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Phase Retrieval Without

Small-Ball Probability Assumptions
Felix Krahmer Yi-Kai Liu

Abstract—In the context of the phase retrieval problem, it is
known that certain natural classes of measurements, such as
Fourier measurements and random Bernoulli measurements, do
not lead to the unique reconstruction of all possible signals,
even in combination with certain practically feasible random
masks. To avoid this difficulty, the analysis is often restricted
to measurement ensembles (or masks) that satisfy a small-ball
probability condition, in order to ensure that the reconstruction
is unique.

This paper shows a complementary result: for random
Bernoulli measurements, there is still a large class of signals
that can be reconstructed uniquely, namely those signals that
are non-peaky. In fact, this result is much more general: it holds
for random measurements sampled from any subgaussian distri-
bution D, without any small-ball conditions. This is demonstrated
in two ways: first, a proof of stability and uniqueness, and second,
a uniform recovery guarantee for the PhaseLift algorithm. In all
of these cases, the number of measurements m approaches the
information-theoretic lower bound.

Finally, for random Bernoulli measurements with erasures, it
is shown that PhaseLift achieves uniform recovery of all signals
(including peaky ones).

Index Terms—Phase retrieval, random measurements,
PhaseLift, inverse problems, reconstruction algorithms,
sampling methods, convex optimization

I. INTRODUCTION

A. Ambiguities in Phase Retrieval

Phase retrieval is the problem of recovering an unknown

vector x ∈ Cn from measurements of the form

yi = |aTi x|
2
+ wi (for i = 1, . . . ,m), (1)

where the vectors ai ∈ Cn are known, and the wi ∈ R

represent additive noise which is unknown. (The name phase

retrieval refers to the fact that the measurements reveal the

magnitudes, but not the phases, of the aTi x.) Phase retrieval

has numerous applications including X-ray crystallography

[1], [2], astronomy [3], ptychography and coherent diffractive

imaging [4], [5], and quantum state tomography [6].

A typical experiment setup is that one places a detector

far from the object being imaged, and the detector records
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the intensity of the light field, but not its phase. To a first

approximation, this situation can be described by phaseless

measurements where the ai are Fourier basis vectors. It is

well known that such phaseless measurements can give rise

to ambiguities, in the sense that the solution is not uniquely

determined. These ambiguities may include spatial shifts and

conjugate inversion. Especially in the one dimensional case,

larger classes of ambiguities can arise [7].

One way to ensure solution uniqueness is to consider a setup

with random illuminations, which mathematically corresponds

to multiplying each of the image pixels with a randomly cho-

sen factor [8]. As argued in [8], a feasible setup is to consider

phase modulations, where each of these factors lies on the

unit circle in the complex plane. Solution uniqueness is then

shown in the two-dimensional case, under the assumption that

the image has support of rank 2. These additional assumptions

are necessary to exclude simple counterexamples. Namely, any

configuration of phase modulations yields measurements of the

form ai = (ai1, ai2, . . . , ain) where

|ai1| = |ai2| = · · · = |ain| = 1. (2)

Using such measurements, it is always impossible to dis-

tinguish between the vectors x = (1, 0, 0, . . . , 0) and x̃ =

(0, 1, 0, . . . , 0), since |aTi x|
2
= 1 = |aTi x̃|

2
.

Motivated by the uniqueness results of [8], a number of

follow-up works studied tractable reconstruction algorithms

for phase retrieval with random diffraction patterns (cf. Sec-

tion I-B below). In contrast to [8], however, these works do

not restrict the signal class, but rather avoid the ambiguity

problems by considering random masks that also vary in

amplitude, which arguably are more difficult to realize in

experiments.

The main goal of this paper is to combine these approaches,

studying recoverability under mild assumptions on the class

of signals, without requiring measurement vectors of varying

amplitude. We focus on the simplest class of measurements

with property (2), namely random Bernoulli measurements,

where the ai are sampled independently and uniformly at

random from {1,−1}n. We see our results as a proof of

concept that measurements of constant amplitude are tractable

and expect that this will lay the foundation to study the case

of phase modulated Fourier measurement, but we will leave

this case for future work.

For random Bernoulli measurements, we show that a sur-

prisingly large class of vectors x can be recovered: one can

recover all vectors x ∈ Rn that are µ-flat, in the sense that

they satisfy

‖x‖∞ ≤ µ‖x‖2, (3)

http://arxiv.org/abs/1604.07281v3
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for some constant µ ∈ (0, 1) that is independent of the

dimension n. Intuitively, this condition says that x is not too

peaky, in the sense that at most a constant fraction of its mass

is concentrated on any one coordinate.

Our result for random Bernoulli measurements is a special

case of a more general result that applies whenever the

measurement vectors ai are sampled independently at random

from some subgaussian distribution D. In the following sec-

tions, we will describe this more general setting, and state our

results in detail.

B. Gaussian and Subgaussian Measurements

The scenario in which the measurement vectors ai are

chosen at random according to certain distributions has been

investigated intensively over the last few years, with the

Gaussian distribution being the paradigmatic example. Two

main viewpoints have been taken, focusing either on stable

uniqueness, or on recovery via computationally tractable algo-

rithms. The first viewpoint asks when x is uniquely determined

from the measurements (1) (up to sign ambiguity and a

small reconstruction error resulting from the noise) [17]. Such

stability results are known in rather general settings, where x

is promised to lie in some known set T ⊂ Rn (for instance, the

set of k-sparse vectors), and one wants to bound the number of

measurements m as a function of some complexity parameter

of the set T .

(Note, however, that these stability results [17] were shown

in the real case, where the signal x and the measurements ai
are in Rn, rather than Cn. For simplicity, in this paper we will

likewise focus on the real case.)

The second viewpoint aims at finding tractable algorithms

with provable recovery guarantees. A well-known example

is PhaseLift, which reduces the problem to one of low-rank

matrix recovery, and then solves a convex relaxation [9], [10],

[11]. In particular, these works show that PhaseLift can recover

any vector x ∈ Cn using m = O(n) noisy measurements.

The initial works from both of these viewpoints were spe-

cific to Gaussian random measurement vectors ai. Subsequent

work (mainly from the recovery viewpoint) succeeded in

partially derandomizing these results, using techniques such

as spherical designs [12], [6] and coded diffraction patterns

[13], [14]. In addition, stable uniqueness results have been

shown for ai chosen from subgaussian distributions, subject to

additional assumptions on their small ball probabilities or their

fourth moments [17]. Nonetheless, even these assumptions on

the distribution of the ai’s are somewhat restrictive.

It is natural to ask whether these stability analyses and re-

covery guarantees can be extended to the most straightforward

generalization of the Gaussian measurement setup, namely

subgaussian measurement vectors ai sampled from a product

distribution (i.e., each entry aij is sampled independently

from a subgaussian distribution D on R). However, this opens

the door to measurements such as random Bernoulli vectors

ai ∈ {1,−1}n, where phase retrieval is not always possible.

Previous work on subgaussian phase retrieval has therefore

imposed certain restrictions on the distribution of the ai, such

as small-ball and fourth moment assumptions [17], which

exclude these pathological cases.

C. Our Results

In this paper we show that a large class of vectors x can

be recovered uniquely from subgaussian measurements ai,

without imposing any additional conditions on the distribution

of the ai. In particular, we show that one can recover all

vectors x ∈ Rn that are µ-flat in the sense of (3), where

µ ∈ (0, 1) is a constant that depends on D, but not on the

dimension n.

In particular, our results apply to Bernoulli measurements

ai. Also, note that the µ-flatness requirement does not rule

out all sparse vectors. For instance, a vector that has support

of size 1/µ2 (i.e., constant size), and that does not have any

unusually large entries, will still satisfy equation (3), and hence

will still be recoverable.

To some extent, our results are analogous to a recent result

on one-bit compressed sensing [18]. Subgaussian measure-

ments also fail in that context, and this issue can be overcome

by restricting to the case of signals which are not too peaky.

However, the techniques used there are somewhat different.

Our results can also be compared with recent work on phase

retrieval using local correlation measurements, which also

imposed a “flatness” condition on the signal x [19]. However,

the flatness condition in that paper is more elaborate than ours,

as it depends not only on the magnitudes of the entries in the

vector x = (x1, . . . , xn), but also on their ordering.1

We prove three main results. First, we consider stable

uniqueness, as in [17].2 We show that the results of [17], on

phase retrieval of signals x belonging to some set T ⊂ Rn,

can be generalized to the setting of subgaussian measurements

ai (with independent entries aij), provided that all signals

in the set T are µ-flat (for some constant µ). We emphasize

that the ai need not satisfy any small-ball or fourth-moment

assumptions.

In particular, we show that the number of measurements m
scales with the complexity of the set T in the same way as in

[17]. For instance, where [17] showed results on phase retrieval

of k-sparse vectors in Rn, we obtain comparable results on

phase retrieval of µ-flat k-sparse vectors in Rn. (Note that a

vector can be both k-sparse and µ-flat, as long as k ≥ 1/µ2.)

Second, we prove that the PhaseLift convex program

achieves uniform recovery of all µ-flat vectors in Rn, using

m = O(n) subgaussian measurements, in the presence of

noise.3 This extends the work of Candès and Li, who showed

a similar statement for the recovery of all vectors x ∈ Rn,

when the ai are Gaussian distributed [11].

Here, uniform recovery means that, with high probability,

a random choice of the ai will allow correct recovery of all

possible vectors x; in contrast, a non-uniform guarantee states

that for any particular vector x, with high probability over the

choice of the ai, x will be recovered correctly. Note that the

1Essentially, the flatness condition in that paper ensures that the vector
x does not contain long strings of consecutive 0’s. This ensures that, after
recovering different pieces of the vector x from different sets of local
measurements, one can estimate the relative phase-differences among these
pieces, in order to “stitch them together” and recover x.

2A conference version of this first part has appeared in [15].
3This second part also extends a conference version, which has appeared

in [16].
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use of m = O(n) measurements is optimal up to a constant

factor.

Our proof follows a similar approach as Candès and Li

[11], but we encounter some technical differences, since in our

setting the vectors ai do not have the convenient properties of

Gaussian random vectors, and at several points we need to

exploit the µ-flatness of the vector x.

Third, we consider a special class of subgaussian mea-

surements, sometimes called random Bernoulli vectors with

erasures. Roughly speaking,4 these are random vectors ai
whose entries aij are chosen independently from some sym-

metric distribution on {1, 0,−1}. Intuitively, phase retrieval

works well with these kinds of measurement vectors, because

the presence of zeroes (“erasures”) prevents the pathological

behavior that occurs with Bernoulli vectors. Indeed, this idea

was used previously in work on phase retrieval using coded

diffraction patterns [13], [14].

We show that PhaseLift can recover all vectors in Rn

(without any restriction to non-peaky or µ-flat vectors), using

m = O(n) random Bernoulli measurements with erasures (us-

ing a particular choice p = 2/3 for the “erasure probability”).

Our recovery guarantee holds uniformly over all signals in Rn,

with noisy measurements.

This gives a new example of a class of non-Gaussian

measurements where PhaseLift works nearly as well as it

does in the case of Gaussian measurements. We remark that

while stability and uniqueness in this setting were previously

known (since the aij satisfy Eldar and Mendelson’s fourth-

moment conditions) [17], there is hardly any previous work

involving PhaseLift in this situation. (The only exception

we know is [22], which uses Bernoulli measurements with

erasures in an experimental procedure for characterizing linear

optical circuits, which have applications in quantum informa-

tion processing. Ref. [22] also proves recovery guarantees for

PhaseLift with this particular class of measurements, but using

a different technique from ours.)

Overall, we see our work as a proof of concept that

shows that recovery guarantees are possible for many kinds of

random measurements that were not previously considered to

be suitable. This is useful in certain situations. For instance, the

authors of [22] remark that in their optical devices, Bernoulli

measurements with erasures can be implemented more easily

than Gaussian measurements, because they use fewer levels of

quantization.

An important next step will be to carry over this approach to

more realistic and practical scenarios, such as measurements

using coded diffraction patterns [13], [14]. Previous work in

this area uses measurements that involve random masks that

are generated from a very specific distribution. We think it

is an interesting question whether one can make a tradeoff,

similar to that shown in the present paper, which would allow

more flexibility in the choice of masks, at the expense of

slightly restricting the class of signals.

4In the precise definition, the aij are multiplied by a normalization factor,
so that the distribution has variance 1.

D. Outline of the Paper, and Notation

We introduce some basic definitions in Section II. We state

and prove our results on stable uniqueness in Sections III and

IV. We then present our results on PhaseLift in Sections V

through IX. Finally, we describe some directions for future

work in Section X.

We let [m] denote the set {1, 2, . . . ,m}. We write vectors

in boldface, and matrices in boldface capital letters. ‖x‖p
denotes the ℓp norm of a vector x. ‖X‖F and ‖X‖ denote

the Frobenius and operator (spectral) norms of a matrix X,

respectively.

II. PRELIMINARIES

In this paper, we will consider phaseless measurements of

the form (1). Following [17], we will consider the real case,

where the signal x and the measurement vectors ai are real

(rather than complex).

Also following [17], we will suppose that the measurement

vectors ai ∈ Rn are sampled independently from some

subgaussian distribution. We recall that a random vector in Rn

is called L-subgaussian if all of its one-dimensional marginals

are L-subgaussian in the following sense:

Definition II.1. (cf. [21]) A real valued random variable X
is subgaussian with parameter L, if for every u ≥ 1, one has

Pr[|X | ≥ Lu] ≤ 2 exp(−u2/2).

Here we will consider the (more specific) situation where

each ai consists of independent subgaussian entries aij ∈ R,

each sampled from some distribution D.

The main results in [17] concern measurements ai that are

subgaussian and satisfy a small-ball probability assumption:

there exists some constant c > 0 such that, for all vectors

t ∈ Rn and for all ε > 0,

Pr[|aTi t| ≤ ε‖t‖2] ≤ cε. (4)

In addition, some results are shown in [17] for measurements

that satisfy a fourth-moment condition: the aij are symmetric,

with variance E(a2ij) = 1, and fourth moment E(a4ij) > 1.

In contrast, here we will make no such assumptions on

the ai. In particular, our results will hold for Bernoulli

measurements ai, which are sampled uniformly from the set

{1,−1}n, and which violate both the small-ball assumption5

and the fourth-moment condition.

Our results will apply to signals x ∈ Rn that are not too

peaky, in the following sense. Let µ ∈ (0, 1) be a constant

that depends on D, but not on the dimension n.

Definition II.2. We say that a vector x ∈ Rn is µ-flat if it

satisfies

‖x‖∞ ≤ µ‖x‖2, (5)

A set T ⊂ Rn is called µ-flat if all its elements are µ-flat.

5This can be seen by setting t = (1, 1, 0, . . . , 0).
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III. STABLE UNIQUENESS

Our first main result concerns stable uniqueness, and fol-

lows the approach taken by Eldar and Mendelson [17]. That

is, the goal will be to find conditions to ensure that if the

measurements y1 and y2 are close, then the underlying signals

x1 and x2 must also be close (up to sign ambiguity, i.e., either

x1 − x2 or x1 + x2 must be small).

For conciseness, we write the phaseless measurement oper-

ation as

y = φ(Ax) +w, (6)

where A ∈ Rm×n is the matrix whose i’th row is the

measurement vector ai, and φ : Rm → Rm is the function

that maps

φ : (s1, s2, . . . , sm) 7→ (|s1|2, |s2|2, . . . , |sm|2). (7)

A. The Noise-Free Case

We begin by considering the noise-free case. Here the notion

of stability is formalized in the following definition. One

assumes that the signal x lies in some known set T ⊂ Rn, in

order to address situations where the signal has some known

structure, such as sparsity.

Definition III.1 (Definition 2.3 in [17]). The mapping φ(Ax)
is stable with constant C > 0 in a set T ⊂ Rn if for every

s, t ∈ T ,

‖φ(As)− φ(At)‖1 ≥ C‖s− t‖2‖s+ t‖2.

One then shows that, if the number of measurements m
is sufficiently large (with respect to certain parameters that

quantify the complexity of the set T ), then the mapping φ(Ax)
is stable. In particular, Eldar and Mendelson [17] proved

results of this type, for several natural choices of the set T ,

where the measurements ai are subgaussian and satisfy small-

ball or fourth-moment assumptions. They showed that stability

is achieved with a number of measurements m that is only

slightly larger than the information-theoretic lower bound.

We show analogous results, for the same choices of the set T
as in [17], but restricted to µ-flat vectors with constant µ, and

where the measurements ai are subgaussian with independent

coordinates, but without any small-ball or fourth-moment

assumptions. In particular, we consider the set Tµ ⊂ Rn of

all µ-flat vectors, and the set Tµ,k ⊂ Rn of all vectors which

are both k-sparse and µ-flat. We find that stability holds with

a number of measurements m that scales in the same way as

in [17].

Theorem III.2. For every L > 0, there exist constants

c1, . . . , c8 for which the following holds. Let 0 < µ < 1
2
√
2

,

and let Tµ,k ⊂ Tµ ⊂ Rn be as in the preceding paragraph.

Consider a random vector a ∈ Rn with independent L-

subgaussian entries aj with mean zero and unit variance. Let

A ∈ Rm×n be a matrix whose rows are independent copies

of this vector. Then:

(a) for u ≥ c1 and m ≥ c2u
3 n
1−8µ2 , one has with probability

at least 1 − 2 exp(−c3u2n) that the mapping φ(Ax) is

stable with constant c4(1− 8µ2)1/2 in Tµ.

(b) for u ≥ c5 and m ≥ c6u
3 k log(en/k)

1−8µ2 , one has with

probability at least 1−2 exp(−c7u2k log(en/k)) that the

mapping φ(Ax) is stable with constant c8(1 − 8µ2)1/2

in Tµ,k.

To summarize, in these two instances of the phase retrieval

problem, most assumptions on the distribution of the mea-

surement vectors ai can be dropped if µ-flatness is introduced

as an additional condition on the signal x, while leaving the

other parts of the result unchanged. As we will see, the proof

is quite general, and likely applies to many other instances of

the problem.

B. Proof Outline

We now sketch the proof of Theorem III.2. This uses the

framework introduced in [17], with some technical modifica-

tions to take advantage of the µ-flatness property of the signals.

First, we define the complexity parameter ρT,m as follows. We

define T+ and T− via

T− := { s−t
‖s−t‖

2

: s, t ∈ T, t 6= −s}
T+ := { s+t

‖s+t‖
2

: s, t ∈ T, t 6= s}

and then we set ρT,m = E√
m

+ E2

m , where

E = max
(
E sup

v∈T−

n∑

i=1

givi,E sup
w∈T+

n∑

i=1

giwi
)

with gi independent centered Gaussian random variables of

unit variance.

For technical reasons, we will slightly modify the definition

of the second complexity parameter κ that was used in [17].

Namely, in our definition of κ we restrict to Sn−1, setting for

any v,w ∈ Sn−1

κ(v,w) = E |〈a,v〉〈a,w〉|. (8)

In this modified notation and restricted to our measurement

setup, the main result of [17] for the noiseless case reads as

follows.

Theorem III.3 (Theorem 2.4 in [17]). For every L ≥ 1 and

T ⊂ Rn, there exist constants c1, c2, c3 that depend only on

L such that the following holds.

Let a ∈ Rn be a random vector with independent, L-

subgaussian entries with mean zero and unit variance. Con-

sider a matrix A ∈ R
m×n whose rows are independent copies

of this vector.

Then, for u ≥ c1, with probability ≥ 1 −
2 exp(−c2u2 min(m,E2)), the mapping φ(Ax) is stable in

T with constant

C = inf
s,t∈T

κ( s−t
‖s−t‖

2

, s+t
‖s+t‖

2

)− c3u
3ρT,m. (9)

Thus in addition to bounding ρT,m from above, it suffices

to estimate the infimum of κ over the set

T∓ = {( s−t
‖s−t‖

2

, s+t
‖s+t‖

2

) : s, t ∈ T, t 6= s, t 6= −s}. (10)

As it turns out, this refined infimum allows for sharper

bounds when the set under consideration consists of not too
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peaky vectors. Our technical contribution consists of a lower

bound on κ, which holds for µ-flat sets:

Proposition III.4. For each L > 0 there exists a constant

c > 0 such that the following holds. Consider a random vector

a with independent L-subgaussian entries ai with mean zero

and unit variance. Let T∓ and κ be defined as in equations

(10) and (8). Then if T ⊂ Rn is µ-flat for some µ < 1
2
√
2

, one

has

inf
(v,w)∈T∓

κ(v,w) ≥ c(1 − 8µ2)1/2. (11)

Proof of Theorem III.2:: We seek to apply Theorem III.3,

thus we need to bound the right hand side of (9) from

below. Applying Proposition III.4 yields a lower bound of

c(1−8µ2)1/2 for the first summand. For the second summand,

we ignore the µ-flatness, which can only make ρT,m larger

and hence the bound smaller. The resulting setup is exactly

the same as in [17], so the bounds from Sections 3.3.1 and

3.3.2 in [17] directly imply

ρTµ,m .
√

n
m+ n

m and ρTµ,k,m .

√
k log(en/k)

m +k log(en/k)
m .

Noting that in both cases, for our choice of m, the square root

is of leading order, (9) yields the result.

C. The Noisy Case

In [17], also an analysis of the case of phase retrieval

with noise is presented. The results are technically somewhat

more involved. It should be noted, however, that again the

only place where additional assumptions on the measurement

vectors enter is that they ensure a lower bound of κ.

A minor difference from the noise-free case is that in this

framework, one needs a bound on κ( s
‖s‖2

, t
‖t‖2

), s, t ∈ T

rather than κ( s−t
‖s−t‖2

, s+t
‖s+t‖2

) (both in terms of the definition

of κ given above, which is slightly different from the one in

[17]). We obtain the following bound for the noisy case:

Proposition III.5. For each L > 0 there exists a constant

c > 0 such that the following holds. Consider a random vector

a with independent L-subgaussian entries ai with mean zero

and unit variance. Let κ be defined as in equation (8). Then

if v,w ∈ Sn−1 and at least one of them is µ-flat for some

µ < 1√
2

, one has

κ(v,w) ≥ c(1− 2µ2)1/2. (12)

Taking the infimum over all v = s
‖s‖2

, w = t
‖t‖2

for

s, t ∈ T yields analogous results to those in [17] for the noisy

case with independent measurement entries, where no small

ball probability or moment assumptions are required provided

T is µ-flat. Again, the stability constant has an additional

factor of (1−8µ2)1/2. To prove the proposition, the ingredients

necessary in addition to the proof in [17] are exactly the same

as in the noise-free case discussed in Theorem III.2 above. We

thus refrain from repeating these details.

IV. LOWER-BOUNDS ON κ

Here we prove the lower-bounds on κ that are used to show

stable uniqueness. We will first prove Proposition III.5, then

use it to show Proposition III.4.

A. Proof of Proposition III.5

By the µ-flatness assumption and as v,w ∈ Sn−1, one has

‖v‖∞ ≤ µ or ‖w‖∞ ≤ µ

and thus
n∑

i=1

v2iw
2
i ≤ µ2 max(‖v‖22, ‖w‖22) = µ2. (13)

Set

Z = 〈a,v〉〈a,w〉 (14)

and observe that

‖Z‖2L2
= E |〈a,v〉〈a,w〉|2

= E

n∑

i,j,k,ℓ=1

aiajakaℓvivjwkwℓ

= E

[
2

n∑

i,j=1
i6=j

a2i a
2
jvivjwiwj +

n∑

i,k=1
i6=k

a2i a
2
kv

2
iw

2
k +

n∑

i=1

a4i v
2
iw

2
i

]

= 1 + 2〈v,w〉2 − 2

n∑

i=1

v2iw
2
i +

n∑

i=1

(E a4i − 1)v2iw
2
i

≥ 1− 2µ2. (15)

Here the third equality uses that due to the independence

assumption, all summands where an ai appears in first power

have zero mean, so only those terms with two different ai’s
appearing as a square or just one ai appearing in fourth power

contribute to the sum. The fourth equality uses that the ai’s
are all unit variance, and in the last inequality we use (13)

as well as the fact that a random variable’s fourth moment

always dominates its variance.

The result now follows tracing exactly the steps of Corollary

3.7 in [17].

B. Proof of Proposition III.4

Consider (v,w) ∈ T∓. Then by definition, there exist

vectors s, t ∈ T such that v = s−t
‖s−t‖

2

and w = s+t
‖s+t‖

2

.

Using the triangle inequality, and the fact that s, t are µ-flat,

we have that:

‖s+ t‖∞ ≤ µ(‖s‖2 + ‖t‖2), (16)

‖s− t‖∞ ≤ µ(‖s‖2 + ‖t‖2). (17)

Also, using the triangle inequality,

‖s+ t‖2 + ‖s− t‖2 ≥ ‖2s‖2, (18)

‖s+ t‖2 + ‖s− t‖2 ≥ ‖2t‖2, (19)

hence

‖s‖2 + ‖t‖2 ≤ ‖s+ t‖2 + ‖s− t‖2
≤ 2max{‖s+ t‖2, ‖s− t‖2}.

(20)

Combining all of the above, we see that at least one of the

following inequalities must hold:

‖s+ t‖∞ ≤ 2µ‖s+ t‖2, (21)

‖s− t‖∞ ≤ 2µ‖s− t‖2. (22)

This shows that at least one of s+ t and s− t is 2µ-flat. The

result follows by applying Proposition III.5.
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V. PHASELIFT

Our second main result concerns the PhaseLift algorithm

[9], [10], [11]. PhaseLift (in the noiseless case) is based on a

matrix reformulation of the problem in terms of the rank one

matrix X = xxT , namely

find X ∈ R
n×n

such that X � 0, rank(X) = 1,

tr(aia
T
i X) = yi (∀i = 1, . . . ,m).

(23)

Then one solves a convex relaxation of this problem:

find X ∈ R
n×n that minimizes tr(X)

such that X � 0,

tr(aia
T
i X) = yi (∀i = 1, . . . ,m).

(24)

This yields a solution X̂, from which one extracts the leading

eigenvector x̂; one hopes that x̂ ≈ x.

PhaseLift can be modified to handle noise in different ways;

in particular, one can solve the following convex program [11]:

find X ∈ R
n×n that minimizes

m∑

i=1

|tr(aiaTi X)− yi|

s.t. X � 0.
(25)

A. Recovery of Non-Peaky Signals from Subgaussian Mea-

surements

We assume that each measurement vector ai ∈ Rn is chosen

by sampling its entries aij (j = 1, 2, . . . , n) independently

from some subgaussian distribution D on R. We assume that

D has mean zero and variance 1. Also, we let C4 and Cψ2

denote its fourth moment and ψ2-norm, respectively:6

E aij = 0, E(a2ij) = 1,

C4 := E(a4ij) ≥ 1, Cψ2
:= ‖aij‖ψ2

.
(26)

We are interested in recovering signals that are non-peaky,

or µ-flat in the sense of Definition II.2. We show that, for any

choice of D, there is a constant µ ∈ (0, 1) such that, for all

sufficiently large n, PhaseLift achieves uniform recovery of

all µ-flat vectors in Rn, using m = O(n) measurements, in

the presence of noise.

This extends the order-optimal results of Candès and Li [11]

to a larger class of measurement distributions, at the expense

of a mild non-peakiness restriction on the class of vectors to

be recovered. We emphasize that there is no dependence of µ
on the dimension n.

More precisely, we prove:

Theorem V.1. Consider PhaseLift with noisy measurements,

as shown in equations (1) and (25). Let D be any subgaussian

distribution on R, with mean 0, variance 1, and parameters C4

and Cψ2
as shown in equation (26). Then there exist constants

0 < µ < 1 and κ0 > 1 such that the following holds.

For all n sufficiently large, and for all m ≥ κ0n, with prob-

ability at least 1−e−Ω(n) (over the choice of the measurement

6For the definition of the ψ2-norm, see, e.g., [21].

vectors ai), PhaseLift achieves uniform recovery of all µ-flat

vectors in R
n: for all µ-flat vectors x ∈ R

n, the solution X̂

to equation (25) obeys

‖X̂− xxT ‖F ≤ C0
‖w‖1
m

, (27)

where ‖·‖F is the Frobenius norm, C0 is a universal constant,

and w is the noise term in equation (1). If we let x̂ be the

leading eigenvector of X̂, then x̂ satisfies the bound

‖x̂− eiφx‖2 ≤ C0 min

{
‖x‖2,

‖w‖1
m‖x‖2

}
, (28)

for some φ ∈ [0, 2π].

Note that here the success probability is 1− e−Ω(n), rather

than 1−e−Ω(m) as in [11]. This is due to a technical difference

in the proof: in our setting, the sampling operator A satisfies

the desired injectivity properties with probability 1− e−Ω(n),

rather than 1−e−Ω(m). However, note that the construction of

the dual certificate still succeeds with probability 1 − eΩ(m),

as needed in order to use the union bound over Rn. (See the

following section for details.)

B. Recovery of Arbitrary Signals from Bernoulli Measure-

ments with Erasures

Next we consider a special class of subgaussian measure-

ments, namely Bernoulli measurements with erasure probabil-

ity p ∈ [0, 1]. We let each measurement vector ai ∈ Rn have

iid entries chosen from the following distribution:

aij =





1/
√
1− p with probability (1 − p)/2,

0 with probability p,

−1/
√
1− p with probability (1 − p)/2.

(29)

This distribution has the following properties:

E aij = 0, E(a2ij) = 1,

C4 := E(a4ij) =
1

1−p , Cψ2
:= ‖aij‖ψ2

≤ 1√
1−p .

(30)

We consider the phase retrieval problem using these types of

measurements, for arbitrary signals x ∈ Rn (without any µ-

flatness assumption). The basic question of stable uniqueness

was already settled by Eldar and Mendelson [17]: whenever

p > 0, the distribution of the aij satisfies their fourth-moment

condition, hence stable uniqueness holds. However, no re-

covery guarantees using PhaseLift were previously known.

Here we show that, in the particular case where p = 2/3,

PhaseLift achieves uniform recovery of all vectors in Rn, using

m = O(n) measurements, in the presence of noise.

Theorem V.2. Consider PhaseLift with noisy measurements,

as shown in equations (1) and (25). Let the ai ∈ Rn be

Bernoulli random vectors with erasure probability p = 2/3, as

shown in equation (29). Then there exists a constant κ0 > 1
such that the following holds.

For all n sufficiently large, and for all m ≥ κ0n, with

probability at least 1 − e−Ω(n) (over the choice of the ai),

PhaseLift achieves uniform recovery of all vectors in Rn.

Furthermore, for all x ∈ Rn, the PhaseLift solution X̂ satisfies

the same error bounds as in Theorem V.1.
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VI. PROOF OUTLINE

We begin by describing the proof of Theorem V.1. (We

will prove Theorem V.2 later, in Section IX.) Our proof uses

the same overall strategy as in previous work on PhaseLift

[9], [10], [11], though new techniques are needed in several

places.

We begin by showing an injectivity property of the sampling

operator A : X 7→
(
tr(aia

T
i X)

)
i∈[m]

, but while this follows

from relatively straightforward arguments in [11], [10], [9], in

our setting we need to use more sophisticated arguments due

to Eldar and Mendelson [17] (including a bound on empirical

processes from [20]).

To characterize the solution of the PhaseLift convex pro-

gram, we construct a dual certificate Y, which is similar to that

of Candès and Li [11] (see also similar work by Demanet and

Hand [10]). Because the ai are no longer Gaussian distributed,

our proofs are somewhatmore involved: we use various fourth-

moment estimates, and large-deviation bounds for sums of

independent subgaussian and sub-exponential random vectors

[21].

A. Injectivity of the sampling operator

We define the sampling operator A : Rn×n → Rm as

follows:

A(X) =
(
tr(aia

T
i X)

)
i∈[m]

. (31)

We will prove that A satisfies certain injectivity properties.

First, we need an upper bound on ‖A(X)‖1, which is a

straightforward generalization of the first half of Lemma 2.1

in [11], and of Lemma 3.1 in [9]:

Lemma VI.1. Let D be as in Theorem V.1. Then there exist

constants C > 0 and c > 0 such that the following holds.

Fix any 0 < δ < 1
2 , and assume that m ≥ 20(C/δ)2n.

Let ε > 0 be the positive root of 1
4δ = ε2 + ε, that is, ε =

1
2 (−1 +

√
1 + δ). Then with probability at least 1− 2e−cmε

2

(over the choice of the ai), the sampling operator A has the

property that:

1
m‖A(X)‖1 ≤ (1 + δ) tr(X), ∀X � 0. (32)

The proof is identical to that of Lemma 3.1 in [9], but using

bounds on the singular values of random matrices whose rows

are independent subgaussian vectors (rather than Gaussian

vectors), as in Theorem 5.39 in [21].

Next we prove a lower bound on ‖A(X)‖1, which resembles

the second half of Lemma 2.1 in [11], and Lemma 3.2 in [9].

Our lemma differs from these previous works in that it only

applies to matrices X that lie in the tangent spaces T (x0)
associated with µ-flat vectors x0, rather than all matrices

X that are symmetric with rank 2. However, this lemma is

sufficient for our purposes.

Formally, fix some µ ∈ (0, 1), and let S(µ) be the set of

all µ-flat vectors:

S(µ) = {x ∈ R
n | ‖x‖∞ ≤ µ‖x‖2}. (33)

For any vector x0 ∈ S, define T (x0) to be the following

subspace of Rn×n:

T (x0) = {X ∈ R
n×n | X = xxT0 + x0x

T , x ∈ R
n}. (34)

We will prove:

Lemma VI.2. Let D be as in Theorem V.1. Then there exist

constants 0 < µ < 1, κ0 > 1, c > 0 and α > 0 such that the

following holds.

For all n sufficiently large, and for all m ≥ κ0n, with prob-

ability at least 1− e−cn (over the choice of the measurement

vectors ai), the sampling operator A satisfies:

1
m‖A(X)‖1 ≥ α‖X‖, ∀x0 ∈ S(µ)\{0}, ∀X ∈ T (x0)\{0}.

(35)

Note that here the constant α > 0 may be quite small, in

contrast to previous work [11] where this constant was close to

1. Because of this difference, we will have to construct a dual

certificate Y that satisfies ‖YT ‖F ≤ εT (for a small constant

εT > 0), rather than ‖YT ‖F ≤ 3
20 as in [11]. (See Sections

VI-B and VI-C for details.)

The proof of this lemma is different from [11], [9]. It uses

arguments due to Eldar and Mendelson, in particular a Paley-

Zygmund argument for lower-bounding an expectation value

of the form E |Z| (Lemma 3.6 in [17]), and a bound on the

suprema of certain empirical processes (Theorem 2.8 in [17],

see also [20]). The proof of this lemma is given in Section

VII.

Remark VI.3. Note that Lemma VI.2 crucially relies on

the assumption that x0 is µ-flat. For example, let the ai be

random Bernoulli measurements in {1,−1}n, choose x0 =
(1, 1, 0, . . . , 0)T , and let X = xxT0 + x0x

T ∈ T (x0) where

x = (1,−1, 0, . . . , 0)T . This yields A(X) = 0 (this follows

from (38) below, as for each of the ai, either aTi x or aTi x0

vanishes), so the conclusion of the Lemma does not hold.

B. Approximate dual certificates

Following [11], we will use approximate dual certificates

to characterize the solutions to the PhaseLift convex program.

First, we will show that, for any µ-flat vector x0, with high

probability (over the choice of the measurement vectors ai),

there exists an approximate dual certificate Y (for the vector

x0). We will then use the union bound over an ǫ-net on the

unit sphere Sn−1 in R
n, together with a continuity argument

(which shows that any vector in Sn−1 can be approximated

by a vector in the ε-net). This will prove a uniform guarantee:

with high probability (over the choice of the ai), for all µ-flat

vectors x0, there is a dual certificate Y.

For the first claim, we will prove a variant of Lemma 2.3

in [11]:

Lemma VI.4. Let D be as in Theorem V.1. Let 0 < εT⊥ ≤ 1
and 0 < εT ≤ 1 be any constants. Then there exist constants

0 < µ < 1, κ0 > 1, c > 0 and B0 > 0 such that the following

holds.

For all sufficiently large n, and for all m ≥ κ0n, let x0 ∈
S(µ) be any µ-flat vector, and let T = T (x0) be the tangent

space. Then with probability at least 1−e−cm (over the choice

of the measurement vectors ai), there exists a dual certificate

Y ∈ R
n×n, which has the form Y = A∗(λ), where ‖λ‖∞ ≤

B0

m , and which satisfies

‖YT⊥ + 2IT⊥‖ ≤ εT⊥ , ‖YT ‖F ≤ εT . (36)



8

Here, A∗ : Rm → Rn×n denotes the adjoint of the linear

operator A, YT denotes the projection of Y onto the subspace

T , and YT⊥ denotes the projection of Y onto the subspace

T⊥, which is the orthogonal complement of T in Rn×n.

The proof of this lemma is given in Section VIII. The dual

certificate is constructed in a similar way to [11], but the

analysis is more involved. In particular, unlike the Gaussian

case studied in [11], here the distribution of the vectors ai
is not rotationally invariant. We use vector analogues of Ho-

effding’s inequality and Bernstein’s inequality [21], combined

with fourth-moment estimates which depend on the µ-flatness

of the vector x0.

From the above lemma, one concludes a uniform guarantee

on the existence of dual certificates for all µ-flat vectors x0.

To see this, one first constructs a dual certificate for all points

x0 in an ǫ-net, via a union bound; second, one shows that this

dual certificate works well for all points x0, using a continuity

argument. This part of the proof is identical to the proof of

Corollary 2.4 in [11], so we refrain from repeating the details.

C. Combining the pieces

We can characterize the solution of the PhaseLift convex

program, using the injectivity of the sampling operator A, and

the existence of a dual certificate Y. We restate the bound

proved in Section 2.3 in [11] (with more general choices for

the parameters):

Lemma VI.5. Suppose that the sampling operator A satisfies

equations (32) and (35), with parameters δ and α. Let x0

be any µ-flat vector in Rn, and let X̂ be the solution of

the PhaseLift convex program with noisy measurements, as

in equations (1) and (25).

Suppose that there exists a dual certificate Y ∈ Rn×n

that satisfies YT⊥ � −IT⊥ and ‖YT ‖F ≤ εT , where

εT <
α

(1+δ)
√
2

. Also suppose that Y has the form Y = A∗(λ),

where ‖λ‖∞ ≤ B0

m . Then X̂ must satisfy

‖X̂− x0x
T
0 ‖F ≤ 2C0

‖w‖1
m

, (37)

where C0 = (1 + εT )
(

α
(1+δ)

√
2
− εT

)−1
( 1
1+δ +B0) +B0.

The proof of this lemma is identical to that in [11]. By

combining this with the preceding lemmas, we prove Theorem

V.1.

Remark VI.6. Theorem V.1 shows that there exists some

constant µ > 0 such that PhaseLift succeeds in recovering

all µ-flat vectors. The specific value of µ depends on a few

factors. First, in Lemma VI.2, in order to show injectivity of

the sampling operator, we must have µ < 1/
√
2 (see equation

(45)). More importantly, in Lemma VI.4, in order to construct

the dual certificate, we need to set µ ≤
√
ε1/|C4 − 3|, where

ε1 = 1
20 min {εT⊥ , εT } (see equations (51) and (52)). The

specific values of εT⊥ and εT are determined by Lemma VI.5:

they are εT⊥ = 1 and εT < α
(1+δ)

√
2

. The most important

factor in determining these values is α, which describes the

injectivity of the sampling operator in Lemma VI.2. This can

be estimated as α ≈ c1, where c1 is a numerical constant that

comes from the Paley-Zygmund argument from reference [17]

(see equation (45)).

VII. INJECTIVITY OF THE SAMPLING OPERATOR

We now prove Lemma VI.2:

For any x0 ∈ S(µ) \ {0}, and any X ∈ T (x0) \ {0}, we

can write X = xxT0 + x0x
T . Since all the variables are real,

we can write

1
m‖A(X)‖1 = 1

m

m∑

i=1

|tr(aiaTi X)| = 2
m

m∑

i=1

|aTi x||aTi x0|.

(38)

Next we reduce to the case where ‖x‖2 = ‖x0‖2 = 1. Let

Sn−1 denote the unit sphere in R
n. For any v ∈ Sn−1, and

any v0 ∈ S(µ) ∩ Sn−1, define

Γ(v,v0) :=
1
m

m∑

i=1

|aTi v||aTi v0|. (39)

Then we can write
1
m‖A(X)‖1 = 2‖x‖2‖x0‖2Γ( x

‖x‖
2

, x0

‖x0‖2

)

≥ Γ( x
‖x‖

2

, x0

‖x0‖2

)‖X‖, (40)

where we used the fact that ‖X‖ ≤ ‖xxT0 ‖ + ‖x0x
T ‖ ≤

2‖x‖2‖x0‖2.

Furthermore, define

κ(v,v0) := EA Γ(v,v0) (41)

and

δ := sup
v∈Sn−1,v0∈S(µ)∩Sn−1

|Γ(v,v0)− EA Γ(v,v0)|. (42)

Then we have

1
m‖A(X)‖1 ≥

(
κ( x

‖x‖
2

, x0

‖x0‖2

)− δ
)
‖X‖. (43)

We now proceed to bound κ(v,v0), using a version of the

Paley-Zygmund argument from Corollary 3.7 in [17]. We note

that κ(v,v0) can be written in terms of a single measurement

vector a, as follows:

κ(v,v0) = Ea |aTv||aTv0| = E |Z|, (44)

where Z := (aTv)(aTv0). Using (15), we have that ‖Z‖L2
≥√

1− 2µ2.

Now fix any q > 2. Using the same argument as in Corollary

3.7 in [17], we have that ‖Z‖Lq
≤ Cq , where Cq < ∞

depends only on the parameter q and the distribution D (and

not on the dimension n). Finally, using Lemma 3.6 in [17],

we get that

κ(v,v0) = E |Z| ≥ c1‖Z‖L2
≥ c1

√
1− 2µ2, (45)

where c1 > 0 depends only on the choice of q and the

distribution D (and not on the dimension n). We assume that

µ is a constant satisfying µ < 1/
√
2; then κ(v,v0) is lower-

bounded by a constant that is strictly greater than 0.

Next, we will upper-bound δ, by bounding the supremum

of an empirical process, using Theorem 2.8 in [17] (see also

[20]). Here the empirical process is indexed by two sets T1 =
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Sn−1 and T2 = S(µ) ∩ Sn−1. We define the diameter of a

set T ⊂ R
n to be d(T ) = supt∈T ‖t‖2. So for the sets T1

and T2, we have d(T1) = d(T2) = 1. We define the Gaussian

complexity of a set T ⊂ Rn to be ℓ(T ) = Eg supt∈T |gT t|,
where g is a Gaussian random vector in Rn with mean 0 and

covariance matrix I. The Gaussian complexities of T1 and T2
can be bounded by ℓ(T2) ≤ ℓ(T1) ≤ √

n (see, e.g., Section

3.3.1 in [17]).

Now Theorem 2.8 in [17] implies that there exist constants

c1, c2 > 0 and c3 (which depend on the distribution D, but

not on the dimension n) such that the following holds: for all

u ≥ c1, with probability at least 1−2 exp(−c2u2 min {m,n})
(over the choice of the measurement vectors ai), we have that

δ ≤ c3u
3(
√

n
m + n

m ). (46)

Now set u to be constant, and set m ≥ κ0n. Then we have

δ ≤ c3u
3( 1√

κ0
+ 1

κ0
). By choosing κ0 large, we can make δ

arbitrarily small.

Now substitute equations (45) and 46 into (43). This com-

pletes the proof of Lemma VI.2. �

VIII. CONSTRUCTING THE DUAL CERTIFICATE

We now prove Lemma VI.4:

Part 1: We first show some properties of the distribution D.

We claim that for any δct > 0, we can define a cutoff radius

Rct > 0 such that, for any x ∈ Sn−1, we have

Pr[|aTi x| ≥ Rct] ≤ δct. (47)

To see this, use a Hoeffding-type inequality (Prop. 5.10 in

[21]):

Pr[|aTi x| ≥ Rct] ≤ e · exp(−cR2
ct/C

2
ψ2
), (48)

where c > 0 is an absolute constant. Then set Rct to be:

Rct = (1c ln(
e
δct
))1/2Cψ2

. (49)

We will set δct small enough to satisfy various bounds that

are needed in the proof, in particular, equations (84), (89) and

(110).

We now calculate certain fourth moments of the ai, namely

E[(aTi x0)
4], E[(aTi x0)

2(aTi v)
2] and E[(aTi x0)

3(aTi v)] (where

v ∈ Rn is a unit vector orthogonal to x0). We show that when

the vector x0 is µ-flat, these moments have approximately the

same values as if ai were a Gaussian random vector. This is

the key fact that allows us to apply the proof techniques from

[11] in this more general setting.

First, let x0 be a “µ-flat” signal, and assume without loss

of generality that ‖x0‖2 = 1. We consider the 4th moment of

aTi x0, and we write

E[(aTi x0)
4] = E

[( n∑

j=1

aijx0j
)4]

=
∑

j

E[a4ij ]x
4
0j + 3

∑

j 6=k
E[a2ij ]E[a

2
ik]x

2
0jx

2
0k

=
∑

j

(C4 − 3)x40j + 3
∑

jk

x20jx
2
0k

=
∑

j

(C4 − 3)x40j + 3.

(50)

In the special case where ai is a Gaussian random vector, we

have C4 = 3 and E[(aTi x0)
4] = 3. In the general case, we

can use the µ-flatness of x0 to show that E[(aTi x0)
4] ≈ 3, as

follows:

|E[(aTi x0)
4]− 3| ≤ |C4 − 3| ‖x0‖2∞‖x0‖22

≤ |C4 − 3|µ2 =: ε1.
(51)

Note that we can choose µ > 0 to be small, in order to make

ε1 an arbitrarily small constant. In particular, let us choose µ
small enough so that:

ε1 = 1
20 min {εT⊥ , εT }. (52)

Next, let v ∈ R
n be a unit vector orthogonal to x0, i.e.,

‖v‖2 = 1 and vTx0 = 0. We calculate the following mixed

4th moment of ai:

E[(aTi x0)
2(aTi v)

2]

=
∑

j

E[a4ij ]x
2
0jv

2
j+

∑

j 6=k
E[a2ij ]E[a

2
ik](x

2
0jv

2
k + x0jx0kvjvk + x0jx0kvkvj)

= (C4 − 3)
∑

j

x20jv
2
j +

∑

jk

(x20jv
2
k + 2x0jx0kvjvk)

= (C4 − 3)
∑

j

x20jv
2
j + ‖x0‖22‖v‖

2
2 + 2(xT0 v)

2

= (C4 − 3)
∑

j

x20jv
2
j + 1.

(53)

In the special case where ai is a Gaussian random vector, we

have C4 = 3 and E[(aTi x0)
2(aTi v)

2] = 1. In general, we have

|E[(aTi x0)
2(aTi v)

2]− 1| ≤ |C4 − 3| ‖x0‖2∞‖v‖22
≤ |C4 − 3|µ2 = ε1.

(54)

Finally, we calculate another mixed 4th moment of ai:

E[(aTi x0)
3(aTi v)]

=
∑

j

E[a4ij ]x
3
0jvj + 3

∑

j 6=k
E[a2ij ]E[a

2
ik]x

2
0jx0kvk

= (C4 − 3)
∑

j

x30jvj + 3
∑

jk

x20jx0kvk

= (C4 − 3)
∑

j

x30jvj + 3‖x0‖22(xT0 v)

= (C4 − 3)
∑

j

x30jvj .

(55)

In the special case where ai is a Gaussian random vector, we

have C4 = 3 and E[(aTi x0)
3(aTi v)] = 0. In general, we have

|E[(aTi x0)
3(aTi v)]| ≤ |C4 − 3| ‖x0‖2∞‖x0‖2‖v‖2

≤ |C4 − 3|µ2 = ε1.
(56)

Part 2: We now construct the dual certificate Y, following

the same approach as [11]. Without loss of generality, we can

assume ‖x0‖2 = 1. We construct Y as follows:

Y :=

m∑

i=1

λiaia
T
i ,

λi :=
1

m

(
(aTi x0)

2
1[|aTi x0| ≤ Rct]− β0

)
,

(57)
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where we set

β0 := E[(aT1 x0)
4
1[|aT1 x0| ≤ Rct]]. (58)

This choice of β0 ensures that ExT0 Yx0 = 0, which will be

useful later.

Note that β0 ≈ E[(aT1 x0)
4] ≈ 3, and note that this implies

|λi| ≤ 1
m (R2

ct + β0) ≤ O( 1
m ). In order to make this rigorous,

we can bound β0 as follows. First define

β01 := E[(aT1 x0)
4]− β0

= E[(aT1 x0)
4
1[|aT1 x0| > Rct]]

≤ E[(aT1 x0)
8]1/2 Pr[|aT1 x0| > Rct]

1/2

≤ ‖aT1 x0‖
4

ψ2

√
8
4
δ
1/2
ct

≤ C2
0C

4
ψ2

· 64δ1/2ct =: εct,

(59)

where we used the Cauchy-Schwarz inequality and standard

properties of subgaussian random variables, and where C0 is

some universal constant (see Lemma 5.9 in [21]). Note that,

by choosing Rct sufficiently large, we can make δct, and hence

εct, an arbitrarily small constant. In particular, let us choose

Rct large enough so that

εct =
1
20εT⊥ . (60)

Combining with equation (51), we see that

|β0 − 3| ≤ ε1 + εct ≤ 1
10εT⊥ . (61)

We now show that Y has the desired properties. To do this,

it is convenient to write Y = Y(0) −Y(1), where

Y(0) :=
1

m

m∑

i=1

(aTi x0)
2
1[|aTi x0| ≤ Rct] aia

T
i ,

Y(1) :=
1

m

m∑

i=1

β0 aia
T
i .

(62)

Part 3: First, we want to show that YT⊥ + 2IT⊥ is small.

We can write

‖YT⊥ + 2IT⊥‖ ≤ ‖Y(0)

T⊥ − IT⊥‖+ ‖Y(1)

T⊥ − 3IT⊥‖. (63)

We begin by showing that Y
(1)

T⊥ − 3IT⊥ is small — this is

the second term in (63). This uses a similar argument to [11],

with more general bounds for subgaussian random matrices

[21]. We can write

Y(1) = 1
mβ0A

TA, (64)

where A is a random m-by-n matrix whose i’th row is the

vector aTi . Note that EY(1) = β0I and EA = 0. Using

standard bounds on the singular values of random matrices

with independent subgaussian rows (Lemma 5.39 in [21]), we

get that there exist constants C > 0 and c > 0 (which depend

only on the subgaussian norm of the rows, given by C4), such

that for all t ≥ 0, with probability ≥ 1 − 2 exp(−ct2), A

satisfies
√
m− C

√
n− t ≤ smin(A) ≤ smax(A) ≤ √

m+ C
√
n+ t,

(65)

where smax(A) and smin(A) denote the largest and smallest

singular values of A.

We restate this as follows, substituting t = ε0
√
m: for all

ε0 ≥ 0, with probability ≥ 1− 2 exp(−cε20m), A satisfies

1−C 1√
κ0

− ε0 ≤ smin(
A√
m
) ≤ smax(

A√
m
) ≤ 1+C 1√

κ0
+ ε0.
(66)

This implies (using Lemma 5.36 in [21]) that

‖ 1
mATA− I‖ ≤ 3max { C√

κ0
+ ε0, (

C√
κ0

+ ε0)
2}. (67)

Now set ε0 = 1
90εT⊥ , and set κ0 large enough so that C√

κ0
≤

ε0. Then we have

‖ 1
mATA− I‖ ≤ 3max {2ε0, (2ε0)2} ≤ 6ε0 = 1

15εT⊥ .
(68)

This implies

‖Y(1)

T⊥ − 3IT⊥‖ ≤ ‖Y(1)

T⊥ − β0IT⊥‖+ ε1 + εct

≤ ‖Y(1) − β0I‖+ ε1 + εct

≤ 1
15εT⊥β0 + ε1 + εct

≤ 1
15εT⊥(3 + ε1 + εct) + ε1 + εct

≤ 1
5εT⊥ + (1 + 1

15 )(ε1 + εct)

< (0.31) εT⊥ .

(69)

Next, we will show that Y
(0)

T⊥ − IT⊥ is small — this is the

first term in (63). This requires a more involved argument. We

can write Y
(0)

T⊥ in the form:

Y
(0)

T⊥ =
1

m

m∑

i=1

ξiξ
T
i , ξi := (aTi x0)1[|aTi x0| ≤ Rct](Π0ai),

(70)

where Π0 = I − x0x
T
0 is the projector onto the subspace

orthogonal to x0. As in [11], the random variables ξi are

subgaussian, but now there is an added complication, because

the ξi may have nonzero mean and may not be isotropic. We

will show that the contributions due to the nonzero means and

anisotropy are small, hence the argument from [11] can be

adapted to this situation.

We first shift the ξi, in order to get centered random

variables ζi with E ζi = 0, that is:

ζi := ξi − µi, µi := E ξi. (71)

We then define

Z :=
1

m

m∑

i=1

ζiζ
T
i . (72)

We claim, first, that Z is a good approximation to Y
(0)

T⊥ ;

second, that the ζi are approximately isotropic, so EZ will

be close to IT⊥ ; and third, that Z is concentrated around its

expectation EZ. Finally, we will use these claims to upper-

bound Y
(0)

T⊥ − IT⊥ , as follows:

‖Y(0)

T⊥ − IT⊥‖ ≤ ‖Y(0)

T⊥ − Z‖+ ‖Z− EZ‖+ ‖EZ− IT⊥‖
(73)

We begin by upper-bounding Y
(0)

T⊥ − Z (the first term in

(73)). The first step is to upper-bound the µi. We write

ξi = θi − νi, (74)
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where θi = (aTi x0)(Π0ai) and νi = (aTi x0)1[|aTi x0| >
Rct](Π0ai). For any v ∈ Sn−1 such that vTx0 = 0, we have

E[vTθi] = E[(aTi x0)(v
T ai)] = vT E[aia

T
i ]x0 = vTx0 = 0,

(75)

and using equation (54), we have

|vT Eνi| =
∣∣E
[
(aTi x0)1[|aTi x0| > Rct](v

Tai)
]∣∣

≤ E[(aTi x0)
2(vT ai)

2]1/2 Pr[|aTi x0| > Rct]
1/2

≤
√
1 + ε1

√
δct,

(76)

hence we conclude that Eθi = 0, ‖Eνi‖2 ≤ √
1 + ε1

√
δct,

and

‖µi‖2 ≤
√
1 + ε1

√
δct. (77)

We can now bound Y
(0)

T⊥ − Z as follows:

‖Y(0)

T⊥ − Z‖ = ‖ 1
m

m∑

i=1

(ζiµ
T
i + µiζ

T
i + µiµ

T
i )‖

= ‖( 1
m

m∑

i=1

ζi)µ
T
1 + µ1(

1
m

m∑

i=1

ζi)
T + µ1µ

T
1 ‖

≤ 2 ‖ 1
m

m∑

i=1

ζi‖2 ‖µ1‖2 + ‖µ1‖22

≤ 2 ‖ 1
m

m∑

i=1

ζi‖2
√
1 + ε1

√
δct + (1 + ε1)δct.

(78)

We will bound ‖ 1
m

∑m
i=1 ζi‖2 using a Hoeffding-type in-

equality for subgaussian random vectors (Lemma A.1). Note

that the ζi are independent, centered random variables taking

values in span(x0)
⊥ ⊂ Rn, and they are subgaussian with

norm

‖ζi‖ψ2
≤ ‖ξi‖ψ2

+ ‖µi‖ψ2

≤ RctCCψ2
+
√
1 + ε1

√
δct =: K.

(79)

Using Lemma A.1, we have that there exists a universal

constant c > 0 such that, for all t ≥ 0 and all 0 < ε < 1,

Pr[‖ 1
m

m∑

i=1

ζi‖2 ≥ 1
1−ε t] ≤ e · exp

(
n ln(3ε )− ct2

K2m
)
. (80)

Setting ε = 1
2 and t = K(1− ε), and recalling that m ≥ κ0n,

we get that:

Pr[‖ 1
m

m∑

i=1

ζi‖2 ≥ K] ≤ e · exp
( ln(6)
κ0

m− c
4m

)
. (81)

By setting κ0 is sufficiently large so that
ln(6)
κ0

< c
4 , we get

that:

Pr[‖ 1
m

m∑

i=1

ζi‖2 ≥ K] ≤ exp(−Ω(m)). (82)

Thus, with probability ≥ 1 − exp(−Ω(m)), we have that

‖ 1
m

∑m
i=1 ζi‖2 ≤ K . Plugging this into equation (78), using

the definition of K in equation (79), and setting Rct as a

function of δct as specified in equation (49), we get that

‖Y(0)

T⊥ − Z‖ ≤ 2K
√
1 + ε1

√
δct + (1 + ε1)δct

≤ 2RctCCψ2

√
1 + ε1

√
δct + 3(1 + ε1)δct

≤ 2(1c ln(
e
δct
))1/2C2

ψ2
C
√
1 + ε1

√
δct + 3(1 + ε1)δct.

(83)

This quantity can be made arbitrarily small, by choosing δct to

be a sufficiently small constant. In particular, we set δct small

enough that

‖Y(0)

T⊥ − Z‖ ≤ 1
10εT⊥ . (84)

Next, we show that EZ is close to IT⊥ (corresponding to

the third term in (73)). First we write

EZ = E ζiζ
T
i = E ξiξ

T
i − µiµ

T
i , (85)

and note that ‖µiµTi ‖ = ‖µi‖22 ≤ (1 + ε1)δct. Next we write

E ξiξ
T
i = Eθiθ

T
i − Eθiν

T
i − Eνiθ

T
i + Eνiν

T
i

= Eθiθ
T
i − Eνiν

T
i ,

(86)

using the fact that θiν
T
i = νiθ

T
i = νiν

T
i . For any v ∈ Sn−1

such that vTx0 = 0, we have

vT E[θiθ
T
i ]v = E[(aTi x0)

2(vTai)
2] ∈ [1− ε1, 1 + ε1], (87)

and using the same argument as in equation (59), we have

|vT E[νiν
T
i ]v| =

∣∣E
[
(aTi x0)

2
1[|aTi x0| > Rct](v

Tai)
2
]∣∣

≤ E[(aTi x0)
4(vT ai)

4]1/2 Pr[|aTi x0| > Rct]
1/2

≤ E[(aTi x0)
8]1/4 E[(vTai)

8]1/4δ
1/2
ct

≤ C2
0C

4
ψ2

· 64δ1/2ct ≤ εct,
(88)

hence we conclude that ‖Eθiθ
T
i − IT⊥‖ ≤ ε1 and

‖Eνiν
T
i ‖ ≤ εct. Combining these pieces, and setting δct

sufficiently small, we get that

‖EZ− IT⊥‖ ≤ ε1 + εct + (1 + ε1)δct

≤ 1
10εT⊥ + (1 + ε1)δct

≤ 1
5εT⊥ .

(89)

Finally, we will upper-bound Z − EZ (the second term in

(73)). To accomplish this, we will whiten the random variables

ζi, to make them isotropic. We consider the covariance matrix

of the ζi, and we compute its spectral decomposition,

EZ = E ζiζ
T
i =: QDQT . (90)

Then we transform each ζi to get an isotropic random variable

ϕi:

ϕi := D−1/2QT ζi, (91)

where Q, D and D−1/2 are understood to act on the subspace

orthogonal to x0. We also define

F :=
1

m

m∑

i=1

ϕiϕ
T
i , (92)
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so we have EF = IT⊥ . We can then upper-bound Z−EZ as

follows:

‖Z− EZ‖ = ‖QD1/2(F− IT⊥)D1/2QT ‖
≤ ‖D‖ ‖F− IT⊥‖
≤ (1 + 1

5εT⊥) ‖F− IT⊥‖,
(93)

where we used equation (89).

We can now bound F = 1
m

∑m
i=1 ϕiϕ

T
i as follows. Note

that the ϕi are subgaussian, with norm

‖ϕi‖ψ2
≤ ‖D−1/2‖‖ζi‖ψ2

≤
‖ξi‖ψ2

+ ‖µi‖ψ2√
1− 1

5εT⊥

≤ RctCCψ2
+
√
1 + ε1

√
δct√

4
5

,

(94)

which is constant with respect to n. We bound F using the

same argument that led to equation (69). We get that there exist

constants C > 0 and c > 0 (which depend only on ‖ϕi‖ψ2
),

such that for all ε0 ≥ 0, with probability ≥ 1−2 exp(−cε20m),
F satisfies

‖F− IT⊥‖ ≤ 6ε0. (95)

In particular, we can set ε0 = 1
30εT⊥ . This implies the

following bound on Z− EZ:

‖Z− EZ‖ ≤ 1
5εT⊥(1 + 1

5εT⊥)

≤ (0.24) εT⊥ .
(96)

Combining equations (73), (84), (89) and (96), we see that

with probability ≥ 1− e−Ω(m), we have

‖Y(0)

T⊥ − IT⊥‖ ≤ 1
10εT⊥ + 1

5εT⊥ + (0.24) εT⊥

= (0.54) εT⊥ .
(97)

Finally, combining equations (63), (69) and (97), we see

that with probability ≥ 1− e−Ω(m),

‖YT⊥ + 2IT⊥‖ ≤ (0.31) εT⊥ + (0.54) εT⊥ = (0.85) εT⊥ ,
(98)

as desired.

Part 4: We now want to bound YT . Following [11], we

can write

‖YT ‖2F = |xT0 Yx0|
2
+ 2‖Π0Yx0‖22, (99)

where Π0 = I − x0x
T
0 is the projector onto span(x0)

⊥, and

we assume (without loss of generality) that ‖x0‖2 = 1. We

will bound each term in equation (99) separately.

For the first term in (99), we use same argument as in [11].

We can write

xT0 Yx0 =
1

m

m∑

i=1

ξi, (100)

where ξi := (aTi x0)
4
1[|aTi x0| ≤ Rct]− β0(a

T
i x0)

2. Note that

E ξi = 0, by our choice of β0 in equation (58). Furthermore,

ξi is a sub-exponential random variable, since the first term

is bounded by R4
ct, and the second term is the square of a

subgaussian random variable. In particular, we can write

‖ξi‖ψ1
≤ R4

ct + β0‖(aTi x0)
2‖ψ1

≤ R4
ct + 2β0‖aTi x0‖

2

ψ2

≤ R4
ct + 2β0C

2C2
ψ2

=: K,

(101)

where we used Lemmas 5.14 and 5.24 in [21], and C is

some universal constant. Thus we can use a Bernstein-type

inequality (Cor. 5.17 in [21]) to bound xT0 Yx0. We get that

there exists a universal constant c > 0 such that, for all ε ≥ 0,

Pr[|xT0 Yx0| ≥ ε] ≤ 2 exp(−cmin { ε2

K2 ,
ε
K }m). (102)

Now set ε = 1
2εT . Then, with probability ≥ 1−exp(−Ω(m)),

we have

|xT0 Yx0| < 1
2εT . (103)

For the second term in (99), we need to use a different

argument. The proof in [11] uses the fact that aTi x0 and Π0ai
are independent random variables, when ai is sampled from a

spherical Gaussian distribution; but this no longer holds in our

setting. Instead, we give a more general argument. We write

Π0Yx0 =
1

m

m∑

i=1

si − ti, (104)

where si := (aTi x0)
3
1[|aTi x0| ≤ Rct](Π0ai), and ti :=

β0(a
T
i x0)(Π0ai). We note that si is a subgaussian random

vector and ti is a sub-exponential random vector. We then use

a Bernstein-type inequality (for vectors rather than scalars) to

bound Π0Yx0.

To make this precise, we define centered random variables

ui = si − ti − E si + E ti, and we write

Π0Yx0 =
1

m

m∑

i=1

ui +
1

m

m∑

i=1

(E si − E ti). (105)

We begin by calculating E si and E ti. Let us write si as a

difference of two terms,

si = si0 − si1, (106)

where we define si0 := (aTi x0)
3(Π0ai) and si1 :=

(aTi x0)
3
1[|aTi x0| > Rct](Π0ai). Now consider any vector

v ∈ Sn−1 such that vTx0 = 0. We have the following bounds:

|vT (E si0)| = |E[(aTi x0)
3(vTai)]| ≤ ε1, (107)

where we used equation (56);

|vT (E si1)| = |E[(aTi x0)
3(vT ai)1[|aTi x0| > Rct]]|

≤ E[(aTi x0)
6(vT ai)

2]1/2 Pr[|aTi x0| > Rct]
1/2

≤ E[(aTi x0)
12]1/4 E[(vTai)

4]1/4 δ
1/2
ct

≤ (‖aTi x0‖ψ2

√
12)3 (‖vTai‖ψ2

√
4) δ

1/2
ct

≤ (CCψ2
)4 (48

√
3) δ

1/2
ct ,

(108)
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where we used standard properties of subgaussian random

variables, with C a universal constant; and

vT (E ti) = E[β0(v
Tai)(a

T
i x0)]

= β0v
T
E[aia

T
i ]x0 = β0v

Tx0 = 0.
(109)

Thus we conclude that E si is bounded as follows:

‖E si‖2 ≤ ‖E si0‖2 + ‖E si1‖2
≤ ε1 + (CCψ2

)4 (48
√
3) δ

1/2
ct

≤ 1
20εT + 1

5εT

= 1
4εT ,

(110)

where we chose δct sufficiently small; and we conclude that

E ti = 0. (111)

Next, we note that si and ti are sub-exponential random

vectors, whose norms are bounded by:

‖si‖ψ1
= sup

v∈Sn−1

‖vT si‖ψ1
≤ sup

v∈Sn−1

‖vT si‖ψ2

≤ sup
v∈Sn−1

R3
ct‖vTΠ0ai‖ ≤ R3

ctCCψ2
,

(112)

and

‖ti‖ψ1
= sup

v∈Sn−1

‖vT ti‖ψ1

≤ sup
v∈Sn−1

2β0‖aTi x0‖ψ2
‖vTΠ0ai‖ψ2

≤ 2(3 + ε1 + εct)(CCψ2
)2,

(113)

where C is a universal constant, and we used standard prop-

erties of sub-exponential random variables. 7

This implies that the ui are sub-exponential, with norm

‖ui‖ψ1
≤ ‖si‖ψ1

+ ‖ti‖ψ1
+ ‖E si‖2

≤ R3
ctCCψ2

+ 2(3 + ε1 + εct)(CCψ2
)2 + εcolumn1

=: K.
(115)

We will now bound 1
m

∑m
i=1 ui, using a Bernstein-type in-

equality (Lemma A.2). We get that, for any t ≥ 0 and any

0 < ε < 1,

Pr
[
‖ 1
m

m∑

i=1

ui‖2 ≥ 1
1−ε t

]
≤ 2 exp

(
n ln(3ε )−cmin { t2

K2 ,
t
K }m

)
,

(116)

where c > 0 is a universal constant. We set ε = 1
2 , substitute

t 7→ t(1− ε), and recall that m ≥ κ0n; this gives

Pr
[
‖ 1
m

m∑

i=1

ui‖2 ≥ t
]
≤ 2 exp

(
1
κ0

ln(6)m−cmin { t2

4K2 ,
t

2K }m
)
.

(117)

7In particular, note that for any two scalar-valued random variables X and
Y ,

‖XY ‖ψ1
= sup
p≥1

1

p
E[|XY |p]1/p

≤ sup
p≥1

1

p
E[|X|2p]1/2p E[|Y |2p]1/2p

≤ 2 sup
p≥1

1√
2p

E[|X|2p]1/2p sup
q≥1

1√
2q

E[|Y |2q]1/2q

≤ 2‖X‖ψ2
‖Y ‖ψ2

.

(114)

Now set t = 1
4εT . Then there exists some (sufficiently large)

constant κ0 > 0 such that

Pr
[
‖ 1
m

m∑

i=1

ui‖2 ≥ 1
4εT

]
≤ exp(−Ω(m)). (118)

Finally we combine equations (105), (110), (111) and

(118) to get a bound on Π0Yx0: with probability ≥ 1 −
exp(−Ω(m)), we have

‖Π0Yx0‖2 ≤ 1
4εT + 1

4εT = 1
2εT . (119)

Combining equations (99), (103) and (119), we get the

following bound on YT : with probability ≥ 1− e−Ω(m),

‖YT ‖2F ≤ 1
4ε

2
T + 2 · 1

4ε
2
T = 3

4ε
2
T . (120)

This completes the proof. �

IX. PROOF OF THEOREM V.2

To prove Theorem V.2, we follow the same strategy used

to prove Theorem V.1, as described in the preceding sections.

Now the measurement vectors ai ∈ Rn are Bernoulli random

vectors with erasures, which are a special case of the subgaus-

sian random vectors considered previously; hence most of the

proof goes through in the same way as before.

The present situation is different, however, in that the signal

x ∈ Rn is no longer assumed to be µ-flat. This affects Lemma

VI.2 (injectivity of the sampling operator) and Lemma VI.4

(construction of the dual certificate). We claim that, if the ai
are Bernoulli random vectors with erasure probability p =
2/3, then we can set µ = 1 in both of these lemmas, so that

both lemmas now apply to all x (as the µ-flatness condition

is trivially satisfied).

In the original proofs of these two lemmas, the µ-flatness

conditions are used via equations (15), (51), (54) and (56),

which bound certain 4th moments of the ai, involving pro-

jections onto vectors v that are µ-flat. We claim that similar

bounds hold in our new situation (where the ai are Bernoulli

random vectors with erasure probability p = 2/3, and we

allow the vector v to be arbitrary).

To see this, note that when p = 2/3, the aij have mean

E aij = 0, variance E(a2ij) = 1 and fourth moment C4 :=

E(a4ij) = 1
1−p = 3, which are the same as the moments of

the Gaussian distribution. Intuitively, this means that the ai
behave like Gaussian random vectors, which are rotationally

symmetric in Rn. Thus, there is no pathological behavior in

the 4th moments of the ai, when one projects onto a direction

v that is not µ-flat.

To make this rigorous, we can redo the calculation of

equation (15) as follows: for any v,w ∈ Sn−1,

E[(aTi v)
2(aTi w)2]

= C4

n∑

i=1

v2iw
2
i +

∑

i6=j
v2iw

2
j + 2

∑

i6=j
(viwi)(vjwj)

= (C4 − 3)
n∑

i=1

v2iw
2
i + ‖v‖22‖w‖22 + 2(vTw)2

= 1 + 2(vTw)2.

(121)
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Note that this bound holds for arbitrary unit vectors v and w,

which need not be µ-flat. This bound serves the same purpose

as equation (15). When we set v = w, this bound serves the

same purpose as equation (51). When we choose v and w

that are orthogonal, this bound serves the same purpose as

equation (54).

Finally, we can redo the calculation of equation (56) as

follows: for any v,w ∈ Sn−1,

E[(aTi v)
3(aTi w)]

= C4

∑

j

v3jwj + 3
∑

j 6=k
v2j vkwk

= (C4 − 3)
∑

j

v3jwj + 3
∑

jk

v2j vkwk

= (C4 − 3)
∑

j

v3jwj + 3‖v‖22(vTw)

= 3(vTw).

(122)

Again, this holds for arbitrary unit vectors v and w, which

need not be µ-flat. When we choose v and w that are

orthogonal, this bound serves the same purpose as equation

(56).

Following these changes, the rest of the proof goes through

as before.

X. DISCUSSION

Broadly speaking, in this paper we have investigated the

power of subgaussian measurements for phase retrieval. It is

known that for certain natural classes of subgaussian measure-

ments, such as Bernoulli random vectors, phase retrieval is

impossible, in that certain signals can never be distinguished

without unambiguity. We have shown that a large class of

signals, namely those that are “non-peaky” (more precisely,

those that are µ-flat), can still be recovered in this setting. This

µ-flatness condition, where µ can be a constant independent

of the dimension n, is surprisingly weak. We have extended

recent results on stable uniqueness [17] and PhaseLift [11] to

this setting.

In addition, we have shown that for one particular example

of a subgaussian measurement distribution, namely Bernoulli

random vectors with erasures, one does not need any µ-flatness

restriction at all: PhaseLift can recover all vectors in Rn, using

m = O(n) measurements. This is close to the information-

theoretic lower-bound.

Our proof is based on a dual certificate argument, and it is an

interesting question whether similar or better results could be

derived using Mendelson’s small ball method [6]. Indeed, the

small ball method is known to yield stronger results in other

scenarios, especially when the measurements are affected by

noise. However, it is not a priori clear how to incorporate our

non-peakiness condition into the framework of the small ball

method. The small ball method analyzes the measurements

corresponding to a matrix X that lies in the descent cone

of the nuclear norm, rather than the tangent space. Thus X

need not be of the form xxT0 + x0x
T , and it may have rank

greater than two. Hence it is difficult to even precisely capture

the µ-flatness assumption in this framework. In our opinion,

formulating and applying the small ball method for non-peaky

signals is a very interesting direction for follow-up work. With

such an approach, it may even be possible to generalize our

strategy to measurements with non-vanishing mean, such as

0/1 Bernoulli measurements, as has been successfully done in

the context of sparse recovery [23].

It would also be interesting to understand better what

conditions on the measurements ai and the signal x are

necessary and sufficient for phase retrieval. For example, Eldar

and Mendelson’s small-ball and fourth-moment conditions

involve the ai, while our µ-flatness condition involves x.

Both of these seem to be special cases of some more general

conditions that involve the ai and x jointly. In particular,

these conditions seem to involve certain fourth moments of

the ai projected onto directions that depend on x, as seen

in equations (15), (51), (54) and (56). Understanding these

conditions may be helpful for generalizing our results to other

types of measurements, and other classes of signals.
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APPENDIX

The following variants of the Hoeffding and Bernstein

inequalities, for sums of independent subgaussian and subex-

ponential random vectors, are straight-forward generalizations

of the standard results.

Lemma A.1 (Vector Hoeffding inequality). Let x1, . . . ,xN be

independent, centered, subgaussian random variables taking

values in R
n, and let K = maxi∈[N ] ‖xi‖ψ2

. Fix some a =

(a1, . . . , aN ) ∈ R
N . Let 0 < ε < 1 and t ≥ 0. Then

Pr
[
‖
N∑

i=1

aixi‖2 ≥ 1
1−ε t

]
≤ e·exp

(
n ln(3ε )− ct2

K2‖a‖2
2

)
, (123)

where c > 0 is a universal constant.

Proof: We use the Hoeffding inequality for scalar random

variables, together with a covering argument over the unit

sphere.

For any vector w ∈ Sn−1, we have ‖wTxi‖ψ2
≤ K . Using

the scalar Hoeffding inequality (Prop. 5.10 in [21]), we get

that

Pr
[
|wT

N∑

i=1

aixi| ≥ t
]
≤ e · exp

(
− ct2

K2‖a‖2
2

)
. (124)

Using Lemma 5.2 in [21], we know that there is an ε-net for

Sn−1, with respect to the ℓ2 norm, with cardinality (1 + 2
ε )
n;

call this set Nε. Note that when 0 < ε < 1, we can simplify

this to get |Nε| ≤ (3ε )
n. Taking the union bound over all

w ∈ Nε, we get that

Pr
[
∃w ∈ Nε s.t. |wT

N∑

i=1

aixi| ≥ t
]

≤ e · exp
(
n ln(3ε )− ct2

K2‖a‖2
2

)
. (125)

Finally, a standard argument (similar to Lemma 5.3 in [21])

shows that, for any vector v ∈ Rn,

max
x∈Nε

vTx ≤ ‖v‖2 ≤ 1
1−ε max

x∈Nε

vTx. (126)

Thus, if ‖∑N
i=1 aixi‖2 ≥ 1

1−ε t, then there must exist some

w ∈ Nε such that |wT
∑N

i=1 aixi| ≥ t. Combining this with

equation (125) completes the proof. �

Lemma A.2 (Vector Bernstein inequality). Let x1, . . . ,xN
be independent, centered, sub-exponential random variables

taking values in Rn, and let K = maxi∈[N ] ‖xi‖ψ1
. Fix some

a = (a1, . . . , aN ) ∈ RN . Let 0 < ε < 1 and t ≥ 0. Then

Pr
[
‖
N∑

i=1

aixi‖2 ≥ 1
1−ε t

]

≤ 2 exp
(
n ln(3ε )− cmin { t2

K2‖a‖2
2

, t
K‖a‖∞

}
)
, (127)

where c > 0 is a universal constant.

Proof: We use the same argument as for Lemma A.1, but

starting from a scalar Bernstein inequality (Prop. 5.16 in [21]).
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