging:
the computation of the capacity of a general channel with memory or input constraints is
notoriously difficult and has been open for decades; and the fact that our erasure channel is
only a special class of such ones does not appear to make the problem easier. Here, we note
that for a discrete memoryless channel, Shannon gave a closed-form formula of the capacity
in his celebrated paper [40], and Blahut [5] and Arimoto [1], independently proposed an
algorithm which can efficiently compute the capacity and the capacity-achieving distribution
simultaneously. However, unlike the discrete memoryless channels, the capacity of a channel
with memory or input constraints in general admits no single-letter characterization and
very little is known about the efficient computation of the channel capacity. To date, most
known results in this regard have been in the forms of numerically computed bounds: for
instance, numerically computed lower bounds by Arnold and Loeliger [2], A. Kavcic [25],
Pfister, Soriaga and Siegel [35], Vontobel and Arnold [47].

One of the most effective strategies to compute the capacity of channels with memory
or input constraints is the so-called Markov approximation scheme. The idea is that instead
of maximizing the mutual information rate over all stationary processes, one can maximize
the mutual information rate over all m-th order Markov processes to obtain the m-th order
Markov capacity. Under suitable assumptions (see, e.g., [6]), when m tends to infinity, the
corresponding sequence of Markov capacities will tend to the channel capacity. For our
erasure channel, the m-th order Markov capacity is defined as

C(m)(S, ε) = sup I(X;Y ),

where the supremum is taken over all m-th order Markov chains supported on S.
The main contributions of this work are the characterization of the asymptotics of the

above-mentioned input-constrained erasure channel capacity. Of great relevance to this work
are results by Han and Marcus [19], Jacquet and Szpankowski [24], which have characterized
asymptotics of the capacity of the a binary symmetric channel with crossover probability
ε (BSC(ε)) with the input supported on the (1,∞)-RLL constraint. The approach in the
above-mentioned work is to obtain the asymptotics of the mutual information rate first, and
then apply some bounding argument to obtain that of the capacity. The approach in this
work roughly follows the same strategy, however, as elaborated below, our approach differs
from theirs to a great extent in terms of technical implementations.

Throughout the paper, we use the logarithm with base e in the proofs and we use the
logarithms with base 2 in the numerical computations of the channel capacity. Below is a
brief account of our results and methodology employed in this work.

The starting point of our approach is Lemma 2.1 in Section 2, a key lemma that ex-
presses the conditional entropy H(Y0|Y −1

−n ) in a form that is particularly effective for analyz-
ing asymptotics of C(S, ε) when ε is close to 0. As elaborated in Theorem 2.2, Lemma 2.1
naturally gives a lower and upper bound on C(S, ε), where the lower bound gives a counter-
part result of Wolf’s conjecture for a BEC(ε). Moreover, when applied to the case when X
is a Markov chain, Lemma 2.1 yields some explicit series expansion type formulas in Theo-
rem 2.4 and Corollary 2.5, which aptly pave the way for characterizing the asymptotics of
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the input-constrained erasure channel capacity. Here we remark that the method in [19, 24]
have been further developed for more general families of memory channels in [20, 21] via
examining the contractiveness of an associated random dynamical system [4]. However, the
methodology to derive asymptotics of the mutual information rate in this work capitalizes
on certain characteristics that are in a sense unique to erasure channels.

In Section 3, we consider a memoryless erasure channel with the input supported on an
irreducible finite-type constraint, and in Theorem 3.1, we derive partial asymptotics of its
capacity C(S, ε) in the vicinity of ε = 0 where C(S, ε) is written as the sum of a constant
term, a linear term in ε and an O(ε2)-term. The lower bound part in the proof of this
theorem follows from an easy application of Theorem 2.4, and the upper bound part hings
on an adapted argument in [19].

In Section 4, we consider a BEC(ε) with the input being a first-order Markov process sup-
ported on the (1,∞)-RLL constraint S0. Within this special setup, we show in Theorem 4.1
that the I(X;Y ) is strictly concave with respect to some parameterization of X. And in
Section 4.2, we numerically evaluate C(1)(S0, ε) and the corresponding capacity-achieving
distribution using the randomized algorithm proposed in [16] which proves to be convergent
given the concavity of I(X;Y ). Moreover, the concavity of I(X;Y ) guarantees the unique-
ness of the capacity achieving distribution, based on which we derive full asymptotics of the
above input-constrained BEC(ε) around ε = 0 in Theorem 4.2, where C(1)(S, ε) is expressed
as an infinite sum of all O(εk)-terms.

In Section 5, we turn to the scenarios when there might be feedback in our erasure
channel. We first prove in Theorem 5.1 that when there is no input constraint, the feedback
does not increase the capacity of the erasure channel even with the presence of the channel
memory. When the input constraint is not trivial, however, we show in Theorem 5.3 that
feedback does increase the capacity using the example of a BEC(ε) with the (1,∞)-RLL
input constraint, and so feedback may increase the capacity of input-constrained erasure
channels even if there is no channel memory. The results obtained in this section suggest
the intricacy of the interplay between feedback, memory and input constraints.

2 A Key Lemma and Its Applications

In this section, we focus on the mutual information of the erasure channel (1) introduced
in Section 1. The starting point of our approach is the following key lemma, which is
particularly effective for analysis of input-constrained erasure channels.

Lemma 2.1. For any n ≥ 1, we have

H(Y0|Y −1
−n ) = H(E0|E−1

−n) +
∑

D⊆[−n,−1]

H(X0|XD)P (E0 = 1, ED = 1, EDc = 0), (2)

where [−n,−1] , {−n, · · · ,−1}.

Proof. Note that

H(Y0|Y −1
−n ) = −

∑
y0−n

p(y0
−n) log p(y0|y−1

−n)

= T1(n) + T2(n),
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where

T1(n) = −
∑

y−1
−n,y0=0

p(y0
−n) log p(y0|y−1

−n) and T2(n) = −
∑

y−1
−n,y0 6=0

p(y0
−n) log p(y0|y−1

−n).

From the independence of {Xn} and {En}, it follows that

p(yji ) =
∑

xji : xk=yk for k∈I(yji )

pX(xji )P (EI(yji ) = 1, EĪ(yji ) = 0)

= pX

(
yI(yji )

)
P (EI(yji ) = 1, EĪ(yji ) = 0). (3)

Here and throughout the paper, let Y∗ be the set of all finite length words over Y and we
define, for any yji ∈ Y∗,

I(yji ) = {k : i ≤ k ≤ j, yk 6= 0}, Ī(yji ) = {k : i ≤ k ≤ j, yk = 0}

and
yI(yji ) = {yk : k ∈ I(yji )}.

For y0 6= 0,

p(y0|y−1
−n) =

p(y0
−n)

p(y−1
−n)

=
pX

(
yI(y0−n)

)
P (EI(y0−n) = 1, EĪ(y0−n) = 0)

pX

(
yI(y−1

−n)

)
P (EI(y−1

−n) = 1, EĪ(y−1
−n) = 0)

(a)
= pX

(
y0|yI(y−1

−n)

)
P (E0 = 1|EI(y−1

−n) = 1, EĪ(y−1
−n) = 0),

where (a) follows from the fact that Ī(y0
−n) = Ī(y−1

−n). Similarly, for y0 = 0,

p(y0|y−1
−n) =

pX

(
yI(y0−n)

)
P (EI(y0−n) = 1, EĪ(y0−n) = 0)

pX

(
yI(y−1

−n)

)
P (EI(y−1

−n) = 1, EĪ(y−1
−n) = 0)

(a)
= P (E0 = 1|EI(y−1

−n) = 1, EĪ(y−1
−n) = 0),

where (a) follows from the fact that I(y0
−n) = I(y−1

−n). Therefore,

T1(n) = −
∑

y−1
−n,y0=0

p(y0
−n) log p(y0|y−1

−n)

= −
∑

y−1
−n,y0=0

p(y0
−n) logP (E0 = 0|EI(y−1

−n) = 1, EĪ(y−1
−n) = 0)

= −
∑

D⊆[−n,−1]

∑
y0−n:I(y−1

−n)=D,y0=0

p(y0
−n) logP (E0 = 0|ED) = 1, EDc = 0)

(a)
= −

∑
D⊆[−n,−1]

P (E0 = 0, ED = 1, EDc = 0) logP (E0 = 0|ED = 1, EDc = 0), (4)
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where (a) follows from the fact that for any given D ⊆ [−n,−1],∑
y0−n:I(y−1

−n)=D,y0=0

p(y0
−n) = P (E0 = 0, ED = 1, EDc = 0).

Also, we have

T2(n) = −
∑

y−1
−n,y0 6=0

p(y0
−n) log p(y0|y−1

−n)

= −
∑

y−1
−n,y0 6=0

p(y0
−n) log pX

(
y0|yI(y−1

−n)

)
P (E0 = 1|EI(y−1

−l ) = 1, EĪ(y−1
−l ) = 0)

= T3(n)−
∑

y−1
−n,y0 6=0

p(y0
−n) logP (E0 = 1|EI(y−1

−n) = 1, EĪ(y−1
−n) = 0)

(a)
= T3(n)−

∑
D⊆[−n,−1]

P (E0 = 1, ED = 1, EDc = 0) logP (E0 = 1|ED = 1, EDc = 0), (5)

where (a) follows from a similar argument as in the proof of (4) and

T3(n) = −
∑

y−1
−n,y0 6=0

p(y0
−n) log pX(y0|yI(y−1

−n)).

From (3), it then follows that

T3(n) = −
∑

y−1
−n,y0 6=0

p(y0
−n) log pX(y0|yI(y−1

−n))

= −
∑

D⊆[−n,−1]

∑
y0−n:I(y0−n)=D∪{0}

pX(yD, y0)P (E0 = 1, ED = 1, EDc = 0) log pX(y0|yD)

=
∑

D⊆[−n,−1]

H(X0|XD)P (E0 = 1, ED = 1, EDc = 0). (6)

The desired formula for H(Y0|Y −1
−n ) then follows from (4), (5) and (6).

One of the immediate applications of Lemma 2.1 is the following lower and upper bounds
on C(S, ε).

Theorem 2.2.
(1− ε)C(S, 0) ≤ C(S, ε) ≤ (1− ε) logK.
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Proof. For the upper bound, it follows from Lemma 2.1 that

I(X;Y ) = lim
n→∞

(H(Y0|Y −1
−n )−H(Y0|Y −1

−n , X
0
−n))

= lim
n→∞

∑
D⊆[−n,−1]

H(X0|XD)P (E0 = 1, ED = 1, EDc = 0)

(a)

≤ lim
n→∞

∑
D⊆[−n,−1]

H(X0)P (E0 = 1, ED = 1, EDc = 0)

≤ lim
n→∞

∑
D⊆[−n,−1]

P (E0 = 1, ED = 1, EDc = 0) logK

= P (E0 = 1) logK

= (1− ε) logK,

where we have used the fact that conditioning reduces entropy for (a).

Assume S is of topological order m, and let X̂ be the m-order Markov chain that achieves
the noiseless capacity C(S, 0) of the constraint S. Again, it follows from Lemma 2.1 that

I(X̂;Y ) = lim
n→∞

(H(Y0|Y −1
−n )−H(Y0|Y −1

−n , X̂
0
−n))

= lim
n→∞

∑
D⊆[−n,−1]

H(X̂0|X̂D)P (E0 = 1, ED = 1, EDc = 0)

≥ lim
n→∞

∑
D⊆[−n,−1]

H(X̂0|X̂−1
−m, X̂D)P (E0 = 1, ED = 1, EDc = 0)

(a)
= lim

n→∞

∑
D⊆[−n,−1]

H(X̂0|X̂−1
−m)P (E0 = 1, ED = 1, EDc = 0)

= P (E0 = 1)H(X̂0|X̂−1
−m)

= (1− ε)C(S, 0),

where we have used the fact that {X̂n} is an m-th order Markov chain for (a).

Remark 2.3. The upper bound part of Theorem 2.2 also follows from the well-known fact
that (see Theorem 5.1)

C(X ∗, ε) = (1− ε) logK

and for any S,
C(S, ε) ≤ C(X ∗, ε),

which is obviously true.
Let C ′(S, ε) denote the capacity of a BSC(ε) with the (d, k)-RLL constraint. In [49] Wolf

posed the following conjecture on C ′(S, ε):

C ′(S, ε) ≥ C ′(S, 0)(1−H(ε)),

where H(ε) , −ε log ε− (1−ε) log(1−ε). A weaker form of this bound has been established
in [36] by counting the possible subcodes satisfying the (d, k)-RLL constraint in some linear
coding scheme, but the conjecture for the general case still remains open.
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It is well known that 1−H(ε) is the capacity of a BSC(ε) without any input constraint,
and 1 − ε is the capacity of a BEC(ε) without any input constraint. So, for an input-
constrained BEC(ε), the lower bound part of Theorem 2.2 gives a counterpart result of
Wolf’s conjecture.

When applied to the channel with a Markovian input, Lemma 2.1 gives a relatively
explicit series expansion type formula for the mutual information rate of (1).

Theorem 2.4. Assume {Xn} is an m-th order input Markov chain. Then,

I(X;Y ) =
∞∑
k=0

b(k−1,m)∑
t=0

∑
{it1}∈B2(k−1,t)

H(X0|Xit1
, X−k−1
−k−m)P (EA(k,it1) = 1, EĀ(k,it1) = 0), (7)

where A(k, it1) = {−k − m, · · · ,−k − 1, it1, 0} and Ā(k, it1) = {−k − m, · · · , 0} − A(k, it1)
and B2(n, u) = {{i1, · · · , iu} ⊆ [−n,−1] : for all j = 1, · · · , u, {ij, ij + 1, · · · , ij + m} 6⊆
{i1, · · · , iu}} and b(k−1,m) = (m−1)

⌊
k−1
m

⌋
+R(k−1), here R(k−1) denotes the remainder

of k − 1 divided by m.

Proof. Note that

H(Y0|X0
−n, Y

−1
−n ) = H(X0E0|X0

−n, E
−1
−n, Y

−1
−n )

(a)
= H(E0|E−1

−n),

where (a) follows from the independence of {Xn} and {En}. From Lemma 2.1, it then follows
that

I(X;Y ) = lim
n→∞

(H(Y0|Y −1
−n )−H(Y0|X0

−n, Y
−1
−n ))

= lim
n→∞

∑
D⊆[−n,−1]

H(X0|XD)P (E0 = 1, ED = 1, EDc = 0). (8)

Now, letting

B(n, u) = {D ⊆ [−n,−1] : |D| = u} and B1(n, u) = B(n, u)−B2(n, u),

we deduce that, for {it1} ∈ B2(k − 1, t)∑
D⊆[−n,−k−m−1]

P (EA(k,it1) = 1, ED = 1, EĀ(k,it1) = 0, E[−n,−k−m−1]−D = 0) = P (EA(k,it1) = 1, EĀ(k,it1) = 0).
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and
n∑

k=m

∑
{i1,...,ik}∈B1(n,k)

H(X0|Xik1
)P (E0 = 1, Eik1 = 1, Eīk1 = 0)

=
n−m+1∑
k=0

b(k−1,m)∑
t=0

∑
{it1}∈B(k−1,t)

∑
D⊆[−n,−k−m−1]

{
H(X0|XA(k,it1), XD)

× P (EA(k,it1) = 1, ED = 1, EĀ(k,it1) = 0, E[−n,−k−m−1]−D = 0)
}

(a)
=

n−m+1∑
k=0

b(k−1,m)∑
t=0

∑
{it1}∈B(k−1,t)

∑
D⊆[−n,−k−m−1]

{
H(X0|XA(k,it1))

× P (EA(k,it1) = 1, ED = 1, EĀ(k,it1) = 0, E[−n,−k−m−1]−D = 0)
}

=
n−m+1∑
k=0

b(k−1,m)∑
t=0

∑
{it1}∈B(k−1,t)

H(X0|XA(k,it1))P (EA(k,it1) = 1, EĀ(k,it1) = 0),

where (a) follows from the fact that {Xn} is an m-th order Markov chain. Then it follows
that∑

D⊆[−n,−1]

H(X0|XD)P (E0 = 1, ED = 1, EDc = 0)

=
n∑
k=0

∑
{i1,...,ik}∈B(n,k)

H(X0|Xik1
)P (E0 = 1, Eik1 = 1, Eīk1 = 0)

=

 n∑
k=m

∑
{i1,...,ik}∈B1(n,k)

+

b(n,m)∑
k=0

∑
{i1,...,ik}∈B2(n,k)

H(X0|Xik1
)P (E0 = 1, Eik1 = 1, Eīk1 = 0)

=
n−m+1∑
k=0

b(k−1,m)∑
t=0

∑
{it1}∈B(k−1,t)

H(X0|XA(k,it1))P (EA(k,it1) = 1, EĀ(k,it1) = 0) + T (n), (9)

where

T (n) =

b(n,m)∑
k=0

∑
{ik1}∈B2(n,k)

H(X0|Xik1
)P (E0 = 1, Eik1 = 1, Eīk1 = 0).

It follows from H(X0|Xik1
) ≤ logK that

T (n) ≤
b(n,m)∑
k=0

∑
{ik1}∈B2(n,k)

P (E0 = 1, Eik1 = 1, Eīk1 = 0) logK ≤ P (Fn) logK,

where Fn is the event that “there is no m consecutive 1’s in E−1
−n”. Now, let Wi =

(Ei, · · · , Ei−m+1) for i ≤ −1. Then it follows from the assumption that Wi is also a sta-
tionary and ergodic process with P (Wi = (1, · · · , 1)) > 0. Using Poincare’s recurrence
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theorem [10], we have that P (Wi = (1, · · · , 1) i.o.) = 1, which implies that P (F ) = 0, where
F denotes the event that “there is no m consecutive 1’s in E−1

−∞”. This, together with the
fact that limn→∞ P (Fn) = P (F ), implies that limn→∞ T (n) = 0, and therefore the proof of
the theorem is complete.

The following corollary can be readily deduced from Theorem 2.4.

Corollary 2.5. Assume that {En} is i.i.d. and {Xn} is an m-th order Markov chain. Then

I(X;Y ) = (1− ε)m+1

∞∑
k=0

b(k−1,m)∑
t=0

a(k, t)(1− ε)tεk−t, (10)

where
a(k, t) =

∑
{i1...it}∈B2(k−1,t)

H(X0|Xit1
, X−k−1
−k−m).

In particular, if {Xn} is a first-order Markov chain,

I(X;Y ) = (1− ε)2

∞∑
k=0

H(X0|X−k−1)εk. (11)

Remark 2.6. A series expansion type formula for H(X|Y ) different from (11) is given in
Theorem 12 of [46] for a discrete memoryless erasure channel with a first-order input Markov
chain. It can be verified that these two formulas are “equivalent” in the sense that either
one can be deduced from the other one via simple derivations. The form that our formula
takes however makes it particularly effective for the capacity analysis of an input-constrained
erasure channel.

3 Input-Constrained Memoryless Erasure Channel

In this section, we will focus on the case when {En} is i.i.d. and S is an irreducible finite-type
constraint of topological order m. With Lemma 2.1 and Corollary 2.5 established, we are
ready to characterize the asymptotics of the capacity of this type of erasure channels.

As mentioned in Section 1, when ε = 0, it is well known [33] that there exists an mth-order

Markov chain X̂ with A(X̂) = S such that

H(X̂) = H(X̂0|X̂−1
−m) = max

A(X)⊆S
H(X) = C(S, 0), (12)

where the maximization is over all stationary processes supported on S. The following
theorem characterizes the asymptotics of C(S, ε) near ε = 0.

Theorem 3.1. Assume that {En} is i.i.d. Then,

C(S, ε) = C(S, 0)−

{
(m+ 1)H(X̂0|X̂−1

−m)−
m∑
i=1

H(X̂0|X̂−1
−i+1, X̂

−i−1
−i−m)

}
ε+O(ε2). (13)

10



Moreover, for any n ≥ m, C(n)(S, ε) is of the same asymptotic form as in (3.1), namely,

C(n)(S, ε) = C(S, 0)−

{
(m+ 1)H(X̂0|X̂−1

−m)−
m∑
i=1

H(X̂0|X̂−1
−i+1, X̂

−i−1
−i−m)

}
ε+O(ε2). (14)

Proof. To establish (13), we prove that C(S, ε) is lower and upper bounded by the same
asymptotic form as in (13).

For the lower bound part, we consider the channel (1) with X̂ as its input. Note that

P (F̂0) = (1− ε)m and P (F̂k) = ε(1− ε)m for 1 ≤ k ≤ m,

and furthermore, for k ≥ m+ 1

P (F̂k) =

b(k−1,m)∑
t=0

|B2(k − 1, t)|(1− ε)t+mεk−t,

where we have defined

F̂k = {E−k−m−k−1 = 1, E−k = 0, E−1
−k+1 contains no m consecutive 1’s}.

It then follows that

(1− ε)m+1

∞∑
k=m+1

b(k−1,m)∑
t=0

a(k, t)(1− ε)tεk−t

≤ (1− ε)
∞∑

k=m+1

P (F̂k) logK

(a)
= (1− ε)(1−

m∑
k=0

P (F̂k) logK

= (mε2(1− ε)m +
m∑
u=2

(
m

u

)
(1− ε)m−uεu) logK

= O(ε2), (15)

where (a) follows from P (∪k≥0F̂k) = 1 and the constant in O(ε2) depends only on m and K.
Then, from Corollary 2.5, it follows that

C(S, ε) ≥ I(X̂;Y ) = (1− ε)m+1

∞∑
k=0

b(k−1,m)∑
t=0

a(k, t)(1− ε)tεk−t

= (1− ε)m+1

m∑
k=0

b(k−1,m)∑
t=0

a(k, t)(1− ε)tεk−t + (1− ε)m+1

∞∑
k=m+1

b(k−1,m)∑
t=0

a(k, t)(1− ε)tεk−t

(b)
= H(X̂0|X̂−1

−m) +

{
(m+ 1)H(X̂0|X̂−1

−m)−
m∑
i=1

H(X̂0|X̂−1
−i+1, X̂

−i−1
−i−m)

}
ε+O(ε2),

11



where (b) follows from (15) and

m∑
k=0

b(k−1,m)∑
t=0

a(k, t)(1−ε)t+m+1εk−t = H(X̂0|X̂−1
−m)+

{
(m+ 1)H(X̂0|X̂−1

−m)−
m∑
i=1

H(X̂0|X̂−1
−i+1, X̂

−i−1
−i−m)

}
ε+O(ε2).

This, together with (12), establishes that C(S, ε) is lower bounded by the asymptotic form
in (13).

For the upper bound part, we will adapt the argument in [19]. Let

Sn =

pn = (p(x̂0
−n) : x̂0

−n ∈ A(X̂0
−n)) : p(x̂0

−n) > 0,
∑

x̂n0∈A(X̂0
−n)

p(x̂0
−n) = 1


and

Sn,δ = {pn ∈ Sn : p(x̂0
−n) > δ for any x̂0

−n ∈ A(X̂0
−n)},

where A(X̂0
−n) = {x̂0

−n : p(x̂0
n) > 0}. In this proof, we define

Cn(ε,S) = sup
pn∈Sn

H(Y0|Y −1
−n )−H(ε).

It then follows from Lemma 2.1 that

Cn(S, ε) = sup
pn∈Sn

f(pn, ε),

where

f(pn, ε) ,
n∑
k=1

∑
D⊆[−n,−1],|D|=k

H(X0|XD)(1− ε)k+1εn−k.

Let pn(ε) maximize f(pn, ε). As f(pn, ε) is continuous in (pn, ε) and is maximized at p̂n
when ε = 0, there exists some ε0 > 0 (depends on n) and δ > 0 such that for all ε < ε0,
pn(ε) ∈ Sn,δ. Then for ε ≤ ε0, there exists some constant M (depends on n) such that

Cn(S, ε) ≤ sup
pn∈Sn,δ

{
H(X0|X−1

−n) +

(
(n+ 1)H(X0|X−1

−n)−
n∑
k=1

H(X0|X−1
−k+1, X

−k−1
−n )

)
ε

}
+Mε2.

From now on, we write

g1(pn) = H(X0|X−1
−n), g2(pn) =

(
(n+ 1)H(X0|X−1

−n)−
n∑
k=1

H(X0|X−1
−k+1, X

−k−1
−n )

)
ε.

Letting H = H(pn) be the Hessian of g1(pn), we now expand g1(pn) and g2(pn) around
pn = p̂n to obtain

g1(pn) = g1(p̂n) +
1

2
qTnHqn +O(|qn|2)

and

g2(pn) = g2(p̂n) +
∑

x̂0−n∈A(X̂0
−n)

∂g2(p̂n)

∂p(x̂0
−n)

q(x̂0
−n) +O(|qn|).

12



where qn , pn − p̂n contains all q(x̂0
−n) as its coordinates. Since H is negative definite (see

Lemma 3.1 [19]), we deduce that, for |qn| sufficiently small,

g1(pn) + g2(pn)ε ≤ g1(p̂n) + g2(p̂n)ε+
1

4
qTnHqn + 2

∑
x̂0−n∈A(X̂0

−n)

∣∣∣∣∂g2(p̂n)

∂p(x̂0
−n)

q(x̂0
−n)

∣∣∣∣ ε.
Without loss of generality, we henceforth assume H is a diagonal matrix with all diagonal
entries denoted k(x̂0

−n) < 0 (since otherwise we can diagonalize H). Now, let

A1(X̂0
−n) =

{
x̂0
−n :

1

4
k(x̂0

−n)
∣∣q(x̂0

−n)
∣∣2 + 2

∣∣∣∣∂g2(p̂n)

∂p(x̂0
−n)

∣∣∣∣ ∣∣q(x̂0
−n)
∣∣ ε < 0

}
and let A2(X̂0

−n) denote the complement of A1(X̂0
−n) in A(X̂0

−n):

A2(X̂0
−n) = A(X̂0

−n)−A1(X̂0
−n).

Then, we have

f(pn, ε) ≤ g1(p̂n) + g2(p̂n)ε+
1

4
qTnHqn + 2

∑
x̂0−n∈A(X̂0

−n)

∣∣∣∣ ∂g2(p̂n)

∂p(x̂0
−n))

∣∣∣∣ ∣∣q(x̂0
−n)
∣∣ ε+Mε2

≤ g1(p̂n) + g2(p̂n)ε+
∑

x̂0−n∈A2(X̂0
−n)

(
1

4
q(x̂0
−n)2k(x̂0

−n) + 2

∣∣∣∣∂g2(p̂n)

∂p(x̂0
−n)

∣∣∣∣ ∣∣q(x̂0
−n)
∣∣ ε)+Mε2

(a)

≤ g1(p̂n) + g2(p̂n)ε+
∑

x̂0−n∈A2(X̂0
−n)

4
∣∣∣ ∂g2(p̂n)

∂p(x̂0−n)

∣∣∣2 ε2

−k(x̂0
−n)

+Mε2,

where (a) follows from the easily verifiable fact that for any x̂0
−n ∈ A2(X̂0

−n),

1

4
q(x̂0
−n)2k(x̂0

−n) + 2

∣∣∣∣∂g2(p̂n)

∂p(x̂0
−n)

∣∣∣∣ ∣∣q(x̂0
−n)
∣∣ ε ≤ 4

∣∣∣ ∂g2(p̂n)

∂p(x̂0−n)

∣∣∣2 ε2

−k(x̂0
−n)

.

Since X̂0
−n is an m-th order Markov chain, we deduce that

g1(p̂n) + g2(p̂n)ε = H(X̂0|X̂−1
−n) +

(
(n+ 1)H(X̂0|X̂−1

−n)−
n∑
k=1

H(X̂0|X̂−1
−k+1, X̂

−k−1
−n )

)
ε

= H(X̂0|X̂−1
−m) +

(
(m+ 1)H(X̂0|X̂−1

−m)−
m∑
k=1

H(X̂0|X̂−1
−k+1, X̂

−k−1
−m )

)
ε,

We now ready to deduce that, for some positive constant M1,

f(pn, ε) ≤ H(X̂0|X̂−1
−m) +

(
(m+ 1)H(X̂0|X̂−1

−m)−
m∑
k=1

H(X̂0|X̂−1
−k+1, X̂

−k−1
−m )

)
ε+M1ε

2,
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which further implies that

C(ε,S) ≤ Cn(ε,S) ≤ H(X̂0|X̂−1
−m)+

(
(m+ 1)H(X̂0|X̂−1

−m)−
m∑
k=1

H(X̂0|X̂−1
−k+1, X̂

−k−1
−m )

)
ε+M1ε

2.

The proof of (13) is then complete.
With C(S, ε) replaced with C(m)(S, ε), the proof of (13) also establishes (14).

Remark 3.2. In a fairly general setting (where input constraints are not considered), a
similar asymptotic formula with a constant term, a term linear in ε and a residual o(ε)-term
has been derived in Theorem 23 of [46].

As an immediate corollary of Theorem 3.1, the following result gives asymptotics of the
capacity of a BEC(ε) with the input supported on the (1,∞)-RLL constraint S0.

Corollary 3.3. Assume K = 2 and {En} is i.i.d. Then, we have

C(S0, ε) = log λ− 2 log 2

1 + λ2
ε+O(ε2),

and for any n ≥ 1, C(n)(S0, ε) is of the same asymptotic form, namely,

C(n)(S0, ε) = log λ− 2 log 2

1 + λ2
ε+O(ε2). (16)

Proof. Let λ = (1 +
√

5)/2. It is well known [30] that the noiseless capacity

C(S0, 0) = log λ

and the first-order Markov chain {X̂n} with the following transition probability matrix

Π =

[
1− 1/λ2 1/λ2

1 0

]
, (17)

achieves the noiseless capacity, that is, H(X̂) = C(S0, 0) = log λ. Furthermore, via straight-
forward computations, we deduce that

H(X̂0|X̂−2) =
λ2

1 + λ2
H(2/λ2) +

1

1 + λ2
H(1/λ2) = 2 log λ− 2 log 2

1 + λ2
,

which, together with the fact that

H(X̂) = H(X̂0|X̂−1) = log λ,

implies

C(S0, ε) = log λ− 2 log 2

1 + λ2
ε+O(ε2),

as desired.
And the asymptotic form of C(n)(S0, ε) follows from similar computations.

Remark 3.4. The asymptotic form in (16) only gives partial asymptotics of C(n)(S0, ε) for
any n ≥ 1. For the case n = 1, we will derive later on the full asymptotics of C(1)(S0, ε); see
(24) in Section 4.
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4 Input-Constrained Binary Erasure Channel

In this section, we will focus on a BEC(ε) with the input being a first-order Markov process
supported on the (1,∞)-RLL constraint S0. To be more precise, we assume that K = 2,
{En} is i.i.d. and {Xn} is a first-order Markov chain, taking values in {1, 2} and having the
following transition probability matrix:

Π =

[
1− θ θ

1 0

]
.

In Section 4.1, we will show that I(X;Y ) is concave with respect to θ, and in Section 4.2,
we apply the algorithm in [16] to numerically evaluate C(1)(S0, ε), whose convergence is
guaranteed by the above-mentioned concavity result. Finally, in Section 4.3, we characterize
the full asymptotics of C(1)(S0, ε) around ε = 0.

4.1 Concavity

The concavity of the mutual information rate of special families of finite-state machine
channels (FSMCs) has been considered in [21] and [29]. The results therein actually imply
that the concavity of I(X;Y ) with respect to some parameterization of the Markov chain X
when ε is small enough. In this section, however, we will show that I(X;Y ) is concave with
respect to θ, irrespective of the values of ε. Below is the main theorem of this section.

Theorem 4.1. For all ε ∈ [0, 1), I(X;Y ) is strictly concave with respect to θ, 0 ≤ θ ≤ 1.

Proof. From Corollary 2.5, it follows that to prove the theorem, it suffices to show that for
any n ≥ 1, H(X0|X−n) is strictly concave with respect to θ, 0 ≤ θ ≤ 1. To prove this, we
will deal with the following several cases:

Case 1: n = 1. Straightforward computations give

H(X0|X−1) =
−θ log θ − (1− θ) log(1− θ)

1 + θ

and

H ′′(X0|X−1) =
1

(1 + θ)3

{
2 log θ − 4 log(1− θ)− 1

θ
− 4

1− θ
+ 1

}
.

One checks that the function within the brace is negative and it takes the maximum at
θ = 1/2. Therefore H(X0|X−1) is strictly concave in θ.

Case 2: n ≥ 2. By definition,

H(X0|X−n) = P (X−n = 1)H(X0|X−n = 1) + P (X−n = 2)H(X0|X−n = 2).

The following facts can be verified easily:

(i) f(θ) , P (X−n = 1) = 1− P (X−n = 2) = 1
1+θ

;

(ii) the n-step transition probability matrix of the Markov chain {Xn} is

Πn =

[
gn+1(θ) 1− gn+1(θ)
gn(θ) 1− gn(θ)

]
,
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where

gn(θ) ,
1− (−θ)n

1 + θ
;

(iii) H(y) = −y log y− (1− y) log(1− y) is strictly concave with respect to y for y ∈ (0, 1).

With the above notation, we have

H(X0|X−n) = f(θ)H(gn+1(θ)) + (1− f(θ))H(gn(θ))

and

H ′′(X0|X−n) = fH ′′(gn+1)(g′n+1)2 + (1− f)H ′′(gn)(g′n)2 (18)

+ f ′′(H(gn+1)−H(gn)) (19)

− 2f ′H ′(gn)g′n + (1− f)H ′(gn)g′′n (20)

+ 2f ′H ′(gn+1)g′n+1 + fH ′(gn+1)g′′n+1, (21)

where f = f(θ) and gn = gn(θ). It follows from (i) and (iii) that the term (18) is strictly
negative. So, to prove the theorem, it suffices to show that T , (19) + (20) + (21) ≤ 0.

By the mean value theorem,

(19) =
2

(1 + θ)3
(gn+1 − gn) log

1− z1

z1

=
2(−θ)n(1 + θ)

(1 + θ)4
log

1− z1

z1

,

where z1 lies between gn and gn+1. As a function of z1, 2(−θ)n(1+θ)
(1+θ)4

log 1−z1
z1

takes the maximum

at gn. It then follows that

T ≤ cn{2θ − 2 + (−θ)n−1[(n2 − 3n)θ2 + 2(n2 − n− 2) + n2 + n]}
(1 + θ)4

+
cn+1{4− (−θ)n−1[(n2 − 3n)θ2 + 2(n2 − n− 2) + n2 + n]}

(1 + θ)4

=
cn[2θ − 2 +Q(n, θ)(−θ)n−1]

(1 + θ)4
+
cn+1[4−Q(n, θ)(−θ)n−1]

(1 + θ)4
,

where
Q(n, θ) = (n2 − 3n)θ2 + 2(n2 − n− 2)θ + n2 + n

and

cn = log
1− gn
gn

.

We then consider the following several cases:

Case 2.1: n is a positive even number. We first consider the case that gn ≤ 1
2
. For this

case, obviously we have cn ≥ 0, gn+1 >
1
2

and Q(n, θ) > 0, which further implies that

T ≤cn[2θ − 2−Q(n, θ)θn−1]

(1 + θ)4
+
cn+1[4 +Q(n, θ)θn−1]

(1 + θ)4
< 0.
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Now, for the case that gn >
1
2
, again obviously we have cn < 0 and furthermore,

cn+1 − cn = log
1− gn+1

gn+1

− log
1− gn
gn

≤ 0,

where we have used the fact that gn ≤ gn+1 for a positive even number n. Now, we are ready
to deduce that

T ≤ cn[2θ − 2−Q(n, θ)θn−1]

(1 + θ)4
+
cn+1[4 +Q(n, θ)θn−1]

(1 + θ)4

=
(cn+1 − cn)(4 +Q(n, θ)θn−1)

(1 + θ)4
+
cn(2θ + 2)

(1 + θ)4

< 0.

Case 2.2: n is a positive odd integer and n ≥ 3. In this case, we have

T ≤ cn[2θ − 2 +Q(n, θ)θn−1]

(1 + θ)4
+
cn+1[4−Q(n, θ)θn−1]

(1 + θ)4

=
(cn+1 − cn)[4−Q(n, θ)θn−1]

(1 + θ)4
+
cn(2θ + 2)

(1 + θ)4

≤ 1

(1 + θ)4

{
[4−Q(n, θ)θn−1]θn

(1− y2)y2

+ (2θ + 2)(1/gn − 2)

}
,

where the last inequality follows from the mean value theorem, the inequality log z ≤ z − 1
for z > 0 and the fact that z2 lies between gn and gn+1.

Let y2 = Bn/(1 + θ) and Cn = 1 + θ −Bn, where Bn ∈ [1− θn+1, 1 + θn]. Then

T ≤ 1

(1 + θ)4

{
[4−Q(n, θ)θn−1]θn

(1− g2)g2

+ (2θ + 2)(1/gn − 2)

}
≤ (2θ − 2− 4θn)BnCn + (1 + θ)(1 + θn)θn(4−Q(n, θ)θn−1)

BnCn(1 + θ)3(1 + θn)
.

Note that the above numerator, as a function of Bn, takes the maximum at Bn = 1 + θn.
Denote this maximum by −2θ(1 + θn)h1(n, θ), where

h1(n, θ) = 1− θ − 3θn−1 + θn +
Q(n, θ)

2
θ2n−2 +

Q(n, θ)− 4

2
θ2n−1.

To complete the proof, it suffices to prove h1(n, θ) ≥ 0. Substituting Q(n, θ) into h1(n, θ),
we have

h1(n, θ) = 1− θ − 3θn−1 + θn +
Q(n, θ)

2
θ2n−2 +

Q(n, θ)− 4

2
θ2n−1

= 1− θ − 3θn−1 + θn +
θ2n−2

2
[(n2 − 3n)θ3

+(3n2 − 5n− 4)θ2 + (3n2 − n− 8)θ + n2 + n]

≥ h(n, θ),

where
h(n, θ) = 1− θ − 3θn−1 + θn + (4n2 − 4n− 6)θ2n+1.

The following facts can be easily verified:
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(a) h(n, θ) takes the minimum at some θ0, where θ0 satisfies the following equation

h′(n, θ) = 0; (22)

(b) h′(n, θ) < 0 for θ ∈ [0, 1/2] and n ≥ 11.

It then follows from (a) and (b) that θ0 ≥ 1/2 for n > 11. Solving (22) in θn−2, we have

θn−2
0 =

(3− θ0)n− 3 +
√

((3− θ0)n− 3)2 + 4(2n+ 1)(4n2 − 4n− 6)θ5
0

2(2n+ 1)(4n2 − 4n− 6)θ5
0

.

For n ≥ 11, substituting θn−2
0 into h(n, θ), we have

h1(n, θ) ≥ h(n, θ)

≥ h(n, θ0)

= 1− θ0 − 3θn−1
0 + θn0 + (4n2 − 4n− 6)θ2n+1

0

≥ θn−1
0 [−3 + θ0 + (4n2 − 4n− 6)θ4

0 · θn−2
0 ]

≥ θn−1
0 v(n),

where

v(n) = −5

2
+

2n− 3 +
√

(2n− 3)2 + (2n+ 1)(4n2 − 4n− 6)2−3

2(2n+ 1)
.

One checks that v(n) > 0 for n ≥ 65. Now, with the fact that h1(n, θ) > 0 for 3 ≤ n ≤
65 (this can be verified via tedious yet straightforward computations since h1(n, θ) is an
elementary function), we conclude that for h1(n, θ) ≥ 0 for all n ≥ 3 and θ ∈ [0, 1].

4.2 Numerical evaluation of C(1)(S0, ε)

When ε = 0, that is, when the channel is “perfect” with no erasures, both C(S, ε) and
C(m)(S, ε) boil down to the noiseless capacity of the constraint S, which can be explicitly
computed [33]; however, little progress has been made for the case when ε > 0 due to the lack
of simple and explicit characterization for C(S, ε) and C(m)(S, ε). In terms of numerically
computing C(S, ε) and C(m)(S, ε), relevant work can be found in the subject of FSMCs, as
input-constrained memoryless erasure channels can be regarded as special cases of FSMCs.
Unfortunately, the capacity of an FSMC is still largely unknown and the fact that our channel
is only a special FSMC does not seem to make the problem easier.

Recently, Vontobel et al. [48] proposed a generalized Blahut-Arimoto algoritm (GBAA) to
compute the capacity of an FSMC; and in [16], Han also proposed a randomized algorithm
to compute the capacity of an FSMC. For both algorithms, the concavity of the mutual
information rate is a desired property for the convergence (the convergence of the GBAA
requires, in addition, the concavity of certain conditional entropy rate). On the other hand,
as elaborated in [29], such a desired property, albeit established for a few special cases [21, 29],
is not true in general.
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Figure 1: Capacity-achieving Distribution
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Figure 2: Capacity

The concavity established in the previous section allows us to numerically compute
C(1)(S0, ε) using the algorithm in [16]. The randomized algorithm proposed in [16] itera-
tively compute {θn} in the following way:

θn+1 =

{
θn, if θn + angnb(θn) ∈ [0, 1],

θn + angnb(θn), otherwise,

where gnb(θn) is a simulator for I ′(X;Y ) (for details, see [16]). The author shows that
{θn} converges to the first-order capacity-achieving distribution if I(X;Y ) is concave with
respect to θ, which has been proven in Theorem 4.1. Therefore, with proven convergence, this
algorithm can be used to compute the first-order capacity-achieving distribution θ(ε) and the
first-order capacity C(1)(S0, ε) (in bits), which are shown in Fig. 1 and Fig. 2, respectively.

4.3 Full Asymptotics

As in Section 4.1, the noiseless capacity of (1,∞)-RLL constraint S0 is achieved by the
first-order Markov chain with the transition probability matrix (17). So, we have

θmax(ε) = argmax
θ

I(X;Y ) = 1/λ2,

where λ = (1 +
√

5)/2. In this section, we give a full asymptotic formula for θmax(ε) around
ε = 0, which further leads to a full asymptotic formula for C(1)(S0, ε) around ε = 0.
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The following theorem gives the Taylor series of θmax in ε around ε = 0, which leads to
an explicit formula for the n-th derivative of C(1)(S0, ε) at ε = 0, whose coefficients can be
explicitly computed.

Theorem 4.2. a) θmax(ε) is analytic in ε for ε ∈ [0, 1) and

θ
(n)
max(0) = −

(
d2H(X0|X−1)

dθ2

(
1

λ2

))−1

×


n∑
k=1

(
n

k

)
k!

∑
m1,m2,··· ,mn−k

a(m1, · · · ,mn−k)
dm1+···+mn−k+1H(X0|X−k−1)

dθm1+···+mn−k+1

(
1

λ2

) n−k∏
j=1

(θ
(j)
max(0))mj

+
∑

m1,m2,··· ,mn=0

a(m1, · · · ,mn)
dm1+···+mn+1H(X0|X−1)

dθm1+···+mn+1

(
1

λ2

) n∏
j=1

(θ
(j)
max(0))mj

}
,

(23)

where
∑

m1,m2,··· ,mn−k
is taken over all nonnegative intergers m1, · · · ,mn−k satisfying the con-

straint
m1 + 2m2 + · · ·+ (n− k)mn−k = n− k

and

a(m1, · · · ,mn−k) =
(n− k)!

m1!1m1 · · ·mn−k!(n− k)mn−k
.

b) C(1)(S0, ε) is analytic in ε for ε ∈ [0, 1) with the following Taylor series expansion
around ε = 0:

C(1)(S0, ε) =

∞∑
n=0

(
dnG0(ε)

dεn

∣∣∣∣
ε=0

+
dn−1(G1(ε)− 2G0(ε))

dεn−1

∣∣∣∣
ε=0

+

n∑
k=2

(
n

k

)
dn−k

dεn−k
{(Gk(ε) +Gk−2(ε)− 2Gk−1(ε))}

∣∣∣∣∣
ε=0

)
εn,

(24)

where Gk(ε) = H(X0|X−k−1)(θmax(ε)).

Proof. a) For ε > 0,

I(X;Y ) =

{
0 θ = 0 or 1,

> 0 θ ∈ (0, 1).

With Theorem 4.1 establishing the concavity of I(X;Y ), θmax should be the unique zero
point of the derivative of the mutual information rate. So, θmax(ε) ∈ (0, 1) and satisfies

0 =
dI(X;Y )

dθ
= (1− ε)2

∞∑
k=0

dH(X0|X−k−1)

dθ
εk. (25)

According to the analytic implicit function theorem [27], θmax(ε) is analytic in ε for ε ∈ [0, 1).
In the following the s-th order derivative of θmax(ε) at ε = 0 is computed. It follows from
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the Leibniz formula and the Faa di Bruno formula [7] that

0 =
∞∑
k=0

dn

dεn

{
dH(X0|X−k−1)

dθ
εk
}∣∣∣∣∣

ε=0

=
n∑
k=0

k!

(
n

k

)
d(n−k)

dεn−k

{
dH(X0|X−k−1)

dθ

}∣∣∣∣∣
ε=0

=
n∑
k=0

k!

(
n

k

) ∑
m1,m2,··· ,mn−k

a(m1, · · · ,mn−k)
dm1+···+mn−k+1H(X0|X−k−1)

dθm1+···+mn−k+1

(
1

λ2

) n−k∏
j=1

(θ
(j)
max(0))mj

(26)

which immediately implies a).
b) Note that

C(1)(S0, ε) = (1− ε)2

∞∑
k=0

Gk(ε)ε
k

= G0(ε) + (G1(ε)− 2G0(ε))ε+
∞∑
k=2

(Gk(ε) +Gk−2(ε)− 2Gk−1(ε))εk.

It then follows from the Leibniz formula that

dn

dεn

{
∞∑
k=2

(Gk(ε) +Gk−2(ε)− 2Gk−1(ε))εk

}

=
∞∑
k=2

n∑
t=0

(
n

t

)
dn−t

dεn−t
{(Gk(ε) +Gk−2(ε)− 2Gk−1(ε))} εk−t.

Therefore,

dnC(1)(S0, ε)

dεs

∣∣∣∣
ε=0

=
dnG0(ε)

dεn

∣∣∣∣
ε=0

+
dn−1(G1(ε)− 2G0(ε))

dεn−1

∣∣∣∣
ε=0

+
∞∑
k=2

n∑
t=0

(
n

t

)
dn−t

dεn−t
{(Gk(ε) +Gk−2(ε)− 2Gk−1(ε))} εk−t

∣∣∣∣∣
ε=0

=
dnG0(ε)

dεn

∣∣∣∣
ε=0

+
dn−1(G1(ε)− 2G0(ε))

dεn−1

∣∣∣∣
ε=0

+
n∑
k=2

(
n

k

)
dn−k

dεn−k
{(Gk(ε) +Gk−2(ε)− 2Gk−1(ε))}

∣∣∣∣∣
ε=0

,

which immediately implies b).

Despite their convoluted looks, (23) and (24) are explicit and computable. Below, we
list the coefficients of C(1)(S0, ε) (in bits) and θmax(ε) up to the third order, which are
numerically computed according to (23) and (24) and rounded off to the ten thousandths
decimal digit:
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Table 1:

ε0 ε1 ε2 ε3

θmax(ε) 0.3820 0.0462 0.1586 0.2455

C1(ε) 0.6942 -0.6322 0.0159 -0.0625

5 Feedback with Input-Constraint

In this section, we consider the input-constrained erasure channel (1) as in Section 1 however
with possible feedback, and we are interested in comparing its feedback capacity CFB(S, ε)
and its non-feedback capacity C(S, ε). The following theorem states that for the erasure
channel without any input-constraint, feedback does not increase the capacity and both of
them can be computed explicitly. This result is in fact implied by Theorem 12 in [46],
where a random coding argument has been employed in the proof; we nonetheless give an
alternative proof in Appendix A for completeness.

Theorem 5.1. For the erasure channel (1) without any input constraints, feedback does not
increase the capacity, and we have

CFB(X ∗, ε) = C(X ∗, ε) = (1− ε) logK.

On the other hand, we will show in the following that feedback may increase the capacity
when the input constraint in the erasure channel is non-trivial. As elaborated below, this
is achieved by comparing the asymptotics of the feedback capacity and the non-feedback
capacity for a special input-constrained erasure channel.

In [37], Sabag et al. computed an explicit formula of feedback capacity for BEC with
(1,∞)-RLL input constraint S0.

Theorem 5.2. [37] The feedback capacity of the (1,∞)-RLL input-constrained erasure
channel is

CFB(S0, ε) = max
0≤p≤ 1

2

H(p)

p+ 1
1−ε

,

where the unique maximizer p(ε) satisfies p = (1− p)2−ε.

Clearly, the explicit formula in Theorem 5.2 readily gives the asymptotics of the feedback
capacity.

To see this, note that p(0) = 1/λ2 and p(1) = 1/2. Straightforward computations yield

d log p(ε)

dε
= − (1− p(ε)) log p(ε)

(1− p(ε) + p(ε)(2− ε))(2− ε)
.
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Hence,

CFB(S0, ε) = − H(p(ε))

p(ε) + 1
1−ε

= −(1− ε) log p(ε)

2− ε

= −1

2
log p(ε) +

1

2
log p(ε)

∞∑
k=1

(ε
2

)k
= −1

2
log p(0)− 1

2

d log p(ε)

dε

∣∣∣∣
ε=0

ε+
ε

4
log p(0) +O(ε2)

= log λ− λ2

λ2 + 1
log λ · ε+O(ε2).

It then follows from straightforward computations that for the case when ε is close to 0,
C(S0, ε) < CFB(S0, ε). So, we have proven the following theorem:

Theorem 5.3. For a BEC(ε) with the (1,∞)-RLL input constraint, feedback increases the
channel capacity when ε is small enough.

Remark 5.4. An independent work in [44] also found that feedback does increase the
capacity of a BEC(ε) with the same input constraint S0, by comparing a tighter bound
of non-feedback capacity C(S0, ε), obtained via a dual capacity approach, with the feedback
capacity CFB(S0, ε).

Remark 5.5. Recently, Sabag et al. [38] also computed an explicit asymptotic formula for
the feedback capacity of a BSC(ε) with the input supported on the (1,∞)-RLL constraint.
By comparing the asymptotics of the feedback capacity with the that of non-feedback ca-
pacity [19], they showed that feedback does increase the channel capacity in the high SNR
regime.

It is well known that for any memoryless channel without any input constraint, feedback
does not increase the channel capacity. Theorem 5.1 states that when there is no input
constraint, the feedback does not increase the capacity of the erasure channel even with the
presence of the channel memory. Theorem 5.3 says that feedback may increase the capacity of
input-constrained erasure channels even if there is no channel memory. These two theorems,
together with the results in [38, 44], suggest the intricacy of the interplay between feedback,
memory and input constraints.

Appendices

A Proof of Theorem 5.1

We first prove that
C(X ∗, ε) = (1− ε) logK. (27)

A similar argument using the independence of {Xi} and {Ei} as in the proof of (3) yields
that

p(yn1 ) = P (EI(yn1 ) = 1, EĪ(yn1 ) = 0)P (XI(yn1 ) = yI(yn1 )).
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It then follows that

H(Y n
1 ) = −

∑
yn1

p(yn1 ) log p(yn1 )

= −
∑
yn1

p(yn1 ) logP (EI(yn1 ) = 1, EĪ(yn1 ) = 0)−
∑
yn1

P (yn1 ) logP (XI(yn1 ) = yI(yn1 ))

= −
∑

D⊆[1,n]

∑
yn1 :I(yn1 )=D

P (ED = 1, EDC = 0)P (XD = yD) logP (ED = 1, EDc = 0)

−
∑

D⊆[1,n]

∑
yn1 :I(yn1 )=D

P (ED = 1, EDc = 0)P (XD = yD) logP (XD = yD)

= −
∑

D⊆[1,n]

P (ED = 1, EDc = 0) logP (ED = 1, EDc = 0) +
∑

D⊆[1,n]

P (ED = 1, EDc = 0)H(XD)

=
∑

D⊆[1,n]

P (ED = 1, EDc = 0)H(XD) +H(En
1 )

≤ H(En
1 ) +

∑
D⊆[1,n]

P (ED = 1, EDc = 0)|D| logK

= H(En
1 ) + E[E1 + · · ·+ En] logK, (28)

where the only inequality becomes equality if {Xn} is i.i.d. with the uniform distribution.
It then further follows that

C(X ∗, ε) = lim
n→∞

1

n
sup
p(xn1 )

I(Xn
1 ;Y n

1 )

= lim
n→∞

1

n
sup
p(xn1 )

(H(Y n
1 )−H(Y n

1 |Xn
1 ))

= lim
n→∞

1

n
sup
p(xn1 )

(H(Y n
1 )−H(En

1 ))

(a)

≤ lim
n→∞

1

n
E[E1 + · · ·+ En] logK

(b)
= P (E1 = 1) logK

= (1− ε) logK,

where (a) follows from (28) and (b) follows from the ergodicity of {En}. The desired (27)
then follows from the fact that the only inequality (a) becomes equality if {Xn} is i.i.d. with
the uniform distribution.

We next prove that
CFB(X ∗, ε) ≤ (1− ε) logK,

which, together with (27), immediately implies the theorem.
Let W , independent of {Ei}, be the message to be sent and Xi(W,Y

i−1
1 ) denote the

encoding function. As shown in [42],

CFB(X ∗, ε) = lim
n→∞

1

n
sup

{p(Xi=·|Xi−1
1 ,Y i−1

1 ):i=1,··· ,n}
I(W ;Y n

1 ).
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Using the chain rule for entropy, we have

H(Y n
1 |W ) =

n∑
i=1

H(Yi|W,Y i−1
1 )

(a)
=

n∑
i=1

H(EiXi|W,Y i−1
1 , X i

1, E
i−1
1 )

=
n∑
i=1

H(Ei|W,Y i−1
1 , X i

1, E
i−1
1 )

(b)
=

n∑
i=1

H(Ei|Ei−1
1 )

= H(En
1 ), (29)

where (a) follows from the fact that Xi is a function of W and Y i−1
1 and Ei = 0 if and only

if Yi = 0, (b) follows from the independence of W and {Ei}.
Note that for yi 6= 0,

p(yi|w, yi−1
1 ) = P (Xi(w, y

i−1
1 ) = yi, Ei = 1|w, yi−1

1 )

= P (Xi(w, y
i−1
1 ) = yi|w, yi−1

1 )P (Ei = 1|Xi(w, y
i−1
1 ) = yi, w, y

i−1
1 )

= P (Xi(w, y
i−1
1 ) = yi|w, yi−1

1 )P (Ei = 1|EI(yi−1
1 ) = 1, EĪ(yi−1

1 ) = 0). (30)

And for yi = 0,

p(yi|w, yi−1
1 ) = P (Ei = 0|EI(yi−1

1 ) = 1, EĪ(yi−1
1 ) = 0, w, yi−1

1 )

(a)
= P (Ei = 0|EI(yi−1

1 ) = 1, EĪ(yi−1
1 ) = 0), (31)

where (a) follows from the independence of W and {Ei}. It then follows that

p(yn1 ) =
∑
w

p(w)p(yn1 |w)

=
∑
w

p(w)
n∏
i=1

p(yi|w, yi−1
1 )

(a)
=
∑
w

p(w)
∏

i∈I(yn1 )

p(yi|w, yi−1
1 )

∏
i∈Ī(yn1 )

p(yi|w, yi−1
1 )

(b)
=
∑
w

p(w)
∏

i∈I(yn1 )

p(yi|w, yi−1
1 )

∏
i∈Ī(yn1 )

P (Ei = 0|EI(yi−1
1 ) = 1, EĪ(yi−1

1 ) = 0)

=

∑
w

p(w)
∏

i∈I(yn1 )

P (Xi(w, y
i−1
1 ) = yi|w, yi−1

1 )

P (EI(yn1 ) = 1, EĪ(yn1 ) = 0),

where (a) follows from (30) and (b) follows from (31). Since for any D ⊆ [1, n],∑
yn1 :I(yn1 )=D

p(yn1 ) = P (ED = 1, EDc = 0),
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which implies thatq(ỹn1 )) ,
∑
w

p(w)
∏

i∈I(ỹn1 )

P (Xi(w, ỹ
i−1
1 ) = ỹi|w, ỹi−1

1 ) : I(ỹn1 ) = I(yn1 )


is an M |I(yn1 )|-dimensional probability mass function. Therefore, through a similar argument
as before, we have

H(Y n
1 ) = −

∑
yn1

p(yn1 ) log p(yn1 )

= −
∑
yn1

p(yn1 ) logP (EI(yn1 ) = 1, EĪ(yn1 ) = 0)−
∑
yn1

P (EI(yn1 ) = 1, EĪ(yn1 ) = 0)q(yn1 ) log q(yn1 )

= H(En
1 )−

∑
D⊆[1,n]

∑
yn1 :I(yn1 )=D

P (ED = 1, EDc = 0)q(yn1 ) log q(yn1 )

≤ H(En
1 ) +

∑
D⊆[1,n]

P (ED = 1, EDc = 0)|D| logK

= H(En
1 ) + E[E1 + · · ·+ En] logK, (32)

where the inequality follows from the fact that q(yn1 ) is an M |D|-dimensional probability mass
function.

Combining (29) and (32), we have

CFB(X ∗, ε) = lim
n→∞

1

n
sup

{p(Xi=·|Xi−1
1 ,yi−1

1 ):i=1,··· ,n}
I(W ;Y n

1 )

≤ lim
n→∞

1

n
E[E1 + · · ·+ En] logK

= P (E1 = 1) logK

= (1− ε) logK,

as desired.
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