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Generalized rank weights of reducible codes,

optimal cases and related properties
Umberto Martı́nez-Peñas, Student Member, IEEE,

Abstract—Reducible codes for the rank metric were introduced
for cryptographic purposes. They have fast encoding and decod-
ing algorithms, include maximum rank distance (MRD) codes
and can correct many rank errors beyond half of their minimum
rank distance, which makes them suitable for error-correction in
network coding. In this paper, we study their security behaviour
against information leakage on networks when applied as coset
coding schemes, giving the following main results: 1) we give
lower and upper bounds on their generalized rank weights
(GRWs), which measure worst-case information leakage to the
wire-tapper, 2) we find new parameters for which these codes
are MRD (meaning that their first GRW is optimal), and use
the previous bounds to estimate their higher GRWs, 3) we show
that all linear (over the extension field) codes whose GRWs are
all optimal for fixed packet and code sizes but varying length
are reducible codes up to rank equivalence, and 4) we show that
the information leaked to a wire-tapper when using reducible
codes is often much less than the worst case given by their
(optimal in some cases) GRWs. We conclude with some secondary
related properties: Conditions to be rank equivalent to cartesian
products of linear codes, conditions to be rank degenerate, duality
properties and MRD ranks.

Index Terms—Generalized rank weight, rank-metric codes,
rank distance, rank equivalent codes, reducible codes, secure
network coding.

I. INTRODUCTION

L INEAR network coding was first studied in [1], [14], fur-

ther formalized in [12], and provides higher throughput

than storing and forwarding messages on the network. Two

of the main problems in this context are error and erasure

correction, and security against information leakage to a wire-

tapper, which were first studied in [3] and [4], respectively.

Rank-metric codes were found to be universally suitable

(meaning independently of the underlying network code) for

error and erasure correction in linear network coding in [22],

used as forward error-correcting codes, and they were found

to be universally suitable against information leakage in [23],

used in the form of coset coding. Both constructions can be

treated separately and applied together in a concatenated way

(see [23, Sec. VII-B]).

On the security side, generalized rank weights (GRWs) of

codes that are linear over the extension field were introduced

in [13], [18] to measure the worst-case information leakage

for a given number of wire-tapped links. Later, GRWs were
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extended in [21] and [17] to codes that are linear over the

base field, where they are called Delsarte generalized weights

and generalized matrix weights, respectively. We will use the

term GRWs for the latter parameters, which were also found

to measure the worst-case information leakage for codes that

are linear over the base field [17, Th. 3].

Gabidulin codes [8] constitute a family of maximum rank

distance (MRD) codes that cover all cases when the number

of outgoing links n is not larger than the packet length m, and

all of their GRWs are optimal (meaning largest possible).

Cartesian products of these codes are proposed in [23,

Sec. VII.C] for the case n > m both for error correction

and security against information leakage. A generalization of

these codes, called reducible codes, were introduced earlier in

[9] as an alternative to Gabidulin codes [8] to improve the

security of rank-based public key cryptosystems [10]. On the

error correction side, it was shown in [9] that reducible codes

have fast encoding and rank error-correcting algorithms, their

minimum rank distance is not worse than that of cartesian

products of codes [23, Sec. VII.C], being actually MRD in

some cases, and they can correct many rank errors beyond

half of their minimum rank distance (even in the MRD cases).

Therefore they seem to be the best known codes for error

correction in linear network coding when n > m.

However, on the security side, only the existence of codes

with optimal first GRW (MRD codes) has been studied in the

case n > m [17, Sec. IV-B], but no bounds nor estimates of

higher GRWs of rank-metric codes or other properties related

to their worst-case information leakage are known when n >
m, except for cyclic codes with minimal GRWs [7].

In this paper, we study the security provided by reducible

codes in linear network coding when used for coset coding as

in [23] by studying their GRWs and showing their optimality

in several cases. In particular, we study for the first time the

GRWs of a concrete family of rank-metric codes with n > m,

which moreover include MRD codes for several parameters.

A. Main contributions

Our main contributions are the following:

1) We give lower and upper bounds on GRWs of reducible

codes, and exact values for cartesian products, giving a

first step in the open problem of estimating or bounding

the GRWs of a family of rank-metric codes for n > m.

2) We give new families of parameters for which reducible

codes are MRD (some were given in [9]), meaning that

their first GRW is optimal and thus they are optimal

regarding zero information leakage among all linear

(over the extension or the base field) codes, by [17, Th.

http://arxiv.org/abs/1603.06477v2


2

3]. Using the estimates and exact values of GRWs of

these codes in the previous item, we also give a first step

in the open problem of finding the GRWs of a family

of MRD codes for n > m.

3) We show that all linear (over the extension field) codes

whose GRWs are all optimal for fixed packet and code

sizes, but varying length, lie in the family of reducible

codes from the previous item, up to rank equivalence.

4) Finally, we show that information leakage when using

reducible codes is often much less than the worst case

given by their GRWs. In particular, they often provide

strictly higher security than the known security provided

by other MRD codes [17, Sec. IV-B].

B. Organization of the paper

After some preliminaries in Section II, the paper is orga-

nized as follows: In Section III, we give lower and upper

bounds on the GRWs of reducible codes, extending the lower

bound on the minimum rank distance given in [9], and see

that the given upper bound on the minimum rank distance

can be reached by some reduction. In Section IV, we obtain

new parameters for which reducible codes are MRD (or close

to MRD) and with MRD components, and obtain explicit

estimates on their GRWs, including those MRD codes found

in [9] and considered for secure network coding in [23].

In Section V, we obtain all linear codes whose GRWs are

all optimal, for all fixed packet and code sizes, up to rank

equivalence. In Section VI, we see that the actual information

leakage occuring when using reducible codes is often much

less than the worst case given by their GRWs, providing higher

security than other known MRD codes. Finally, in Section VII,

we study secondary but related properties: Conditions to be

rank equivalent to cartesian products and conditions to be rank

degenerate. We study their duality properties and MRD ranks.

Finally, we propose alternative constructions to the classical

(u,u+ v) construction.

II. DEFINITIONS AND PRELIMINARIES

A. Rank-metric codes

Fix a prime power q and positive integers m and n, and let

Fq and Fqm denote the finite fields with q and qm elements,

respectively. We may identify vectors in Fn
qm with m × n

matrices over Fq: Fix a basis α1, α2, . . . , αm of Fqm over

Fq. If c = (c1, c2, . . . , cn) ∈ Fn
qm , cj =

∑m
i=1 αici,j , and

ci,j ∈ Fq , for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, we may

identify c with the matrix

M(c) = (ci,j)
1≤i≤m

1≤j≤n
. (1)

The rank weight of a vector c ∈ Fn
qm is defined as the rank

of the matrix M(c) and denoted by wtR(c). In this paper, a

code is a subset of Fn
qm . The term rank-metric code is used

for codes with the rank metric.

B. Universal secure linear network coding

We consider a network with several sources and several

sinks as in [1], [14]. In this model, a given source wants to

transmit k packets in Fm
q to one or several sink nodes, and

does so by encoding them into a vector, c ∈ Fn
qm , which can

be seen as n packets in Fm
q by (1), being n the number of

outgoing links from the source.

In linear network coding, as considered in [1] and [14], the

nodes in the network forward linear combinations of received

packets (see [12, Definition 1]), achieving higher throughput

than just storing and forwarding. This means that a given sink

is assumed to receive the vector

y = cAT ∈ FN
qm ,

for some matrix A ∈ FN×n
q , called a transfer matrix.

Two of the main problems in linear network coding consid-

ered in the literature are the following:

1) Error correction [3]: Several packets are injected on

some links in the network, hence the sink receives

y = cAT + e ∈ FN
qm ,

for an error vector e ∈ FN
qm .

2) Information leakage [4]: A wire-tapper listens to µ > 0
links in the network, obtaining

z = cBT ∈ F
µ
qm ,

for a matrix B ∈ Fµ×n
q .

In [22], it is proven that rank-metric codes are suitable for

error correction when used as forward error-correcting codes,

and in [23], it is proven that they are also suitable to protect

messages from information leakage when used as coset coding

schemes, which were introduced in [25] and [19]. Both coding

techniques can be treated separately and applied together in a

concatenated way (see [23, Sec. VII-B]).

Moreover, rank-metric codes are universal [23] in the sense

that they correct a given number of errors and erasures,

and protect against a given number of wire-tapped links,

independently of the matrices A and B, respectively.

We consider the particular coding schemes in [23, Sec. V-B]

with uniform distributions:

Definition 1 ([23]). Given an Fqm -linear code C ⊆ Fn
qm with

generator matrix G ∈ Fk×n
qm , we define its coset coding scheme

as follows: For x ∈ Fk
qm , its coset encoding is a vector c ∈

Fn
qm chosen uniformly at random and such that x = cGT .

This type of encoding has been recently extended to Fq-

linear codes in [17, Sec. II-D].

In this paper we will focus on rank-metric codes used

for security against information leakage in the form of coset

coding.

C. Generalized rank weights and information leakage

The information leaked to a wire-tapping adversary when

using coset coding schemes was obtained in [23, Lemma 6],

then generalized in [13, Lemma 7] to Fqm -linear nested coset

coding schemes [26], and in [17, Prop. 4] to Fq-linear coset

coding schemes.

We need the concept of Galois closed spaces [24]:
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Definition 2 ([24]). Denote [i] = qi for an integer i ≥ 0. If

C ⊆ Fn
qm is Fqm -linear, we denote

C [i] = {(c
[i]
1 , c

[i]
2 , . . . , c

[i]
n ) | (c1, c2, . . . , cn) ∈ C},

we define the Galois closure of C as C∗ =
∑m−1

i=0 C [i], and

we say that it is Galois closed if C = C∗.

The next lemma is [23, Lemma 6]. Throughout the paper,

I(X ;Y ) denotes the mutual information of the random vari-

ables X and Y , taking logarithms with base qm.

Lemma 1 ([23]). Denote by S the uniform random variable

in Fk
qm , X its coset encoding using an Fqm-linear code C ⊆

Fn
qm according to Definition 1, and denote W = XBT , where

B ∈ Fµ×n
q . Then

I(S;W ) = dim(C ∩ V ), (2)

where V ⊆ Fn
qm is the Fqm-linear vector space with generator

matrix B.

Since Galois closed spaces in Fn
qm are those Fqm -linear

spaces with a generator matrix over Fq [24, Lemma 1], the

previous lemma motivates the definition of generalized rank

weights, introduced independently in [18] for n ≤ m, and in

[13, Def. 2] for the general case:

Definition 3 ([13]). Given an Fqm-linear code C ⊆ Fn
qm

of dimension k, we define its r-th generalized rank weight

(GRW), for 1 ≤ r ≤ k, as

dR,r(C) = min{dim(V ) | V ⊆ Fn
qm ,Fqm -linear and

V = V ∗, dim(C ∩ V ) ≥ r}.

We also define dR,0(C) = 0 for convenience.

Hence dR,r(C) is the minimum number of links that a wire-

tapper needs to listen to in order to obtain at least the amount

of information contained in r packets. In other words, r − 1
packets is the worst-case information leakage when at most

dR,r(C)− 1 links are wire-tapped.

The next lemma corresponds to [11, Th. 16, Cor. 17]:

Lemma 2 ([11]). Given an Fqm-linear code C ⊆ Fn
qm of

dimension k and 1 ≤ r ≤ k, it holds that

dR,r(C) = min{wtR(D) | D ⊆ C,Fqm -linear and

dim(D) = r},

where wtR(D) = dim(D∗) for an Fqm -linear D ⊆ Fn
qm .

In particular, it is shown in [13, Cor. 1] that dR,1(C) is

the minimum rank distance of the code C (also denoted by

dR(C)). Thus the minimum rank distance is of particular

importance, since it gives the maximum number of wire-

tapped links that guarantee zero information leakage, and we

may evaluate the code’s optimality among all rank-metric

codes (linear and non-linear) in this sense using the Singleton

bound [5, Th. 6.3]:

#C ≤ qmax{m,n}(min{m,n}−dR(C)+1), (3)

where C ⊆ Fn
qm is an arbitrary rank-metric code. Codes

attaining this bound are called maximum rank distance (MRD)

codes.

D. Existing MRD code constructions

We briefly revisit two existing code constructions that have

already been considered in the literature:

1) Assume n ≤ m and 1 ≤ k ≤ n: Take elements

β1, β2, . . . , βn ∈ Fqm that are linearly independent over

Fq. The Fqm -linear code CGab ⊆ Fn
qm generated by the

matrix



β1 β2 . . . βn

β
[1]
1 β

[1]
2 . . . β

[1]
n

...
...

. . .
...

β
[k−1]
1 β

[k−1]
2 . . . β

[k−1]
n




has dimension k and minimum rank distance

dR(CGab) = n−k+1, and hence is MRD. These codes

are known as Gabidulin codes and were introduced in

[8]. Their GRWs were given in [13, Cor. 2]:

dR,r(CGab) = n− k + r.

2) Assume n = lm and k = lk′, for some positive integers

l and k′ ≤ m: The Fqm-linear code C ⊆ Fn
qm defined

as C = C1 × C2 × · · · × Cl, where each Ci ⊆ Fm
qm is

a k′-dimensional Gabidulin code, has dimension k and

minimum rank distance dR(C) = m−k′+1, and hence

is also MRD. These codes were introduced in [9, Cor. 1]

and considered in [23, Sec. VII-C] for secure network

coding. In contrast with Gabidulin codes, although a first

analysis of these codes is given in [23], their GRWs are

still not known. We will find all of them in Section IV-B.

The two previous constructions are particular cases of

reducible codes, introduced in [9], which we will study in

the rest of the paper.

In [17], MRD Fq-linear codes obtained by transposing the

matrix representations of codewords in a Gabidulin code are

proposed for the case n > m. However no exact values or

lower bounds are known for any code in this case (n > m).

E. Reducible codes and reductions

Consider positive integers l, n1, n2, . . . , nl and Fqm-linear

codes C1 ⊆ Fn1

qm , C2 ⊆ Fn2

qm , . . . , Cl ⊆ Fnl

qm of dimensions k1,

k2, . . . , kl, respectively. Consider matrices Gi,j ∈ F
ki×nj

qm , for

i = 1, 2, . . . , l and j = i, i+1, . . . , l, where Gi,i generates Ci.

Definition 4 ([9]). We say that an Fqm-linear code C ⊆ Fn
qm is

reducible with reduction R = (Gi,j)
i≤j≤l
1≤i≤l if it has a generator

matrix of the form

G =




G1,1 G1,2 G1,3 . . . G1,l−1 G1,l

0 G2,2 G2,3 . . . G2,l−1 G2,l

0 0 G3,3 . . . G3,l−1 G3,l

...
...

...
. . .

...
...

0 0 0 . . . Gl−1,l−1 Gl−1,l

0 0 0 . . . 0 Gl,l




.

The length of the code C is n = n1 + n2 + · · · + nl and

its dimension is k = k1 + k2 + · · · + kl. C is the cartesian

product of the codes C1, C2, . . . , Cl if Gi,j = 0, for all j > i.



4

Definition 5. For a given reduction R as in the previ-

ous definition, we define its main components as the codes

C1, C2, . . . , Cl, its row components as the Fqm-linear codes

C′
i ⊆ Fn

qm with generator matrices

G′
i = (0, . . . , 0, Gi,i, Gi,i+1, . . . , Gi,l), (4)

for i = 1, 2, . . . , l, and its column components as the Fqm -

linear codes Ĉj ⊆ F
nj

qm generated by the matrices

Ĝj = (G1,j , G2,j , . . . , Gj,j)
T , (5)

for j = 1, 2, . . . , l, which need not have full rank.

It holds that ki = dim(C′
i), k̂j = dim(Ĉj) ≥ kj , C =

C′
1 ⊕ C′

2 ⊕ · · · ⊕ C′
l and C ⊆ Ĉ = Ĉ1 × Ĉ2 × · · · × Ĉl.

Different reductions always have the same main components

if their block sizes are the same. See Appendix A for a

discussion on the uniqueness of reductions of a reducible code.

III. BOUNDS ON GRWS OF REDUCIBLE CODES AND

EXACT VALUES

With notation as in Subsection II-E, it is proven in [9,

Lemma 2] that

dR,1(C) ≥ min{dR,1(C1), dR,1(C2), . . . , dR,1(Cl)}. (6)

We now present the main result of this section, which gener-

alizes (6) to higher GRWs and also gives upper bounds. As

observed below, it gives the exact values for cartesian products.

Theorem 1. With notation as in Subsection II-E, for every

r = 1, 2, . . . , k, we have that

dR,r(C) ≥ min{dR,r1(C1) + dR,r2(C2) + · · ·+ dR,rl(Cl)

| r = r1 + r2 + · · ·+ rl, 0 ≤ ri ≤ ki},
(7)

and

dR,r(C) ≤ min{dR,r1(C
′
1) + dR,r2(C

′
2) + · · ·+ dR,rl(C

′
l)

| r = r1 + r2 + · · ·+ rl, 0 ≤ ri ≤ ki}.
(8)

The proof can be found at the end of the section. We now

elaborate on some particular cases of interest.

First, observe that the bound (7) gives the bound (6) for the

minimum rank distance (the case r = 1), and the bound (8)

gives the following (immediate) upper bound:

dR,1(C) ≤ min{dR,1(C
′
1), dR,1(C

′
2), . . . , dR,1(C

′
l)}. (9)

The previous theorem also gives the following corollary for

cartesian products:

Corollary 1. If C = C1 ×C2 × · · ·×Cl and 1 ≤ r ≤ k, with

notation as before, then

dR,r(C) = min{dR,r1(C1) + dR,r2(C2) + · · ·+ dR,rl(Cl)

| r = r1 + r2 + · · ·+ rl}.
(10)

Now we illustrate Theorem 1 with the following example

that includes the MRD Fqm-linear codes in Subsection II-D,

item 2, for l = 2:

Example 1. With notation as in Theorem 1, assume that l = 2,

n1, n2 ≤ m, k1 ≤ k2 and take C1 and C2 as MRD codes

(the matrix G1,2 can be arbitrary). In particular, dR,ri(Ci) =
ni − ki + ri [13] as in Subsection II-D, 1 ≤ ri ≤ ki, i = 1, 2.

We estimate dR,r(C) considering three cases:

1) Assume 1 ≤ r ≤ k1: The bounds (7) and (8) give

min{n1 − k1, n2 − k2}+ r ≤ dR,r(C) ≤ n2 − k2 + r.

2) Assume k1 < r ≤ k2 (if k1 < k2): In this case, in both

bounds in Theorem 1, it is necessary that r2 > 0. Hence,

these bounds coincide and give the value dR,r(C) =
n2 − k2 + r.

3) Assume k2 < r ≤ k: As in the previous case, now it is

necessary that r1 > 0 and r2 > 0, and thus Theorem 1

gives the value dR,r(C) = n− k + r, which is optimal

by the Singleton bound [13, Proposition 1].

Finally, it is natural to ask whether different reductions (see

Definition 4) may give different bounds in Theorem 1. In

Appendix A, we show that all reductions have the same main

components, thus (7) remains unchanged. We now show that

(9) can always be attained by some particular reduction. Other

cases where (8) may be attained by some reduction are open.

Proposition 1. With notation as in Subsection II-E, there exists

a reduction R = (Gi,j)
i≤j≤l
1≤i≤l of C such that the bound (9) is

an equality.

Proof. Assume that the minimum rank distance is attained by

wtR(c) = dR,1(C), for c ∈ C. It holds that c = c′1 + c′2 +
· · ·+ c′l, with c′i ∈ C′

i , and c′i = xiG
′
i,i (recall (4)), for some

xi ∈ Fki

qm and all i = 1, 2, . . . , l.
We may assume without loss of generality that x1 6= 0. We

just need to define Gi,i = Gi,i and choose matrices A1,j ∈

F
k1×kj

qm and Gi,j ∈ F
ki×nj

qm , for 1 ≤ i ≤ l−1 and i+1 ≤ j ≤ l,
such that the k × k matrix

A =




I A1,2 A1,3 . . . A1,l−1 A1,l

0 I 0 . . . 0 0
0 0 I . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . I 0
0 0 0 . . . 0 I




satisfies that G = AG, where G is the generator matrix of C
corresponding to R = (Gi,j)

i≤j≤l
1≤i≤l, and

x1A1,j = −xj ,

for j = 2, 3, . . . , l. It is possible to choose such matrices

A1,j because x1 6= 0. Then c = (xA)G lies in the first

row component of the reduction R and hence dR,1(C) =

wtR(c) ≥ dR,1(C
′

1), implying the result.

We conclude the section with the proof of Theorem 1. We

need the following lemma:

Lemma 3. With notation as in Subsection II-E, define the sets

Ai = {0}n1×· · ·×{0}ni−1×(Fni

qm \{0})×F
ni+1

qm ×· · ·×Fnl

qm ,



5

for i = 1, 2, . . . , l. For an Fqm -linear vector space D ⊆ Fn
qm ,

there exist subspaces D′
i ⊆ 〈D∩Ai〉, for i satisfying D∩Ai 6=

∅, such that D =
⊕

D∩Ai 6=∅
D′

i and D′
i ∩Aj = ∅ for j > i.

Proof. We may prove it by induction on the number of indices

i such that D ∩ Ai 6= ∅. If such number is 1, the result is

trivial by taking D′
i = D, since D = 〈D ∩ Ai〉.

Assume that it is larger than 1 and i is the smallest index

such that D ∩Ai 6= ∅. Define D̃ =
∑l

j=i+1〈D ∩Aj〉 6= {0},

and let D′
i 6= {0} by one of its complementaries in D. It

follows that D′
i ⊆ 〈D ∩Ai〉 and D′

i ∩ Aj = ∅, for j > i.

Now, by induction hypothesis, D̃ has a decomposition as

in the theorem, which together with D′
i gives the desired

decomposition of D.

Proof of Theorem 1. We first prove (7). Take an r-
dimensional Fqm-linear subspace D ⊆ C. With notation

as in Lemma 3, define Di ⊆ Ci as the projection of D′
i onto

the i-th main component, for i such that D ∩ Ai 6= ∅. We

see that dim(Di) = dim(D′
i), since D′

i ⊆ 〈D ∩ Ai〉 and

D′
i ∩ Aj = ∅ for j > i, and by collecting the preimages in

D∗ by the projection map of bases of D∗
i , for i such that

D ∩Ai 6= ∅, we see that

wtR(D) ≥
∑

D∩Ai 6=∅

wtR(Di),

and the result follows by Lemma 2.

To prove (8), take a decomposition r = r1+r2+· · ·+rl, with

0 ≤ ri ≤ ki, for i = 1, 2, . . . , l, and take Fqm -linear subspaces

Di ⊆ C′
i with dim(Di) = ri and wtR(Di) = dR,ri(C

′
i). Then

define the Fqm-linear subspace D = D1 ⊕D2 ⊕ · · · ⊕Dl ⊆
C, which satisfies dim(D) = r. By definition, it holds that

D∗ = D∗
1 +D∗

2 + · · ·+D∗
l . Hence

wtR(D) ≤ wtR(D1) + wtR(D2) + · · ·+wtR(Dl)

= dR,r1(C
′
1) + dR,r2(C

′
2) + · · ·+ dR,rl(C

′
l),

and the result follows again by Lemma 2.

Remark 1. Observe that the bound (8) is valid with the same

proof for a general Fqm -linear code that can be decomposed

as a direct sum of Fqm -linear subcodes C = C′
1⊕C

′
2⊕· · ·⊕C′

l .

Remark 2. In the general setting of Theorem 1, the same

result as in Corollary 1 holds whenever Ci and C′
i are

rank equivalent (see Section V), for each i = 1, 2, . . . , l,
since in that case it holds that dR,r(Ci) = dR,r(C

′
i) for all

i = 1, 2, . . . , l and all r = 1, 2, . . . , ki.

IV. MRD REDUCIBLE CODES WITH MRD MAIN

COMPONENTS, AND THEIR GRWS

Among all GRWs, the first weight (the minimum rank

distance) is of special importance, as explained at the end of

Subsection II-C. Therefore, it is of interest to study the GRWs

of a family of MRD codes, that is, codes that are already

optimal for the first weight.

In this section, we find new parameters for which reducible

codes are MRD or close to MRD when n > m, extending the

family of MRD codes in [9] (see Subsection II-D), and then

give bounds on their GRWs and exact values in the cartesian

product case, using the results in the previous section. Hence

we give for the first time estimates and exact values of the

GRWs of a family of MRD codes with n > m. We will also

compare the performance of these codes with those Fq-linear

MRD codes obtained by transposing the matrix representations

of codewords in a Gabidulin code [17, Sec. IV-B].

A. Definition of the codes

Assume n > m and fix an integer 1 ≤ k ≤ n. In view of

the bound (6), we will consider a reducible code Cred ⊆ Fn
qm

of dimension k whose main components C1, C2, . . . , Cl (with

notation as in Subsection II-E) have as similar parameters

as possible. This will allow to obtain reducible codes with

minimum rank distance as large as allowed by (3).

First we need the following parameters:

1) There exist unique l > 0 and 0 ≤ t ≤ m− 1 such that

n = lm− t.

2) There exist unique k′ > 0 and 0 ≤ s ≤ l − 1 such that

k = lk′ − s.

3) Define then

a =

⌈
km

n

⌉
− k′, and b =

⌈
t

l

⌉
− 1.

4) Finally, define

t′ = l(m− b)− n,

which satisfies 0 < t′ ≤ l.

We need the next inequalities to define the desired codes:

Lemma 4. It holds that k′ ≤ m− b if b ≥ 0, and k′ ≤ m if

b = −1.

Proof. For b = −1, we have that t = 0 and k = lk′ − s ≤
n = lm implies that k′ ≤ m + s/l. Since s < l, the result

holds in this case.

Now assume that b ≥ 0. We have that k+s ≤ n+l. Writing

k and n as above, this inequality reads

(lk′ − s) + s ≤ (lm− t) + l,

that is, lk′ + t ≤ l(m+ 1) and, dividing by l, it is equivalent

to

k′ +
t

l
− 1 ≤ m.

The result follows by the definition of b.

Finally, we give the construction, distinguishing three cases:

Definition 6. Define the reducible code Cred ⊆ Fn
qm of

dimension k with MRD main components C1, C2, . . . , Cl as

follows:

1) If t = 0 (i.e. b = −1): Choose C1, C2, . . . , Cl such that

l− s of them have length m and dimension k′, and s of

them have length m and dimension k′ − 1. By (6), we

have that

dR,1(Cred) ≥ m− k′ + 1.

2) If t > 0 and t′ ≤ s: Choose C1, C2, . . . , Cl such that

l−s of them have length m−b and dimension k′, s− t′
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of them have length m − b and dimension k′ − 1, and

t′ of them have length m− b− 1 and dimension k′ − 1.

By (6), we have that

dR,1(Cred) ≥ m− b− k′ + 1.

3) If t > 0 and t′ > s: Choose C1, C2, . . . , Cl such that

l−t′ of them have length m−b and dimension k′, t′−s
of them have length m − b − 1 and dimension k′, and

s of them have length m− b− 1 and dimension k′ − 1.

By (6), we have that

dR,1(Cred) ≥ m− b− k′.

The next theorem is the first main result of this section, and

it gives families of parameters m, n and k such that Cred is

MRD or almost MRD:

Theorem 2. Assume that 0 ≤ t ≤ l or n ≥ m2. The following

holds:

1) If t ≤ s or tk′ > ms, then

dR,1(Cred) =
⌊m
n
(n− k) + 1

⌋
,

attaining (3) if n divides mk.

2) If t > s and tk′ ≤ ms, then

dR,1(Cred) ≥
⌊m
n
(n− k)

⌋
.

Proof. First we see that we only need to assume 0 ≤ t ≤ l.
Assume that n ≥ m2. Since n = lm− t ≥ m2 and t ≥ 0, it

holds that l ≥ m. Therefore t ≤ m− 1 ≤ l − 1.

Next we observe that
⌊m
n

(n− k) + 1
⌋
= m− a− k′ + 1. (11)

Before considering the different cases, we will see that a ≥
0, and a = 0 if and only if k′t ≤ sm.

First it holds that −1 < km/n− k′ if and only if

(k′ − 1)n < km.

Using that n = lm− t and k = lk′−s, and rearranging terms,

this inequality reads

sm+ (k′ − 1)t < lm+ n,

which is always true since s < l and k′t ≤ k ≤ n. Hence

a ≥ 0. On the other hand, km/n− k′ ≤ 0 if and only if

nk′ ≥ km.

Using again that n = lm− t and k = lk′− s, and rearranging

terms, this inequality reads k′t ≤ sm. This is then the case

when a = 0.

Now we prove item 1 in the theorem:

Assume first that t = 0, then dR,1(Cred) ≥ m− k′ +1 and

a = 0, hence the result follows in this case by (11).

Now assume that 0 < t ≤ s. Then dR,1(Cred) ≥ m−k′+1
(since b = 0) and k′t ≤ sm holds, since k′ ≤ m. Then a = 0
and the result follows in this case by (11).

Next assume that tk′ > ms. Then we know that a ≥ 1 and
⌊m
n

(n− k) + 1
⌋
≤ m− k′.

Since b = 0, we know that dR,1(Cred) ≥ m − k′, hence the

result follows in this case by (11).

Finally, we prove item 2:

Assume that t > s and tk′ ≤ ms. Then we know that

a = b = 0 and dR,1(Cred) ≥ m− b− k′. Therefore the result

follows also in this case by (11) and we are done.

Remark 3. Observe that the MRD reducible codes in Subsec-

tion II-D, item 2, are the subfamily of the codes Cred obtained

by choosing t = s = 0, and hence are particular cases of the

codes in the previous theorem.

Remark 4. Observe that the conditions 0 ≤ t ≤ l and n ≥ m2

only depend on m and n, but not on k. Hence, for the previous

families of values of n and m, we have obtained MRD or

almost MRD codes for all dimensions.

Remark 5. In general, the difference b− a will be big if t is

much bigger than l. As n grows, the fact t > l happens for

fewer values of t. Hence the codes Cred are far from optimal

when n is small compared to m (still n > m) and t is much

bigger than l.

B. Estimates and exact values of their GRWs

The next theorem is the second main result in this section,

and it gives estimates of the GRWs of the MRD (or almost

MRD) reducible codes Cred from Theorem 2, using the lower

bound (7).

Theorem 3. Let the parameters be as in Theorem 2.

Assume first that t ≤ s.

1) If 1 ≤ j ≤ l−s and (j−1)k′ < r ≤ jk′, or if l−s < j ≤
l−s+t and (j−1)(k′−1)+l−s < r ≤ j(k′−1)+l−s,
then

dR,r(Cred) ≥ j(m− k′) + r.

2) If l − s+ t < j ≤ l and (j − 1)(k′ − 1) + l − s < r ≤
j(k′ − 1) + l − s, then

dR,r(Cred) ≥ j(m− k′) + r + (j − l + s− t).

Assume now that t > s.

1) If 1 ≤ j ≤ t− s and (j − 1)k′ < r ≤ jk′, then

dR,r(Cred) ≥ j(m− k′ − 1) + r.

2) If t−s < j ≤ l−s and (j−1)k′ < r ≤ jk′, or if l−s <
j ≤ l and (j−1)(k′−1)+ l−s < r ≤ j(k′−1)+ l−s,
then

dR,r(Cred) ≥ j(m− k′) + r − t+ s.

These cases cover all r = 1, 2, . . . , k and moreover, if Cred is

the cartesian product of its main components C1, C2, . . . , Cl,

then all the previous lower bounds are equalities.

Proof. The result follows from Theorem 1. To see it, we just

have to use that dR,ri(Ci) = ni−ki+ri and see in which way

we have to choose ri = 0 or ri > 0 to obtain the minimum

in the bound (7), for i = 1, 2, . . . , l. This is a straightforward

extension of the calculations in Example 1.
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C. Comparison with other MRD codes

In this subsection, we will compare the codes Cred ⊆ Fn
qm

from Definition 6 with the Fq-linear MRD codes CT
Gab ⊆ Fn

qm

obtained by transposing the matrix represenations (see (1)) of

the codewords in a given Fqn -linear Gabidulin code CGab ⊆
Fm
qn (see Subsection II-D), when n > m.

The codes CT
Gab were obtained previously by Delsarte [5,

Th. 6] and have been recently considered for universal secure

linear network coding in [17, Sec. IV-B].

We next argue the advantages of the codes Cred over the

codes CT
Gab:

1) Generalized rank weights: Although GRWs have re-

cently been extended to Fq-linear codes [21], [17] and its

connection to worst-case information leakage has been

obtained [17, Th. 3], little is known about them for codes

that are not linear over Fqm . In particular, the GRWs

of the codes CT
Gab are not known yet, except for their

minimum rank distance.

2) Encoding and decoding complexity: The complexity of

coset encoding and decoding with an Fqm-linear code,

as in Definition 1, is equivalent to the complexity of

encoding with one of its generator matrices.

If kred denotes the dimension of Cred over Fq, then the

complexity of encoding with a generator matrix coming

from one of its reductions is O(kredm
2) operations over

Fqm , whereas if kGab denotes the dimension of CGab

over Fq, then the complexity of encoding with one of

its generator matrices is O(kGabn
2) operations over Fqn .

Therefore it is a higher complexity since n > m, and the

difference between both complexities becomes higher

the bigger n is with respect to m.

3) Possible parameters obtained: Since the codes CT
Gab are

obtained from Fqn -linear codes, their sizes are of the

form qN , where N is some multiple of n, whereas the

sizes of the codes Cred are of the form qM , where M
is some multiple of m.

Since we are assuming n > m, in a given interval

of positive integers, there are more possible parameters

attained by the codes Cred than by the codes CT
Gab.

4) Stronger security: The information leakage for a given

number of wire-tapped links when using the codes Cred

is often much less than the worst case given by their

GRWs, as we will see in Section VI. In particular,

looking at their first GRW, we will see that more links

can be wire-tapped and still guarantee zero information

leakage when using Cred than when using CT
Gab.

V. ALL Fqm -LINEAR CODES WITH OPTIMAL GRWS FOR

ALL FIXED PACKET AND CODE SIZES

In this section, we obtain all Fqm -linear codes whose GRWs

are all optimal for fixed packet and code sizes (m and k,

respectively), but varying length, n, up to rank equivalence.

These codes are particular cases of the codes Cred in the

previous section.

Definition 7. For fixed k and m, and for a basis

α1, α2, . . . , αm of Fqm over Fq , define the Fqm -linear code

Copt = C1 × C2 × · · · × Ck ⊆ Fkm
qm , where all Ci are equal

and generated by the vector (α1, α2, . . . , αm) ∈ Fm
qm .

To claim the above mentioned optimality of these codes, we

need the following bounds given in [16, Lemma 6]:

Lemma 5 ([16]). Given an Fqm-linear code C ⊆ Fn
qm of

dimension k, for each r = 1, 2, . . . , k − 1, it holds that

1 ≤ dR,r+1(C)− dR,r(C) ≤ m. (12)

As a consequence, for each r = 1, 2, . . . , k, it holds that

dR,r(C) ≤ rm. (13)

Observe that these bounds only depend on the packet and

code sizes (m and k, respectively), and they do not depend on

the length n.

We first show that the codes Copt attain the previous bounds,

and then prove that they are the only ones with this property:

Proposition 2. Let Copt ⊆ Fkm
qm be the Fqm-linear code in

Definition 7 for given k and m. Then dim(Copt) = k and

dR,r(Copt) = rm, for r = 1, 2, . . . , k.

Proof. It holds that dR,1(Ci) = m, for i = 1, 2, . . . , k, since

these codes are one-dimensional Gabidulin codes in Fm
qm (see

Subsection II-D). Hence, by Corollary 1, we have that

dR,k(Copt) =
k∑

i=1

dR,1(Ci) = km.

By (12), it holds that dR,r(Copt) = rm, for r = 1, 2, . . . , k.

We will use the definition of rank equivalences from [16,

Def. 8], which are stronger than vector space isomorphisms

that preserve rank weights:

Definition 8 ([16]). If V ⊆ Fn
qm and V ′ ⊆ Fn′

qm are Fqm-

linear Galois closed spaces, we say that a map φ : V −→ V ′

is a rank equivalence if it is a vector space isomorphism and

wtR(φ(c)) = wtR(c), for all c ∈ V .

We say that two codes C and C′ are rank equivalent if there

exists a rank equivalence between Fqm-linear Galois closed

spaces V and V ′ that contain C and C′, respectively, and

mapping bijectively C to C′.

Finally, we show that the codes Copt are the only Fqm-linear

codes attaining (13) for fixed packet and code sizes up to rank

equivalence:

Theorem 4. Let C ⊆ Fn
qm be an Fqm-linear code of dimension

k such that dR,r(C) = rm, for every r = 1, 2, . . . , k.

Then, for every basis α1, α2, . . . , αm of Fqm over Fq, the

code C is rank equivalent to the code Copt ⊆ Fkm
qm in

Definition 7. Moreover, the rank equivalence can be explicitly

constructed in polynomial time from any basis of C.

We need some preliminary lemmas to prove this result. We

start by the following characterization of rank equivalences,

which is a particular case of [16, Th. 5]:

Lemma 6 ([16]). Let φ : V −→ V ′ be an Fqm-linear vector

space isomorphism, where V ⊆ Fn
qm and V ′ ⊆ Fn′

qm are Fqm-

linear Galois closed spaces.
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It is a rank equivalence if and only if there exist bases

v1,v2, . . . ,vt ∈ Fn
q and w1,w2, . . . ,wt ∈ Fn′

q of V and

V ′, respectively, and a non-zero element β ∈ Fqm , such that

φ(vi) = βwi, for i = 1, 2, . . . , t.

We now introduce some notation. For a given vector c =

(c1, c2, . . . , cn) ∈ Fn
qm , define c[i] = (c

[i]
1 , c

[i]
2 , . . . , c

[i]
n ), for all

integers i ≥ 0. Then define the trace map Tr : Fn
qm −→ Fn

q of

the extension Fq ⊆ Fqm as follows

Tr(c) = c+ c[1] + c[2] + · · ·+ c[m−1],

for all c ∈ Fn
qm . We have the following two lemmas:

Lemma 7. For a basis α1, α2, . . . , αm of Fqm over Fq , the

matrix A = (α
[j−1]
i )1≤i,j≤m over Fqm is invertible.

Proof. Well-known. See for instance [8].

Lemma 8. For a basis α1, α2, . . . , αm of Fqm over Fq and

the matrix A = (α
[j−1]
i )1≤i,j≤m, define

(β1, β2, . . . , βm) = e1A
−1,

where e1 ∈ Fm
qm is the first vector in the canonical basis. Then

β1, β2, . . . , βm is also a basis of Fqm over Fq .

Moreover, if B = (β
[j−1]
i )1≤i,j≤m, then

(α1, α2, . . . , αm) = e1B
−1.

Proof. Write β = (β1, β2, . . . , βm). Then βA = e1, which

means that
∑m

i=1 βiα
[j−1]
i = δj,1, where δ is the Kronecker

delta. By raising this equation to the power [l−1] = ql−1 and

using that δj,l is 0 or 1, we see that
∑m

i=1 β
[l−1]
i α

[j−1]
i = δj,l,

that is, β[l−1]A = el, for l = 1, 2, . . . ,m.

Let λ ∈ Fm
q be such that λ ·β = 0. By raising this equation

to the power [l−1], for l = 1, 2, . . . ,m, we see that λ·β[l−1] =
0 or, equivalently, λ · (elA

−1) = 0, since λ ∈ Fm
q .

Write µ = (µ1, µ2, . . . , µm) = λ(A−1)T . It holds that

0 = λ · (elA
−1) = (λ(A−1)T ) · el = µ · el = µl,

for l = 1, 2, . . . ,m. Therefore, µ = 0, thus λ = 0. Hence the

elements β1, β2, . . . , βm are linearly independent over Fq .

Finally, since
∑m

i=1 β
[l−1]
i α

[j−1]
i = δj,l, it holds that∑m

i=1 αiβ
[j−1]
i = δ1,j = δj,1, which means that

(α1, α2, . . . , αm)B = e1, and we are done.

We may now prove Theorem 4:

Proof of Theorem 4. Choose any basis b1,b2, . . . ,bk of C.

Since dim(C∗) = km and C∗ is generated by the elements

b
[j−1]
s , for s = 1, 2, . . . , k and j = 1, 2, . . . ,m, it follows that

these elements are linearly independent over Fqm .

Define the vector β = (β1, β2, . . . , βm) = e1A
−1,

with notation as in the previous lemma. By that lemma,

β1, β2, . . . , βm constitute a basis of Fqm over Fq, and

(α1, α2, . . . , αm) = e1B
−1.

Consider the vectors vs,i = Tr(βibs) ∈ Fn
q , for s =

1, 2, . . . , k and i = 1, 2, . . . ,m. Assume that there exist

λs,i ∈ Fq such that
∑k

s=1

∑m
i=1 λs,ivs,i = 0. Then it holds

that
m∑

j=1

k∑

s=1

(
m∑

i=1

λs,iβ
[j−1]
i

)
b[j−1]
s = 0.

Hence
∑m

i=1 λs,iβ
[j−1]
i = 0, for s = 1, 2, . . . , k and j =

1, 2, . . . ,m, which implies that λs,i = 0, for s = 1, 2, . . . , k
and i = 1, 2, . . . ,m.

Therefore, the elements vs,i, for s = 1, 2, . . . , k and

i = 1, 2, . . . ,m, constitute a basis of C∗ and are vectors

in Fn
q . Now define the Fqm-linear vector space isomorphism

ψ : C∗ −→ Fkm
qm by ψ(vs,i) = e(s−1)m+i, for s = 1, 2, . . . , k

and i = 1, 2, . . . ,m. By Lemma 6, ψ is a rank equivalence

and, moreover,

bs =

m∑

j=1

m∑

i=1

αiβ
[j−1]
i b[j−1]

s =

m∑

i=1

αiTr(βibs) =

m∑

i=1

αivs,i.

It follows that vs = ψ(bs) =
∑m

i=1 αie(s−1)m+i, and the

vectors vs, for s = 1, 2, . . . , k, constitute a basis of ψ(C).
Finally, this means that ψ(C) = Copt and we are done.

Remark 6. As explained in Subsection II-B, given an Fqm-

linear code C ⊆ Fn
qm of dimension k, the parameter m

represents the packet length, k represents the number of

linearly independent packets that we may send using C, or

its size, and n represents the number of outgoing links from

the source.

Due to the bounds (13), if m and k are fixed and n is

not restricted, then the code Copt is the only Fqm-linear code

whose GRWs are all optimal, and hence is the only Fqm -linear

optimal code regarding information leakage in the network, up

to rank equivalence.

Remark 7. The codes Copt ⊆ Fkm
qm do not only have optimal

GRWs, but the difference between two consecutive weights is

the largest possible by (12):

dR,r+1(Copt) = dR,r(Copt) +m,

for r = 1, 2, . . . , k − 1. However, for a Gabidulin code CGab

as in Subsection II-D, the difference between two consecutive

weights is the smallest possible by (12):

dR,r+1(CGab) = dR,r(CGab) + 1,

for r = 1, 2, . . . , k − 1.

Therefore, when using Copt, an adversary that obtains r
packets of information, by listening to the smallest possible

number of links, needs to listen to at least m more links

in order to obtain one more packet of information. However,

when using CGab, the adversary only needs to listen to one

more link to obtain one more packet of information.

VI. STRONGER SECURITY OF REDUCIBLE CODES

On the error correction side, it is well-known that reducible

codes can correct a substantial amount of rank errors beyond

half of their minimum rank distance [9, Sec. III.A].

The aim of this section is to show that, on the security

side, when using a reducible code C, an eavesdropper may in

many cases obtain less than r packets of information even if

he or she wire-taps at least dR,r(C) links in the network (see

Subsection II-C).

Setting r = 1 and using an MRD reducible code (as in

Section IV-A), this means that the eavesdropper obtains no

information even when wire-tapping strictly more links than
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those allowed by other MRD codes (Fqm-linear or Fq-linear),

by [17, Th. 3].

The above mentioned stronger security is obtained by upper

bounding the dimensions of the code intersected with Galois

closed spaces, due to Equation (2). We explain this in the

remarks at the end of the section.

The following is the main result of this section, where we

denote by πi : Fn
qm −→ Fni

qm the projection map onto the

coordinates corresponding to the i-th main component Ci ⊆
Fni

qm , for i = 1, 2, . . . , l, with notation as in Subsection II-E.

Theorem 5. Let V ⊆ Fn
qm be an Fqm-linear Galois closed

space and assume that, for each i = 1, 2, . . . , l, there exists

0 ≤ ri ≤ ki such that dim(πi(V )) ≤ dR,ri(Ci), with notation

as in Subsection II-E. Then

dim(C ∩ V ) ≤

(
l∑

i=1

ri

)
−#{i | dim(πi(V )) < dR,ri(Ci)}.

In particular, if dim(πi(V )) < dR,1(Ci), for i = 1, 2, . . . , l,
then

dim(C ∩ V ) = 0.

Before proving this theorem, we give two consequences of

interest. In the first, we give a sufficient condition for the

eavesdropper to obtain less than r packets of information, for

a given r, as in the second paragraph of this section:

Corollary 2. Let the notation be as in Subsection II-E, let

1 ≤ r ≤ k and let V ⊆ Fn
qm be an Fqm-linear Galois closed

space. Assume that r =
∑l

i=1 ri, where 1 ≤ ri ≤ ki and

dim(πi(V )) ≤ dR,ri(Ci), for i = 1, 2, . . . , l, and for some j
it holds that dim(πj(V )) < dR,rj (Cj). Then

dim(C ∩ V ) < r.

The second consequence is just the previous theorem ap-

plied to the codes in Definition 7:

Corollary 3. Let Copt ⊆ Fkm
qm be the code in Definition 7, and

let V ⊆ Fkm
qm be an Fqm-linear Galois closed space. Then

dim(Copt ∩ V ) ≤ #{i | πi(V ) = Fm
qm}.

Finally, we prove Theorem 5. We need the following lemma:

Lemma 9. Let V ⊆ Fn
qm be an Fqm -linear Galois closed

space, and let the notation be as in Subsection II-E. It holds

that

dim(C ∩ V ) ≤
l∑

i=1

dim(Ci ∩ πi(V )).

Proof. Let D = C ∩ V ⊆ C and let the notation be as in

Lemma 3. Since D =
⊕

D∩Ai 6=∅
D′

i, we just need to show

that dim(D′
i) ≤ dim(Ci∩πi(V )), for i such that D∩Ai 6= ∅.

Fix such an index i, and let ρi : D
′
i −→ Ci ∩ πi(V ) be the

restriction of πi to D′
i. It is well-defined since πi(D

′
i) ⊆ πi(V )

by definition of D, and πi(D
′
i) ⊆ Ci since D′

i ⊆ 〈C ∩ Ai〉.
Finally, we see that ρi is one to one since D′

i ⊆ 〈C ∩ Ai〉
and D′

i ∩ Aj = ∅ for j > i, and we are done.

Proof of Theorem 5. First observe that πi(V ) ⊆ Fni

qm is again

Galois closed, for i = 1, 2, . . . , l. By definition of GRWs, if

dim(πi(V )) < dR,ri(Ci), then dim(Ci ∩ πi(V )) < ri, for

i such that ri > 0. On the other hand, if dim(πi(V )) ≤
dR,ri(Ci) and ri < ki, then by monotonicity of GRWs

[13, Lemma 4], it holds that dim(πi(V )) < dR,ri+1(Ci),
which implies that dim(Ci ∩ πi(V )) < ri + 1, that is,

dim(Ci ∩ πi(V )) ≤ ri. Finally, if dim(πi(V )) ≤ dR,ki
(Ci),

then it is trivial that dim(Ci ∩ πi(V )) ≤ dim(Ci) = ki.
The result follows then from the previous lemma.

Remark 8. In the situation of Corollary 2, if dim(πi(V )) ≤
dR,ri(Ci), for i = 1, 2, . . . , l and with strict inequality for

some j, then an eavesdropper that obtains cBT , where B
generates V , gains less than r packets of information about

the original packets by Equation (2).

Observe that the previous condition implies that dim(V ) <∑l
i=1 dR,ri(Ci). We know from the bound (7) that if

dim(V ) <
∑l

i=1 dR,si(Ci) for all possible decompositions

r =
∑l

i=1 si, then dim(C ∩ V ) < r.
However, many Fqm -linear Galois closed spaces may satisfy

dim(πi(V )) < dR,ri(Ci), for i = 1, 2, . . . , l, and a given

decomposition r =
∑l

i=1 ri, but may also satisfy dim(V ) ≥∑l
i=1 dR,si(Ci) for some other decomposition r =

∑l
i=1 si.

Take for instance V = V1 × V2 × · · · × Vl, where Vi ⊆
Fni

qm are Fqm -linear Galois closed spaces satisfying dim(Vi) ≤
dR,ri(Ci), for i = 1, 2, . . . , l and with strict inequality for

some j, but dim(V ) =
∑l

i=1 dim(Vi) ≥ dR,r(C).

Remark 9. In the particular case of Corollary 3, to obtain at

least r packets of information, it must hold that πi(V ) is the

whole space Fm
qm for at least r indices i. Take for instance

V = V1 ×V2 × · · ·×Vk, where Vi ( Fn
qm satisfies dim(Vi) =

m− 1, for i = 1, 2, . . . , k. In that case, dim(V ) = k(m− 1),
which is usually much bigger than dR,1(C) = m. However,

the adversary still obtains no information about the original

packets.

VII. RELATED PROPERTIES OF REDUCIBLE CODES

In this section, we study some secondary properties of

reducible codes that are related to their GRWs.

A. Cartesian product conditions

In this subsection, we gather sufficient and necessary con-

ditions for reducible codes to be rank equivalent to cartesian

products (see Section V for the definition of rank equivalence).

We start by using Galois closures and generalized rank

weights to see whether an Fqm -linear code that can be de-

composed as a direct sum of smaller codes is rank equivalent

to the cartesian product of these codes. It can be seen as a

converse statement to Corollary 1.

Proposition 3. Given an Fqm-linear code C = C′
1 ⊕ C′

2 ⊕
· · · ⊕ C′

l ⊆ Fn
qm , with ki = dim(C′

i), for i = 1, 2, . . . , l, and

k = dim(C), we have that C∗ = C′∗
1 + C′∗

2 + · · ·+ C′∗
l and

the following conditions are equivalent:

1) C is rank equivalent to a cartesian product C1 ×C2 ×
· · · × Cl ⊆ Fn

qm , where Ci ⊆ Fni

qm is rank equivalent to

C′
i, and the equivalence map from C to the product is

the product of the equivalence maps from C′
i to Ci.
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2) C∗ = C′∗
1 ⊕ C′∗

2 ⊕ · · · ⊕ C′∗
l .

3) dR,k(C) = dR,k1
(C′

1) + dR,k2
(C′

2) + · · ·+ dR,kl
(C′

l).
4) For all r = 1, 2, . . . , k, it holds that

dR,r(C) = min{dR,r1(C
′
1) + dR,r2(C

′
2) + · · ·+ dR,rl(C

′
l)

| r = r1 + r2 + · · ·+ rl, 0 ≤ ri ≤ ki}.

Proof. It is trivial that item 1 implies item 4 by Corollary 1.

It is also trivial that item 4 implies item 3, and items 2 and

3 are equivalent since dR,k(C) = dim(C∗) and dR,ki
(C′

i) =
dim(C′∗

i ), for i = 1, 2, . . . , l, by Lemma 2.

Now we prove that item 2 implies item 1. Define Vi = C′∗
i ,

for i = 1, 2, . . . , l, and V = C∗. We may assume that C is not

rank degenerate, that is, V = Fn
qm . Therefore, n = dim(V ),

ni = dim(Vi), for i = 1, 2, . . . , l, and n = n1+n2+ · · ·+nl.

On the other hand, define a vector space isomorphisms ψi :
Vi −→ Fni

qm , for i = 1, 2, . . . , l, by sending a basis of Vi
of vectors in Fn

q to the canonical basis of Fni

qm . It is a rank

equivalence by Lemma 6. Define Ci = ψi(C
′
i). Therefore, Ci

and C′
i are rank equivalent by definition.

Finally, define ψ : V = V1 ⊕ V2 ⊕ · · · ⊕ Vl −→ Fn
qm by

ψ(c1 + c2 + · · ·+ cl) = (ψ1(c1), ψ2(c2), . . . , ψl(cl)),

where ci ∈ Vi, for all i = 1, 2, . . . , l. It holds that ψ
maps vectors in Fn

q to vectors in Fn
q and is a vector space

isomorphism. Hence, it is a rank equivalence by Lemma 6

and verifies the required conditions.

Corollary 4. With notation as in Subsection II-E, if Ci is

rank equivalent to C′
i, for all i = 1, 2, . . . , l, then C is rank

equivalent to C1 × C2 × · · · × Cl.

Observe that the previous corollary states that Remark 2 is

actually implied by Corollary 1.

On the other hand, we may use the column components to

see wether C = C1 × C2 × · · · × Cl exactly. The proof is

straightforward:

Proposition 4. With notation as in Subsection II-E, the fol-

lowing conditions are equivalent:

1) C = C1 × C2 × · · · × Cl.

2) C = Ĉ.

3) ki = k̂i, for all i = 1, 2, . . . , l.
4) For each j = 2, 3, . . . , l, the rows in Gi,j , 1 ≤ i ≤ j−1,

are contained in the main component Cj .

B. Rank degenerate conditions

Recall the definition of rank degenerate codes from [16,

Def. 9]:

Definition 9 ([16]). An Fqm-linear code C ⊆ Fn
qm of dimen-

sion k is rank degenerate if dR,k(C) < n.

In network coding, a code is rank degenerate if it can be

applied to a network with strictly less outgoing links from the

source node (see [11], [16] for more details).

In this subsection, we study sufficient and necessary condi-

tions for reducible codes to be rank degenerate.

Proposition 5. With notation as in Subsection II-E, it holds

that:

1) If C is rank degenerate, then there exists an 1 ≤ i ≤ l
such that Ci is rank degenerate.

2) If there exists an 1 ≤ j ≤ l such that Ĉj is rank

degenerate, then C is rank degenerate.

Proof. We prove each item separately:

1) It follows from

dR,k(C) ≥ dR,k1
(C1) + dR,k2

(C2) + · · ·+ dR,kl
(Cl),

which follows from Theorem 1, and the fact that C has

length n and Ci has length ni, for i = 1, 2, . . . , l.
2) We have that C ⊆ Ĉ. Hence C∗ ⊆ Ĉ∗ and

dR,k(C) = dim(C∗) ≤ dim(Ĉ∗) = d
R,k̂

(Ĉ),

by Lemma 2, and

d
R,k̂

(Ĉ) = d
R,k̂1

(Ĉ1) + d
R,k̂2

(Ĉ2) + · · ·+ d
R,k̂l

(Ĉl),

by Corollary 1, hence the item follows, using now that

Ĉj has length nj , for j = 1, 2, . . . , l.

Corollary 5. If C = C1 × C2 × · · · × Cl, then C is rank

degenerate if and only if there exists an 1 ≤ i ≤ l such that

Ci is rank degenerate.

C. Duality and bounds on GRWs

With notation as in Subsection II-E, it is shown in [9] that

the dual of the reducible code C has a generator matrix of the

form

H =




H1,1 0 0 . . . 0 0
H2,1 H2,2 0 . . . 0 0
H3,1 H3,2 H3,3 . . . 0 0

...
...

...
. . .

...
...

Hl−1,1 Hl−1,2 Hl−1,3 . . . Hl−1,l−1 0
Hl,1 Hl,2 Hl,3 . . . Hl,l−1 Hl,l




,

where Hi,i is a generator matrix of C⊥
i , for i = 1, 2, . . . , l.

We see that reversing the order of the row blocks does not

change the code, and reversing the order of the column blocks

gives a rank equivalent code. Hence, denoting by (C⊥)′i the

subcode of C⊥ generated by the matrix

H ′
i = (Hi,1, . . . , Hi,i−1, Hi,i, 0, . . . , 0),

for i = 1, 2, . . . , l, we may obtain analogous bounds on the

generalized rank weights of C⊥ to those in Theorem 1. We

leave the details to the reader.

An upper bound on the GRW of C⊥ using column compo-

nents of C that follows from Corollary 1 is the following:

Proposition 6. With notation as in Subsection II-E, it holds

that

dR,r(C
⊥) ≤ min{dR,r̂1(Ĉ

⊥
1 ) + dR,r̂2(Ĉ

⊥
2 ) + · · ·+ dR,r̂l(Ĉ

⊥
l )

| r = r̂1 + r̂2 + · · ·+ r̂l, 0 ≤ r̂i ≤ k̂i},
(14)

for r = 1, 2, . . . , n− k̂ (observe that n− k̂ ≤ n− k).
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Proof. It holds that C ⊆ Ĉ , hence Ĉ⊥ ⊆ C⊥, and the result

follows then from Corollary 1 and the fact that Ĉ⊥ = Ĉ⊥
1 ×

Ĉ⊥
2 × · · · × Ĉ⊥

l .

In particular, if k̂ < n, it holds that

dR,1(C
⊥) ≤ min{dR,1(Ĉ

⊥
1 ), dR,1(Ĉ

⊥
2 ), . . . , dR,1(Ĉ

⊥
l )}.

(15)

D. MRD rank

Recall from [13, Prop. 1] the (classical) Singleton bound on

GRWs:

dR,r(C) ≤ n− k + r, (16)

for any Fqm -linear code C ⊆ Fn
qm , where k = dim(C) and

1 ≤ r ≤ k. By monotonicity of GRWs [13, Lemma 4], if the

r-th weight of C attains the Singleton bound, then the s-th
weight of C also attains it, for all s ≥ r. The minimum of

such r is called the MRD rank of the code [6, Def. 1]:

Definition 10 ([6]). For an Fqm-linear code C ⊆ Fn
qm of

dimension k, we define its MRD rank as the minimum positive

integer r such that dR,r(C) = n−k+r, and denote it by r(C).
If dR,k(C) < n, then we define r(C) = k + 1.

Observe that the last part of the previous definition is

a redefinition of rank degenerate codes. We have the next

characterization of r(C) given in [6, Cor. III.3]:

Lemma 10 ([6]). For an Fqm-linear code C ⊆ Fn
qm of

dimension k, it holds that

r(C) = k − dR,1(C
⊥) + 2,

defining dR,1({0}) = n+ 1 for the case C = Fn
qm .

In particular, from the bounds obtained so far, we derive the

following result on the MRD rank of a reducible code:

Proposition 7. Let the notation be as in Subsection II-E. It

holds that

k−r(C) ≥ min{k1−r(C1), k2−r(C2), . . . , kl−r(Cl)} (17)

and

k − r(C) ≤ min{k̂1 − r(Ĉ1), k̂2 − r(Ĉ2), . . . , k̂l − r(Ĉl)}.
(18)

Moreover, denote by ki,j and ri,j the dimension and MRD

rank of the Fqm-linear code with parity check matrix Hi,j ,

respectively, with notation as in the previous subsection, for

i = 2, 3, . . . , l and j = 1, 2, . . . , i− 1. Then

k − r(C) ≤ min{ki − r(Ci) +
∑

Hi,j 6=0

(ki,j − ri,j + 2)

| i = 1, 2, . . . , l}.

(19)

Proof. The bound (17) follows from the previous lemma and

the bound (6). The bound (18) follows from the previous

lemma and the bound (15).

Now we prove the bound (19). From the previous lemma

and the bound (9), we obtain that

k − r(C) ≤ min{dR,1((C
⊥)′1, (C

⊥)′2, . . . , (C
⊥)′l)},

with notation as in the previous subsection. Now, if di,j
denotes the minimum rank distance of the Fqm-linear code

with parity check matrix Hi,j , it follows that

dR,1((C
⊥)′i) ≤ dR,1(C

⊥
i ) +

∑

Hi,j 6=0

di,j ,

and the result follows again from the previous lemma.

The MRD rank of the code C in Example 1 was obtained

directly using Theorem 1. However, it could be directly

obtained using the previous proposition.

We conclude with the cartesian product case:

Corollary 6. With notation as in the previous proposition, if

C = C1 × C2 × · · · × Cl, it holds that

k − r(C) = min{k1 − r(C1), k2 − r(C2), . . . , kl − r(Cl)},

and all the bounds in the previous proposition are equalities.

E. Particular constructions

To conclude, in this subsection we briefly recall some

constructions of reducible codes in the literature introduced to

improve the minimum Hamming distance of cartesian products

of codes, and see when they may give improvements for the

rank distance.

Recall the well-known (u,u + v)-construction by Plotkin

[20]. Take Fqm -linear codes C1, C2 ⊆ Fn
qm , and define the

Fqm-linear code C ⊆ F2n
qm by

C = {(u,u+ v) | u ∈ C1,v ∈ C2}.

Denoting by dH(D) the minimum Hamming distance of a

code D, it holds that dH(C1×C2) = min{dH(C1), dH(C2)},

whereas dH(C) = min{2dH(C1), dH(C2)}, hence improving

the minimum Hamming distance of the cartesian product if

dH(C1) < dH(C2).

Observe that C is reducible. However, its first row compo-

nent is obviously rank equivalent to its first main component.

By Proposition 3, C and C1 ×C2 are rank equivalent. Hence

the (u,u+v)-construction gives nothing but cartesian products

for the rank metric.

We may apply the same argument for the so-called matrix-

product codes [2], which are a generalization of the pre-

vious construction. Let the notation be as in Subsection

II-E, fix a non-singular matrix A ∈ Fl×l
qm and assume that

N = n1 = n2 = . . . = nl. Define the Fqm-linear code

C = (C1, C2, . . . , Cl)A ⊆ Fn
qm with generator matrix

G =




a1,1G1 a1,2G1 . . . a1,lG1

a2,1G2 a2,2G2 . . . a2,lG2

...
...

. . .
...

al,1Gl al,2Gl . . . al,lGl


 .

If A is upper triangular, we see that C is a reducible code.

Just as before, if A ∈ Fl×l
q , then C is rank equivalent to

C1 × C2 × · · · × Cl, and thus this construction gives nothing

but cartesian products.
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In the following examples we see that, as an alternative, the

(u, αu+v)-construction, for α ∈ Fqm \Fq, and (u,u[i]+v)-
construction, for 0 < i < m, may improve the minimum rank

distance of the cartesian product.

Example 2. Consider α ∈ Fqm \ Fq , n = 3, C1 ⊆ F3
qm

generated by (1, 0, 0) and C2 ⊆ F3
qm generated by (0, α, α[1])

and (0, α[1], α[2]). Let C be the (u, αu + v)-construction of

the codes C1 and C2.

It holds that dR,1(C1 × C2) = 1, whereas dR,1(C) = 2.

Example 3. Consider α ∈ Fqm \ Fq , n = 3, C1 ⊆ F3
qm

generated by (α, 0, 0) and C2 ⊆ F3
qm generated by (0, α, α[1])

and (0, α[1], α[2]). Let C be the (u,u[1] + v)-construction of

the codes C1 and C2.

Again, it holds that dR,1(C1×C2) = 1, whereas dR,1(C) =
2.

VIII. CONCLUSION AND OPEN PROBLEMS

In this paper, we have studied the security performance of

reducible codes in network coding when used in the form

of coset coding schemes. We have obtained lower bounds on

their generalized rank weights (GRWs) that extend the known

lower bound on their minimum rank distance [9] and which

give exact values for cartesian products, and we have obtained

upper bounds that are always reached for the minimum rank

distance and some reduction. We have obtained maximum rank

distance (MRD) reducible codes with MRD main components

for new parameters, extending the families of MRD codes for

n > m considered in [9] and [23].

We have obtained all Fqm-linear codes whose GRWs are

all optimal, for all fixed packet and code sizes up to rank

equivalence. The given code construction is a cartesian prod-

uct of full-length one-dimensional Gabidulin codes and has

the minimum possible length required by the optimality of

their GRWs. As we have shown, these codes do not only

have optimal GRWs, but the difference between every two

consecutive GRWs is the packet lenght, which is optimal, in

constrast with Gabidulin codes, for which this difference is

the minimum possible. Thus if the length of the code is big

enough or not restricted, then the given construction behaves

much better than Gabidulin codes in secure network coding.

Afterwards we have shown that, when using reducible

codes, a wire-tapping adversary obtains in many cases less

information than that described by their GRWs. In particular,

when using MRD reducible codes or those with optimal GRWs

for fixed packet and code sizes, the eavesdropper obtains no

information about the sent packets even when wire-tapping

more links than those allowed by other MRD codes.

Finally, we have studied some secondary related properties

of reducible codes: Characterizations to be rank equivalent to

cartesian products of codes, characterizations to be rank degen-

erate, bounds on their dual codes, MRD ranks, and alternative

constructions to the well-known (u,u+ v)-construction.

To conclude, we list a few open problems of interest

regarding the security behaviour of reducible codes:

1) Find other cases when the bounds in Theorem 1 are

equalities, apart from the cases covered in Corollary 1

and Proposition 1.

2) Find new parameters for which reducible codes are

MRD, or prove the impossibility that a reducible code

is MRD for certain parameters.

3) Prove or disprove the optimality of the codes in Section

V among Fq-linear codes. We remark here that no sharp

bounds such as those in Lemma 5 are known for general

Fq-linear codes, to the best of our knowledge.

APPENDIX A

UNIQUENESS OF REDUCTIONS

In this appendix, we discuss the uniqueness of the main

components, row components and column components of a re-

ducible code (see Subsection II-E). We will show that the main

components remain unchanged by changing the reduction or

by rank equivalence, hence the bound (7) remains unchanged.

However, the row components may change by changing the

reduction, and the column components may change by a rank

equivalence. Hence the bounds (8) and (14) may change in

those cases. See Proposition 1, for instance.

Fix a reducible code C ⊆ Fn
qm , with notation as in

Subsection II-E.

Proposition 8. Given another reduction R̂ of C with the same

row and column block sizes as R, it holds that the main

components and column components of R̂ and R are the same,

respectively.

Proof. Let R̂ = (Ĝi,j)
i≤j≤l
1≤i≤l and let Ĝ be the generator matrix

of C given by this reduction. Since the matrices Gi,i have full

rank, there exist matrices Ai,j ∈ F
ki×kj

qm , for i = 1, 2, . . . , l
and j = i, i+ 1, . . . , l, such that the k × k matrix

A =




A1,1 A1,2 A1,3 . . . A1,l−1 A1,l

0 A2,2 A2,3 . . . A2,l−1 A2,l

0 0 A3,3 . . . A3,l−1 A3,l

...
...

...
. . .

...
...

0 0 0 . . . Al−1,l−1 Al−1,l

0 0 0 . . . 0 Al,l




satisfies that Ĝ = AG. Then it holds that Ĝi,i = Ai,iGi,i, for

i = 1, 2, . . . , l, and the main components of both reductions

coincide. In addition, it holds that




Ĝ1,j

Ĝ2,j

...

Ĝj,j


 =




A1,1 A1,2 . . . A1,j

0 A2,2 . . . A2,j

...
...

. . .
...

0 0 . . . Aj,j







G1,j

G2,j

...

Gj,j


 ,

and the column components of both reductions also coincide.

Proposition 9. Assume that the main components of the

reduction R of C are not rank degenerate. Let R′ be a

reduction of an Fqm -linear code C′ that is rank equivalent

to C, with the same row and column block sizes as R, and

such that the rank equivalence maps the rows of the generator

matrix corresponding to R to the rows of the generator matrix

corresponding to R′. Then the main components and row

components of R′ and R are rank equivalent, respectively.
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Proof. Let R′ = (G′
i,j)

i≤j≤l
1≤i≤l and let G′ be the generator

matrix of C′ given by this reduction. By hypothesis and by

Lemma 6, we may assume that the rank equivalence is given

by φ(c) = cA, for c ∈ Fn
qm , for some n× n matrix

A =




A1,1 A1,2 A1,3 . . . A1,l−1 A1,l

A2,1 A2,2 A2,3 . . . A2,l−1 A2,l

A3,1 A3,2 A3,3 . . . A3,l−1 A3,l

...
...

...
. . .

...
...

Al−1,1 Al−1,2 Al−1,3 . . . Al−1,l−1 Al−1,l

Al,1 Al,2 Al,3 . . . Al,l−1 Al,l




,

with coefficients in Fq , and such that G′ = GA. Looking at

the generator matrices of the last row components of R and

R′, we see that

(0, . . . , 0, G′
l,l) = (Gl,lAl,1, Gl,lAl,2, . . . , Gl,lAl,l),

which implies that Gl,lAl,j = 0, for j = 1, 2, . . . , l − 1. This

means that the columns of Al,j are in C⊥
l . However, since

their coefficients lie in Fq, these columns have rank weight

equal to 1.

On the other hand, we are assuming that the main compo-

nents of R are not rank degenerate, which in particular means

that dR(C
⊥
l ) > 1 (see [11, Def. 26 and Cor. 28]). Therefore,

all the columns in Al,j are the zero vector, that is, Al,j = 0,

for j = 1, 2, . . . , l − 1.

If we now look at the generator matrices of the (l − 1)-th
row components of R and R′, we see that

(0, . . . , 0, G′
l−1,l−1, G

′
l−1,l) = (Gl−1,l−1Al−1,1, . . .

Gl−1,l−1Al−1,l−1, Gl−1,l−1Al−1,l +Gl−1,lAl,l),

which implies that Gl−1,l−1Al−1,j = 0, for j = 1, 2, . . . , l −
2. In the same way as before, we see that this implies that

Al−1,j = 0, for j = 1, 2, . . . , l − 2.

Continuing iteratively in this way, we see that Ai,j = 0, for

i > j. In other words, we have that A is again of the form

A =




A1,1 A1,2 A1,3 . . . A1,l−1 A1,l

0 A2,2 A2,3 . . . A2,l−1 A2,l

0 0 A3,3 . . . A3,l−1 A3,l

...
...

...
. . .

...
...

0 0 0 . . . Al−1,l−1 Al−1,l

0 0 0 . . . 0 Al,l




.

As in the proof of Proposition 8, this implies that the main

components and row components of R and R′ are rank

equivalent, respectively.
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