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Scaling Laws for Ergodic Spectral Efficiency In
MIMO Poisson Networks

Junse Lee, Namyoon Lee and Francois Baccelli

Abstract

In this paper, we examine the benefits of multiple antennanconication in random wireless
networks, the topology of which is modeled by stochasticngety. The setting is that of the Poisson
bipolar model introduced in[1], which is a natural model fad-hoc and device-to-device (D2D)
networks. The primary finding is that, with knowledge of chahstate information between a receiver
and its associated transmitter, by zero-forcing succesaierference cancellation, and for appropriate
antenna configurations, the ergodic spectral efficiencylmmade to scale linearly with both 1) the
minimum of the number of transmit and receive antennas, dtnsity of nodes and 3) the path-loss
exponent. This linear gain is achieved by using the tranantgnnas to send multiple data streams (e.qg.
through an open-loop transmission method) and by exptpitie receive antennas to cancel interference.
Furthermore, when a receiver is able to learn channel stdtemation from a certain number of
near interferers, higher scaling gains can be achieved whimg a successive interference cancellation
method. A major implication of the derived scaling laws iatthpatial multiplexing transmission methods
are essential for obtaining better and eventually optimaliisg laws in multiple antenna random wireless

networks. Simulation results support this analysis.

. INTRODUCTION

A multiple-input-multiple-output mobile ad hoc network (MO-MANET) is an infrastructure-
less network in which a large number of transmit-and-rexewirs, each with multiple antennas,

communicate by sharing some common spectium [2], [3]. Settvarks are fundamental in a
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variety of applications including car-to-car and devioedevice communication systems [4]-[6].
It is therefore of great importance to characterize theesydevel performance of such networks
[7]-9].

Despite extensive research over a few decades, analytiggdssions for the spectral efficiency
of such systems are still missing. The principal difficulgshbeen the lack of a tractable model
guantifying uncoordinated inter-node interference tbgetwith inter-stream interference at a
receiver equipped with multiple antennas. In this paperleverage two analytical tools to cope
with this difficulty. The first one is stochastic geometry athimodels the locations of links as
Poisson dipoled [1] and allows one to compute the distiloutif the interference power. The
second one is random matrix theory [10], which is exploiteddalculating the distribution of
inter-stream interference power under different MIMO d&te techniques. Combining these
tools, we characterize the ergodic spectral efficiencias the scaling laws of a super-dense
MIMO-MANET system, under Poisson assumptions on the nodations, and when considering
two major types of channel knowledge at receivers. By leyiagathe closed-form expressions
which are derived, we highlight the interplay among four leggtem parameters determining
the scaling laws, namely the number of antennas at the tittegnthe number of antennas at

the receiver, the node density, and the path-loss exponent.

A. Related Works
There has been extensive work on the capacity of MIMO-MANBEWISMO-MANETSs can

be modeled as MIMO interference networks in which a finite hamof transmit-and-receiver
pairs communicate by sharing the same spectrum, withawdrméter cooperation, [7] studied the
capacity of a MIMO-MANET by treating inter-node interfex@nas additional noise at a receiver,
and derived the optimal power allocation strategy for thé/I@l transmission. For instance, in a
certain range of interference-to-noise ratios, it turnstbat allocating the whole power to one
antenna (i.e., using a single stream transmission) is atif8] and [11] extended the result of
[7], and demonstrated that the asymptotic spectral effigies improved by sending multiple
data streams. A common assumption of these studies is thdidtances between any two nodes
in the network are deterministiCl[7] or identical [8], whighunrealistic to model MANETS in
practice. This approach cannot be used to assess which Mist@rission techniques provide

the highest gains in large random MANETSs.



When considering more realistic random network topologguagptions, the rates achievable
in MANETSs have been studied inl[2],][9], [12]-[16]. The studfyscaling laws within this context
was initiated by Gupta and Kumar's seminal paper [2]. Untierassumption that nodes are
randomly located in the unit disk, Gupta and Kumar showed nmatihop routing based on a
decode-and-forward scheme can reach to a total throughipichvecales a€)(y/n). By using
percolation theory, it was later shown in [12] that a betiealiag law of orderO(y/n/logn)
is achievable. Subsequently, improved scaling resulte wlerived in MANETS, assuming that
some specific additional assumptions hold on mobility [b&hdwidth [15], or node-cooperation
[9]. The main differences between our work and this line segech are the following: (1) our
model is based on Poisson dipoles and assumes that sowwtogatien pairs communicate with
each other relying upon single-hop transmissions, i.atheemulti-hop routing schemes nor
node-cooperation are allowed (in a sense, the present pmpaore focussed on D2D than on
MANETS). (2) we focus on the use of multiple antennas at bi@thgmitters and receivers, while
this line of research was centered on the scenario with desargenna at both transmitters and
receivers. (3) our performance metric is spatially-avedagrgodic spectral efficiency, while the
work alluded to above focused on transport capacity. (4héveew scaling laws are our main
results, our approach also provides exact formulas for teamShannon rate of a typical link
and the spectral efficiency per unit area (see e.g.Theor8hent[2 below), and goes hence
beyond the scaling law setting.

In the present paper, we assume that the interferer losatiom Poisson distributed over the
plane [17], [18], which is an appropriate model for e.g. D2ihere transmitters are randomly
located in an uncoordinated manner. Using this model, thestnission capacity of ad hoc
networks, which quantifies the maximum allowable spatiaisity of successful transmissions
per unit area, subject to a given outage probability comgtraas characterized in certain settings.
For example, the transmission capacity expressions of adétwvorks were found when adopting
spread spectrum techniquées|[19],1[20], interference diatiom [21]-[23], and multiple-antenna
transmission methods [P4]-[31]. In particular, in[25],wias demonstrated that interference
cancellation techniques at a receiver employing multipieianas can provide a linear increase
of the transmission capacity of ad hoc networks with the ribetesity. In [29], it was shown that
for a MIMO setting, a single stream transmission is optinmatérms of transmission capacity,

when all the degrees of freedom of the receive antennas ackfas interference cancellation.



Arguably, a common shortcoming of the transmission capawtric is that it cannot capture
the effects of rate adaptation techniques, which are thef&atures used in many modern
wireless systems to track and exploit channel variatio@23. [Bhe main novelty of the present
paper compared to this line of thought is the analysis of tigedic spectral efficiency (rather
than transport capacity), which quantifies the achievalllan8on transmission rate per unit
area when adapting the rate to the different local condstidior a single-input-multiple-output
(SIMO) setting, the recent work in_[33] showed that the suracsqal efficiency per link can
increase linearly with both the density and the path lossoegpt provided the number of
antennas is a linear function of the density. For a MIMO ggttihowever, it is still unknown
whetherspatial multiplexingtransmission techniques [34] can improve the scaling laivh®
sum spectral efficiency. We recall thegpatial multiplexingconsists in transmitting different data
streams on the transmit antennas and in identifying/dignating between these streams at
the receiver, whildransmit diversityconsists in sending the same data symbols over multiple
transmit antennas to enhance the reliability. The mainitiiake achievement of this paper is
a proof that the answer to this question is positive and moeeigely the identification of the
network densities and antenna configurations for wisphtial multiplexingstrategies achieve

higher sum spectral efficiency per unit area than the metbaded ortransmit diversity

B. Main Contributions

We consider a random network the topology of which modelea Bgisson bipolar network
[1] with density A onR2. In this model, each transmitter has its receiver at somagomardistance.
Each transmitter is equipped witN; antennas and is assumed to sefiddata streams to its
associated receiver, equipped with(> N,) antennas. Our key findings can be summarized as
follows:

« We first consider the case where each receiver has knowlddde state of the channel
between its transmitter and itself only. We refer to thisrofel knowledge assumption
as direct channel state informatio(DCSI) at receiver (DCSIR). Under the premise of
this channel knowledge, and under zero-forcing (ZF) detecand ZF-based successive
interference cancellation (ZF-SIC) detection respebtjwee derive analytical expressions
of the sum spectral efficiency as a function of 1) the netwaeksity A, 2) the number

of transmit and receive antennad(and NN,), 3) the path-loss exponent, and 4) the



signal-to-noise ratio (SNR). By deriving a closed form lovaad upper bound on this sum
spectral efficiency, we show that, asgoes to infinity, whenV, = ¢, \%', N, = ¢, \*2 for
some constants;,c, > 0, 5, < [, anda > 2, the scaling laws of the ergodic spectral
efficiency per link is

O(A™ logy(1+ X277172)), (1)

for both ZF and ZF-SIC. One important implication of this lsog law is that whens, >
B1+5, transmitting multiple streams is more beneficial in thdisgdaw sense than sending
a single stream, which strongly contrasts with the resulivdd on transmission capacity
[29]. In fact, this result agrees with the intuition thatliosild be possible to improve the data
rates per link by havingv, = ¢; \** and by transmitting multiple data streanmsu(tiplexing
gain), provided the remaining degrees of freedom at the receawersufficient to cancel
both inter-stream interference and inter-node interfegeand to discriminate between the
independent data streams. Furthermore, this scaling lgpression generalizes the result
for the SIMO case derived in [33] to the MIMO case.

« We also consider the case where each receiver is able to flear@SI of its L-nearest
interferers with ( < L < L%J — 1), which is referred to here as local CSIR (LCSIR). Using
a ZF-SIC detection technique for suppressing both interast and inter-node interference,
we give an exact expression of the sum spectral efficiencyleBgraging this expression,

we get an achievable scaling law of the sum spectral effigigee link of the form:
QA (logy(1 + AP=A7D2))), (2)

whenN; = ;A% and N, = ¢, \*2, for some constants, c, > 0 andj; < S, a > 2, and for
L= L%J — 1. This result also demonstrates that the MIMO transmissiethod improves
the scaling law of the ergodic spectral efficiency per linkibgreasing multiplexing gains,
providedS, > (5, + 1. Comparing to DCSIR, with LCSIR, it is possible to increase sum
spectral efficiency with both the path-loss exponent andniimaber of transmit antennas.
This multiplicative gain in the achievable scaling law canfieom the fact that the receiver

exploits LCSIR.

|| denotes the largest integer no more than



This paper is organized as follows. The network model, thdopmance metrics, and the
receiver schemes are discussed in Sediibn Il. The exacessipn and the scaling law for
ergodic spectral efficiency are provided in Secfioh Il ie fACSIR case and in SectignllV in
the LCSIR case. We conclude in Sectloh V.

I[I. SYSTEM MODEL
A. Network Model

We consider @oisson bipolar network modeihich features an infinite number of transmitter-
receiver pairs scattered in the Euclidean plane. et {X;},cy denote the locations of the
transmitters, which are assumed to form some realizatioa lmdbmogeneous PPP with positive
and finite intensity\ on R2. Let ® = {Y;};cy denote the locations of the receivers. The receiver
Y; of X; is assumed to be uniformly distributed on a ring with innelima 1 and outer radiug,
centered a{ X, }, whereR, > 1. Fig.[1 provides a snapshot of network topology with= 50m
and A = 0.000004/m?. We assume that each receiver is equipped Withantennas, whereas
transmitters have a random numb¥éyin [1, N,| € N of antennas. We denote the probability of
having k& transmit antennas by, whererf;lpk = 1. These numbers of transmit are assumed

independent and identically distributed (i.i.d.) overkbn

B. Signal Model

A transmitter X;, € & communicates with its associated receivg¢r and sends a signal
sp € CMuxxl when X, hasN, ;, antennas, with power constraif{||s;>] = P. Here, we assume
the transmit power is equally allocated to all antennasuAssg a frequency-flat channel, the
received signal at thé-th receivery;, € CM*! is

Yi = Z d;;l%Hk,le + Zy, (3)
1,X,€d
whereH;,; € CN>Nei js the channel matrix and,; the distance fromX; to Y}, respectively.
Moreover,z;, € CN*! js the noise vector at receiv&}. Furthermore, we assume that all entries
of Hy,; are i.i.d. complex Gaussian random variables with zero magah unit variance, i.e.

CN(0,1), and that all entries o, are i.i.d.CA(0,0?), wherec? is the noise variance.
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Fig. 1: A snapshot of bipolar MANET whera = 0.00004/m? and Rq = 50m.

C. Receive Filters and Performance Metrics

We assume that receivéf. can measure CSI from its associated transmiigmand from the
L; nearest transmitters, i.e{in}f:’ﬂl, where0 < Ly < max{n|Y ;| Ny, < Ny— Ny, 4. It will
be assumed thaX, sendslV, ;, data streams without using any precoding, i.e., that an-tpem
MIMO transmission is used, and also that the receiver usesilireceive filters to detect the
desired data symbol to eliminate thger-stream interferencand theinter-node interference
Let vi(m) € CN*! m =1,..., N, denote the receive filter vector used¥atfor detecting
the m-th data stream of its transmitter. Then, the resulting aigo-interference-and-noise ratio

(SINR) for them-th data stream of thé-th link is

SINRy,(m) = ’ B Noo? (4)

2With this condition, the number of received data streanis.ds no larger thanV,. This assumption is necessary for decoding
the independent data streams in ZF and ZF-SIC. If all tratiersiare equipped wittV; antennasL; = L%J - 1,Vk e K.

Further, we denote thg-th nearest interferer fron, by X, .



where

Hi g (m) = [[vi(m)Hgx(:; m)|1%, Lu(m) = Y [Vi(m)Hea( )lPd 7
i=1,..., Nt,k
Lia(m) = X ie ks oo,y VR HE P T, Lis(m) = > Vi (m) H | |*dyc

LX1€{O\ X1, Xpoy Xy oo XkLk}
Here, we denote the conjugate transpose layd thei-th column of the matrixA by A(:, 7). As
can be seen il {4), the total amount of interference at theweccan be decomposed into three
factors: 1) thenter-stream interferencé,,, 2) theinter-node interferenc&om the L,-dominant
interferers,l;», and 3) theinter-node interferencel,;, which is the interference from the other

nodes. Then, the achievable rate of théh link is

Ni k. Ni k.
Cr =Y Ci(m) =Y _log,(1+ SINRy(m)). (5)

The main target performance metric in this paperigodic spectral efficiencyThe sum
spectral efficiency per unit area is defined by

1 1
C—WCA—WE[ pe”

k,XpeA
where for anyA C R?, | A| is the area of4, C4 is the sum spectral efficiency of, and E°

= \E

N0
> log,(1+ SINRO(m))] : (6)

denotes the Palm expectation[17] of the receiver PPP. Tdidlfat the last expression does not
depend on the choice of results from the stationarity assumptionhsl|[17]. Here, SjiBnotes
the SINR measured at the receiver located at the origiarthermore, thepectral efficiency of

the typical link or equivalently thespectral efficiencyer link is defined by
Nio

1
Clink = XC =2 Z log,(1 4+ SINRg(m)) | - (7)

m=1

Here, for the above quantities, we will use the terms ergspextral efficiency or ergodic spectral
efficiency per link, respectively. The ergodicity is ovetlbthe time-domain (averaging over the
small-scale multipath fading) and over space (averagireg all Poisson configurations).

We will denote the sum spectral efficiency per unit areaCl5§ under ZF, and by>>'® undre
ZF-SIC, the sum spectral efficiency gf with ZF by C4" under ZF and by”%“ under ZF-SIC,

and the spectral efficiency per link iy, under ZF byC?{ under ZF-SIC.

3By Slivnyak’s theorerfiL 7], it is possible locate the typical receiver at the atigiVe label the typical transmitter and the typical
receiver byX, andY, = 0, respectively. The distance betwe®h and { Xy }1.cto3un, the channel matriH,;, 1 € {0} UN,

the linear receiver filtewo(m), Io(m), and thej-th nearest interferers fror, i.e., Xo, are defined similarly.



1) ZF detection: The main idea of th&F-decorrelator[34] is to constructv,(m) so as to
remove bothl,;(m) and I»(m) simultaneously by projecting the received signal vectaioon
the subspace orthogonal to that spanned by the vetlgrs:, 1), ..., Hy ,(:,m — 1), Hy 4 (:
,m+1),...,Hyx(:, Ny i), and the column vectors @ 4, , . . .,Hk,kLk. Let Uy(m) be the null
space of these column vectors; the dimensiolJpfm) is N, x (N, — (Nyp — 1) — S22 Nig,)
with probability 1H By definition of Ly, Ny — (Nyjx — 1) — 325 Noj, > 1.

We are interested in maximizing the desired signal powerttmpsingv, (m) in Uy (m). More
precisely, we design(m) which maximizesv;(m)Hy (:,m)|?. If the columns ofUy(m) are
orthonormal bases of the null space, then the followingrfiteximizes|v; (m)Hy x(:, m)|*:

vi(m) = Uy (m) Uy (m)Hy 1. (:,m)
UL (m) Uz (m)Hg i (, m)][2”

By applying this filter,/;;(m) and I;»(m) are suppressed and the resulting SINR becomes

H a5
SINRY" (m) = k”“(m)wf,;’iz , ®)

]k’(m) + P

(8)

.....

a Chi-squared random variableith 2(N, — N, , — ijl Nix, +1) degrees of freedom [34] and
Hy, = ||vi(m)Hy,||? is distributed as a Chi-squared wigV,, degrees of freedom [34]. The

sum spectral efficiency per unit area hence becomes

Nto0

> log, (1 + SINRE"(m)) | . (10)

m=1

2) ZF-SIC detection:We now consider ZF-SIC, which is a well-known non-linearedgion
method for open-loop MIMO systems. The key idea of ZF-SICodi#ng is to recover the
data streams successively and to subtract the recoveesdrstrfor obtaining the remaining data
streams. This provides a power gain as well as an interfereaiccellation gain. For decoding the
data streams of the-th link, the receiver first decodes the signals from intenfe using LCSIR.
After subtracting off these signals, the-th data of thek-th link can be obtained iteratively

by decoding and subtracting from the 1st to the— 1-th data streams and by then applying

*N, x — 1 comes from the dimension of the subspace spanneélby(:,1),..., Hy x(;,m—1), Hpx(:;m+1),..., Hy o (:
, Ni,x,) and Zf:kl Ny i, from the dimension OHk,kn---ka,kLk-

The probability density function of the Chi-square digtitibn with 2n degrees of freedomys,, is fX22 (z) = ﬁ
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the m-th decorrelator which suppresses the signal fromsthe 1-th to the N, ,-th streams of
the k-th link. In other words, the corresponding projection igmthe subspace orthogonal to
Hy . (:,m+1), ..., Higi(s, Ne) (say U, (m)), as opposed to being to the subspace orthogonal
to Hyr(:,1), ..., Hyx(c,m — 1), Hy 1, (:,m + 1), ..., Hy (2, Nyx) and the column spaces of
Hiky, ..., Her,, in the previous subsection. By choositg(m) in U,(m) to maximize the
signal power, the resulting SINR becomes

Hygo(m)d, s

fk(m) + Nt’;jgz ,

SINR“(m) =

(11)

.....

Chi-squared random variable withiN, — N, ., +m) degrees of freedom anfd; ; = ||v; (m)Hy,||?
is distributed as a Chi-squared witiV, ; degrees of freedon.T he sum spectral efficiency per
unit area achieved by the ZF-SIC is given by

Nto
OS¢ = AR = AE | >~ logy(1 + SINRS(m)) | - (12)

m=1

Even though neither ZF nor ZF-SIC are optimal in the infoloratheoretic sense, these are
qguite commonly used and in addition amenable to analysith WWese receiving architectures,
the exact expressions of the sum spectral efficiency andaitiesponding scaling laws are given

in the following sections.

[Il. DIRECT CSIR

In this section, we obtain the exact analytical expressmfnthe sum spectral efficiency for
both ZF and ZF-SIC detection with DCSIR, i.d., = 0 for all X, € ®. Then, we derive a
lower and an upper bounds with closed-forms. We get the ammaliscaling laws from these
closed from expressions.

In our closed-form expressions, we use the Gamma functioichms defined ad'(z) =
Joo e .

bwith the SIC structure, the subspace spanneddy (;,m + 1), ..., Hy 1 (:, Ni,x) is suppressed for recovering the-th
data stream.
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A. Sum Spectral Efficiency
Theorem 1 (ZF with DCSIR)When using ZF detection, the sum spectral efficiency per unit

area of DCSIR is

ZF oz)\vpv Ra k= 1;%%) -
¢ 21112/ / U
Ny—v+1
1— L . du—2" g, (13)
14 ()\W Zk o kr(k+§)r(1_§))—f R% -1
(k)u

Proof: See AppendixB. [

Theorem 2 (ZF-SIC with DCSIRWhen using ZF-SIC detection, the sum spectral efficiency

per unit area of DCSIR is

Q

vo D(k+2)r(1-2)\" 2
osic _ N\ | 9P /Rd/ooe - MZ’“ 7 kT) !
2In2 U
Ny—v+m
” 1 2
Z 1— ——= duR2r 1dr]. (14)
k r £ 2 —
m=1 1+ ()\7?7" Zkflpki( + () )(u a)> d
Proof: See AppendixB. u
Corollary 1: When all transmitters hav; antennas, i.epy, = 1, (I3) simplifies to
Nt0'27‘a ( r(Nﬁ%)F(k%))’%_u
ZF Oé)\Nt Ry T(Ng)u
" 2In2 U
Ny—Ni+1
1 2
1-— ( I 2) o dUR277ﬂld7“, (15)
T'(Ne+=)T'(1 2 —
1+ ()\71'7"2—F(N) ) d
and [I4) reduces to
o2 [\ TN+ 2ra-2)\ "2

osic _ oA /Rd /OO e (M e ) -

2In2 J; Jo u

Ny—Ni+m
Nt
1 2
Sli- . du——dr.  (16)
D(Ne+2)0(1-2)\ ~ 2 R;—1

f— o (X) _2
" Lt (e M=)
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Sum Spectral Efficiency (ZF, Direct CSIR) Sum Spectral Efficiency (ZF-SIC, Direct CSIR)
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(a) ZF detection (b) ZF-SIC detection

Fig. 2: The sum efficiency with DCSIR whepd| = 7500%(m?), a = 4, Ry = 50(m), P = —20(dBm),
0% = —104(dBm), pn, = 1

These explicit formulas show how the sum spectral efficieiscgetermined by the system
parameters. Fid.]2 plots the sum spectral efficiency of matters in region4 c R? for a
path-loss exponent = 4, |A| = 7500%(m?), Ry = 50m, P = —20dBm, py, = 1 ando? =
—104dBm. The gain of the SIC decorrelator can be found by comparimgtéto figures in
Fig. 2.

Remark 1:A drawback of ZF-SIC is error propagation. In the high SNRimegy however,
ZF-SIC detection, which is based on a higher-dimensionbsgace, always provides a higher
sum spectral efficiency than ZF detection, as can be check&til2.

One of the interesting observations is that increasing theber of streamsyV; for a givenV,
and A does not guarantee increasing the sum spectral efficientyh® one hand, for a small
node density\, it is possible to increase the sum spectral efficiency figeaith the number of
spatial multiplexing streamd’;. On the other hand, whekis large enough, it is not optimal to
sendN; data streams, as the sum spectral efficiency increasesnaanhy with A as shown in
Fig.[d. This implies that, for fixedV; and NV,, there exists an optimal density of nodes which
maximizes the sum spectral efficiency per link in such a nekwto further obtain insights from
the derived expressions, it is instructive to consider sexamples:

Example 1:Whend,, = d for all £ € K andpy, = 1, Equations[(15) and_(16) can be
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simplified as follows

F(Nt)u ng
7 )\oth Jutt N, — Ny +1 U ()\F(Nt+2)1"(1—2)7rd2) 2
¢ = 21n2 Z U TiNgu 2 N_N+1d“ (17)
S " U <1+<)\1"(Nt+§)1"(1—§)7rd2)2) o

SIC o Zt: ivt:—i_m <N1“ — Nt + m) /00 e v ()\F(NH-%)F(I—%)WEP Ju
T T(Ne)u N N
- 22 n= " o U (1+ ()\F(Nt+%()1"()l—%)7rd2)2 RNt

(18)
in the interference-limited case{ = 0). This simplified single integral form provides a better
intuition on the impact of network design parameters on spetisal efficiency. For example,
increasingV, always provides higher performance, and optimizvdor fixed N, is an important
and interesting question.
Example 2:Following the Exampl&]l, we further assume thgt= N,, a = 4. In this case,

the sum spectral efficiency per unit area with the ZF-recdwe

o 2AN, {sin (mcﬁr(m + %)r(%)) <7T g (wwr(m + %)r(%)))

AT (N, + 30 (3 AT (N, + 30 (3
— cos <7T (V: +5) <2>)Ci <7T (I +3) (2))} (19
I'(Ne) I'(Ne)
where Si(z) = [ %dt and Ci(z) = — [7° == =) jt are the sine integral and cosine integral
functions.
In Examplel2, if we assumé = ﬁ which means that the distance of commu-
nication links is of order of\~2, the sum spectral efficiency per unit area becomes
2\,
ZF __ L ~
o = (2 Si ( )) ~ 0.57T2AN;. (20)

So, if the assumptions in Examgdlé 2 and the above relatios afid A hold, it is possible to
guarantee that the sum spectral efficiency per unit area lsaat0.5772 N\ by choosing/V;
equal toV,.

Throughout this paper, the main scaling is that of the nunab&ansmit and receive antennas
with respect to the network density This example different from the main stream as the link
distance depends on the network dengityn what follows link distances will not exhibit such

a functional depencency.
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B. Scaling Law

In this section, we provide both a lower and an upper bount witlosed-form on the sum
spectral efficiency. This allows us to obtain the announczdireg law. We focus on the case
wherepy, = 1.

Theorem 3 (Direct CSIR, ZF, Scaling Lawissume thapy, = 1, N; = 1\, N, = o)\,
for some constants;, c; > 0, and that5; < 3,. Then, in the interference limited regime,

lim O™ = O\ log, (1 + A27A=3)), (21)
—00
Proof: See Appendix . |

Theorem 4 (Direct CSIR, Scaling Law, ZF-SIG@)nder the same assumptions as in Theorem

[3, in the interference limited regime,

lim CS1C = O(N1H 1 og, (1 + M2=H=2)), (22)
Proof: See Appendix . |

Remark 2:The first observation is that, in the DCSIR case, the sum speefficiency per
unit area are identical for ZF and ZF-SIC in a scaling law sefigis is because the signal
power gain under ZF-SIC is at moat, i.e.,E[H} .(m)] ~ N;, while the fading power of inter-
node interference is also proportionaljgg), ie., & [ﬁ}] ~ Nit). Consequently, the array gain
obtained by ZF-SIC detection is negligible in the scaling Bense. To obtain a gain from the
SIC structure, the signal power gain by ZF-SIC should beelatgan/V,, and this will actually
be the case for LCISR (see Sectiod IV).

The next corollary, on per link spectral efficiency, follomsmediately from the two theorems
stated above.

Corollary 2: When the receive scheme is ZF or ZF-SIC, under DCSIR, thengcéw of

the sum spectral efficiency per link is

(%

0N log())) for g, — 1~ 5 >0, (23)
O(\) for By — B — % — 0, (24)
O(\%) for B, — ) — % <0. (25)

Here are important observations following from this caaofl
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« Wheneverg, — 3, — 5 > 0, the spectral efficiency per link is determined by alone.
So, in this regimespatial multiplexing namely increasing the number of data streams, is
beneficial; to the best of our knowledge, this result is new.

« Whenevers, — 4, — 5 < 0, the sum spectral efficiency per unit area goe8 éxponentially
fast with A when g, < ¢, and increases lika®2—2 when g, > 5. For given$3, anda with
B2 — 5 > 0, the best value fop, is 37 = . — 5, and the corresponding scaling law is
O(N272),

« We can expect a linear gain wheéh = $ as this is the critical region between the super-
linear and sub-linear regions.

. For fixed N, and V,, (i.e. 81, B, = 0), the scaling law i€9(A~2).

Example 3:Assume thatpy, = 1. For fixed values oflV;, N, and «, what is the optimal

node density in our model? We answer this question in a leuvsy by maximizing the lower
bounds obtained above. For the ZF case, the density maxignthie lower bound of the sum

spectral efficiency per unit area in {62) is

2AN, 20 (N, 2 N,—N
Ayp = arg milx—t log, (1 + ( (V) 2)) - ) : (26)
@)

TN+ 2)00(1—2)) (Ar(R2+1))2
For largex, log,(1 + x) ~ log,(z), so in the high SIR regime, the optimal link density is
['(V:) (N — M=

) . 27
A o2 (N 4+ 2)I(1 — 2) 7w(RZ+ 1) @7)
Hence, the optimal probability in the Aloha protocol for ae A, N;, N, a IS
) A
pzr = min(1, )Z\F) (28)

For the ZF-SIC case, by using the lower bound[inl (71) and tlaioe log,(1 + x) ~ log,(z)
for large x, we get that the optimal given N;, V., and X in high SIR regime is

2 & 20(N) )3Nr—Nt+m—1
\E = — 1 1+ 5
S1c = Argmax — mzz:l 08 ( <F(Nt + %)F(l - %) (AMm(R241))2

2\ 20(\VL) M o
~ —1 b o
B S ((F(Nt +2)0(1 - 2)m(R3 + 1)) 77]1;[1( s
I(N) ] -
) N name ) 29
2m2-1[ (N, 1 %)F(l — %)W(R?i +1) <T£[1( t+m ) (29)

"Here, we ignore:.
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and the optimal Aloha probability is

. o A
péic = min(1, i\lc) (30)

Example 4: Assumepy, = 1. For fixed N;, A, anda, What is the optimal value foiN,;? This
can be obtained by using the formulas in Theokém 1[&nd 2. Alsimgy consists in maximizing
the lower bounds as in Examglé 3. By using the Gamma funcetation

T'(N,) 21
> 31
(fwames) 2w &Y
Equation[(6R), which is the lower bound of sum spectral efficy per unit area when ZF-receiver

is applied, becomes

2)\Nt Nr - Nt
W, (1620, (32)
when we define
2 |
= = 33
(fo3) worp 9
In the high SIR regime, the optima¥; for maximizing [32) is
. bN,
Nt,ZF - T (34)

In the same manner, we can obtain that the valu®,ahaximizing [71) when ZF-SIC is applied
is

. . b,

,SIC — Nt,ZF = ?- (35)

IV. LocAL CSIR

As already explained, LCSIR denotes the situation whegre- 0, i.e. receiverk knows the
Li-nearest interferer CSls in addition to the CSI of its ownrete. Through this section, we
assume all transmitters are equipped withantennas (i.epy, = 1) andL, = L for all X, € @,

consequentlyl < L < [§| — 1.
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A. Sum Spectral Efficiency

In the LCSIR case, we denote the sum spectral efficiency peatea byC#" under ZF and
by C?¢ under ZF-SIC.
Theorem 5:In the LCSIR case, under ZF detection, the achievable surotrgpesfficiency

per unit area with, dominant interferer CSlI is

ANy [fi > 1 1 2r
zF _ MVt B e 2z
Ci = In2 /1 /0 Nyo®s (1 (1+ Sx—a)Nr—(L-i—l)Nt-l—l) Ly, (L S)dSRdev (36)

se

o0 o0 1 e 2()\7T7‘2)L 2
- (L:s) = -7\ 11— ——— ) du| =Ly, 37
Lotz = | exp( o[ () u) Cm e

Proof: See AppendixD. [
Theorem 6:In the local CSIR case, the achievable sum spectral effigipec unit area with

where

L dominant interferer channel information using ZF-SIC dgta is

CSIC:%L/Rd/C’OL 1— 1 L- (LS)dS2—xd:)j (38)
L e In2 /, 0 semfizs (14 sz—a)Ne=Nitm I\ fooa

o o0 1 N 20t
le(L, S) = /szo exp <—7T)\ /1;:r2 1-— (m) du> We dr. (39)

Proof: See AppendixD. [
Here as in the DCSIR case, the sum spectral efficiency ineseagth the network density,

for both ZF and ZF-SIC. This can be checked in Fiy. 3 where weethat the sum capacity
increases sub-linearly with the average number of links.

Remark 3:For the ZF case, the fading power of the desired signal isléavdCSIR than for
DCSIR because the remaining degrees of freedom at the eeca® used to suppress the inter-
node interference from the-dominant interferers. Therefore, leveraging all channirmation
is not always beneficial. This can be checked in the first figufeFig.[2 and Fig[13. For the
ZF-SIC case, however, utilizing all information is alwaysnieficial, since the fading power of
the m-th data stream of thé-th link is X3y, _, ), rather tham3 . ;. 1yy, 1) in ZF. This

observation can be checked on the second figures of Fig. 2 ignf8.F
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Sum Spectral Efficiency (ZF, Local CSIR) Sum Spectral Efficiency (ZF-SIC, Local CSIR)
—©— (N,N)=(14), Analytical 2000 —©— (N,N)=(14), Analytical _®
1200 O  (N,N)=(L4), Simulation 1800 O (NN)=(1,4), Simulation P L . *
—B— (N,N)=(2.4), Analytical —B— (N,N)=(2,4), Analytical L P PR
O (NN)=(24), Simulation 1600 (N,N)=(2,4), Simulation v e T
_ 1000 ==+ (NN)=(1.8), Analytical : — ==+ (N,N)=(1.8). Analytical e ,a‘*
N N 1400 v . i .
I o (N,N)=(1,8), Simulation s o (N,N)=(1,8), Simulation * - O
) . S ! 3 L
@ goof =+ (N‘.N,)—(ZYB),A"aMIc‘a\ = Y @ 1200« e - (NN)=(28), Analytcal |1 o~
E +  (N,N)=(28), Simulation *® - - - L 2 +  (NN)=(2:8), Simulation . e -
S = (NN)=(48), Analytical | =T o= 'o & 1000 - ==« (N,N)=(4,8), Analytical | o‘—"" .
i 600 #  (NN)=(48), Simulation _,—"Q \\\\ g 800 #*  (NNN)=(48), Simulation e
ol \ g v 7 -
9] 25 soof oo
a00t_A7
20!
i i i i i i i i i 0 i i i i i i i i i
20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200
Average # of communication links in |A| Average # of communication links in |A|
(a) ZF detection (b) ZF-SIC detection

Fig. 3: The sum spectral efficiency with LCSIR whéA| = 7500%(m?), a = 4, Ry = 50(m), P = —20(dBm),
0 = —104(dBm) with L = [ £z — 1.

B. Scaling Law

In this section, we assume that= L%J — 1 which is the maximum possible number for
nulling the interference from other nodes.

Theorem 7 (Local CSIR, Scaling Law, ZFAssume thatpy, = 1, and N, = c; A\, N, =
co %2 with with some constants,,c, > 0 and 3; < f,. Then, under ZF detection, the sum

spectral efficiency per unit area scales as

)\lim C%F _ Q()\B1+1 log, (1 + )\(52—61—1)%—52))' (40)
— 00
when L = [{] — 1.

Proof: See AppendiXE. [

Remark 4:Whena = 4, under ZF, the scaling law of spectral efficiency per linlis\*' log, (1+
N2=F1=1)) for DCSIR, whereas it i§2(\7 log, (1 + A\*2~2%172)) for LCSIR In this case, we can
observe that knowing channel state from other nodes is refulus the sense of scaling laws.
This is because the receiver wastes the spatial degreeseaufdim to cancel the nearest inter-
node interference. We conclude that, when ZF detection sl@mad, in the scaling law sense,
treating the nearest inter-node interference as noise @tarbstrategy than canceling it.

Theorem 8 (Local CSIR, Scaling Law, ZF-SIQ)he assumptions for the number of antenna

configurations are the same as in Theofém 7. When L%J — 1, the sum spectral efficiency
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per unit area with ZF-SIC detection scales as

Jlim O = QA" log, (1+ AB=Bi=lgy), (41)
—00
Proof: See AppendiXE. [

The main difference betweeh (40) andl(41) is the degreeseflrm of signal power by the
successive cancellation architecture.

Corollary 3: Under ZF-SIC and LCSIR, the scaling law of the ergodic spedificiency per

link is
QN1 log(N)) for B — 1 —1>0 (42)
Q) for Bo—pB—1=0 (43)
QANHB=A—1)3) for By — B — 1 < 0. (44)

The conclusions are similar to those of Corollaty 2. In maiar, for givens, and «, the
best; in the scaling law sense is heng¢ = 5, — 1, and the corresponding scaling law is
Q(\%271), Since we assume > 2, by comparing with the scaling law in Corolldry 2, LCSIR can
achieve higher performance than DCSIR case in the ergodictrsp efficiency per link scaling
law sense.

Example 5:When N;, N,, A\, and L are given, the density maximizing the lower bounds in
(B3) for ZF and|[(8b) for ZF-SIC under LCSIR can be obtainedadlews. As in Examplé13, in
the high SIR regime, the optimal densities for ZF and ZF-SIE a

e ( AN aﬁl) : (45)
AL 20-R5) 2 2 2In2
@-pi-n (27) N
2 2
L— )5t (& M
Adie,L = ( 2(1—<R3“)2) . ) (H (N; = Ny +m — 1)) STna” (46)
@y 2N A

and the optimal Aloha probabilities are

)\*
Pye = min (1, 5 ’L) (47)

)\*
Phio,, = min (1, S;C’L) . (48)
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V. CONCLUSIONS

We considered a random wireless network with multiple tnaihgnd receive antennas and
examined the benefits of using MIMO techniques for obtaimmgltiplexing gains from the
ergodic spectral efficiency point-of-view. Assuming twdfelient types of CSI at receivers, we
gave exact analytical expressions and scaling laws for ripedéec spectral efficiency. The main
finding is that the ergodic spectral efficiency increasesdity with both the density of nodes
and the number of transmit streams, provided that the nuwfa&ntennas scales in a particular
polynomial function with the density. When local CSI with -B¥C detection is employed, the
lower bound of the scaling law increases linearly with thegity of nodes, the path-loss exponent
and the number of transmit antennas provided the ratio letviiansmit and receive antennas
scales in a linear way with the density.

There are many interesting directions left as future wonke ossible direction is to consider
antenna correlation effects in both transmit and receiteraras, and to analyze how the corre-
lation effects change the scaling laws. Assuming a MIMO cenahetwork with finite feedback,
it would also be interesting to investigate the benefits oflased-loop MIMO transmission
technique over the open-loop transmission method exantieex! Another direction is to assume
a MIMO heterogeneous network and to investigate the optimumber of data streams as a

function of the density of nodes.

APPENDIX A

A LEMMA FOR CAPACITY ANALYSIS

The following lemma presented i [35] will be useful below.

Lemma l:Let xy,...,xzN,¥1,...,yy be arbitrary non-negative random variables. Then
E{ln{1+ % / My( ey(?) exp(—z)dz, (49)
Zm 1 Ym + 1
where M, (z) = E [e—zzﬁf:1y7,L] andM, ,(z) = E [e‘Z(ZL WrZ%:lym)].
Proof: See [35]. u

The following lemma, proved ir_[33, Appendix B], will also hesed:
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Lemma 2:Let X > 0 andY > 0 be independent non-negative random variables such that
E[X] < 00, E[Y] < 00, andE[5-] < cc. Then,

o (1 Z2EO0Y g (1) <, (15006 2] ). o0

APPENDIX B
PROOF OFTHEOREM[I AND
Let X andY be two independent non-negative random variables with R*, Lemmall

becomes

E {m (1 4 Y)_i a)} . /O T Bl e ]d. (51)

z

We first prove Theorernl 1. Giveth o = d for the typical link andN, , = ¢, applying [51), the
ergodic spectral efficiency for the-th data stream of the typical link is

H
E |log, (1 + O’O(m)da P ) |doo = d, Nio = t]
diolo(m) + —p—
1 o0 —MZ
= [ Bl e Rl 0, (52)
0

Let us definely(m) = Iy, (m) + Tpo(m) + ... + Ion. (m), wherely,(m) is the interference from

nodes which haveé-transmit antennas. Then, the Laplace transform of theferencel,(m) is
Liym) = E[e—slo(m)] = Ele* PO f()k(m HE _SIOk H EIOk(m (53)

The Laplace transform ofy;(m) is

—/ E,[1— e_sr%])\pkdxdy)

a

—
=

oA, | / (1— e )rdr])

(
o (-
(
9 oxp (~mmB e [ 0= e a)
( 2
(
(

(0% u1+3
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(a) comes from the thinning, the displacement theorem, hrdrdependent marking of PPP
[17]; p is the inter-node interference power wheg(m) is applied. (b) is obtained by changing
from Cartesian coordinates to polar coordinates; (c) is lilyifii's theorem. (d) follows from the
change of variable. = 3£; (e) comes from the integration by part; (f) is by the defonitof the
Gamma function and (g) comes from the fact thas a chi-squared random variable witlk
degrees of freedom.

So, the Laplace transform of the interferengém) at zd* is

Ny 2
o 2 T(k+ 2) 2
—2zd*Io(m)] _ _ 2,5 (e} R
Ele ] ]!:ll exp < TApRd” 2 0 ra a)) : (54)

which comes from the independent thinning and the supdiposof PPP with probability
generating functional (PGFL) of PPP_[17]. By pluggifngl(5#afoi (52), we obtain

ay 2
1 00 6—7‘1 LAY 2 N F(k‘—F 2) 2
_— 1 — Ele—#Ho0(m) SV o SRS o -
nz ) T (-Ele J>exp< Y p T - ) ) d

10 (e b L+ 2ra-2) —%
21n2/0 u

4 2yp1-2y\ "2
Arrd? Dk W) Hy, k(m)
e m , _
e ( -1 Lk) e “du

e (g b L+ 2ra-2) %
21n2/0 u

x| 1-— L = du, (55)

1+ (e SO, apt=al)
where (a) comes from a variable change, and (b) follows fr@wodditioningHy, ,(m) which
is a Chi-squared random variable withV, — ¢ + 1) degrees of freedom. Sind& is uniformly
distributed in the ring centered at,, we obtain [(Ib) by considering all data streams and

deconditioning w.r.t. the number of transmit antennas eftitpical link.

Nr—t+1

For the ZF-SIC detection method, the main difference in tlo®pis thatf]op(m) is distributed
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as a Chi-squared with(N, — ¢ + m) degrees of freedom, and_{55) is changed to

2 2.\ — %
d“tf’ (,\wdsz 1P k*ﬂma)r(l*a)) —u

[e'e} T'(k)u
(0% €
2In2 /0 U

1-— L = du, (56)

A
1+ (Amd ), ) )

and we obtain[(16) similarly.

Ny—t+m

APPENDIX C

PROOF OFTHEOREM[B AND [

Proof: We start to derive the lower and upper bounds[of (15). By apglyemmal2, the

sum spectral efficiency over the network is lower boundedofievis:

o | - al Hoo(m)dy g
AR ) " logy(1+ SINRST (m)) | = A By m).doostom) [108 1+ —

m=1

CElln(Ho0(m))]
= A Z Edo o, 10(m {logQ (1 + W)} : (57)

Since Hy o(m) is a Chi-square random variable wigV, — N, + 1) degrees of freedom,

m=1

E[ln(Hoo(m))] = ¥ (Ny — Ny + 1), (58)
where
n—1 1
n)=-v+> -, (59)
=17
with v ~ 0.577, Euler's constant. By_[36, Theorem 3.1],
@ > g1, (60)
and we obtain

eIE[ln(H0,0(m)H > N, — N; + ¢, (61)
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wheree is some positive numtﬁrThus, the lower bound of the sum spectral efficiency per unit

area is
N, N, — N, +¢€
A Faysom) 1082 ( 1+ ——F——
mz::l do,0,10(m) [ng < * d&OIO(m) )}

Nt

a )\ : : o 1 —z _ € —2d% m

(:) E / ;<1 —€ (Ne—Net ))Edo,o,lo(m) [6 @B.0fo )]dz
m=1 0

N 2 2
) A > 1 C(Ne—Nete 2PN+ 2)I(1 = 2)
Siry) m§:1/0 ;(1 — AN Net ))Edo,o {exp (—)mdg,oza dz

(V)
©@ A il <1 2 F(Nt + 2>F(1 — 2)
Z 15 —(1 - em# e —ATE[d3 o)z a o’ )d
> 1n2mZ:1/0 z( e ) exp mR[dg o]z (V) 2
Ne 2I'(Ny) % Nr—Ni+e &
@ Aa sl _(F(N +3)F<1—2)> 2 %uj
s _ u 1 _ tT o o (Am(R5+1)) d
2In2 Z/o ue € d u
Ny oo _ 20 (Ny) % Ny—Nt+e u“
(;) L Z/ le_u% 1 —e (F(Nt‘f’%)r(l*%)) ()\‘"(R?l+1))% z du
~ In2 —Jo u
2AN, 2T(N, N, — N,
& “log, 1+< 2( V) . ) : t+€a
o DN+ 2T =32)/) (Mr(RG+1))>
< 2)\Nt 1 2 2 Nr — Nt + €
> 1 14+ — 1, 62
= e < N, (m - >) (v (B2 + 1>>5> (62)

where (a) follows from Lemmall, (b) comes from the expressmnthe interference of the

Laplace functional of PPP, (c) follows from Lemrhhk 2, (d) cenfieom a variable change and

the fact thatl[d; ,| = @, (e) comes from the fact that™ > %e‘“% whenu > 0 anda > 2,
(f) is obtained by/* %e‘“% (1— e‘bX“%)du = 2]og(1+b), and (g) comes from
['(Ny) _2
— >N, °. 63
I(Ne+2) = (63)

Using the assumption that; = c¢;\* and N, = c,\%, we obtain

lim C%F = QA1+ og, (1 + N2~A72)), (64)

A—00

as \ goes to infinity.

8with a numerical approach, the gap &f® andz — 1 is lower bounded by 0.4. For obtaining lower bound of the sum

spectral efficiency (and scaling law of it), we just puto prevent the lower bound becomiiig
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Next, we derive an upper bound when the receiver applies ZFhe interference limited
regime,

- F - Hoo(m)dyg
Z log,y (1 + SINR(% (m))| = A Z EHo.0(m).doostom) {108 | 1+ —F—7——
m=1 m=1

AE To(m)

(a)

< AN, log, (1 + Eld, g TE[Ho,o(m)]E {Io(lm)})

() 2(1 - R7*) 1 (1 + 2)(N)?
= AN, 1 1 — (N, — Ny +1 “ =], (65
where (a) comes from Lemnid 2, and (b) follows frdin, ] = %, E[Hoo(m)] =

N, — N; + 1, and the relation off [+] = E [ [~ ¢**ds] for any positive random variabl# .

The negative moment afy(m) is

> o r(Vi+2)ra-2) 2 L'(14 2)(N,)=
E|i 1 :| :/ E[e—s.’o(m)] :/ e_AWJFF(WSL‘dS — ( + a2) ( t) —
Iy(m) 0 0 (ATT(Ne + 2)I(1 = 2))>
(66)
Therefore, the upper bound on the sum spectral efficiencypirarea is
2(1 — R2™) D(1+ 2)[(N,)?
C?™ = AN, 1 1+ d N, — N, + 1 u -
Lo ( a-nmE -0 MG T 2ra - 2)
2(1— Ry %) r(1+2) _2\%
< AN 1 1 N, — N, +1 (N —1)"a :
S ( * - anm - 5 N g e (- 07)
(67)
where the last inequality comes from
['(x) 2
— < (rx—1)a. 68
By letting A tend to infinity, we obtain
lim CZF = QN1+ og, (1 + N2=H7%)), (69)

A—00

Equations[(64) and (69) conclude the proof of Theotém 3.
The proof of Theorenil4 is analogous to that of Theofém 3. Thin rddference consists

in changingHoo(m) ~ X3, w41y tO Hoo(m) ~ X5(N.— N, +m)- The lower bound of the sum
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spectral efficiency per unit area becomes

Ny
Z log, (1 + SINRgIC(m))]
m=1
2\ 2T (IV;) )%Nr—]\ft+m—1+e
> — 1 1+ z
2 2o ( (r(m TO-8)) T w1t

2)\Nt 2 Nr_Nt+€ _o
1 1 A2 ], 70
> = og2< +<7r(R§+1)F(1—§)) N, ) (70)

and the upper bound becomes

i log, (1 + SINF%IC(m))]

N 2(1 — RE) L1+ 2)0(N,)*?
<A log, (1 T T MmN )11 — z))%>

AE

AE

) 21— RZ)  T(1+2) C(N) \F s
< Alilog, (1 - (a—2)(R2—1) (aI(1 — g))%Nr (r(Nt + %)) A )
2(1 — R>™) I'(1+2) N s
< AN, log, (1 o 2)(3% DG 2N - A ) : (71)

where the last inequality comes froin [68). With the foregoassumptions, the scaling law of
the sum spectral per unit area with respect to the densityrbesO (A1 log, (1 + \2~H173)).
[

APPENDIX D

PROOF OFTHEOREM[E AND

We use Lemmall again. We start to derive the ZF-receiver €saditioned oni , = d, the

spectral efficiency of then-th data stream of the typical link is

~ 2
Hoo(m)dy5 1 /°° e H
E 10 1 —'_ ~7—’ d = d = — 1 _ E e_z 0,0(m)d—a
g2< Iy(m) + M o ma ), = O EH D
x " Zimee T, M1, (72)

by Lemmall. Sincel, () is Chi-square distributed witd(N, — (L + 1)N, + 1) distributed,

7 - 1
—zHpo(m)d= | __
E [6 o ] o (1 + zd—o)Ne—(L+1) N1

(73)
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The Laplace transform aof,(m) for the givenL is
Liymy (L3 5) = B [ Ermers fony (8 ] (74)

Under the condition that thé-th nearest interferer’'s distance is the Laplace transform is

obtained as

£i0|dO.L:T(L; 8) _ E |:€—Z Zﬁlpﬁ»l HO,Oj (m)da’gj ‘{dO’L — ,r.}:|

(a) 1
-b H ———a v {dor =1}
—v | {do,
do,0; EP\B(0,7) (1+ Zdo,oj)
@ 0 .
e (T L T i ™) 75
exXp ( ™ /1;272 (1 n ZU_E)Nt u) ( )

where (a) comes from the fact thétwj (m) ~ x3y, and (b) follows from PGFL. The distribution

of r is given in [37] and by unconditioning with respect to it,

e e 1 20l
i(L;s) = —TA 1-— ——d dr. 76
Lj,(L;s) /0 exp ( 7T /u ) Atz 5 u) T (L) e r (76)

=r

Thus, the sum spectral efficiency conditioneddyn = d can be written as

I:IO (](m)d_a
E (lo 14+ ——"t—— doo=d
g2< To(m) + 22 [{doo = d}
sNto'2
1 R R - 1
T In2 0 5 { B (1+ Zd_a)Nr—(L+1)Nt+1:| Efo(L5 s)ds. (77)

We obtain the announced result when using the fact dhatis uniformly distributed in a ring
with radii (1, Ry).
The result for ZF-SIC follows by the same arguments, usiedalat thatf[o,o(m) is Chi-square

random variable witl2(N, — N, + m) degrees of freedom.
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APPENDIX E

PROOF OFTHEOREM[7] AND

Proof: We start the proof of Theorefd 7. The lower bound[ofl (36) is

al - i Hyo(m)dy g
E Zlog2(1+SlN T (m)) _AZEHOOdOOIO(m log, [ 1+ ———222

m=1 m=1 ]b(ﬂ@)
@ M E[In(Ho,0(m))]
>AY gy (14— )
m=1 Eldo ¢1E[Lo(m)]

0 AZ log, ( R(QL: Dy E) , (78)

mﬂh(m)]

where(a) comes from Lemmal2, an@) comes from the inequality (60)(d, 5] = é(lsz
The expectation of,, conditioned ondy,, = 7 is
~ 2T AN,
Ello(m)|doo, =1] =3 Lp2me, (79)
—
By unconditioning with respect td,,, whose distribution is given i [37], we get
N C2mANy [ L 2wt e
Ewlb(ﬂlﬂ ——7§i::;-jg r __;fizﬁ__e dr (80)
= (2 AN ——2 7 81
( 7T)\) 2 IV F(L) (81)
By leveraging
F(L) O a g
> (L —— , 82
M-zt = E73) (82)
the lower bound becomes
- Ny — (L+1)N; + ¢ I'(L)
E log, (1 4 SINRZ, > AN, 1 1 s
2 loga(1 + SINRG (m) 1082 | 1 AT T eNENI(-§ 1)
a—2)(R5—

N, — (L +1)N, .
> AN, log, [ 14 = (EHD t+€(L—Z)21>. (83)

2(1 R
7@( o (27 )N,

By plugging N, = c; A\, N, = c,\”2 into (83), we obtain the following scaling law:

lim C' _ Q()\51+1 10g2(1 + )\(52—61—1)%—52))' (84)

A—00

sincel = [§+] — 1.
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The proof of Theoreml8 is almost identical to the proof of Tie@o[7. The main difference

is in the distribution offf, ,(m). The lower bound becomes

A

Nt Nt
N, — Ny+m—1+¢€ Ao
E |} log,(1+ SINRS'(m))| > A log, | 1+ : (L—=)z""
m=1 m=1

2(1—R3™%) a 2
oy (272 N,

(85)
With the foregoing assumptions, we obtain
lim CFIC = QAT log, (1 + AP=Ai=b3 ), (86)
—00
[
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