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Abstract

We investigate recovery of nonnegative vectors from non-adaptive compressive measurements in the presence of

noise of unknown power. In the absence of noise, existing results in the literature identify properties of the measurement

that assure uniqueness in the non-negative orthant. By linking such uniqueness results to nullspace properties, we

deduce uniform and robust compressed sensing guarantees for nonnegative least squares. No `1-regularization is

required. As an important proof of principle, we establish that m× n random i.i.d. 0/1-valued Bernoulli matrices

obey the required conditions with overwhelming probability provided that m = O(s log(n/s)). We achieve this by

establishing the robust nullspace property for random 0/1-matrices—a novel result in its own right. Our analysis is

motivated by applications in wireless network activity detection.

I. INTRODUCTION

Recovery of lower complexity objects by observations far below the Nyquist rate has applications in physics,

applied math, and many engineering disciplines. Moreover, it is one of the key tools for facing challenges in data

processing (like big data and the Internet of Things), wireless communications (the 5th generation of the mobile

cellular network) and large scale network control. Compressed Sensing (CS), with its original goal of recovering

sparse or compressible vectors, has, in particular, stimulated the research community to investigate further in this

direction. The aim is to identify compressibility and low-dimensional structures which allow the recovery from

low-rate samples with efficient algorithms. In many applications, the objects of interest exhibit further structural

constraints which should be exploited in reconstruction algorithms. Take, for instance, the following setting which

appears naturally in communication protocols: The components of sparse information carrying vectors are taken

from a finite alphabet, or the data vectors are lying in specific subspaces. Similarly, in network traffic estimation

and anomaly detection from end-to-end measurements, the parameters are restricted to particular low-dimensional

domains. Finally, the signals occurring in imaging problems are typically constrained to non-negative intensities.

Our work is partially inspired by the task of identifying sparse network activation patterns in a large-scale

asynchronous wireless network: Suppose that, in order to indicate its presence, each active device node transmits an

individual sequence into a noisy wireless channel. All such sequences are multiplied with individual, but unknown,
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channel amplitudes1 and finally superimpose at the receiver. The receiver’s task then is to detect all active devices and

the corresponding channel amplitudes from this global superposition (note that each device is uniquely characterized

by the sequence it transmits). This problem can be re-cast as the task of estimating non-negative sparse vectors

from noisy linear observations.

Such non-negative and sparse structures also arise naturally in certain empirical inference problems, like network

tomography [1], [2], statistical tracking (see e.g. [3]) and compressed imaging of intensity patterns [4]. The underlying

mathematical problem has received considerable attention in its own right [5], [6], [7], [8], [9], [10]. It has been

shown that measurement matrices A ∈ Rm×n coming from outwardly s-neighborly polytopes [11] and matrices A

whose row span intersects the positive orthant2 [12] maintain an intrinsic uniqueness property for non-negative,

s-sparse vectors. These carry over to the under-determined setting (m < n). Such uniqueness properties in turn

allow for entirely avoiding CS algorithms in the reconstruction step. From an algorithmic point of view, this is

highly beneficial. However, all the statements mentioned above focus on idealized scenarios, where no noise is

present in the sampling procedure.

Motivated by device detection, we shall overcome this idealization and devise non-negative recovery protocols

that are robust towards any form of additive noise. Our results have the added benefit that no a-priori bound on the

noise step is required in the algorithmic reconstruction.

A. Main Results

Mathematically, we are interested in recovering sparse, entry-wise nonnegative vectors x ≥ 0 in Rn from m� n

noisy linear measurements of the form yi = aTi x + ei. Here, the vectors ai ∈ Rn model the different linear

measurement operations and ei is additive noise of arbitrary size and nature. By encompassing all ai’s as rows

of a sampling matrix A ∈ Rm×n and defining y = (y1, . . . , ym)T , as well as e = (e1, . . . , em)T , such a sampling

procedure can succinctly be written as

y = Ax + e. (1)

Several conditions on A are known to be sufficient to ensure that a sparse vector x can be robustly estimated from

measurements y. Here, we focus on uniform reconstruction guarantees. These assure recovery of all s-sparse vectors

simultaneously. While several sufficient criteria for uniform recovery exist, the nullspace property (NSP) is both

necessary and sufficient. In order to properly define a robust version of the NSP, see e.g. [13, Def. 4.21], we need to

introduce some notation: Fix x ∈ Rn and let S ⊂ [n] = {1, . . . , n} be a set. We denote the restriction of x to S by

xS (i.e. (xS)i = xi for i ∈ S and (xS)i = 0 else). Let S̄ be the complement of S in [n], such that x = xS + xS̄ .

Definition 1 (`2-robust nullspace property). A m× n matrix A satisfies the `2-robust null space property of order

s with parameters ρ ∈ (0, 1) and τ > 0, if:

‖vS‖`2 ≤
ρ√
s
‖vS̄‖`1 + τ ‖Av‖`2 ∀v ∈ Rn

1This can be justified under certain assumptions like pre-multiplications using channel reciprocity in time-division multiplexing.
2See Eq. (9) below for a precise definition.
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holds for all S ⊂ [n] with |S| ≤ s.

This property implies that no s-sparse vectors lie in the kernel (or nullspace) of A. Importantly, validity of the

NSP also implies

‖x− z‖`2 ≤
C√
s

(‖z‖`1 − ‖x‖`1) +Dτ‖A(x− z)‖`2 , (2)

for any s-sparse x ∈ Rn and every z ∈ Rn [13, Theorem 4.25]. The constants C,D only depend on the NSP

parameter ρ and we refer to Formula (12) below for explicit dependencies. In turn, this relation implies that every

s-sparse vector x can be reconstructed from noisy measurements of the form (1) via basis pursuit denoising (BPDN):

x]η = arg min‖z‖`1 s.t. ‖Az− y‖`2 ≤ η. (3)

Here, η must be an a-priori known upper bound on the noise strength in (1): η ≥ ‖e‖`2 . Our first main technical

contribution is a substantial strengthening of Formula (2) that is valid for non-negative s-sparse vectors (x ≥ 0):

Theorem 2. Suppose that A obeys the NSP of order s ≤ n and moreover admits a strictly-positive linear combination

of its rows: ∃t ∈ Rm such that w = AT t > 0. Then, the following bound holds for any s-sparse x ≥ 0 and any

z ≥ 0:

‖x− z‖`2 ≤ D′ (‖t‖`2 + τ)) ‖A(z− x)‖`2 . (4)

The constant D′ only depends on the quality of NSP and the conditioning of the strictly positive vector w.

This statement is a simplified version of Theorem 4 below and we refer to this statement for a more explicit

presentation. The crucial difference between (4) and (2) is the fact that no (‖z‖`1 − ‖x‖`1)-term occurs in the

former. This term is responsible for the `1-regularization in BPDN. Theorem 2 highlights that this is not necessary

in the non-negative case. Instead, a simple nonnegative least squares regression suffices:

x] = arg min
z≥0

‖Az− y‖`2 . (5)

Under the pre-requisites of Theorem 2, the solution of this optimization problem stably reconstructs any non-negative

s-sparse vector from noisy measurements (1). We refer to Sec. III-B for a derivation of this claim. Here, we content

ourselves with pointing out that this recovery guarantee is (up to multiplicative constants) as strong as existing ones

for different reconstruction algorithms. These include the LASSO and Dantzig selectors, as well as basis pursuit

denoising (BPDN) (see [13] and references therein). However, on the contrary to them, algorithms for solving (5)

require neither an explicit a-priori bound η ≥ ‖e‖`2 on the noise, nor an ‖ · ‖`1 regression term. This simplicity is

caused by the non-negativity constraint z ≥ 0 and the geometric restrictions it imposes. Also, these assertions stably

remain true if we consider approximately sparse target vectors instead of perfectly sparse ones (see Theorem 4

below).

In order to underline the applicability of Theorem 2, we consider nonnegative 0/1-Bernoulli sampling matrices

and prove that they meet the requirements of said statement with high probability (w.h.p). This in turn implies:
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Theorem 3. Let A be a sampling matrix whose entries are independently chosen from a 0/1-Bernoulli distribution

with parameter p ∈ [0, 1], i.e. Pr[1] = p and Pr[0] = 1− p. Fix s ≤ n and set

m ≥ Cα(p)s
(

log
(en

s

)
+ β(p)

)
(6)

where α(p), β(p) are constants depending only on p. Then, with probability at least 1− (n+ 1)e−C
′p2(1−p)2m, A

allows for stably reconstructing any non-negative s-sparse vector x from y = A + e via (5). The solution x] of (5)

is guaranteed to obey

‖x] − x‖`2 ≤
E′√

p(1− p)
3

‖e‖`2√
m
,

where E′ is constant.

We emphasize two important aspects of this result:

1) 0/1-Bernoulli matrices obey the NSP with overwhelming probability. This novel statement alone assures robust

sparse recovery via BPDN (3). Moreover, the required sampling rate is proportional to s log(n/s) which is

optimal.

2) For non-negative vectors we overcome traditional `1-regularization. We demonstrate this numerically in

Figure 1.

Up to our knowledge, this is the first rigorous proof that 0/1-matrices tend to obey a strong version of the nullspace

property. The main difference to most existing NSP and RIP results is the fact that the individual random entries

of A are not centered, (E [Ak,j ] = p 6= 0). Thus, the covariance matrix of A admits a condition number of

κ(E[ATA]) = 1 + pn
1−p , which underlines the ensemble’s anisotropy. Traditional proof techniques, like establishing

an RIP, are either not applicable in such a setting, or yield sub-optimal results [14], [15]. This is not true for

Mendelson’s small ball method [16], [17] (see also [18]), which we employ in our proof of Theorem 3. We refer to

[19] for an excellent survey about the applicability of Mendelson’s small ball method in compressed sensing. In the

conceptually similar problem of reconstructing low rank matrices from rank-one projective measurements (which

arises e.g. from the PhaseLift approach for phase retrieval [20]), applying this technique allowed for establishing

strong null space properties, despite a similar degree of anisotropy.

Finally, we point out that the constant α(p) in Theorem 3 diverges for p→ 0, 1. This is to be expected, because

the inverse problem becomes ill-posed in this regime of sparse (or co-sparse) measurements. Despite our efforts,

we do not expect α(p) to be tight in this interesting parameter regime and leave a more detailed analysis of this

additional parameter dependence for future work, see Remark 10 below.

Organization of the Paper: In Section II we explain our motivating application in more detail and rephrase activity

detection as a nonnegative sparse recovery problem. Then, we provide an overview on prior work and known results

regarding this topic. In Section III we show that recovery guarantees in the presence of noise are governed by the

robust nullspace property (see here [13]) under nonnegative constraints. Finally, in Section IV we analyze binary

measurement matrices having i.i.d. random 0/1-valued entries. We prove that such matrices admit the NSP with

overwhelming probability and moreover meet the additional requirement of Theorem 2.
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Fig. 1: Phase transition for NNLS in (5) for i.i.d. 0/1-Bernoulli measurement matrices in the noiseless case. More

details are given in Section V.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Activity Detection in Wireless Networks

Let A = (s1| · · · |sn) ∈ Rm×n be a matrix with n real columns sj ∈ Rm. In our network application [21],

the columns sj are the individual sequences of length m transmitted by the active devices. These sequences are

transmitted simultaneously and each of them is multiplied by an individual amplitude that depends on transmit power

and other channel conditions. In practice such a scenario can be achieved by using the channel reciprocity principle

in time-division multiplexing. This assures that the devices have knowledge about the complex channel coefficients

and may perform a pre-multiplication to correct for the phase. All these modulated sequences are superimposed at a

single receiver, because the wireless medium is shared by all devices. We model such a situation by an unknown

non-negative vector 0 ≤ x ∈ Rn, where xi > 0 indicates that a device with sequence i is active with amplitude xi

(xi = 0 implies that a device is inactive). We point out that, due to path loss in the channel, the individual received

amplitudes xi of each active device are unknown to the receiver as well. Here, we focus on networks that contain a

large number n of registered devices, but, at any time, only a small unknown fraction, say s� n, of these devices

are active.

Communicating activity patterns, that is supp(x) = {i : xi 6= 0}, and the corresponding list of received

amplitudes/powers (x ≥ 0 itself) in a traditional way would require O(n) resources. Here, we aim for a reduction

of the signaling time m by exploiting the facts that (i) x ≥ 0 is non-negative and (ii) the vector x is s-sparse, i.e.

‖x‖`0 ≤ s. Hence, we focus on the regime s ≤ m� n. Obviously, in such a scenario the resulting system of linear
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equations cannot be directly inverted. A reasonable approach towards recovery is to consider the program:

arg min‖z‖`0 s.t. Az = y & z ≥ 0

Combinatorial problems of this type are infamous for being NP-hard in general. A common approach to circumvent

this obstacle is to consider convex relaxations. A prominent relaxation is to replace ‖·‖`0 with the `1-norm. The

resulting algorithm can then be re-cast as an efficiently solvable linear program. However, such approaches become

more challenging when robustness towards additive noise is required. In particular, if the type and the strength of

the noise is itself unknown. In our application, noisy contributions inevitably arise due to quantization, thermal noise

and other interferences. If the noisy measurements are of the form (1) (i.e. y = Ax + e, where the vector e is an

additive distortion) a well-known modification is to consider the BPDN (3) but with an additional nonnegativity

constraint:

arg min‖z‖`1 s.t. ‖Az− y‖`2 ≤ η & z ≥ 0. (7)

While this problem is algorithmically a bit more complicated than (3), it is still convex and computationally tractable

(in principle). In practice, further modifications are necessary to solve such problems sufficiently fast and efficiently,

see [22], [21]. However, having access to an a-priori bound η on ‖e‖`2 is essential for (i) posing this problem and

(ii) solving it using certain algorithms that involve stopping criteria, or other conditions that depend on the noise

level. Suppose, for instance, that e is i.i.d. normal distributed. Then ‖e‖2`2 admits a χ2-distribution of order m

and feasibility is assured w.h.p., when taking η in terms of second moments. However, much less is known for

different noise distributions. This in particular includes situations where second moment information about the noise

is challenging to acquire.

One option to tackle problems of this kind is to establish a quotient property for the measurement matrix A

[13]. However, this property is geared towards Gaussian measurements and is challenging to establish for different

random models of A. In this paper we show that another condition—namely that A admit a strictly positive linear

combination of rows—allows for drawing similar conclusions.

B. Prior Work on Recovery of Nonnegative Sparse Vectors

One of the first works on non-negative compressed sensing is due to Donoho et al.n [4] on the “nearly black

object”. It furthers the understanding of the “maximum entropy inversion” method to recover sparse (nearly-black)

images in radio astronomy. Donoho and Tanner investigated this subject more directly in Ref. [11]. The central

question is: what properties of A intrinsically ensure that only one solution is feasible for any s-sparse x ≥ 0:

{z |Az = Ax& z ≥ 0} = {x} (8)

At the center of their work is the notion of outwardly s-neighborly polytopes. Assume w.l.o.g. that all columns sj

of A are non-zero and define their convex hull

PA := conv(s1, . . . , sn).
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This polytope is called s-neighborly if every set of s vertices spans a face of PA. If this is the case, the polytope

P 0
A := conv(PA ∪ {0}) is called outwardly s-neighborly. They then move on to prove that the solution to

arg min‖x‖`0 s.t. Ax = y

is unique if and only if P 0
A is outwardly s-neighborly [11].

Another approach to the same question was introduced in Ref. [12]. They consider full rank m × n-matrices

whose row space intersects the positive orthant:

M+ = {A : ∃t ∈ Rm A∗t > 0}. (9)

Note that both structures are related in the sense that A ∈ M+, if and only if 0 /∈ PA [23]. Also, a strictly

positive row assures A ∈M+. An extreme case thereof occurs if A contains the “all-ones” vector 1n in Rn. The

corresponding measurement yields the `1-norm ‖x‖`1 = 〈1n,x〉 and therefore all admissible vectors in (7) for

η = 0 have the same cost. The uniqueness property in such a setting has already been obtained by Fuchs [5] for

Vandermonde measurement matrices and for particular real Fourier measurements using convex duality. In these

special cases, m distinct columns are linear independent (“full spark”) and therefore Eq. (8) holds, provided that x

is sufficiently sparse: ‖x(0)‖`0 ≤ m−1
2 .

In Ref. [12], Bruckstein et al. investigated the recovery of nonnegative vectors by (7) and modifications of OMP

using a coherence-based approach. They obtained numerical evidence for unique recovery in the regime s = O(
√
n).

Later, Wang and coauthors [23] have analyzed non-negativity priors for vector and matrix recovery using an

RIP-based analysis. Concretely, they translated the well-known RIP-result of random i.i.d. ±1-Bernoulli matrices

(see for example [24]) to 0/1-measurements in the following way. Perform measurements using an (m+ 1)× n

matrix A1 =
(
1Tn |AT

)T
which consists of an all-ones row 1n appended by a random i.i.d. 0/1-valued m×n matrix

A. By construction, the first noiseless measurement on a nonnegative vector x returns its `1-norm ‖x‖`1 = 〈1n,x〉.

Rescaling and subtracting this value from the m remaining measurements then results in ±1-measurements. This

insight allows for an indirect nullspace characterization of A in terms of the restricted isometry property (RIP) of

i.i.d. ±1-Bernoulli random matrices Ã. Recall that a matrix obeys the RIP of order s, if it acts almost isometrically

on s-sparse vectors: There exists δs ∈ [0, 1) such that |‖Ãx‖2`2 − ‖x‖
2
`2
| ≤ δs‖x‖2`2 for all s-sparse x. Candès

showed in [25] that validity of a 2s-RIP implies that a (`1, `1)-nullspace property is valid for each v ∈ Rn that is

contained in the nullspace N (Ã) of Ã:

‖vS‖`1 ≤
√

2δ2s
1− δ2s

‖vS̄‖`1 (10)

for all v ∈ N (Ã) and support sets S of size |S| ≤ s. Combining this with N (A1) ⊂ N (Ã) then allows for proving

unique recovery in regime s = O(n) with overwhelming probability.

However, so far, all these results manifestly focus on noiseless measurements. Thus, the robustness of these

approaches towards noise corruption needs to be examined. Foucart, for instance, considered the `1-squared

nonnegative regularization [10]:

min
z≥0
‖z‖2`1 + λ2‖Az− y‖2`2 (11)
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which can be re-cast as nonnegative least-squares problem. He then showed that for stochastic matrices3 the solution

of (11) converges to the solution of (7) for λ→∞.

Here, we aim at establishing even stronger recovery guarantees that, among other things, require neither an

a-priori noise bound η, nor a regularization parameter λ. We have already mentioned that the quotient property

would assure such bounds for Gaussian matrices in the optimal regime. But m× n Gaussian matrices fail to be

in M+ with probability approaching one as long as limn→m/n < 1
2 [23]. On the algorithmic side, there exists

variations of certain regression methods where the regularization parameter can be chosen independent of the noise

power—see Ref. [26] for more details on this topic. For the LASSO selector, in particular, such modifications are

known as the “scaled LASSO” and “square root LASSO” [27], [28].

Non-negativity as a further structural constraint has also been investigated in the statistics community. But these

works focus on the averaged case with respect to (sub-)Gaussian additive noise, whereby we consider instantaneous

guarantees. Slawski and Hein [9], as well as Meinshausen [8] have recently investigated this averaged setting.

Finally, we note that the measurement setup above using a separate “all ones” row can also casted as a linearly

constrained NNLS, i.e., minimizing ‖Ax− y‖`2 subject to x ≥ 0 and 〈1n,x〉 = const., see for example [22] for a

Bayesian recovery approach.

III. NULLSPACE PROPERTY WITH NONNEGATIVE CONSTRAINTS

Throughout our work we endow Rn with the partial ordering induced by the nonnegative orthant, i.e. x ≤ z if

and only if xi ≤ zi for all 1 ≤ i ≤ n. Here, xi = 〈ei,x〉 are the components of x with respect to the standard basis

{ei}ni=1 of Rn. Similarly, we write x < z if strict inequality holds in each component. We also write x ≥ 0 to

indicate that x is (entry-wise) nonnegative. For 1 ≤ p ≤ ∞, we denote the vector `p-norms by ‖ · ‖`p and ‖ · ‖ is the

usual operator/matrix norm. The `1-error of the best s-term approximation of a vector x will be denoted by σs(x)`1 .

A. The robust nullspace property

The implications of a NSP are by now well-established and can be found, for instance, in [13, Sec. 4.3].

Suppose that a matrix A : Rn → Rm obeys the `2-robust nullspace property of order s (s-NSP) from Definition 1.

Theorem 4.25 in [13] then states that

‖x− z‖`2 ≤
C√
s

(‖z‖`1 − ‖x‖`1 + 2σs(x)`1) +Dτ ‖A(x− z)‖`2 (12)

is true for any x, z ∈ Rn. Here, C = (1+ρ)2

1−ρ and D = 3+ρ
1−ρ depend only on the NSP parameter ρ. Replacing z with

the BPDN minimizer x]η from (3) for the sampling model y = Ax + e then implies

‖x− x]η‖`2 ≤
2C√
s
σs(x)`1 +Dτ

∥∥y − e−Ax]η
∥∥
`2
≤ 2C√

s
σs(x)`1 +Dτ

(∥∥y −Ax]η
∥∥
`2

+ ‖e‖`2
)

≤ 2C√
s
σs(x)`1 + 2Dτη, (13)

provided that ‖e‖`2 ≤ η is true. This estimate follows from exploiting ‖x]η‖`1 ≤ ‖x‖`1 and and
∥∥y −Ax]η

∥∥
`2
≤ η.

Evidently, it is only true for η ≥ ‖e‖`2 which in turn requires some knowledge about the noise corruption.

3Recall that a matrix is stochastic, if all entries are non-negative and all columns sum up to one.
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B. Nonnegative Constraints

Here we will prove a variation of Formula (12) which holds for nonnegative vectors and matrices inM+ ⊂ Rm×n.

For such matrices we define a condition number by

κ(A) = min{‖W‖‖W−1‖ |∃t ∈ Rm withW = diag(AT t) > 0}. (14)

Note that for diagonal matrices W with non-negative entries κ(W) = ‖W‖‖W−1‖.

Theorem 4. Suppose that A ∈M+ obeys the s-NSP with parameters ρ and τ , and let κ = κ(A) be its condition

number achieved for t ∈ Rm. If κρ < 1, then

‖x− z‖`2 ≤
2C ′√
s
σs(x)`1 +D′ (‖t‖`2 + τ) ‖A(x− z)‖`2

is true for all nonnegative vectors x, z ∈ Rn. The constants amount to C ′ = κ(1+κρ)2

1−κρ and D′ = 3+κρ
1−κρ max

{
κ, ‖W−1‖

}
.

Comparing this to (12) reveals that the `1-term (‖z‖`1 − ‖x‖`1) is not present anymore. Inserting y = Ax + e

and applying the triangle inequality results in

‖x− z‖`2 ≤
2C√
s
σs(x)`1 +D (‖t‖`2 + τ) (‖Az− y‖`2 + ‖e‖`2) ∀x, z ≥ 0. (15)

This observation already highlights that CS-oriented algorithms, which typically minimize the `1-norm, are not

required anymore in the non-negative case. Instead, in order to get good estimates it makes sense to minimize the r.h.s.

of the bound over the “free” parameter z ≥ 0. Doing so, results in the non-negative least squares fit (5). The sought for

vector x is itself a feasible point of this optimization problem and consequently ‖Ax]−y‖`2 ≤ ‖Ax−y‖`2 = ‖e‖`2 .

Inserting this into (15) then implies

‖x− x]‖`2 ≤
2C√
s
σs(x)`1 + 2D (‖t‖`2 + τ) ‖e‖`2

which is comparable to (13). However, rather than depending on an a-priori noise bound η, the reconstruction error

scales proportionally to ‖e‖`2 itself.

We will require two auxiliary statements in order to prove Theorem 4:

Lemma 5. Suppose that A obeys the s-NSP with parameters ρ and τ , and set W = diag(w), where w > 0 is

strictly positive. Then, AW−1 also obeys the s-NSP with parameters ρ̃ = κ(W)ρ and τ̃ = ‖W‖τ .

Proof. The fact that W is diagonal assures W−1vS =
(
W−1v

)
S

(same for S̄). Also, A obeys the s-NSP by

assumption. Consequently

‖vS‖`2 = ‖WW−1vS‖`2 ≤ ‖W‖‖(W−1v)S‖`2 ≤ ‖W‖
(
ρ√
s
‖(W−1v)S̄‖`2 + τ‖AW−1v‖`2

)
≤ ‖W‖‖W

−1‖ρ√
s

‖vS̄‖`1 + ‖W‖τ‖AW−1v‖`2 =
ρ̃√
s
‖vS̄‖`1 + τ̃‖AW−1v‖`2

is true for every set S with |S| ≤ s.
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Lemma 6. Fix A ∈ Rm×n and suppose that w = AT t is strictly positive for some t ∈ Rm. Also, set W = diag(w).

Then, the following relation holds for any pair of non-negative vectors x, z ≥ 0 in Rn:

‖Wz‖`1 − ‖Wx‖`1 ≤ ‖t‖`2‖A (x− z) ‖`2

Proof. Note that, by construction, W is symmetric and preserves entry-wise non-negativity. These features together

with positivity of z imply

‖Wz‖`1 =〈1n,Wz〉 = 〈W1n, z〉 = 〈diag(AT t)1n, z〉 = 〈AT t, z〉 = 〈t,Az〉.

An analogous reformulation is true for ‖Wx‖`1 and combining these two reveals

‖Wz‖`1 − ‖Wx‖`1 = 〈t,A (z− x)〉 ≤ ‖t‖`2‖A(z− x)‖`2

due to Cauchy-Schwarz.

Proof of Theorem 4. The assumption A ∈M+ assures that there exists t ∈ Rm such that w = AT t > 0 and we

define W := diag(w). By assumption, W is invertible and admits a condition number κ = ‖W‖‖W−1‖. Thus, we

may write

‖x− z‖`2 = ‖W−1W (x− z) ‖`2 ≤ ‖W−1‖‖W(x− z)‖`2

for any pair x, z > 0. Since A obeys the s-NSP, Lemma 5 assures that AW−1 also admits a s-NSP, albeit with

parameters ρ̃ = κρ and τ̃ = ‖W‖τ . Thus, from (12) we conclude the following for vectors Wx and Wz:

‖W(x− z)‖`2 ≤
1√
s

(1 + κρ)2

1− κρ
(‖Wz‖`1 − ‖Wx‖`1 + 2σs(Wx)`1) +

3 + κρ

1− κρ
‖W‖τ‖A(x− z)‖`2

≤ 2(1 + κρ)2

1− κρ
‖W‖σs(x)`1√

s
+

(
(1 + κρ)2

1− κρ
‖t‖`2√
s

+
3 + κρ

1− κρ
‖W‖τ

)
‖A(x− z)‖`2

≤ 2(1 + κρ)2

1− κρ
‖W‖σs(x)`1√

s
+

3 + κρ

1− κρ
(‖t‖`2 + ‖W‖τ) ‖A(x− z)‖`2

Here, we invoked Lemma 6, as well as the relation σs(Wx)`1 ≤ ‖W‖σs(x)`1 . So, in summary we obtain

‖x− z‖`2 ≤‖W−1‖‖W(x− z)‖`2

≤2κ(1 + κρ)2

1− κρ
σs(x)`1√

s
+

3 + κρ

1− κρ
(
‖W−1‖‖t‖`2 + κτ

)
‖A(x− z)‖`2

≤2C ′√
s
σ(x)`1 +D′ (‖t‖`2 + τ) ‖A(x− z)‖`2

with C ′ = κ(1+κρ)2

1−κρ and D′ = 3+κρ
1−κρ max

{
κ, ‖W−1‖

}
.

IV. ROBUST NSP FOR 0/1-BERNOULLI MATRICES

In this section, we prove our second main result, Theorem 3. Said statements summarizes two results, namely

(i) 0/1-Bernoulli matrices A with m = Cs log(n/s) rows obey the robust null space property of order s w.h.p.

and (ii) the row space of AT allows for constructing a strictly positive vector w = AT t > 0 (that is sufficiently

well-conditioned). We will first state the main ideas and prove both statements in subsequent subsections.
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A. Sampling model and overview of main proof ideas

Let us start by formally defining the concept of a 0/1-Bernoulli matrix.

Definition 7. We call A ∈ Rm×n a 0/1-Bernoulli matrix with parameter p ∈ [0, 1], if every matrix element Ai,j of

A is an independent realization of a Bernoulli random variable b with parameter p, i.e.

Pr [b = 1] = p and Pr [b = 0] = 1− p.

Recall that E [b] = p and Var(b) = E
[
(b− E[b])

2
]

= p(1− p). By construction, the m rows a1, . . . ,am of such

a 0/1-Bernoulli matrix are independent and obey

E [ak] =

n∑
j=1

E [Ak,j ] ej = p

n∑
j=1

ej = p1.

This expected behavior of the individual rows will be crucial for addressing the second point in Theorem 3: Setting

w :=
1

pm

m∑
k=1

ak = AT

(
1

pm
1m

)
results in a random vector w ∈ Rn that obeys E [w] = 1 > 0. Applying a large deviation bound will in turn imply

that a realization of w will w.h.p. not deviate too much from its expectation. This in turn ensures strict positivity.

We will prove this in Subsection IV-C.

However, when turning our focus to establishing null space properties for A, working with 0/1-Bernoulli entries

renders such a task more challenging. The simple reason for such a complication is that the individual random

entries of A are not centered, i.e. E [Ak,j ] = p 6= 0. Combining this with independence of the individual entries

yields

E
[
aka

T
k

]
= p21n1

T
n + p(1− p)I.

This matrix admits a condition number of κ
(
E
[
aka

T
k

])
= 1 + pn

1−p which underlines the ensemble’s anisotropy.

Traditional proof techniques, e.g. establishing an RIP, are either not applicable, or yield sub-optimal results [14],

[15]. This is not true for Mendelson’s small ball method [16], [17] (see also [18])—a strong general purpose tool

whose applicability only requires row-wise independence. It was shown in Ref. [19] that this technique allows for

establishing the NSP for a variety of compressed sensing scenarios. Our derivation is inspired by the techniques

presented in []loc. cit.. Moreover, a similar approach is applicable to the conceptually-related problem of low rank

matrix reconstruction [29].

B. Null Space Properties for 0/1-Bernoulli matrices

Recall that Definiton 1 states that a m × n matrix A obeys the robust null space property with parameters

ρ ∈ (0, 1) and τ > 0, if

‖vS‖`2 ≤
ρ√
s
‖vS̄‖`1 + τ‖Av‖`2 (16)

is true for all vectors v ∈ Rn and support sets S ∈ [n] with support size |S| ≤ s. Demanding such generality in

the choice of the support set is in fact not necessary, see e.g. [13, Remark 4.2]. For a fixed vector v, the above

March 13, 2017 DRAFT



12

condition holds for any index set S, if it holds for an index set Smax containing the s largest (in modulus) entries

of v. Introducing the notation vs := vSmax
and vc := vS̄max

, the robust null space property (16) holds, provided

that every vector v ∈ Rn obeys

‖vs‖`2 ≤
ρ√
s
‖vc‖`1 + τ‖Av‖`2 . (17)

Note that this requirement is invariant under re-scaling and we may w.l.o.g. assume ‖v‖`2 = 1. Moreover, for fixed

parameters s and ρ, any vector v obeying ‖vs‖`2 ≤
ρ√
s
‖vc‖`1 is guaranteed to fulfill (17) by default. Consequently,

when aiming to establish null space properties, it suffices to establish condition (17) for the set of unit-norm vectors

that do not obey this criterion:

Tρ,s :=

{
v ∈ Rn : ‖v‖`2 = 1, ‖vs‖`2 >

ρ√
s
‖vc‖`1

}
.

As a result, a matrix A obeys the NSP (16), if

inf {‖Av‖`2 : v ∈ Tρ,s} >
1

τ
, (18)

holds, where τ > 0 is the second parameter appearing in (16). For random m× n matrices A with independent and

identically distributed rows a1, . . . ,am ∈ Rn — which is the case here — Mendelson’s small ball method [16],

[17], [18] provides a general purpose tool for establishing such lower bounds with high probability:

Theorem 8 (Koltchinskii, Mendelson; Tropp’s version [18]). Fix E ⊂ Rn and let a1, . . . ,am be independent copies

of a random vector a ∈ Rn. Set h = 1√
m

∑m
k=1 εkak, where ε1, . . . , εm is a Rademacher sequence. For ξ > 0 define

Qξ (E,a) = inf
u∈E

Pr [|〈a,u〉| ≥ ξ] , as well as Wm (E,a) = E
[

sup
u∈E
〈h,u〉

]
.

Then, for any ξ > 0 and t ≥ 0, the following is true with probability at least 1− e−2t2 :

inf
v∈E

(
m∑
k=1

|〈ak,v〉|2
)1/2

≥ ξ
√
mQ2ξ(E,a)− ξt− 2Wm(E,a). (19)

In our concrete application, the random vector a =
∑n
i=1 biei ∈ Rn has i.i.d. 0/1-Bernoulli entries bi with

parameter p and E = Tρ,r. We bound the marginal tail function Q2ξ (Tρ,s,a) from below using a Paley-Zygmund

inequality. Detailed in the appendix this calculation yields

Pr
[
|〈a, z〉| ≥ θ

√
p(1− p)

]
≥ 4

13
p(1− p)(1− θ2)2 ∀z ∈ Sn−1 and θ ∈ [0, 1]. (20)

for any θ ∈ [0, 1] and any z ∈ Rn obeying ‖z‖`2 = 1. This, in particular includes any z ∈ Tρ,r and consequently

Q2ξ0 (Tρ,s,a) ≥ 4p(1− p)(3/4)2

13
>
p(1− p)

6
for ξ0 =

1

4

√
p(1− p).

In order to bound the mean empirical width Wm (Tρ,r,a), we follow the approach outlined in Ref. [19]. Note that

Tρ,s contains the set of all s-sparse vectors with unit length:

Σ2
s = {v ∈ Rn : ‖v‖`0 ≤ s, ‖v‖`2 = 1} . (21)
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Several existing results, such as [30, Lemma 3] (see also [31, Lemma 4.5] and [19, Lemma 3.2] for a generalization

to normalization in any `q-norm), state that a converse relation is also true:

Tρ,s ⊂
√

1 + (1 + 1/ρ)2conv
(
Σ2
s

)
⊆ 3

ρ
conv

(
Σ2
s

)
. (22)

Here, conv
(
Σ2
s

)
denotes the convex hull of Σ2

s. This in turn implies

Wm (Tρ,s,a) =E

[
sup

u∈Tρ,r
〈h,u〉

]
≤ 3

ρ
E

[
sup

u∈conv(Σ2
s)

〈h,u〉

]
=

3

ρ
Wm

(
Σ2
s,a
)
,

where the last equation is due to the fact that the supremum of the linear function 〈u,h〉 over the convex set

conv
(
Σ2
s

)
is attained at its extremal set Σ2

s. The quantity Wm

(
Σ2
s,a
)

corresponds to the supremum of the stochastic

process Xu = 〈u,h〉 indexed by u ∈ Σ2
s. This stochastic process is centered (E [Xu] = 0) and inherits subgaussian

marginals from the fact that the individual entries of a are subgaussian random variables. Dudley’s inequality, see e.g.

[13, Sec. 8.6], allows for bounding the supremum of such centered, subgaussian stochastic processes. A computation

detailed in the appendix yields

Wm

(
Σ2
s,a
)
≤ 20θ(p)

√
s

(
log
(en

s

)
+

p2

θ2(p)

)
, where θ(p) =

√√√√ 2p− 1

2 log
(

p
1−p

) (23)

is the subgaussian parameter associated with the centered Bernoulli random variable b̃ with parameter p [32]:

Pr
[
b̃ = 1− p

]
= p and Pr

[
b̃ = −p

]
= 1− p.

Fixing t0 = p(1−p)
12

√
m and inserting these bounds into Formula (19) reveals

inf
v∈Tρ,s

‖Av‖`2 ≥ξ0
√
mQ2ξ0 (Tρ,s,a)− ξ0t0 − 2Wm (Tρ,s,a)

≥ 1

48

√
p(1− p)

3√
m− 120

θ(p)

ρ

√
s

(
log
(en

s

)
+

p2

θ2(p)

)
with probability at least 1− e−

1
72p

2(1−p)2m. In order to assure strict positivity of this bound, we set

m ≥ C1
2θ2(p)

p3(1− p)3ρ2
s

(
log
(en

s

)
+

p2

θ2(p)

)
,

where C1 > 0 is a sufficiently large constant. Then the inequality above assures that there is another constant

C2 > 0 (whose size only depends on C1) such that

inf
v∈Tρ,s

≥ 1

C2

√
p(1− p)

3√
m.

Comparing this bound to Eq. (18) allows us to set τ = C2√
p(1−p)

3√
m

. This is the main result of this section:

Theorem 9. Let A ∈ Rm×n be a 0/1-Bernoulli matrix with parameter p ∈ [0, 1]. Fix s ≤ n and ρ ∈ [0, 1] and set

m =
C1

ρ2
α(p)s

(
log
(en

s

)
+ β(p)

)
(24)

with α(p) = 2p−1

p3(1−p)3 log( p
1−p )

and β(p) =
2p2 log( p

1−p )
2p−1 . Then, with probability of failure bounded by e−

p2(1−p)2
72 m,

A obeys the robust NSP of order s with parameters ρ and τ = C2√
p(1−p)

3√
m

. Here, C1, C2 > 0 denote absolute

constants that only depend on each other.
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This is a more detailed version of the first claim presented in Theorem 3. We see that the sampling rate, the size

of the NSP-parameter τ and the probability bound all depend on the Bernoulli parameter p ∈ [0, 1].

Remark 10. While the sampling rate (24) is optimal in terms of sparsity s and problem dimension n, this is not the

case for its dependence on the parameter p. In fact, the first version of this work (e.g. see [33]) achieved a strictly

better constant α̃(p) = 1
p2(1−p)2 at the cost of a sub-optimal sampling rate of order s log(n). However, we do not

know if this result accurately describes the correct behavior for the practically relevant case of sparse (co-sparse)

measurements p→ 0 (p→ 1). We intend to address this question in future work.

Finally, we point out that when opting for a standard Bernoulli process, i.e. p = 1
2 , the assertions of Theorem 9

considerably simplify:

Corollary 11. Fix s ≤ n, ρ ∈ [0, 1] and let A be a standard (m× n) 0/1-Bernoulli matrix (i.e. p = 1
2 ) with

m ≥ C1

128ρ2
s log(n).

Then with probability at least 1− e−
m

1152 this matrix obeys the NSP of order s with parameters ρ and τ = C2

8
√
m

.

Here, C1 and C2 are the constants from Theorem 9.

C. 0/1-Bernoulli matrices lie in M+

We now move on to showing that 0/1-Bernoulli matrices are very likely to admit the second requirement of

Theorem 4. Namely, that there exists a vector w = AT t that is strictly positive (this is equivalent to demanding

A ∈M+). Concretely, we show that setting t = 1
pm1m w.h.p. results in a strictly positive vector w ∈ Rn whose

conditioning obeys

κ(w) =
maxk |〈ek,w〉|
mink |〈ek,w〉|

≤ 3. (25)

To do so, we note that w = 1
pm

∑m
k=1 ak has expectation E [w] = 1n, which is—up to re-scaling—the unique

non-negative vector admitting κ(1n) = 1. After having realized this, it suffices to use a concentration inequality to

prove that w.h.p. w does not deviate too much from its expectation. We do this by invoking a large deviation bound.

Theorem 12. Suppose that A : Rn → Rm is a 0/1-Bernoulli matrix with parameter p ∈ [0, 1] and set

w = AT t ∈ Rn with t =
1

pm
1m ∈ Rm. (26)

Then with probability at least 1− ne−
3
8p(1−p)m

max
i
|〈ei,w〉| ≤

3

2
and min

i
|〈ei,w〉| ≥

1

2
. (27)

This in turn implies (25).

Proof. Instead of showing the claim directly, we prove the stronger statement:

|〈ei,w〉 − 1| ≤ 1

2
1 ≤ i ≤ n, (28)
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is true with probability of failure bounded by ne−
3
8p(1−p)m. If such a bound is true for all i, it is also valid for

maximal and minimal vector components and we obtain

max
i
|〈ei,w〉| ≤ max

k
|〈ei,w〉 − 1|+ 1 ≤ 3

2
and min

k
|〈ei,w〉| ≥ 1−max

i
|〈ei,w〉 − 1| ≥ 1

2
,

as claimed. In order to prove (28), we fix 1 ≤ i ≤ n and focus on

|〈ei,w〉 − 1| =

∣∣∣∣∣ 1

pm

m∑
k=1

〈ei,ak〉 − 1

∣∣∣∣∣ =
1

pm

∣∣∣∣∣
m∑
k=1

(bk,i − E [bk,i])

∣∣∣∣∣ .
Here, we have used 〈ei,ak〉 = 〈ek,Aei〉 = bk,i, which is an indepenent instance of a 0/1-Bernoulli random variable

with parameter p. Thus we are faced with bounding the deviation of a sum of m centered, independent random

variables ck := bk,i − E [bk,i] from its mean. Each such variable obeys

|ck| ≤ max {p, 1− p} ≤ 1 and E
[
c2k
]

= Var(bk,i) = p(1− p).

Applying a Bernstein inequality [13, Theorem 7.30] reveals

Pr

[
|〈ei,w〉 − 1| ≥ 1

2

]
≤ Pr

[
|〈ei,w〉 − 1| ≥ 1− p

2

]
= Pr

[∣∣∣∣∣
m∑
k=1

ck

∣∣∣∣∣ ≥ mp(1− p)
2

]
≤ exp

(
−3

8
p(1− p)m

)
.

Combining this statement with a union bound assures that |〈ei,w〉− 1| < 1
2 is simultaneously true for all 1 ≤ i ≤ n

with probability at least 1− ne−
3
8p(1−p)m.

D. Proof of Theorem 3

Finally, these two results can be combined to yield Theorem 3. It readily follows from taking a union bound over

the individual probabilities of failure. Theorem 9 requires a sampling rate of

m =
C1

ρ2
α(p)s

(
log
(en

s

)
+ β(p)

)
(29)

to assure that a corresponding 0/1-Bernoulli matrix obeys a strong version of the NSP with probability at least

1− e−
p2(1−p)2

72 m. On the other hand, Theorem 12 asserts that choosing w = AT 1
pm1m for 0/1-Bernoulli matrices A

results in a well-conditioned and strictly positive vector w with probability at least 1−ne−
3
8p(1−p)m. The probability

that either of these assertions fails to hold can be controlled by the union bound over both probabilities of failure:

e−
p2(1−p)2

72 m + ne−
3p(1−p)

8 m ≤ (n+ 1)e−
p2(1−p)2

72 m.

Finally, we focus on 0/1-Bernoulli matrices A for which both statements are true and whose sampling rate exceeds

(29). Theorem 9 then implies that A obeys the s-NSP with a pre-selected parameter ρ ∈ [0, 1] and τ = C2√
p(1−p)

3√
m

.

Moreover, the choice t = 1
pm1m in Theorem 12 results in ‖t‖`2 = 1

p
√
m

. As a result, Theorem 4 implies the

following for any x, z ≥ 0:

‖x− z‖`2 ≤
2C ′√
s
σs(x)`1 +D′ (‖t‖`2 + τ) ‖A(x− z)‖`2

=
2C ′√
s
σs(x)`1 +D′

(
1

p
√
m

+
C2√

p(1− p)
3√
m

)
‖A(x− z)‖`2

≤2C ′√
s
σs(x)`1 +

D′(1 + C2)√
p(1− p)

3

‖A(x− z)‖`2√
m

.
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Setting z = x] ≥ 0 to be the solution of NNLS (5) in turn assures

‖A
(
x− x]

)
‖`2 ≤ ‖e‖`2 + ‖y − x]‖`2 ≤ 2‖e‖`2

and the claim follows with E′ = 2D′(1 + C2).

V. NUMERICAL EXPERIMENTS

This section is devoted to numerical tests regarding the nonnegative least squares (NNLS) estimation in (5). To

benchmark it, we compare this to the results obtained with basis pursuit denoising (BPDN) in (3). The NNLS has

been computed using the lsqnonneg function in MATLAB which implements the “active-set” Lawson-Hanson

algorithm [34]. For the BPDN the SPGL1 toolbox has been used [35].

In a first test we have evaluated numerically the phase transition of NNLS in the 0/1-Bernoulli setting for

the noiseless case. The dimension and sparsity parameters are generated uniformly (in this order) in the ranges

n ∈ [10 . . . 500], m ∈ [10 . . . n] and s ∈ [1 . . .m]. Thus, the sparsity/density variable is r = s/m and the sub-

sampling ratio is δ = m/n. The m× n measurement matrix A is generated using the i.i.d. 0/1-Bernoulli model

with p = 1/2. The nonnegative s-sparse signal 0 ≤ x ∈ Rn to recover is created as follows: the random support

supp(x) is obtained from taking the first s elements of a random (uniformly-distributed) permutation of the indices

(1 . . . n). On this support each component is the absolute value of an i.i.d. standard (zero mean, unit variance)

Gaussian, i.e., xi = |gi| with gi ∼ N(0, 1) for all i ∈ supp(x). We consider one individual recovery to be successful

if ‖x − x̂‖`2 ≤ 10−3‖x‖`2 . The resulting phase transition diagram, shown in Figure 1 above, demonstrates that

NNLS indeed reliable recovers nonnegative sparse vectors without any `1-regularization.

(a) (b)

Fig. 2: Comparison of NNLS in (5) with BPDN in (3) for i.i.d. 0/1-Bernoulli matrices in the noisy setting.
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In the second experiment we consider the noisy case. Apart from its simplicity, the important feature of NNLS is

that no a-priori norm assumptions on the noise are necessary. This is not the case for BPDN. Theorem 3 implies

that the NNLS estimate x] obeys

‖x− x]‖`2 ≤
D′

8
√
m
‖e‖`2 (30)

A similar bound is valid for the BPDN (see (13)) estimate xη provided that ‖e‖`2 ≤ η. Note, that achieving this

requires knowledge of ‖e‖`2 . Interestingly, even under this prerequisite (BPDN indeed uses here the instantaneous

norm η := ‖e‖`2 of the noise) the performance of NNLS is considerably better then BPDN in our setting. This is

visualized in Figure 2 where each component ej of e is i.i.d. Gaussian distributed with zero mean and variance

σ2
e = 1/100. There recovery has been identified as “successful” if (30) is fulfilled for D′

8 =
√

10.

Finally, we show in Figure 3 that NNLS is not as well-suited for uniform recovery with Gaussian measurements.

We have considered the noiseless scenario and generated random m× n i.i.d. Gaussian and 0/1-Bernoulli matrices

where n = 100 and m = 20 . . . 80. For each generated matrix we have tested 10000 random s-sparse vectors with

s = 5 as explained above. We counted an event as successful, if all 10000 test vectors were recovered within the

bound ‖x− x]‖`2 ≤ 10−3‖x‖`2 . We repeated this procedure 200 times and accumulated the results for every m.

Fig. 3: Comparison of NNLS in (5) for i.i.d. Gaussian and 0/1-Bernoulli matrices

VI. CONCLUSIONS

In this work we have shown that non-negativity is an important additional property when recovering sparse vectors.

This additional structural constraint is relevant in many applications. Here, we provided activity detection in wireless

networks using individual sequences as concrete example. There, designing measurement matrices such that convex

hull of its columns (the sequences) is sufficiently well-separated from the origin allow for remarkably simple and

robust recovery algorithms. Crucially, these are robust to noise and blind in a sense that no regularization and a-priori

information on the noise is required. We have demonstrated this feature by strengthening the implications of the
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robust nullspace property for the non-negative setting. Furthermore, we have proved that i.i.d. binary measurements

fulfill w.h.p. this property and are simultaneously well-conditioned. Therefore, they can be used for recovering

nonnegative and sparse vectors in the optimal regime.
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APPENDIX

Here we provide derivations of the two bounds (23) and (20) on which we built our argument that 0/1-Bernoulli

matrices obey the robust NSP. Since both are rather technical and not essential for understanding the main ideas, we

decided to present them in this appendix.

A. An upper bound on Wm

(
Σ2
s,a
)

for 0/1-Bernoulli matrices

We will follow Ref. [19] and use Dudley’s inequality to bound the mean empirical width Wm

(
Σ2
s,a
)

in

Mendelson’s small ball method; see also Ref. [18] for a similar approach. Recall that a =
∑n
i=1 biei ∈ Rn is a

random vector whose entries are i.i.d. Bernoulli random variables with parameter p. We decompose a into ã + p1,

where each entry b̃i of ã is an i.i.d. copy of the centered Bernoulli random variable

b̃ =

1− p with prob. p,

−p with prob. 1− p.
(31)

Likewise, we introduce h̃ = 1√
m

∑m
k=1 εkãk and note that

Wm

(
Σ2
s,a
)

=E

[
sup
u∈Σ2

s

〈u,h〉

]
= E

[
sup
u∈Σ2

s

〈u, h̃ +
p√
m

m∑
k=1

εk1n〉

]

≤E

[
sup
u∈Σ2

s

〈u, h̃〉

]
+ pE

[∣∣∣∣∣ 1√
m

m∑
k=1

εk

∣∣∣∣∣
]

sup
u∈Σ2

s

〈u,1n〉

=Wm

(
Σ2
s, ã
)

+ p

√
s

m
E

[∣∣∣∣∣
m∑
k=1

εk

∣∣∣∣∣
]
,

because 〈u,1n〉 ≤ ‖u‖`1 ≤
√
s‖u‖`2 =

√
s for any u ∈ Σ2

s (and this chain of inequalities is tight). The second

term in this expression can be bounded via a Khintchine-type inequality. Corollary 8.7 in [13] implies (with q = 1

and c = 1m ∈ Rm)

p

√
s

m
E

[∣∣∣∣∣
m∑
k=1

εk

∣∣∣∣∣
]
≤
√
sp23/4e−1/2‖1m‖`2√

m
≤
√

2sp.
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The remaining term Wm

(
Σ2
s, ã
)

corresponds to the supremum of the stochastic process X̃u = 〈u, h̃〉 which is

indexed by u ∈ Σ2
s. This process is centered (E [Xu] = 0 ∀u ∈ Σ2

s) and also subgaussian. A centered random

variable X is subgaussian with parameter θ, if its moment generating function obeys

E
[
eλX

]
≤ e

1
2 θ

2λ2

∀λ ∈ R. (32)

We refer to [13, Sec. 7.4] and [36, Sec. 5.2.3] for a thorough introduction to subgaussian random variables. Here,

we content ourselves with stating that (32) implies

Pr [|X| ≥ t] ≤ 2e−
t2

2θ2 ∀t ≥ 0,

see e.g. [13, Proposition 7.24]. Thus, every random variable obeying (32) has a subgaussian tail behavior governed

by θ2. The centered random variable b̃ is a particular instance of a subgaussian random variable. The exact value of

its subgaussian parameter has been determined in Ref. [32]:

θ(p) =

√√√√ 2p− 1

2 log
(

p
1−p

) p ∈ [0, 1].

This includes the special cases θ(0) = θ(1) = 0 and θ
(

1
2

)
= 1

2 . The stochastic process X̃u inherits this subgaussian

behavior. More precisely, standard results such as [13, Theorem 7.27] imply

E
[
eλ(X̃u−X̃v)

]
≤ e

1
2 θ

2(p)‖u−v‖2`2λ
2

∀λ ∈ R, ∀u,v ∈ Σ2
s.

This implies that X̃u is a centered subgaussian stochastic process with associated (pseudo-) metric d(u,v) =

θ(p)‖u − v‖`2 , see e.g. [13, Definition 8.22]. Dudley’s inequality, see c.f. [13, Theorem 8.23], applies to such

stochastic processes and yields

Wm

(
Σ2
s, ã
)

=E

[
sup
u∈Σ2

s

X̃u

]
≤ 4
√

2

∫ ∞
0

√
log (N (Σ2

s, θ(p)‖ · ‖`2 , u))du,

where N
(
Σ2
s, θ(p)‖ · ‖`2 , u

)
denotes the covering number, i.e. the smallest integer N such that there exists a subset

F of Σ2
s with |F | ≤ N and miny∈F θ(p)‖y − x‖`2 ≤ u for all x ∈ Σ2

s. We refer to [13, Appendix C.2] for a

concise introduction of covering numbers and their properties. In particular,∫ ∞
0

√
log (N (Σ2

s, θ(p)‖ · ‖`2 , u))du = θ(p)

∫ 1

0

√
log (N (Σ2

s, ‖ · ‖`2 , v))dv

which follows from N
(
Σ2
s, θ(p)‖ · ‖`2

)
= N

(
Σ2
s, ‖ · ‖`2 , u

θ(p)

)
, a change of variables in the integration (v = u

θ(p) )

and the fact that Σ2
s is contained in the `2-unit ball. This last fact implies that N

(
Σ2
s, ‖ · ‖`2 , v

)
= 1 for any

v ≥ 1 and the corresponding integrand vanishes. For v ∈ [0, 1], the covering number of Σ2
s can be estimated in

the following way: There are
(
n
s

)
different ways to choose the support S of an s-sparse vector in Rn. In turn,

normalization of Σ2
s assures that each such vector is contained in an s-dimensional unit ball BS . A volumetric

argument in turn implies N (BS , ‖ · ‖`2 , v) ≤
(
1 + 2

v

)s
, see e.g. [13, Prop. C.3]. Using subadditivity of covering

numbers, we conclude

N
(
Σ2
s, ‖ · ‖`2 , v

)
≤
(
n

s

)
max
|S|=s

N (BS , ‖ · ‖`2 , v) ≤
(
n

s

)(
1 +

2

v

)s
≤
(en

s

)s(
1 +

2

v

)s
,
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where the last inequality is due to Stirling’s formula. Combining these estimates yields

Wm

(
Σ2
s, ã
)
≤4
√

2θ(p)

∫ 1

0

√
log

((en
s

)s(
1 +

2

v

)s)
dv

≤4
√

2θ(p)

(√
s log

(en

s

)∫ 1

0

dv +
√
s

∫ 1

0

√
ln

(
1 +

2

v

)
dv

)

≤4
√

2θ(p)

(√
s log

(en

s

)
+
√
s log(3e)

)
,

where the last estimate follows from bounding the second integral, see e.g. [13, Lemma C.9].

Summarizing the results from this paragraph, we conclude

Wm

(
Σ2
s,a
)
≤
√

2sθ(p)

(
4

√
log
(en
s

)
+ 4
√

log(3e) +
p

θ(p)

)
≤
√

2sθ(p)

(
10

√
log
(en

s

)
+

p

θ(p)

)

≤20
√
sθ(p)

√
log
(en

s

)
+

p2

θ2(p)
,

where the last line follows from
√
a+
√
b ≤

√
2(a+ b) for any a, b ≥ 0.

B. Bounding Pr [|〈a, z〉| ≥ θ‖z‖`2 ] for 0/1-Bernoulli vectors

In this final section we prove that for any unit vector z = (z1, . . . , zn)T ∈ Rn (‖z‖`2 = 1) and any θ ∈ [0, 1/2],

the bound

Pr
[
|〈a, z〉| ≥ θ

√
p(1− p)

]
≥ 4

13
p(1− p)(1− θ2)2 (33)

holds in the Bernoulli setting. Here, the probability is taken over instances of i.id. Bernoulli vectors a =
∑n
i=1 biei ∈

Rn with parameter p. Up to the multiplicative constant 4
13 , this bound is tight. To see this, set z0 = 1√

2
(e1 − e2)

and observe

Pr
[
|〈a, z0〉| ≥ θ

√
p(1− p)

]
= Pr

[
|b1 − b2| ≥ θ

√
2p(1− p)

]
= 2p(1− p)

for any 0 ≤ θ ≤ 1√
2p(1−p)

. Letting θ → 0 then establishes tightness. We note in passing that a direct exploitation

of the subgaussian properties of a would lead to considerably weaker results.

The derivation of Formula (33) is going to rely on the Paley-Zygmund inequality and a few standard, but rather

tedious, moment calculations for Bernoulli processes. We start by exploiting

Pr
[
|〈a, z〉| ≥ θ

√
p(1− p)

]
= Pr

[
〈a, z〉2 ≥ θ2p(1− p)

]
, (34)

because the latter expression is easier to handle. Introducing the nonnegative random variable S := 〈a, z〉2 =∑n
i,j=1 bibjzizj ,, we see

E [S] =
∑
i 6=j

E [bi]E [bj ] zizj +

n∑
i=1

E
[
b2i
]
z2
i = p2〈1n, z〉2 + p(1− p)‖z‖2`2 ≥ p(1− p). (35)

This calculation together with (34) implies

Pr
[
|〈a, z〉| ≥ θ

√
p(1− p)

]
≥ Pr

[
S ≥ θ2E [S]

]
. (36)
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Since S ≥ 0 by definition, the Paley-Zygmund inequality implies

Pr
[
S ≥ θ2E [S]

]
≥ (1− θ2)2E [S]

Var(S) + E [S]
2 . (37)

We have already computed E [S] in (35), but we still have to compute its variance. We defer this calculation to the

very end of this section and for now simply state its result:

Var(S) = 2E [S]
2 − 2p4〈1n, z〉4 + 4p2(1− p)(1− 2p)〈1, z〉

n∑
i=1

z3
i + p(1− p)(1− 6p(1− p))‖z‖4`4 . (38)

We now move on to bound these contributions individually by a multiple of E [S]
2. We omit the second term and

for the third term obtain

4p2(1− p)(1− 2p)〈1n, z〉
n∑
i=1

z3
i ≤4p2(1− p)2〈1n, z〉‖z‖3`2 = 4p2(1− p)2〈1n, z〉 ≤ 4p2(1− p)2 max

{
〈1n, z〉2, 1

}
≤2

p

(
p2〈1n, z〉2 + p(1− p)

)2
=

2

p
E [S]

2
,

because ‖z‖`2 = 1. The fourth term can be bounded via

p(1− p)(1− 6p(1− p))‖z‖4`4 ≤ p(1− p)‖z‖
4
`2 ≤

1

p(1− p)
E [S]

2
.

and combining all these bounds implies

Var(S) ≤
(

2 +
2

p
+

1

p(1− p)

)
E [S]

2
=

3− 2p2

p(1− p)
E [S]

2 ≤ 3

p(1− p)
E [S]

2
.

Inserting this upper bound into the Paley-Zygmund estimate (37) yields

Pr
[
|〈a, z〉| ≥ θ

√
p(1− p)

]
≥ (1− θ2)2E [S]

2

Var(S) + E [S]
2 ≥

(1− θ2)2E [S]
2

( 3
p(1−p) + 1)E [S]

2 ≥
4

13
p(1− p)(1− θ2)2,

as claimed in (20) and (33), respectively. In the last line, we have used p(1− p) ≤ 1
4 for any p ∈ [0, 1].

Finally, we provide the derivation of Equation (38). We use our knowledge of E[S] = p2〈1n, z〉2 + p(1− p)‖z‖2`2
together with the elementary formula

(bi − p)(bj − p) = (bibj − p2)− pbi − pbj + 2p2

to rewrite S − E[S] as

S − E [S] =

n∑
i,j=1

bibjzizj − p2
∑
i 6=j

zizj − p
n∑
i=1

z2
i =

∑
i 6=j

(
bibj − p2

)
zizj +

n∑
i=1

(
b2i − p

)
z2
i

=
∑
i 6=j

(
(bi − p)(bj − p) + pbi + pbj − 2p2

)
zizj +

n∑
i=1

(
b2i − p

)
z2
i

=
∑
i 6=j

(bi − p) (bj − p) zizj +

n∑
i=1

(
b2i − p

)
z2
i + p

∑
i 6=j

bizizj + p
∑
j 6=i

bjzjzi − 2p2
∑
i 6=j

zizj

=
∑
i 6=j

(bi − p) (bj − p) zizj +

n∑
i=1

(
b2i − p

)
z2
i + 2p

n∑
i,j=1

bizizj − 2p

n∑
i=1

biz
2
i − 2p2

n∑
i,j=1

zizj + 2p2
n∑
i=1

z2
i

=
∑
i 6=j

(bi − p) (bj − p) zizj +

n∑
i=1

(
b2i − p

)
z2
i + 2p

n∑
i,j=1

(bi − p) zizj − 2p

n∑
i=1

(bi − p) z2
i

=2
∑
i<j

(bi − p) (bj − p) zizj + 2p〈1n, z〉
n∑
i=1

(bi − p) zi + (1− 2p)

n∑
i=1

(bi − p) z2
i .
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Here we have exploited symmetry in the first term and b2i = bi to further simplify that expression. For notational

simplicity, it makes sense to re-introduce the centered random variable b̃i := bi − p:

S − E [S] = 2
∑
i<j

b̃ib̃jzizj + 2p〈1n, z〉
n∑
i=1

b̃izi + (1− 2p)

n∑
i=1

b̃iz
2
i .

Employing the binomial formula (a+ b+ c)2 = a2 + 2ab+ 2ac+ b2 + 2bc+ c2, we obtain

Var(S) =E
[
(S − E [S])

2
]

= 4
∑
i<j

∑
k<l

E
[
b̃ib̃j b̃k b̃l

]
zizjzkzl + 8p〈1n, z〉

∑
i<j

n∑
k=1

E
[
b̃ib̃j b̃k

]
zizjzk

+4(1− 2p)
∑
i<j

n∑
k=1

E
[
b̃ib̃j b̃k

]
zizjz

2
k + 4p2〈1n, z〉2

n∑
i,j=1

E
[
b̃ib̃j

]
zizj

+4p(1− 2p)〈1n, z〉
n∑

i,j=1

E
[
b̃ib̃j

]
ziz

2
j + (1− 2p)2

n∑
i,j=1

E
[
b̃ib̃j

]
z2
i z

2
j .

Centeredness of b̃ together with the summation constraints (i < j) and (k < l) implies that summands in the first

term vanish, unless i = k andj = l. This in turn implies

4
∑
i<j

∑
k<l

E
[
b̃ib̃j b̃k b̃l

]
zizjzkzl =4

∑
i<j

E
[
b̃2i

]
E
[
b̃2j

]
z2
i z

2
j = 2p2(1− p)2

∑
i6=j

z2
i z

2
j

=2p2(1− p)2

 n∑
i,j=1

z2
i z

2
j −

n∑
i=1

z4
i

 = 2p2(1− p)2
(
‖z‖4`2 − ‖z‖

4
`4

)
.

Using a similar argument allows us to conclude that the second and third term must identically vanish (because the

index constraints i < j prevents i = j = k and, consequently, at least one index must always remain unpaired). We

can exploit E
[
b̃ib̃j

]
= p(1− p)δi,j in the remaining terms to conclude

Var(S) =2p2(1− p)2
(
‖z‖4`2 − ‖z‖

4
`4

)
+ 4p3(1− p)〈1n, z〉2‖z‖2`2

+4p2(1− p)(1− 2p)〈1n, z〉
n∑
i=1

z3
i + p(1− p)(1− 2p)2‖z‖4`4 .

Slightly rewriting this expression then yields the result presented in (38)
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