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Metropolis-Hastings Algorithms
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Abstract—Sampling from the lattice Gaussian distribution has
emerged as an important problem in coding, decoding and
cryptography. In this paper, the classic Metropolis-Hasthgs (MH)
algorithm in Markov chain Monte Carlo (MCMC) methods is
adopted for lattice Gaussian sampling. Two MH-based algothms
are proposed, which overcome the limitation of Klein’s algoithm.
The first one, referred to as the independent Metropolis-Hasngs-
Klein (MHK) algorithm, establishes a Markov chain via an
independent proposal distribution. We show that the Markov
chain arising from this independent MHK algorithm is unifor mly
ergodic, namely, it converges to the stationary distributbn expo-
nentially fast regardless of the initial state. Moreover, he rate of
convergence is analyzed in terms of the theta series, leadirto
predictable mixing time. A symmetric Metropolis-Klein (SMK)
algorithm is also proposed, which is proven to be geometridly
ergodic.

theory, it has been demonstrated that lattice Gaussian sam-
pling is equivalent to CVP via a polynomial-time dimension-
preserving reduction [14], and SVP is essentially a specisé¢

of the CVP.

Due to the central role of the lattice Gaussian distribution
playing in these fields, its sampling algorithms become an
important computational problem. In contrast to sampliogrf
a continuous Gaussian distribution, it is by no means frivia
to perform the sampling even from a low-dimensional diseret
Gaussian distribution. As the default sampling algoritton f
lattices, Klein’s algorithm [[15] is capable to sample from
the lattice Gaussian distribution within a negligible statal
distance if and only if the standard deviatien> /w(log n)-
maxlgiSnHBiH [16], wherew(log n) is a superlogarithmic

Keywords: Lattice Gaussian distribution, lattice codingfunction, n denotes the lattice dimension amg's are the

lattice decoding, MCMC methods.

I. INTRODUCTION

Gram-Schmidt vectors of the lattice ba¥s However, such
requirement ofr can be excessively large, rendering Klein’s
algorithm inapplicable to many scenarios of interest.

Markov chain Monte Carlo (MCMC) methods attempt to

Recently, the lattice Gaussian distribution has emergedd asample from the target distribution by building a Markov

common theme in various research domains. In mathematicigain, which randomly generates the next sample conditione
Banaszczyk firstly applied it to prove the transference theon previous samples. After a burn-in period, which is notynal
rems for lattices[[1]. In coding, lattice Gaussian disttibn measured by thenixing time the Markov chain will reach
was employed to obtain the full shaping gain for lattice cgdi a stationary distribution, and successful sampling from th
[2], [3], and to achieve the capacity of the Gaussian chanrisimplex target distribution can be carried out. To this end,
[4). It was also used to achieve information-theoretic siggu the Gibbs algorithm was introduced into lattice Gaussian
in the Gaussian wiretap chanrel [5], [6] and in the bidimwdl sampling, which employs univariate conditional sampling t
relay channel[[7], respectively. In cryptography, theitatt build a Markov chain [[17]. It is able to sample beyond
Gaussian distribution has already become a central toolthre range of Klein’s algorithm. In[[17], a flexible block-
the construction of many primitives. Specifically, Micotam based Gibbs algorithm was also presented, which performs
and Regev used it to propose lattice-based cryptosystesasnpling over multiple elements within a block. In this way,
based on the worst-case hardness assumpfions [8]. Meanwliile correlation within the block could be exploited, leain

it also has underpinned the fully-homomorphic encryptioi® a faster convergence especially in the case of highly
for cloud computing [[9]. Algorithmically, lattice Gaussia correlated components. Unfortunately, related analybih®
sampling with a suitable variance allows to solve the stsprteconvergence rate for the associated Markov chains in these t
vector problem (SVP) and the closest vector problem (CVRJgorithms was lacking, resulting in an unpredictable mgxi
[10], [11]; for example, it has led to efficient lattice deangl time.

for multi-input multi-output (MIMO) systems_[12],[13]. In' On the other hand, Gibbs sampling has already been adapted

to signal detection for multi-input multi-output (MIMO) ao
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referred to as “temperature”) is studied(in[[18] and it isued)
that o should grow as fast as the signal-to-noise ratio (SNR)
in general. In [[1B], a mixed-Gibbs sampler is proposed to
achieve near-optimal performance, which takes the adgasta
of an efficient stopping criterion and a multiple restaratgy.
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Moreover, Gibbs sampling is also introduced into soft-otitp
decoding in MIMO systems, where the extrinsic informatio
calculated by a priori probability (APP) detector is used t
produce soft outputs [20]. In_[21], an investigation of Gsbb
based MCMC receivers in different communication channe
are given. Due to the finite state space formed by a fini
modulation constellation, those Gibbs samplers convexge ¢
ponentially fast to the stationary distribution. Howevhe rate
of convergence has not yet been determined.

In this paper, another famous MCMC scheme, known i
the Metropolis-Hastings (MH) algorithm_[24], is studied ir
detail for lattice Gaussian sampling. In particular, it rask
use of aproposal distributionwhich suggests a possible stateig, 1. Iilustration of a two-dimensional lattice Gaussiistribution.
candidate and then employs an acceptance-rejection rule to
decide whether to accept the suggested candidate in the next _ _ )

Markov move. Obviously, the art of designing an efficient MH 1)~ The independent MHK  algorithm is proposed for

algorithm lies in choosing an appropriate proposal distiiin, lattice Gaussian sampling, where the Markov chain
and this motivates us to design the target proposal digivitsi arising from it converges exponentially fast to the
based on Klein's algorithm. stationary distribution. _

In the proposed independent Metropolis-Hastings-Klein2) ~ The convergence rate of the independent MHK al-
(MHK) algorithm, a candidate at each Markov move is gen- gorithm is derived explicitly in terms of the theta
erated from a Gaussian-like proposal distribution via Kki series, thereby making the estimation of mixing time
algorithm. In this case, we show that the Markov chain induce possible. o .
by the independent MHK algorithm is uniformly ergodic, 3) ~ The SMH algorithm is further proposed for lattice
which implies it converges exponentially fast to the stadity Gaussian sampling, which not only achieves expo-
distribution irrespective of the starting state. Its cagesce nential convergence, but also is simpler due to its
rate is then estimated given the lattice bd3jghe query point symmetry.

c and the standard derivation. Thus, the mixing time of  The rest of this paper is organized as follows. Section II
the induced Markov chain becomes predictable. To the bédroduces the lattice Gaussian distribution and briefiyews
of our knowledge, this is the first time that the convergenéde basics of MCMC methods. In Section Iil, we propose
rate of MCMC in communications and signal processing i§€ independent MHK algorithm for lattice Gaussians, where
determined analytically since MCMC was introduced inte thiuniform ergodicity is demonstrated. In Section 1V, the cemv
field in 1990's [25]. gence rate of the independent MHK algorithm is analyzed and
Different from the algorithms in[]10],[T11] which have explicitly calculated in terms of the theta series. In Smti,
exponential space and time complexity, the proposed indepéhe proposed SMH algorithm for lattice Gaussian sampling is
dent MHK algorithm has polynomial space complexity, anéliven, followed by the demonstration of geometric ergayici
its time complexiti] varies with o, where a larger value of Finally, Section VI concludes the paper.
o corresponds to smaller mixing time. This is in agreement Notation:Matrices and column vectors are denoted by upper
with the fact we knew before: it is large enough, then @nd lowercase boldface letters, and the transpose, inverse
there is no need of MCMC in lattice Gaussian sampling sinfseudoinverse of a matriB by B”, B~', and BT, respec-
Klein’s algorithm can be applied directly with polynomiahe tively. We denote byb; the ith column of the matrixB, by
complexity. b; the ith Gram-Schmidt vector oB, and byb;, ; the entry
The second proposed algorithm, namely the symmetfittheith row andjth column ofB. [z] denotes rounding to
Metropolis-Klein (SMH) algorithm, establishes a symmetrithe integer closest to. If « is a complex numberf,z] rounds
proposal distribution between two consecutive Markovestat the real and imaginary parts separately. In addition, wethese
We show it also converges to the stationary distributioffandardsmall omeganotationw(-), i.e.,|w(g(n))| > k-|g(n)|
exponentially fast but the selection of the initial statsoal for every fixed positive numbek > 0.
plays a role. Such a case is referred to as geometric ergyodici
in MCMC literature [26]. Besides the geometric ergodicity,
another advantage of the proposed SMH algorithm lies in its!n this section, we introduce the background and mathemat-
remarkable elegance and simplicity, which comes from tfigal tools needed to describe and analyze the proposecklatti

Il. PRELIMINARIES

usage of a symmetrical proposal distribution. Gaussian sampling algorithms.
To summarize, the main contributions of this paper are the ] ] o
following: A. Lattice Gaussian Distribution
Let B = [by,...,b,] C R™ consist ofn linearly indepen-

1in this paper, the computational complexity is measurechieyriumber of dent vectors. Ther-dimensional latticeA generated b)B is
arithmetic operations (additions, multiplications, carigons, etc.). The time

complexity of an MCMC sampler can be estimated by the mixingettimes defined by
the complexity of each Markov move. A={Bx:xeZ"}, (1)



Algorithm 1 Klein's Algorithm Furthermore, it has been demonstratedini [16] g (x)

Input: B,o,c is close toDy , o(x) within a negligible statistical distance if
Output: Bx € A ~
1 let B = QR andc’ = Qic o 2 Vw(log n) - max by, ()
22fori=mn,..., 1do _ o
) leto: — —© di — =3 i T However, even with the help of lattice reducfiofe.g., LLL
3: e g; = m an €Xr; = —T'L,i R ) ) . A.
4 samplez. from Do - ~ reduction), the variancg/w(log n) - max;<;<y ||b;|| can be
5 end for plez: T too large to be useful.
6: returnBx

C. MCMC Methods

where B is called the lattice basis. We define the GaussianAs for the lattice Gaussian sampling in the range<

function centered at € R™ for standard deviatiom > 0 as  v/w(10g 1) - maxi<;<, ||bi||, MCMC methods have become
leel? an alternative solution, where the discrete Gaussianilalistr

Poc(z) =€ 207, (2) tion Dy o.c is viewed as a complex target distribution lacking

for all z € R™. Whenc or ¢ are not specified, we assume tha irect sampling methods. By establishing a Markov chain

they are0 and 1 respectively. Then, theliscrete Gaussian that rand_omly generates the _ne)_<t s_tate, MCMC is capable
distribution over A is defined as of sampling from the target distribution of interest, thsre

removing the restriction om [17].

3) As an important parameter which measures the time re-
quired by a Markov chain to get close to its stationary
distribution, themixing timeis defined as/ [28]

for all x € Z", wherep, ¢(A) £ > g, ca Poc(Bx) is just a . ,

scaling to obtain a probability distribution. tmix(€) = min{t : max || P*(x,) — 7(")[l7v < €}, (6)

Note that this definition differs slightly fr.om the one N [8] \yhere | - ll7v represents the total variation distance (other
whereo is scaled by a constant factof2r (i.e., s = V2m0). measures of distance also exist, Se€ [29] for more detéils).

Fig. 1 illustrates the discrete Gaussian distribution d&r i \vell known that thespectral gapy of the transition matrix
As can be seen clearly, it resembles a continuous Gaussigfars an upper bound on the mixing time

distribution, but is only defined over a lattice. In fact, aiste
and continuous Gaussian distributions share similar ptigse fie(€) < llog < 1 > %
if the flatness factoiis small [5]. B Tmin€

|Bx—c||?

1
pre(Bx) e
D = 2 =
Ae(X) Po.c(A) > xezn ez el

wheremmin = Minkcom(x), 2 stands for the state space—=

B. Klein’s Algorithm 1 — |\ | > 0 and \; represents the second largest eigenvalue

Intuitively, the shape ofD, , .(x) suggests that a lattice of the transition matrixP in a Markov chain. Therefore, a
point Bx closer toc will be sampled with a higher probability. large value of the spectral gap leads to rapid convergence to
Therefore, sampling from the lattice Gaussian distributian stationarity [30].
be naturally used to solve the CVP (wheris the query point)  However, the spectrum of a Markov chain can be hard to
and SVP (where: = 0) in lattices. Because of this, Klein’s analyze, especially when the state sp&ckecomes exponen-
algorithm that samples from a Gaussian-like distributicasw tially large, making it difficult to have a compact matheroati
originally proposed for lattice decoding [15]. expression of the adjacency matrix. Thanks to the celetbrate

As shown in Algorithm 1, the operation of the Klein'scoupling techniquefor any Markov chain with finite state
algorithm has polynomial complexit@)(n?) excluding QR spacef?, exponentially fast convergence can be demonstrated
decomposition (which may be done only once in the begiif-the underlying Markov chain is irreducible and aperiodic
ning). More precisely, by sequentially sampling from the Iwith an invariant distributionr [28]. Nevertheless, in the
dimensional conditional Gaussian distributidd;, ,, 7, in a case of lattice Gaussian sampling, the countably infinagest
backward order fronx,, to x1, the Gaussian-like distribution spacex € Z™ naturally becomes a challenge. For this reason,
arising from Klein’s algorithm is given by we perform the convergence analysis from the beginning —

ergodicity [31].
poo(BX) g y [31]

n
Pein(x) = H Dy g (xi) = -, po.z(Z) Definition 1. LetP be an irreducible and aperiodic transition
=1 L Bxc|? matrix for a Markov chain. If the chain is positive recurrent
_ e 277 then it is ergodic, namely, there is a unique probability
[ 12’ @ distribution 7 on Q and for all x € Q
Iz > 5z ’
. + _ _
Whel’e%i _ G~ Fig1 TiT] o; = | o I _ o c = QTC tllzgoHP (Xa ) TrHTV 0, (8)
Ti,i ! riil b;|’ ) !
r;,; denotes the element of the upper triangular ma&ikrom o _ _ o
’ .. ~, It is well known lattice reduction such as the LLL algorithm able to
tShCemg'Et d:g?oTspgztlorTBh TB T‘FR |anT b;'s are the Gram- fzi%\ificantly improvemin; ||b;|| while reducingmax; ||b; || at the same time
1at Vi Wi ill = |74l .

— ooz llwi =%
;



where Pt(x; -) denotes a row of the transition matrR for ¢ [1l. I NDEPENDENTMHK A LGORITHM

Markov moves. In this section, the independent Metropolis-HastingsiKle

Although ergodicityimplies asymptotic convergence to sta{MHK) algorithm for lattice Gaussian sampling is firstly
tionarity, it does not say anything about the convergentee raPresented. Then, we show that the Markov chain induced by
To this end, the following definition is given [31]. the proposed algorithm is uniformly ergodic.

Definition 2. A Markov chain with stationary distribution(-) )
is uniformly ergodic if there exist8 < § < 1 and M < oo A Independent MHK Algorithm
such that for allx In the proposed independent MHK algorithm, Klein’s sam-
: : pling is used to generate the state candidatr the each
1P5(, ) = (v < M(1 = 6)". ) Markov moveX,, . As shown in Algorithm 2, it consists of
Obviously, the exponential decay coefficientis key to three basic steps:
determine the convergence rate. A¢ is a constant, the 1) Sample from the independent proposal distribution with
convergence rate does not depend on the initial state Klein’s algorithm to obtain the candidate stagefor X1,
As a weaker version of ergodicitgeometric ergodicityalso _ B ‘
converges exponentially, bit’ is parameterized by the initial ay) = ay) = Paen(y)
statex. _ _PocBy)
H?:l Poigi (Z)

Definition 3. A Markov chain with stationary distribution(-) L |By—c|?
€ 20

is geometrically ergodic if there exisiis< 0 < 1 and M (x) < = . —— (13)
oo such that for allx | J D e’ﬁllyifyi\\
t <) — . < — t. ~ =" T Y
1P, ) = 7()llrv < M(x)(1 - ) (0 wnerey e 27, 5 = SZimaran o o e e

Besides exponential convergence, polynomial convergenge_ Q'c, B = QR by QR decomposition and,’s are the
also exists[[32], which goes beyond the scope of this paF@Fam-Schmidt vectors dB.

due to its slow convergence. Unless stated otherwise, ¢te st 2) Calculate the acceptance ratio(x

space of the Markov chain we are concerned with throughout y)

the context is the countably infinite@ = Z". alx,y) = min{l W(Y)(J(yax)} _ min{l W(Y)(J(X)}
’ 'm(x)g(x,y) ‘m(x)a(y)
. , _ [T po,.5:(Z)
D. Classical MH Algorithms — mind1,1ai=1Poudi 7 (14)
[y po.2.(Z)

The origin of the Metropolis algorithm can be traced
back to the celebrated work of [33] in 1950's. In [24], th&vherem = Daoe.
original Metropolis algorithm was successfully extended t 3) Make a decision foiX,, based ona(x,y) to accept
a more general scheme known as the Metropolis-Hastin§s+1 =y or not.
(MH) algorithm. In particular, let us consider a target insat A Salient feature of the independent MHK algorithm is that
distribution 7 together with a proposal distribution(x,y). the generation of the state candidates independent of the
Given the current statex for Markov chain X,, a state Previous one, which is completely accomplished by Klein's
candidatey for the next Markov mov&X,. ; is generated from algorithm. Thereforg, th_e connection between two consexut
the proposal distribution(x, y). Then the acceptance ratio Markov states only lies in the decision part. The complegity

is computed by the MCMC sampler is given by the number of Markov moves
times the complexity of each move, i.€)t i, - n?).
alx,y) = min{l, M} (11)  Itis easy to verify that the Markov chain with the inde-
m(x)q(x,y) pendent proposal distribution shown in [IB) is irreducible,

and y will be accepted as the new state B¥,,; with aperiodic and positive recurrent, which naturally leadsato
probability o. Otherwise x will be retained byX; ;. In this ergodic Markov chain [28]. Then, we have the following well-
way, a Markov chain{X,,X;,...} is established with the known result, whose proof can be found in[28].

transition probabilityP(x, y) as follows: Proposition 1. Given the target lattice Gaussian distribution

B {q(& y)a(x,y) if y #£x, 7 = Da 5., the Markov chain induced by the independent
P(x,y) = L (12) MHK algorithm is ergodic:
1=3 a(xz)a(x,2) ify =x.

It is interesting that in MH algorithms, the proposal dis- tgrélonpt(X; )= Daoel)lrv =0 (15)
tribution ¢(x,y) can be any fixed distribution from which¢y, a1 statesx € 7.
we can conveniently draw samples. Undoubtedly, the fastest
converging proposal distribution would hgx,y) = 7 (y) ] o
itself, but in most cases of interest cannot be sampled B- Uniform Ergodicity
directly. To this end, many variations of MH algorithms with The independent proposal distribution definedid (13) enjoy
different configurations of(x,y) were proposed. the following property.



Lemma 1. In the independent MHK algorithm for lattice Algorithm 2 Independent Metropolis-Hastings-Klein Algo-
Gaussian sampling fron, , ., there exists) > 0 such that rithm for Lattice Gaussian Sampling
Input: B, o, c, X, tmix(€)

% >0 (16) Output: sample from a distribution statistically close to=
DA,a,c
for all x € Z™, whereq(x) = Pklein(X). 1: for t =1,2, ..., do
e 2: let x denote the state aX;_;
Proof: Using (3) andI(k), we have 3: generatey from the proposal distribution(x,y) in
@ _ pa,c(Bx) . pa,c(A) ()]
m(x) [l o5 (Z)  poc(Bx) 4: calculate the acceptance ratigx, y) in (14)
Po.c(A) 5. generate a sample from the uniform density/[0, 1]
- m 6: if < a(x,y) then
() po.e(A) 7 letX; =y
> = (17) 8  else
[[i=1 0. (Z) o: X, =x
where(a) holds due to the fact that|[8] 10: end if
1 11: if t> tmix(€) then
Po:.7(Z) < po,(Z) = Z e 7 (18) 12 output the state oX,
JEL 13: end if

As can be seen clearly, the right-hand side (RHS)of (17) i¢: end for
completely independent of, meaning it can be expressed as
a constant determined by the giveB, c ando. Therefore,

the proof is completed. B Therefore, given the everX; # X!, there is no coupling
We then arrive at a main Theorem to show the uniforim any of thet consecutive moves. By (R1), for each move
ergodicity of the proposed algorithm. we have probability at least of making X; and X/ (i =

Theorem 1. Given the invariant lattice Gaussian distributionl’ 2,.-.,t) equal and we have

DA ,».c, the Markov chain established by the independent MHIR(X, £ X})=P(X; # X}, ..., Xo # X})
algorithm is uniformly ergodic:

t
=[[PXi # X{[Xio1 # X)) P(Xo # X§)

IP'x,) = Dael)lrv < (1-8)"  (19) 1
for all x € Z™. ¢
: . . SHP(Xz‘#XHXz‘—l #Xi 1)
Proof: By (I3) and [(I4), the transition probability il
P(x,y) of the independent MHK algorithm is given by t
| o . =1 -PXi =X X;_1 #X]_)]
mln{q(y),%} if y#x, Zl;[l
P X,y)= 7(z)q(x . r t
(x.y) g(x)+> max{O,q(z) - %} if y=x.
7% (20) = (1= ZP(Xi =X, =y|Xi1 #X_,)
Using Lemma 1, it is straightforward to check that the - ver .
following relationship holds (b)
<|1=) only)
P(x,y) = or(y) (21) =
for all x,y € Z". Now, consider a coupling of two Markov =(1-9)", (24)

chainsX; and X}, which marginally update according to the .

same transition probability (20X is supposed to start from where (b) is du.e t.o 2L). . .

the stationary distributiorr, and X; from an initial statexy, Then, substituting (24) intd (22), we obtain

which is not necessarily stationary. |PH(x,) —7()|lrv < (1 —0)F, (25)
According to thecoupling inequality[28], the variation

distance between the distributions &, and X, is upper Ccompleting the proof. o u
bounded by Obviously, given the value af < 1, the mixing time of the

Markov chain can be calculated Wy (6) afd](25), that is,

[P (x0,) = 7()l7v < P(X¢ # X}). (22) ne )
On the other hand, any coupling of Markov chains can be tmix(€) = In(1—9) = (=lne)- (5) est
modified so that the two chains stay together at all times on\%ere we use the bound(Ih— §) < — for 0 < & < 1.

they meet at & same stale [28], namely, Therefore, the mixing time is proportional tgs, and becomes
if X,, =X/, thenX; = X for t > n. (23) O(1) asé — 1.

(26)



Here, we point out that the aforementioned spectral gap

~ of the transition matrix can also be used to bound the \:\
mixing time. Resorting to theonductanceof the Markov l N
chain [28], one obtains a lower bound on the spectral gap T——
~ of the transition matrix (see AppendiX A for its derivation) PR
52 O "\ N
vz (27)
Then, substitutind(27) intd7) yields another upper boand oal \\,\ ______
the mixing time A
0.2 Semia
8N\ s e e T T e e
tmix(€) < —log(mmin€) - <—2) , e<1, (28) 0 ‘ : ‘ ‘ —
(5 -8 -6 -4 -2 0 2 4 6

which is however looser than_(26).
Fig. 2. Coefficient3 of Eg lattice in the case off > o whenc = 0.

C. Convergence in General Cases+£ o)

In the proposed independent MHK algorithm, by defaultlowever, in the case a&f > o, it easy to check that the value
the standard deviation of the proposal distributiois set the of 3 is monotonically decreasing with the given rendering
same ass, namely,c = ¢. Therefore, a natural question isg > 1 inapplicable to the most cases of interest.
whether a flexible standard deviatien## o still works. For As can be seen clearly from F[g. 2, the convergence rate can
this reason, in what follows, the relationship betwéeand be enhanced by > 1 only for a small enoughr (e.g.,o2 <
o is investigated. 0.398, e.g., —4 dB), thus making the choice &f = o (i.e.,

Let the standard deviations gfx) and7(x) be ando 3 = 1) reasonable to maintain the convergence performance.
respectively, then the corresponding ratioyot) /= (x) in (I7) This essentially explains the reason why the independert MH
can be rewritten as algorithm is proposed witi# = ¢ as a default configuration
in general.

9(x) > fa,C(A) (G IBx—el® (29)
m(x) ~ [liz1 p5.(2)

Unfortunately, in the case of < o, as|Bx — c|| can IV. CONVERGENCERATE ANALYSIS
be arbitrary, it is impossible to determine a constant lower
bound upong(x)/m(x) for x € Z", implying the uniform
ergodicity can not be achieved I_'§4]I'hereforeﬁ < o should
be avoided in practice and the corresponding converge
analysis is ignored here.

On the other hand, in the case®f> o, let d(A, c) denote
the Euclidean distance between lattiteand c

In this section, convergence analysis about the exporentia
decay coefficienty in the independent MHK algorithm is
Cen‘ormed, which leads to a quantitative estimate of thangix
{fiie. For a better understanding, the analysis is carrig¢dnou
casesc = 0 andc # 0 separately.

d(A,c) = mizn IBx — ||, (30) A. Convergence Rate & 0)
xe n

Lemma 1 shows that the ratidx)/m(x) in the independent
MHK sampling algorithm is lower bounded by a constant
o (-5 d* (M) (31) We furt_her _der_i\_/e an_explicit expression of the coefficiént
due to its significant impact on the convergence rate, for the
casec = 0.
Specifically, we have

then it follows that
q(x) > Po.c(A)
m(x) ~ [Ii21 ps.(2)
for all x € Z™, which means the underlying Markov chai
is uniformly ergodic by satisfying[{16) in Lemma 1. More

precisely,q(x)/m(x) could be expressed as qx) po.0(A)
q(x) Poc(A) 5 (32) m(x) 121 poz.(Z)
7(x) = I, 0, (2) © Eyegre =P
where . ’ - T2 o (Z)
5o 7%1;—1 o EZ; e’ (33 @ Oalz)
i=1 P [1i1 ©2(5552)
Clearly, parameter3 becomes the key to govern the con- On(L) ’
vergence performance. Compared [o](17),8if > 1, the © nAiszl =4. (34)
convergence of the Markov chain will be boosted by a larger [T 193(3)

value of §, otherwise the convergence will be slowed dowr'_.|ere for notational simplicitys = v/Zro and Nor:
s 5 = o S; = TO; =

3In theory, thatg(x)/m(x) is lower bounded by a constant for alle Z™ s/|bs|| are applied in th_e equat.ions- i), the inequa“tY_
is both sufficient and necessary to the uniform ergodici#.[3 P& (Z) < po,(Z) shown in [I8) is used again. Theta series



O, and Jacobi theta functiofl; are applied in(d) and (e) On the other hand, according dacobi’s formula[36]
respectively, where

L (1\? 1
Oa(r) = Ze—m||xu2’ (35) Oa(r) = |detB)| " (;) O+ <;> ; (43)
AcA the expression of the flatness factor shown/[inl (37) can be
= e rewritten as
U3(7) = Z € (36) ea(0) = Op« (2107 — 1, (44)
with Oy, — 9 [35]. whereA* is the dual lattice ofA. Then, we have
R 5 = OA(3757)
Proposition 2. If s > y/w(logn) - maxi<;<n ||bs|| OF s < B H?:N?S(ﬁ)

Vw(log n)_l -ming<i<p |b; |, then the coefficient ~ 1.

_ er-(325) + 1 (45)

H?:l[EZ*(#gi) +1]

Proof: To start with, let us recall thélatness factof5],

which is defined as whereZ* = Z.
(0) det(B) S < ! > 1 (37)  With respect toep- (52=) andez- (=) in @5), similarl
erlo) = — 1. (= W1
: (\/ 271'0')” A 2mo? if p A \o7o €7 2no; ! Y,
and L > \/ullogn) - max |5 (46)
exlo) =g, if o=n(A). (38) 2o 1<i<n

Here, . (A) is known as thesmoothing parameteand for any whereﬁ;“s are the Gram-Schmidt vectors of the dual lattice
n-dimensional lattice\ and positive reat > 0, 7.(A) is de- PasisB”, then bothe,- (577) andez-(55;) will be bounded
fined as the smallest real> 0 such that, , 5=, (A*\{0}) < by a negligibles(n). Thus, we have

e, whereA* denotes the dual lattice of [16]. S~ 1. (47)
Therefore, the exponential decay coefficiérgiven in [34)
can be expressed as According to [46), it follows that
Ox( : >) 1 N -1
§ = —p—2mes : *
[T 93(5752) o < Vw(logn) (fg%xn |Ib; |>
-1, n ., _ ~ -1
_ 1B~ (v2r0)" - fen(o) +1 L Vitown | (sl )
[[iZy V2moi - [ez(o) + 1] Lsisn
exlo) +1 . N1
. LE— 39 = 4/ . i ,
[Ti—ilez(oi) + 1] (39) w(logn) [(12111271 |bz|>
where det) denotes the determinant of a matrix. -1 e
et) = w(logn) - min Ibill, (48)
Meanwhile, from [8, Lemma 3.3], for any-dimensional - ]
lattice A and positive reak > 0, it follows that where(f) comes from the fact thalt [37]
log(2n(1+1/€ -~ IIEQ‘H = Hgn—iH”_l- (49)
nt) < VD 6 (a0) .
m lsisn Therefore, the proof is completed. [ ]

and for anyw(logn), there is a negligible(n) such that ] _ N )
Obviously, according to Proposition 1, aseither goes to

ne(A) < Vw(logn) - max bill. (41) 0 or o0, the coefficients will converge to 1. We remark that

) o ) this is in line with the fact that Klein’s algorithm is capalf
According to [37), it is easy to verify that the flatness factaampling from the lattice Gaussian distribution directlyem
ex(o) is a monotonically decreasing function of i.e., for

o1 > o2, we haveep(o1) < ep(o2). Therefore, letting

Ne(A) < Jw(logn) - maxi<;<, ||bi|]| be a benchmark of N . ~ o
comparison, we may bound the flatness faatgfs) by a Proposition 3. If s < mini<i<n [[bsf|, then the coefficient
negligible e(n) if o > \/w(logn) - maxi<i<, |[b:]. On the IS lower bounded by

other hand, it is also easy to check thato,;) will become n 1

negligible ifo > /e (log n)-max;<s<n s, Hence, we have 02 1.0867" - Or( 7). (50)

ea(o) +1
[ [ez(oi) + 1]
for o > \/w(logn) - max;<;<n ||bi]. §>1.0867" - ©5-(s7). (51)

o > /w(logn) - maxi<i<n [1bs]l-

Meanwhile, ifs > maxi<i<p HRH, then the coefficiend is

0= lower bounded by

~1 (42)



TABLE |
LOWER BOUNDS ONS§ WITH RESPECT TOs =
MHK ALGORITHM.

s<[y/2mw(log n) _1»1211_21”\\31-\\

s < min ||B,||
1<i<n

2mo IN THE INDEPENDENT

d~1

6> 1.086""-04(%)

min ||b;]| <s< max ||b;| 6>1.086=(1—m).g—m Ilicr el -On(Z)
1<i<n 1<i<n s E

s > max ||b;|

> N Qs :2
pmax. 5> 1.086"" - Op- (52)

s> /2nw(logn) - max HEZH o1
Proof: By definition, we have
+o0 4
gs()= > e = F\(/;_T) = 1.086, (52)
n=-—oo 4

pointing out that the explicit values af5(2), J3(3), ...can

also be calculated [39], where the same derivation in the

25
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10 15

Fig. 3. Coefficientl/§ of the Eg lattice in the case o€ = 0.

then the coefficieni is lower bounded by
whereI'(-) stands for the Gamma functioh [38]. It is worth

Hie[ ||bz|| )

Sm

1
§>1.086"(n"m) . 27m. Oa (—2) . (57)
S

following can also be carried out. Here we chodsél) as the \where I denotes the subset of indexasvith si > 1 (e,

benchmark due to its simplicity. As the Jacobi theta functios ~ ||gl.|‘)’ ie{1,2

¥3(7) is monotonically decreasing with, let 1/s7 > 1, i.e.,
s < ||b;]|, then it follows that

193(%) < ¥3(1) = 1.086.

i

(53)

Assumes < minj<;<n HRH, then the following lower bound
for § can be obtained,

Oa(3)
ITi=: 9s(3)

On the other hand, a8 isg self-dual lattice, i.eZ = Z*,
then if s? > 1, namely,s > ||b;||, it follows that

95 (s7) = 93(s7) < 93(1) < 1.086.

5= >1.0867" - @A(iz). (54)
S

(55)

Therefore, lets > maxlgignHEiH, according to Jacobi's

formula shown in[(4B)¢§ can be lower bounded as
Oa(3)

[T 9s(3)
|detB)| " (s*) 2 Oa- (s?)
[Tz, (s3) 2 05(s7)

O+ (s?)
[Ti=y 95(s7)
1.0867" - O« (s?),

6 =

= ®

Y

(56)

completing the proof. [ ]

Remark: We emphasize that the significance of lattice
reduction (e.g., LLL or HKZ) can be seen here, as increasifig®

min; <<y ||bi]| and decreasingnaxlgiSnHEiH simultane-

ously will greatly enhance the convergence performance di dual

to a better lower bound af.
Next, with respect to the range afini<i<n [|bil| < s <
maxi<;<n ||bil|, we arrive at the following proposition.

Proposition 4. If minj<;<y ||Bi|| < s < maXlSiSnHBiH,

yoonty I =m.

Proof: From the definition, we have
—+oo

E 6771'7'77.2

n=—oo

1492 Z 6771'7'712

n>1

1+ 2/ e 4
0

1
1+\/ja
T

where(g) holds due to thé&aussian integral > _ e dy =
Hence, for term#)s(Z%) with 1/s? < 1, namely,s > I
we have '

93(7)

(9)

(58)

1 s
st I
Therefore, from[(53) and (59), if follows that
I (iz) <1086 .om. % (g0)
i=1 Si Hie[ Hsz
completing the proof. ]

To summarize, the value @fwith respect to the given =
V2mo in the independent MHK algorithm is given in Table I.
Now, let us consider some lattices whose theta series are
re understood. We have the following property for an
isodual lattice, which is one that is geometrically simitar
[36)].

1
% for an isodual
lattice A has a multiplicative symmetry point at= 1, and
asymptotically converges to 1 on both sides wheither goes
to 0 or oc.

Proposition 5. The coefficient =
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Fig. 4. Coefficientl/§ of the Leech lattice in the case of= 0.

Proof: Here, we note that the theta serteg of an isodual
lattice A and that of its dual\* are the same, i.e@x(7) =
O~ (1), and the volume of an isodual lattitcdet B)| naturally
equalsl. Therefore, we have

(%) -

1
193 <S—2) = Sﬂ?g(S?),

2

s”@A(sz), (61)

(62)
then from [(61) and[(82), the symmetry with respecite 1
can be obtained as follows,
Oa(%)
[Ti=1 9s(3)

s"0(s?)
L=y sivs(s?)
O4(s?)
H?:l mﬁ3(5§)
O4(s?)
WlB)\ T2 9a(s?)
O, (s2
- T (©3
By definition, it is straightforward to verify that
Oa(5)
[Ti1 9s(5%)

— 1, when s — 0. (64)

1
Then because of the symmetﬁ%
i=178%52

totically approachl whens — oo, completing the proof. m
Examples of the coefficient/§ for the isodual Es and

will also asymp-

15

T
1/3in D, lattice

s?=2nd’(dB)

Fig. 5. Coefficientl/§ of the D4 lattice in the case oé = 0.

B. Convergence Rate ¢ 0)

As for the convergence analysis in the casecgt 0, we
firstly define the exponential decay coefficiéntas

P Q(x) _ pU,C(A)

==n ; (65)
7T(X) Hi:l Po;,z; (Z)
then we have the following proposition.
Proposition 6. For any c € R™ andc # 0, one has
§ > e e (66)

Proof: Let ¢/ = ¢ mod A stand for the modular opera-
tion of ¢ over latticeA. Then it follows that

poe(A) = 3 ¢ shaleel?

zEA

el

zEA
lle’)|? I=12 1 1 / 1 /
_ — T . 7?(zc> U—2(zc>)
e 202 Ze 2 5 (e +e
z€EA
) _pery? _ =l
> e 20 e 202
zEA
_d%(Ae)
= e 0 py(A), (67)
where(h) follows from the fact that for any positive real>
0,a+1/a>2. [
d2(A,c)

Thus, the value ob’ is reduced by a factor of ™ 2.2
from ¢§. Clearly, if c = 0, thend’ = ¢, implyingc # 0 is a
general case of =0 A. Hence, according td_(67), as long as

Leech lattice are shown in Figl 3 and Fig. 4, respectivelig It ¢ is not too far fromA, ¢" has a similar lower bound.
worth pointing out thatl /§ has a maximum at the symmetry

point s = 1, i.e., 0% = % Actually, 1/§ is similar to, but
not exactly the same as tlsecrecy gaindefined in [36]. In

our context,1/é roughly estimates the number of the Marko
moves required to reach the stationary distribution. On the
other hand, as for non-isodual latticd3, lattice is applied to
give the illustration in Figl15, where the symmetry still sl

but centers at = 0.376. Therefore, with the exact value 6f

the explicit estimation of the mixing time for the underlgin

Markov chain can be obtained.

V. SYMMETRIC METROPOLISKLEIN ALGORITHM
In this section, we propose the symmetrical Metropolis-

Xlein (SMK) algorithm for lattice Gaussian sampling. The

underlying Markov chain is proved to be geometrically er-
godic, which not only converges exponentially fast, bubals
depends on the selection of the initial state.

“4In fact, asp,,c(A) is periodic, allc € A will lead to d(A, c) = 0, thus
corresponding to the case of= 0.
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A. Symmetric Metropolis-Klein Algorithm Algorithm 3 Symmetric Metropolis-Klein Algorithm for Lat-

The Metropolis algorithm can be viewed as a specigpe Gaussian Sampling

case of the MH algorithm by utilizing a symmetric proposdlPut: B.o,¢, Xo, tmix(¢) o
distributiong(x, y) = q(y, x) [33]. In the proposed algorithm, Output: sample from a distribution statistically close to=
we again use Klein’s algorithm to generate the symmetric Dioe

proposal distribution. Yet, the generation of the stateddate 1 for £=1,2, ..., do

y depends on the current state which is different from 2 letx denote the state X, _

the independent MHK algorithm. Specifically, as shown in3  generatey by the proposal distribution(x, y) in (68)
Algorithm 3, its sampling procedure at each Markov move®  calculate the acceptance ratigx, y) in (69)

can be summarized by the following steps: 5: generate a sample from the uniform density/[0, 1]
1) Given the current Markov statX, = x, sample fom 6  if u <a(x,y) then
the symmetric proposal distribution through Klein’s algbm 7 let X =y
to obtain the candidate state for X; 1, 8 e|SeX
9: t =X
——L||IBx—By|? . .
poBx(By) e =7l T 10:  end if
X,y)==n" = 0 = yX )y 68 f
AN 0@ Moo @ 07 i1 1) then

-
N

N Sy output the state oX,
wherey; = —==H12 ¢/ = Q'Bx andB = QR. 13 end if
Note that equality(i) holds due to the inherent symmetry (sea4: end for
Lemma 2 in the following).

2) Calculate the acceptance ratio(x, y)

a(x,y) = min{1, T(y)aly,x) | _ mind 1, 7(y) for all statesx € Z™.
T(x)q(x,y) m(x)
— min{1’eﬁ(lle—CIIQ—HBy—cW)}’ (69)
wherem = Dy 5 c. B. Geometric Ergodicity

3) Make a decision foiX,; based onx(x,y) to accept

X,41 =y OF not. In MCMC, a setC C Q is referred to as amall set if

there existt > 0, 1 > 6 > 0 and a probability measure on
Lemma 2. The proposal distributiong shown in [68) is ( such that

symmetric and only depends an- y, namely, P*x.B) > 6u(B). Vx e C (72)
X, 2 0V , X €

X,y) = ,X) =q(x — 70
10y) = aly,x) = ol y) (70) for all measurable subsef8 C Q. This is also known as

for all x,y € Z". the minorisation conditiorin literature [31]. Actually, uniform

The proof of Lemma 2 is provided in Appendi¥ B. Such grgodicity is a special case where the minorisation cooraliti
special case is called the “random-walk” Metropolis-Hagsi 'S Satisfied withC’ = Q. For a bounded small set, the drift
algorithm [26]. condition of discrete state space Markov chains is defined as

At each Markov move, the state candidatefor X,,, follows [26]:

is sampled from a Gaussian-like distribution centered at tE)efinition 4. A Markov chain with discrete state spa6e
current statex. Since the chain is symmetric, the CaICUIatiogatisfies the drift condition if there are constasitss \ < 1

of _the acceptance ratio is greatly simpliﬁed. FronﬂBQ),_it IS and b < oo, and a functionV” : Q — [1, 00), such that
quite straightforward to see that By is closer to the given

point ¢ than Bx, then state candidatg must be accepted Z P(x,y)V(y) < AV(x) + blc(x) (73)
by X**t! sincea = 1; otherwise it will be accepted with yeER

a probability dependinﬁ on the distance frdBy to ¢, thus ¢4, 4| x € O, whereC C Q is a small set, and the indicator

forming a Markov cha _ function1¢(x) = 1 if x € C and 0 otherwise.
Again, we recall the following standard result (see, e28] [

for a proof). Equipped with minorisation and drift conditions, we are now

Proposition 7. Given the target lattice Gaussian distribution™ & position to prove the following theorem:

7 = Dpoc, the Markov chain induced by the proposettheorem 2. Given the invariant lattice Gaussian distribu-
symmetric Metropolis-Klein algorithm is ergodic: tion Dy 4., the Markov chain established by the symmetric
tliﬁ}onpt(x? )= Daoe()ll7v =0 (71) Metropolis-Klein algorithm is geometrically ergodic.
Proof: First of all, the distributionr(x) = Dy ».c(x)

5A query about the SMK algorithm is whether a flexible standdediation is clearly bounded betweem and 1 over any bounded set.
o in the proposal distributiory works, i.e.,& # o. The answer is yes.

However, since the explicit convergence rate is tediousntdyae, we omit Besides, for amMBX_.BYH < 5(1' Where5q > 0 is a constant,
its analysis here. the proposal distribution(x, y) can always be lower bounded
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by a constant, > 0 as follows,

52 N
( ) > e_m ’ X N
AdAX,y) 2 FTm / \
H?:l Poi, s (z) ! : i
52 ’/ \‘
Qe (74) | !
= n o — €q \\ /l
H?:l pa'i (Z) ! \ /
where(;) holds due to[{18). Thus, by [40, Theorem 2.1], every h
non-empty bounded set C Z" in the underlying Markov
chain of the SMK algorithm is a small set. Then we may
define a small se€ as (a) (b)
C= {X ez W(X) > 6} (75) Fig. 6. lllustration of cases (a} ¢ C and (b)x € C' in the Markov move
o induced by SMK. The blue dash circle represents the areaeofithall set
for sufficiently smalle. while the red solid circle denotes the acceptance regign

Meanwhile, at each Markov move, the acceptance riatib (69)
suggests the acceptance regibp and the potential rejection

region R, for current statex as follows: (). In the casex € C,
Ax = {y € Z"[n(y) > m(x)}; (76) V(x) < \i[ (83)
n €
Ry ={y € Z"|n(y) <7(x)}. (77)
. _ _ By (80) we have
Obviously, state candidae € Ax will surely be accepted by 1
X,.1 while state candidatg € R, has a certain probability Px,y)V(y) < —=- 5 0 torx cC (84)
to be rejected. Then, the LHS of the drift conditign](73) can  yczn» Ve 4

be rewritten as[(48), where the second and third terms result

; . . and thus condition (82) is satisfied.
from whether state candidaiec Ry is accepted or rejected, (i) In the casex ¢ C, we consider

respectively.

Furthermore, setting the potential functibix) = m(x)~=. > P(x,y)V(y)
Dividing (78) by V (x) on both sides, we have the expression A = limsupZ (85)
shown in [79). [lx[| =00 V()

Since the ratios on the RHS ¢f{79) 1, we obtaiff If A <1, then [B1) is satisfied for sufficient small

> oyezn P(x,¥)V(y) 5 (80) It is easy to verify that
V(x) -4 lim {(x)-Viegn(x) = —oo, (86)

Depending on whethet € C or not, the drift condition can lxll=o0

be rewritten as: where¢(x) denotes the unit vectat/||x|| and V represents

the gradient. This condition implies that for any> 0, there
> Px,y)V(y) <AV(x) forx¢C (81) existsR > 0 such that forl|x|| > R

yeQ ,
and W <e™ ™, a>0. (87)
Z Pxy)V(y) <AV(x)+b forxe C. (82) |n other words, agjx|| goes to infinity, the above ratio is at
yeQ least exponentially decaying with a ratetending to infinity.
The two cases are illustrated in Fig. 6. We proceed case byLet C; = {x € R" | n(x) = (}. We define the radial
case. p-zone around’; ) as
®Note thatl <1—a?+a< 2for0<a<1. Crxy(w) ={z+5-L(z) | 2 € Crix), —pp < 5 < i}
YN Pxy)V(y) = Y Pxy)V(y+ Y PxyV(y)
yezr YEAx YERx
7T T
= Y eV ¥y IOV + Y gty [1- 28] veo. o)
yEAL yERx yERx
Dyern P y)V(Y) m(x)!/? m(y) 7y
= — 11— ——=+———]. 79
&) L gyt 2 abey) - o) 79



Denote byB(x, K) a Euclidean ball of radiu&’, centered at
x. As in |41], for arbitrary but fixed’ > 0, chooseK > 0
such that

Yy€Z™ By¢ B(Bx,K)

q(x,y) < €.

This can be assured by noting that

_ IIBx—By|?

(& 20
H?:l Poi g (Z)

_IIBx—By|?
) e

202

[Tis1 Po1/2(Z)’
where (I) is because,, 3, (Z) has a minimum af; = 1/2
and then applying a tail bound of lattice Gaussian distidout
[, Lemma 1.5].

From the fact that the Euclidean norriBx||, x € Z"}
of a lattice are discrete, it follows that for arfy > 0 there
existsy, > 0 such that

lim sup Z q(x,y) < limsup

[|x[|—o00 yeznnce.

q(x,y)

(88)

> alxy). (89)

Ix[[=00 yezn By |=Bx|

7 (x) (w)
Byc€B(Bx,K)

ByecB(Bx,K)

Define two regionsd, = {y € Z"|n(y) > =(x)} and

12

satisfying the drift condition will converge exponentjalio
the stationary distribution as follows

ury\" b
[P"(x0,) = w(Mrv <(1—6)""+ (a1r> (1+E+V(Xo),
(93)
where0 < r < 1,
LYd  and U=1+2d+b).  (94)

T Trw M

Clearly, there is a trade-off between these two convergence
stages: a larger sét indicates a smalle¥ in the minorisation
condition forx € C but a faster shrink speed towardsC
for x ¢ C (close to1/2 when ||x|| — oc). However, the size
of C, measured byl here, is determined atrtificially, making
both § and A sensitive to a slight change ef. Moreover,

a closed-form expression of is difficult to get even for a
specific C. Therefore, although geometric ergodicity can be
achieved by the proposed SMK algorithm, it is difficult to
obtain quantitative bounds ahand M.

Finally, (93) indicates that the convergence of the Markov
chain arising from the SMK algorithm also highly depends on
the starting state,, which follows the definition of geometric
ergodicity given in[(ID). In theory, could be any candidate

Ry = {y € Z"|x(y) < =(x)}, which are slightly different from the state space but a poor choice may intensively iserea
from (78), [77), i.e.,A_ does not include the boundary puthe required mixing time. To this end, starting the Markov
Ry does. As||x| — og,xthe ratios in[{79) tend to 0 outside ofchain with x, as close to the center of the distribution as

any radialy-zone whosey € B(Bx, K) for any K, and we possible would be a judicious choice. This is actually in
arrive at accordance with the result shown in}(93), implying the cibse

point to c is the optimal choice. As a simple solution, Babai's

A < limsup Z q(x,y) nearest plane algorithm is recommended here to output
Bell=oe g o7, [43).
- 1_ﬁlxrﬁ1_l>ri£ s a(x,y) VI. CONCLUSIONS
yca, . .
*) In this paper, two MH-based algorithms were proposed to
< 1 (90) sample from lattice Gaussian distributions. As the proposa

distribution in the MH algorithms can be set freely, an inde-
pendent proposal distribution and a symmetric proposadidis
bution were exploited respectively for geometric convamge

In addition, it was proven that the Markov chain arising from
the independent MHK algorithm is uniformly ergodic, leaglin
to exponential convergence regardless of the starting.steéd
showed its convergence rate can be explicitly calculated vi

where inequality(k) holds because

q(x,y) >0 (91)

YEA,

lim inf
[Ix||—= o0

due to symmetry of;(x,y). In fact, as shown in Fid.]6, it
follows from symmetry that

Yy <5< Yatxy, 92

yeéx yeﬁx

and the two probabilities can approaghes ||x|| — oc. This
completes the proof in the case¢ C.
|

In essence, the convergence of geometric ergodicity can be

classified into two stages. On one handxif¢ C, the drift

theta series, making the mixing time predictable. On themoth
hand, the proposed SMK algorithm was demonstrated to be
geometrically ergodic, where the selection of the starsitage
matters. Due to its inherent symmetry, it not only converges
exponentially fast, but also is simple to implement.
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APPENDIXA
PROOF OFINEQUALITY IN (Z7)

Proof: To start with, let us recall the definition aon-
ductance(also known adottleneck ratip in Markov chains
[28].
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Definition 5. The conductancé of a Markov chain is defined can be expressed as

as C{,ZTL . Ty iy
Q(S,S°) L (- STET i T Y g2
@ S — LN 7 95 s Z — 207 Ti,i
( ) Sgﬂ,gl(gl)gl/Q W(S) ’ ( ) P 7.7'91( ) 26
where subsetS¢ stands for the complement set 6f (i.e., _;(Zi_z;;i T T i T Vi g
SUUSe=9Q,SNSc=0), and the edge measuég is defined = Z e 7%
by 2, €L
Q(:c,y) = W(I)P(:Z?, 1/) (96) Z *ﬁ(Ii*ZiJF_ f;rl%(mjfyj))z
= e v J=e ’
and 2i€EZ
Q(S,5)= > Q(zy). (97) gy
zeS,yese = Z e 29"
z €L
It is this value0 < ® < 1 that has been used to bound = poi.o(Z), (102)
the spectral gap/ of Markov chains. More precisely, in the n
independent MHK algorithm, we have wherez! = z; — x; and¢ = ;rl:_ﬂ(xj —vj).
. ers ese m(x)P(x,y) Similarly, we can easil Jet that
Y Yy y g
= min
SCQ,m(5)<1/2 7(S) o Y )2
T 5,2 \HiTZi 7 YT
(r>n) min ZxES,yGSC 7T(X) ’ 57T(Y) Po;,%; (Z) = Z € 20? gl
— scQ,r(S)<1/2 m(S) 2 €7
1 ()2
. min 0 xes™(X) - ZyESC m(y) = Z e 20?( i=9)
 scon(s)<1/2 7(S) 2l €L
= SQQ,I;l(gl)Sl/25 ’ W(S ) = pdi-,¢(Z) = Po;y; (Z)v (103)
> g’ (98) Whered; = c_zfj# ¢’ = Ry. Therefore, we have

where inequality(m) holds due to[(21).

Next, by invoking thecheeger inequality44] of Markov
chains

2

T <i<a (99)

we have g
52

vz (100) 1@
completing the proof. g
[4]
(5]
APPENDIX B [6]

PROOF OFLEMMA 2
[7]

(8]

Proof: According to the QR-decompositioB = QR,

we have el

e~ mzBx-By|® 3l |Rx-Ryl|? (101 [10]
a(x,y) = = — 101
( ) Hi:l Poiyi (Z) Hi:l Poi,gs (Z)

[11]
by removing the orthogonal =
01_Z;sz+l ”,jyj’ ¢ = Rx.

matrixQ, where y;
[12]

Specifically, the termp,, 5, (Z) in the denominator of (101)

a(x,y) = q(y, x).

In fact, (I02) shows that(x,y) is a function ofx—y only;
moreover, since,, 4(Z) is even ing, ¢(x,y) = q¢(x —y)
q(y — x), completing the proof.
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