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Scaling Laws for Ergodic Spectral Efficiency in

MIMO Poisson Networks

Junse Lee, Namyoon Lee and François Baccelli

Abstract

In this paper, we examine the benefits of multiple antenna communication in random wireless

networks, the topology of which is modeled by stochastic geometry. The setting is that of the Poisson

bipolar model introduced in [1], which is a natural model forad-hoc and device-to-device (D2D)

networks. The primary finding is that, with knowledge of channel state information between a receiver

and its associated transmitter, by zero-forcing successive interference cancellation, and for appropriate

antenna configurations, the ergodic spectral efficiency canbe made to scale linearly with both 1) the

minimum of the number of transmit and receive antennas, 2) the density of nodes and 3) the path-loss

exponent. This linear gain is achieved by using the transmitantennas to send multiple data streams (e.g.

through an open-loop transmission method) and by exploiting the receive antennas to cancel interference.

Furthermore, when a receiver is able to learn channel state information from a certain number of

near interferers, higher scaling gains can be achieved whenusing a successive interference cancellation

method. A major implication of the derived scaling laws is that spatial multiplexing transmission methods

are essential for obtaining better and eventually optimal scaling laws in multiple antenna random wireless

networks. Simulation results support this analysis.

I. INTRODUCTION

A multiple-input-multiple-output mobile ad hoc network (MIMO-MANET) is an infrastructure-

less network in which a large number of transmit-and-receive pairs, each with multiple antennas,

communicate by sharing some common spectrum [2], [3]. Such networks are fundamental in a
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variety of applications including car-to-car and device-to-device communication systems [4]–[6].

It is therefore of great importance to characterize the system-level performance of such networks

[7]–[9].

Despite extensive research over a few decades, analytical expressions for the spectral efficiency

of such systems are still missing. The principal difficulty has been the lack of a tractable model

quantifying uncoordinated inter-node interference together with inter-stream interference at a

receiver equipped with multiple antennas. In this paper, weleverage two analytical tools to cope

with this difficulty. The first one is stochastic geometry which models the locations of links as

Poisson dipoles [1] and allows one to compute the distribution of the interference power. The

second one is random matrix theory [10], which is exploited for calculating the distribution of

inter-stream interference power under different MIMO detection techniques. Combining these

tools, we characterize the ergodic spectral efficiencies and the scaling laws of a super-dense

MIMO-MANET system, under Poisson assumptions on the node locations, and when considering

two major types of channel knowledge at receivers. By leveraging the closed-form expressions

which are derived, we highlight the interplay among four keysystem parameters determining

the scaling laws, namely the number of antennas at the transmitter, the number of antennas at

the receiver, the node density, and the path-loss exponent.

A. Related Works

There has been extensive work on the capacity of MIMO-MANETs. MIMO-MANETs can

be modeled as MIMO interference networks in which a finite number of transmit-and-receiver

pairs communicate by sharing the same spectrum, without transmitter cooperation. [7] studied the

capacity of a MIMO-MANET by treating inter-node interference as additional noise at a receiver,

and derived the optimal power allocation strategy for the MIMO transmission. For instance, in a

certain range of interference-to-noise ratios, it turns out that allocating the whole power to one

antenna (i.e., using a single stream transmission) is optimal. [8] and [11] extended the result of

[7], and demonstrated that the asymptotic spectral efficiency is improved by sending multiple

data streams. A common assumption of these studies is that the distances between any two nodes

in the network are deterministic [7] or identical [8], whichis unrealistic to model MANETs in

practice. This approach cannot be used to assess which MIMO transmission techniques provide

the highest gains in large random MANETs.
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When considering more realistic random network topology assumptions, the rates achievable

in MANETs have been studied in [2], [9], [12]–[16]. The studyof scaling laws within this context

was initiated by Gupta and Kumar’s seminal paper [2]. Under the assumption thatn nodes are

randomly located in the unit disk, Gupta and Kumar showed that multihop routing based on a

decode-and-forward scheme can reach to a total throughput which scales asO(
√
n). By using

percolation theory, it was later shown in [12] that a better scaling law of orderO(
√

n/ logn)

is achievable. Subsequently, improved scaling results were derived in MANETs, assuming that

some specific additional assumptions hold on mobility [14],bandwidth [15], or node-cooperation

[9]. The main differences between our work and this line of research are the following: (1) our

model is based on Poisson dipoles and assumes that source-destination pairs communicate with

each other relying upon single-hop transmissions, i.e., neither multi-hop routing schemes nor

node-cooperation are allowed (in a sense, the present paperis more focussed on D2D than on

MANETs). (2) we focus on the use of multiple antennas at both transmitters and receivers, while

this line of research was centered on the scenario with a single antenna at both transmitters and

receivers. (3) our performance metric is spatially-averaged ergodic spectral efficiency, while the

work alluded to above focused on transport capacity. (4) even if new scaling laws are our main

results, our approach also provides exact formulas for the mean Shannon rate of a typical link

and the spectral efficiency per unit area (see e.g.Theorems b1 and 2 below), and goes hence

beyond the scaling law setting.

In the present paper, we assume that the interferer locations are Poisson distributed over the

plane [17], [18], which is an appropriate model for e.g. D2D,where transmitters are randomly

located in an uncoordinated manner. Using this model, the transmission capacity of ad hoc

networks, which quantifies the maximum allowable spatial density of successful transmissions

per unit area, subject to a given outage probability constraint, was characterized in certain settings.

For example, the transmission capacity expressions of ad hoc networks were found when adopting

spread spectrum techniques [19], [20], interference cancellation [21]–[23], and multiple-antenna

transmission methods [24]–[31]. In particular, in [25], itwas demonstrated that interference

cancellation techniques at a receiver employing multiple antennas can provide a linear increase

of the transmission capacity of ad hoc networks with the nodedensity. In [29], it was shown that

for a MIMO setting, a single stream transmission is optimal in terms of transmission capacity,

when all the degrees of freedom of the receive antennas are used for interference cancellation.
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Arguably, a common shortcoming of the transmission capacity metric is that it cannot capture

the effects of rate adaptation techniques, which are the keyfeatures used in many modern

wireless systems to track and exploit channel variations [32]. The main novelty of the present

paper compared to this line of thought is the analysis of the ergodic spectral efficiency (rather

than transport capacity), which quantifies the achievable Shannon transmission rate per unit

area when adapting the rate to the different local conditions. For a single-input-multiple-output

(SIMO) setting, the recent work in [33] showed that the sum spectral efficiency per link can

increase linearly with both the density and the path loss exponent provided the number of

antennas is a linear function of the density. For a MIMO setting, however, it is still unknown

whetherspatial multiplexingtransmission techniques [34] can improve the scaling laws of the

sum spectral efficiency. We recall thatspatial multiplexingconsists in transmitting different data

streams on the transmit antennas and in identifying/discriminating between these streams at

the receiver, whiletransmit diversityconsists in sending the same data symbols over multiple

transmit antennas to enhance the reliability. The main qualitative achievement of this paper is

a proof that the answer to this question is positive and more precisely the identification of the

network densities and antenna configurations for whichspatial multiplexingstrategies achieve

higher sum spectral efficiency per unit area than the methodsbased ontransmit diversity.

B. Main Contributions

We consider a random network the topology of which modeled bya Poisson bipolar network

[1] with densityλ onR2. In this model, each transmitter has its receiver at some random distance.

Each transmitter is equipped withNt antennas and is assumed to sendNt data streams to its

associated receiver, equipped withNr(≥ Nt) antennas. Our key findings can be summarized as

follows:

• We first consider the case where each receiver has knowledge of the state of the channel

between its transmitter and itself only. We refer to this channel knowledge assumption

as direct channel state information(DCSI) at receiver (DCSIR). Under the premise of

this channel knowledge, and under zero-forcing (ZF) detection and ZF-based successive

interference cancellation (ZF-SIC) detection respectively, we derive analytical expressions

of the sum spectral efficiency as a function of 1) the network density λ, 2) the number

of transmit and receive antennas (Nt and Nr), 3) the path-loss exponentα, and 4) the
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signal-to-noise ratio (SNR). By deriving a closed form lower and upper bound on this sum

spectral efficiency, we show that, asλ goes to infinity, whenNt = c1λ
β1, Nr = c2λ

β2 for

some constantsc1, c2 > 0, β1 ≤ β2 and α > 2, the scaling laws of the ergodic spectral

efficiency per link is

Θ(λβ1 log2(1 + λβ2−β1−
α
2 )), (1)

for both ZF and ZF-SIC. One important implication of this scaling law is that whenβ2 ≥
β1+

α
2
, transmitting multiple streams is more beneficial in the scaling law sense than sending

a single stream, which strongly contrasts with the result derived on transmission capacity

[29]. In fact, this result agrees with the intuition that it should be possible to improve the data

rates per link by havingNt = c1λ
β1 and by transmitting multiple data streams (multiplexing

gain), provided the remaining degrees of freedom at the receiverare sufficient to cancel

both inter-stream interference and inter-node interference and to discriminate between the

independent data streams. Furthermore, this scaling law expression generalizes the result

for the SIMO case derived in [33] to the MIMO case.

• We also consider the case where each receiver is able to learnthe CSI of itsL-nearest

interferers with (0 < L ≤ ⌊Nr

Nt
⌋−1)1, which is referred to here as local CSIR (LCSIR). Using

a ZF-SIC detection technique for suppressing both inter-stream and inter-node interference,

we give an exact expression of the sum spectral efficiency. Byleveraging this expression,

we get an achievable scaling law of the sum spectral efficiency per link of the form:

Ω(λβ1(log2(1 + λ(β2−β1−1)α
2 ))), (2)

whenNt = c1λ
β1 andNr = c2λ

β2, for some constantsc1, c2 > 0 andβ1 ≤ β2, α > 2, and for

L = ⌊Nr

Nt
⌋− 1. This result also demonstrates that the MIMO transmission method improves

the scaling law of the ergodic spectral efficiency per link byincreasing multiplexing gains,

providedβ2 ≥ β1+1. Comparing to DCSIR, with LCSIR, it is possible to increase the sum

spectral efficiency with both the path-loss exponent and thenumber of transmit antennas.

This multiplicative gain in the achievable scaling law comes from the fact that the receiver

exploits LCSIR.

1⌊x⌋ denotes the largest integer no more thanx.
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This paper is organized as follows. The network model, the performance metrics, and the

receiver schemes are discussed in Section II. The exact expression and the scaling law for

ergodic spectral efficiency are provided in Section III in the DCSIR case and in Section IV in

the LCSIR case. We conclude in Section V.

II. SYSTEM MODEL

A. Network Model

We consider aPoisson bipolar network modelwhich features an infinite number of transmitter-

receiver pairs scattered in the Euclidean plane. LetΦ = {Xi}i∈N denote the locations of the

transmitters, which are assumed to form some realization ofa homogeneous PPP with positive

and finite intensityλ on R2. Let Φ̄ = {Yi}i∈N denote the locations of the receivers. The receiver

Yi of Xi is assumed to be uniformly distributed on a ring with inner radius 1 and outer radiusRd

centered at{Xi}, whereRd > 1. Fig. 1 provides a snapshot of network topology withRd = 50m

and λ = 0.000004/m2. We assume that each receiver is equipped withNr antennas, whereas

transmitters have a random numberNt in [1, Nr] ∈ N of antennas. We denote the probability of

havingk transmit antennas bypk where
∑Nr

k=1 pk = 1. These numbers of transmit are assumed

independent and identically distributed (i.i.d.) over links.

B. Signal Model

A transmitterXk ∈ Φ communicates with its associated receiverYk, and sends a signal

sk ∈ CNt,k×1 whenXk hasNt,k antennas, with power constraintE[‖sk‖2] = P . Here, we assume

the transmit power is equally allocated to all antennas. Assuming a frequency-flat channel, the

received signal at thek-th receiver,yk ∈ CNr×1 is

yk =
∑

l,Xl∈Φ

d
−α

2
k,l Hk,lsl + zk, (3)

whereHk,l ∈ CNr×Nt,l is the channel matrix anddk,l the distance fromXl to Yk, respectively.

Moreover,zk ∈ CNr×1 is the noise vector at receiverYk. Furthermore, we assume that all entries

of Hk,l are i.i.d. complex Gaussian random variables with zero meanand unit variance, i.e.

CN (0, 1), and that all entries ofzk are i.i.d.CN (0, σ2), whereσ2 is the noise variance.
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Fig. 1: A snapshot of bipolar MANET whereλ = 0.00004/m2 andRd = 50m.

C. Receive Filters and Performance Metrics

We assume that receiverYk can measure CSI from its associated transmitterXk and from the

Lk nearest transmitters, i.e.{Xki}Lki=1, where0 ≤ Lk ≤ max{n|∑n

i=1Nt,ji ≤ Nr−Nt,k}2. It will

be assumed thatXk sendsNt,k data streams without using any precoding, i.e., that an open-loop

MIMO transmission is used, and also that the receiver uses linear receive filters to detect the

desired data symbol to eliminate theinter-stream interferenceand theinter-node interference.

Let vk(m) ∈ CNr×1, m = 1, . . . , Nt,k, denote the receive filter vector used atYk for detecting

them-th data stream of its transmitter. Then, the resulting signal-to-interference-and-noise ratio

(SINR) for them-th data stream of thek-th link is

SINRk(m) =
Hk,k(m)d−αk,k

Ik1(m) + Ik2(m) + Ik3(m) +
Nt,kσ

2

P

, (4)

2With this condition, the number of received data streams atYk is no larger thanNr. This assumption is necessary for decoding

the independent data streams in ZF and ZF-SIC. If all transmitters are equipped withNt antennas,Lk = ⌊Nr

Nt
⌋ − 1,∀k ∈ K.

Further, we denote thej-th nearest interferer fromYk by Xkj .
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where

Hk,k(m) = ‖v∗
k(m)Hk,k(:, m)‖2, Ik1(m) =

i 6=m
∑

i=1,...,Nt,k

‖v∗
k(m)Hk,k(:, i)‖2d−αk,k ,

Ik2(m) =
∑

l∈{k1,k2,...,kLk}
‖v∗

k(m)Hk,l‖2d−αk,l , Ik3(m) =
∑

l,Xl∈{Φ\Xk ,Xk1 ,Xk2 ,...,XkLk
}

‖v∗
k(m)Hk,l‖2d−αk,l .

Here, we denote the conjugate transpose by∗ and thei-th column of the matrixA by A(:, i). As

can be seen in (4), the total amount of interference at the receiver can be decomposed into three

factors: 1) theinter-stream interferenceIk1, 2) theinter-node interferencefrom theLk-dominant

interferers,Ik2, and 3) theinter-node interference, Ik3, which is the interference from the other

nodes. Then, the achievable rate of thek-th link is

Ck =

Nt,k
∑

m=1

Ck(m) =

Nt,k
∑

m=1

log2(1 + SINRk(m)). (5)

The main target performance metric in this paper isergodic spectral efficiency. The sum

spectral efficiency per unit area is defined by

C =
1

|A|CA =
1

|A|E
[

∑

k,Xk∈A

Ck

]

= λE0

[

Nt,0
∑

m=1

log2(1 + SINR0(m))

]

, (6)

where for anyA ⊂ R2, |A| is the area ofA, CA is the sum spectral efficiency ofA, andE0

denotes the Palm expectation [17] of the receiver PPP. The fact that the last expression does not

depend on the choice ofA results from the stationarity assumptions [17]. Here, SINR0 denotes

the SINR measured at the receiver located at the origin3. Furthermore, thespectral efficiency of

the typical link, or equivalently thespectral efficiencyper link is defined by

Clink =
1

λ
C = E

0

[

Nt,0
∑

m=1

log2(1 + SINR0(m))

]

. (7)

Here, for the above quantities, we will use the terms ergodicspectral efficiency or ergodic spectral

efficiency per link, respectively. The ergodicity is over both the time-domain (averaging over the

small-scale multipath fading) and over space (averaging over all Poisson configurations).

We will denote the sum spectral efficiency per unit area byCZF under ZF, and byCSIC undre

ZF-SIC, the sum spectral efficiency ofA with ZF byCZF
A under ZF and byCSIC

A under ZF-SIC,

and the spectral efficiency per link byCZF
link under ZF byCSIC

link under ZF-SIC.

3By Slivnyak’s theorem[17], it is possible locate the typical receiver at the origin. We label the typical transmitter and the typical

receiver byX0 andY0 = 0, respectively. The distance betweenY0 and {Xk}k∈{0}∪N, the channel matrixH0,l, l ∈ {0} ∪ N,

the linear receiver filterv0(m), I0(m), and thej-th nearest interferers fromY0, i.e.,X0j are defined similarly.
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1) ZF detection:The main idea of theZF-decorrelator[34] is to constructvk(m) so as to

remove bothIk1(m) and Ik2(m) simultaneously by projecting the received signal vector onto

the subspace orthogonal to that spanned by the vectorsHk,k(:, 1), . . . ,Hk,k(:, m − 1),Hk,k(:

, m+1), . . . ,Hk,k(:, Nt,k), and the column vectors ofHk,k1, . . . ,Hk,kLk
. Let Uk(m) be the null

space of these column vectors; the dimension ofUk(m) is Nr × (Nr − (Nt,k − 1)−∑Lk
i=1Nt,ki)

with probability 1.4 By definition ofLk, Nr − (Nt,k − 1)−∑Lk
i=1Nt,ki ≥ 1.

We are interested in maximizing the desired signal power by choosingvk(m) in Uk(m). More

precisely, we designvk(m) which maximizes|v∗
k(m)Hk,k(:, m)|2. If the columns ofUk(m) are

orthonormal bases of the null space, then the following filter maximizes|v∗
k(m)Hk,k(:, m)|2:

vk(m) =
Uk(m)U∗

k(m)Hk,k(:, m)

‖Uk(m)U∗
k(m)Hk,k(:, m)‖2

. (8)

By applying this filter,Ik1(m) andIk2(m) are suppressed and the resulting SINR becomes

SINRZF
k (m) =

Hk,k(m)d−αk,k

Ik(m) +
Nt,kσ

2

P

, (9)

whereIk(m) = Ik3(m) =
∑

l,Xl∈{Φ\Xk ,Xk1 ,Xk2 ,...,XkLk
}Hk,ld

−α
k,l andHk,k(m) = ‖v∗

k(m)Hk,k‖2 is

a Chi-squared random variable5 with 2(Nr−Nt,k−
∑Lk

l=1Nt,kl +1) degrees of freedom [34] and

Hk,l = ‖v∗
k(m)Hk,l‖2 is distributed as a Chi-squared with2Nt,l degrees of freedom [34]. The

sum spectral efficiency per unit area hence becomes

CZF = λCZF
link = λE0

[

Nt,0
∑

m=1

log2(1 + SINRZF
0 (m))

]

. (10)

2) ZF-SIC detection:We now consider ZF-SIC, which is a well-known non-linear detection

method for open-loop MIMO systems. The key idea of ZF-SIC decoding is to recover the

data streams successively and to subtract the recovered streams for obtaining the remaining data

streams. This provides a power gain as well as an interference cancellation gain. For decoding the

data streams of thek-th link, the receiver first decodes the signals from interferers using LCSIR.

After subtracting off these signals, them-th data of thek-th link can be obtained iteratively

by decoding and subtracting from the 1st to them − 1-th data streams and by then applying

4Nt,k−1 comes from the dimension of the subspace spanned byHk,k(:, 1), . . . ,Hk,k(:, m−1),Hk,k(:,m+1), . . . ,Hk,k(:

, Nt,k) and
∑Lk
i=1 Nt,ki from the dimension ofHk,k1 , . . . ,Hk,kLk

.

5The probability density function of the Chi-square distribution with 2n degrees of freedom,X 2
2n, is fX2

2n
(x) = xn−1e−x

(n−1)!
.
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them-th decorrelator which suppresses the signal from them + 1-th to theNt,k-th streams of

the k-th link. In other words, the corresponding projection is onto the subspace orthogonal to

Hk,k(:, m + 1), . . . ,Hk,k(:, Nt,k) (say Ũk(m)), as opposed to being to the subspace orthogonal

to Hk,k(:, 1), . . . ,Hk,k(:, m − 1),Hk,k(:, m + 1), . . . ,Hk,k(:, Nt,k) and the column spaces of

Hk,k1, . . . ,Hk,kLk
in the previous subsection. By choosingṽk(m) in Ũk(m) to maximize the

signal power, the resulting SINR becomes

SINRSIC
k (m) =

H̃k,k(m)d−αk,k

Ĩk(m) +
Nt,kσ

2

P

, (11)

where Ĩk(m) = Ik3(m) =
∑

l,Xl∈{Φ\Xk ,Xk1 ,Xk2 ,...,XkLk
} H̃k,ld

−α
k,l , H̃k,k(m) = ‖ṽ∗

k(m)Hk,k‖2 is a

Chi-squared random variable with2(Nr−Nt,k+m) degrees of freedom and̃Hk,l = ‖ṽ∗
k(m)Hk,l‖2

is distributed as a Chi-squared with2Nt,l degrees of freedom.6 The sum spectral efficiency per

unit area achieved by the ZF-SIC is given by

CSIC = λCSIC
link = λE0

[

Nto
∑

m=1

log2(1 + SINRSIC
0 (m))

]

. (12)

Even though neither ZF nor ZF-SIC are optimal in the information theoretic sense, these are

quite commonly used and in addition amenable to analysis. With these receiving architectures,

the exact expressions of the sum spectral efficiency and the corresponding scaling laws are given

in the following sections.

III. D IRECT CSIR

In this section, we obtain the exact analytical expressionsof the sum spectral efficiency for

both ZF and ZF-SIC detection with DCSIR, i.e.,Lk = 0 for all Xk ∈ Φ. Then, we derive a

lower and an upper bounds with closed-forms. We get the announced scaling laws from these

closed from expressions.

In our closed-form expressions, we use the Gamma function which is defined asΓ(x) =
∫∞

0
tx−1e−tdt.

6With the SIC structure, the subspace spanned byHk,k(:,m + 1), . . . ,Hk,k(:, Nt,k) is suppressed for recovering them-th

data stream.
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A. Sum Spectral Efficiency

Theorem 1 (ZF with DCSIR):When using ZF detection, the sum spectral efficiency per unit

area of DCSIR is

CZF =
Nr
∑

v=1

αλvpv
2 ln 2

∫ Rd

1

∫ ∞

0

e
− vσ2rα

P

(

λπ
∑Nr
k=1 pk

Γ(k+ 2
α )Γ(1− 2

α )

Γ(k)u

)−α
2
−u

u





1−







1

1 +
(

λπr2
∑Nr

k=1 pk
Γ(k+ 2

α
)Γ(1− 2

α
)

Γ(k)u

)−α
2







Nr−v+1




du

2r

R2
d − 1

dr. (13)

Proof: See Appendix B.

Theorem 2 (ZF-SIC with DCSIR):When using ZF-SIC detection, the sum spectral efficiency

per unit area of DCSIR is

CSIC =

Nr
∑

v=1

[

αλpv
2 ln 2

∫ Rd

1

∫ ∞

0

e−
vσ2rα

P

(

λπ
∑Nr

k=1 pk
Γ(k+ 2

α
)Γ(1− 2

α
)

Γ(k)u

)−α
2 − u

u

v
∑

m=1






1−







1

1 +
(

λπr2
∑Nr

k=1 pk
Γ(k+ 2

α
)Γ(1− 2

α
)

Γ(k)u

)−α
2







Nr−v+m




du

2r

R2
d − 1

dr

]

. (14)

Proof: See Appendix B.

Corollary 1: When all transmitters haveNt antennas, i.e.pNt = 1, (13) simplifies to

CZF =
αλNt

2 ln 2

∫ Rd

1

∫ ∞

0

e
−
Ntσ

2rα

P

(

λπ
Γ(Nt+

2
α )Γ(1− 2

α )

Γ(Nt)u

)−α
2
−u

u





1−







1

1 +
(

λπr2
Γ(Nt+

2
α
)Γ(1− 2

α
)

Γ(Nt)u

)−α
2







Nr−Nt+1




du

2r

R2
d − 1

dr, (15)

and (14) reduces to

CSIC =
αλ

2 ln 2

∫ Rd

1

∫ ∞

0

e
−
Ntσ

2rα

P

(

λπ
Γ(Nt+

2
α )Γ(1− 2

α )

Γ(Nt)u

)−α
2
−u

u

Nt
∑

m=1






1−







1

1 +
(

λπr2
Γ(Nt+

2
α
)Γ(1− 2

α
)

Γ(Nt)u

)−α
2







Nr−Nt+m




du

2r

R2
d − 1

dr. (16)
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(a) ZF detection
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(b) ZF-SIC detection

Fig. 2: The sum efficiency with DCSIR when|A| = π5002(m2), α = 4, Rd = 50(m), P = −20(dBm),

σ2 = −104(dBm), pNt
= 1

These explicit formulas show how the sum spectral efficiencyis determined by the system

parameters. Fig. 2 plots the sum spectral efficiency of transmitters in regionA ⊂ R2 for a

path-loss exponentα = 4, |A| = π5002(m2), Rd = 50m, P = −20dBm, pNt = 1 and σ2 =

−104dBm. The gain of the SIC decorrelator can be found by comparing the two figures in

Fig. 2.

Remark 1:A drawback of ZF-SIC is error propagation. In the high SNR regime, however,

ZF-SIC detection, which is based on a higher-dimensional subspace, always provides a higher

sum spectral efficiency than ZF detection, as can be checked in Fig. 2.

One of the interesting observations is that increasing the number of streamsNt for a givenNr

andλ does not guarantee increasing the sum spectral efficiency. On the one hand, for a small

node densityλ, it is possible to increase the sum spectral efficiency linearly with the number of

spatial multiplexing streamsNt. On the other hand, whenλ is large enough, it is not optimal to

sendNt data streams, as the sum spectral efficiency increases sub-linearly with λ as shown in

Fig. 2. This implies that, for fixedNt andNr, there exists an optimal density of nodes which

maximizes the sum spectral efficiency per link in such a network. To further obtain insights from

the derived expressions, it is instructive to consider someexamples:

Example 1:When dk,k = d for all k ∈ K and pNt = 1, Equations (15) and (16) can be
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simplified as follows

CZF =
λαNt

2ln2

Nr−Nt+1
∑

n=1

(

Nr −Nt + 1

n

)
∫ ∞

0

e−u

u

( Γ(Nt)u

λΓ(Nt+
2
α
)Γ(1− 2

α
)πd2

)n
α
2

(1 + ( Γ(Nt)u

λΓ(Nt+
2
α
)Γ(1− 2

α
)πd2

)
α
2 )Nr−Nt+1

du (17)

CSIC =
λα

2ln2

Nt
∑

m=1

Nr−Nt+m
∑

n=1

(

Nr −Nt +m

n

)
∫ ∞

0

e−u

u

( Γ(Nt)u

λΓ(Nt+
2
α
)Γ(1− 2

α
)πd2

)n
α
2

(1 + ( Γ(Nt)u

λΓ(Nt+
2
α
)Γ(1− 2

α
)πd2

)
α
2 )Nr−Nt+m

du,

(18)

in the interference-limited case (σ2 = 0). This simplified single integral form provides a better

intuition on the impact of network design parameters on sum spectral efficiency. For example,

increasingNr always provides higher performance, and optimizingNt for fixedNr is an important

and interesting question.

Example 2:Following the Example 1, we further assume thatNt = Nr, α = 4. In this case,

the sum spectral efficiency per unit area with the ZF-receiver is

CZF =
2λNt

ln 2

{

sin

(

πλd2Γ(Nt +
1
2
)Γ(1

2
)

Γ(Nt)

)(

π

2
− Si

(

πλd2Γ(Nt +
1
2
)Γ(1

2
)

Γ(Nt)

))

− cos

(

πλd2Γ(Nt +
1
2
)Γ(1

2
)

Γ(Nt)

)

Ci

(

πλd2Γ(Nt +
1
2
)Γ(1

2
)

Γ(Nt)

)}

, (19)

whereSi(z) =
∫ z

0
sin(t)
t
dt andCi(z) = −

∫∞

z

cos(t)
t
dt are the sine integral and cosine integral

functions.

In Example 2, if we assumed =
√

Γ(Nt)

2λΓ(Nt+
1
2
)Γ( 1

2
)
, which means that the distance of commu-

nication links is of order ofλ−
1
2 , the sum spectral efficiency per unit area becomes

CZF =
2λNt

ln 2

(π

2
− Si

(π

2

))

≃ 0.5772λNt. (20)

So, if the assumptions in Example 2 and the above relation ofd andλ hold, it is possible to

guarantee that the sum spectral efficiency per unit area is atleast0.5772Ntλ by choosingNt

equal toNr.

Throughout this paper, the main scaling is that of the numberof transmit and receive antennas

with respect to the network densityλ. This example different from the main stream as the link

distance depends on the network densityλ. In what follows link distances will not exhibit such

a functional depencency.
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B. Scaling Law

In this section, we provide both a lower and an upper bound with a closed-form on the sum

spectral efficiency. This allows us to obtain the announced scaling law. We focus on the case

wherepNt = 1.

Theorem 3 (Direct CSIR, ZF, Scaling Law):Assume thatpNt = 1, Nt = c1λ
β1, Nr = c2λ

β2,

for some constantsc1, c2 > 0, and thatβ1 ≤ β2. Then, in the interference limited regime,

lim
λ→∞

CZF = Θ(λβ1+1 log2(1 + λβ2−β1−
α
2 )). (21)

Proof: See Appendix C.

Theorem 4 (Direct CSIR, Scaling Law, ZF-SIC):Under the same assumptions as in Theorem

3, in the interference limited regime,

lim
λ→∞

CSIC = Θ(λβ1+1 log2(1 + λβ2−β1−
α
2 )). (22)

Proof: See Appendix C.

Remark 2:The first observation is that, in the DCSIR case, the sum spectral efficiency per

unit area are identical for ZF and ZF-SIC in a scaling law sense. This is because the signal

power gain under ZF-SIC is at mostNt, i.e.,E[Hk,k(m)] ≃ Nt, while the fading power of inter-

node interference is also proportional to1
Nt

, i.e., (E
[

1
Ik(m)

]

] ≃ 1
Nt

). Consequently, the array gain

obtained by ZF-SIC detection is negligible in the scaling law sense. To obtain a gain from the

SIC structure, the signal power gain by ZF-SIC should be larger thanNt, and this will actually

be the case for LCISR (see Section IV).

The next corollary, on per link spectral efficiency, followsimmediately from the two theorems

stated above.

Corollary 2: When the receive scheme is ZF or ZF-SIC, under DCSIR, the scaling law of

the sum spectral efficiency per link is

Θ(λβ1 log(λ)) for β2 − β1 −
α

2
> 0, (23)

Θ(λβ1) for β2 − β1 −
α

2
= 0, (24)

Θ(λβ2−
α
2 ) for β2 − β1 −

α

2
< 0. (25)

Here are important observations following from this corollary.
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• Wheneverβ2 − β1 − α
2
≥ 0, the spectral efficiency per link is determined byNt alone.

So, in this regime,spatial multiplexing, namely increasing the number of data streams, is

beneficial; to the best of our knowledge, this result is new.

• Wheneverβ2−β1− α
2
< 0, the sum spectral efficiency per unit area goes to0 exponentially

fast withλ whenβ2 < α
2
, and increases likeλβ2−

α
2 whenβ2 > α

2
. For givenβ2 andα with

β2 − α
2
> 0, the best value forβ1 is β∗

1 = β2 − α
2
, and the corresponding scaling law is

Θ(λβ2−
α
2 ).

• We can expect a linear gain whenβ2 = α
2

as this is the critical region between the super-

linear and sub-linear regions.

• For fixedNt andNr, (i.e. β1, β2 = 0), the scaling law isΘ(λ−
α
2 ).

Example 3:Assume thatpNt = 1. For fixed values ofNt, Nr and α, what is the optimal

node density in our model? We answer this question in a heuristic way by maximizing the lower

bounds obtained above. For the ZF case, the density maximizing the lower bound of the sum

spectral efficiency per unit area in (62) is7

λ∗ZF = argmax
λ

2λNt

α
log2

(

1 +

(

2Γ(Nt)

Γ(Nt +
2
α
)Γ(1− 2

α
)

)
α
2 Nr −Nt

(λπ(R2
d + 1))

α
2

)

. (26)

For largex, log2(1 + x) ≃ log2(x), so in the high SIR regime, the optimal link density is

λ∗ZF =
Γ(Nt)

2ln 2−1Γ(Nt +
2
α
)Γ(1− 2

α
)

(Nr −Nt)
2
α

π(R2
d + 1)

. (27)

Hence, the optimal probability in the Aloha protocol for a givenλ, Nt, Nr, α is

p∗ZF = min(1,
λ∗ZF
λ

). (28)

For the ZF-SIC case, by using the lower bound in (71) and the relation log2(1 + x) ≃ log2(x)

for largex, we get that the optimalλ givenNt, Nr, andλ in high SIR regime is

λ∗SIC = argmax
λ

2λ

α

Nt
∑

m=1

log2

(

1 +

(

2Γ(Nt)

Γ(Nt +
2
α
)Γ(1− 2

α
)

)
α
2 Nr −Nt +m− 1

(λπ(R2
d + 1))

α
2

)

≃ argmax
λ

2λ

α
log2

(

(

2Γ(Nt)

Γ(Nt +
2
α
)Γ(1− 2

α
)π(R2

d + 1)

)
αNt
2

Nt
∏

m=1

(Nr −Nt +m− 1)λ−
αNt
2

)

=
Γ(Nt)

2ln 2−1Γ(Nt +
2
α
)Γ(1− 2

α
)π(R2

d + 1)

(

Nt
∏

m=1

(Nr −Nt +m− 1)

)
2

Ntα

, (29)

7Here, we ignoreǫ.
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and the optimal Aloha probability is

p∗SIC = min(1,
λ∗SIC
λ

). (30)

Example 4:AssumepNt = 1. For fixedNr, λ, andα, What is the optimal value forNt? This

can be obtained by using the formulas in Theorem 1 and 2. A simple way consists in maximizing

the lower bounds as in Example 3. By using the Gamma function relation
(

Γ(Nt)

Γ(Nt +
2
α
)Γ(1− 2

α
)

)
α
2

≥ 1

Nt
, (31)

Equation (62), which is the lower bound of sum spectral efficiency per unit area when ZF-receiver

is applied, becomes

2λNt

α
log2

(

1 + b
Nr −Nt

Nt

)

, (32)

when we define

b ,

(

2

Γ(1− 2
α
)

)
α
2 1

(λπR2
d)

α
2

. (33)

In the high SIR regime, the optimalNt for maximizing (32) is

N∗
t,ZF =

bNr

e
. (34)

In the same manner, we can obtain that the value ofNt maximizing (71) when ZF-SIC is applied

is

N∗
t,SIC = N∗

t,ZF =
bNr

e
. (35)

IV. L OCAL CSIR

As already explained, LCSIR denotes the situation whereLk > 0, i.e. receiverk knows the

Lk-nearest interferer CSIs in addition to the CSI of its own channel. Through this section, we

assume all transmitters are equipped withNt antennas (i.e.,pNt = 1) andLk = L for all Xk ∈ Φ,

consequently1 ≤ L ≤ ⌊Nr

Nt
⌋ − 1.
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A. Sum Spectral Efficiency

In the LCSIR case, we denote the sum spectral efficiency per unit area byCZF
L under ZF and

by CSIC
L under ZF-SIC.

Theorem 5:In the LCSIR case, under ZF detection, the achievable sum spectral efficiency

per unit area withL dominant interferer CSI is

CZF
L =

λNt

ln 2

∫ Rd

1

∫ ∞

0

1

se
Ntσ

2s
P

(

1− 1

(1 + sx−α)Nr−(L+1)Nt+1

)

LĨk(L; s)ds
2x

R2
d

dx, (36)

where

LĨk(L; s) =
∫ ∞

0

exp

(

−πλ
∫ ∞

u=r2
1−

(

1

1 + su−
α
2

)Nt

du

)

2(λπr2)L

rΓ(L)
e−λπr

2

dr. (37)

Proof: See Appendix D.

Theorem 6:In the local CSIR case, the achievable sum spectral efficiency per unit area with

L dominant interferer channel information using ZF-SIC detection is

CSIC
L =

Nt
∑

m=1

λ

ln 2

∫ Rd

1

∫ ∞

0

1

se
Ntσ

2s
P

(

1− 1

(1 + sx−α)Nr−Nt+m

)

LĨk(L; s)ds
2x

R2
d

dx, (38)

where

LĨk(L; s) =
∫ ∞

r=0

exp

(

−πλ
∫ ∞

u=r2
1−

(

1

1 + su−
α
2

)Nt

du

)

2(λπr2)L

rΓ(L)
e−λπr

2

dr. (39)

Proof: See Appendix D.

Here as in the DCSIR case, the sum spectral efficiency increases with the network density,

for both ZF and ZF-SIC. This can be checked in Fig. 3 where we see that the sum capacity

increases sub-linearly with the average number of links.

Remark 3:For the ZF case, the fading power of the desired signal is lower for LCSIR than for

DCSIR because the remaining degrees of freedom at the receiver are used to suppress the inter-

node interference from theL-dominant interferers. Therefore, leveraging all channelinformation

is not always beneficial. This can be checked in the first figures of Fig. 2 and Fig. 3. For the

ZF-SIC case, however, utilizing all information is always beneficial, since the fading power of

them-th data stream of thek-th link is χ2
2(Nr−Nt+m), rather thanχ2

2(Nr−(L+1)Nt+1) in ZF. This

observation can be checked on the second figures of Fig. 2 and Fig. 3.
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(a) ZF detection
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(b) ZF-SIC detection

Fig. 3: The sum spectral efficiency with LCSIR when|A| = π5002(m2), α = 4, Rd = 50(m), P = −20(dBm),

σ2 = −104(dBm) with L = ⌊Nr

Nt

⌋ − 1.

B. Scaling Law

In this section, we assume thatL = ⌊Nr

Nt
⌋ − 1 which is the maximum possible number for

nulling the interference from other nodes.

Theorem 7 (Local CSIR, Scaling Law, ZF):Assume thatpNt = 1, andNt = c1λ
β1, Nr =

c2λ
β2 with with some constantsc1, c2 > 0 and β1 ≤ β2. Then, under ZF detection, the sum

spectral efficiency per unit area scales as

lim
λ→∞

CZF
L = Ω(λβ1+1 log2(1 + λ(β2−β1−1)α

2
−β2)), (40)

whenL = ⌊Nr

Nt
⌋ − 1.

Proof: See Appendix E.

Remark 4:Whenα = 4, under ZF, the scaling law of spectral efficiency per link isΘ(λβ1 log2(1+

λβ2−β1−1)) for DCSIR, whereas it isΩ(λβ1 log2(1 + λβ2−2β1−2)) for LCSIR In this case, we can

observe that knowing channel state from other nodes is not useful in the sense of scaling laws.

This is because the receiver wastes the spatial degrees of freedom to cancel the nearest inter-

node interference. We conclude that, when ZF detection is employed, in the scaling law sense,

treating the nearest inter-node interference as noise is a better strategy than canceling it.

Theorem 8 (Local CSIR, Scaling Law, ZF-SIC):The assumptions for the number of antenna

configurations are the same as in Theorem 7. WhenL = ⌊Nr

Nt
⌋ − 1, the sum spectral efficiency
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per unit area with ZF-SIC detection scales as

lim
λ→∞

CSIC
L = Ω(λβ1+1 log2(1 + λ(β2−β1−1)α

2 )). (41)

Proof: See Appendix E.

The main difference between (40) and (41) is the degrees of freedom of signal power by the

successive cancellation architecture.

Corollary 3: Under ZF-SIC and LCSIR, the scaling law of the ergodic spectral efficiency per

link is

Ω(λβ1 log(λ)) for β2 − β1 − 1 > 0 (42)

Ω(λβ1) for β2 − β1 − 1 = 0 (43)

Ω(λβ1+(β2−β1−1)α
2 ) for β2 − β1 − 1 < 0. (44)

The conclusions are similar to those of Corollary 2. In particular, for givenβ2 and α, the

bestβ1 in the scaling law sense is henceβ∗
1 = β2 − 1, and the corresponding scaling law is

Ω(λβ2−1). Since we assumeα > 2, by comparing with the scaling law in Corollary 2, LCSIR can

achieve higher performance than DCSIR case in the ergodic spectral efficiency per link scaling

law sense.

Example 5:WhenNt, Nr, λ, andL are given, the density maximizing the lower bounds in

(83) for ZF and (85) for ZF-SIC under LCSIR can be obtained as follows. As in Example 3, in

the high SIR regime, the optimal densities for ZF and ZF-SIC are

λ∗ZF,L =





Nr − (L+ 1)Nt

2(1−R2−α
d

)

(α−2)(R2
d
−1)

(2π)
α
2Nt

(L− α

2
)
α
2
−1





2
α

1

2ln 2
(45)

λ∗SIC,L =





(L− α
2
)
α
2
−1

2(1−R2−α
d

)

(α−2)(R2
d
−1)

(2π)
α
2Nt





2
α ( Nt

∏

m=1

(Nr −Nt +m− 1)

)
2

Ntα 1

2ln 2
, (46)

and the optimal Aloha probabilities are

p∗ZF,L = min

(

1,
λ∗ZF,L
λ

)

(47)

p∗SIC,L = min

(

1,
λ∗SIC,L
λ

)

. (48)
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V. CONCLUSIONS

We considered a random wireless network with multiple transmit and receive antennas and

examined the benefits of using MIMO techniques for obtainingmultiplexing gains from the

ergodic spectral efficiency point-of-view. Assuming two different types of CSI at receivers, we

gave exact analytical expressions and scaling laws for the ergodic spectral efficiency. The main

finding is that the ergodic spectral efficiency increases linearly with both the density of nodes

and the number of transmit streams, provided that the numberof antennas scales in a particular

polynomial function with the density. When local CSI with ZF-SIC detection is employed, the

lower bound of the scaling law increases linearly with the density of nodes, the path-loss exponent

and the number of transmit antennas provided the ratio between transmit and receive antennas

scales in a linear way with the density.

There are many interesting directions left as future work. One possible direction is to consider

antenna correlation effects in both transmit and receive antennas, and to analyze how the corre-

lation effects change the scaling laws. Assuming a MIMO random network with finite feedback,

it would also be interesting to investigate the benefits of a closed-loop MIMO transmission

technique over the open-loop transmission method examinedhere. Another direction is to assume

a MIMO heterogeneous network and to investigate the optimumnumber of data streams as a

function of the density of nodes.

APPENDIX A

A L EMMA FOR CAPACITY ANALYSIS

The following lemma presented in [35] will be useful below.

Lemma 1:Let x1, . . . , xN , y1, . . . , yM be arbitrary non-negative random variables. Then

E

[

ln

(

1 +

∑N

n=1 xn
∑M

m=1 ym + 1

)]

=

∫ ∞

0

My(z)−Mx,y(z)

z
exp(−z)dz, (49)

whereMy(z) = E

[

e−z
∑M
m=1 ym

]

andMx,y(z) = E

[

e−z(
∑N
n=1 xn+

∑M
m=1 ym)

]

.

Proof: See [35].

The following lemma, proved in [33, Appendix B], will also beused:
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Lemma 2:Let X > 0 and Y > 0 be independent non-negative random variables such that

E[X ] <∞, E[Y ] <∞, andE[ 1
Y
] <∞. Then,

log2

(

1 +
exp(E[ln(X)])

E[Y ]

)

≤ EX,Y

[

log2

(

1 +
X

Y

)]

≤ log2

(

1 + E[X ]E

[

1

Y

])

. (50)

APPENDIX B

PROOF OFTHEOREM 1 AND 2

Let X and Y be two independent non-negative random variables witha ∈ R+, Lemma 1

becomes

E

[

ln

(

1 +
X

Y + a

)]

=

∫ ∞

0

e−az

z
(1− E[e−zX ])E[e−zY ]dz. (51)

We first prove Theorem 1. Givend0,0 = d for the typical link andNt,k = t, applying (51), the

ergodic spectral efficiency for them-th data stream of the typical link is

E

[

log2

(

1 +
H0,0(m)

dα0,0I0(m) +
dα0,0tσ

2

P

)

|d0,0 = d,Nt0 = t

]

=
1

ln 2

∫ ∞

0

e−
dαtσ2

P
z

z
(1− E[e−zH0,0(m)])E[e−zd

αI0(m)]dz. (52)

Let us defineI0(m) = Ī01(m) + Ī02(m) + . . .+ Ī0Nr(m), whereĪ0k(m) is the interference from

nodes which havek-transmit antennas. Then, the Laplace transform of the interferenceI0(m) is

LI0(m) = E[e−sI0(m)] = E[e−s
∑Nr
k=1 Ī0k(m)] =

Nr
∏

k=1

E[e−sĪ0k(m)] =

Nr
∏

k=1

LĪ0k(m)(s). (53)

The Laplace transform of̄I0i(m) is

LĪ0k(m)(s)
(a)
= exp

(

−
∫

R2

Ep[1− e−s
p

rα ]λpkdxdy

)

(b)
= exp

(

−λpk
∫ 2π

0

∫ ∞

0

Ep[1− e−s
p

rα ]rdrdθ

)

(c)
= exp

(

−2πλpkEp[

∫ ∞

0

(1− e−s
p

rα )rdr]

)

(d)
= exp

(

−πλpkEp[(sp)
2
α

∫ ∞

0

(1− e−u)
−2

α

1

u1+
2
α

du]

)

(e)
= exp

(

−πλpkEp[(sp)
2
α

∫ ∞

0

e−uu−
2
αdu]

)

(f)
= exp

(

−πλpkΓ(1−
2

α
)Ep[(sp)

2
α ]

)

(g)
= exp

(

−πλpks
2
αΓ(1− 2

α
)
Γ(k + 2

α
)

Γ(k)

)

.
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(a) comes from the thinning, the displacement theorem, and the independent marking of PPP

[17]; p is the inter-node interference power whenv0(m) is applied. (b) is obtained by changing

from Cartesian coordinates to polar coordinates; (c) is by Fubini’s theorem. (d) follows from the

change of variableu = sp

rα
; (e) comes from the integration by part; (f) is by the definition of the

Gamma function and (g) comes from the fact thatp is a chi-squared random variable with2k

degrees of freedom.

So, the Laplace transform of the interferenceI0(m) at zdα is

E[e−zd
αI0(m)] =

Nr
∏

k=1

exp

(

−πλpkd2z
2
α

Γ(k + 2
α
)

Γ(k)
Γ(1− 2

α
)

)

, (54)

which comes from the independent thinning and the superposition of PPP with probability

generating functional (PGFL) of PPP [17]. By plugging (54) into (52), we obtain

1

ln 2

∫ ∞

0

e−
dαtσ2

P
z

z
(1− E[e−zH0,0(m)]) exp

(

−πλd2z 2
α

Nr
∑

k=1

pk
Γ(k + 2

α
)

Γ(k)
Γ(1− 2

α
)

)

dz

(a)
=

α

2 ln 2

∫ ∞

0

e
− dαtσ2

P

(

λπd2
∑Nr
k=1 pk

Γ(k+ 2
α )Γ(1− 2

α )

Γ(k)u

)−α
2

u

×
(

1− E

[

e
−

(

λπd2
∑Nr
k=1 pk

Γ(k+ 2
α )Γ(1− 2

α )

Γ(k)u

)−α
2
Hk,k(m)

])

e−udu

(b)
=

α

2 ln 2

∫ ∞

0

e
− dαtσ2

P

(

λπd2
∑Nr
k=1 pk

Γ(k+ 2
α )Γ(1− 2

α )

Γ(k)u

)−α
2
−u

u

×






1−







1

1 +
(

λπd2
∑Nr

k=1 pk
Γ(k+ 2

α
)Γ(1− 2

α
)

Γ(k)u

)−α
2







Nr−t+1




du, (55)

where (a) comes from a variable change, and (b) follows from deconditioningHk,k(m) which

is a Chi-squared random variable with2(Nr − t+ 1) degrees of freedom. SinceYk is uniformly

distributed in the ring centered atXk, we obtain (15) by considering all data streams and

deconditioning w.r.t. the number of transmit antennas of the typical link.

For the ZF-SIC detection method, the main difference in the proof is thatH̃0,0(m) is distributed
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as a Chi-squared with2(Nr − t+m) degrees of freedom, and (55) is changed to

α

2 ln 2

∫ ∞

0

e
− dαtσ2

P

(

λπd2
∑Nr
k=1 pk

Γ(k+ 2
α )Γ(1− 2

α )

Γ(k)u

)−α
2
−u

u





1−







1

1 +
(

λπd2
∑Nr

k=1 pk
Γ(k+ 2

α
)Γ(1− 2

α
)

Γ(k)u

)−α
2







Nr−t+m




du, (56)

and we obtain (16) similarly.

APPENDIX C

PROOF OFTHEOREM 3 AND 4

Proof: We start to derive the lower and upper bounds of (15). By applying Lemma 2, the

sum spectral efficiency over the network is lower bounded as follows:

λE0

[

Nt
∑

m=1

log2(1 + SINRZF
0 (m))

]

= λ

Nt
∑

m=1

EH0,0(m),d0,0,I0(m)

[

log2

(

1 +
H0,0(m)d−α0,0

I0(m)

)]

≥ λ
Nt
∑

m=1

Ed0,0,I0(m)

[

log2

(

1 +
eE[ln(H0,0(m))]

dα0,0I0(m)

)]

. (57)

SinceH0,0(m) is a Chi-square random variable with2(Nr −Nt + 1) degrees of freedom,

E[ln(H0,0(m))] = ψ(Nr −Nt + 1), (58)

where

ψ(n) = −γ +
n−1
∑

j=1

1

j
, (59)

with γ ≃ 0.577, Euler’s constant. By [36, Theorem 3.1],

eψ(x) > x− 1, (60)

and we obtain

eE[ln(H0,0(m))] > Nr −Nt + ǫ, (61)
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whereǫ is some positive number8. Thus, the lower bound of the sum spectral efficiency per unit

area is

λ
Nt
∑

m=1

Ed0,0,I0(m)

[

log2

(

1 +
Nr −Nt + ǫ

dα0,0I0(m)

)]

(a)
=

λ

ln 2

Nt
∑

m=1

∫ ∞

0

1

z
(1− e−z(Nr−Nt+ǫ))Ed0,0,I0(m)[e

−zdα0,0I0(m)]dz

(b)
=

λ

ln 2

Nt
∑

m=1

∫ ∞

0

1

z
(1− e−z(Nr−Nt+ǫ))Ed0,0

[

exp

(

−λπd20,0z
2
α

Γ(Nt +
2
α
)Γ(1− 2

α
)

Γ(Nt)

)]

dz

(c)

≥ λ

ln 2

Nt
∑

m=1

∫ ∞

0

1

z
(1− e−z(Nr−Nt+ǫ)) exp

(

−λπE[d20,0]z
2
α

Γ(Nt +
2
α
)Γ(1− 2

α
)

Γ(Nt)

)

dz

(d)
=

λα

2 ln 2

Nt
∑

m=1

∫ ∞

0

1

u
e−u



1− e
−

(

2Γ(Nt)

Γ(Nt+
2
α )Γ(1− 2

α )

)α
2 Nr−Nt+ǫ

(λπ(R2
d
+1))

α
2
u
α
2



 du

(e)

≥ λ

ln 2

Nt
∑

m=1

∫ ∞

0

1

u
e−u

α
2



1− e
−

(

2Γ(Nt)

Γ(Nt+
2
α )Γ(1− 2

α )

)α
2 Nr−Nt+ǫ

(λπ(R2
d
+1))

α
2
u
α
2



 du

(f)
=

2λNt

α
log2

(

1 +

(

2Γ(Nt)

Γ(Nt +
2
α
)Γ(1− 2

α
)

)
α
2 Nr −Nt + ǫ

(λπ(R2
d + 1))

α
2

)

(g)

≥ 2λNt

α
log2

(

1 +
1

Nt

(

2

Γ(1− 2
α
)

)
α
2 Nr −Nt + ǫ

(λπ(R2
d + 1))

α
2

)

, (62)

where (a) follows from Lemma 1, (b) comes from the expressionfor the interference of the

Laplace functional of PPP, (c) follows from Lemma 2, (d) comes from a variable change and

the fact thatE[d2k,k] =
R2
d
+1

2
, (e) comes from the fact thate−u ≥ 2

α
e−u

α
2 whenu ≥ 0 andα > 2,

(f) is obtained by
∫∞

0
1
u
e−u

α
2 (1− e−b×u

α
2 )du = 2

α
log(1 + b), and (g) comes from

Γ(Nt)

Γ(Nt +
2
α
)
≥ N

− 2
α

t . (63)

Using the assumption thatNt = c1λ
β1 andNr = c2λ

β2, we obtain

lim
λ→∞

CZF = Ω(λβ1+1 log2(1 + λβ2−β1−
α
2 )), (64)

asλ goes to infinity.

8With a numerical approach, the gap ofeψ(x) and x − 1 is lower bounded by 0.4. For obtaining lower bound of the sum

spectral efficiency (and scaling law of it), we just putǫ to prevent the lower bound becoming0.
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Next, we derive an upper bound when the receiver applies ZF. In the interference limited

regime,

λE

[

Nt
∑

m=1

log2(1 + SINRZF
0 (m))

]

= λ

Nt
∑

m=1

EH0,0(m),d0,0,I0(m)

[

log2

(

1 +
H0,0(m)d−α0,0

I0(m)

)]

(a)

≤ λNt log2

(

1 + E[d−α0,0 ]E[H0,0(m)]E

[

1

I0(m)

])

(b)
= λNt log2

(

1 +
2(1− R2−α

d )

(α− 2)(R2
d − 1)

1

Rα
d

(Nr −Nt + 1)
Γ(1 + 2

α
)Γ(Nt)

α
2

(λπΓ(Nt +
2
α
)Γ(1− 2

α
))

α
2

)

, (65)

where (a) comes from Lemma 2, and (b) follows fromE[d−α0,0 ] =
2(1−R2−α

d
)

(α−2)(R2
d
−1)

, E[H0,0(m)] =

Nr −Nt + 1, and the relation ofE
[

1
X

]

= E
[∫∞

0
e−sXds

]

for any positive random variableX.

The negative moment ofI0(m) is

E

[

1

I0(m)

]

=

∫ ∞

0

E[e−sI0(m)] =

∫ ∞

0

e
−λπ

Γ(Nt+
2
α )Γ(1− 2

α )

Γ(Nt)
s
2
α

ds =
Γ(1 + 2

α
)Γ(Nt)

α
2

(λπΓ(Nt +
2
α
)Γ(1− 2

α
))

α
2

.

(66)

Therefore, the upper bound on the sum spectral efficiency perunit area is

CZF = λNt log2

(

1 +
2(1− R2−α

d )

(α− 2)(R2
d − 1)

(Nr −Nt + 1)
Γ(1 + 2

α
)Γ(Nt)

α
2

(λπΓ(Nt +
2
α
)Γ(1− 2

α
))

α
2

)

≤ λNt log2

(

1 +
2(1− R2−α

d )

(α− 2)(R2
d − 1)

(Nr −Nt + 1)
Γ(1 + 2

α
)

(λπΓ(1− 2
α
))

α
2

(

(Nt − 1)−
2
α

)α
2

)

,

(67)

where the last inequality comes from

Γ(x)

Γ(x+ 2
α
)
≤ (x− 1)−

2
α . (68)

By letting λ tend to infinity, we obtain

lim
λ→∞

CZF = O(λβ1+1 log2(1 + λβ2−β1−
α
2 )). (69)

Equations (64) and (69) conclude the proof of Theorem 3.

The proof of Theorem 4 is analogous to that of Theorem 3. The main difference consists

in changingH0,0(m) ∼ χ2
2(Nr−Nt+1) to H̃0,0(m) ∼ χ2

2(Nr−Nt+m). The lower bound of the sum
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spectral efficiency per unit area becomes

λE

[

Nt
∑

m=1

log2
(

1 + SINRSIC
0 (m)

)

]

>
2λ

α

Nt
∑

m=1

log2

(

1 +

(

2Γ(Nt)

Γ(Nt +
2
α
)Γ(1− 2

α
)

)
α
2 Nr −Nt +m− 1 + ǫ

(λπ(R2
d + 1))

α
2

)

>
2λNt

α
log2

(

1 +

(

2

π(R2
d + 1)Γ(1− 2

α
)

)
α
2 Nr −Nt + ǫ

Nt

λ−
α
2

)

, (70)

and the upper bound becomes

λE

[

Nt
∑

m=1

log2
(

1 + SINRSIC
0 (m)

)

]

≤ λ
Nt
∑

m=1

log2

(

1 +
2(1− R2−α

d )

(α− 2)(R2
d − 1)

(Nr −Nt +m)
Γ(1 + 2

α
)Γ(Nt)

α
2

(λπΓ(Nt +
2
α
)Γ(1− 2

α
))

α
2

)

< λNt log2

(

1 +
2(1− R2−α

d )

(α− 2)(R2
d − 1)

Γ(1 + 2
α
)

(πΓ(1− 2
α
))

α
2

Nr

(

Γ(Nt)

Γ(Nt +
2
α
)

)
α
2

λ−
α
2

)

≤ λNt log2

(

1 +
2(1− R2−α

d )

(α− 2)(R2
d − 1)

Γ(1 + 2
α
)

(πΓ(1− 2
α
))

α
2

Nr

Nt − 1
λ−

α
2

)

, (71)

where the last inequality comes from (68). With the foregoing assumptions, the scaling law of

the sum spectral per unit area with respect to the density becomesΘ(λβ1+1 log2(1+λ
β2−β1−

α
2 )).

APPENDIX D

PROOF OFTHEOREM 5 AND 6

We use Lemma 1 again. We start to derive the ZF-receiver case.Conditioned ondk,k = d, the

spectral efficiency of them-th data stream of the typical link is

E

[

log2

(

1 +
H̃0,0(m)d−α0,0

Ĩ0(m) + Ntσ2

P

)

|d0,0 = d

]

=
1

ln 2

∫ ∞

0

e−
Ntσ

2

P
z

z
(1− E[e−zH0,0(m)d−α])

× E[e
−z

∑∞
j=L+1 H̃0,0j

(m)d−α0,0j ]dz, (72)

by Lemma 1. SincẽH0,0(m) is Chi-square distributed with2(Nr − (L+ 1)Nt + 1) distributed,

E

[

e−zH̃0,0(m)d−α
]

=
1

(1 + zd−α)Nr−(L+1)Nt+1
. (73)



27

The Laplace transform of̃I0(m) for the givenL is

LĨ0(m)(L; s) = E

[

e
−z

∑∞
j=L+1 H̃0,0j

(m)d−α0,0j

]

. (74)

Under the condition that theL-th nearest interferer’s distance isr, the Laplace transform is

obtained as

LĨ0|d0,L=r(L; s) = E

[

e
−z

∑∞
j=L+1 H̃0,0j

(m)d−α0,0j |{d0,L = r}
]

(a)
= E





∏

d0,0j∈Φ\B(0,r)

1

(1 + zd−α0,0j
)Nt

|{d0,L = r}





(b)
= exp

(

−πλ
∫ ∞

u=r2
1− 1

(1 + zu−
α
2 )Nt

du

)

, (75)

where (a) comes from the fact thatH̃0,0j (m) ∼ χ2
2Nt

and (b) follows from PGFL. The distribution

of r is given in [37] and by unconditioning with respect to it,

LĨ0(L; s) =
∫ ∞

0

exp

(

−πλ
∫ ∞

u=r2
1− 1

(1 + zu−
α
2 )Nt

du

)

2(λπr2)L

rΓ(L)
e−λπr

2

dr. (76)

Thus, the sum spectral efficiency conditioned ondk,k = d can be written as

E

[

log2

(

1 +
H̃0,0(m)d−α

Ĩ0(m) + σ2Nt

P

)

|{d0,0 = d}
]

=
1

ln 2

∫ ∞

0

e−
sNtσ

2

P

s

[

1− 1

(1 + zd−α)Nr−(L+1)Nt+1

]

LĨ0(L; s)ds. (77)

We obtain the announced result when using the fact thatd0,0 is uniformly distributed in a ring

with radii (1, Rd).

The result for ZF-SIC follows by the same arguments, using the fact thatH̃0,0(m) is Chi-square

random variable with2(Nr −Nt +m) degrees of freedom.
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APPENDIX E

PROOF OFTHEOREM 7 AND 8

Proof: We start the proof of Theorem 7. The lower bound of (36) is

λE

[

Nt
∑

m=1

log2(1 + SINRZF
0,L(m))

]

= λ
Nt
∑

m=1

EH̃0,0d0,0,Ĩ0(m)

[

log2

(

1 +
H̃0,0(m)d−α0,0

Ĩ0(m)

)]

(a)

≥ λ
Nt
∑

m=1

log2

(

1 +
eE[ln(H̃0,0(m))]

E[d−α0,0 ]E[Ĩ0(m)]

)

(b)
> λ

Nt
∑

m=1

log2



1 +
Nr − (L+ 1)Nt + ǫ
2(1−R2−α

d
)

(α−2)(R2
d
−1)

E[Ĩk(m)]



 , (78)

where(a) comes from Lemma 2, and(b) comes from the inequality (60),E[d−α0,0 ] =
2(1−R2−α

d
)

(α−2)(R2
d
−1)

.

The expectation of̃I0 conditioned ond0,0L = r is

E[Ĩ0(m)|d0,0L = r] =
2πλNt

2− α
r2−α. (79)

By unconditioning with respect tod0,0L whose distribution is given in [37], we get

E[Ĩ0(m)] =
2πλNt

2− α

∫ ∞

0

r2−α
2(λπr2)L

rΓ(L)
e−λπr

2

dr (80)

= (2πλ)
α
2Nt

Γ(1− α
2
+ L)

Γ(L)
. (81)

By leveraging

Γ(L)

Γ(1− α
2
+ L)

≥ (L− α

2
)
α
2
−1, (82)

the lower bound becomes

λE

[

Nt
∑

m=1

log2(1 + SINRZF
0,L(m))

]

> λNt log2



1 +
Nr − (L+ 1)Nt + ǫ

2(1−R2−α
d

)

(α−2)(R2
d
−1)

Γ(L)

(2πλ)
α
2NtΓ(1− α

2
+ L)





≥ λNt log2



1 +
Nr − (L+ 1)Nt + ǫ
2(1−R2−α

d
)

(α−2)(R2
d
−1)

(2πλ)
α
2Nt

(L− α

2
)
α
2
−1



 . (83)

By pluggingNt = c1λ
β1, Nr = c2λ

β2 into (83), we obtain the following scaling law:

lim
λ→∞

CZF
L = Ω(λβ1+1 log2(1 + λ(β2−β1−1)α

2
−β2)), (84)

sinceL = ⌊Nr

Nt
⌋ − 1.
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The proof of Theorem 8 is almost identical to the proof of Theorem 7. The main difference

is in the distribution ofH̃0,0(m). The lower bound becomes

λE

[

Nt
∑

m=1

log2(1 + SINRSIC
0,L (m))

]

> λ
Nt
∑

m=1

log2



1 +
Nr −Nt +m− 1 + ǫ
2(1−R2−α

d
)

(α−2)(R2
d
−1)

(2πλ)
α
2Nt

(L− α

2
)
α
2
−1



 .

(85)

With the foregoing assumptions, we obtain

lim
λ→∞

CSIC
L = Ω(λβ1+1 log2(1 + λ(β2−β1−1)α

2 )). (86)
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