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Distributed Computing for Functions with

Certain Structures

Shigeaki Kuzuoka Member, IEEE and Shun Watanabe, Member, IEEE

Abstract

The problem of distributed function computation is studied, where functions to be computed is not necessarily

symbol-wise. A new method to derive a converse bound for distributed computing is proposed; from the structure

of functions to be computed, information that is inevitably conveyed to the decoder is identified, and the bound is

derived in terms of the optimal rate needed to send that information. The class of informative functions is introduced,

and, for the class of smooth sources, the optimal rate for computing those functions is characterized. Furthermore,

for i.i.d. sources with joint distribution that may not be full support, functions that are composition of symbol-wise

function and the type of a sequence are considered, and the optimal rate for computing those functions is characterized

in terms of the hypergraph entropy. As a byproduct, our method also provides a conceptually simple proof of the

known fact that computing a Boolean function may require as large rate as reproducing the entire source.

Index Terms

distributed computing, hypergraph entropy, Slepian-Wolf coding

I. INTRODUCTION

We study the problem of distributed computation, where the encoder observes Xn, the decoder observes Y n,

and the function fn(X
n, Y n) is to be computed at the decoder based on the message sent from the encoder; see

Fig. 1. A straightforward scheme to compute a function is to use the Slepian-Wolf coding [15]. However, since the

decoder does not have to reproduce Xn itself, the Slepian-Wolf rate can be improved in general. Then, our interest

is how much improvement we can attain.

The literature of distributed computation can be roughly categorized into two directions:1 symbol-wise functions

and sensitive functions. For symbol-wise functions and the class of i.i.d. sources with positivity condition, i.e., i.i.d.
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Fig. 1. Distributed computing with full-side-information

sources for which all pairs of source symbols have positive probability, Han and Kobayashi derived the condition

on functions such that the Slepian-Wolf rate cannot be improved at all [8]. In [14], for i.i.d. sources that are not

necessarily positive, Orlitsky and Roche characterized the optimal rate for computing symbol-wise functions in

terms of the graph entropy introduced by Körner [10]. Particularly for i.i.d. sources with positivity condition, their

result gives a simple characterization of the improvement of the optimal rate over the Slepian-Wolf rate.

On the other hand, Ahlswede and Csiszár introduced the class of sensitive functions, which are not necessarily

symbol-wise; they showed that, for computation of sensitive functions, the Slepian-Wolf rate cannot be improved

at all for the class of i.i.d. sources with positivity condition [1]. A remarkable feature of sensitive functions is

that, even though their image sizes are negligibly small compared to the input sizes, as large rate as reproducing

the entire source is needed. Later, a simple proof of their result was given by El Gamal [6], and their result was

extended by the authors to the class of smooth sources [13]; the class of smooth sources includes sources with

memory, such as Markov sources with positive transition matrices, and non-ergodic sources, such as mixtures of

i.i.d. sources with positivity condition, which enables us to study distributed computation for a variety of sources

in a unified manner.

As described above, distributed computation for symbol-wise functions is quite well-understood; other than

symbol-wise functions, our understanding of distributed computation is limited to the extreme case, i.e., the class

of sensitive functions. Our motivation of this paper is to further understand distributed computing for functions that

are not symbol-wise nor sensitive.

A. Contributions

Our main technical contribution of this paper is a new method to derive a converse bound on distributed

computation. A high level idea of our method is as follows: from the nature of distributed computing and the

structure of the function to be computed, we identify information that is inevitably conveyed to the decoder. Then,

we derive a bound in terms of the optimal rate needed to send that information. As a by product, our method provides

a conceptually simple proof of the above mentioned result [1], [6], [13] for a subclass of sensitive functions.2.

As a class of functions such that our converse method is effective, we introduce the class of informative functions.

For instance, the class includes compositions of functions where inner functions are symbol-wise and outer functions

are the type of a sequence or the modulo sum.3 For the class of smooth sources, we characterize the optimal rate

2For instance, our method applies for the joint type, the Hamming distance, or the inner product; see Examples 2 and 5

3In a preliminary version of this paper published in ITW2016, these functions are investigated separately; the class of informative functions

unifies the class of functions considered in the preliminary version.
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for computing those functions in terms of the Slepian-Wolf rate of an equivalence class of sources induced by the

function to be computed (Theorem 1).

Furthermore, as another application of our converse method, for the class of i.i.d. sources that are not necessarily

positive, we characterize the optimal rate for computing composition of functions where inner functions are symbol-

wise and outer functions are the type of a sequence (Theorem 2). Even for the case of computing the joint type,

which is the composition of the identity function and the type function, our result is novel since it is not covered

by the result by Ahlswede-Csiszár [1].4 The optimal rate is characterized in terms of the hypergraph entropy, which

is a natural extension of the graph entropy of Körner (cf. [11]). In other words, our result gives an operational

interpretation to the hypergraph entropy.

Perhaps, the utility of our result can be best understood by comparing it with the result of Orlitsky and Roche

[14] via their example (cf. Example 15): Consider an n-round online game, where in each round Alice and Bob

each select one card without replacement from a virtual hat with three cards labeled 0, 1, 2. The one with larger

number wins. If Bob would like to know who won in each round, it suffices for Alice to send a message at rate

2
3h
(

1
4

)

, which is optimal [14]. Now, suppose that Bob does not care who won in each round; instead, he is only

interested in the total number of rounds he won. Then, our result says that it suffices for Alice to send a message

at rate 1
2 , which is optimal.

B. Organization of Paper

The rest of the paper is organized as follows. In Sec. II, we introduce the problem formulation. In Sec. III,

we illustrate our converse method by using a simple example of the inner product function. We also motivate the

definition of the class of informative functions there. In Sec. IV, we formally introduce the class of informative

functions, and, for the class of smooth sources, we characterize the optimal rate for computing those functions. In

Sec. V, for the class of i.i.d. sources that are not necessarily positive, we characterize the optimal rate for computing

compositions of symbol-wise functions and the type function. In Sec. VI, we close the paper with some conclusion

and discussion. Some technical results and proofs of lemmas are given in appendices.

C. Notation

Throughout this paper, random variables (e.g., X) and their realizations (e.g., x) are denoted by capital and lower

case letters respectively. All random variables take values in some finite alphabets which are denoted by the respective

calligraphic letters (e.g., X ). The probability distribution of random variable X is denoted by PX . The support set

of the distribution PX is denoted by supp(PX). Similarly, Xn := (X1, X2, . . . , Xn) and xn := (x1, x2, . . . , xn)

denote, respectively, a random vector and its realization in the nth Cartesian product Xn of X . We will use bold

lower letters to represent vectors if the length n is apparent from the context; e.g., we use x instead of xn.

4In [1], they considered a condition that is slightly weaker than the positivity condition (cf. [1, Theorem 2]); our result applies for sources

that do not satisfy their weaker condition.
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For a finite set S, the cardinality of S is denoted by |S|. Given a sequence s in the nth Cartesian product Sn

of S, the type Ps = (Ps(s) : s ∈ S) of s is defined by

Ps(s) :=
|{i ∈ [1 : n] : si = s}|

n
, s ∈ S (1)

where [1 : n] := {1, 2, . . . , n}. The set of all types of sequences in Sn is denoted by Pn(S). The indicator function

is denoted by 1[·]. Information-theoretic quantities are denoted in the usual manner [2], [3]. For example, H(X |Y )

denotes the conditional entropy of X given Y . The binary entropy is denoted by h(·). All logarithms are with

respect to base 2.

II. PROBLEM FORMULATION

Let (X,Y ) = {(Xn, Y n)}∞n=1 be a general correlated source with finite alphabet X and Y; the source is

general in the sense of [9], i.e., it may have memory and may not be stationary nor ergodic. Later, we will specify

a class of sources we consider in each section. Without loss of generality, we assume X = {0, 1, . . . , |X | − 1}

and Y = {0, 1, . . . , |Y| − 1}. We consider a sequence f = {fn}∞n=1 of functions fn : Xn × Yn → Zn. A code

Φn = (ϕn, ψn) for computing fn is defined by an encoder ϕn : Xn → Mn and a decoder ψn : Mn ×Yn → Zn.

The error probability of the code Φn is given by

Pe(Φn|fn) := Pr (ψn(ϕn(X
n), Y n) 6= fn(X

n, Y n)) .

Definition 1. For a given source (X,Y ) and a sequence of functions f , a rate R is defined to be achievable if

there exists a sequence {Φn}∞n=1 of codes satisfying

lim
n→∞

Pe(Φn|fn) = 0

and

lim sup
n→∞

1

n
log |Mn| ≤ R.

The optimal rate for computing f , denoted by R(X|Y |f), is the infimum of all achievable rates.

Definition 2 (SW Rate). For a given source (X,Y ), the optimal rate R(X|Y |f id) for the sequence f id = {f id
n }

∞
n=1

of identity functions is called the Slepian-Wolf (SW) rate, and denoted by RSW(X|Y ).

Note that RSW(X|Y ) is a trivial upper bound on R(X|Y |f).

The following class of sources was introduced in [13], and it plays an important role in Section III and Section

IV.

Definition 3 (Smooth Source). A general source (X,Y ) is said to be smooth with respect to Y if there exists a

constant 0 < q < 1, which does not depend on n, satisfying

PXnY n(x, ŷ) ≥ qPXnY n(x,y)

for every x ∈ Xn and y, ŷ ∈ Yn with dH(y, ŷ) = 1, where dH(·, ·) is the Hamming distance.

July 12, 2021 DRAFT
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The class of smooth sources is a natural generalization of i.i.d. sources with positivity condition studied in [1],

[8], and enables us to study distributed computation for a variety of sources in a unified manner. Indeed this class

contains sources with memory, such as Markov sources with positive transition matrices, or non-ergodic sources,

such as mixtures of i.i.d. sources with positivity condition; see [13] for the detail.

III. MOTIVATING IDEA

To explain the idea of converse proof approach used throughout the paper, let us consider the inner product

function fn(x,y) = x · y as a simple example, where X = Y = {0, 1} and the inner product is computed

with modulo 2. In fact, since the inner product function is a sensitive function in the sense of [1], the optimal

rate for computing the function is R(X|Y |f) = RSW(X|Y ) for every smooth sources [13]. We shall provide a

conceptually simple proof of this statement in this section.

Let (ϕn, ψn) be a code with vanishing error probability:

Pr (ψn(ϕn(X
n), Y n) 6= fn(X

n, Y n)) =
∑

x,y

PXnY n(x,y)1 [ψn(ϕn(x),y) 6= fn(x,y)] (2)

≤ εn. (3)

Since message ϕn(X
n) is encoded without knowing the realization of side-information Y n, if we input Y n ⊕ ei

to ψn(ϕn(X
n), ·) instead of Y n, we expect it will outputs fn(X

n, Y n ⊕ ei) with high probability, where ei is a

vector such that ith component is 1 and other components are 0. In fact, this intuition is true and the following

bound holds:

Pr (ψn(ϕn(X
n), Y n ⊕ ei) 6= fn(X

n, Y n ⊕ ei)) (4)

=
∑

x,y

PXnY n(x,y)1 [ψn(ϕn(x),y ⊕ ei) 6= fn(x,y ⊕ ei)] (5)

≤
∑

x,y

1

q
PXnY n(x,y ⊕ ei)1 [ψn(ϕn(x),y ⊕ ei) 6= fn(x,y ⊕ ei)] (6)

≤
εn
q
, (7)

where the first inequality follows from the property of the smooth source, and the second inequality follows from

the definition of the error probability. Then, by the union bound, the above bound implies

Pr (ψn(ϕn(X
n), Y n) 6= fn(X

n, Y n) or ψn(ϕn(X
n), Y n ⊕ ei) 6= fn(X

n, Y n ⊕ ei)) ≤
2εn
q
. (8)

If the decoder reproduces fn(X
n, Y n) and fn(X

n, Y n⊕ei) correctly, it can computeXi = Xn ·Y n⊕Xn·(Y n⊕ei).

By conducting this procedure for 1 ≤ i ≤ n, the decoder can reproduce an estimate Wn of Xn such that the bit

error probability is small:

E

[

1

n
dH(Xn,Wn)

]

=
n
∑

i=1

1

n
Pr(Xi 6=Wi) (9)

≤
2εn
q
. (10)
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By the Markov inequality, for any β > 0, we have

Pr

(

1

n
dH(Xn,Wn) ≥ β

)

≤
2εn
qβ

. (11)

From Lemma 4 in Appendix A, if the encoder send additional message of negligible rate δ, then the decoder can

reproduce an estimate X̂n of Xn such that the block error probability is small:

Pr
(

Xn 6= X̂n
)

≤
2εn
qβ

+ νn(β)2
−nδ. (12)

In fact, the righthand side of the above bound vanishes as n→ ∞ if we adjust parameters β, δ appropriately. This

means that there exists a Slepian-Wolf coding scheme whose rate is asymptotically the same as the given code

(ϕn, ψn) to compute fn, which implies R(X|Y |f) ≥ RSW(X|Y ).

Two key observations of the above argument are the following: because of the nature of distributed computing,

i.e., the message is encoded without knowing the realization of side-information, the list (fn(x, by
(−i)) : b ∈ Y) is

inevitably conveyed to the decoder with small error probability, where by(−i) is the sequence such that ith element

yi of y is replaced by b; and ith element xi can be determined from the list. More precisely, xi is determined by

the function ξ
(i)
n defined by

xi = ξ(i)n

((

fn(x, by
(−i)) : b ∈ Y

))

:= fn(x, 0y
(−i))⊕ fn(x, 1y

(−i)). (13)

Because of these facts, computing the inner product requires as large rate as the Slepian-Wolf coding. For functions

other than the inner product function, the list may not determine the value of xi in general; however, the list

may give some partial information about xi, i.e., a subset of X such that xi belongs. In the next section, we will

introduce a class of functions that have such a property.

IV. RESULTS FOR SMOOTH SOURCES

A. Informative Functions

Let X be a partition of X ; i.e., X = {C1, C2, . . . , Ct} is a set of nonempty subsets Ci ⊆ X (i = 1, . . . , t) satisfying

Ci ∩ Cj = ∅ (i 6= j) and X =
⋃

C∈X C. For each x ∈ X , the subset C ∈ X satisfying x ∈ C is uniquely determined

and denoted by [x]X . For a sequence x ∈ Xn, let [x]X := ([x1]X , [x2]X , . . . , [xn]X ).

For a symbol a ∈ X , a sequence x ∈ Xn, and an index i ∈ [1 : n], let ax(−i) be the sequence such that ith

element xi of x is replaced by a. For b ∈ Y , y ∈ Yn, and i ∈ [1 : n], by(−i) is defined similarly. For a given

permutation σ on [1 : n] and a sequence x ∈ Xn, we denote by σ(x) the sequence x̂ ∈ Xn satisfying x̂i = xσ(i)

for every i ∈ [1 : n].

In the last paragraph of Section III, for the inner product function fn, we observed that ith symbol xi can be

determined from the list (fn(x, by
(−i)) : b ∈ Y) by the function ξ

(i)
n defined by (13). In other words, for the finest

partition X ≡ {{0}, {1}}, the function ξ
(i)
n identifies which subset of the partition xi belongs to. For functions

other than the inner product, the function identifying the subset may not exists for the finest partition; however,

even in that case, a function identifying the subset for a coarser partition may exist. Motivated by this observation,

we shall introduce the class of informative function as follows.

July 12, 2021 DRAFT
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Definition 4 (Informative Function). Let X be a partition of X . A function fn is said to be X -informative if fn

satisfies the following conditions:

1) For each i ∈ [1 : n], there exists a mapping ξ
(i)
n : Z

|Y|
n → X such that, for any a ∈ X and (x,y) ∈ Xn×Yn,

ξ(i)n

((

fn(ax
(−i), by(−i)) : b ∈ Y

))

= [a]X . (14)

2) For every (x,y) ∈ Xn × Yn and any permutation σ on [1 : n] satisfying [σ(x)]X = [x]X ,

fn(σ(x),y) = fn(x,y). (15)

Remark 1. Condition (1) of Definition 4 can be rewritten as follows: for each i ∈ [1 : n] and for any a ∈ X , the

subset C ∈ X satisfying a ∈ C can be uniquely determined from the list
(

fn(ax
(−i), by(−i)) : b ∈ Y

)

irrespective

of (x,y) ∈ Xn × Yn.

Condition (1) of Definition 4, which will be used in the converse part of Theorem 1, is motivated by the converse

argument described in Section III. On the other hand, Condition (2) of Definition 4 will be used in the achievability

part of Theorem 1. Although the motivation of Condition (2) is subtle, the following proposition partially motivates

Condition (2) of Definition 4, which will be proved in Appendix B.

Proposition 1. For a given X -informative function fn, the partition X = {C1, C2, . . . , Ct} is the finest partition

satisfying Condition (1); in other words, for any partition X
′
= {C′

1, C2, . . . , C
′
s} satisfying Condition (1), it holds

that, for every 1 ≤ k ≤ t, Ck ⊆ C′
ℓ for some 1 ≤ ℓ ≤ s.

In fact, as we will see in Example 6 after Theorem 1, Condition (2) of Definition 4 is stronger than X being the

finest partition satisfying Condition (1); there exists a function such that the finest partition satisfying Condition

(1) may not satisfy Condition (2).

The class of functions that are X -informative for some partition X includes several important functions as shown

in Propositions 2, 3, and 4 below.

At first, we consider a symbol-wise function fn(x,y) = (f(x1, y1), . . . , f(xn, yn)) defined from f : X ×Y → V .

For a function f on X ×Y , let X f be the partition of X such that two symbols x and x̂ are in the same subset if

and only if f(x, y) = f(x̂, y) for all y ∈ Y .

Proposition 2. A symbol-wise function fn : Xn × Yn → Vn defined from f : X × Y → V is X f -informative.

Next, we consider a composition of functions, where the inner function is symbol-wise and the outer function is

the type. Fix a function f : X × Y → V = {0, 1, . . . ,m− 1}. Then, let f t
n be the function computing the type of

the symbol-wise function fn defined from f ; i.e.,

f t

n(x,y) := Pfn(x,y), (x,y) ∈ Xn × Yn. (16)

To characterize the property of f t
n, let us introduce f̂ t : X × Y → V ∪ {m} as

f̂ t(x, y) :=











m if f(x, ·) is constant

f(x, y) otherwise.

(17)
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TABLE I

f : X × Y → V = {0, 1, . . . , 6}

x \ y 0 1 2

0 0 0 0

1 1 2 3

2 1 2 3

3 4 5 6

4 1 1 1

Proposition 3. A function f t
n : X

n × Yn → Pn(V) defined from f : X × Y → V as (16) is X f̂ t -informative.

Lastly we consider the modulo-sum of function values. For a given f : X ×Y → V = {0, 1, . . . ,m− 1}, let f⊕
n

be the function defined as

f⊕
n (x,y) :=

n
∑

i=1

f(xi, yi) (mod m), (x,y) ∈ Xn × Yn. (18)

To characterize the property of f⊕
n , let us introduce f̂⊕ on X × Y as

f̂⊕(x, y) := f(x, y + 1)− f(x, y) (mod m), y ∈ Y (19)

where f(x, |Y|) = f(x, 0).

Proposition 4. A function f⊕
n : Xn × Yn → V defined from f : X × Y → V as (18) is X f̂⊕-informative.

Example 1. Let us consider a function f given in Table I. Then we can verify that

X f = {{0}, {1, 2}, {3}, {4}}, (20)

X f̂ t = {{0, 4}, {1, 2}, {3}}, (21)

X f̂⊕ = {{0, 4}, {1, 2, 3}}. (22)

Proofs of Propositions 2, 3, and 4 are given in Appendix C.

B. Coding Theorem

Fix a partition X of X . Then, from a pair (Xn, Y n) of RVs on Xn×Yn, we can define ([Xn]X , Y
n) on X

n
×Yn

such as

P[Xn]XY n(x,y) :=
∑

x:[x]X=x

PXnY n(x,y) (23)

for (x,y) ∈ X
n
×Yn. For a given source (X,Y ) and a partition X of X , let ([X]X ,Y ) be the source defined by

([X]X ,Y ) := {([Xn]X , Y
n)}∞

n=1 . (24)

July 12, 2021 DRAFT
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Note that if (X,Y ) is an i.i.d. source then ([X]X ,Y ) is also i.i.d. source. Further, if (X,Y ) is smooth with

respect to Y then PXnY n(x, ŷ) ≥ qPXnY n(x,y) for all x and y, ŷ ∈ Yn with dH(y, ŷ) = 1. Taking a summation

over x ∈ x, we have P[Xn]XY n(x, ŷ) ≥ qP[Xn]XY n(x,y). So, we have the following proposition.

Proposition 5. If (X,Y ) is smooth with respect to Y , then ([X]X ,Y ) is also smooth with respect to Y (with

the same constant q).

Now we are ready to state our coding theorem for smooth sources.

Theorem 1. Suppose that f = {fn}∞n=1 is X -informative for some partition X of X . Then, for any smooth source

(X,Y ), we have

R(X|Y |f) = RSW([X]X |Y ). (25)

To illustrate Theorem 1, let us consider several examples.

Example 2. When f(x, y) = (x, y),5 i.e., the identity function, then f t
n(x,y) is the joint type of (x,y). In

this case, f̂ t is the identity function and X
f̂ t = {{x} : x ∈ X}. Thus, Proposition 3 and Theorem 1 imply

R(X|Y |f t) = RSW(X|Y ).

Example 3. When f(x, y) = x, then f t
n(x,y) is the marginal type of x. In this case, f̂ t(x, y) = m for every

(x, y), i.e., the constant function, and X f̂ t = {X}. Thus, Proposition 3 and Theorem 1 imply R(X|Y |f t) = 0.

Example 4. When X = Y = {0, 1} and f(x, y) = x⊕ y, let us consider the modulo-sum function f⊕
n induced by

f . In this case, f̂⊕(x, y) = 1 for every (x, y) and X f̂⊕ = {X}. Thus, Proposition 4 and Theorem 1 imply

R(X|Y |f⊕) = 0. In fact, the encoder can just send the parity ⊕n
i=1Xi. Then, the decoder can reproduce

f⊕
n (Xn, Y n) = (⊕n

i=1Xi) ⊕ (⊕n
i=1Yi). It is interesting to compare this example with the fact that, for the same

function f(x, y) = x⊕ y, R(X|Y |f t) = RSW(X|Y ).

Example 5. When X = Y = {0, 1} and f(x, y) = x ∧ y, let us consider the modulo-sum function f⊕
n induced

by f . In this case, f̂⊕(x, y) = x and X f̂⊕ = {{x} : x ∈ X}. Thus, Proposition 4 and Theorem 1 imply

R(X|Y |f⊕) = RSW(X|Y ). Note that f⊕
n is the inner product function, and it recovers the result explained in

Sec. III.

Finally, in order to illustrate the role of Condition (2) in Definition 4, let us consider a function that is not

X -informative for any partition X of X , but the optimal rate can be characterized.

Example 6. For X = Y = {0, 1}, let fn : Xn × Yn → {0, 1}n be the function defined by

fn(x,y) =
(

1[xi ⊕ yi = xi+1 ⊕ yi+1] : 1 ≤ i ≤ n
)

, (26)

5Without loss of generality, we identify X × Y with V = {0, 1, . . . , |X ||Y| − 1} in this example.
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where xn+1 = x1 and yn+1 = y1. For this function, we can verify that the trivial partition X = {{0, 1}} is the only

partition that satisfies Condition (1) of Definition 4. In fact, if Condition (1) is satisfied for partition X ≡ {{0}, {1}},

then, for x̄ = (x1 ⊕ 1, . . . , xn ⊕ 1) and ā = a⊕ 1, we have

{a} = ξ(i)n

((

fn(ax
(−i), by(−i)) : b ∈ Y

))

(27)

= ξ(i)n

((

fn(āx̄
(−i), by(−i)) : b ∈ Y

))

(28)

= {ā}, (29)

which is a contradiction. On the other hand, Condition (2) is apparently not satisfied for the trivial partition

X = {{0, 1}}. Thus, this function is not X -informative for any partition X of X . However, we can verify that

R(X|Y |f) = RSW(X|Y ) as follows. Suppose that we are given a code to compute the function fn with vanishing

error probability. If the encoder additionally send one bit, say x1, then the decoder can sequentially reproduce all

xis from fn(x,y) and y, which implies RSW(X|Y ) ≤ R(X|Y |f).

As we can find from Example 6, partition X being the finest partition satisfying Condition (1) does not imply

(25). In order to handle functions as in Example 6, we need to consider more general “informative” structure of

given functions, which is beyond the scope of this paper.

C. Proof of Theorem 1

We first prove the converse part

R(X|Y |f) ≥ RSW([X]X |Y ) (30)

and then prove the direct part

R(X|Y |f) ≤ RSW([X]X |Y ). (31)

Converse part: Let (ϕn, ψn) be a code satisfying

Pr (ψn(ϕn(X
n), Y n) 6= fn(X

n, Y n)) =
∑

x,y

PXnY n(x,y)1 [ψn(ϕn(x),y) 6= fn(x,y)] (32)

≤ εn. (33)

Further, let πi : Yn → Yn be the permutation that shifts only ith symbol of y ∈ Yn; i.e., yi 7→ yi + 1 (mod|Y|).

Then, since (X,Y ) is smooth, for every b̂ (0 ≤ b̂ ≤ |Y| − 1) and i ∈ [1 : n], we have

Pr
(

ψn(ϕn(X
n), πb̂

i (Y
n)) 6= fn(X

n, πb̂
i (Y

n))
)

=
∑

x,y

PXnY n(x,y)1
[

ψn(ϕn(x), π
b̂
i (y)) 6= fn(x, π

b̂
i (y))

]

(34)

≤
∑

x,y

1

q
PXnY n(x, πb̂

i (y))1
[

ψn(ϕn(x), π
b̂
i (y)) 6= fn(x, π

b̂
i (y))

]

(35)

≤
εn
q
. (36)
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Thus, we have,6

Pr
((

ψn(ϕn(X
n), bY (−i)) : b ∈ Y

)

6=
(

fn(X
n, bY (−i)) : b ∈ Y

))

= Pr
(

∃b ∈ Y s.t. ψn(ϕn(X
n), bY (−i)) 6= fn(X

n, bY (−i))
)

(37)

=
∑

x,y

PXnY n(x,y)1
[

∃b ∈ Y s.t. ψn(ϕn(x), by
(−i)) 6= fn(x, by

(−i))
]

(38)

=
∑

x,y

PXnY n(x,y)1
[

∃0 ≤ b̂ ≤ |Y| − 1 s.t. ψn(ϕn(x), π
b̂
i (y)) 6= fn(x, π

b̂
i (y))

]

(39)

= Pr
(

∃0 ≤ b̂ ≤ |Y| − 1 s.t. ψn(ϕn(X
n), πb̂

i (Y
n)) 6= fn(X

n, πb̂
i (Y

n))
)

(40)

≤
|Y|

q
εn, (41)

where the last inequality follows from (36) and the union bound.

Since fn is X -informative (and thus the condition (1) of Definition 4 holds), there exists a mapping ξ
(i)
n such

that

Pr
(

ξ(i)n

((

ψn(ϕn(X
n), bY (−i)) : b ∈ Y

))

6= [Xi]X

)

≤
|Y|

q
εn. (42)

Hence, we can construct a decoder ψ̃n : Mn × Yn → X
n

such that Wn = ψ̃n(ϕ(X
n), Y n) satisfies

E

[

1

n
dH([Xn]X ,W

n)

]

=
n
∑

i=1

1

n
Pr ([Xi]X 6=Wi) (43)

≤
|Y|

q
εn. (44)

By the Markov inequality, for any β > 0, we have

Pr

(

1

n
dH([Xn]X ,W

n) ≥ β

)

≤
|Y|

qβ
εn. (45)

Thus, by Lemma 4 in Appendix A, there exists a code (κn, τn) of size 2nδ such that

Pr (τn(κn([X
n]X ),Wn) 6= [Xn]X ) ≤

|Y|

qβ
εn + νn(β)2

−nδ. (46)

Since [Xn]X is a function of Xn and the total code size of (ϕn, ψ̃n) and (κn, τn) is |Mn|2nδ, by Lemma 5 in

Appendix A, we have

Pr

(

1

n
log

1

P[Xn]X |Y n([Xn]X |Y n)
>

1

n
log|Mn|+ 2δ

)

≤
|Y|

qβ
εn + (νn(β) + 1)2−nδ. (47)

Thus, by the standard argument on the Slepian-Wolf coding (see, e.g. [7]), there exists a code for ([Xn]X , Y
n)

with rate (1/n) log|Mn|+ 3δ such that the error probability is less than

|Y|

qβ
εn + (νn(β) + 2)2−nδ. (48)

By taking δ > 0 appropriately compared to β > 0, the error probability converges to 0, which implies

RSW([X]X |Y ) ≤ R(X|Y |f) + 3δ. (49)

6Here we denote by bY (−i) a sequence such that Yi of Y n is replaced by b.
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Since β > 0 can be arbitrarily small, and we can make δ > 0 arbitrarily small accordingly, we have (30).

Direct part: First we claim that, given [x]X and Px ∈ Pn(X ) of a sequence x ∈ Xn, we can construct

a sequence x̂ ∈ Xn satisfying [x̂]X = [x]X and x̂ = σ(x) for a permutation σ. Indeed, we can construct

x̂ = x̂([x]X , Px) as follows. From [x]X , we can determine a partition {IC : C ∈ X} of [1 : n] as

IC := {i ∈ [1 : n] : [xi]X = C}, C ∈ X . (50)

Then, given Px, we can divide each IC (C ∈ X ) into a partition {Ia : a ∈ C} so that7

|Ia| = nPx(a), a ∈ C ⊆ X . (51)

Note that {Ia : a ∈ X} is also a partition of [1 : n]; i.e., for each i ∈ [1 : n] there exists only one x̂i ∈ X such

that i ∈ Ix̂i
. Then, it is not hard to see that x̂ = (x̂1, . . . , x̂n) satisfies the desired property.

Now, suppose that we are given a Slepian-Wolf code (ϕ̂n, ψ̂n) for sending [Xn]X with error probability εn.

From this code, we can construct a code for computing fn as follows. In the new code, observing Xn = x, the

encoder sends the marginal type Px of x by using |X | log(n+1) bits in addition to the codeword ϕ̂n([x]X ) of the

original SW code. Assume that the decoder can obtain [x]X from ϕ̂n([x]X ) and y. Then, since Px is sent from

the encoder, the decoder can construct a sequence x̂ = x̂([x]X , Px) satisfying [x̂]X = [x]X and x̂ = σ(x) for a

permutation σ as shown above. Note that x̂ satisfies fn(x̂,y) = fn(x,y), since fn is X -informative (and thus the

condition (2) of Definition 4 holds). This proves that the decoder can compute fn(x,y) with error probability εn,

and thus we have (31).

V. RESULTS FOR RESTRICTED SUPPORTS

In this section, we consider i.i.d. source (X,Y ) = {(Xn, Y n)}∞n=1 distributed according to PXY , where PXY

may not be full support and the support set is denoted by S ⊆ X × Y . When PXY is not full support, (X,Y )

is not smooth anymore. However, for the type of symbol-wise functions, we can derive an explicit formula for

R(X|Y |f t) by modifying the idea explained in Section III.

A. Hypergraph Graph Entropy

In this section, we introduce the hypergraph entropy, which is a natural extension of the graph entropy introduced

in [10] (see also [14] and [11]).8 A hypergraph G = (X , E) consists of vertex set X and hyperedge set E ⊆ 2X .

For the purpose of this paper, we identify the vertex set with the alphabet of the encoder’s observation.

7Although there are several partitions which satisfy (51), the choice of a partition does not affect the argument; we may choose a partition

so that, for a, â ∈ C satisfying a < â, if i ∈ Ia and j ∈ Iâ then i < j.

8More precisely, the quantity defined by (52) is called “hyperclub entropy” in [11] (see also [4]) and the terminology “hypergraph entropy”

is used for a different quantity in [11]; since “hyperclub” is not very common terminology, we call the quantity defined by (52), “hypergraph

entropy” in this paper.
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Let X be a random variable on X . Without loss of generality, we assume supp(PX) = X . The hypergraph

entropy of (X,G) is defined by

HG(X) := min
X∈W∈E

I(W ∧X) (52)

= min

{

I(W ∧X) :W takes values in E and Pr(X ∈ W ) = 1

}

. (53)

More precisely, the minimization is taken over test channel PW |X satisfying
∑

w∋x PW |X(w|x) = 1. By the data

processing inequality, the minimization can be restricted to W s ranging over maximal hyperedge of E .

For a given (standard) graph G′ = (X , E ′) with edge set E ′ ⊆ X ×X , a set of vertices is independent if no two

are connected by any edge in E ′. If we choose the hyperedge set E as the set of all independent set of G′, then the

hypergraph entropy HG(X) is nothing but the graph entropy of (X,G′) in the sense of [10].

Example 7 ([14]). Let X = {0, 1, 2}, E = {{0, 1}, {1, 2}}, and PX be the uniform distribution on X . By convexity

of mutual information, I(W ∧X) is minimized when PW |X({0, 1}|1) = PW |X({1, 2}|1) = 1
2 . Thus, we have

HG(X) = H(W )−H(W |X) = 1−
1

3
=

2

3
. (54)

Example 8. Let X = {0, 1, 2}, E = {{0, 1}, {1, 2}, {0, 2}}, and PX be the uniform distribution on X . By convexity

of mutual information and symmetry,9 I(W ∧X) is minimized when PW |X(w|x) = 1
2 for every w ∋ x. Thus, we

have

HG(X) = H(W )−H(W |X) = log 3− 1. (55)

Next, let us extend the above definition to the conditional hypergraph entropy. Let (X,Y ) be a pair of random

variables on X × Y . The hypergraph entropy of (X,G) given Y is defined by

HG(X |Y ) := min
W−◦−X−◦−Y

X∈W∈E

I(W ∧X |Y ), (56)

where W −◦−X −◦− Y indicates that W,X, Y form a Markov chain.

Example 9 ([14]). For the same hypergraph as Example 7, Y = X , S = {(x, y) : x, y ∈ {0, 1, 2}, x 6= y}, and

PXY (x, y) =
1
6 for (x, y) ∈ S, by the convexity of the conditional mutual information, I(W ∧X |Y ) is minimized

when PW |X({0, 1}|1) = PW |X({1, 2}|1) = 1
2 . Thus, we have

HG(X |Y ) = H(W |Y )−H(W |X,Y ) (57)

=
1

3
+

2

3
h

(

1

4

)

−
1

3
(58)

=
2

3
h

(

1

4

)

. (59)

9In fact, by rotating the labels 0, 1, 2 and by using convexity, we can first show that PW |X({0, 1}|0) = PW |X({1, 2}|1) =

PW |X({0, 2}|2) = α and PW |X({0, 2}|0) = PW |X({0, 1}|1) = PW |X({1, 2}|2) = β for some α, β with α + β = 1 is optimal.

Then, by flipping PW |X(w|x), PW |X(w′|x) for each w,w′ ∋ x and by using convexity, we can show that α = β is optimal.
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Example 10. For the same hypergraph as Example 8, Y = X , S = {(x, y) : x, y ∈ {0, 1, 2}, x 6= y}, and

PXY (x, y) =
1
6 for (x, y) ∈ S, by the convexity of the conditional mutual information and symmetry, I(W ∧X |Y )

is minimized when PW |X(w|x) = 1
2 for every w ∋ x. Thus, we have

HG(X |Y ) = H(W |Y )−H(W |X,Y ) (60)

=
3

2
− 1 (61)

=
1

2
. (62)

B. Compatible Hyperedge and Solvable Hyperedge

In this section, we introduce concepts of compatible hyperedge and solvable hyperedge. These concepts play

important roles in the statement as well as the proof of Theorem 2 in latter sections. To facilitate understanding

of the concepts, we will provide some examples to support definitions. All lemmas given in this section will be

proved in Appendix D. To simplify the notation, let us introduce

Qn := Pn(V). (63)

When we considered smooth sources in the previous section, the list (f t
n(x, by

(−i)) : b ∈ Y) ∈ Q
|Y|
n played

an important role. On the other hand, since the source we consider in this section does not have full support, the

component function f(x, y) is undefined on the complement Sc of the support set S.10 Thus, we need to consider

the set of possible lists for given (x,y) and i ∈ [1 : n] by assuming values on Sc are appended arbitrarily, which

is defined as follows.

Definition 5. For a given (x,y) ∈ Sn and for each i ∈ [1 : n], let Q
(i)
n (S,x,y) be the set of all (Q0, . . . , Q|Y|−1) ∈

Q
|Y|
n satisfying

Qb = f t

n(x, by
(−i)), ∀b s.t. (xi, b) ∈ S. (64)

In the converse proof of Theorem 2, for a given list (Q0, . . . , Q|Y|−1) ∈ Q
(i)
n (S,x,y), we need to infer possible

values of xi. The following definition provides the set of possible candidates, and Lemma 1 guarantees that xi is

included in the candidate set.11

Definition 6 (Compatible Hyperedge). For a given (Q0, . . . , Q|Y|−1) ∈ Q
|Y|
n , we say that a ∈ X is compatible

with (Q0, . . . , Q|Y|−1) if, for every b1, b2 ∈ Y with (a, b1) ∈ S and (a, b2) ∈ S,

nQb1(v)− nQb2(v) = 1[f(a, b1) = v]− 1[f(a, b2) = v], ∀v ∈ V . (65)

Then, let

e(Q0, . . . , Q|Y|−1) := {a : a is compatible with (Q0, . . . , Q|Y|−1)} (66)

10Even if it is defined, there is no guarantee that a given code recovers the correct value of f t
n(x,y) when (xi, yi) /∈ S for some i ∈ [1 : n].

11It may be worth to note that nQb(v) changes by at most 1 if b is changed, since Qb is the type of a symbol-wise function.
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be the hyperedge that is compatible with (Q0, . . . , Q|Y|−1).
12

Lemma 1. If (Q0, . . . , Q|Y|−1) ∈ Q
(i)
n (S,x,y), then xi ∈ e(Q0, . . . , Q|Y|−1).

Example 11. Let Y = X = {0, 1, 2}, S = {(x, y) : x, y ∈ {0, 1, 2}, x 6= y}, and

f(x, y) =







0 if x > y

1 if x < y
. (67)

For n = 6, let

x = (0 1 2 1 2 0), (68)

y = (1 0 0 2 1 2), (69)

which means

fn(x,y) = (1 0 0 1 0 1), (70)

f t

n(x,y) =

(

1

2
,
1

2

)

. (71)

For i = 4, since (xi, 1) /∈ S, Q1 can be arbitrary. Thus,

Q(4)
n (S,x,y) =

{((

2

3
,
1

3

)

, Q1,

(

1

2
,
1

2

))

: Q1 ∈ Qn

}

. (72)

For instance, when

(Q0, Q1, Q2) =

((

2

3
,
1

3

)

,

(

1

2
,
1

2

)

,

(

1

2
,
1

2

))

, (73)

then e(Q0, Q1, Q2) = {0, 1}; when

(Q0, Q1, Q2) =

((

2

3
,
1

3

)

,

(

2

3
,
1

3

)

,

(

1

2
,
1

2

))

, (74)

then e(Q0, Q1, Q2) = {1, 2}; when

(Q0, Q1, Q2) =

((

2

3
,
1

3

)

,

(

1

3
,
2

3

)

,

(

1

2
,
1

2

))

, (75)

then e(Q0, Q1, Q2) = {1}.

Lemma 1 guarantees that the hyperedge e(Q0, . . . , Q|Y|−1) which is compatible with (Q0, . . . , Q|Y|−1) ∈

Q
(i)
n (S,x,y) includes xi. In the proof of Theorem 2, a hyperedge including xi plays a similar role as a subset [xi]X

of a partition X including xi in the case of smooth sources. Particularly, in the achievability proof, we compute

f t
n(x,y) from (i) a partial information on xi such that it is in a hyperedge and (ii) additional information on the

(conditional) marginal type of x. To guarantee that the decoder can compute the function value, we need a technical

condition on hyperedges. Before the precise description of the condition, we give an example which shows a key

idea behind the definition.

12The set e(Q0, . . . , Q|Y|−1) can be empty set; even if it is empty, we call it a hyperedge though the empty set is commonly not regarded

as a hyperedge.
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TABLE II

THE CASE WITHOUT SIMPLE LOOP IN EXAMPLE 12

x \ y 0 1 2

0 *

1 *

TABLE III

THE CASE WITH BALANCED SIMPLE LOOP IN EXAMPLE 12

x \ y 0 1 2

0 2 * 1

1 3 1 *

2 * 2 3

Example 12. Let us first consider a source such that X = {0, 1}, Y = {0, 1, 2}, and the support set is S =

{(0, 1), (0, 2), (1, 0), (1, 2)}; cf. Table II, where ∗ indicates (x, y) /∈ S. Using the terminology that will be introduced

in Definition 7, this is the case such that there is no “simple loop”. In this case, the joint type Pxy can be determined

from marginal types Px and Py for any (x,y) ∈ Sn. Indeed, we have nPxy(0, 1) = nPy(1), nPxy(0, 2) =

n(Px(0) − Py(1)), nPxy(1, 0) = nPy(0), and nPxy(1, 2) = n(Px(1) − Py(0)). Thus, for any function f on

X × Y , the value f t
n(x,y) can be computed from Px and Py . In this sense, this case is “solvable”.

On the other hand, let us consider the case where the support S and the function f are given as Table III. Using

the terminology that will be introduced in Definition 7, this is the case such that there exists a “balanced simple

loop”; see also Example 13. In this case, for any (x,y) ∈ Sn, letting a = nPxy(0, 0), we have

nPxy(0, 2) = nPx(0)− a, (76)

nPxy(1, 0) = nPy(0)− a, (77)

nPxy(1, 1) = nPx(1)− nPy(0) + a, (78)

nPxy(2, 1) = nPy(1)− nPx(1) + nPy(0)− a, (79)

nPxy(2, 2) = nPy(2)− nPx(0) + a. (80)

Since the value a is unknown, which stems from the fact that there is a simple loop, Pxy cannot be determined

from Px and Py. Nevertheless, since the simple loop is balanced in the sense that +a and −a cancel for each

function value, we can compute the type Pfn(x,y) of the function values from Px and Py . Indeed, from (76) and

(78), we have nPfn(x,y)(1) = nPx(0) + nPx(1)− nPy(0), which does not depend on unknown value a. We can

also determine nPfn(x,y)(2) and nPfn(x,y)(3) similarly. In this sense, this case is also “solvable”.

Motivated by the idea given in Example 12, we introduce the concept of solvability of hyperedges. The solvable

hyperedge gives a sufficient condition such that the type of function values can be determined from marginal types,

which is guaranteed by Lemma 2 below.
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TABLE IV

FUNCTION OF EXAMPLE 13

x \ y 0 1 2 3 4

0 4 2 * 1 0

1 * 3 1 * *

2 * * 2 3 *

3 4 * * * 0

TABLE V

SIMPLE LOOP 1

x \ y 0 1 2 3 4

0 4 2+ * 1− 0

1 * 3− 1+ * *

2 * * 2− 3+ *

3 4 * * * 0

TABLE VI

SIMPLE LOOP 2

x \ y 0 1 2 3 4

0 4+ 2 * 1 0−

1 * 3 1 * *

2 * * 2 3 *

3 4− * * * 0+

Definition 7 (Solvable Hyperedge). For a given A× B ⊆ X × Y , a subset of the form:

{(a0, b0), (a0, b1), (a1, b1), (a1, b2), . . . , (am−2, bm−1), (am−1, bm−1), (am−1, b0)} ⊆ (A× B) ∩ S (81)

with ai 6= aj and bi 6= bj for i 6= j, is called a simple loop. For a given simple loop and each v ∈ V , let

I+(v) := {0 ≤ i ≤ m− 1 : f(ai, bi) = v}, (82)

I−(v) := {0 ≤ i ≤ m− 1 : f(ai, bi+1 mod m) = v} (83)

be the set of incremental positions and the set decremental positions in the simple loop, respectively. Then, we say

that A× B is solvable for (S, f) if, for any simple loop of A× B, the balanced condition

|I+(v)| = |I−(v)|, ∀v ∈ V (84)

holds.13 We say that e ⊆ X is solvable hyperedge if e× Y is solvable for (S, f). The set of all maximal solvable

hyperedges for (S, f) is denoted by E(S, f).

Remark 2. When f is the identity function, we can verify that A×B is solvable for (S, f) if and only if it does

not contain any simple loop.

Example 13. Let us consider function f : X × Y → V = {0, . . . , 4} shown in Table IV. There are two simple

loops for this function:

{(0, 1), (0, 3), (2, 3), (2, 2), (1, 2), (1, 1)}, (85)

{(0, 0), (0, 4), (3, 4), (3, 0)}, (86)

which are described in Tables V and VI with subscripts ±, where + and − indicate incremental and decremental

positions, respectively. As we can find from the tables, the balanced condition (84) is satisfied for both the simple

loops. Thus, {0, 1, 2, 3}× {0, 1, 2, 3, 4} is solvable in this case.

Example 14. Let us consider the function given by (67); see also Table VII. In this case, {0, 1}, {0, 2}, {1, 2} are

solvable hyperedges since there is no simple loop. However, {0, 1, 2} is not solvable hyperedge since the simple

loop described in Table VII violates (84).

13When either |A| ≤ 1 or |B| ≤ 1, then A×B is trivially solvable since there is no simple loop.
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TABLE VII

FUNCTION TABLE OF (67)

x \ y 0 1 2

0 * 1+ 1−

1 0− * 1+

2 0+ 0− *

Lemma 2. Suppose that A × B ⊆ X × Y is solvable for (S, f). Then, for any integer n, x ∈ An and y ∈ Bn

satisfying (xi, yi) ∈ S for all 1 ≤ i ≤ n, the type f t
n(x,y) of fn(x,y) = (f(x1, y1), . . . , f(xn, yn)) can be

uniquely determined from the marginal types Px and Py; more precisely, any joint types P
(1)

X̄Ȳ
, P

(2)

X̄Ȳ
∈ Pn(A×B)

with supp(P
(i)

X̄Ȳ
) ⊆ S, i = 1, 2 satisfying

∑

y∈B

P
(i)

X̄Ȳ
(x, y) = Px(x), ∀x ∈ A, (87)

∑

x∈A

P
(i)

X̄Ȳ
(x, y) = Py(y), ∀y ∈ B (88)

must satisfy

∑

(x,y)∈A×B:
f(x,y)=v

P
(1)

X̄Ȳ
(x, y) =

∑

(x,y)∈A×B:
f(x,y)=v

P
(2)

X̄Ȳ
(x, y), ∀v ∈ V . (89)

The following lemma gives a connection between compatible hyperedges and solvable hyperedges, which will

be used in the converse proof of Theorem 2.

Lemma 3. For a given (Q0, . . . , Q|Y|−1) ∈ Q
|Y|
n , the compatible hyperedge e(Q0, . . . , Q|Y|−1) is solvable.

Furthermore, there exists ẽ ∈ E(S, f) satisfying e(Q0, . . . , Q|Y|−1) ⊆ ẽ.

C. Coding Theorem

Theorem 2. For given PXY with S = supp(PXY ) and f : X × Y → V , let G = (X , E) be the hypergraph such

that E = E(S, f) is the set of all maximal solvable hyperedges for (S, f). Then, the optimal rate for computing

the type of symbol-wise function f for i.i.d. source (X,Y ) distributed according to PXY is given by

R(X|Y |f t) = HG(X |Y ). (90)

To illustrate the utility of Theorem 2, let us consider the following example from [14] (see also [5]).

Example 15. Consider an n-round online game, where in each round Alice and Bob each select one card without

replacement from a virtual hat with three cards labeled 0, 1, 2. The one with larger number wins. Let Xn be Alice’s

outcome and Y n be Bob’s outcome. This situation is described by Y = X , S = {(x, y) : x, y ∈ {0, 1, 2}, x 6= y},

PXY (x, y) =
1
6 for (x, y) ∈ S, and the function f defined by (67). If Bob would like to know who won in each

round, it suffices for Alice to send a message at rate 2
3h
(

1
4

)

, which is optimal [14].
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Now, suppose that Bob does not care who won in each round; instead, he is only interested in the total number

of rounds he won. Then, Theorem 2 (see also Example 10 and Example 14) says that it suffices for Alice to send

a message at rate 1
2 , which is optimal.

Remark 3. For X = Y = {0, 1, 2}, S = {(x, y) : x, y ∈ {0, 1, 2}, x 6= y}, and the identity function f id, the

set of all solvable hyperedges is given by {{0, 1}, {0, 2}, {1, 2}}, which is the same as Example 14. Thus, the

optimal rate for computing the type of (67) is the same as the optimal rate for computing the joint type. This is in

contrast to the fact that the optimal rate for computing (67) symbol-wisely is strictly smaller than the optimal rate

for computing the identity function symbol-wisely, i.e., the Slepian-Wolf rate.

D. Proof of Theorem

We first prove the converse part

R(X|Y |f t) ≥ HG(X |Y ) (91)

and then prove the direct part

R(X|Y |f t) ≤ HG(X |Y ). (92)

Converse part: Fix ε > 0 arbitrarily, and let (ϕn, ψn) be a code with size |Mn| satisfying

Pr
(

ψn(ϕn(X
n), Y n) 6= f t

n(X
n, Y n)

)

=
∑

x,y

PXnY n(x,y)1
[

ψn(ϕn(x),y) 6= f t

n(x,y)
]

(93)

≤ ε. (94)

First, by a similar manner to the proof of the converse part of Theorem 1, we prove that, for any i ∈ [1 : n],

Pr
(

ψn(ϕn(X
n), bY (−i)) = f t

n(X
n, bY (−i)), ∀b ∈ Y s.t. (Xi, b) ∈ S

)

≥ 1−
|Y|

q∗
ε (95)

where

q∗ := min
(x,y)∈S

PXY (x, y). (96)

Indeed, for every b̂ (0 ≤ b̂ ≤ |Y| − 1) and i ∈ [1 : n], we have

Pr
(

[ψn(ϕn(X
n), πb̂

i (Y
n)) 6= f t

n(X
n, πb̂

i (Y
n))] ∧ [(Xi, π

b̂(Yi)) ∈ S]
)

=
∑

x,y

PXnY n(x,y)1
[

[ψn(ϕn(x), π
b̂
i (y)) 6= f t

n(x, π
b̂
i (y))] ∧ [(xi, π

b̂(yi)) ∈ S]
]

(97)

≤
∑

x,y

1

q∗
PXnY n(x, πb̂

i (y))1
[

[ψn(ϕn(x), π
b̂
i (y)) 6= f t

n(x, π
b̂
i (y))] ∧ [(xi, π

b̂(yi)) ∈ S]
]

(98)

≤
ε

q∗
(99)
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where π : Y → Y is the permutation such that y 7→ y + 1(mod|Y|). Thus, for any i ∈ [1 : n], we have

Pr
(

ψn(ϕn(X
n), bY (−i)) 6= f t

n(X
n, bY (−i)) for some b ∈ Y s.t. (Xi, b) ∈ S

)

= Pr
(

∃b ∈ Y s.t. ψn(ϕn(X
n), bY (−i)) 6= f t

n(X
n, bY (−i)) and (Xi, b) ∈ S

)

(100)

=
∑

x,y

PXnY n(x,y)1
[

∃b ∈ Y s.t. ψn(ϕn(x), by
(−i)) 6= f t

n(x, by
(−i)) and (xi, b) ∈ S

]

(101)

=
∑

x,y

PXnY n(x,y)1
[

∃0 ≤ b̂ ≤ |Y| − 1 s.t. ψn(ϕn(x), π
b̂
i (y)) 6= f t

n(x, π
b̂
i (y)) and (xi, π

b̂(yi)) ∈ S
]

(102)

= Pr
(

∃0 ≤ b̂ ≤ |Y| − 1 s.t. [ψn(ϕn(X
n), πb̂

i (Y
n)) 6= f t

n(X
n, πb̂

i (Y
n))] ∧ [(Xi, π

b̂(Yi)) ∈ S]
)

(103)

≤
|Y|

q∗
ε. (104)

This implies (95).

On the other hand, for each i ∈ [1 : n], let us define a random variable Wi as follows. For each b ∈ Y , let

Qb = ψn(ϕn(X
n), bY (−i)). (105)

Then, we set Wi = w for a hyperedge w ∈ E satisfying w ⊇ e(Q0, . . . , Q|Y|−1), where existence of such a

hyperedge is guaranteed by Lemma 3.14

Note that Wi satisfies the Markov chain Wi −◦−Xi −◦− Yi, since Wi is determined from ϕn(X
n), Y i−1

1 , and

Y n
i+1. Furthermore, from Lemma 1 and (95), it is not hard to see that

Pr(Xi ∈ Wi) ≥ 1− γ (106)

where

γ :=
|Y|

q∗
ε. (107)

Now, let us introduce a new quantity

Hγ
G (X |Y ) := min

W−◦−X−◦−Y
X∈W with prob.≥1−γ

I(W ∧X |Y ) (108)

= min

{

I(W ∧X |Y ) :W takes values in E ,W −◦−X −◦− Y, and Pr(X ∈W ) ≥ 1− γ

}

. (109)

Then, the random variable Wi defined above satisfies that

I(Xi ∧Wi|Yi) ≥ Hγ
G(X |Y ) ∀i ∈ [1 : n]. (110)

14If there are more than one such w ∈ E then we pick arbitrary one.
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Hence, by the standard argument, we have the following chain of inequalities

log|Mn| ≥ H(ϕn(X
n)) (111)

≥ H(ϕn(X
n)|Y n) (112)

= I(Xn ∧ ϕn(X
n)|Y n) (113)

=

n
∑

i=1

I(Xi ∧ ϕn(X
n)|Y n, X i−1) (114)

=
n
∑

i=1

[

H(Xi|Y
n, X i−1)−H(Xi|ϕn(X

n), Y n, X i−1)
]

(115)

=

n
∑

i=1

[

H(Xi|Yi)−H(Xi|ϕn(X
n), Y n, X i−1)

]

(116)

≥
n
∑

i=1

[H(Xi|Yi)−H(Xi|ϕn(X
n), Y n)] (117)

(a)

≥
n
∑

i=1

[H(Xi|Yi)−H(Xi|Wi, Yi)] (118)

=
n
∑

i=1

I(Xi ∧Wi|Yi) (119)

≥ nHγ
G(X |Y ) (120)

where the inequality (a) follows from the fact that Wi is determined from ϕn(X
n), Y i−1

1 , and Y n
i+1.

Eq. (120) implies that

R(X|Y |f t) ≥ Hγ
G(X |Y ). (121)

Since we can choose ε arbitrarily small and γ → 0 as ε→ 0, we have

R(X|Y |f t) ≥ sup
γ>0

Hγ
G(X |Y ) (122)

= lim
γ↓0

Hγ
G(X |Y ) (123)

= HG(X |Y ) (124)

where the last equality holds from the compactness of the set of conditional probabilities PW |X and the continuity

of the conditional mutual information I(W ∧X |Y ). Hence, we have (91).

Direct part: The proof of the direct part is divided into two parts: in the first part, the encoder sends a quantized

version of Xn to the decoder; in the second part, the encoder additionally sends the (conditional) marginal type,

and the decoder computes the function value by using solvability of hyperedges. Since the first part is the standard

argument of the Wyner-Ziv coding, we only provide a sketch (see [5, Sec. 11.3.1] for the detail).

Let PW |X be a test channel that attain HG(X |Y ), and let PWXY be the joint distribution induced by the test

channel and PXY . Fix arbitrary ε > ε′ > 0, and let

T n
ε (WY ) := {(w,y) : |Pwy(w, y) − PWY (w, y)| ≤ εPWY (w, y), ∀(w, y) ∈ E × Y} (125)
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be the set of all ε-typical sequences; T n
ε′ (WX) is defined similarly. We use the so-called quantize-bin scheme.

For codebook generation, we randomly and independently generate 2nR̃ codewords w(ℓ), ℓ ∈ [1 : 2nR̃], each

according to Pn
W . Then, we partition the set of indices ℓ ∈ [1 : 2nR̃] into equal-size bins B(m), m ∈ [1 : 2nR]. For

encoding, given x, the encoder finds, if exists, an index ℓ(x) such that (w(ℓ(x)),x) ∈ T n
ε′ (WX), and sends the

bin index m(x) satisfying ℓ(x) ∈ B(m(x)). For decoding, upon receiving message m, the decoder finds, if exists,

the unique index ℓ̂(m,y) ∈ B(m) such that (w(ℓ̂(m,y)),y) ∈ T n
ε (WY ). Then, if R̃ > I(W ∧ X) + δ(ε′) and

R̃−R < I(W ∧ Y )− δ(ε), where δ(ε), δ(ε′) → 0 as ε, ε′ → 0, the following performance is guaranteed:

lim
n→∞

Pr
(

(w(ℓ(Xn)), Xn) /∈ T n
ε′ (WX) or ℓ̂(m(Xn), Y n) 6= ℓ(Xn)

)

= 0. (126)

In addition to message m(x), the encoder also sends the marginal type QW̄ = Pw(ℓ(x)) ∈ Pn(E) and the

conditional type QX̄|W̄ = Px|w(ℓ(x)) ∈ Pn(X|E). Then, upon receiving QW̄ and QX̄|W̄ , the decoder declares an

error if QW̄ 6= P
w(ℓ̂(m,y)). Otherwise, the decoder finds, if exists, the unique conditional type Q̂V̄ |W̄ ∈ Pn(V|E)

that is compatible with QX̄|W̄ and QȲ |W̄ = P
y|w(ℓ̂(m,y)) in the following sense: for every conditional joint type

QX̄Ȳ |W̄ with supp(QX̄Ȳ |W̄ (·, ·|w)) ⊆ S, ∀w ∈ E such that the marginals are QX̄|W̄ and QȲ |W̄ respectively, it

holds that

Q̂V̄ |W̄ (v|w) =
∑

(x,y):
f(x,y)=v

QX̄Ȳ |W̄ (x, y|w) (127)

for every v ∈ V and w ∈ E . Then, the decoder outputs

Q̂V̄ (·) =
∑

w∈E

QW̄ (w)Q̂V̄ |W̄ (·|w) ∈ Pn(V) (128)

as an estimate of the function value f t
n(x,y).

Fix arbitrary (x,y) satisfying (xi, yi) ∈ S for all 1 ≤ i ≤ n. We claim that the estimate Q̂V̄ coincide

with the function value f t
n(x,y) whenever (w(ℓ(x)),x) ∈ T n

ε′ (WX) and ℓ̂(m(x),y) = ℓ(x). In fact, note that

(w(ℓ(x)),x) ∈ T n
ε′ (WX) implies xi ∈ w(ℓ(x))i for every i ∈ [1 : n], where w(ℓ(x))i is the ith component of

w(ℓ(x)). Thus, by applying Lemma 2 for each w ∈ E with A = w, B = Y , and n = |{i ∈ [1 : n] : w(ℓ(x))i = w}|,

existence and uniqueness of Q̂V̄ |W̄ satisfying (127) is guaranteed, and it satisfies Q̂V̄ |W̄ = Pfn(x,y)|w(ℓ(x)), which

implies Q̂V̄ = f t
n(x,y). This claim together with (126) imply that the error probability of computing f t

n(X
n, Y n)

at the decoder vanishes asymptotically. Since types QW̄ and QX̄|W̄ can be sent with asymptotically zero-rate, the

total rate is bounded by HG(X |Y )+ δ(ε)+ δ(ε′). Since δ(ε), δ(ε′) can be made arbitrarily small, we have (92).

VI. CONCLUSION

In this paper, we developed a new method to show converse bounds on the distributed computing problem. By

using the proposed method, we characterized the optimal rate of distributed computing for some classes of functions

that are difficult to be handled by previously known methods. The key idea of our method is, from the nature of

distributed computing and the structure of the function to be computed, to identify information that is inevitably

conveyed to the decoder. We believe that our method is useful for characterizing the optimal rate for more general

classes of functions, which will be studied in a future work.

July 12, 2021 DRAFT



23

Another important problem to be studied is the case where both the sources Xn and Y n are encoded by two

separate encoders. In such a problem, a difficulty is to derive a bound on the sum rate. Extending the method

developed in this paper to such a problem is an important future research agenda.

APPENDIX A

TECHNICAL LEMMAS

The following lemma says that if there exists a code with small symbol error probability, then, by sending

additional message of negligible rate, we can boost that code so that block error probability is small. For given

0 < β < 1/2, let

νn(β) :=

⌈nβ⌉−1
∑

i=0

(|X | − 1)i
(

n

i

)

≤ n|X |nβ2nh(β) (129)

be the size of Hamming ball of radius ⌈nβ⌉ − 1 on Xn.

Lemma 4. Suppose that (Xn,Wn) on Xn ×Xn satisfies

Pr

(

1

n
dH(Xn,Wn) ≥ β

)

≤ εn. (130)

Then, there exists an encoder κn : Xn → Kn with |Kn| ≤ 2nδ and a decoder τn : Kn ×Xn → Xn such that

Pr (τn(κn(X
n),Wn) 6= Xn) ≤ εn + νn(β)2

−nδ. (131)

Proof. For an encoder κn, we use the random binning. Given kn ∈ Kn and w ∈ Xn, the decoder finds (if exists)

a unique x̂ such that

x̂ ∈ T n
β (w) := {x : dH(x,w) < nβ} (132)

and κn(x̂) = kn. Note that

|T n
β (w)| ≤ νn(β), ∀w ∈ Xn. (133)

Then, by the standard argument (cf. [7, Lemma 7.2.1]), the error probability averaged over the random binning is

bounded as

Eκn
[Pr (τn(κn(X

n),Wn) 6= Xn)] (134)

≤ Pr

(

1

n
dH(Xn,Wn) ≥ β

)

(135)

+
∑

x,w

PXnWn(x,w)
∑

x̂∈T n
β

(w)

x̂ 6=x

Pr (κn(x̂) 6= κn(x)) (136)

≤ εn +
∑

x,w

PXnWn(x,w)
∑

x̂∈T n
β

(w)

x̂ 6=x

1

|Kn|
(137)

≤ εn + νn(β)2
−nδ. (138)

July 12, 2021 DRAFT



24

The following lemma is also used in the main text; it is a slight modification of the standard converse of the

Slepian-Wolf coding (cf. [7, Lemma 7.2.2]), where Xn is replaced by a function value gn(X
n).

Lemma 5. For a given (Xn, Y n) and a function gn : Xn → Zn, if a code (ϕn, ψn) with size |Mn| satisfies

Pr (ψn(ϕn(X
n), Y n) 6= gn(X

n)) ≤ εn, (139)

then it holds that

Pr

(

1

n
log

1

PZn|Y n(Zn|Y n)
>

1

n
log |Mn|+ δ

)

≤ εn + 2−nδ, (140)

where Zn = gn(X
n).

Proof. By the standard argument, we have

Pr

(

1

n
log

1

PZn|Y n(Zn|Y n)
>

1

n
log |Mn|+ δ

)

(141)

≤ Pr (ψn(ϕn(X
n), Y n) 6= gn(X

n)) (142)

+ Pr

(

1

n
log

1

PZn|Y n(Zn|Y n)
>

1

n
log |Mn|+ δ, (143)

ψn(ϕn(X
n), Y n) = gn(X

n)

)

(144)

≤ εn +
∑

zn,mn,y

∑

x∈g−1
n (zn)∩ϕ−1

n (mn)

PY n(y)PXn|Y n(x|y) (145)

× 1

[

PZn|Y n(zn|y) <
2−nδ

|Mn|
, ψn(mn,y) = zn

]

(146)

≤ εn +
∑

zn,mn,y

PY n(y)
2−nδ

|Mn|
1 [ψn(mn,y) = zn] (147)

≤ εn + 2−nδ, (148)

where the third inequality follows from

∑

x∈g−1
n (zn)∩ϕ−1

n (mn)

PXn|Y n(x|y) ≤
∑

x∈g−1
n (zn)

PXn|Y n(x|y) (149)

= PZn|Y n(zn|y). (150)

APPENDIX B

PROOF OF PROPOSITION 1

Proof: First, for given partitions X 1 and X 2 satisfying Condition (1) of Definition 4, it is not difficult to see

that their intersection also satisfies Condition (1). Thus, there exists the finest partition satisfying Condition (1),

and it suffices to prove that X is the finest one.
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Suppose that there exists a partition X
′

that is finer than X . Then, there exist a, â ∈ X such that [a]X = [â]X

and [a]X ′ 6= [â]X ′ . Let x ∈ Xn be a sequence such that xi = a and xj = â for i 6= j. Then, for the permutation σ

that interchange only i and j, we have

fn(σ(x),y) = fn(x,y) (151)

holds for every y ∈ Yn since [σ(x)]X = [x]X and the partition X satisfies Condition (2). On the other hand, since

partition X
′

satisfies Condition (1), there exists mapping ξ
′(i)
n that satisfies (14) for X

′
. Thus, for arbitrarily fixed

y, we have

[a]X ′ = ξ′(i)n

((

fn(x, by
(−i)) : b ∈ Y

))

(152)

= ξ′(i)n

((

fn(σ(x), by
(−i)) : b ∈ Y

))

(153)

= [â]X ′ , (154)

which is a contradiction.

APPENDIX C

PROOF OF PROPOSITIONS 2, 3, AND 4

To simplify the notation, we denote [·]X f
by [·]f ; e.g. [x]f := [x]X f

.

Proof of Proposition 2: For any a ∈ X , [a]f is uniquely determined from the list (f(a, b) : b ∈ Y). Hence it

is easy to see that Condition (1) of Definition 4 holds.

On the other hand, if [xσ(i)]f = [xi]f then f(xσ(i), y) = f(x, y) for all y ∈ Y . Since [σ(x)]f = [x]f means

[xσ(i)]f = [xi]f for all i ∈ [0 : 1], Condition (2) of Definition 4 holds.

Proof of Proposition 3: We first show Condition (1) of Definition 4 is satisfied. Fix a ∈ X , (x,y) ∈ Xn×Yn,

and i ∈ [1 : n] arbitrarily, and let

Qb := f t

n(ax
(−i), by(−i)), b ∈ Y. (155)

Then, we claim that

(

f̂ t(a, b) : b ∈ Y
)

(156)

can be uniquely determined from (Qb : b ∈ Y). In fact, if (Qb : b ∈ Y) is a constant vector, then (156) must be

(m,m, . . . ,m). Otherwise, find v0 ∈ V such that

nQb(v0) < nQ0(v0) (157)

for some 0 < b ≤ |Y| − 1. Then the first element f̂ t(a, 0) of (156) must be v0. Next, for each 0 < b ≤ |Y| − 1,

find v (if exists) such that

nQb(v) > nQ0(v). (158)
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Then the (b + 1)th element f̂ t(a, b) of (156) must be v. If such a v does not exist, f̂ t(a, b) must be v0. In this

manner, the list (156) is uniquely determined from (Qb : b ∈ Y). Since [a]f̂ t is uniquely determined from (156),

Condition (1) holds.

Next we verify Condition (2). Let

C∗ := {x ∈ X : f(x, ·) is constant}. (159)

Note that C∗ may be empty but if C∗ 6= ∅ then C∗ ∈ X f̂ t . Now, fix (x,y) ∈ Xn ×Yn and σ satisfying [σ(x)]f̂ t =

[x]f̂ t arbitrarily, and let Q := f t
n(x,y) and Q′ := f t

n(σ(x),y). Further, let Ci := [xi]f̂ t = [xσ(i)]f̂ t for all i ∈ [1 : n].

Then, for each v ∈ V ,

nQ(v) =
∑

i∈[1:n]:
Ci 6=C∗

1[f(xi, yi) = v] +
∑

i∈[1:n]:
Ci=C∗

1[f(xi, yi) = v] (160)

=
∑

i∈[1:n]:
Ci 6=C∗

1[f(xσ(i), yi) = v] +
∑

i∈[1:n]:
Ci=C∗

1[f(xσ(i), yi) = v] (161)

= nQ′(v), (162)

where the second equality holds by the following reasons: the first terms coincide since f(xσ(i), ·) = f(xi, ·)

whenever Ci 6= C∗; the second terms coincide since f(xi, ·) is constant if Ci = C∗.

Proof of Proposition 4: We first show Condition (1) of Definition 4 is satisfied. Fix a ∈ X , (x,y) ∈ Xn×Yn,

and i ∈ [1 : n] arbitrarily, and let

vb := f⊕
n (ax(−i), by(−i)), b ∈ Y. (163)

Then we have

f̂⊕(a, b) = vb+1 − vb (mod m), b ∈ Y (164)

where v|Y| = v0. In other words, the list

(

f̂⊕(a, b) : b ∈ Y
)

(165)

can be uniquely determined from (vb : b ∈ Y). Since [a]f̂⊕ is uniquely determined from (165), the condition (1)

holds.
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Next we verify Condition (2). Fix (x,y) ∈ Xn × Yn and σ satisfying [σ(x)]f̂ t = [x]f̂ t arbitrarily, and let

Ci := [xi]f̂⊕ = [xσ(i)]f̂⊕ for all i ∈ [1 : n]. Then, we have

fn(x,y) =
∑

C∈X
f̂⊕

∑

i∈[1:n]:
Ci=C

f(xi, yi) (mod m) (166)

=
∑

C∈X
f̂⊕

∑

i∈[1:n]:
Ci=C

[f(xi, 0) + f(xi, yi)− f(xi, 0)] (mod m) (167)

=
n
∑

i=1

f(xi, 0) +
∑

C∈X
f̂⊕

∑

i∈[1:n]:
Ci=C

[f(xi, yi)− f(xi, 0)] (mod m) (168)

(a)
=

n
∑

i=1

f(xσ(i), 0) +
∑

C∈X
f̂⊕

∑

i∈[1:n]:
Ci=C

[

f(xσ(i), yi)− f(xσ(i), 0)
]

(mod m) (169)

=
∑

C∈X
f̂⊕

∑

i∈[1:n]:
Ci=C

f(xσ(i), yi) (mod m) (170)

= fn(σ(x),y) (171)

where the equality (a) holds by the following reasons: it is apparent that the first terms coincide since σ is a

permutation; the second terms coincide since, for any i ∈ [1 : n], σ satisfies [xi]f̂⊕ = [xσ(i)]f̂⊕ and thus

f(xi, yi)− f(xi, 0) = f(xσ(i), yi)− f(xσ(i), 0) (mod m). (172)

APPENDIX D

PROOF OF LEMMAS 1, 2, AND 3

Proof of Lemma 1: Since (Q0, . . . , Q|Y|−1) ∈ Q
(i)
n (S,x,y), for any b1, b2 with (xi, b1) ∈ S and (xi, b2) ∈ S,

(64) implies

nQb1(v)− nQb2(v) = 1[f(xi, b1) = v]− 1[f(xi, b2) = v], ∀v ∈ V . (173)

Thus, xi is compatible with (Q0, . . . , Q|Y|−1).

Proof of Lemma 2: Suppose that P
(1)

X̄Ȳ
, P

(2)

X̄Ȳ
∈ Pn(A× B) be distinct joint types satisfying (87) and (88).15

Then, we shall show that (89) is satisfied. First, we find a simple loop of A× B as follows. Let

δ(x, y) := nP
(1)

X̄Ȳ
(x, y)− nP

(2)

X̄Ȳ
(x, y). (174)

Then, (87) and (88) imply

∑

y∈B

δ(x, y) = 0, ∀x ∈ A, (175)

∑

x∈A

δ(x, y) = 0, ∀y ∈ B. (176)

15If there is only one joint type satisfying (87) and (88), which is Pxy , there is nothing to be proved.
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Furthermore, we also have

∑

x∈A
y∈B

δ(x, y) = 0, (177)

and

∑

x∈A
y∈B

|δ(x, y)| (178)

is strictly positive. We first pick any (a0, b0) ∈ (A × B) ∩ S such that δ(a0, b0) > 0. Then, we pick any b1 ∈ B

such that b1 6= b0 and δ(a0, b1) < 0, which must exist by (175). Next, we pick any a1 ∈ A such that a1 6= a0

and δ(a1, b1) > 0, which must exist by (176). We continue this procedure by picking bi ∈ B such that bi 6= bj

for 0 ≤ j < i and δ(ai−1, bi) < 0; or by picking ai ∈ A such that ai 6= aj for 0 ≤ j < i and δ(ai, bi) > 0. We

terminate the procedure when the only candidate is b0 or a0. If the procedure terminates by finding b0 after picking

am−1, then

{(a0, b0), (a0, b1), (a1, b1), (a1, b2), . . . , (am−2, bm−1), (am−1, bm−1), (am−1, b0)} (179)

is the desired simple loop; if the procedure terminates by finding a0 after picking bm−1, then

{(a0, bm−1), (a0, b1), (a1, b1), (a1, b2), . . . , (am−2, bm−1)} (180)

is the desired simple loop. Suppose that the former case occurred; the case with the latter proceed similarly with

appropriate relabeling.

Along the simple loop we found above, we modify P
(1)

X̄Ȳ
as follows:

P
(1)

X̄Ȳ
(ai, bi) → P

(1)

X̄Ȳ
(ai, bi)−

1

n
, (181)

P
(1)

X̄Ȳ
(ai, bi+1 mod m) → P

(1)

X̄Ȳ
(ai, bi+1 mod m) +

1

n
, (182)

and other components remain unchanged. Since A× B is solvable, the simple loop must satisfy (84). Thus,

∑

(x,y)∈A×B:
f(x,y)=v

P
(1)

X̄Ȳ
(x, y) (183)

remain unchanged for every v ∈ V by the above modification procedure, (181) and (182). On the other hand, (178)

strictly decrements by the above modification procedure.

For the modified P
(1)

X̄Ȳ
and the corresponding δ(x, y), we look for a simple loop again in the same manner as

above, and modify P
(1)

X̄Ȳ
along the found simple loop. We continue this process until (178) become 0, which implies

P
(1)

X̄Ȳ
coincides with P

(2)

X̄Ȳ
. Since (183) remain unchanged by the above modification procedure, (89) must have

been satisfied in the first place.

Proof of Lemma 3: The latter statement follows from the former statement since E(S, f) is the set of all

maximal solvable hyperedges. Thus, we prove the former statement. Suppose that e(Q0, . . . , Q|Y|−1) is not solvable.

Then, there exists a simple loop

{(a0, b0), (a0, b1), . . . , (am−1, bm−1), (am−1, b0)} ⊆ (e(Q0, . . . , Q|Y|−1)× Y) ∩ S (184)
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that violates (84) for some v∗ ∈ V . Since a0, . . . , am−1 are compatible with (Q0, . . . , Q|Y|−1), we have

nQb0(v
∗)− nQb1(v

∗) = 1[f(a0, b0) = v∗]− 1[f(a0, b1) = v∗], (185)

nQb1(v
∗)− nQb2(v

∗) = 1[f(a1, b1) = v∗]− 1[f(a1, b2) = v∗], (186)

...

nQbm−1(v
∗)− nQb0(v

∗) = 1[f(am−1, bm−1) = v∗]− 1[f(am−1, b0) = v∗]. (187)

We find that the summation of the left hand sides of (185)-(187) is 0; on the other hand, since (84) is violated for

v∗, the summation of the right hand sides of (185)-(187) is not 0, which is a contradiction. Thus, e(Q0, . . . , Q|Y|−1)

is solvable.
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