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On the Geometric Ergodicity of
Metropolis-Hastings Algorithms
for Lattice Gaussian Sampling
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Abstract—Sampling from the lattice Gaussian distribution has
emerged as an important problem in coding, decoding and
cryptography. In this paper, the classic Metropolis-Hastings (MH)
algorithm in Markov chain Monte Carlo (MCMC) methods is
adopted for lattice Gaussian sampling. Two MH-based algorithms
are proposed, which overcome the limitation of Klein’s algorithm.
The first one, referred to as the independent Metropolis-Hastings-
Klein (MHK) algorithm, establishes a Markov chain via an
independent proposal distribution. We show that the Markov
chain arising from this independent MHK algorithm is unifor mly
ergodic, namely, it converges to the stationary distribution expo-
nentially fast regardless of the initial state. Moreover, the rate of
convergence is analyzed in terms of the theta series, leading to
predictable mixing time. A symmetric Metropolis-Klein (SMK)
algorithm is also proposed, which is proven to be geometrically
ergodic.

Keywords: Lattice Gaussian distribution, lattice coding,
lattice decoding, MCMC methods.

I. I NTRODUCTION

Recently, the lattice Gaussian distribution has emerged asa
common theme in various research domains. In mathematics,
Banaszczyk firstly applied it to prove the transference theo-
rems for lattices [1]. In coding, lattice Gaussian distribution
was employed to obtain the full shaping gain for lattice coding
[2], [3], and to achieve the capacity of the Gaussian channel
[4]. It was also used to achieve information-theoretic security
in the Gaussian wiretap channel [5], [6] and in the bidirectional
relay channel [7], respectively. In cryptography, the lattice
Gaussian distribution has already become a central tool in
the construction of many primitives. Specifically, Micciancio
and Regev used it to propose lattice-based cryptosystems
based on the worst-case hardness assumptions [8]. Meanwhile,
it also has underpinned the fully-homomorphic encryption
for cloud computing [9]. Algorithmically, lattice Gaussian
sampling with a suitable variance allows to solve the shortest
vector problem (SVP) and the closest vector problem (CVP)
[10], [11]; for example, it has led to efficient lattice decoding
for multi-input multi-output (MIMO) systems [12], [13]. In
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theory, it has been demonstrated that lattice Gaussian sam-
pling is equivalent to CVP via a polynomial-time dimension-
preserving reduction [14], and SVP is essentially a specialcase
of the CVP.

Due to the central role of the lattice Gaussian distribution
playing in these fields, its sampling algorithms become an
important computational problem. In contrast to sampling from
a continuous Gaussian distribution, it is by no means trivial
to perform the sampling even from a low-dimensional discrete
Gaussian distribution. As the default sampling algorithm for
lattices, Klein’s algorithm [15] is capable to sample from
the lattice Gaussian distribution within a negligible statistical
distance if and only if the standard deviationσ ≥

√
ω(log n)·

max1≤i≤n‖b̂i‖ [16], whereω(log n) is a superlogarithmic
function, n denotes the lattice dimension and̂bi’s are the
Gram-Schmidt vectors of the lattice basisB. However, such
requirement ofσ can be excessively large, rendering Klein’s
algorithm inapplicable to many scenarios of interest.

Markov chain Monte Carlo (MCMC) methods attempt to
sample from the target distribution by building a Markov
chain, which randomly generates the next sample conditioned
on previous samples. After a burn-in period, which is normally
measured by themixing time, the Markov chain will reach
a stationary distribution, and successful sampling from the
complex target distribution can be carried out. To this end,
the Gibbs algorithm was introduced into lattice Gaussian
sampling, which employs univariate conditional sampling to
build a Markov chain [17]. It is able to sample beyond
the range of Klein’s algorithm. In [17], a flexible block-
based Gibbs algorithm was also presented, which performs
sampling over multiple elements within a block. In this way,
the correlation within the block could be exploited, leading
to a faster convergence especially in the case of highly
correlated components. Unfortunately, related analysis of the
convergence rate for the associated Markov chains in these two
algorithms was lacking, resulting in an unpredictable mixing
time.

On the other hand, Gibbs sampling has already been adapted
to signal detection for multi-input multi-output (MIMO) com-
munications [18]–[23]. In particular, the selection ofσ (also
referred to as “temperature”) is studied in [18] and it is argued
that σ should grow as fast as the signal-to-noise ratio (SNR)
in general. In [19], a mixed-Gibbs sampler is proposed to
achieve near-optimal performance, which takes the advantages
of an efficient stopping criterion and a multiple restart strategy.
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Moreover, Gibbs sampling is also introduced into soft-output
decoding in MIMO systems, where the extrinsic information
calculated by a priori probability (APP) detector is used to
produce soft outputs [20]. In [21], an investigation of Gibbs-
based MCMC receivers in different communication channels
are given. Due to the finite state space formed by a finite
modulation constellation, those Gibbs samplers converge ex-
ponentially fast to the stationary distribution. However,the rate
of convergence has not yet been determined.

In this paper, another famous MCMC scheme, known as
the Metropolis-Hastings (MH) algorithm [24], is studied in
detail for lattice Gaussian sampling. In particular, it makes
use of aproposal distributionwhich suggests a possible state
candidate and then employs an acceptance-rejection rule to
decide whether to accept the suggested candidate in the next
Markov move. Obviously, the art of designing an efficient MH
algorithm lies in choosing an appropriate proposal distribution,
and this motivates us to design the target proposal distributions
based on Klein’s algorithm.

In the proposed independent Metropolis-Hastings-Klein
(MHK) algorithm, a candidate at each Markov move is gen-
erated from a Gaussian-like proposal distribution via Klein’s
algorithm. In this case, we show that the Markov chain induced
by the independent MHK algorithm is uniformly ergodic,
which implies it converges exponentially fast to the stationary
distribution irrespective of the starting state. Its convergence
rate is then estimated given the lattice basisB, the query point
c and the standard derivationσ. Thus, the mixing time of
the induced Markov chain becomes predictable. To the best
of our knowledge, this is the first time that the convergence
rate of MCMC in communications and signal processing is
determined analytically since MCMC was introduced into this
field in 1990’s [25].

Different from the algorithms in [10], [11] which have
exponential space and time complexity, the proposed indepen-
dent MHK algorithm has polynomial space complexity, and
its time complexity1 varies withσ, where a larger value of
σ corresponds to smaller mixing time. This is in agreement
with the fact we knew before: ifσ is large enough, then
there is no need of MCMC in lattice Gaussian sampling since
Klein’s algorithm can be applied directly with polynomial time
complexity.

The second proposed algorithm, namely the symmetric
Metropolis-Klein (SMH) algorithm, establishes a symmetric
proposal distribution between two consecutive Markov states.
We show it also converges to the stationary distribution
exponentially fast but the selection of the initial state also
plays a role. Such a case is referred to as geometric ergodicity
in MCMC literature [26]. Besides the geometric ergodicity,
another advantage of the proposed SMH algorithm lies in its
remarkable elegance and simplicity, which comes from the
usage of a symmetrical proposal distribution.

To summarize, the main contributions of this paper are the
following:

1In this paper, the computational complexity is measured by the number of
arithmetic operations (additions, multiplications, comparisons, etc.). The time
complexity of an MCMC sampler can be estimated by the mixing time times
the complexity of each Markov move.

Fig. 1. Illustration of a two-dimensional lattice Gaussiandistribution.

1) The independent MHK algorithm is proposed for
lattice Gaussian sampling, where the Markov chain
arising from it converges exponentially fast to the
stationary distribution.

2) The convergence rate of the independent MHK al-
gorithm is derived explicitly in terms of the theta
series, thereby making the estimation of mixing time
possible.

3) The SMH algorithm is further proposed for lattice
Gaussian sampling, which not only achieves expo-
nential convergence, but also is simpler due to its
symmetry.

The rest of this paper is organized as follows. Section II
introduces the lattice Gaussian distribution and briefly reviews
the basics of MCMC methods. In Section III, we propose
the independent MHK algorithm for lattice Gaussians, where
uniform ergodicity is demonstrated. In Section IV, the conver-
gence rate of the independent MHK algorithm is analyzed and
explicitly calculated in terms of the theta series. In Section V,
the proposed SMH algorithm for lattice Gaussian sampling is
given, followed by the demonstration of geometric ergodicity.
Finally, Section VI concludes the paper.

Notation:Matrices and column vectors are denoted by upper
and lowercase boldface letters, and the transpose, inverse,
pseudoinverse of a matrixB by BT ,B−1, and B†, respec-
tively. We denote bybi the ith column of the matrixB, by
b̂i the ith Gram-Schmidt vector ofB, and bybi,j the entry
in the ith row andjth column ofB. ⌈x⌋ denotes rounding to
the integer closest tox. If x is a complex number,⌈x⌋ rounds
the real and imaginary parts separately. In addition, we usethe
standardsmall omeganotationω(·), i.e., |ω(g(n))| > k · |g(n)|
for every fixed positive numberk > 0.

II. PRELIMINARIES

In this section, we introduce the background and mathemat-
ical tools needed to describe and analyze the proposed lattice
Gaussian sampling algorithms.

A. Lattice Gaussian Distribution

Let B = [b1, . . . ,bn] ⊂ R
n consist ofn linearly indepen-

dent vectors. Then-dimensional latticeΛ generated byB is
defined by

Λ = {Bx : x ∈ Z
n}, (1)
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Algorithm 1 Klein’s Algorithm
Input: B, σ, c
Output: Bx ∈ Λ

1: let B = QR andc′ = Q†c
2: for i = n, . . . , 1 do
3: let σi =

σ
|ri,i| and x̃i =

c′i−
∑n

j=i+1 ri,jxj

ri,i
4: samplexi from DZ,σi,x̃i

5: end for
6: returnBx

whereB is called the lattice basis. We define the Gaussian
function centered atc ∈ R

n for standard deviationσ > 0 as

ρσ,c(z) = e−
‖z−c‖2

2σ2 , (2)

for all z ∈ R
n. Whenc or σ are not specified, we assume that

they are0 and 1 respectively. Then, thediscrete Gaussian
distribution overΛ is defined as

DΛ,σ,c(x) =
ρσ,c(Bx)

ρσ,c(Λ)
=

e−
1

2σ2 ‖Bx−c‖2

∑
x∈Zn e−

1
2σ2 ‖Bx−c‖2

(3)

for all x ∈ Z
n, whereρσ,c(Λ) ,

∑
Bx∈Λ ρσ,c(Bx) is just a

scaling to obtain a probability distribution.
Note that this definition differs slightly from the one in [8],

whereσ is scaled by a constant factor
√
2π (i.e., s =

√
2πσ).

Fig. 1 illustrates the discrete Gaussian distribution overZ
2.

As can be seen clearly, it resembles a continuous Gaussian
distribution, but is only defined over a lattice. In fact, discrete
and continuous Gaussian distributions share similar properties,
if the flatness factoris small [5].

B. Klein’s Algorithm

Intuitively, the shape ofDΛ,σ,c(x) suggests that a lattice
pointBx closer toc will be sampled with a higher probability.
Therefore, sampling from the lattice Gaussian distribution can
be naturally used to solve the CVP (wherec is the query point)
and SVP (wherec = 0) in lattices. Because of this, Klein’s
algorithm that samples from a Gaussian-like distribution was
originally proposed for lattice decoding [15].

As shown in Algorithm 1, the operation of the Klein’s
algorithm has polynomial complexityO(n2) excluding QR
decomposition (which may be done only once in the begin-
ning). More precisely, by sequentially sampling from the 1-
dimensional conditional Gaussian distributionDZ,σi,x̃i

in a
backward order fromxn to x1, the Gaussian-like distribution
arising from Klein’s algorithm is given by

PKlein(x) =

n∏

i=1

DZ,σi,x̃i
(xi) =

ρσ,c(Bx)∏n
i=1 ρσi,x̃i

(Z)

=
e−

1
2σ2 ‖Bx−c‖2

∏n
i=1

∑
x̃i∈Z

e
− 1

2σ2
i

‖xi−x̃i‖2
, (4)

where x̃i =
c′i−

∑n
j=i+1 ri,jxj

ri,i
, σi =

σ
|ri,i| = σ

‖b̂i‖
, c′ = Q†c,

ri,j denotes the element of the upper triangular matrixR from
the QR decompositionB = QR and b̂i’s are the Gram-
Schmidt vectors ofB with ‖b̂i‖ = |ri,i|.

Furthermore, it has been demonstrated in [16] thatPKlein(x)
is close toDΛ,σ,c(x) within a negligible statistical distance if

σ ≥
√
ω(log n) · max

1≤i≤n
‖b̂i‖, (5)

However, even with the help of lattice reduction2 (e.g., LLL
reduction), the variance

√
ω(log n) · max1≤i≤n ‖b̂i‖ can be

too large to be useful.

C. MCMC Methods

As for the lattice Gaussian sampling in the rangeσ <√
ω(log n) · max1≤i≤n ‖b̂i‖, MCMC methods have become

an alternative solution, where the discrete Gaussian distribu-
tion DΛ,σ,c is viewed as a complex target distribution lacking
direct sampling methods. By establishing a Markov chain
that randomly generates the next state, MCMC is capable
of sampling from the target distribution of interest, thereby
removing the restriction onσ [17].

As an important parameter which measures the time re-
quired by a Markov chain to get close to its stationary
distribution, themixing timeis defined as [28]

tmix(ǫ) = min{t : max ‖P t(x, ·) − π(·)‖TV ≤ ǫ}, (6)

where ‖ · ‖TV represents the total variation distance (other
measures of distance also exist, see [29] for more details).It
is well known that thespectral gapγ of the transition matrix
offers an upper bound on the mixing time

tmix(ǫ) ≤
1

γ
log

(
1

πminǫ

)
, (7)

whereπmin = minx∈Ωπ(x), Ω stands for the state space,γ =
1 − |λ1| > 0 andλ1 represents the second largest eigenvalue
of the transition matrixP in a Markov chain. Therefore, a
large value of the spectral gap leads to rapid convergence to
stationarity [30].

However, the spectrum of a Markov chain can be hard to
analyze, especially when the state spaceΩ becomes exponen-
tially large, making it difficult to have a compact mathematical
expression of the adjacency matrix. Thanks to the celebrated
coupling technique, for any Markov chain with finite state
spaceΩ, exponentially fast convergence can be demonstrated
if the underlying Markov chain is irreducible and aperiodic
with an invariant distributionπ [28]. Nevertheless, in the
case of lattice Gaussian sampling, the countably infinite state
spacex ∈ Z

n naturally becomes a challenge. For this reason,
we perform the convergence analysis from the beginning —
ergodicity [31].

Definition 1. LetP be an irreducible and aperiodic transition
matrix for a Markov chain. If the chain is positive recurrent,
then it is ergodic, namely, there is a unique probability
distribution π on Ω and for all x ∈ Ω,

lim
t→∞

‖P t(x, ·)− π‖TV = 0, (8)

2It is well known lattice reduction such as the LLL algorithm is able to
significantly improvemini ‖b̂i‖ while reducingmaxi ‖b̂i‖ at the same time
[27].
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whereP t(x; ·) denotes a row of the transition matrixP for t
Markov moves.

Althoughergodicityimplies asymptotic convergence to sta-
tionarity, it does not say anything about the convergence rate.
To this end, the following definition is given [31].

Definition 2. A Markov chain with stationary distributionπ(·)
is uniformly ergodic if there exists0 < δ < 1 and M < ∞
such that for allx

‖P t(x, ·)− π(·)‖TV ≤ M(1− δ)t. (9)

Obviously, the exponential decay coefficientδ is key to
determine the convergence rate. AsM is a constant, the
convergence rate does not depend on the initial statex.
As a weaker version of ergodicity,geometric ergodicityalso
converges exponentially, butM is parameterized by the initial
statex.

Definition 3. A Markov chain with stationary distributionπ(·)
is geometrically ergodic if there exists0 < δ < 1 andM(x) <
∞ such that for allx

‖P t(x, ·) − π(·)‖TV ≤ M(x)(1 − δ)t. (10)

Besides exponential convergence, polynomial convergence
also exists [32], which goes beyond the scope of this paper
due to its slow convergence. Unless stated otherwise, the state
space of the Markov chain we are concerned with throughout
the context is the countably infiniteΩ = Z

n.

D. Classical MH Algorithms

The origin of the Metropolis algorithm can be traced
back to the celebrated work of [33] in 1950’s. In [24], the
original Metropolis algorithm was successfully extended to
a more general scheme known as the Metropolis-Hastings
(MH) algorithm. In particular, let us consider a target invariant
distribution π together with a proposal distributionq(x,y).
Given the current statex for Markov chain Xt, a state
candidatey for the next Markov moveXt+1 is generated from
the proposal distributionq(x,y). Then the acceptance ratioα
is computed by

α(x,y) = min

{
1,

π(y)q(y,x)

π(x)q(x,y)

}
, (11)

and y will be accepted as the new state byXt+1 with
probabilityα. Otherwise,x will be retained byXt+1. In this
way, a Markov chain{X0,X1, . . .} is established with the
transition probabilityP (x,y) as follows:

P (x,y) =

{
q(x,y)α(x,y) if y 6= x,

1−∑
z6=x q(x, z)α(x, z) if y = x.

(12)

It is interesting that in MH algorithms, the proposal dis-
tribution q(x,y) can be any fixed distribution from which
we can conveniently draw samples. Undoubtedly, the fastest
converging proposal distribution would beq(x,y) = π(y)
itself, but in most cases of interestπ cannot be sampled
directly. To this end, many variations of MH algorithms with
different configurations ofq(x,y) were proposed.

III. I NDEPENDENTMHK A LGORITHM

In this section, the independent Metropolis-Hastings-Klein
(MHK) algorithm for lattice Gaussian sampling is firstly
presented. Then, we show that the Markov chain induced by
the proposed algorithm is uniformly ergodic.

A. Independent MHK Algorithm

In the proposed independent MHK algorithm, Klein’s sam-
pling is used to generate the state candidatey for the each
Markov moveXt+1. As shown in Algorithm 2, it consists of
three basic steps:

1) Sample from the independent proposal distribution with
Klein’s algorithm to obtain the candidate statey for Xt+1,

q(x,y) = q(y) = PKlein(y)

=
ρσ,c(By)∏n
i=1 ρσi,ỹi

(Z)

=
e−

1
2σ2 ‖By−c‖2

∏n
i=1

∑
ỹi∈Z

e
− 1

2σ2
i

‖yi−ỹi‖2
(13)

wherey ∈ Z
n, ỹi =

c′i−
∑n

j=i+1 ri,jyj

ri,i
, σi = σ

|ri,i| = σ

‖b̂i‖
,

c′ = Q†c, B = QR by QR decomposition and̂bi’s are the
Gram-Schmidt vectors ofB.

2) Calculate the acceptance ratioα(x,y)

α(x,y) = min

{
1,
π(y)q(y,x)

π(x)q(x,y)

}
=min

{
1,
π(y)q(x)

π(x)q(y)

}

= min

{
1,

∏n
i=1 ρσi,ỹi

(Z)∏n
i=1 ρσi,x̃i

(Z)

}
, (14)

whereπ = DΛ,σ,c.
3) Make a decision forXt+1 based onα(x,y) to accept

Xt+1 = y or not.
A salient feature of the independent MHK algorithm is that

the generation of the state candidatey is independent of the
previous one, which is completely accomplished by Klein’s
algorithm. Therefore, the connection between two consecutive
Markov states only lies in the decision part. The complexityof
the MCMC sampler is given by the number of Markov moves
times the complexity of each move, i.e.,O(tmix · n2).

It is easy to verify that the Markov chain with the inde-
pendent proposal distributionq shown in (13) is irreducible,
aperiodic and positive recurrent, which naturally leads toan
ergodic Markov chain [28]. Then, we have the following well-
known result, whose proof can be found in [28].

Proposition 1. Given the target lattice Gaussian distribution
π = DΛ,σ,c, the Markov chain induced by the independent
MHK algorithm is ergodic:

lim
t→∞

‖P t(x; ·) −DΛ,σ,c(·)‖TV = 0 (15)

for all statesx ∈ Z
n.

B. Uniform Ergodicity

The independent proposal distribution defined in (13) enjoys
the following property.
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Lemma 1. In the independent MHK algorithm for lattice
Gaussian sampling fromDΛ,σ,c, there existsδ > 0 such that

q(x)

π(x)
≥ δ (16)

for all x ∈ Z
n, whereq(x) = PKlein(x).

Proof: Using (3) and (4), we have

q(x)

π(x)
=

ρσ,c(Bx)∏n
i=1 ρσi,x̃i

(Z)
· ρσ,c(Λ)

ρσ,c(Bx)

=
ρσ,c(Λ)∏n

i=1 ρσi,x̃i
(Z)

(a)

≥ ρσ,c(Λ)∏n
i=1 ρσi

(Z)
= δ (17)

where(a) holds due to the fact that [8]

ρσi,x̃(Z) ≤ ρσi
(Z) ,

∑

j∈Z

e
− 1

2σ2
i

j2

. (18)

As can be seen clearly, the right-hand side (RHS) of (17) is
completely independent ofx, meaning it can be expressed as
a constantδ determined by the givenB, c andσ. Therefore,
the proof is completed.

We then arrive at a main Theorem to show the uniform
ergodicity of the proposed algorithm.

Theorem 1. Given the invariant lattice Gaussian distribution
DΛ,σ,c, the Markov chain established by the independent MHK
algorithm is uniformly ergodic:

‖P t(x, ·) −DΛ,σ,c(·)‖TV ≤ (1− δ)t (19)

for all x ∈ Z
n.

Proof: By (13) and (14), the transition probability
P (x,y) of the independent MHK algorithm is given by

P (x,y)=





min
{
q(y), π(y)q(x)

π(x)

}
if y 6=x,

q(x)+
∑
z6=x

max
{
0,q(z)− π(z)q(x)

π(x)

}
if y= x.

(20)
Using Lemma 1, it is straightforward to check that the

following relationship holds

P (x,y) ≥ δπ(y) (21)

for all x,y ∈ Z
n. Now, consider a coupling of two Markov

chainsXt andX′
t, which marginally update according to the

same transition probability (20).X′
t is supposed to start from

the stationary distributionπ, andXt from an initial statex0,
which is not necessarily stationary.

According to thecoupling inequality[28], the variation
distance between the distributions ofXt and X′

t is upper
bounded by

‖P t(x0, ·)− π(·)‖TV ≤ P (Xt 6= X′
t). (22)

On the other hand, any coupling of Markov chains can be
modified so that the two chains stay together at all times once
they meet at a same state [28], namely,

if Xn = X′
n, thenXt = X′

t for t ≥ n. (23)

Algorithm 2 Independent Metropolis-Hastings-Klein Algo-
rithm for Lattice Gaussian Sampling

Input: B, σ, c,X0, tmix(ǫ)
Output: sample from a distribution statistically close toπ =

DΛ,σ,c

1: for t =1,2, . . . , do
2: let x denote the state ofXt−1

3: generatey from the proposal distributionq(x,y) in
(13)

4: calculate the acceptance ratioα(x,y) in (14)
5: generate a sampleu from the uniform densityU [0, 1]
6: if u ≤ α(x,y) then
7: let Xt = y

8: else
9: Xt = x

10: end if
11: if t ≥ tmix(ǫ) then
12: output the state ofXt

13: end if
14: end for

Therefore, given the eventXt 6= X′
t, there is no coupling

in any of thet consecutive moves. By (21), for each move
we have probability at leastδ of making Xi and X′

i (i =
1, 2, . . . , t) equal and we have

P (Xt 6= X′
t)=P (Xt 6= X′

t, . . . ,X0 6= X′
0)

=
t∏

i=1

P (Xi 6= X′
i|Xi−1 6= X′

i−1) ·P (X0 6= X′
0)

≤
t∏

i=1

P (Xi 6= X′
i|Xi−1 6= X′

i−1)

=
t∏

i=1

[
1− P (Xi = X′

i|Xi−1 6= X′
i−1)

]

=


1−

∑

y∈Zn

P (Xi = X′
i = y|Xi−1 6= X′

i−1)



t

(b)

≤


1−

∑

y∈Zn

δπ(y)



t

=(1− δ)t, (24)

where(b) is due to (21).
Then, substituting (24) into (22), we obtain

‖P t(x, ·)− π(·)‖TV ≤ (1− δ)t, (25)

completing the proof.
Obviously, given the value ofδ < 1, the mixing time of the

Markov chain can be calculated by (6) and (25), that is,

tmix(ǫ) =
lnǫ

ln(1− δ)
≤ (−lnǫ) ·

(
1

δ

)
, ǫ < 1 (26)

where we use the bound ln(1 − δ) < −δ for 0 < δ < 1.
Therefore, the mixing time is proportional to1/δ, and becomes
O(1) asδ → 1.
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Here, we point out that the aforementioned spectral gap
γ of the transition matrix can also be used to bound the
mixing time. Resorting to theconductanceof the Markov
chain [28], one obtains a lower bound on the spectral gap
γ of the transition matrix (see Appendix A for its derivation)

γ ≥ δ2

8
. (27)

Then, substituting (27) into (7) yields another upper boundon
the mixing time

tmix(ǫ) ≤ − log(πminǫ) ·
(

8

δ2

)
, ǫ < 1, (28)

which is however looser than (26).

C. Convergence in General Cases (σ 6= σ)

In the proposed independent MHK algorithm, by default,
the standard deviation of the proposal distributionq is set the
same asσ, namely,σ = σ. Therefore, a natural question is
whether a flexible standard deviationσ 6= σ still works. For
this reason, in what follows, the relationship betweenσ and
σ is investigated.

Let the standard deviations ofq(x) andπ(x) be σ and σ
respectively, then the corresponding ratio ofq(x)/π(x) in (17)
can be rewritten as

q(x)

π(x)
≥ ρσ,c(Λ)∏n

i=1 ρσi
(Z)

· e−( 1
2σ2 − 1

2σ2 )‖Bx−c‖2

. (29)

Unfortunately, in the case ofσ < σ, as ‖Bx − c‖ can
be arbitrary, it is impossible to determine a constant lower
bound uponq(x)/π(x) for x ∈ Z

n, implying the uniform
ergodicity can not be achieved [34]3. Therefore,σ < σ should
be avoided in practice and the corresponding convergence
analysis is ignored here.

On the other hand, in the case ofσ > σ, let d(Λ, c) denote
the Euclidean distance between latticeΛ andc

d(Λ, c) = min
x∈Zn

‖Bx− c‖, (30)

then it follows that

q(x)

π(x)
≥ ρσ,c(Λ)∏n

i=1 ρσi
(Z)

· e−( 1
2σ2 − 1

2σ2 )d2(Λ,c) (31)

for all x ∈ Z
n, which means the underlying Markov chain

is uniformly ergodic by satisfying (16) in Lemma 1. More
precisely,q(x)/π(x) could be expressed as

q(x)

π(x)
≥ ρσ,c(Λ)∏n

i=1 ρσi
(Z)

· β (32)

where

β =

∏n
i=1 ρσi

(Z)∏n
i=1 ρσi

(Z)
· e−( 1

2σ2 − 1
2σ2 )d(Λ,c)2 . (33)

Clearly, parameterβ becomes the key to govern the con-
vergence performance. Compared to (17), ifβ > 1, the
convergence of the Markov chain will be boosted by a larger
value of δ, otherwise the convergence will be slowed down.

3In theory, thatq(x)/π(x) is lower bounded by a constant for allx ∈ Z
n

is both sufficient and necessary to the uniform ergodicity [34].
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Fig. 2. Coefficientβ of E8 lattice in the case ofσ > σ whenc = 0.

However, in the case ofσ > σ, it easy to check that the value
of β is monotonically decreasing with the givenσ, rendering
β > 1 inapplicable to the most cases of interest.

As can be seen clearly from Fig. 2, the convergence rate can
be enhanced byβ > 1 only for a small enoughσ (e.g.,σ2 <
0.398, e.g.,−4 dB), thus making the choice ofσ = σ (i.e.,
β = 1) reasonable to maintain the convergence performance.
This essentially explains the reason why the independent MHK
algorithm is proposed withσ = σ as a default configuration
in general.

IV. CONVERGENCERATE ANALYSIS

In this section, convergence analysis about the exponential
decay coefficientδ in the independent MHK algorithm is
performed, which leads to a quantitative estimate of the mixing
time. For a better understanding, the analysis is carried out in
casesc = 0 andc 6= 0 separately.

A. Convergence Rate (c = 0)

Lemma 1 shows that the ratioq(x)/π(x) in the independent
MHK sampling algorithm is lower bounded by a constantδ.
We further derive an explicit expression of the coefficientδ
due to its significant impact on the convergence rate, for the
casec = 0.

Specifically, we have

q(x)

π(x)
=

ρσ,0(Λ)∏n
i=1 ρσi,x̃i

(Z)

(c)

≥
∑

x∈Zn e−
1

2σ2 ‖Bx‖2

∏n
i=1 ρσi

(Z)

(d)
=

ΘΛ(
1

2πσ2 )∏n
i=1 ΘZ(

1
2πσ2

i

)

(e)
=

ΘΛ(
1
s2 )∏n

i=1 ϑ3(
1
s2i
)
= δ. (34)

Here, for notational simplicity,s =
√
2πσ andsi =

√
2πσi =

s/‖b̂i‖ are applied in the equations. In(c), the inequality
ρσi,x̃(Z) ≤ ρσi

(Z) shown in (18) is used again. Theta series
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ΘΛ and Jacobi theta functionϑ3 are applied in(d) and (e)
respectively, where

ΘΛ(τ) =
∑

λ∈Λ

e−πτ‖λ‖2

, (35)

ϑ3(τ) =

+∞∑

n=−∞
e−πτn2

(36)

with ΘZ = ϑ3 [35].

Proposition 2. If s ≥
√
ω(logn) · max1≤i≤n ‖b̂i‖ or s ≤√

ω(logn)
−1 ·min1≤i≤n ‖b̂i‖, then the coefficientδ ≈ 1.

Proof: To start with, let us recall theflatness factor[5],
which is defined as

ǫΛ(σ) =
det(B)

(
√
2πσ)n

ΘΛ

(
1

2πσ2

)
− 1. (37)

and
ǫΛ(σ) = ε, if σ = ηε(Λ). (38)

Here,ηε(Λ) is known as thesmoothing parameterand for any
n-dimensional latticeΛ and positive realε > 0, ηε(Λ) is de-
fined as the smallest realσ > 0 such thatρ1/

√
2πσ(Λ

∗\{0}) ≤
ε, whereΛ∗ denotes the dual lattice ofΛ [16].

Therefore, the exponential decay coefficientδ given in (34)
can be expressed as

δ =
ΘΛ(

1
2πσ2 )∏n

i=1 ϑ3(
1

2πσ2
i

)

=
| det(B)|−1 · (

√
2πσ)n · [ǫΛ(σ) + 1]∏n

i=1

√
2πσi · [ǫZ(σi) + 1]

=
ǫΛ(σ) + 1∏n

i=1[ǫZ(σi) + 1]
, (39)

where det(·) denotes the determinant of a matrix.

Meanwhile, from [8, Lemma 3.3], for anyn-dimensional
latticeΛ and positive realε > 0, it follows that

ηε(Λ) ≤
√

log(2n(1 + 1/ε))

π
· max
1≤i≤n

‖b̂i‖ (40)

and for anyω(log n), there is a negligibleε(n) such that

ηε(Λ) ≤
√
ω(logn) · max

1≤i≤n
‖b̂i‖. (41)

According to (37), it is easy to verify that the flatness factor
ǫΛ(σ) is a monotonically decreasing function ofσ, i.e., for
σ1 ≥ σ2, we have ǫΛ(σ1) ≤ ǫΛ(σ2). Therefore, letting
ηε(Λ) ≤

√
ω(logn) · max1≤i≤n ‖b̂i‖ be a benchmark of

comparison, we may bound the flatness factorǫΛ(σ) by a
negligible ε(n) if σ >

√
ω(logn) · max1≤i≤n ‖b̂i‖. On the

other hand, it is also easy to check thatǫZ(σi) will become
negligible ifσ >

√
ω(logn)·max1≤i≤n ‖b̂i‖. Hence, we have

δ =
ǫΛ(σ) + 1∏n

i=1[ǫZ(σi) + 1]
≈ 1 (42)

for σ >
√
ω(logn) ·max1≤i≤n ‖b̂i‖.

On the other hand, according toJacobi’s formula[36]

ΘΛ(τ) = |det(B)|−1

(
1

τ

)n
2

ΘΛ∗

(
1

τ

)
, (43)

the expression of the flatness factor shown in (37) can be
rewritten as

ǫΛ(σ) = ΘΛ∗(2πσ2)− 1, (44)

whereΛ∗ is the dual lattice ofΛ. Then, we have

δ =
ΘΛ(

1
2πσ2 )∏n

i=1 ϑ3(
1

2πσ2
i

)

=
ǫΛ∗( 1

2πσ ) + 1∏n
i=1[ǫZ∗( 1

2πσi
) + 1]

, (45)

whereZ∗ = Z.

With respect toǫΛ∗( 1
2πσ ) and ǫZ∗( 1

2πσi
) in (45), similarly,

if
1

2πσ
≥

√
ω(logn) · max

1≤i≤n
‖b̂∗

i ‖, (46)

whereb̂∗
i ’s are the Gram-Schmidt vectors of the dual lattice

basisB∗, then bothǫΛ∗( 1
2πσ ) andǫZ∗( 1

2πσi
) will be bounded

by a negligibleε(n). Thus, we have

δ ≈ 1. (47)

According to (46), it follows that

σ ≤
√
ω(logn)

−1 ·
(

max
1≤i≤n

‖b̂∗
i ‖
)−1

(f)
=

√
ω(logn)

−1 ·
[
max
1≤i≤n

(‖b̂n−i+1‖−1)

]−1

=
√
ω(logn)

−1 ·
[(

min
1≤i≤n

‖b̂i‖
)−1

]−1

=
√
ω(logn)

−1 · min
1≤i≤n

‖b̂i‖, (48)

where(f) comes from the fact that [37]

‖b̂∗
i ‖ = ‖b̂n−i+1‖−1. (49)

Therefore, the proof is completed.

Obviously, according to Proposition 1, ass either goes to
0 or ∞, the coefficientδ will converge to 1. We remark that
this is in line with the fact that Klein’s algorithm is capable of
sampling from the lattice Gaussian distribution directly when
σ >

√
ω(logn) ·max1≤i≤n ‖b̂i‖.

Proposition 3. If s ≤ min1≤i≤n ‖b̂i‖, then the coefficientδ
is lower bounded by

δ ≥ 1.086−n ·ΘΛ(
1

s2
). (50)

Meanwhile, ifs ≥ max1≤i≤n ‖b̂i‖, then the coefficientδ is
lower bounded by

δ ≥ 1.086−n ·ΘΛ∗(s2). (51)
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TABLE I
LOWER BOUNDS ONδ WITH RESPECT TOs =

√
2πσ IN THE INDEPENDENT

MHK ALGORITHM .

s≤[
√
2πω(logn)]−1· min

1≤i≤n
‖b̂i‖ δ ≈ 1

s ≤ min
1≤i≤n

‖b̂i‖ δ ≥ 1.086−n ·ΘΛ(
1
s2 )

min
1≤i≤n

‖b̂i‖≤s≤ max
1≤i≤n

‖b̂i‖ δ≥1.086−(n−m)·2−m·
∏

i∈I ‖b̂i‖
sm ·ΘΛ(

1
s2)

s ≥ max
1≤i≤n

‖b̂i‖ δ ≥ 1.086−n ·ΘΛ∗(s2)

s ≥
√
2πω(logn) · max

1≤i≤n
‖b̂i‖ δ ≈ 1

Proof: By definition, we have

ϑ3(1) =

+∞∑

n=−∞
e−πn2

=
4
√
π

Γ(34 )
= 1.086, (52)

whereΓ(·) stands for the Gamma function [38]. It is worth
pointing out that the explicit values ofϑ3(2), ϑ3(3), . . . can
also be calculated [39], where the same derivation in the
following can also be carried out. Here we chooseϑ3(1) as the
benchmark due to its simplicity. As the Jacobi theta function
ϑ3(τ) is monotonically decreasing withτ , let 1/s2i ≥ 1, i.e.,
s ≤ ‖b̂i‖, then it follows that

ϑ3(
1

s2i
) ≤ ϑ3(1) = 1.086. (53)

Assumes ≤ min1≤i≤n ‖b̂i‖, then the following lower bound
for δ can be obtained,

δ =
ΘΛ(

1
s2 )∏n

i=1 ϑ3(
1
s2i
)
≥ 1.086−n ·ΘΛ(

1

s2
). (54)

On the other hand, asZ is a self-dual lattice, i.e.,Z = Z
∗,

then if s2i ≥ 1, namely,s ≥ ‖b̂i‖, it follows that

ϑ∗
3(s

2
i ) = ϑ3(s

2
i ) ≤ ϑ3(1) ≤ 1.086. (55)

Therefore, lets ≥ max1≤i≤n ‖b̂i‖, according to Jacobi’s
formula shown in (43),δ can be lower bounded as

δ =
ΘΛ(

1
s2 )∏n

i=1 ϑ3(
1
s2i
)

=
|det(B)|−1(s2)

n
2 ΘΛ∗(s2)∏n

i=1(s
2
i )

n
2 ϑ∗

3(s
2
i )

=
ΘΛ∗(s2)∏n
i=1 ϑ

∗
3(s

2
i )

≥ 1.086−n ·ΘΛ∗(s2), (56)

completing the proof.
Remark: We emphasize that the significance of lattice

reduction (e.g., LLL or HKZ) can be seen here, as increasing
min1≤i≤n ‖b̂i‖ and decreasingmax1≤i≤n ‖b̂i‖ simultane-
ously will greatly enhance the convergence performance due
to a better lower bound ofδ.

Next, with respect to the range ofmin1≤i≤n ‖b̂i‖ ≤ s ≤
max1≤i≤n ‖b̂i‖, we arrive at the following proposition.

Proposition 4. If min1≤i≤n ‖b̂i‖ ≤ s ≤ max1≤i≤n ‖b̂i‖,

−15 −10 −5 0 5 10 15
1
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2.5
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1/
δ

 

 
1/δ in E

8
 lattice

Fig. 3. Coefficient1/δ of theE8 lattice in the case ofc = 0.

then the coefficientδ is lower bounded by

δ ≥ 1.086−(n−m) · 2−m ·
∏

i∈I ‖b̂i‖
sm

·ΘΛ

(
1

s2

)
, (57)

where I denotes the subset of indexesi with si > 1 (i.e.,
s > ‖b̂i‖), i ∈ {1, 2, . . . , n}, |I| = m.

Proof: From the definition, we have

ϑ3(τ) =

+∞∑

n=−∞
e−πτn2

= 1 + 2
∑

n≥1

e−πτn2

≤ 1 + 2

∫ ∞

0

e−πτx2

dx

(g)
= 1 +

√
1

τ
, (58)

where(g) holds due to theGaussian integral
∫∞
−∞ e−ax2

dx =√
π
a .
Hence, for termsϑ3(

1
s2i
) with 1/s2i ≤ 1, namely,s ≥ ‖b̂i‖,

we have

ϑ3

(
1

s2i

)
≤ 1 + |si| ≤ 2si = 2

s

‖b̂i‖
. (59)

Therefore, from (53) and (59), if follows that
n∏

i=1

ϑ3

(
1

s2i

)
≤ 1.086(n−m) · 2m · sm

∏
i∈I ‖b̂i‖

, (60)

completing the proof.
To summarize, the value ofδ with respect to the givens =√
2πσ in the independent MHK algorithm is given in Table I.
Now, let us consider some lattices whose theta series are

more understood. We have the following property for an
isodual lattice, which is one that is geometrically similarto
its dual [36].

Proposition 5. The coefficientδ =
ΘΛ( 1

s2
)

∏
n
i=1 ϑ3(

1

s2
i

)
for an isodual

lattice Λ has a multiplicative symmetry point ats = 1, and
asymptotically converges to 1 on both sides whens either goes
to 0 or ∞.
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Fig. 4. Coefficient1/δ of the Leech lattice in the case ofc = 0.

Proof: Here, we note that the theta seriesΘΛ of an isodual
lattice Λ and that of its dualΛ∗ are the same, i.e.,ΘΛ(τ) =
ΘΛ∗(τ), and the volume of an isodual lattice|det(B)| naturally
equals1. Therefore, we have

ΘΛ

(
1

s2

)
= snΘΛ(s

2), (61)

ϑ3

(
1

s2i

)
= siϑ3(s

2
i ), (62)

then from (61) and (62), the symmetry with respect tos = 1
can be obtained as follows,

ΘΛ(
1
s2 )∏n

i=1 ϑ3(
1
s2i
)

=
snΘΛ(s

2)∏n
i=1 siϑ3(s2i )

=
ΘΛ(s

2)∏n
i=1

1

‖b̂i‖
ϑ3(s2i )

=
ΘΛ(s

2)
1

|det(B)| ·
∏n

i=1 ϑ3(s2i )

=
ΘΛ(s

2)∏n
i=1 ϑ3(s2i )

. (63)

By definition, it is straightforward to verify that

ΘΛ(
1
s2 )∏n

i=1 ϑ3(
1
s2i
)
→ 1, when s → 0. (64)

Then because of the symmetry,
ΘΛ( 1

s2
)

∏
n
i=1 ϑ3(

1

s2
i

)
will also asymp-

totically approach1 whens → ∞, completing the proof.
Examples of the coefficient1/δ for the isodualE8 and

Leech lattice are shown in Fig. 3 and Fig. 4, respectively. Itis
worth pointing out that1/δ has a maximum at the symmetry
point s = 1, i.e., σ2 = 1

2π . Actually, 1/δ is similar to, but
not exactly the same as thesecrecy gaindefined in [36]. In
our context,1/δ roughly estimates the number of the Markov
moves required to reach the stationary distribution. On the
other hand, as for non-isodual lattices,D4 lattice is applied to
give the illustration in Fig. 5, where the symmetry still holds
but centers ats = 0.376. Therefore, with the exact value ofδ,
the explicit estimation of the mixing time for the underlying
Markov chain can be obtained.
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Fig. 5. Coefficient1/δ of theD4 lattice in the case ofc = 0.

B. Convergence Rate (c 6= 0)

As for the convergence analysis in the case ofc 6= 0, we
firstly define the exponential decay coefficientδ′ as

δ′ =
q(x)

π(x)
=

ρσ,c(Λ)∏n
i=1 ρσi,x̃i

(Z)
, (65)

then we have the following proposition.

Proposition 6. For any c ∈ R
n and c 6= 0, one has

δ′ ≥ e−
d2(Λ,c)

2σ2 · δ. (66)

Proof: Let c′ = c mod Λ stand for the modular opera-
tion of c over latticeΛ. Then it follows that

ρσ,c(Λ) =
∑

z∈Λ

e−
1

2σ2 ‖z−c‖2

=
∑

z∈Λ

e−
1

2σ2 ‖z−c′‖2

= e−
‖c′‖2

2σ2 ·
∑

z∈Λ

e−
‖z‖2

2σ2 ·1
2
·
(
e−

1
σ2〈z,c′〉+e

1
σ2〈z,c′〉

)

(h)

≥ e−
‖c′‖2

2σ2 ·
∑

z∈Λ

e−
‖z‖

2σ2

= e−
d2(Λ,c)

2σ2 · ρσ(Λ), (67)

where(h) follows from the fact that for any positive reala >
0, a+ 1/a ≥ 2.

Thus, the value ofδ′ is reduced by a factor ofe−
d2(Λ,c)

2σ2

from δ. Clearly, if c = 0, then δ′ = δ, implying c 6= 0 is a
general case ofc = 0 4. Hence, according to (67), as long as
c is not too far fromΛ, δ′ has a similar lower bound.

V. SYMMETRIC METROPOLIS-KLEIN ALGORITHM

In this section, we propose the symmetrical Metropolis-
Klein (SMK) algorithm for lattice Gaussian sampling. The
underlying Markov chain is proved to be geometrically er-
godic, which not only converges exponentially fast, but also
depends on the selection of the initial state.

4In fact, asρσ,c(Λ) is periodic, allc ∈ Λ will lead to d(Λ, c) = 0, thus
corresponding to the case ofc = 0.
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A. Symmetric Metropolis-Klein Algorithm

The Metropolis algorithm can be viewed as a special
case of the MH algorithm by utilizing a symmetric proposal
distributionq(x,y) = q(y,x) [33]. In the proposed algorithm,
we again use Klein’s algorithm to generate the symmetric
proposal distribution. Yet, the generation of the state candidate
y depends on the current statex, which is different from
the independent MHK algorithm. Specifically, as shown in
Algorithm 3, its sampling procedure at each Markov move
can be summarized by the following steps:

1) Given the current Markov stateXt = x, sample from
the symmetric proposal distribution through Klein’s algorithm
to obtain the candidate statey for Xt+1,

q(x,y)=
ρσ,Bx(By)∏n
i=1 ρσi,ỹi

(Z)
=
e−

1
2σ2 ‖Bx−By‖2

∏n
i=1 ρσi,ỹi

(Z)

(i)
= q(y,x), (68)

where ỹi =
c′i−

∑n
j=i+1 ri,jyj

ri,i
, c′ = Q†Bx and B = QR.

Note that equality(i) holds due to the inherent symmetry (see
Lemma 2 in the following).

2) Calculate the acceptance ratioα(x,y)

α(x,y) = min

{
1,

π(y)q(y,x)

π(x)q(x,y)

}
= min

{
1,

π(y)

π(x)

}

= min
{
1, e

1
2σ2 (‖Bx−c‖2−‖By−c‖2)

}
, (69)

whereπ = DΛ,σ,c.
3) Make a decision forXt+1 based onα(x,y) to accept

Xt+1 = y or not.

Lemma 2. The proposal distributionq shown in (68) is
symmetric and only depends onx− y, namely,

q(x,y) = q(y,x) = q(x− y) (70)

for all x,y ∈ Z
n.

The proof of Lemma 2 is provided in Appendix B. Such a
special case is called the “random-walk” Metropolis-Hastings
algorithm [26].

At each Markov move, the state candidatey for Xt+1

is sampled from a Gaussian-like distribution centered at the
current statex. Since the chain is symmetric, the calculation
of the acceptance ratioα is greatly simplified. From (69), it is
quite straightforward to see that ifBy is closer to the given
point c than Bx, then state candidatey must be accepted
by Xt+1 since α = 1; otherwise it will be accepted with
a probability depending on the distance fromBy to c, thus
forming a Markov chain5.

Again, we recall the following standard result (see, e.g., [28]
for a proof).

Proposition 7. Given the target lattice Gaussian distribution
π = DΛ,σ,c, the Markov chain induced by the proposed
symmetric Metropolis-Klein algorithm is ergodic:

lim
t→∞

‖P t(x; ·)−DΛ,σ,c(·)‖TV = 0 (71)

5A query about the SMK algorithm is whether a flexible standarddeviation
σ in the proposal distributionq works, i.e.,σ 6= σ. The answer is yes.
However, since the explicit convergence rate is tedious to analyze, we omit
its analysis here.

Algorithm 3 Symmetric Metropolis-Klein Algorithm for Lat-
tice Gaussian Sampling

Input: B, σ, c,X0, tmix(ǫ)
Output: sample from a distribution statistically close toπ =

DΛ,σ,c

1: for t =1,2, . . . , do
2: let x denote the state ofXt−1

3: generatey by the proposal distributionq(x,y) in (68)
4: calculate the acceptance ratioα(x,y) in (69)
5: generate a sampleu from the uniform densityU [0, 1]
6: if u ≤ α(x,y) then
7: let Xt = y

8: else
9: Xt = x

10: end if
11: if t ≥ tmix(ǫ) then
12: output the state ofXt

13: end if
14: end for

for all statesx ∈ Z
n.

B. Geometric Ergodicity

In MCMC, a setC ⊆ Ω is referred to as asmall set, if
there existk > 0, 1 > δ > 0 and a probability measurev on
Ω such that

P k(x,B) ≥ δv(B), ∀x ∈ C (72)

for all measurable subsetsB ⊆ Ω. This is also known as
theminorisation conditionin literature [31]. Actually, uniform
ergodicity is a special case where the minorisation condition
is satisfied withC = Ω. For a bounded small setC, the drift
conditionof discrete state space Markov chains is defined as
follows [26]:

Definition 4. A Markov chain with discrete state spaceΩ
satisfies the drift condition if there are constants0 < λ < 1
and b < ∞, and a functionV : Ω → [1,∞), such that

∑

y∈Ω

P (x,y)V (y) ≤ λV (x) + b1C(x) (73)

for all x ∈ Ω, whereC ⊆ Ω is a small set, and the indicator
function1C(x) = 1 if x ∈ C and 0 otherwise.

Equipped with minorisation and drift conditions, we are now
in a position to prove the following theorem:

Theorem 2. Given the invariant lattice Gaussian distribu-
tion DΛ,σ,c, the Markov chain established by the symmetric
Metropolis-Klein algorithm is geometrically ergodic.

Proof: First of all, the distributionπ(x) = DΛ,σ,c(x)
is clearly bounded between0 and 1 over any bounded set.
Besides, for any‖Bx−By‖ ≤ δq, whereδq > 0 is a constant,
the proposal distributionq(x,y) can always be lower bounded
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by a constantǫq > 0 as follows,

q(x,y) ≥ e−
δ2q

2σ2

∏n
i=1 ρσi,ỹi

(Z)

(j)

≥ e−
δ2q

2σ2

∏n
i=1 ρσi

(Z)
= ǫq, (74)

where(j) holds due to (18). Thus, by [40, Theorem 2.1], every
non-empty bounded setC ⊆ Z

n in the underlying Markov
chain of the SMK algorithm is a small set. Then we may
define a small setC as

C = {x ∈ Z
n : π(x) ≥ ǫ} (75)

for sufficiently smallǫ.
Meanwhile, at each Markov move, the acceptance ratio (69)

suggests the acceptance regionAx and the potential rejection
regionRx for current statex as follows:

Ax = {y ∈ Z
n|π(y) ≥ π(x)}; (76)

Rx = {y ∈ Z
n|π(y) < π(x)}. (77)

Obviously, state candidatey ∈ Ax will surely be accepted by
Xt+1 while state candidatey ∈ Rx has a certain probability
to be rejected. Then, the LHS of the drift condition (73) can
be rewritten as (78), where the second and third terms result
from whether state candidatey ∈ Rx is accepted or rejected,
respectively.

Furthermore, setting the potential functionV (x) = π(x)−
1
2 .

Dividing (78) byV (x) on both sides, we have the expression
shown in (79).

Since the ratios on the RHS of (79)≤ 1, we obtain6
∑

y∈Zn P (x,y)V (y)

V (x)
≤ 5

4
. (80)

Depending on whetherx ∈ C or not, the drift condition can
be rewritten as:

∑

y∈Ω

P (x,y)V (y) ≤ λV (x) for x /∈ C (81)

and
∑

y∈Ω

P (x,y)V (y) ≤ λV (x) + b for x ∈ C. (82)

The two cases are illustrated in Fig. 6. We proceed case by
case.

6Note that1 ≤ 1− a2 + a ≤ 5

4
for 0 ≤ a ≤ 1.

Fig. 6. Illustration of cases (a)x /∈ C and (b)x ∈ C in the Markov move
induced by SMK. The blue dash circle represents the area of the small set
while the red solid circle denotes the acceptance regionAx.

(i). In the casex ∈ C,

V (x) ≤ 1√
ǫ
. (83)

By (80) we have
∑

y∈Zn

P (x,y)V (y) ≤ 1√
ǫ
· 5
4
= b for x ∈ C (84)

and thus condition (82) is satisfied.
(ii). In the casex /∈ C, we consider

λ = lim sup
‖x‖→∞

∑
y∈Zn

P (x,y)V (y)

V (x)
. (85)

If λ < 1, then (81) is satisfied for sufficient smallǫ.
It is easy to verify that

lim
‖x‖→∞

ℓ(x) · ∇ log π(x) = −∞, (86)

whereℓ(x) denotes the unit vectorx/‖x‖ and∇ represents
the gradient. This condition implies that for anyγ > 0, there
existsR > 0 such that for‖x‖ ≥ R

π(x + a · ℓ(x))
π(x)

≤ e−a·γ , a ≥ 0. (87)

In other words, as‖x‖ goes to infinity, the above ratio is at
least exponentially decaying with a rateγ tending to infinity.

Let Cζ = {x ∈ R
n | π(x) = ζ}. We define the radial

µ-zone aroundCπ(x) as

Cπ(x)(µ) = {z+ s · ℓ(z) | z ∈ Cπ(x),−µ ≤ s ≤ µ}.

∑

y∈Zn

P (x,y)V (y) =
∑

y∈Ax

P (x,y)V (y) +
∑

y∈Rx

P (x,y)V (y)

=
∑

y∈Ax

q(x,y)V (y) +
∑

y∈Rx

q(x,y)
π(y)

π(x)
V (y) +

∑

y∈Rx

q(x,y)

[
1− π(y)

π(x)

]
V (x). (78)

∑
y∈Zn P (x,y)V (y)

V (x)
=

∑

y∈Ax

q(x,y)
π(x)1/2

π(y)1/2
+

∑

y∈Rx

q(x,y)

[
1− π(y)

π(x)
+

π(y)1/2

π(x)1/2

]
. (79)
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Denote byB(x,K) a Euclidean ball of radiusK, centered at
x. As in [41], for arbitrary but fixedǫ′ > 0, chooseK > 0
such that ∑

y∈Zn,By/∈B(Bx,K)

q(x,y) ≤ ǫ′.

This can be assured by noting that

q(x,y) =
e−

‖Bx−By‖2

2σ2

∏n
i=1 ρσi,ỹi

(Z)

(l)

≤ e−
‖Bx−By‖2

2σ2

∏n
i=1 ρσi,1/2(Z)

, (88)

where (l) is becauseρσi,ỹi
(Z) has a minimum at̃yi = 1/2

and then applying a tail bound of lattice Gaussian distribution
[1, Lemma 1.5].

From the fact that the Euclidean norms{‖Bx‖, x ∈ Z
n}

of a lattice are discrete, it follows that for anyK > 0 there
existsµ > 0 such that

lim sup
‖x‖→∞

∑

y∈Zn∩Cπ(x)(µ)

By∈B(Bx,K)

q(x,y) ≤ lim sup
‖x‖→∞

∑

y∈Zn,‖By‖=‖Bx‖
By∈B(Bx,K)

q(x,y). (89)

Define two regionsAx = {y ∈ Z
n|π(y) > π(x)} and

Rx = {y ∈ Z
n|π(y) ≤ π(x)}, which are slightly different

from (76), (77), i.e.,Ax does not include the boundary but
Rx does. As‖x‖ → ∞, the ratios in (79) tend to 0 outside of
any radialµ-zone whosey ∈ B(Bx,K) for any K, and we
arrive at

λ ≤ lim sup
‖x‖→∞

∑

y∈Rx

q(x,y)

= 1− lim inf
‖x‖→∞

∑

y∈Ax

q(x,y)

(k)
< 1 (90)

where inequality(k) holds because

lim inf
‖x‖→∞

∑

y∈A
x

q(x,y) > 0 (91)

due to symmetry ofq(x,y). In fact, as shown in Fig. 6, it
follows from symmetry that

∑

y∈Ax

q(x,y) <
1

2
<

∑

y∈Rx

q(x,y), (92)

and the two probabilities can approach12 as‖x‖ → ∞. This
completes the proof in the casex /∈ C.

In essence, the convergence of geometric ergodicity can be
classified into two stages. On one hand, ifx /∈ C, the drift
condition guarantees the Markov chain shrinks geometrically
towards the small setC. On the other hand, ifx ∈ C, the
minorisation condition shown in (72) implies the Markov chain
will converge to the stationary distribution exponentially fast.
This can be demonstrated by using the coupling technique as
in the previous section andδ is just the exponential decay
coefficient, which depends onC. It was shown in [42] that,
for C = {x : V (x) ≤ d} andd > 2b/(1− λ), Markov chains

satisfying the drift condition will converge exponentially to
the stationary distribution as follows

‖Pn(x0,·)− π(·)‖TV ≤(1−δ)rn+

(
U r

α1−r

)n(
1+

b

1−λ
+V(x0)

)
,

(93)
where0 < r < 1,

α =
1 + d

1 + 2b+ λd
and U = 1 + 2(d+ b). (94)

Clearly, there is a trade-off between these two convergence
stages: a larger setC indicates a smallerδ in the minorisation
condition for x ∈ C but a faster shrink speedλ towardsC
for x /∈ C (close to1/2 when‖x‖ → ∞). However, the size
of C, measured byd here, is determined artificially, making
both δ and λ sensitive to a slight change ofd. Moreover,
a closed-form expression ofλ is difficult to get even for a
specificC. Therefore, although geometric ergodicity can be
achieved by the proposed SMK algorithm, it is difficult to
obtain quantitative bounds onδ andλ.

Finally, (93) indicates that the convergence of the Markov
chain arising from the SMK algorithm also highly depends on
the starting statex0, which follows the definition of geometric
ergodicity given in (10). In theory,x0 could be any candidate
from the state space but a poor choice may intensively increase
the required mixing time. To this end, starting the Markov
chain with x0 as close to the center of the distribution as
possible would be a judicious choice. This is actually in
accordance with the result shown in (93), implying the closest
point toc is the optimal choice. As a simple solution, Babai’s
nearest plane algorithm is recommended here to outputx0

[43].

VI. CONCLUSIONS

In this paper, two MH-based algorithms were proposed to
sample from lattice Gaussian distributions. As the proposal
distribution in the MH algorithms can be set freely, an inde-
pendent proposal distribution and a symmetric proposal distri-
bution were exploited respectively for geometric convergence.
In addition, it was proven that the Markov chain arising from
the independent MHK algorithm is uniformly ergodic, leading
to exponential convergence regardless of the starting state. We
showed its convergence rate can be explicitly calculated via
theta series, making the mixing time predictable. On the other
hand, the proposed SMK algorithm was demonstrated to be
geometrically ergodic, where the selection of the startingstate
matters. Due to its inherent symmetry, it not only converges
exponentially fast, but also is simple to implement.
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APPENDIX A
PROOF OFINEQUALITY IN (27)

Proof: To start with, let us recall the definition ofcon-
ductance(also known asbottleneck ratio) in Markov chains
[28].
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Definition 5. The conductanceΦ of a Markov chain is defined
as

Φ(S) = min
S⊆Ω,π(S)≤1/2

Q(S, Sc)

π(S)
, (95)

where subsetSc stands for the complement set ofS (i.e.,
S
⋃
Sc = Ω, S

⋂
Sc = ∅), and the edge measureQ is defined

by
Q(x, y) = π(x)P (x, y) (96)

and
Q(S, Sc) =

∑

x∈S,y∈Sc

Q(x, y). (97)

It is this value0 < Φ ≤ 1 that has been used to bound
the spectral gapγ of Markov chains. More precisely, in the
independent MHK algorithm, we have

Φ = min
S⊆Ω,π(S)≤1/2

∑
x∈S,y∈Sc π(x)P (x,y)

π(S)
(m)

≥ min
S⊆Ω,π(S)≤1/2

∑
x∈S,y∈Sc π(x) · δπ(y)

π(S)

= min
S⊆Ω,π(S)≤1/2

δ ·∑x∈S π(x) ·∑y∈Sc π(y)

π(S)

= min
S⊆Ω,π(S)≤1/2

δ · π(Sc)

≥ δ

2
, (98)

where inequality(m) holds due to (21).

Next, by invoking thecheeger inequality[44] of Markov
chains

Φ2

2
≤ γ ≤ 2Φ, (99)

we have

γ ≥ δ2

8
, (100)

completing the proof.

APPENDIX B
PROOF OFLEMMA 2

Proof: According to the QR-decompositionB = QR,
we have

q(x,y) =
e−

1
2σ2 ‖Bx−By‖2

∏n
i=1 ρσi,ỹi

(Z)
=

e−
1

2σ2 ‖Rx−Ry‖2

∏n
i=1 ρσi,ỹi

(Z)
(101)

by removing the orthogonal matrixQ, where ỹi =
c′i−

∑n
j=i+1 ri,jyj

ri,i
, c′ = Rx.

Specifically, the termρσi,ỹi
(Z) in the denominator of (101)

can be expressed as

ρσi,ỹi
(Z) =

∑

zi∈Z

e
− 1

2σ2
i

(zi−
c′i−

∑n
j=i+1 ri,jyj

ri,i
)2

=
∑

zi∈Z

e
− 1

2σ2
i

(zi−
∑n

j=i ri,jxj−
∑n

j=i+1 ri,jyj

ri,i
)2

=
∑

zi∈Z

e
− 1

2σ2
i

(xi−zi+
n∑

j=i+1

ri,j
ri,i

(xj−yj))
2

=
∑

z′
i∈Z

e
− 1

2σ2
i

(z′
i−φ)2

= ρσi,φ(Z), (102)

wherez′i = zi − xi andφ =
n∑

j=i+1

ri,j
ri,i

(xj − yj).

Similarly, we can easily get that

ρσi,x̃i
(Z) =

∑

zi∈Z

e
− 1

2σ2
i

(yi−zi+
n∑

j=i+1

ri,j
ri,i

(yj−xj))
2

=
∑

z′
i∈Z

e
− 1

2σ2
i

(z′
i−φ)2

= ρσi,φ(Z) = ρσi,ỹi
(Z), (103)

where x̃i =
c′′i −

∑n
j=i+1 ri,jxj

ri,i
, c′′ = Ry. Therefore, we have

q(x,y) = q(y,x).
In fact, (102) shows thatq(x,y) is a function ofx−y only;

moreover, sinceρσi,φ(Z) is even inφ, q(x,y) = q(x− y) =
q(y − x), completing the proof.
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