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Abstract—This paper considers the communication for om-
niscience (CO) problem: A set of users observe a discrete
memoryless multiple source and want to recover the entire
multiple source via noise-free broadcast communications. We
study the problem of how to determine an optimal rate vector
that attains omniscience with the minimum sum-rate, the total
number of communications. The results cover both asymptotic
and non-asymptotic models where the transmission rates are real
and integral, respectively. We propose a modified decomposition
algorithm (MDA) and a sum-rate increment algorithm (SIA) for
the asymptotic and non-asymptotic models, respectively, both
of which determine the value of the minimum sum-rate and
a corresponding optimal rate vector in polynomial time. For the
coordinate saturation capacity (CoordSatCap) algorithm, a nest-
ing algorithm in MDA and SIA, we propose to implement it by a
fusion method and show by experimental results that this fusion
method contributes to a reduction in computation complexity.
Finally, we show that the separable convex minimization problem
over the optimal rate vector set in the asymptotic model can be
decomposed by the fundamental partition, the optimal partition
of the user set that determines the minimum sum-rate, so that
the problem can be solved more efficiently.

Index Terms—communication for omniscience, Dilworth trun-
cation, mutual dependence, submodularity.

I. INTRODUCTION

Assume that there are a finite number of users in a system.

Each of them observes a distinct component of a discrete

multiple correlated source in private. The users are allowed to

exchange their observations over public authenticated broad-

cast channels. We assume that these channels are noiseless

so that all the transmissions are correctly heard, or received,

by all users. The communications could be interactive and

the rates of public communications are unconstrained. That is,

there are no capacity upper bounds imposed on the broadcast

links. The purpose is to attain omniscience, the state that

each user obtains all the components in the entire multiple
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source in the system. This problem is called communication

for omniscience (CO), which was originally formulated in [4].

The CO problem in [4] is based on an asymptotic model where

the length of the observation sequence is allowed to approach

infinity. Whereas the authors in [5]–[7] also study the non-

asymptotic model where the number of observations is finite

and the communication rates are restricted to be integral. In

fact, the non-asymptotic model is important in a practical

problem in peer-to-peer (P2P) wireless communications as

described below.

The finite linear source model studied in [6] is an example of

the non-asymptotic model, where the multiple random source

is represented by a vector that belongs to a finite field and

the users transmit linear combinations of their observations to

obtain this vector. By assuming that each dimension in this

vector represents a packet, the finite linear source model can

describe the situation when a base station wants to disseminate

a set of packets to a group of mobile clients: Each client

only obtains a partial knowledge of the packet set due to the

fading effects of the wireless channels. The omniscience of the

packet set can be attained by letting the clients transmit linear

combinations of packets, say, by some network coding scheme,

e.g., [8], via the P2P channels, which could be more reliable

than the retransmissions over base-to-peer (B2P) channels if

the clients are geographically close to each other. The CO

problem in this packet model is called coded cooperative data

exchange (CCDE) which was independently proposed in [8]–

[10] and further studied in [11]–[15]. In [15], [16], the idea

of packet-splitting was introduced to CCDE. It allows each

packet to be divided into a number of chunks so that the

transmissions in CCDE refer to the linear combinations of

chunks and the normalized transmission rates are fractional.

This can be considered as an extension of the CCDE and finite

linear source model towards the asymptotic model.

An optimization problem that naturally arises is how to

attain omniscience with the least cost and the cost usually

refers to the overall transmission rates, or sum-rate, e.g.,

the total number of linear combinations of packets that are

transmitted by all clients in CCDE. It is shown in [4] that

the Slepian-Wolf (SW) constraints [17] on all proper subsets

of the user set determine the omniscience-achievability of a

transmission rate vector. Hence, in [4], [7], [9], [10], [14],

[15], [18]–[20], the problem of minimizing the sum-rate is

formulated by linear programming (LP) and the combinatorial

nature of this problem has also been revealed. Then, instead

of solving the minimum sum-rate problem directly by the

existing LP algorithms, the main issue is how to deal with

http://arxiv.org/abs/1611.08367v4
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the exponentially growing number of constraints.

In the studies on the finite linear source model in [18],

[21] and CCDE in [2], [3], [9], [10], [14], [15], [22], [23],

the submodularity of the minimum sum-rate problem was

revealed, which is essentially due to the submodularity of

the entropy function.1 In particular, it is shown in [2], [3],

[21], [22] that, in a non-asymptotic model where the entropy

function takes integer values,2 all omniscience-achievable rate

vectors that have the same sum-rate constitute a submodular

base polyhedron. Since a rate vector in this submodular base

polyhedron can be found by the Edmond greedy algorithm3

and the variation range of the minimum sum-rate in a non-

asymptotic model is integral and bounded,4 the minimum sum-

rate and a corresponding optimal rate vector are determined

efficiently by the sum-rate adaption algorithms proposed in

[15], [18]. However, it still remains unclear if all the results

derived in [2], [3], [21], [22] for the non-asymptotic model also

hold for the asymptotic one and if there exists an algorithm

that can efficiently determine an optimal rate vector that

attains omniscience by the minimum sum-rate in an asymptotic

model where the variation range of the minimum sum-rate is

continuous. On the other hand, the study in [16] shows that

allowing packet-splitting in CCDE incurs less transmission

costs in P2P communications. It could mean that the minimum

sum-rate in the asymptotic model is no greater than the one in

the non-asymptotic model in the same system, which makes

it desirable to know the optimal solution for CO in the

asymptotic model.

The importance of studying the CO problem is also high-

lighted by its dual relationship with the secret capacity, the

maximum rate at which the secret key can be generated by the

users in the system, in [4]: The secret capacity equals to the

total amount of information in the multiple source subtracted

by the minimum sum-rate (in an asymptotic model) for them

to achieve omniscience. It is also pointed out in [4] that the

secret capacity is upper bounded by a mutual dependence over

the partitions of the users and this upper bound is shown to be

tight in [27].5 The mutual dependence is also named as shared

information in [28] for the secret generation problem and

multivariate mutual information (MMI) in [19], [20], where

the authors in [19] proposed this mutual dependence to be the

generalization of Shannon”s mutual information for multiple

1In [24, Section 3], it is shown that the entropy function is the rank function
of a polymatroid, which belongs to a subgroup of submodular functions. The
entropy function reduces to the matrix rank function in the finite linear source
model and the cardinality function in CCDE, both of which are submodular.

2Finite linear source model and CCDE are examples of non-asymptotic
model with integer-valued entropy function.

3The Edmond greedy algorithm in [25] is a special case of the coordinate
saturation capacity algorithm [26, Greedy Algorithm II in Section 3.2] for
normalized submodular functions [26, Theorems 3.18 and 3.19]. The one
implemented in [15], [18] is modified for the crossing and intersecting
submodular functions, respectively.

4The value of the minimum sum-rate is real in the asymptotic model and
integral in the non-asymptotic model. It is nonnegative and no greater than
the total amount of information in the multiple source.

5The authors in [4] derived the results on secret capacity in a general setting:
A subset of the users are active while the others are the helpers that assist
the active users in generating the secret key. The author in [27] proved that
the upper bound on secret capacity is tight when there is no helpers, i.e., all
the users in the system are active.

random variables. Then, determining secret capacity, mutual

dependence, shared information or MMI relies on the solution

to the CO problem in the asymptotic model and vice versa.

It is shown in [19] that the problem of obtaining the MMI

reduces to the task of determining the value of the Dilworth

truncation, which can be solved in strongly polynomial time

due to the submodularity of the entropy function. However,

for solving the CO problem, knowing the minimum sum-rate

is not sufficient: We also need to know how to distribute the

minimum sum-rate among the users so that omniscience is

achievable. Therefore, it is required to determine an optimal

rate vector that attains omniscience with the minimum sum-

rate.

The work in this paper is based on the CO problem that is

originally formulated in [4]. We consider the minimum sum-

rate problem: how to attain omniscience with the minimum

total number of communications. The work in this paper

differs form [4], [27], [28] in that, in addition to characterizing

the minimum sum-rate or discussing how to obtain the value

of it, we are particularly interested in how to determine a

corresponding optimal rate vector that attains omniscience.

The results cover both asymptotic and non-asymptotic models.

For the non-asymptotic model, we focus on the finite linear

source model and CCDE. For solving the CO problem, we

propose a modified decomposition algorithm (MDA) and a

sum-rate increment algorithm (SIA) for the asymptotic and

non-asymptotic models, respectively, both of which determine

the value of the minimum sum-rate and a corresponding

optimal rate vector in polynomial time. For the coordinate sat-

uration capacity (CoordSatCap) algorithm, a nesting algorithm

in the MDA and SIA algorithm, we propose to implement it

by a fusion method and show by experimental results that

this fusion method contributes to a reduction in computation

complexity as compared to the CoorSatCap algorithm that

is implemented in [15], [18]. We also derive results on the

fundamental partition P∗, the finest optimal partition of the

user set that determines the value of the minimum sum-rate in

the asymptotic model,6 which is also determined by the MDA

algorithm. It is shown that, in CCDE, the omniscience of a

packet set can be attained by splitting each packet into |P∗|−1
chunks. Finally, we reveal some decomposition properties of

P∗. We show that the separable convex minimization problem

over the optimal rate vector set in the asymptotic model can

be decomposed by P∗ so that the problem can be solved more

efficiently.

A. Summary of Main Results

Our main results are summarized as follows.

1) We show that all omniscience-achievable rate vectors

with the sum-rate equal to a given value form a base poly-

hedron. By observing the nonemptiness of the base polyhe-

dron, we prove directly based on [26, Theorems 2.5(i) and

2.6(i)] that the minimum sum-rate in the asymptotic model is

6It is shown in [19] that the optimal partitions that give rise to the minimum
sum-rate form a Dilworth truncation lattice [29] where the minimal/finest and
maximal/coarsest minimizers exist. The name ‘fundamental partition’ was first
used in [19] to denote the finest partition in this lattice.
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determined by an optimization over the partitions of the user

set. This result verifies the proof in [27] on the tightness of

the lower bound on the minimum sum-rate for CO that was

proposed in [4]. For the non-asymptotic model, we show that

the minimum sum-rate is the least integer that is no less than

the one in the asymptotic model, which provides theoretical

proof to an observation in [15]: The difference in minimum

sum-rate between the asymptotic and non-asymptotic models

is no greater than one. Since the optimal rate vectors also

form a base polyhedron, we use the integrality of the extreme

points in this base polyhedron to show two results for the

minimum sum-rate problem in the finite linear source model,

or CCDE: (a) there exists an integral optimal rate vector, which

is consistent with the results in [15], [18], and (b) there exists

a fractional optimal rate vector that can be implemented by

dividing each packet into |P∗| − 1 chunks.

2) For determining an optimal rate vector in the asymptotic

model, an MDA algorithm is proposed. It starts with a lower

estimation on the minimum sum-rate and iteratively updates

it by the finest minimizer of a Dilworth truncation problem

until the minimum is reached and a corresponding optimal rate

vector is determined. For the CoordSatCap algorithm, which

is originally proposed in [26, Greedy Algorithm II in Section

3.2], for solving the Dilworth truncation problem in each

iteration of the MDA algorithm, we propose a fusion method

implementation (CoordSatCapFus) so that the submodular

function minimization (SFM) in each iteration is solved over

a merged or fused user set with the cardinality no greater than

the original one. We show that the optimal solution returned

by the MDA algorithm for the asymptotic model can also be

utilized for solving the minimum sum-rate problem in the non-

asymptotic model by no more than one additional call of the

CoordSatCapFus algorithm. Independently, we also propose an

SIA algorithm for determining an optimal rate vector as well

as the minimum sum-rate for the non-asymptotic model. Both

the MDA and SIA algorithms complete in polynomial time

based on the existing SFM techniques. We run experiments

to show that the fusion method CoordSatCapFus contributes

to a reduction in computation complexity as compared to the

CoorSatCap algorithm, which is implemented in [15], [18] for

the finite linear source model, and the reduction is considerable

when the number of users grows.

3) For the initial estimations in the MDA and SIA algo-

rithms, we derive a lower bound (LB) on the minimum sum-

rate for both asymptotic and non-asymptotic models that can

be determined in linear time. We show that this lower bound

can be used as the initial estimation of the minimum sum-

rate searching algorithms, e.g., the MDA and SIA algorithm

proposed in this paper for the asymptotic and non-asymptotic

models, respectively. The observation that a lower bound can

initiate the minimum sum-rate searching algorithm is also

consistent with the results in [15], [18] for the finite linear

source model.7 We run experiments to show that the proposed

7For the finite linear source model, or CCDE, it is suggested in [15,
Appendix F] to adapt the sum-rate from either lower or upper bound to the
minimum, while [18, Algorithms 3] is a binary search method starting with
the initial lower and upper bounds on the minimum sum-rate.

LB in the non-asymptotic model is much tighter than the ones

in [8], [11].

4) We also study the minimum weighted sum-rate problem

in the optimal rate vector set, a problem that was originally

formulated and studied for the finite linear source model in

[15], [18]. It is shown that by choosing a proper linear ordering

of the user indices the optimal rate vectors returned by the

MDA and SIA algorithms also minimize a weighted sum-rate

function in the optimal rate vector set for the asymptotic and

non-asymptotic models, respectively. The result that the min-

imum weighted sum-rate problem can be solved by a proper

linear ordering for the non-asymptotic model is consistent with

the results in [15], [18]. Our study shows that this idea can

also be applied to the asymptotic model.

5) We show that the fundamental partition P∗ is the minimal

separator of a submodular function which gives rise to the

decomposition property of P∗ in the asymptotic model: The

separable convex function minimization problem over the

optimal rate vector set can be broken into |P∗| subprob-

lems, each of which formulates the separable convex function

minimization problem in one element or user subset in P∗.

These subproblems can be solved separately so that the overall

complexity is reduced.

B. Organization

In Section II, we present the system model for CO and

describe the asymptotic and non-asymptotic models, the finite

linear source model and CCDE. In Section III, we analyze

the minimum sum-rate problem in both asymptotic and non-

asymptotic models based on the concepts of submodularity

and Dilworth truncation. In Section IV, a LB on the minimum

sum-rate is proposed for the asymptotic and non-asymptotic

models, which is used in Section V to initiate the MDA

and SIA algorithms. The complexity of both algorithms is

also discussed in Section V. In Section VII, we reveal the

decomposition property of the fundamental partition in the

asymptotic model.

II. SYSTEM MODEL

Let V with |V | > 1 be a finite set that contains the

indices of all users in the system. We call V the ground set.

Let ZV = (Zi : i ∈ V ) be a vector of discrete random

variables indexed by V . For each i ∈ V , user i privately

observes an n-sequence Z
n
i of the random source Zi that is

i.i.d. generated according to the joint distribution PZV
. We

allow users exchange their sources directly so as to let all

users in V recover the source sequence Zn
V . The state that each

user obtains the total information in the entire multiple source

is called omniscience, and the process that users communicate

with each other to attain omniscience is called communication

for omniscience (CO) [4].

Let rV = (ri : i ∈ V ) be a rate vector indexed by V . We

call rV an achievable rate vector if the omniscience can be

attained by letting users communicate with the rates designated

by rV . Let r be the sum-rate function associated with rV such

that

r(X) =
∑

i∈X

ri, ∀X ⊆ V
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with the convention that r(∅) = 0. r(V ) is the sum-rate of

rV over all users, or the total number of transmissions, in

the system. For X,Y ⊆ V , let H(ZX) be the amount of

randomness in ZX measured by Shannon entropy [30] and

H(ZX |ZY ) = H(ZX∪Y )−H(ZY ) be the conditional entropy

of ZX given ZY . In the rest of this paper, without loss of

generality, we simplify the notation ZX by X .

It is shown in [4] that an achievable rate vector must satisfy

the Slepian-Wolf (SW) constraints [17]:

r(X) ≥ H(X |V \X), ∀X ( V. (1)

The interpretation of (1) is: To attain omniscience, the total

amount of information sent from user set X should be at least

equal to the total amount of information that is missing in

V \X . The set of all achievable rate vectors is [4]8

RCO(V ) = {rV ∈ R|V | : r(X) ≥ H(X |V \X), ∀X ( V }.

We say that α is an achievable sum-rate if there exists an

achievable rate vector rV ∈ RCO(V ) such that r(V ) = α.

A. Asymptotic and Non-asymptotic Models

We consider both asymptotic and non-asymptotic models.

In the asymptotic multiple random source model, we will

study the CO problem by considering the asymptotic limits

as the block length n goes to infinity. The communication

rates in an asymptotic model could be real or fractional. The

minimum sum-rate can be determined by the following linear

programming (LP) [4, Proposition 1]

RACO(V ) = min{r(V ) : rV ∈ RCO(V )} (2)

and the set of all optimal rate vectors is

R
∗
ACO(V ) = {rV ∈ RCO(V ) : r(V ) = RACO(V )}.

In the non-asymptotic model, the block length n is finite

and the communication rates are required to be integral. The

minimum sum-rate can be determined by the integer linear

programming (ILP) [14], [15], [18]9

RNCO(V ) = min{r(V ) : rV ∈ RCO(V ) ∩ Z|V |} (3)

and the optimal rate vector set is

R
∗
NCO(V ) = {rV ∈ RCO(V ) ∩ Z|V | : r(V ) = RNCO(V )}.

The non-asymptotic model is exemplified by the finite linear

source model and CCDE as explained as follows.

8The achievable rate region was originally given in [4] based on the SW
constrains in a more general case: The omniscience problem in the active user
set A ⊆ V with the users in V \A serving as the helpers. The CO problem
studied in this paper is the case when A = V .

9This ILP problem has been formulated in [14], [15] in terms of the
cardinality function for CCDE and in [18] in terms of the rank function for
the finite linear source model.

B. Finite Linear Source Model and CCDE

Let Fq be a finite field. q is the order of Fq such that q = pN ,

where p is a prime number and N is a positive integer. In a

finite linear multiple source model, we assume that each Zi

can be expressed by an l(zi)-dimensional column vector zi in

the finite field Fl(zi)
q such that

zi = Aix,

where x ∈ Fl(x)
q is some l(x)-dimensional uniformly dis-

tributed random vector and Ai ∈ Fl(zi)×l(x)
q is an l(zi)-by-

l(x) matrix. For X ⊆ V , let AX = [Ai : i ∈ X ]. In the

finite linear source model, the value of the entropy function

at X reduces to the rank of AX , i.e., H(X) = rank(AX) and

H(X |Y ) = rank(AX∪Y ) − rank(AY ). Then, H is integer-

valued, i.e., H(X) ∈ Z+, ∀X ⊆ V , and we assume that

H(V ) = l(x). The users transmit linear combinations of

zis in order to attain the omniscience of x.10 Therefore, the

finite linear source model is an example of the non-asymptotic

model where the value of the entropy function H is integral.

By realizing that each dimension in x can represent a packet,

the finite linear source model poses a practical problem in

wireless communications: the omniscience, or recovery, of a

packet set in peer-to-peer (P2P) wireless network. Let all the

users in V be mobile clients that are geographically close

to each other so that any client’s broadcasts can be received

losslessly by the others. Consider the problem of disseminating

the packet set x from a base station to all mobile clients in

V . Due to the fading effects of wireless channels, each client

may just obtain a partial knowledge of x at the end of base-to-

peer (B2P) transmissions, but the clients’ knowledge could be

complementary to each other. In this case, we can set free the

base station and let the clients transmit linear combinations of

packets, e.g., by some network coding scheme [8], so as to help

each other recover x. The omniscience problem in this packet

model is how to let all users recover the packet set x with the

least number of transmissions and this problem, which was

originally formulated in [8], is called the coded cooperative

data exchange (CCDE). The concept of packet-splitting was

also introduced to CCDE in [15], [16]. It extends the finite

linear source model from a non-asymptotic setting towards an

asymptotic one, which is explained by the following example.

Example II.1. There are three users V = {1, 2, 3} in the

system. They observe respectively

Z1 = (Wa,Wb,Wc,Wd,We),

Z2 = (Wa,Wb,Wf ),

Z3 = (Wc,Wd,Wf ),

where each Wj is an independent uniformly distributed ran-

dom bit. The purpose is to let all the users attain the

omniscience of ZV via communications. In the corresponding

CCDE system (see Fig. 1), each Wj represents a packet so that

the column vector zi denotes all the packets received by mobile

client i after the B2P transmissions. All mobile clients in V

10In a finite linear source model, it is sufficient for the user i to transmit
linear combinations of zis to attain omniscience [6].
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client 1

z1 = [Wa,Wb,Wc,Wd,We]
⊺

client 2
z2 = [Wa,Wb,Wf ]

⊺

client 3
z3 = [Wc,Wd,Wf ]

⊺

Fig. 1. The corresponding CCDE system for the CO problem in Example II.1,
where Wj denotes a packet that belongs to a field Fq . There are three clients
that want to obtain six packets in x = [Wa, . . . ,Wf ]

⊺. User i initially
obtains zi. The users transmit linear combinations of zis via lossless wireless
broadcast channels to help the others recover all packets in x.

transmit linear combinations of zis over P2P channels in other

to attain the omniscience of all packets in x = [Wa, . . . ,Wf ]
⊺.

In this system, we have all the achievable rate vectors

contained in

RCO(V ) =
{

rV ∈ R|V | : r(∅) = 0,

r({1}) ≥ H({1}|{2, 3}) = 1,

r({2}) ≥ H({2}|{1, 3}) = 0,

r({3}) ≥ H({3}|{1, 2}) = 0,

r({1, 2}) ≥ H({1, 2}|{3}) = 3,

r({1, 3}) ≥ H({1, 3}|{2}) = 3,

r({2, 3}) ≥ H({2, 3}|{1}) = 1
}

.

One can show that the minimum sum-rate is RACO(V ) = 7
2

and the optimal rate vector set is R∗
ACO(V ) = {(52 ,

1
2 ,

1
2 )}

for the asymptotic model. In CCDE, the rate vector (52 ,
1
2 ,

1
2 )

can be implemented by packet-splitting. Let the users divide

each packets into two chunks of equal length, e.g., z2 =

(W
(1)
a ,W

(2)
a ,W

(1)
b ,W

(2)
b ,W

(1)
f ,W

(2)
f ) where each Wj is split

to W
(1)
j and W

(2)
j . Let the users transmit the rate (5, 1, 1)

with each tuple denoting the number of linear combina-

tions of the packet chunks. We have (52 ,
1
2 ,

1
2 ) and 7

2 being

the normalized rate vector and sum-rate, respectively. For

the non-asymptotic model, we have the minimum sum-rate

RNCO(V ) = 4 and the optimal rate vector set R∗
NCO(V ) =

{(3, 0, 1), (2, 1, 1), (3, 1, 0)}.
We show an example of how to implement the rate vector

(2, 1, 1) in R∗
NCO(V ) for the non-asymptotic model by a

network coding scheme. The implementation of other optimal

rate vectors in R∗
NCO(V ) and (52 ,

1
2 ,

1
2 ) in R∗

ACO(V ) can

be derived in a similar manner. By letting user 1 transmit

Wb+Wf +Wc and We, user 2 transmit Wa+Wf and user 3
transmit Wd+Wf , all the users are able to recover the whole

packet set x. For example, user 2 receives We, recovers Wc by

subtracting message Wb+Wf+Wc by Wb+Wf and recovers

Wd by subtracting message Wd +Wf by Wf so that he/she

obtains all the packets in x. The corresponding transmission

rate vector in this coding scheme is (2, 1, 1).11

For a fractional rate vector rV , let k ∈ Z+ be the least

common multiple (LCM) of all denominators of ris, i.e., k is

11The coding scheme that implements an achievable rate vector rV is not
necessarily unique.

the minimum nonnegative integer such that krV = (kri : i ∈
V ) is integral. It means that rV can be implemented by k-

packet-splitting, i.e., dividing each packet into k chunks, in

CCDE. For example, in Example II.1, k = 2 is the LCM

of the denominators of all dimensions in rV = (52 ,
1
2 ,

1
2 ),

which means (52 ,
1
2 ,

1
2 ) can be implemented by 2-packet-

splitting. Therefore, in CCDE, we are not only interested in

the existence of an integral optimal rate vector in R∗
NCO(V )

for the non-asymptotic setting, but are also concerned whether

there exists a fractional optimal rate vector in R
∗
ACO(V ) for

the asymptotic setting and how large is the LCM k.

III. MINIMUM SUM-RATE AND OPTIMAL RATE VECTOR

The fundamental problem in CO is how to obtain the value

of the minimum sum-rate and an optimal rate vector: the value

of RACO(V ) and a rate vector in R∗
ACO(V ) for the asymptotic

model and the value of RNCO(V ) and a rate vector in R∗
NCO(V )

for the non-asymptotic model. Although the minimum sum-

rate problem can be formulated by LP (2) and ILP (3) for

asymptotic and non-asymptotic settings, respectively, it is

not efficient to directly solve them since the number of the

constraints grow exponentially in |V |. In this section, we reveal

the equivalence between the constant sum-rate achievable

rate region and a base polyhedron. Directly based on the

nonemptiness of this based polyhedron, we show that the

minimum sum-rate in the asymptotic model is determined by

an optimization problem over the partitions of the user set,

which revisits the results in [4], [27]. We also show that the

minimum sum-rate in the non-asymptotic model is the least

integer that is no less than the one in the asymptotic model.

A. Preliminaries

We first describe submodularity and the related concepts as

follows. For a set function f : 2V 7→ R, the polyhedron and

base polyhedron of f are respectively [26, Section 2.3] [31,

Definition 9.7.1]

P (f,≤) = {rV ∈ R|V | : r(X) ≤ f(X), ∀X ⊆ V },

B(f,≤) = {rV ∈ P (f,≤) : r(V ) = f(V )}.

In the same way, we can define P (f,≥) and B(f,≥). A set

function f is submodular if the submodular inequality

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) (4)

holds for all X,Y ⊆ V ; f is supermodular if −f is submod-

ular; f is modular if it is both submodular and supermodular

[26, Section 2.3]. P (f,≤) and B(f,≤) are submodular poly-

hedron and base polyhedron, respectively, if f is submodular.

A set function f is intersecting submodular if the submodular

inequality (4) holds for all sets that are intersecting, i.e., all

X,Y ⊆ V such that X ∩ Y 6= ∅ [26, Section 2.3]. Note, an

intersecting submodular function f may or may not require (4)

hold for all X,Y ⊆ V , which means a submodular function

is also intersecting submodular, but not necessarily vice versa.

A set function f is the rank function of a polymatroid if

it is (a) normalized: f(∅) = 0; (b) monotonic: f(X) ≥ f(Y )
for all X,Y ⊆ V such that Y ⊆ X ; (c) submodular [26,

Section 2.2]. If f is a polymatroid rank function, the normality
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0
1

2
3

4

0

1

0

1

r1
r2

r 3
r(V ) = 16

5

P (f#
16/5,≤)

Fig. 2. For the system in Example II.1, when α = 16
5

, the polyhedron

P (f#
16/5

,≤) does not intersect with the plane {rV ∈ R3 : r(V ) = 16
5
}.

Therefore, B(f#
16/5

,≤) = {rV ∈ RCO(V ) : r(V ) = 16
5
} = ∅. It means

that sum-rate 16
5

is not achievable or there does not exist an achievable rate

vector that has sum-rate equal to 16
5

.

and monotonicity ensure the nonnegativity of f , i.e., f(X) ≥

0, ∀X ⊆ V , and B(f,≤) ⊆ R|V |
+ [26, Lemma 3.23]. It is

shown in [24, Section 3] that the entropy function H is a

polymatroid rank function. It is easy to see that r, the sum-rate

function that is associated with a rate vector rV , is modular

and f(X)− r(X) is submodular/intersecting submodular if f
is submodular/intersecting submodular.

B. Nonemptiness of the Base Polyhedron

For α ∈ R+, we define

fα(X) =

{

H(X |V \X) X ( V

α X = V
.

The base polyhedron of fα

B(fα,≥) = {rV ∈ P (fα,≥) : r(V ) = fα(V )}

= {rV ∈ RCO(V ) : r(V ) = α}

contains all achievable rate vectors that have sum-rate equal

to α. It is possible that B(fα,≥) = ∅, which means that the

sum-rate α is not achievable. Let f#
α be the dual set function

of fα that is defined as [26, Section 2.3]

f#
α (X) = fα(V )− fα(V \X)

= α− fα(V \X), ∀X ⊆ V.

Consider the constraint r(X) ≥ fα(X) in B(fα,≥). If we

restrict the rate vector rV to satisfy r(X) ≥ fα(X) for some

X ⊆ V and r(V ) = α, then we necessarily put constraint

r(V \X) = r(V )− r(X) ≤ α− fα(V \X) = f#
α (V \X)

on set V \ X . By converting the constraints in B(fα,≥) in

the same way for all X ⊆ V , we get the base polyhedron

B(f#
α ,≤) = {rV ∈ P (f#

α ,≤) : r(V ) = f#
α (V ) = α}

such that B(f#
α ,≤) = B(fα,≥) [26, Lemma 2.4].12 Then,

the set of all achievable rate vectors with sum-rate α is

12In [26, Lemma 2.4], B(f#
α ,≤) = B(fα,≥) holds without the submod-

ularity or intersecting submodularity of f#
α .

0
1

2
3

4

0

1

0

1

r1
r2

r 3

r(V ) = 7
2

R∗
ACO(V ) = B(f#

7/2,≤)

P (f#
7/2,≤)

Fig. 3. For the system in Example II.1, when α = 7
2

, the the polyhe-

dron P (f#
7/2

,≤) intersects with the plane {rV ∈ R3 : r(V ) = 7
2
} at

rV = ( 5
2
, 1
2
, 1
2
), i.e., B(f#

7/2
,≤) = {rV ∈ RCO(V ) : r(V ) = 7

2
} =

{( 5
2
, 1
2
, 1
2
)}. In this case, sum–rate 7

2
is achievable and there is only one

optimal rate vector for the asymptotic model.

described by B(f#
α ,≤). It is obvious that B(f#

α ,≤) 6= ∅
if the polyhedron P (f#

α ,≤) intersects with the hyperplane

{rV ∈ R|V | : r(V ) = α}. Also, the optimal rate sets can

be described by the base polyhedra

R
∗
ACO(V ) = B(f#

RACO(V ),≤);

R
∗
NCO(V ) = B(f#

RNCO(V ),≤) ∩ Z|V |.

Therefore, the minimum sum-rate, either RACO(V ) or

RNCO(V ), can be determined by studying the condition on

α for the nonemptiness of B(f#
α ,≤), and a rate vector in

the optimal rate set, either R∗
ACO(V ) or R∗

NCO(V ), can be

determined by any algorithm that is able to search a base point

rV in B(f#
RACO(V ),≤) or B(f#

RNCO(V ),≤) ∩ Z|V |.13

Example III.1. For the system in Example II.1, we have

B(fα,≥) = {r ∈ RCO(V ) : r(V ) = α}. For a fixed value of

α, consider the constraint r({1}) ≥ fα({1}) = 1 in B(fα,≥).
Since we restrict the sum-rate to be r({1, 2, 3}) = α, we

have constraint r({2, 3}) = α − r({1}) ≤ α − fα({1}) =
f#
α ({2, 3}) = α− 1. If we convert the constraints one by one

in B(fα,≥), we have the dual base polyhedron

B(f#
α ,≤) =

{

rV ∈ R|V | : r(∅) = 0, r({1}) ≤ α− 1,

r({2}) ≤ α− 3, r({3}) ≤ α− 3,

r({1, 2}) ≤ α, r({1, 3}) ≤ α,

r({2, 3}) ≤ α− 1,

r({1, 2, 3}) = α
}

such that B(f#
α ,≤) = B(fα,≥). We increase the value of α

from 0. It can be shown that B(f#
α ,≤) = ∅ when α < 7

2 , e.g.,

when α = 16
5 in Fig. 2. When α = 7

2 , we have R
∗
ACO(V ) =

B(f#
7/2,≤) = {(

5
2 ,

1
2 ,

1
2 )} as in Fig. 3. We keep increasing α

after reaching 7
2 . It can be shown that B(f#

α ,≤) ∩ Z|V | = ∅

when α < 4. When α = 4, we have R∗
NCO(V ) = B(f#

4 ,≤
) ∩ Z|V | = {(3, 0, 1), (2, 1, 1, ), (3, 1, 0)} as shown in Fig. 4.

13A base (point) is a |V |-dimension vector rV in B(f,≤), where f is a
set function defined on the power set 2V .
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0
1

2
3

4

0

1

0

1

r1
r2

r 3
r(V ) = 4

B(f#
4 ,≤)

P (f#
4 ,≤)

R∗
NCO(V ) = B(f#

4 ,≤) ∩ Z3

Fig. 4. For the system in Example II.1, when α = 4, the polyhedron

P (f#
4 ,≤) and the plane {rV ∈ R3 : r(V ) = 4} intersect, i.e., B(f#

4 ,≤) =

{rV ∈ RCO(V ) : r(V ) = 4} 6= ∅. Also, R∗
NCO

(V ) = B(f#
4 ,≤) ∩ Z3 =

{(2, 1, 1), (3, 0, 1), (3, 1, 0)}. In this case, sum-rate 4 is achievable and there
are three optimal rate vectors for the non-asymptotic model.

C. Minimum Sum-rate

The condition for B(f#
α ,≤) 6= ∅ can be easily derived based

on the intersecting submodularity of f#
α .

Lemma III.2. For α ≥ 0, f#
α is intersecting submodular; If

α ≥ H(V ), f#
α is submodular.

Proof: For function f#
α , we have

f#
α (X) + f#

α (Y )− f#
α (X ∪ Y )− f#

α (X ∩ Y ) =










H(X) +H(Y )

−H(X ∪ Y )−H(X ∩ Y ) + α−H(V ) X ∩ Y = ∅

H(X) +H(Y )−H(X ∪ Y )−H(X ∩ Y ) otherwise

.

Then, f#
α (X)+f#

α (Y ) ≥ f#
α (X∪Y )+f#

α (X∩Y ), ∀X,Y ⊆
V : X ∩ Y 6= ∅. Also, the inequality holds for all X,Y ⊆ V
when α ≥ H(V ). Lemma holds.

For X ⊆ V , denote by Π(X) the set that contains all

partitions of X . A partition P of X is the set that satisfies:

(a) C 6= ∅ for all C ∈ P ; (b) C ∩ C′ = ∅ for any distinctive

C,C′ ∈ P ; (c) ∪C∈PC = X . Denote Π′(X) = Π(X)\{X} =
{P ∈ Π(X) : |P| > 1}. For a partition P ∈ Π(X), let

f#
α [P ] =

∑

C∈P

f#
α (C)

and f̂#
α be the Dilworth truncation of f#

α that is defined as

[32]

f̂#
α (X) = min

P∈Π(X)
f#
α [P ], ∀X ⊆ V. (5)

We have f̂#
α being a submodular function due to the intersect-

ing submodularity of f#
α [26, Theorems 2.5(i) and 2.6(i)]. It

is shown in [33, Section 3] that, for a given value of α, the

minimal/finest and maximal/coarsest partitions that minimize

minP∈Π(X) f
#
α [P ] exist.14 We will show in the following

context that a condition on the Dilworth truncation determines

the nonemptiness of the base polyhedron B(f#
α ,≤), based on

14In [33, Section 3], it is shown that the minimizers of minP∈Π(X) f
#
α [P]

form a partition lattice, which is called the Dilworth truncation lattice, where
the minimal/finest and maximal/coarsest minimizers uniquely exist.

which the value of the minimum sum-rate can be obtained

by a maximization problem over the partition set Π′(V ).
In Section V-A, we will show that the minimum sum-rate

problem can be solved in polynomial time by the efficient

algorithms for solving the Dilworth truncation problem, the

minimization problem in (5).

Theorem III.3 ( [26, Theorems 2.5(i) and 2.6(i)]15). B(f#
α ,≤

) is nonempty, i.e., α is achievable, and B(f#
α ,≤) = B(f̂#

α ,≤
) if and only if

α = f̂#
α (V ). (6)

In Theorem III.3, f̂#
α (V ) = max{r(V ) : rV ∈ P (f#

α ,≤)}
determines the maximum sum-rate of all rate vectors in

polyhedron P (f#
α ,≤),16 while α is the sum-rate for all rate

vectors in the hyperplane {rV ∈ R|V | : r(V ) = α}. There

are two situations: if α > f̂#
α (V ), P (f#

α ,≤) does not

intersect with the hyperplane {rV ∈ R|V | : r(V ) = α};
if α = f̂#

α (V ), P (f#
α ,≤) intersects with the hyperplane

{rV ∈ R|V | : r(V ) = α} at B(f#
α ,≤). In the latter case,

B(f#
α ,≤) 6= ∅. Theorem III.3 can also be interpreted by the

principal sequence of partitions (PSP) in Appendix A.

Example III.4. For the system in Example II.1, it can be

shown that: when α < 7
2 , we have α > f̂#

α (V ); when

α ≥ 7
2 , we have α = f̂#

α (V ).17 For example, in Fig. 2 when

α = 16
5 , one can show that max{r(V ) : rV ∈ P (f#

16/5,≤)} =

f̂#
16/5(V ) = 13

5 < α. So, P (f#
16/5,≤) does not intersect with

hyperplane {rV ∈ R|V | : r(V ) = 16
5 }, i.e., B(f#

α ,≤) = ∅.

In Fig. 4, when α = 4, we have f#
4 being

f#
4 (∅) = 0, f#

4 ({1}) = 3, f#
4 ({2}) = 1, f#

4 ({3}) = 1,

f#
4 ({1, 2}) = 4, f#

4 ({1, 3}) = 4, f#
4 ({2, 3}) = 3,

f#
4 ({1, 2, 3}) = 4

and the Dilworth truncation f̂#
4 being

f̂#
4 (∅) = 0, f̂#

4 ({1}) = 3, f̂#
4 ({2}) = 1, f̂#

4 ({3}) = 1,

f̂#
4 ({1, 2}) = 4, f̂#

4 ({1, 3}) = 4, f̂#
4 ({2, 3}) = 2,

f̂#
4 ({1, 2, 3}) = 4.

One can show that max{r(V ) : rV ∈ P (f#
4 ,≤)} = f̂#

4 (V ) =
4 = α and B(f#

4 ,≤) = B(f̂#
4 ,≤) 6= ∅.

By comparing the values of f#
4 and f̂#

4 , we can see

that the Dilworth truncation tightens the constraints in the

polyhedron P (f#
4 ,≤). For example, the inequality r({2, 3}) ≤

f#
4 ({2, 3}) = 3 in P (f#

4 ,≤) can be tightened by r({2}) ≤
f#
4 ({2}) = 1 and r({3}) ≤ f#

4 ({3}) = 1 so that we have

r({2, 3}) ≤ f̂#
4 ({2, 3}) = 2 in P (f̂#

4 ,≤). It also explains

that f̂#
α (V ) determines the maximum sum-rate over all rate

vectors in the polyhedron P (f#
α ,≤).

15Theorem III.3 refers to the case when α < H(V ) in particular, since,

when α ≥ H(V ), f#
α is submodular according to Lemma III.2 and α =

f#
α (V ) = f̂#

α (V ) and B(f#
α ,≤) 6= ∅ for sure [26, Theorem 2.3].

16f̂#
α (V ) = r(V ), ∀rV ∈ B(f̂#

α ,≤) [26, Theorems 2.5(i) and 2.6(i)] and,

for each rV ∈ B(f̂#
α ,≤), we have r(V ) = max{r(V ) : rV ∈ P (f̂#

α ,≤
) = P (f#

α ,≤)} [26, Theorems 2.3 and 2.5(i)]. A detailed explanation can
also be found in Appendix B.

17The two situations can be seen from the f̂#
α (V ) vs. α plot in Fig. 13.
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Corollary III.5. For P ∈ Π′(V ), define

ϕ(P) =
∑

C∈P

H(V )−H(C)

|P| − 1
.

The minimum sum-rate in the asymptotic and non-asymptotic

models are respectively

RACO(V ) = max
P∈Π′(V )

ϕ(P), (7a)

RNCO(V ) =
⌈

max
P∈Π′(V )

ϕ(P)
⌉

. (7b)

Proof: Equation (6) in Theorem III.3 is equivalent to

α ≤ f#
α [P ], ∀P ∈ Π(V ), which can be converted to

α ≥ ϕ(P), ∀P ∈ Π′(V ). It gives rise to the expressions of

RACO(V ) and RNCO(V ) in (7a) and (7b), respectively.

Remark III.6. It was first shown that RACO(V ) is lower

bounded by RACO(V ) ≥ maxP∈Π′(V ) ϕ(P) in [4, Exam-

ple 4] (see also Section III-E). In [19], [27], the authors

proved the tightness of this lower bound, where the same

result as (7a) in Corollary III.5 for the asymptotic model

is derived. However, the equality in (7a) in [19], [27] was

proved in a different way: Instead of showing the equivalence

B(f#
α ,≤) = {rV ∈ RCO(V ) : r(V ) = α} and applying

[26, Theorems 2.5(i) and 2.6(i)] to prove the nonemptiness

of B(f#
α ,≤), the authors defined a polyhedron P ′(g′α,≤) =

{rV ∈ R|V | : r(X) ≤ g′α(X), ∀X ⊆ V,X 6= ∅} for the

submodular function g′α(X) = α −H(V ) +H(X), ∀X ⊆ V
and applied [34, Theorem 48.3] to show (7a). As compared

to the proof in [19, Section IV-B], our work in this section

shows that (7a) straightforwardly follows from [26, Theorems

2.5(i) and 2.6(i)],18 which also leads to our new derivation

of RNCO(V ) in (7b). In Section III-D, we show that (7b)

verifies an observation in [15, Section III-E] that the difference

between RACO(V ) and RNCO(V ) is bounded by one.

Corollary III.5 can be interpreted as follows. The minimum

sum-rate can be determined by a maximization over all multi-

way cuts of V . Any partition P ∈ Π′(V ) can be considered

as a multi-way cut of the user set V . For any C ∈ P , the cut

{C, V \ C} imposes the SW constraint r(V \ C) ≥ H(V \
C|C) = H(V )−H(C). By applying this to each C ∈ P , we

have
∑

C∈P r(V \ C) = (|P| − 1)r(V ) ≥
∑

C∈P

(

H(V ) −
H(C)

)

, which imposes requirement or lower bound

r(V ) ≥
∑

C∈P

H(V )−H(C)

|P| − 1
= ϕ(P)

on the sum-rate for attaining omniscience. Here, |P| − 1 is a

normalization factor. Since the SW constraint applies to all the

subsets of V , an achievable sum-rate must satisfy the highest

requirement imposed by ϕ(P) over all multi-way cuts, i.e.,

ϕ(P) should be maximized over all P ∈ Π′(V ). Therefore,

we have (7a) and (7b). We call the mininal/finest maximizer

of (7a) the fundamental partition and denote it by P∗.

18It is clear that P (f#
α ,≤) = P ′(g′α,≤) since we always have r(∅) = 0.

In this sense, the proof in [19, Section IV-B] is essentially the same as the
proof of (7a) in this paper. However, the proof of Corollary (III.5) is much
simpler than [19, Section IV-B].

Example III.7. For the system in Example II.1, by applying

(7a) and (7b), we have RACO(V ) = 7
2 and RNCO(V ) = 4,

which are consistent with the results in Examples II.1 and

III.1. In addition, we have P∗ = {{1}, {2}, {3}} being the

fundamental partition.

D. Related Results

Based on Corollary III.5, RNCO(V ) = ⌈RACO(V )⌉ so that

RNCO(V ) ≥ RACO(V ), i.e., the minimum sum-rate in the non-

asymptotic model is no less than the one in the asymptotic

model, which is consistent with the results in [15], [16].

Based on (7a) and (7b) in Corollary III.5, it is straightfor-

ward that RACO(V ) + 1 > RNCO(V ). There is an observation

in [15, Section III-E] that the maximum difference between

RACO(V ) and RNCO(V ) is one transmission. Whereas the

result RNCO(V ) − RACO(V ) < 1 based on Corollary III.5

provides theoretical proof to this observation. It states that

the maximum difference between RACO(V ) and RNCO(V ) is

strictly less than one. Besides, we also have the following

results.

Theorem III.8. For all α ≥ RACO(V ), f̂#
α is a polyma-

troid rank function and B(f̂#
α ,≤) = B(f#

α ,≤) = {rV ∈
RCO(V ) : r(V ) = α} 6= ∅.

Proof: According to the definition of function f#
α and the

Dilworth truncation f̂#
α , for all α ∈ R+, we have f̂#

α being

normalized, i.e., f̂#
α (∅) = 0, and submodular [26, Theorem

2.5(i)]. The remaining task is to prove the monotonicity of

f̂#
α when α ≥ RACO(V ). According to (7a), we have α ≥
RACO(V ) ≥ ϕ({{i}, V \{i}}) = 2H(V )−H({i}−H(V \{i})
for all i ∈ V . Then, when α ≥ RACO(V ),

f̂#
α ({i}) = f#

α ({i})

= α−H(V ) +H({i})

≥ H(V )−H(V \ {i}) ≥ 0,

where the last inequality is due to the monotonicity of the

entropy function H . So, for all α ≥ RACO(V ) and i ∈ V ,

we have f̂#
α ({i}) ≥ f̂#

α (∅) and f̂#
α (X) ≥ f̂#

α (Y ) for all

X,Y ⊆ V such that i ∈ Y ⊆ X , i.e., f̂#
α is monotonic.

According to Theorem III.3, when α ≥ RACO(V ), we have

α = f̂#
α (V ) and B(f̂#

α ,≤) = B(f#
α ,≤) 6= ∅.

Theorem III.8 is important in proving the existence of

a fractional and an integral rate vector in R∗
ACO(V ) and

R∗
NCO(V ), respectively, in the finite linear source model and

CCDE.

Corollary III.9. In a finite linear source model,

(a) there exists an integral optimal rate vector in R∗
NCO(V ).19

(b) there exists a fractional optimal rate vector in R∗
ACO(V )

that can be implemented by (|P∗| − 1)-packet-splitting in

CCDE.

19In fact, in a finite linear source model, there exists an integral rate

vector in B(f̂#
α ,≤) = {rV ∈ RCO(V ) ∩ Z|V | : r(V ) = α} for all

α ∈ Z+ such that α ≥ RNCO(V ), which can be proved in the same way as
Corollary III.9(a). Corollary III.9(a) is consistent with the results derived in
[15], [18].
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Proof: Recall that in a finite linear source model, the

entropy function H is integer-valued. Then, since f#
RNCO(V ) is

integer-valued, based on Theorem III.8, f̂#
RNCO(V ) is an integer-

valued polymatroid rank function. Denote by EX(f̂#
RNCO(V ))

the set of all extreme points, or vertices, in B(f̂#
RNCO(V ),≤).

According to [26, Theorem 3.22], all rV ∈ EX(f̂#
RNCO(V )) are

integral and belong to B(f̂#
RNCO(V ),≤) ∩ Z|V | = R∗

NCO(V ).
On the other hand, in a finite linear source model, we have

RACO(V ) =
∑

C∈P∗
H(V )−H(C)

|P∗|−1 according to Corollary III.5,

i.e., RACO(V ) is a fractional number with denominator |P∗|−
1. So, RACO(V )(|P∗|−1) is integral. Then, (|P∗|−1)f#

RACO(V )
is an integer-valued polymatroid rank function. According to

[26, Theorem 3.22], all rV ∈ EX((|P∗| − 1)f̂#
RACO(V )) are

integral. For all rV ∈ EX((|P∗| − 1)f̂#
RACO(V )),

1
|P∗|−1rV ∈

EX(f̂#
RACO(V )) ⊆ B(f̂#

RACO(V ),≤) = R∗
ACO(V ) is a fractional

optimal rate vector with |P∗| − 1 being the LCM of the

denominators of all dimensions. Corollary holds.

Example III.10. Consider the system in Example II.1. We

have RACO(V ) = 7
2 , RNCO(V ) = 4 and P∗ = {{1}, {2}, {3}}.

From Fig. 4, it can be seen that the set of extreme points in

B(f̂#
RNCO(V ),≤) is

EX(f̂#
RNCO(V )) =

{

(2, 1, 1), (3, 1, 0), (3, 0, 1)
}

.

All rV ∈ EX(f̂#
RNCO(V )) are the integral optimal rate vectors

in R∗
NCO(V ). From Fig. 3, it can be seen that

EX(f̂#
RACO(V )) =

{

(
5

2
,
1

2
,
1

2
)
}

= B(f̂#
RACO(V ),≤).

(52 ,
1
2 ,

1
2 ) can be implemented by (|P∗| − 1)-packet-splitting.

Example III.11. Consider a different system compared to

previous examples where V = {1, . . . , 5} and each user

observes respectively

Z1 = (Wb,Wc,Wd,Wh,Wi),

Z2 = (We,Wf ,Wh,Wi),

Z3 = (Wb,Wc,We,Wj),

Z4 = (Wa,Wb,Wc,Wd,Wf ,Wg,Wi,Wj),

Z5 = (Wa,Wb,Wc,Wf ,Wi,Wj),

where Wj is an independent uniformly distributed random bit.

In this system, we have RACO(V ) = 13
2 , RNCO(V ) = 7 and

P∗ = {{1, 4, 5}, {2}, {3}}. One can show that all rate vectors

rV ∈ EX(f̂#
RNCO(V )) ( B(f̂#

RNCO(V ),≤) ∩ Z|V | = R∗
NCO(V )

are integral, e.g., rV = (0, 1, 1, 5, 0). For R∗
ACO(V ) =

B(f̂#
RACO(V ),≤), the extreme point set is

EX(f̂#
RACO(V )) =

{

(1,
1

2
,
1

2
, 2,

5

2
), (2,

1

2
,
1

2
, 1,

5

2
),

(1,
1

2
,
1

2
,
9

2
, 0), (

3

2
,
1

2
,
1

2
, 4, 0),

(
3

2
,
1

2
,
1

2
, 1, 3)

}

.

We have |P∗| − 1 = 2 and all rate vectors in EX(f#
RACO(V ))

can be implemented by 2-packet-splitting.

It is shown in [15, Section III-D] that (|V | − 1)-packet-

splitting is sufficient to achieve the minimum sum-rate

RACO(V ) in a CCDE system with high probability.20 However,

Corollary III.9(b) states that (|P∗| − 1)-packet-splitting with

|P∗| − 1 ≤ |V | − 1 is sufficient to achieve the minimum sum-

rate RACO(V ) in a CCDE system for sure.

Remark III.12. The proof of Corollary III.9 states that

determining the integral and fractional optimal rate vectors in

R∗
NCO(V ) and R∗

ACO(V ), respectively, is equivalent to search-

ing the extreme points in B(f̂#
RNCO(V ),≤) and B(f̂#

RACO(V ),≤).
In Section V-C, we show the extreme points can be determined

by the MDA and SIA algorithms for the asymptotic and non-

asymptotic models, respectively.

E. Secrecy Capacity and Mutual Dependence

The CO problem was first formulated in [4] based on the

study on secret capacity CS(A), the largest rate that the secret

key can be generated by the users in A. It is assumed that the

active users form a subset A ⊆ V and the others in V \A are

the helpers that assist the active users generate the secret key.

The problem studied in this paper is the case when A = V ,

for which the following results are derived in [4]. The duality

relationship between CS(V ) and RACO(V ) has been revealed

in [4, Theorem 1]:

RACO(V ) = H(V )− CS(V ). (8)

Let

I(V ) = min
P∈Π′(V )

D(PZV
‖
∏

C∈P PZC
)

|P| − 1
, (9)

where D(·‖·) is the Kullback-Leibler divergence and we have

D(PZV
‖
∏

C∈P PZC
) =

∑

C∈P H(C)−H(V ). It is shown in

[4, Example 4] that CS(V ) is upper bounded by

CS(V ) ≤ I(V ) (10)

and D(PZV
‖
∏

C∈P PZC
) is interpreted as the mutual depen-

dence for partition P ∈ Π′(V ). Then, the minimum sum-rate

is necessarily lower bounded by RACO(V ) ≥ H(V )− I(V ) =
maxP∈Π′(V ) ϕ(P). There is also a conjecture in [4, Example

4] that the upper bound in (10) is tight.

By realizing that |P| − 1 is a normalization factor, the

author in [27] proposed
D(PZV

‖
∏

C∈P PZC
)

|P|−1 to be the mutual

dependence measure for P ∈ Π′(V ). The tightness of the

upper bound in (10) is shown in [27, Theorem 1]. In [19], I(V )
is proposed as the multivariate mutual information (MMI)

measure in ZV so that the duality relationship (8) is given

in terms of I(V ) in [7], [19], [20] as

RACO(V ) = H(V )− I(V ), (11)

Note, I(V ) is also called the shared information in [28]. The

interpretation of (11) is: the minimum sum-rate RACO(V ) must

be the amount of information that is not mutual to the users in

20The authors in [15] study the more general CCDE system where each user
can only communicate with a subset of V . In the CCDE problem considered
in this paper, we assume that each user can communicate losslessly with all
other users, which is a special case of the general CCDE system in [15]. The
authors in [15] call the model studied in this paper a clique system.
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Fig. 5. The average error incurred by (12), the lower bound on RNCO(V )
that is proposed in [8], in Experiment IV.3.

V . The fundamental partition defined in [7], [19], [20] refers

to the finest/minimal minimizer of (9), the same as in this

paper. The dual relationship between RACO(V ) and CS(V ),
or I(V ), makes it more significant to study the minimum

sum-rate problem in CO: Determining the secret capacity

CS(V ) or MMI/shared information I(V ) relies on the efficient

algorithms for solving the minimum sum-rate problem and

vice versa.

IV. LOWER BOUND ON MINIMUM SUM-RATE

The existing algorithms for solving the minimum sum-rate

problem in [15], [18] for the finite linear source model start

with an estimation of the minimum sum-rate. In this section,

we propose lower bounds (LBs) on RACO(V ) and RNCO(V )
that can be obtained in O(|V |) time. In Section V, we will

show that the LBs on RACO(V ) and RNCO(V ) can be used

as an initial guess to start the MDA and SIA algorithms for

searching the exact value of RACO(V ) and RNCO(V ) in the

asymptotic and non-asymptotic models, respectively.

Proposition IV.1. The minimum sum-rate is lower bounded

by

RACO(V ) ≥ max
i∈V

{

ϕ({{i}, V \ {i}}), ϕ({{m} : m ∈ V })
}

,

RNCO(V ) ≥
⌈

max
i∈V

{

ϕ({{i}, V \ {i}}), ϕ({{m} : m ∈ V })
}⌉

.

Proof: The LBs on RACO(V ) and RNCO(V ) are obtained

by (7a) and (7b), respectively, by partitions P = {{i}, V \{i}}
for all i ∈ V and partition P = {{m} : m ∈ V }.

The LBs in Proposition IV.1 can be obtained in O(|V |) time.

Remark IV.2. If |V | = 3, the LBs in Proposition IV.1 are tight

for both asymptotic and non-asymptotic models: If |V | = 3,

{{i}, V \ {i}} for all i ∈ V and {{m} : m ∈ V } constitute

all partitions in Π′(V ). The tightness of the lower bound on

RACO(V ) when |V | = 3 for the asymptotic model is consistent

with the result in [4, Example 3].

The LB on RNCO(V ) has also been proposed in [8], [11]

for the finite linear source model. In [8], it is shown that

RNCO(V ) ≥ H(V )−min
i∈V

H({i}). (12)
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Fig. 6. The average error incurred by (13), the lower bound on RNCO(V )
that is proposed in [11], in Experiment IV.3.

In addition, if H({i}) = b for all i ∈ V , RNCO(V ) ≥ H(V )−
b+ 1, which can be explained by the LB

RNCO(V ) ≥
⌈

∑

i∈V

H(V )−H({i})

|V | − 1

⌉

= ⌈ϕ({{i} : i ∈ V })⌉

(13)

proposed in [11] in that ⌈ϕ({{i} : i ∈ V })⌉ = ⌈ |V |
|V |−1 (H(V )−

b)⌉ = H(V ) − b + 1 in the case when H({i}) = b, ∀i ∈ V .

But,

max
i∈V

ϕ({{i}, V \ {i}}) ≥ max
i∈V

{

H(V )−H({i})
}

= H(V )−min
i∈V

H({i}).

The LB on RNCO(V ) in Proposition IV.1 is tighter than the

ones in [8], [11].

Experiment IV.3. We generate a number of CCDE systems

as follows. The number of packets H(V ) varies from 6 to 30,

while the number of users |V | varies from 3 to 15. For each

combination of H(V ) and |V |, we repeat the procedure below

for 20 times.

• randomly generate the packet sets zi = Aix for all i ∈ V
subject to the condition l(x) = H(V );

• compute the LBs on RNCO(V ) based on [8], [11] and

Proposition IV.1.

We obtain the error as the absolute difference between the LB

and RNCO(V ). We plot the average error incurred by the LBs

on RNCO(V ) in [8], [11] and Proposition IV.1 over repetitions

in Figs. 5, 6 and 7, respectively. It can be seen that the LB on

RNCO(V ) in Proposition IV.1 is much tighter than the ones in

[8], [11]. In addition, the error in Fig. 7 is zero for |V | = 3
according to Remark IV.2.

V. ALGORITHMS FOR THE MINIMUM SUM-RATE PROBLEM

The remaining problem is to discuss how to efficiently solve

the maximization problems in (7a) and (7b) in Corollary III.5

for the asymptotic and non-asymptotic settings, respectively,

and determine a corresponding optimal rate vector. For this

purpose, we propose the MDA and SIA algorithms in this

section.
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Fig. 7. The average error incurred by the lower bound on RNCO(V ) in
Proposition IV.1, in Experiment IV.3. The error is zero when |V | = 3
according to Remark IV.2.

Algorithm 1: Modified Decomposition Algorithm

(MDA)

input : the ground set V , an oracle that returns the value of
H(X) for a given X ⊆ V

output: α that equals to RACO(V ), P∗ which is the
fundamental partition and a rate vector rV in the

optimal rate set R
∗
ACO(V ) = B(f̂#

RACO(V ),≤)

1 initialize α according to Proposition IV.1:

α← maxi∈V

{

ϕ({{i}, V \ {i}}), ϕ({{m} : m ∈ V })
}

;

2 find the minimal/finest minimizer P∗ of minP∈Π(V ) f
#
α [P ]

and a rate vector rV ∈ B(f̂#
α ,≤);

3 α̂← ϕ(P∗);
4 while α̂ 6= α do
5 α← α̂;
6 find the minimal/finest minimizer P∗ of

minP∈Π(V ) f
#
α [P ] and a rate vector rV ∈ B(f̂#

α ,≤);
7 α̂← ϕ(P∗);
8 end
9 return α, P∗ and rV ;

A. Modified Decomposition Algorithm

The MDA algorithm is given in Algorithm 1 for solving

the minimum sum-rate problem in the asymptotic model.

The optimality of the MDA algorithm is summarized in

Theorem V.1 below. The proof is in Appendix A-A.

Theorem V.1. The MDA algorithm outputs the minimum sum-

rate RACO(V ), the fundamental partition P∗ and an optimal

rate vector rV ∈ R∗
ACO(V ) for the asymptotic model. The

estimation sequence of RACO(V ), i.e., the value of α in each

iteration, converges monotonically upward to RACO(V ).

Example V.2. We apply the MDA algorithm to the system

in Example III.11. We initiate α = maxi∈V

{

ϕ({{i}, V \
{i}}), ϕ({{i} : i ∈ V })

}

= 23
4 as the LB on RACO(V ) in

Proposition IV.1, and have the following results.

• When α = 23
4 , we have P∗ = {{4, 5}, {1}, {2}, {3}}

being the minimal minimizer of the Dilworth

truncation problem minP∈Π(V ) f
#
23/4[P ] and

rV = (34 ,−
1
4 ,−

1
4 ,

15
4 , 0) being a vector in B(f̂#

23/4,≤).

We get α̂ = ϕ(P∗) = 19
3 . Since α̂ 6= α, the iteration

continues;

0 1 2 3

5.8

6

6.2

6.4

6.6

iteration index

α

estimation sequence of RACO(V )
RACO(V )

Fig. 8. The estimation sequence of RACO(V ), i.e., the value of α in each
iteration, when the MDA algorithm is applied to the system in Example III.11.
According to Theorem V.1, it converges monotonically upward to RACO(V ).

• When α = 19
3 , we have P∗ = {{1, 4, 5}, {2}, {3}} being

the minimal minimizer of minP∈Π(V ) f
#
19/3[P ] and rV =

(1, 13 ,
1
3 ,

13
3 , 0) ∈ B(f̂#

19/3,≤). Since α̂ = ϕ(P∗) = 13
2 6=

α, the iteration continues;

• When α = 13
2 , we have P∗ = {{1, 4, 5}, {2}, {3}} being

the minimal minimizer of minP∈Π(V ) f
#
13/2[P ] and rV =

(1, 12 ,
1
2 ,

9
2 , 0) ∈ B(f̂#

13/2,≤). Since α̂ = ϕ(P∗) = 13
2 =

α, the iteration terminates.

At the output, α = 13
2 and P∗ = {{1, 4, 5}, {2}, {3}} coincide

with the minimum sum-rate RACO(V ) and the fundamental

partition in Example III.11, respectively. In addition, rV =
(1, 12 ,

1
2 ,

9
2 , 0) ∈ B(f̂#

13/2,≤) = R
∗
ACO(V ) is an optimal rate

vector. In fact, (1, 1
2 ,

1
2 ,

9
2 , 0) ∈ EX(f̂#

RACO(V )) is one of the

extreme points in the base polyhedron B(f#
RACO(V ),≤), where

EX(f#
RACO(V )) is shown in Example III.11. Fig. 8 shows that the

value of α in each iteration of the MDA algorithm converges

monotonically upwards to the minimum sum-rate RACO(V ).

In the next subsection, we show how to solve the Dilworth

truncation problem minP∈Π(V ) f
#
α [P ] in steps 2 and 6 in the

MDA algorithm by a fusion implementation of the coordinate-

wise saturation capacity algorithm, where a rate vector rV ∈
B(f̂#

α ,≤) is also returned.

B. Coordinate-wise Saturation Capacity Algorithm by Fusion

Method

There exist several algorithms for solving the Dilworth

truncation problem minP∈Π(V ) f
#
α [P ] in the literature. For

example, the fusion set method is proposed in [31], [33] for

determining the PSP of electronic networks; The coordinate-

wise saturation capacity (CoordSatCap) algorithm in [26,

Section 3.2] has been applied to determine the PSP of a

network in [35, Algorithm A], [36, Section 2] and the strength

of a network in [37, Section 3].21

21One can verify that the methods in [35, Algorithm A], [36, Section 2]
and [37, Section 3] are in fact the CoordSatCap algorithm that is presented as
Greedy Algorithm II in [26, Section 3.2]. The studies in [35]–[37] are based
on the cut function of a network.
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In this paper, we consider the CoordSatCap algorithm,

which determines not only the minimum and the minimizer of

the Dilworth truncation problem minP∈Π(V ) f
#
α [P ], but also

a rate vector rV in the base polyhedron B(f̂#
α ,≤). In this

section, we first describe the CoordSatCap algorithm and then

show how to implement it by a fusion method.

We introduce some related definitions as follows. For X ⊆
V , let χX = (ri : i ∈ V ) be the characteristic vector of the

subset X such that ri = 1 if i ∈ X and ri = 0 if i /∈ X .

The notation χ{i} is simplified by χi. Let Φ = (φ1, . . . , φ|V |),
where φi ∈ V and φi 6= φi′ for all i, i′ ∈ {1, . . . , |V |} such

that i 6= i′. We call Φ a linear ordering of V . For example,

Φ = (2, 3, 1, 4) is a linear ordering of V = {1, . . . , 4}.
For U ⊆ P where P is some partition in Π(V ), denote

Ũ = ⊔X∈UX

where ⊔ is the disjoint union, i.e., Ũ ⊆ V is a fu-

sion of all the subsets in U . For example, for P =
{{1, 3}, {2, 4}, {5}, {6}, {7}} ∈ Π({1, . . . , 7}) and U =
{{1, 3}, {2, 4}, {5}, {6}}( P , we have Ũ = {1, . . . , 6}.

For a rate vector rV ∈ P (f#
α ,≤),

ξ̂i = max{ξ : rV + ξχi ∈ P (f#
α ,≤)}

is called the saturation capacity in dimension i [26, Section

2.3]. Here, ξ̂i ∈ R+ denotes the maximum increment in

ri such that the resulting rate vector rV + ξ̂iχi is still in

the polyhedron P (f#
α ,≤). The saturation capacity can be

determined by solving the minimization problem [26, Section

2.3]

max{ξ : rV + ξχi ∈ P (f#
α ,≤)} =

min{f#
α (X)− r(X) : i ∈ X ⊆ V }. (14)

Here, f#
α is submodular over all X ⊆ V such that i ∈ X

because of the intersecting submodularity of f#
α , i.e., the

minimization problem in (14) is an SFM one. An SFM

problem can be solved in polynomial time [38]–[43] (see

also Section V-D). The minimizers of an SFM problem form

a lattice, where the minimal/smallest and maximal/largest

minimizer exist [26, Lemma 2.1]. In Step 3 of Algorithm 2,

we obtain the minimal/smallest minimizer.

1) Coordinate-wise Saturation Capacity (CoordSatCap) Al-

gorithm: The main purpose of the CoordSatCap algorithm in

Algorithm 2 is to determine a rate vector, or base point, in

B(f̂#
α ,≤). The idea is to start with a point rV ∈ P (f#

α ,≤)
and increase each dimension of rV in order by the saturation

capacity. Finally, we have rV still in P (f#
α ,≤) but reaching

saturation in each dimension, i.e., rV + ǫχi /∈ P (f#
α ,≤)

for all ǫ > 0 and i ∈ V , which means rV ∈ B(f̂#
α ,≤)

necessarily. Based on the tight sets of this base point, the

minimizers of minP∈Π(V ) f
#
α [P ] can be determined, i.e., the

Dilworth truncation problem is solved accordingly.22 See also

22The definition of tight set and related explanations are in Appendix B,
where we also present a brief proof/explanation that the CoordSatCap algo-

rithm outputs a rate vector rV ∈ B(f̂#
α ,≤) and the minimal minimizer P∗

of the Dilworth truncation problem minP∈Π(V ) f
#
α [P] based on the studies

in [25], [26], [37].

Algorithm 2: Coordinate-wise Saturation Capacity

(CoordSatCap) Algorithm [26]

input : the ground set V , an oracle that returns the value of
H(X) for a given X ⊆ V , α which is an estimation
of RACO(V )

output: rV which is a rate vector in B(f̂#
α ,≤) and P∗

which is the minimal/finest minimizer of
minP∈Π(V ) f

#
α [P ]

1 initiate rV so that rV ∈ P (f#
α ,≤) and P∗ = {{i} : i ∈ V }

and choose a linear ordering Φ = (φ1, . . . , φ|V |);
2 for i = 1 to |V | do
3 determine the saturation capacity

ξ̂φi
← min{f#

α (X)− r(X) : φi ∈ X ⊆ V }

and the minimal/smallest minimizer X̂φi
;

4 rV ← rV + ξ̂φi
χφi

;

5 merge/fuse all subsets in P∗ that intersect with X̂φi
in

to one subset X̃ = ⊔X∈XX:

X ← {C ∈ P∗ : C ∩ X̂φi
6= ∅};

P∗ ← (P∗ \ X ) ⊔ {X̃ };

6 endfor
7 return rV and P∗;

Appendix B for the detailed explanation of the CoordSatCap

algorithm.

The following lemma shows one way to initiate a rate vector

rV such that rV ∈ P (f#
α ,≤). The proof is in Appendix B-B.

Lemma V.3. For any α such that 0 ≤ α ≤ H(V ), rV =
(α−H(V ))χV ∈ P (f#

α ,≤).

In Algorithm 2, the linear ordering Φ matters when we

want to minimize a weighted sum-rate objective function in

the optimal rate set, which will be discussed in Section VI.

We remark that for the minimum (equal-weight) sum-rate

problem for both asymptotic and non-asymptotic models that

is considered in this section, any linear ordering Φ of the user

indices can be chosen.

Example V.4. Consider the Dilworth truncation problem

minP∈Π(V ) f
#
α [P ] for α = 23

4 in Example V.2. We ap-

ply the CoordSatCap algorithm by initiating rV = (α −
H(V ))χV = (− 17

4 , . . . ,−
17
4 ) according to Lemma V.3 and

P∗ = {{1}, {2}, {3}, {4}, {5}}. The linear ordering is set to

Φ = (4, 5, 3, 2, 1).

• For φ1 = 4, we have ξ̂4 = 8 and X̂4 = {4} being

the minimum and minimal minimizer of min{f#
23/4(X)−

r(X) : 4 ∈ X ⊆ V }, respectively. By executing rV ←
rV + 8χ4, we update rV to (− 17

4 ,−
17
4 ,− 17

4 ,
15
4 ,−

17
4 ).

Also, X = {{4}} and X̃ = {C ∈ P∗ : C ∩ {4} 6= ∅} =
{4}. By executing P∗ = (P∗ \ X ) ⊔ {X̃}, we still have

P∗ = {{1}, {2}, {3}, {4}, {5}};
• For φ2 = 5, we have ξ̂5 = 17

4 and X̂5 = {4, 5}. rV
is updated to (− 17

4 ,− 17
4 ,−

17
4 , 15

4 , 0). Since X = {C ∈
P∗ : C ∩ {4, 5} 6= ∅} = {{4}, {5}} and X̃ = {4, 5},
by executing P∗ = (P∗ \ X ) ⊔ {X̃}, we update P∗ to

{{1}, {2}, {3}, {4, 5}};
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Fig. 9. For α = 23
4

and C = {1, 4, 5}, the figure shows the polyhedron

P (f#
α,C ,≤) and base polyhedron B(f̂#

α,C ,≤), where f#
α,C is the reduc-

tion of f#
α on C. Note, in this case, the base polyhedron B(f̂#

α,C ,≤)

reduces to a line segment with two vertices, ( 3
4
, 15

4
, 0) and ( 3

4
, 2, 7

4
). This

figure also shows the adaptation of the rate vector rC resulted from the
CoordSatCapFus algorithm in Example V.4: the path (− 17

4
,− 17

4
,− 17

4
) →

(− 17
4
, 15

4
,− 17

4
) → (− 17

4
, 15

4
, 0) → ( 3

4
, 15

4
, 0). We have the rate vector

( 3
4
, 15

4
, 0) ∈ B(f̂#

α,C ,≤) at the end.

• For φ3 = 2, we have ξ̂2 = 4 and X̂2 =
{2}. rV is updated to (− 17

4 ,−
1
4 ,−

17
4 ,

15
4 , 0). P

∗ =
{{1}, {2}, {3}, {4, 5}} after executing P∗ = (P∗ \ X ) ⊔
{X̃};

• For φ4 = 3, we have ξ̂3 = 4 and X̂3 =
{3}. rV is updated to (− 17

4 ,−
1
4 ,−

1
4 ,

15
4 , 0). P

∗ =
{{1}, {2}, {3}, {4, 5}} after executing P∗ = (P∗ \ X ) ⊔
{X̃};

• For φ5 = 1, we have ξ̂1 = 5 and X̂1 =
{1}. rV is updated to (34 ,−

1
4 ,−

1
4 ,

15
4 , 0). P∗ =

{{1}, {2}, {3}, {4, 5}} after executing P∗ = (P∗ \ X ) ⊔
{X̃}.

At the output, we have P∗ = {{1}, {2}, {3}, {4, 5}} and

rV = (34 ,−
1
4 ,−

1
4 ,

15
4 , 0) being the minimal minimizer of

minP∈Π(V ) f
#
23/4[P ] and a base point in B(f̂#

23/4,≤), respec-

tively.

Example V.5. Consider the Dilworth truncation problem

minP∈Π(V ) f
#
α [P ] for α = 13

2 in Example V.2. By applying the

CoordSatCap algorithm in the same way as in Example V.4,

one can show that, at the output, P∗ = {{1, 4, 5}, {2}, {3}}
and rV = (1, 1

2 ,
1
2 ,

9
2 , 0), which are the minimal minimizer

of minP∈Π(V ) f
#
13/2[P ] and a rate vector in B(f̂#

13/2,≤),
respectively.

For C ⊆ V , we call f#
α,C : 2C 7→ R with f#

α,C(X) =

f#
α (X) for all X ⊆ C the reduction of f#

α on C [26, Section

3.1(a)]. The polyhedron and base polyhedron of f#
α,C are

respectively

P (f#
α,C ,≤) = {rC ∈ R|C| : r(X) ≤ f#

α,C(X), X ⊆ C},

B(f#
α,C ,≤) = {rC ∈ P (f#

α,C ,≤) : r(C) = f#
α,C(C)}.

In Fig. 9, we show P (f#
α,C ,≤) and B(f̂#

α,C ,≤) when α = 23
4

and C = {1, 4, 5}, where we can see the the path to

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
4

5

−3

−2

−1

0

1

2

3

r1
r4

r 5

B(f̂#
13/2,C ,≤)

P (f#
13/2,C ,≤)

path to (1, 9
2
, 0)

EX(f̂#
RACO(V ),C)

Fig. 10. For α = 13
2

and C = {1, 4, 5}, the figure shows

the polyhedron P (f#
α,C ,≤) and base polyhedron B(f̂#

α,C ,≤). In this

case, the base polyhedron is a 2-dimensional polygon with five ver-

tices that constitutes the extreme points set EX(f̂#
RACO(V ),C

) =

{(1, 2, 5
2
), (2, 1, 5

2
), (1, 9

2
, 0), ( 3

2
, 4, 0), ( 3

2
, 1, 3)}. This figure also shows

the adaptation of the rate vector rC resulted from the CoordSatCapFus
algorithm in Example V.5: the path (− 7

2
,− 7

2
,− 7

2
) → (− 7

2
, 9
2
,− 7

2
) →

(− 7
2
, 9
2
, 0) → (1, 9

2
, 0). We have the rate vector (1, 9

2
, 0) ∈ B(f̂#

α,C ,≤) at

the end.

rC = (34 ,
15
4 , 0) as a result of the CoordSatCap algorithm in

Example V.4. In Fig. 10, we show P (f#
α,C ,≤) and B(f̂#

α,C ,≤)
when α = 13

2 and C = {1, 4, 5}, where we can see the the path

to rC = (1, 9
2 , 0) as a result of the CoordSatCap algorithm in

Example V.5.

2) A Fusion Method Implementation: In the CoordSatCap

algorithm, the saturation capacity ξφi
in dimension φi is

determined by solving problem min{f#
α (X) − r(X) : φi ∈

X ⊆ V }, where each element in V is the index of a user

in the system. In this section, we show that this problem can

be solved over a merged user set where each non-singleton

element denotes a super user, i.e., the CoordSatCap algorithm

can be implemented by a fusion method. The validity of

this fusion method is based on Lemma V.6 and Lemma V.7

below with the proofs in Appendix B-C and Appendix B-D,

respectively.

Lemma V.6. Let the CoordSatCap algorithm start with a

rate vector rV ∈ P (f#
α ,≤) such that rV ≤ 0, where

0 = (0, . . . , 0) ∈ R|V |. We have

min{f#
α (X)− r(X) : φi ∈ X ⊆ V } =

min{f#
α (X)− r(X) : φi ∈ X ⊆ Vi}, (15)

where Vi = {φ1, . . . , φi} and the minimal minimizer X̂φi
⊆ Vi

for all i ∈ {1, . . . , |V |}.

The equality (15) in Lemma V.6 was originally derived in

the proof of [26, Theorem 3.19], based on which the authors

in [15], [18] apply min{f#
α (X) − r(X) : φi ∈ X ⊆ Vi}

in the CoordSatCap algorithm for solving the non-asymptotic

minimum sum-rate problem in the finite linear source model

and CCDE. However, the proof of [26, Theorem 3.19] does

not show that X̂φi
⊆ Vi for all i.
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Lemma V.7. In the CoordSatCap algorithm,

min{f#
α (X)− r(X) : φi ∈ X ⊆ V } = (16)

min{f#
α (Ũ)− r(Ũ ) : U ⊆ P∗, φi ∈ Ũ} (17)

for all i ∈ {1, . . . , |V |}. Let X̂φi
and U∗

φi
be the minimal

minimizer of the (16) and (17), respectively. X̃ = Ũ∗
φi

, where

X = {C ∈ P∗ : C ∩ X̂φi
6= ∅}.

Both minimization problems, (16) and (17), in Lemma V.7

are SFM problems due to the intersecting submodularity of

f#
α . But, P∗ is a fused user set since some of the users have

been merged into a super user set, which is treated as one

dimension in the SFM problem (17). So, |P∗| ≤ |V |. We will

show in Section V-D that minimizing over the fused user set

contributes to a reduction in computation complexity.

Remark V.8. Lemma V.7 is based on the fact: If X̂φi
is a non-

singleton minimal minimizer of min{f#
α (X) − r(X) : φi ∈

X ⊆ V } for some φi, then, for any partition P that

crosses X̂φi
, there exists a P ′ that does not cross X̂φi

such

that f#
α [P ′] < f#

α [P ].23 It means that, to determine the

minimal/finest minimizer of the Dilworth truncation problem

minP∈Π′(V ) f
#
α [P ], we just need to consider all the partitions

in Π(V ) that do not cross X̂φi
.24 See Appendix B-E for the

explanation.

Example V.9. In Exmaple V.4, we have X̂5 = {4, 5} when

α = 23
4 . For P = {{1, 4}, {2, 3}, {5}} that crosses {4, 5}, we

have P ′ = {{1, 4, 5}, {2, 3}} that does not cross {4, 5} such

that f#
α [P ′] = 15

2 < f#
α [P ] = 37

4 ; For P = {{1, 4}, {2, 3, 5}}
that crosses {4, 5}, we have P ′ = {{4, 5}, {1}, {2, 3}} that

does not cross {4, 5} such that f#
α [P ′] = 29

4 < f#
α [P ] = 17

2 .

One can show that for each partition P that crosses {4, 5}
there always exists a partition P ′ that does not cross {4, 5}
such that f#

α [P ′] < f#
α [P ]. Therefore, we just need to

consider all partitions that do not cross {4, 5} to determine

the minimal minimizer of minP∈Π′(V ) f
#
α [P ]. It is equivalent

to considering all partitions of {{4, 5}, {1}, {2}, {3}}, which

is the value of P∗ when φ2 = 5 in Exmaple V.4.

Based on Lemmas V.6 and V.7, the CoordSatCap algorithm

in Algorithm 2 is equivalent to the CoordSatCapFus algorithm

in Algorithm 3. Steps 4, 5 and 7 in Algorithm 3 are explained

as follows.

According to Lemmas V.6 and V.7, the saturation capacity

can be obtained by ξ̂φi
= min{f#

α (Ũ) − r(Ũ ) : {φi} ∈
U ⊆ P∗

i }. Here, P∗
i = P∗

i−1 ⊔ {{φi}} ∈ Π(Vi) with

P∗
i−1 ∈ Π(Vi−1) being the partition obtained at the end

of iteration i − 1. For the minimal minimizer U∗
φi

of this

problem, we have X̂φi
⊆ X̃ = Ũ∗

φi
, where X̂φi

is the

minimal minimizer of min{f#
α (X) − r(X) : φi ∈ X ⊆ Vi}

and X = {C ∈ P∗
i : C∩X̂φi

6= ∅}. This explains steps 4 and 5

23A multi-way cut or partition P ∈ Π′(V ) does not cross a set X ( V
if there exist C ∈ P such that X ⊆ C. For example, for X = {1, 3},
{{1, 3, 4}, {2}} and {{1, 3}, {2}, {4}} are the partitions that do not cross
X , while {{1, 2}, {3}, {4}} and {{1}, {2, 3, 4}} are the partitions that cross
X .

24In addition, the fundamental partition P∗ must be a multi-way cut of V
that does not cross X̂φi

. See Appendix B-E.

Algorithm 3: Coordinate-wise Saturation Capacity Al-

gorithm by Fusion Method (CoordSatCapFus)

input : the ground set V , an oracle that returns the value of
H(X) for a given X ⊆ V , α which is an estimation
of RACO(V )

output: rV which is a rate vector in B(f̂#
α ,≤) and P∗

|V |

which is the minimal/finest minimizer of
minP∈Π(V ) f

#
α [P ]

1 let rV ← (α−H(V ))χV so that rV ∈ P (f#
α ,≤) and

choose a linear ordering Φ = (φ1, . . . , φ|V |);
2 initiate rφ1 ← f#

α ({φ1}) and P∗
1 ← {{φ1}};

3 for i = 2 to |V | do
4 P∗

i ← P
∗
i−1 ⊔ {{φi}};

5 determine the saturation capacity

ξ̂φi
← min{f#

α (Ũ)− r(Ũ) : {φi} ∈ U ⊆ P∗
i }

and the minimal/smallest minimizer U∗
φi

;

6 rV ← rV + ξ̂φi
χφi

;
7 merge/fuse all subsets in U∗

φi
into one subset

Ũ∗
φi

= ⊔X∈U∗
φi
X:

P∗
i ← (P∗

i \ U
∗
φi
) ⊔ {Ũ∗

φi
};

8 endfor
9 return rV and P∗

|V |;

in Algorithm 3. The equality X̃ = Ũ∗
φi

also makes the update

of P∗
i easier: We do not need to obtain X as we did in step 5

in Algorithm 2. Since (P∗
i \U

∗
φi
)⊔{Ũ∗

φi
} = (P∗

i \X )⊔{X̃ },

simply do P∗
i ← (P∗

i \U
∗
φi
)⊔ {Ũ∗

φi
}, which does not require

the determination of X . This explains step 7 in Algorithm 3.

Since the saturation capacity in the CoordSatCapFus algo-

rithm is always obtained by a minimization problem over a

fused user set P∗ ∈ Π(Vi) for all i ∈ {1, . . . , |V |}, we call the

CoordSatCapFus algorithm a fusion method implementation of

the CoordSatCap algorithm.

Example V.10. Consider the Dilworth truncation problem

minP∈Π(V ) f
#
α [P ] when α = 23

4 in Example V.2. We apply

the CoordSatCapFus algorithm by initiating rV = (α −
H(V ))χV = (− 17

4 , . . . ,− 17
4 ). The linear ordering is set to

Φ = (4, 5, 3, 2, 1).

• For φ1 = 4, we assign r4 = f#
23/4({4}) = 15

4 so that

rV = (− 17
4 ,−

17
4 ,− 17

4 ,
15
4 ,−

17
4 ) and let P∗

1 = {{4}};
• For φ2 = 5, we have P∗

2 = {{4}, {5}} and consider the

problem min{f#
α (Ũ) − r(Ũ ) : {5} ∈ U ⊆ P∗

2}. Since

{U : {5} ∈ U ⊆ P∗
2} = {{{5}}, {{4}, {5}}} and

f#
23/4({5})− r({5}) = 6,

f#
23/4({4, 5})− r({4, 5}) =

17

4
,

we have ξ̂5 = 17
4 and U∗

5 = {{4}, {5}}. rV and

P∗
2 are updated to (− 17

4 ,− 17
4 ,−

17
4 , 15

4 , 0) and {{4, 5}},
respectively;

• For φ3 = 2, we have P∗
3 = {{2}, {4, 5}} and consider

the problem min{f#
α (Ũ)−r(Ũ ) : {2} ∈ U ⊆ P∗

3}. Since
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{U : {2} ∈ U ⊆ P∗
3} = {{{2}}, {{2}, {4, 5}}} and

f#
23/4({2})− r({2}) = 4,

f#
23/4({2, 4, 5})− r({2, 4, 5}) =

25

4
,

we have ξ̂2 = 4 and U∗
2 = {{2}}. rV and P∗

3 are updated

to (− 17
4 ,−

1
4 ,−

17
4 , 154 , 0) and {{2}, {4, 5}}, respectively;

• In the same way, we can show the followings at the end

of each iteration.

– For φ4 = 3, rV = (− 1
4 ,−

1
4 ,−

17
4 ,

15
4 , 0) and P∗

4 =
{{2}, {3}, {4, 5}};

– For φ5 = 1, rV = (34 ,−
1
4 ,−

17
4 ,

15
4 , 0) and P∗

5 =
{{1}, {2}, {3}, {4, 5}}.

At the end, we have r = (34 ,−
1
4 ,−

17
4 , 15

4 , 0) and P∗
5 =

{{1}, {2}, {3}, {4, 5}}, which are the same as in Example V.4.

It can be seen that the CoordSatCapFus outputs the same

results as in Example V.5 for the Dilworth truncation problem

minP∈Π(V ) f
#
13/2[P ].

C. Solutions for the Finite Linear Source Model

As discussed in Section II-B, in a finite linear source

model, we are particularly interested in the existence of the

fractional and integral optimal rate vectors in R∗
ACO(V ) and

R∗
NCO(V ), respectively. As pointed out in Remark III.12,

since the extreme points in R∗
ACO(V ) = B(f̂#

RACO(V ),≤)

and R∗
NCO(V ) = B(f̂#

RNCO(V ),≤) ∩ Z|V | are fractional and

integral, respectively, in a finite linear source model, the

problem reduces to determining a rate vector in EX(f̂#
RACO(V ))

and EX(f̂#
RNCO(V )). For this purpose, we have the following

theorem with the proof in Appendix C.

Theorem V.11. For all α ≥ RACO(V ), the CoordSatCap

algorithm returns rV that is an extreme point, or a vertex,

in B(f̂#
α ,≤), i.e., rV ∈ EX(f̂#

α ).

According to Theorem V.11 and the proof of Corollary III.9,

we have the following results straightforwardly.

Corollary V.12. For a finite linear source model,

(a) the MDA algorithm outputs rV ∈ R∗
ACO(V ) such that

(|P∗| − 1)rV is integral, i.e., rV can be implemented by

(|P∗| − 1)-packet-splitting in CCDE;

(b) with input α = RNCO(V ), the CoordSatCapFus algorithm

returns rV ∈ R∗
NCO(V ) which is integral.

If the value of RACO(V ) can be determined by the MDA

algorithm, we know automatically RNCO(V ) = ⌈RACO(V )⌉.
Then, according to Corollary V.12, we can determine an in-

tegral optimal rate vector in R∗
NCO(V ) for the non-asymptotic

model in a finite linear source model by no more than one

additional call of the CoordSatCapFus algorithm.25

25If RACO(V ) = RNCO(V ), RACO(V ) is integral necessarily and the
rate vector in R∗

ACO
(V ) returned by the MDA algorithm is also an in-

tegral rate vector in R∗
NCO

(V ); If RACO(V ) < RNCO(V ), an integral
optimal rate vector in R∗

NCO(V ) can be determined by an extra call
CoordSatCapFus(V,H, ⌈RACO(V )⌉). Therefore, in a finite linear source
model, the non-asymptotic minimum sum-rate problem can be solved by no
more than one extra call of the CoordSatCapFus algorithm after obtaining
RACO(V ).

Algorithm 4: sum-rate increment algorithm (SIA) for

solving the non-asymptotic minimum sum-rate prob-

lem in the finite linear source model

input : the ground set V , an oracle that returns the value of
H(X) for a given X ⊆ V

output: a rate vector rV in the optimal rate set

R
∗
NCO(V ) = B(f̂#

RNCO(V ),≤) ∩ Z|V | and α which

equals to RNCO(V )

1 initialize α according to Proposition IV.1:

α←
⌈

maxi∈V

{

ϕ({{i}, V \ {i}}), ϕ({{m} : m ∈ V })
}⌉

;

2 determine a rate vector rV ∈ B(f̂#
α ,≤) by solving the

problem minP∈Π(V ) f
#
α [P ];

3 while r(V ) 6= α do
4 α← α+ 1;

5 determine a rate vector rV ∈ B(f̂#
α ,≤) by solving the

problem minP∈Π(V ) f
#
α [P ];

6 end
7 return rV and α;

Example V.13. The optimal rate vector rV = (1, 1
2 ,

1
2 ,

9
2 , 0) ∈

R∗
ACO(V ) determined by the MDA algorithm in Example V.2

is an extreme point in B(f̂#
RACO(V ),≤) = R∗

ACO(V ), i.e.,

rV = (1, 1
2 ,

1
2 ,

9
2 , 0) ∈ EX(f̂#

RACO(V )), where EX(f̂#
RACO(V )) is

shown in Example III.11. Recall that the fundamental partition

in this system is P∗ = {{1, 4, 5}, {2}, {3}} so that |P∗| = 3.

Therefore, rV = (1, 1
2 ,

1
2 ,

9
2 , 0) can be implemented by 2-

packet-splitting.

Since RACO(V ) = 13
2 , we have RNCO(V ) = ⌈RACO(V )⌉ =

7. By setting the linear ordering Φ = (4, 5, 2, 3, 1), we call

CoordSatCapFus(V,H, 7) and have rV = (0, 1, 1, 5, 0) and

P∗ = {{1, 2, 3, 4, 5}} at the output. One can show that rV =
(0, 1, 1, 5, 0) ∈ EX(f̂#

7 ) ( B(f̂#
7 ,≤) ∩ Z|5| = R∗

NCO(V ).26

On the other hand, we can also adopt a proper sum-rate

adaptation method to solve the non-asymptotic minimum sum-

rate problem in the finite linear source model. This idea was

originally proposed in [15], [18]. The method is to iteratively

update α, the estimation of the minimum sum-rate RNCO(V ),
on an integer set in Z+ until it reaches RNCO(V ). The

implementation of this method requires: (a) a method that

can check if a sum-rate α is achievable; (b) an algorithm

that can determine a rate vector rV ∈ B(f̂#
α ,≤) = {rV ∈

RCO(V ) : r(V ) = α} if α is achievable. It is fortunate that the

CoordSatCap and CoordSatCapFus algorithms can complete

both tasks.

Corollary V.14. For a sum-rate α, let rV be the rate vector

returned by the CoordSatCapFus, or CoordSatCap, algorithm:

α is achievable if and only if r(V ) = α; If α is achievable, we

have rV ∈ B(f̂#
α ,≤) = {rV ∈ RCO(V ) : r(V ) = α} being

an achievable rate vector with sum-rate α.

The proof of Corollary V.14 is in Appendix C. According

to Corollary V.14, we can start with a lower estimation α of

RNCO(V ), e.g., the LB in Proposition IV.1, and increase α by

26The result P∗ = {{1, 2, 3, 4, 5}} is consistent with property (a) of the
PSP in Theorem A.2 in Appendix A: Since RNCO(V ) > RACO(V ) =
α1, {V } is the only minimizer of the Dilworth truncation problem

minP∈Π(V ) f
#
RNCO(V )

[P].
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one until it is achievable. The first achievable α necessarily

equals to RNCO(V ). Since RNCO(V ) ∈ {0, 1, . . . , H(V )}, we

can adjust α to RNCO(V ) within a finite number of iterations.

This idea is implemented by the SIA algorithm in Algorithm 4,

where the Dilworth truncation problem minP∈Π(V ) f
#
α [P ]

in steps 2 and 5 can be solved by the CoordSatCap or

CoordSatCapFus algorithm.

Example V.15. We apply the SIA algorithm to the system

in Example III.11. We initiate α =
⌈

maxi∈V

{

ϕ({{i}, V \
{i}}), ϕ({{m} : m ∈ V })

}⌉

= 6 according to Proposi-

tion IV.1. We implement the CoordSatCapFus algorithm for

solving the Dilworth truncation problem minP∈Π(V ) f
#
α [P ].

• For α = 6, we have rV = (1, 0, 0, 4, 0) and P∗ =
{{4, 5}, {1}, {2}, {3}} returned by the CoordSatCapFus

algorithm. Since r(V ) = 5 < α, we update α to 7 and

continue the iteration;

• For α = 7, we have rV = (0, 1, 1, 5, 0) and P∗ =
{{1, 2, 3, 4, 5}} returned by the CoordSatCapFus algo-

rithm. Since r(V ) = 7 = α, the iteration terminates.

At the output, we have rV = (0, 1, 1, 5, 0) ∈ R∗
NCO(V ),

which is consistent with the result in Example V.13. Here, the

SIA algorithm solves the non-asymptotic minimum sum-rate

problem in the finite linear source model without obtaining

the value of RACO(V ).

Note, in the SIA algorithm, the updates of α do not

require the minimal/finest minimizer of the Dilworth trun-

cation problem minP∈Π(V ) f
#
α [P ].27 On the other hand, the

sum-rate adaptation method is not unique. For solving the

non-asymptotic minimum sum-rate problem in CCDE, the

authors in [15], [18] proposed efficient algorithms to update

α to RNCO(V ), where the CoordSatCap algorithm based

on Lemma V.6 is implemented as a subroutine. Since the

CoordSatCap and CoordSatCapFus algorithms accomplish the

same tasks in Corollary V.14, we can replace the CoordSatCap

algorithm by the CoordSatCapFus algorithm in the sum-rate

adaptation algorithms in [15], [18]. In the next subsection, we

will show the advantage of this replacement: the reduction in

complexity.

D. Complexity

Let δ be the computation complexity of evaluating the

value of a submodular function f : 2V 7→ R.28 We de-

note O(SFM(|V |)) the complexity of solving the submodular

function minimization (SFM) problem min{f(X) : X ⊆ V },
which is strongly polynomial [38]–[43]. For example, the SFM

algorithm proposed in [44] completes in O(|V |5·δ+|V |6) time,

which is the most efficient SFM algorithm in the literature

to the best of our knowledge. Also, the minimizers of an

SFM problem form a lattice, where the minimal/smallest and

27It means that, when applied to the SIA algorithm, the initiation and
updates of P∗ in the CoordSatCap algorithm and P∗

i in the CoordSatCapFus
algorithm are not required. In addition, the determination of the minimal min-

imizers, U∗
φi

and X̂φi
in the CoordSatCapFus and CoordSatCap algorithms,

respectively, is not required.
28We assume that the value of f(X) for any X ⊆ V can be obtained by

an oracle call and δ refers to the upper bound on the computation time of
this oracle call.

maximal/largest minimizers exist [26, Lemma 2.1]. It is shown

in [26, Section 7.1] that the minimal and maximal minimizers

can be determined by the minimum-norm point in the base

polyhedron and the minimum-norm point can be determined

by the SFM algorithm in [43]. It means that the minimal

minimizer of an SFM problem, as required by step 3 in

the CoorSatCap algorithm and step 5 in the CoorSatCapFus

algorithm, can be determined at the same time when the SFM

is solved.

Although the SFM algorithms in [38]–[43] vary in com-

putation complexity, the exact completion time of an SFM

algorithm depends on |V |. We call |V | the size of the SFM

problem min{f(X) : X ⊆ V }. In this section, we study

the complexity of the MDA and SIA algorithms proposed

in Sections V in terms of the size of the SFM problem and

completion time (in seconds), respectively. It should be noted

that, in this paper, we assume that the value of the entropy

function H at a given subset X ⊆ V can be evaluated by an

oracle call, which takes X as an input and outputs H(X), and

δ refers to the complexity upper bound of this oracle call.

1) CoordSatCapFus vs. CoordSatCap: The main subrou-

tine of the MDA and SIA algorithms is the CoordSatCap or

CoordSatCapFus algorithm, and the core part of the CoordSat-

Cap and CoordSatCapFus algorithms is the SFM problem that

determines the saturation capacity ξ̂φi
. Consider the CoordSat-

Cap algorithm where the saturation capacity is determined by

min{f#
α (X)− r(X) : φi ∈ X ⊆ Vi}. (18)

The size of this SFM problem is |Vi| − 1. The SFM problem

min{f#
α (Ũ)−r(Ũ) : {φi} ∈ U ⊆ P∗

i } in the CoordSatCapFus

algorithm is over P∗
i , a fused user set of Vi, where each

non-singleton subset X ∈ P∗
i is treated as a super user that

corresponds to one dimension in P∗
i . Since |P∗

i |−1 ≤ |Vi|−1,

the computation complexity of the CoordSatCapFus algorithm

is no greater than that of the CoordSatCap algorithm.

Example V.16. For φ3 = 2 in Example V.10, we have P∗
3 =

{{4, 5}, {2}}, where {4, 5} forms one dimension in P∗
3 , so

that the size of the SFM problem min{f#
α (Ũ )−r(Ũ ) : {φ3} ∈

U ⊆ P∗
3} is |P∗

3 | − 1 = |{{4, 5}, {2}}|− 1 = 1. Suppose that

we solve the problem min{f#
α (X) − r(X) : φ3 ∈ X ⊆ V3}

instead. Then, the size of this SFM problem is |V3| − 1 =
|{2, 4, 5}| − 1 = 2, which is greater than |P∗

3 | − 1.

However, the complexity of the CoordSatCapFus algorithm

in the worst case is the same as that of the CoordSatCap

algorithm, which is O(|V |·SFM(|V |)). The worst case is when

P∗
i = {{φ1}, . . . , {φi}} for all i ∈ V , which happens when

the components in ZV are mutually independent.

2) MDA algorithm: The MDA algorithm with the Co-

ordSatCapFus being the subroutine completes in O(|V |2 ·
SFM(|V |)) time. We remark that O(|V |2 · SFM(|V |)) is

the complexity upper bound for two reasons. On one hand,

the complexity of the CoordSatCapFus algorithm is upper

bounded by O(|V | · SFM(|V |)); On the other hand, the

number of calls of the CoordSatCapFus algorithm in the MDA

algorithm is upper bounded by |V |. Then, the complexity of

solving the non-asymptotic minimum sum-rate problem in the

finite linear source model by no more than one additional call
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Fig. 11. The results in Experiment V.17. H(V ) is fixed to 50 and the
number of users |V | varies from 5 to 120. MDA by CoordSatCapFus
refers to the MDA algorithm with the CoordSatCapFus algorithm being the
subroutine, while MDA by CoordSatCap refers to the MDA algorithm with
the CoordSatCap algorithm where the saturation capacity is determined by
problem (18) being the subroutine. The sum-size of SFM refers to the total
size of SFM algorithm in one call of the MDA algorithm. The sum-size
averaged over 20 repetitions is presented in this figure. The average sum-size

of SFM in one call of the MDA algorithm is upper bounded by
|V |2(|V |−1)

2
.

of the CoordSatCapFus algorithm, as proposed in Section V-C,

is upper bounded by O((|V |+ 1) · |V | · SFM(|V |)).

Experiment V.17. Let H(V ) be fixed to 50 and the number

of users |V | vary from 5 to 120. For each value of |V |, we

repeat the following procedure for 20 times:

• randomly generate a finite linear source model with the

column vector zi = Aix for all i ∈ V subject to the

condition l(x) = H(V );
• solve the asymptotic minimum sum-rate problem by ap-

plying the MDA algorithm as follows:

– MDA by CoordSatCap: Algorithm 1, where the Dil-

worth truncation problem in steps 2 and 6 is solved

by the CoordSatCap algorithm with the saturation

capacity determined by (18);

– MDA by CoordSatCapFus: Algorithm 1, where the

Dilworth truncation problem in steps 2 and 6 is

solved by the CoordSatCapFus algorithm.

We sum up the sizes of the SFM algorithm in each run of

the MDA algorithm. This sum-size is averaged over the 20

repetitions and shown in Fig. 11. Note, the average sum-size of

the MDA by CoordSatCap is upper bounded by
|V |2(|V |−1)

2 .29

It can be shown that there is a reduction from
|V |2(|V |−1)

2 to
|V |1.9(|V |−1)

2 in the average sum-size of the SFM problem by

implementing the CoordSatCapFus algorithm. This reduction

could be considerable when |V | is large. For example, in

Fig. 11, when |V | = 25, the average sum-size of SFM is

6037.5 for MDA by CoordSatCap and 3831.4 for MDA by

CoordSatCapFus.

The authors in [45] proposed a divide-and-conquer (DC)

algorithm for solving the asymptotic minimum sum-rate prob-

29This refers to the average size of the SFM algorithm in the MDA
algorithm. The computation complexity of the MDA algorithm is still
O(|V |2 · SFM(|V |)).
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Fig. 12. The results of Experiment V.18. H(V ) is fixed to 50 and the number
of users |V | varies from 5 to 120. SIA by CoordSatCapFus refers to the SIA
algorithm with the CoordSatCapFus algorithm being the subroutine, while SIA
by CoordSatCap refers to the SIA algorithm with the CoordSatCap algorithm
being the subroutine. The run-time in seconds of each call of the SIA
algorithm is recorded and averaged over 20 repetitions. We implemented the
minimum norm algorithm in [43] as the SFM algorithm. The SIA algorithm
is run in MATLAB R2013a.

lem. This algorithm finds the fundamental partition P∗ and

recursively breaks each element in P∗ to singletons by calling

the decomposition algorithm (DA) algorithm in [46, Section

3] [33, Algorithm II]. The DC algorithm completes in O(|V |3 ·
SFM(|V |)) time. The detailed description of the DC algorithm

is in Appendix E, where we also show that the recursive

splitting of the subsets in P∗ is not necessary since the

asymptotic minimum sum-rate problem can be solved at the

same time when the fundamental partition P∗ is determined.

3) SIA algorithm: The authors in [15, Appendix F] [18,

Section III-C] show that the complexity of adapting the

estimation α on an integer set to the minimum sum-rate

RNCO(V ) in a finite linear source model grows logarithmi-

cally in H(V ). Therefore, the SIA algorithm completes in

O(logH(V ) · |V | · SFM(|V |)) time. To show the actual run-

time, or completion time in seconds, of the SIA algorithm, we

do the following experiment.

Experiment V.18. Let H(V ) be fixed to 50 and the number

of users |V | vary from 5 to 120. For each value of |V |, we

repeat the following procedure for 20 times:

• randomly generate a finite linear source model with the

column vector zi = Aix for all i ∈ V subject to the

condition l(x) = H(V );
• solve the non-asymptotic minimum sum-rate problem by

applying the SIA algorithm as follows:

– SIA by CoordSatCap: Algorithm 4, where the Dil-

worth truncation problem in steps 2 and 5 is solved

by the CoordSatCap algorithm with the saturation

capacity determined by (18);

– SIA by CoordSatCapFus: Algorithm 4, where the

Dilworth truncation problem in steps 2 and 5 is

solved by the CoordSatCapFus algorithm.

We implement the minimum-norm point algorithm proposed in

[43] for solving the SFM problems in the CoordSatCap and

CoordSatCapFus algorithms. The SIA algorithm is written in
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MATLAB and run in MATLAB R2013a. We do the experiment

on a desktop computer with Intel Core i7-3770 processer,

8Gb RAM and 64-bit Windows 7 Enterprise operating system.

The run-time in seconds in each call of the SIA algorithm

is recorded and averaged over repetitions. The results are

shown in Fig. 12. The run-time of SIA by CoordSatCap is

comparable to 4 · 10−3 · |V |1.5. With the fusion method, SIA

by CoordSatCapFus reduces it to 4 · 10−3 · |V |1.27.

The authors in [15, Appendix G] show that the SIA by

CoordSatCap method based on the minimum-norm algorithm

[43] completes in 4 · 10−3 · |V |1.85 seconds on average,

which is slower than the result in Experiment V.18. The main

reason that can cause this run-time reduction is that we do

the experiment on a dataset and computer that are different

from those in [15, Appendix G]. In addition, the LB that

we used in the SIA is tighter than the one in [15, Appendix

F] may be another reason that results in a faster run-time.

On the other hand, the complexity of the minimum-norm

algorithm is still unknown and may vary with different data

processing softwares [43]. Therefore, while the average run-

time just shows an example on how faster the SIA algorithm

completes in practice, the complexity of the SIA algorithm is

still O(logH(V )·|V |·SFM(|V |)), i.e., no matter how good the

run-time is, it cannot be used to characterise the complexity of

the SIA algorithm. However, based on Figs. 11 and 12, we can

see clearly that the fusion method in CoordSatCapFus algo-

rithm contributes to a considerable reduction in computation

complexity when the number of users |V | grows.

It should be noted that finite linear source model is used in

Experiments V.17 and V.18 since the optimality of the output

rate vector can be verified by random linear network coding

(RLNC) according to [11, Theorem 6]. The results of the MDA

algorithm in Experiment V.17 is checked by packet-splitting

and applying RLNC to the packet chunks.

VI. MINIMUM WEIGHTED SUM-RATE PROBLEM

The minimum weighted sum-rate problem, the problem of

minimizing a weighted sum-rate in the optimal rate vector

set, has been considered in CO in [15], [18] for the finite

linear source mode. In this section, we show how to solve the

minimum weighted sum-rate problem in the asymptotic and

non-asymptotic models by choosing a proper linear ordering

in the CoordSatCapFus or CoordSatCap algorithm.

Let wV = (wi : i ∈ V ) ∈ R|V |
+ be a weight vector and

w
⊺

V rV =
∑

i∈V wiri be the weighted sum-rate of rV . The

minimum weighted sum-rate problem in the asymptotic model

and non-asymptotic models are respectively

min{w⊺

V rV : rV ∈ R
∗
ACO(V )},

min{w⊺

V rV : rV ∈ R
∗
NCO(V )}.

We say that Φ = (φ1, . . . , φ|V |) is a linear ordering w.r.t. wV

if wφ1 ≤ wφ2 ≤ . . . ≤ wφ|V |
. For a given weight vector wV ,

a linear ordering Φ w.r.t. wV can be chosen, for which we

have Theorem VI.1 below. The proof is in Appendix F.

Theorem VI.1. For a weight vector wV ∈ R|V |
+ , by fixing Φ

to be the linear ordering w.r.t. wV in the CoordSatCapFus

or CoordSatCap algorithm, the optimal rate rV returned by

the MDA algorithm is the minimizer of min{w⊺

V rV : rV ∈
R∗

ACO(V )}. In the finite linear source model and CCDE, the

optimal rate rV returned by CoordSatCapFus or CoordSatCap

algorithm with input α = RNCO(V ) and linear ordering w.r.t.

wV is the minimizer of min{w⊺

V rV : rV ∈ R∗
NCO(V )}.

Based on Theorem VI.1, for a finite linear source model,

the minimum weighted sum-rate problem can be solved by

the SIA algorithm if we choose a proper linear ordering in

the CoordSatCapFus or CoordSatCap algorithm. This result is

consistent with the ones in [15], [18]. Note, the SIA algorithm

adapts the sum-rate by starting with a LB that is tighter than

the ones in [15], [18].30

Example VI.2. It can be shown that the optimal rate vector

rV = (1, 1
2 ,

1
2 ,

9
2 , 0) ∈ R∗

ACO(V ) determined by the MDA

algorithm based on the linear ordering Φ = (4, 5, 2, 3, 1) in

Example V.2 is the minimizer of min{w⊺

V rV : rV ∈ R∗
ACO(V )}

where wV ∈ R|V |
+ could be any weight vector such that w4 ≤

w5 ≤ w2 ≤ w3 ≤ w1, e.g., wV = (2, 0.85, 1.1, 0.11, 0.13).
The optimal rate vector rV = (0, 1, 1, 5, 0) ∈ R∗

NCO(V ) based

on the linear ordering Φ = {4, 5, 2, 3, 1} in Examples V.13

and V.15 is the minimizer of min{w⊺

V rV : rV ∈ R∗
NCO(V )}

where wV ∈ R|V |
+ could be any weight vector such that

w4 ≤ w5 ≤ w2 ≤ w3 ≤ w1.

Note, for a weight vector wV ∈ R|V |
+ such that all dimen-

sions wi are equal, e.g., wV = 1 = (1, . . . , 1) ∈ R|V |, the

minimum weighted sum-rate problem reduces to the minimum

sum-rate problem. In addition, if the problem is just to

determine an optimal rate vector in R∗
ACO(V ) or R∗

NCO(V ),
the linear ordering Φ in the CoordSatCap and CoordSatCapFus

algorithms can be arbitrarily chosen.

VII. FUNDAMENTAL PARTITION: MINIMAL SEPARATORS

The fundamental partition P∗ is not only the optimizer

for the asymptotic minimum sum-rate problem, but also an

essential solution to many problems. In network strength or

optimal attack problems [35]–[37], [47], the fundamental parti-

tion is an optimal way for an attacker to disconnect a network,

i.e., decomposing the network into the fundamental partition

requires the least effort on breaking the connections/edges

between nodes. The authors in [46] proposed a novel clustering

criterion, which is called minimum average cost (MAC) clus-

tering, based on the submodularity of the similarity measures

that is generally used in clustering problems. The objective

function in MAC is defined as the clustering cost averaged over

the incremental number of clusters. Based on the MAC, the

authors in [48] proposed an information-theoretic clustering

(info-clustering) framework where the MMI is used as the

similarity measure and the purpose is to search a clustering

solution such that the intra-cluster MMI is maximized while

the inter-cluster MMI is minimized. In both MAC clustering

and info-clustering, the optimal clustering is the fundamental

30The authors in [15] suggested LB H(V )−mini∈V H({i}) as the initial
guess of the minimum sum-rate, which is shown to be looser than the one
proposed in Proposition IV. In [15, Algorithms 3], the rate adaptation is done
in the region {0, 1, . . . ,H(V )}.
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partition P∗. In CO, beyond being the optimizer of the mini-

mum sum-rate problem (7a), the fundamental partition P∗ has

practical interpretation or usefulness in other aspects. In this

section, we show that P∗ is the set of the minimal separators of

a submodular function which makes the estimation of the value

of function f̂#
RACO(V ) and the separable convex minimization

problem over R∗
ACO(V ) decomposable.

For a normalized submodular set function f : 2V 7→ R,

a nonempty proper subset X ( V is a separator of f if

f(X) + f(V \X) = f(V ) [26, Section 3.3].31 A submodular

set function f is called separable if there exists a separator of

f . For each separable submodular set function, there exists a

unique set of minimal separators as defined below.

Definition VII.1 (minimal separators [26, Theorem 3.38]).

For a separable submodular set function f : 2V 7→ R, a

partition P ∈ Π(V ) is the set of minimal separators if, for all

X ∈ P , X is a separator and any X ′ ( X such that X ′ 6= ∅
is not a separator of f .

Theorem VII.2. f̂#
RACO(V ) is a separable submodular function

and the fundamental partition P∗ is the set of minimal

separators of f̂#
RACO(V ).

The proof of Theorem VII.2 is in Appendix G.

A. Properties of Minimal/Finest Separators

For any X,Y ⊆ V such that X ∩ Y = ∅, let rX ⊕ rY =
rX⊔Y be the direct sum of rX and rY . For example, for

r{1,3} = (r1, r3) = (3, 0.7) and r{2,5,6} = (r2, r5, r6) =
(2.4, 2, 4), r{1,3} ⊕ r{2,5,6} = r{1,2,3,5,6} = (3, 2.4, 0.7, 2, 4).

Lemma VII.3 (properties of minimal separators [26, The-

orems 3.32 and 3.38, Lemma 3.37]). For the fundamental

partition P∗ as the set of minimal separators of f̂#
RACO(V ),

the followings hold.

(a) f̂#
RACO(V )(X) =

∑

C∈P∗ f̂
#
RACO(V )(X ∩C) for all X ⊆ V ;

(b) The dimension of B(f̂#
RACO(V ),≤) is |V | − |P∗| and

B(f̂#
RACO(V ),≤) =

{⊕C∈P∗rC : rC ∈ B(f̂#
RACO(V ),C ,≤), C ∈ P

∗},

where f̂#
RACO(V ),C is the Dilworth truncation of f#

RACO(V ),C ,

the reduction of f#
RACO(V ) on C;

(c) Let rV be any rate vector in B(f̂#
RACO(V ),≤). For any

C,C′ ∈ P∗ such that C 6= C′,

rV + ǫ(χi − χj) /∈ B(f̂#
RACO(V ),≤)

for all ǫ > 0, i ∈ C and j ∈ C′.

Based on property (a) in Lemma VII.3, by using the

fundamental partition P∗, we can break the task of evaluating

31In [26, Section 3.3], the author defined the connectivity of a submodular
system that is denoted by two tuple: the power set 2V and the rank function
f : 2V 7→ R that is submodular. (2V , f) is called connected if there does
not exist a nonempty subset X ( V such that f(X) + f(V \ X) = f(V ).
Then, X is a ‘separator’ if a submodular system is disconnected. The name
‘separator’ is also used in [49, Section 3]. In this paper, without introducing
the concept of the submodular system, we define the separator and separability
w.r.t. a submodular set function.

the value of f̂#
RACO(V ) at any subset X ⊆ V into subtasks:

get the values of f̂#
RACO(V ) at C ∩X for all C ∈ P∗ and sum

them up. Here, each value of f̂#
RACO(V )(C∩X) can be obtained

by applying the CoordSatCap or CoordSatCapFus algorithm.

By doing so, the complexity of evaluating f̂#
RACO(V )(X) is

reduced from O(|X | · SFM(|X |)) to O(η · SFM(η)) where

η = max{|C ∩ X | : C ∈ P∗}. Property (b) means that

a separable submodular function results in a separable base

polyhedron, which gives rise to property (c) [26, Lemma 3.41].

Property (c) is an important result in CO in that it makes the

separable convex minimization problem over the optimal rate

vector set R∗
ACO(V ) decomposable. In the following context,

we first show the examples of properties (a) and (b) and

then discuss the decomposability of the separable convex

minimization problem based on property (c).

Example VII.4. For the system in Example III.11, we know

that the minimum sum-rate RACO(V ) = 13
2 and the fundamen-

tal partition P∗ = {{1, 4, 5}, {2}, {3}} for the asymptotic

model by the MDA algorithm. Consider the value of the

Dilworth truncation function f̂#
RACO(V ) at X = {1, 2, 3, 5}.

Based on property (a) in Lemma VII.3, we have

f̂#
13/2({1, 2, 3, 5}) =

∑

C∈P∗

f̂#
13/2({1, 2, 3, 5} ∩ C)

= f̂#
13/2({1, 5}) + f̂#

13/2({2}) + f̂#
13/2({3})

= 4 +
1

2
+

1

2
= 5.

Here, the value of f̂#
13
2

({1, 2, 3, 5}) can be obtained in O(4 ·

SFM(4)) time, while the value of
∑

C∈P∗ f̂
#
13
2

({1, 2, 3, 5}∩C)

can be obtained in O(2 · SFM(2)) time. Consider the base

polyhedron B(f̂#
13/2,≤) for the the system in Example III.11.

According to property (b) in Lemma VII.3, the dimension of

B(f̂#
13/2,≤) is |V | − |P∗| = 2.

We can visualize property (b) in Lemma VII.3 via Figs. 9

and 10. In Fig. 9, when α = 23
4 and C = {1, 4, 5},

f̂#
α,C is separable with the minimal separator set being

P∗ = {{1}, {4, 5}} so that the dimension of B(f̂#
α,C ,≤)

is |C| − |P∗| = 1, i.e., B(f̂#
α,C ,≤) is a 1-dimension line

segment, and r{4,5} ⊕ r1 ∈ B(f̂#
23/4,C ,≤) for r1 = 3

4 and

all r{4,5} ∈ B(f̂#
23/4,{4,5},≤). In Fig. 10, when α = 13

2 and

C = {1, 4, 5}, f̂#
α,C is nonseparable so that the dimension of

B(f̂#
13/2,C ,≤) is |C|−1 = 2, i.e., B(f̂#

α,C ,≤) is a 2-dimension

polygon on the plane {rC ∈ R|C| : r(C) = f̂#
13/2(C) = 11

2 }.
32

32A nonseparable function f : 2V 7→ R can be considered as a separable
function with the minimal separator set being P∗ = {V } so that, according
to property (b) in Lemma VII.3, the dimension of B(f,≤) is |V | − 1. Also,
for a nonseparable function f , there does not exist P ∈ Π′(V ) such that
f(X) =

∑
C∈P f(X ∩ C), ∀X ⊆ V or B(f,≤) = {⊕C∈PrC : rC ∈

B(f,≤), C ∈ P}. The latter means that if we determine rC ∈ B(fC ,≤)
for all C ∈ P , the direct sum rV = ⊕C∈PrC does not necessarily belong
to B(f,≤).
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B. Separable Convex Function Minimization over R∗
ACO(V )

We call g : R|V | 7→ R a separable convex function if

g(rV ) =
∑

i∈V gi(ri) where gi : R 7→ R is convex for all

i ∈ V . For the minimization problem min{g(rV ) : rV ∈
R

∗
ACO(V )} where g is a separable convex function, the local

optimality w.r.t. the elementary transform χi − χj implies

global optimality.

Theorem VII.5 ( [26, Theorem 20.3]). For a separable

convex function g, r∗V is the minimizer of min{g(rV ) : rV ∈
R

∗
ACO(V )} if and only if, for all i, j ∈ V and ǫ > 0 such that

r
∗
V + ǫ(χi − χj) ∈ R∗

ACO(V ),

g(r∗V ) ≤ g(r∗V + ǫ(χi − χj)).

Corollary VII.6. For all C ∈ P∗, let r∗C be the minimizer of

the separable convex minimization problem min{g(rC) : rC ∈
B(f̂#

RACO(V ),C ,≤)}. r
∗
V = ⊕C∈P∗r

∗
C is the minimizer of

min{g(rV ) : rV ∈ R∗
ACO(V )}.

In Corollary VII.6, B(f̂#
RACO(V ),C ,≤) is the projection of

the optimal rate vector set R∗
ACO(V ) = B(f̂#

RACO(V ),≤) on

the subset C and rC is the projection of some optimal rate

vector rV ∈ R
∗
ACO(V ) on C. The proof of Corollary VII.6

is in Appendix G based on property (c) in Lemma VII.3 and

Theorem VII.5. Based on Corollary VII.6, the minimization

problem min{g(rV ) : rV ∈ R∗
ACO(V )} can be divided to |P∗|

minimization problems

min{g(rC) : rC ∈ B(f̂#
RACO(V ),C ,≤)}, (19)

each of which has a lower dimension than the original one.

On the other hand, there exist many algorithms in the lit-

erature that efficiently solve the minimization problem (19),

e.g., the algorithms in [50], [51]. We show an example of

Corollary VII.6 below, where g is a quadratic function.

Example VII.7. For the system in Example III.11, consider

the quadratic programming min{
∑

i∈V
r2i
wi

: rV ∈ R
∗
ACO(V )}

where wV ∈ R|V |
+ is a weight vector.33 The objective function

∑

i∈V
r2i
wi

is separable convex. For this system, we have

RACO(V ) = 13
2 and P∗ = {{1, 4, 5}, {2}, {3}}.

According to Corollary VII.6, we can determine the mini-

mizers of

min{
∑

i∈C

r2i
wi

: rC ∈ B(f̂#
RACO(V ),C ,≤)} (20)

for all C ∈ P∗ and combine the results by obtaining the direct

sum of them. In fact, we just need to solve the problem (20) for

C = {1, 4, 5} since both B(f̂#
RACO(V ),{2}) and B(f̂#

RACO(V ),{3})

are singletons that only contain r2 = 1
2 and r3 = 1

2 ,

respectively. For problem (20) when C = {1, 4, 5}, it can

be shown that r∗{1,4,5} = (32 , 2, 2) when w{1,4,5} = (1, 1, 1)

and r
∗
{1,4,5} = (1, 2, 52 ) when w{1,4,5} = (1, 3, 4). There-

fore, the minimizer of min{
∑

i∈V
r2i
wi

: rV ∈ R
∗
ACO(V )} is

r
∗
V = (32 ,

1
2 ,

1
2 , 2, 2) when wV = 1 and r

∗
V = (1, 1

2 ,
1
2 , 2,

5
2 )

when wV = (1, 2, 5, 3, 4).

33This quadratic programming problem is also called the resource allocation
problem under submodular constraints in [52], [53].

It is shown in [54] that the problem min{
∑

i∈V
r2i
wi

: rV ∈
R∗

ACO(V )} can be solved in O(|V |2 · SFM(|V |)) time, where

|V | = 5 for the system in Example III.11. But, if we compute

the minimizer of (20) for each subset C in the fundamental

partition P∗, the problem can be solved in O(η2 · SFM(η))
time, where η = max{|C| : C ∈ P∗} = 3. Therefore, the

separate computation of the minimizer of min{g(rC) : rC ∈
R∗

ACO(V )} for all C ∈ P∗ based on Corollary VII.6 reduces

the computation complexity.

In Example VII.7, the minimzer of the quadratic pro-

gramming problem min{
∑

i∈V
r2i
wi

: rV ∈ R∗
ACO(V )} is

called the lexicographical optimizer in [55] since it lexi-

cographically dominates any other rate vectors in the sub-

modular base polyhedron B(f̂#
RACO(V ),≤) = R∗

ACO(V ).34

It is also the optimizer of many other optimization prob-

lems in R
∗
ACO(V ) [51], [57], e.g., min{

∑

i∈V eri+wi : rV ∈
R∗

ACO(V )}, max{
∑

i∈V wi ln ri : rV ∈ R∗
ACO(V )} and

min{
∑

i∈V ri log
ri
wi

: rV ∈ R∗
ACO(V )}. The authors in [21]

proposed an integral rate incremental method for solving

the fairness problem min{
∑

i∈V ri log ri : rV ∈ R∗
NCO(V )},

where the objective function is equivalent to
∑

i∈V ri log
ri
wi

when w = 1. However, this method is not able to provide

a solution to min{
∑

i∈V ri log ri : rV ∈ R∗
ACO(V )} for the

asymptotic model, since the step size of each increment is

uncertain when the rates are real numbers.

VIII. CONCLUSION

We proposed the MDA and SIA algorithms for searching

an optimal rate vector that attains omniscience with the mini-

mum sum-rate in the asymptotic and non-asymptotic models,

respectively. We also proposed a fusion method to solve

the Dilworth truncation problem, a subroutine in the MDA

and SIA algorithms, and ran experiment to show that this

fusion method contributes to a reduction in computational

complexity. We showed that the minimum weighted sum-rate

problem in both asymptotic and non-asymptotic models can

be solved by choosing a proper linear ordering in the MDA

and SIA algorithms, respectively. We proved the existence of a

fractional optimal rate vector in the finite linear source model

which can be implemented by (|P∗| − 1)-packet-splitting in

CCDE. In addition, we revealed the decomposition property

of the fundamental partition P∗ in the asymptotic model,

where we showed that the tasks of evaluating the Dilworth

truncation function and minimizing a separable parametric

convex function over the optimal rate vector set can be

decomposed into subtasks so that the overall complexity is

reduced.

To solve a CO problem in practice, there still remains one

problem: what to send in each transmission. It is shown in [18]

that, for an optimal transmission rate vector, the coding scheme

for attaining omniscience in the finite linear source model

can be designed based on a simultaneous matrix completion

algorithm [58], which completes in O(|V |4 ·γ ·log(|V |·H(V )))
time with γ denoting the complexity of the matrix rank

34We refer the reader to [55], [56] for the detailed definition and explanation
of the lexicographical domination and its properties in the submodular base
polyhedron.
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Fig. 13. The value of f̂#
α (V ) as a function of α for the system in

Example II.1. α1 = RACO(V ) = 7
2

and P1 = P∗ = {{1}, {2}, {3}}
according to Corollary A.3.

function. But, it is still worth discussing if there exists other

less complex algorithms for the coding design.

APPENDIX A

PRINCIPAL SEQUENCE OF PARTITIONS (PSP)

We define the pairwise relationship between two partitions

in Π(V ) as follows.

Definition A.1 (order �). For P ,P ′ ∈ Π(V ), we denote

• P � P ′ if, for all X ∈ P , ∃X ′ ∈ P ′ such that X ⊆ X ′;

• P = P ′ if P � P ′ and P � P ′;

• P ≺ P ′ if P � P ′ and P 6= P ′.

In other words, P � P ′ if P is finer than P ′ and

P ≺ P ′ if P is strictly finer than P ′. For example, for

P = {{1, 2}, {3}, {4}} and P ′ = {{1, 2, 3}, {4}}, we have

P � P ′. In fact, P ≺ P ′.

Theorem A.2 (PSP [46, Sections 2.2 and 3]35, [33, Definition

3.8]). f̂#
α (V ) = minP∈Π(V ) f

#
α [P ] is a piecewise linear

nondecreasing curve in α with p ≤ |V | − 1 critical/turning

points

H(V ) = α0 > α1 > α2 > . . . > αp ≥ 0

that have the following properties.

(a) Denote Pj the finest/minimal minimizers of the Dilworth

truncation problem minP∈Π(V ) f
#
αj
[P ]. All Pjs form a

partition chain/sequence CP:

{V } = P0 ≻ P1 ≻ . . . ≻ Pp = {{i} : i ∈ V }.

If αj > α > αj+1 for some j ∈ {0, . . . , p − 1}, the

minimizer of minP∈Π(V ) f
#
α [P ] is uniquely Pj; If α < αp,

the minimizer is uniquely Pp = {{i} : i ∈ V };
(b) The gradient of f̂#

α (V ) is decreasing in α: The gradient

is |Pp| = |V | initially; It changes to |Pj−1| after each

critical value αj and finally decreases to 1 after α1.

Corollary A.3. α1 = RACO(V ) and P1 = P∗, i.e., the

parameters in PSP that correspond to the first critical point α1

35The authors in [46] discuss the problem that is called β-minimum average
clustering (β-MAC). It can be shown that the minimum sum-rate problem
considered in this paper is a β-MAC problem when β = 1.
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Fig. 14. The value of f̂#
α (V ) as a function of α for the system in Exam-

ple III.11. α1 = RACO(V ) = 13
2

and P1 = P∗ = {{1, 4, 5}, {2}, {3}}
according to Corollary A.3.

constitute the solutions to the asymptotic minimum sum-rate

problem.

Proof: According to Theorem III.3, the base polyhedron

B(f#
α ,≤) is nonempty if and only if α = f̂#

α (V ). In other

words, B(f#
α ,≤) 6= ∅ if and only if the value of α falls in the

segment of the piecewise linear f̂#
α (V ) vs. α curve where the

f̂#
α (V ) and f#

α (V ) = α overlap, which, based on property (b)

in Theorem A.2, is when α ≥ α1. Then, the minimum sum-

rate RACO(V ) is the smallest value of α such that B(f#
α ,≤) 6=

∅, which is α1. All maximizers of (7a) and {V } constitute the

set of all minimizers of minP∈Π(V ) f
#
α1
[P ]. So, the minimal

minimizer P1 is the minimal maximizer of (7a), i.e., P1 equals

to the fundamental partition P∗.

The proof of Corollary A.3 is exemplified below.

Example A.4. We show the plot f̂#
α (V ) in α for the systems

in Examples II.1 and III.11 in Figs. 13 and 14, respectively.

It can be seen from both figures that f̂#
α (V ) is an increasing

piecewise linear function in α. We discuss Fig. 14 based on

Theorem A.2 and Corollary A.3 as follows.

In addition to α0 and P0, there are three critical points αj

with Pj , the minimal minimizers of minP∈Π(V ) f
#
αj
[P ], being

α0 = 10, P0 = {{1, 2, 3, 4, 5}};

α1 =
13

2
, P1 = {{1, 4, 5}, {2}, {3}};

α2 = 6, P2 = {{4, 5}, {1}, {2}, {3}};

α3 = 4, P3 = {{1}, {2}, {3}, {4}, {5}}.

We have the partition sequence CP: P0 ≻ P1 ≻ P2 ≻ P3. The

gradient is: 5 when α ∈ [0, α3]; 4 when α ∈ [α3, α2]; 3 when

α ∈ [α2, α1]; 1 when α ∈ [α1, α0]. In addition, one can show

that the minimizer of minP∈Π(V ) f
#
α [P ] is uniquely P3 when

α ∈ [0, α3), P2 when α ∈ (α3, α2), P1 when α ∈ (α2, α1)
and P0 when α ∈ (α1, α0]. Here, α1 and P1 coincide with

the minimum sum-rate RACO(V ) = 13
2 and the fundamental

partition P∗ = {{4, 5}, {1}, {2}, {3}} in Example III.11,

respectively.

In Fig. 14, we also plot the line f#
α (V ) = α. It can be seen

that f#
α (V ) overlaps with f̂#

α (V ), i.e., α = f̂#
α (V ), when

α ∈ [α1, α0]. So, B(f#
α ,≤) 6= ∅ when α ≥ α1. According to
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Theorem III.3, α1 = 13
2 , the minimal value of α in the region

[α1, α0], is the minimum sum-rate RACO(V ).
Consider the region when α < α1 = 13

2 in Fig. 14. We

have f#
α (V ) = α > f̂#

α (V ). As discussed in Section III-C, the

polyhedron P (f#
α ,≤) does not intersect with the hyperplane

{rV ∈ R|V | : r(V ) = α}, i.e., B(f#
α ,≤) = ∅, in this region.

It means that the minimum sum-rate α is too low for attaining

the omniscience in V . On the contrary, when α ≥ α1 = 13
2 ,

P (f#
α ,≤) intersects with the hyperplane {rV ∈ R|V | : r(V ) =

α}, i.e., B(f#
α ,≤) = ∅. It can be seen that the PSP provides

another interpretation of Theorem III.3.

A. Proof of Theorem V.1

We have the following properties for ϕ and the partitions

Pjs in the PSP.

Lemma A.5 (property of ϕ(P) [33, Theorem 3.14], [46,

Section 3]). The followings hold for ϕ(P) and Pj ∈ CP in

the PSP for j ∈ {1, . . . , p}.

(a) α1 = ϕ(P1);
(b) For any j such that 1 < j ≤ p, let α = ϕ(Pj). Then,

αj < α < α1.

Based on Lemma A.5 and Theorem A.2, consider two

situations for a partition Pj ∈ CP where j ∈ {1, . . . , p}:

• If j = 1, then α1 = ϕ(Pj);
• If j > 1, then α = ϕ(Pj) satisfies αj < α < α1. Let Pj′

be the minimal minimizer of minP∈Π(V ) f
#
α [P ]. Then,

P1 ≻ Pj′ ≻ Pj .

They suggest a recursive method for determining P1 and α1.

Consider the iteration

α(n+1) = ϕ(P(n)),

where P(n) is the minimal minimizer of minP∈Π(V ) f
#
α(n) [P ].

Let the iteration start with α(0) ≤ α1 and terminate when

α(n+1) = α(n). We necessarily have {α(n)} and {P(n)} con-

verge to α1 and P1, respectively. Let the recursion terminate

at N th iteration, where we have α(N+1) = α(N). Here, N ≤
|V |− 1 necessarily since, according to Theorem A.2, we have

at most |V | − 1 critical values. According to Lemma A.5(b),

α(n+1) > α(n) and P(n+1) ≻ P(n) for all n ∈ {0, . . . , N}.
Recall that α1 = RACO(V ) and P1 = P∗ (Corollary A.3).

The MDA algorithm exactly implements the recursion above

with α initiated as the LB on RACO(V ) in Proposition IV.1.

Therefore, Theorem V.1 holds.

The authors in [46, Section 3] [33, Algorithm II] proposed

a decomposition algorithm (DA) for determining all partitions

Pjs and the corresponding critical values αjs in the PSP. The

MDA algorithm can be considered as an adapted version of

the DA algorithm for determining just P1 and α1. Hence the

name MDA.

APPENDIX B

TIGHT SETS AND PROOF OF OPTIMALITY OF

COORDSATCAP ALGORITHM

According to Lemma III.2, f#
α : 2V 7→ R is an intersecting

submodular set function for all α ∈ R+. In addition, f#
α

is normalized, i.e., f#
α (∅) = 0, and P (f#

α ,≤) = P (f̂#
α ,≤)

[26, Theorems 2.5(i) and 2.6(i)] where f̂#
α is submodular [31,

Theorem 12.2.4], [46, Theorem 7]. Consider the maximum

sum-rate problem

max{r(V ) : rV ∈ P (f#
α ,≤)}

= max{r(V ) : rV ∈ P (f̂#
α ,≤)}. (21)

The maximizers of max{r(V ) : rV ∈ P (f̂#
α ,≤)} form the

base polyhedron B(f̂#
α ,≤) [26, Theorem 2.3]. Then, problem

(21) is solved if a rate vector rV ∈ B(f̂#
α ,≤) is determined.

On the other hand, there is a relationship between (21) and

the Dilworth truncation problem [37, Theorem 3.1]36:

max{r(V ) : rV ∈ P (f#
α ,≤)} = min

P∈Π(V )
f#
α [P ].

Then, for a rate vector rV ∈ B(f̂#
α ,≤), its sum-rate r(V ) also

determines the value of f̂#
α (V ) = minP∈Π(V ) f

#
α [P ].

Consider the CoordSatCap algorithm, which is originally

proposed as Greedy Algorithm II in [26, Section 3.2]. Since

the algorithm starts with a rate vector rV ∈ P (f#
α ,≤), it

can be shown by induction that, we have rV ∈ P (f#
α ,≤)

and rV + ξ̂φi
χφi
∈ P (f#

α ,≤) for all i ∈ {1, . . . , |V |} (also

refer to [26, proof of Theorem 3.19]). Since CoordSatCap

algorithm outputs a point rV ∈ B(f̂#
α ,≤) [26, Theorem 3.19],

we finally have a rate vector rV ∈ P (f#
α ,≤) with saturation

reached in each dimension, i.e., for all i ∈ {1, . . . , |V |}
and ǫ > 0, rV + ǫχφi

/∈ P (f#
α ,≤) [26, Theorem 2.3]. It

means rV ∈ B(f̂#
α ,≤) with the sum-rate r(V ) being the

maximum of max{r(V ) : rV ∈ P (f#
α ,≤)} or the minimum of

minP∈Π(V ) f
#
α [P ]. The minimizer of minP∈Π(V ) f

#
α [P ] can

be determined by the minimizers X̂φi
for all i as follows.

Let X̂φi
be the minimizer of the saturation capacity problem

min{f#
α (X) − r(X) : φi ∈ X ⊆ V } for i ∈ {1, . . . , |V |} in

the CoordSatCap algorithm. For i, let rV be the rate vector

after executing rV ← rV + ξ̂φi
χφi

. Then, X̂φi
is rV -tight,

i.e., r(X̂φi
) = f#

α (X̂φi
) [26, proof of Theorem 3.19]. At the

end of the CoordSatCap algorithm, we have rV ∈ B(f̂#
α ,≤)

and it can be shown by induction that X̂φi
is rV -tight for

all i ∈ {1, . . . , |V |}. Due to the intersecting submodularity of

f#
α , X̂φi

s satisfy property: If X̂φi
∩ X̂φj

6= ∅ for i 6= j, then

X̂φi
∩ X̂φj

and X̂φi
∪ X̂φj

are also rV -tight [37, Section 3],

[46, Section 4.2], [15, Lemma 6]. Then, consider the following

process:

• Let P∗ ← {X̂φi
: i ∈ V };

• Repeatedly merge any two elements X̂φi
, X̂φj

∈ P∗ such

that X̂φi
∩ X̂φj

6= ∅, i.e., do P∗ ← (P∗ \ {X̂φi
, X̂φj

})⊔

{X̂φi
∪ X̂φj

}, until there are no such elements left.

Since φi ∈ X̂φi
for all i ∈ {1, . . . , |V |}, we finally have P∗

being a partition of V , i.e. P∗ ∈ Π(V ) and each element in

P∗ is rV -tight, i.e., r(C) = f#
α (C), ∀C ∈ P∗. Then, r(V ) =

36In [37], Theorem 3.1 is based on the polyhedron P ′(g′α,≤) = {rV ∈
R|V | : r(X) ≤ g′α(X), ∀X ⊆ V,X 6= ∅} with the submodular function
g′α(X) = α − H(V ) + H(X), ∀X ⊆ V , a similar approach as in [15,
Section III-E] that is explained in Remark III.6. Note, g′α is not normalized.

Therefore, it is easy to verify that P (f#
α ,≤) = P ′(g′α,≤), since r(∅) = 0

always, and the maximum and maximizers of max{r(V ) : rV ∈ P (f#
α ,≤)}

and max{r(V ) : rV ∈ P ′(g′α,≤)} coincide.
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∑

C∈P∗ r(C) = r[P∗] = f#
α [P∗]. Recall that rV ∈ B(f̂#

α ,≤)
at the end of the CoordSatCap algorithm, which means

r[P∗] = max{r(V ) : rV ∈ P (f#
α ,≤)} = min

P∈Π(V )
f#
α [P ].

Then, P∗ is a minimizer of minP∈Π(V ) f
#
α [P ] and P∗ is

the minimal minimizer if X̂φi
is the minimal minimizer of

min{f#
α (X)− r(X) : φi ∈ X ⊆ V } for all i ∈ {1, . . . , |V |}.

The process above is equivalent to steps 6 and 7 in the

CoordSatCap algorithm. There is another explanation of the

optimality of the CoordSatCap algorithm in [46, Section 4.2].

A. Edmond Greedy Algorithm

It is shown in [26, Theorem 3.18] that, for a normalized

submodular set function f , the CoordSatCap algorithm reduces

to the Edmond greedy algorithm [25]: for i = 1 to |V |, do

rφi
= f(Vi)− f(Vi−1),

where Vi = {φ1, . . . , φi} and V0 = ∅. The resulting rV is

a point in B(f,≤) [26, Corollary 3.17]. The Edmond greedy

algorithm is modified as: For i = 1 to |V |, do

rφi
← rφi

+min{f(X)− r(X) : φi ∈ X ⊆ Vi}

for solving the non-asymptotic minimum sum-rate problem in

the finite linear source model and CCDE in [15], [18], which

is exactly the CoordSatCap algorithm based on Lemma V.6.

B. Proof of Lemma V.3

Since the entropy function H is a polymatroid rank function

[24], we have 0 ∈ P (H,≤), i.e., 0 ≤ H(X), ∀X ⊆ V .

Consider the rate vector rV = (α −H(V ))χV . For 0 ≤ α ≤
H(V ), we have α −H(V ) ≤ 0. Then, for X = ∅, we have

r(∅) = 0 = f#
α (∅); for all X ⊆ V such that X 6= ∅, we have

r(X) = (α−H(V ))|X |

≤ α−H(V )

≤ α−H(V ) +H(X) = f#
α (X)

So, rV = (α−H(V ))χV ∈ P (f#
α ,≤).

C. Proof of Lemma V.6

Recall that the entropy function H is monotonic [24], i.e.,

H(X) ≤ H(Y ), ∀X,Y ⊆ V : X ⊆ Y . Then, f#
α (X) ≤

f#
α (Y ), ∀X,Y ⊆ V : ∅ 6= X ⊆ Y . If rV ∈ P (f#

α ,≤) such

that ri ≤ 0, ∀i ∈ V initially, we have

f#
α (X)− r(X)− (f#

α (X ∩ Vi)− r(X ∩ Vi)) =

f#
α (X)− f#

α (X ∩ Vi)− r(X \ (X ∩ Vi)) ≥ 0

holds for all X ⊆ V such that φi ∈ X . Therefore, equality

(15) holds for all i ∈ {1, . . . , |V |}. Let X̂ be a minimizer of

min{f#
α (X)− r(X) : φi ∈ X ⊆ Vi}. Due to the intersecting

submodularity of f#
α , whenever there is a minimizer Ŷ of

min{f#
α (X) − r(X) : φi ∈ X ⊆ V } such that Ŷ * Vi, we

have Ŷ ∩ X̂ ⊆ Vi and φi ∈ Ŷ ∩ X̂ 6= ∅. So, Ŷ ∩ X̂ is

also the minimizer of min{f#
α (X)− r(X) : φi ∈ X ⊆ V }.37

Therefore, if X̂φi
is the minimal minimizer of min{f#

α (X)−
r(X) : φi ∈ X ⊆ Vi}, it is also the minimal minimizer of

min{f#
α (X)− r(X) : φi ∈ X ⊆ V }.

D. Proof of Lemma V.7

For all i ∈ {1, . . . , |V |}, we have r(C) = f#
α (C), ∀C ∈

P∗ : |C| > 1 in the CoordSatCap algorithm (due to the previ-

ous updates of rV and rV -tightness as stated in Appendix B)

and, since rV ∈ P (f#
α ,≤), r(C′) + f#

α (C \ C′) ≥ r(C′) +
r(C\C′) = f#

α (C), i.e., r(C′) ≥ f#
α (C)−f#

α (C\C′), ∀C′ (
C : C′ 6= ∅, |C| > 1.

For any X ⊆ V , let Y = {C ∈ P∗ : C ∩X 6= ∅}. We have

f#
α (X)− r(X)− f#

α (Ỹ) + r(Ỹ)

= f#
α (X)− f#

α (Ỹ) + r(Ỹ \X)

= f#
α (X)− f#

α (Ỹ) +
∑

C∈Y

r(C \ (C ∩X))

≥ f#
α (X)− f#

α (Ỹ) +
∑

C∈Y

(

f#
α (C)− f#

α (C ∩X)
)

≥ 0,

where the last inequality is due to the intersecting submodu-

larity of f#
α . The minimality of Ũ∗

i over all X ⊆ V such that

φi ∈ X and X̃ = Ũ∗
i can be proved by the induction below.

Consider the set X = {C ∈ P∗ : C ∩ X̂φi
6= ∅}. For all

C ∈ X : |C| = 1, we have C ⊆ X̂φi
and r(C ∪ X̂φi

) + ξ̂φi
=

r(X̂φi
) + ξ̂φi

= f#
α (X̂φi

); For all C ∈ X : |C| > 1, we

have r(C) = f#
α (C) and r(X̂φi

) + ξ̂φi
= f#

α (X̂φi
) so that

r(C ∪ X̂φi
) + ξ̂φi

= f#
α (C ∪ X̂φi

) (This is also due to the

rV -tightness as stated in Appendix B). By induction, we have

r(X̃ )+ ξ̂φi
= f#

α (X̃ ) and X̃ = Ũ∗
φi

, where Ũ∗
φi

is the minimal

minimizer of min{f#
α (Ũ)− r(Ũ ) : U ⊆ P∗, φi ∈ Ũ}.

E. Fundamental Partition P∗ noncrossing X̂φi

For α ∈ [0, RACO(V )],38 let X̂φi
be the minimal minimizer

of min{f#
α (X)− r(X) : φi ∈ X ⊆ V } that is non-singleton.

According to Theorem A.2(a), the minimal minimizer of

minP∈Π(V ) f
#
α [P ] must be a Pj for some j ∈ {1, . . . , p} in

the PSP and, according to Appendix B, Pj must be a multi-

way cut that does not cross X̂φi
. We also have α ≥ f#

α [Pj ]
which is equivalent to α ≤ ϕ(Pj). For a P that is crossing

X̂φi
, we have f#

α [Pj ] < f#
α [P ], which is equivalent to

ϕ(P) < (1− θ)α + θϕ(Pj) ≤ ϕ(Pj),

where θ =
|Pj|−1
|P|−1 . It means that for any partition P that

is crossing X̂φi
there always exist a partition Pj for some

j ∈ {1, . . . , p} in the PSP that is not crossing X̂φi
such that

ϕ(P) < ϕ(Pj). Since Pj � P1 = P∗ for all j ∈ {1, . . . , p},
the fundamental partition does not cross X̂φi

, necessarily.

37Let rV be any rate vector in ∈ P (f#
α ,≤). The following property

can be shown by the intersecting submodularity of f#
α [37, Section 3], [46,

Section 4.2], [15, Lemma 6]: If X̂ and Ŷ are two distinctive minimizers of

min{f#
α (X) − r(X) : φi ∈ X ⊆ V }, then X̂ ∩ Ŷ and X̂ ∪ Ŷ are also

the minimizers of min{f#
α (X)− r(X) : φi ∈ X ⊆ V }. Note, this property

is the same as the tight set argument in Appendix B for the proof of the
optimality of the CoordSatCap algorithm.

38In the MDA algorithm, we always have α ∈ [0, RACO(V )].
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APPENDIX C

PROOFS OF THEOREM V.11 AND COROLLARY V.14

According to Theorem III.8, f̂#
α is a polymatroid rank

function for all α ≥ RACO(V ). In this case, we have B(f̂#
α ,≤

) ⊆ R|V |
+ so that 0 ≤ r

′
V , ∀r

′
V ∈ EX(f̂#

α ) [26, Lemma 3.23].

Based on Lemma V.3, for all α ≤ H(V ), if we start with a rate

vector rV ≤ 0 ≤ r
′
V , ∀r

′
V ∈ EX(f̂#

α ), we necessarily have

rV ∈ EX(f̂#
α ) at the output of the CoordSatCap algorithm.

This proves Theorem V.11. A similar proof can be found in

[46, Section 4.2].

As explained in Appendix B, for a given value of α ≥ 0,

the CoordSatCap algorithm outputs rV ∈ B(f̂#
α ,≤), where

the sum-rate r(V ) = f̂#
α (V ) = minP∈Π(V ) f

#
α [P ]. According

Theorem III.3, we have r(V ) = α being the necessary

and sufficient condition for a sum-rate α to be achievable.

Also, if α is achievable, we have the output rate vector

rV ∈ B(f#
α ,≤) = B(f̂#

α ,≤) = {rV ∈ RCO(V ) : r(V ) = α}.
Since the CoordSatCap and CoordSatCapFus algorithms return

the same results, corollary also holds for the CoordSatCapFus

algorithm. This proves Corollary V.14.

APPENDIX D

SUBMODULAR FUNCTION MINIMIZATION ALGORITHMS

The SFM problem under consideration is min{f(X) : X ⊆
V } where f : 2V 7→ R is a submodular set function. The

minimizers of this problem form a set lattice [26], i.e, the

set of minimizers is closed w.r.t. the operations ∩ and ∪:

For a lattice L, we have X ∩ Y ∈ L and X ∪ Y ∈ L
for all X,Y ∈ L. The minimal/smallest and maximal/largest

elements of L are ∩X∈LX and ∪X∈LX , respectively. For

example, L1 = {{1}, {1, 2}, {1, 3}, {1, 2, 3}} is a lattice,

while L2 = {{1, 2}, {1, 3}, {1, 2, 3}} is not. {1} and {1, 2, 3}
are the minimal/smallest and maximal/largest elements of L1,

respectively.

There exist polynomial time algorithms for solving the SFM

problem [26]. Let δ be the upper bound on the complexity

of evaluating the value of f(X) for X ⊆ V . We briefly

review the SFM algorithms in the existing literature as follows.

The authors in [40] proposed the idea of solving the SFM

problem by utilizing the ellipsoid method proposed in [38]

for parametric optimization, the corresponding algorithm of

which is presented in [39]. Although this algorithm completes

in polynomial time, it is not very efficient in practice as pointed

out in [40], [41]. The authors in [42] proposed a polynomial

time algorithm for solving the SFM problems base on a com-

binatorial approach in [59]. The complexity of which is upper

bounded by O(|V |8 · δ). In [60], the Iwata-Fleisher-Fujishige

(IFF) algorithm improves the complexity to O(|V |7·log |V |·δ).
The most recent polynomial time SFM algorithm is the one

in [44], which completes in O(|V |5 · δ + |V |6) time. On the

other hand, the authors in [43] proposed an SFM algorithm

based on the approach in [61] for determining the minimum-

norm point in the convex hull. This algorithm is called the

minimum-norm point algorithm in the SFM toolbox [62]. The

experimental results in [43] show that this algorithm is strongly

polynomial and runs faster than those algorithms in [42],

[44], [60]. However, the complexity of the minimum-norm

algorithm in terms of δ is still not determined, which is also

stated as an open problem in [43]. While it is widely known

that SFM problems can be solved in polynomial time, the exact

complexity depends on which SFM algorithm is implemented.

Therefore, in this paper, we just denote the complexity of

solving an SFM problem by SFM(|V |), where |V | is the

cardinality of V .

There is another concern on the SFM algorithm: Can

the minimal minimizer of an SFM problem be determined

efficiently? It should be noted that while the minimum of an

SFM problem is unique, the minimizers form a lattice which is

not necessarily a singleton. Therefore, an arbitrary minimizer

returned by an SFM is not necessarily the minimal in the

lattice. However, it is shown in [63] that this problem is not

difficult to solve since any SFM algorithm can be modified

so that the maximal/minimal minimizer can be determined.

For example, the minimal minimizer can be searched by |V |
runs of the IFF algorithm in [60]. In addition, it is shown

in [43] that both maximal and minimal minimizers of an

SFM problem can be directly determined by the minimum-

norm point in the base polyhedron, which means that the

minimal minimizer can be returned at the same time as an SFM

algorithm completes. Therefore, in this paper, the complexity

of finding the minimum and minimal minimizer of the SFM

problem min{f(X) : X ⊆ V } is O(SFM(|V |)).

APPENDIX E

DIVIDE-AND-CONQUER (DC) ALGORITHM [45]

The authors in [45] proposed a divide-and-conquer (DC)

algorithm (as shown in Algorithm 5) for solving the asymp-

totic minimum sum-rate problem based on the results as

follows. For a subset X ⊆ V , let RACO(X) and P∗
X be the

minimum sum-rate and the fundamental partition, respectively,

for the asymptotic minimum sum-rate problem for attaining

the omniscience in X . Then, for all optimal rate vectors rX ∈
R∗

ACO(X), we have r(C) = RACO(X)−H(X)−H(C), ∀C ∈
P∗
X [45, Lemma 1].39 Then, for all C ∈ P∗

X such that |C| = 1,

the optimal rate of the only user in C is determined; for

all C ∈ P∗
X such that |C| > 1, the optimal rate can be

determined by recursively solving the omniscience problem in

C. Therefore, by knowing the fundamental partition P∗ for the

omniscience in V , an optimal rate vector in R∗
ACO(V ) can be

solved by recursively breaking the non-singleton subset in the

P∗ until the rates of all individual users are determined. This

idea is implemented by the DC algorithm, where RACO(X)
and P∗

X are determined by the DA algorithm in [46, Section

3]. In step 3 in the DC algorithm, ∆r is the excessive rate,

the additional rate that should be transmitted by X in addition

to RACO(V ). ∆r can be transmitted by any users in X after

the omniscience is attained in X [45, Lemma 3].

Example E.1. By applying the DC algorithm to the sys-

tem in Example III.11, we first determine that the mini-

mum sum-rate RACO(V ) = 13
2 and fundamental partition

P∗ = {{1, 4, 5}, {2}, {3}}. We also know that we must

39Here, RACO(X) − H(X) + H(C) corresponds to f#
RACO(V )

(C) =

RACO(V )−H(V ) +H(C) in that X is the ground set for the omniscience
problem in X .
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Algorithm 5: divide-and-conquer (DC) algorithm [45]

input : a subset X ⊆ V , and r(X) if X 6= V
output: a rate vector rX ∈ R

∗
ACO(X)

1 (RACO(X),P∗
X)← DA(∅, X);

2 forall C ∈ P∗
X do r(C)← RACO(X)−H(X) +H(C);

3 if X 6= V then ∆r ← r(X)−RACO(X), choose any
C ∈ P∗

X and let r(C)← r(C) + ∆r;
4 forall C ∈ P∗

X : |C| > 1 do rC ← DC(C, r(C));

have r({1, 4, 5}) = 11
2 , r({2}) = 1

2 and r({3}) = 1
2 for

attaining the omniscience in V with the minimum sum-rate

RACO(V ) = 13
2 . By recursively calling the DC algorithm,

the individual rates in {1, 4, 5} are determined as r1 = 1,

r4 = 5
2 and r5 = 0 so that we have the optimal rate vector

rV = (1, 12 ,
1
2 ,

5
2 , 0) ∈ R∗

ACO(V ) at the output.

Since the DA algorithm completes in O(|V |2 · SFM(|V |))
time [46, Theorem 5], the complexity of the DC algorithm is

O(|V |3 · SFM(|V |)). However, the recursive splitting of the

non-singleton subset in the fundamental partition P∗ in the

DC algorithm is not necessary since an optimal rate vector

rV ∈ R∗
ACO(V ) is obtained when P∗ is determined by the

DA algorithm.40

APPENDIX F

PROOF OF THEOREM VI.1

According to Theorem V.11, the MDA algorithm returns an

optimal rate vector rV ∈ R∗
ACO(V ) that is an extreme point

in B(f̂#
RACO(V ),≤), i.e., rV ∈ EX(f̂#

RACO(V )). Based on [26,

Corollary 3.17], for linear ordering w.r.t. wV , the output rV
is also the minimizer of min{w⊺

V rV : rV ∈ R∗
ACO(V )}, where

R∗
ACO(V ) = B(f̂#

RACO(V ),≤). It is shown in the proof of Corol-

lary V.12 that, for a finite linear source model, when the input

α = RNCO(V ), the CoordSatCapFus algorithm outputs a rate

vector rV ∈ EX(f̂#
RNCO(V )), which, according to [26, Corollary

3.17] is the minimizer of min{w⊺

V rV : rV ∈ R∗
NCO(V )}

where R∗
NCO(V ) = B(f̂#

RNCO(V ),≤). Since the outputs of the

CoordSatCapFus and CoordSatCap algorithms are the same,

it also applies to the CoordSatCap algorithm.

APPENDIX G

PROOFS OF THEOREM VII.2 AND COROLLARY VII.6

The proof of Theorem VII.2 relies on the method for

determining the minimal separators of a submodular function

that is proposed in [26, Lemma 3.41] [49, Theorems 3.1 and

3.2].41

40In fact, the DC algorithm utilizes RACO(V ) and P∗ determined by the
DA algorithm in [46, Section 3] while discards the optimal rate vector rV ∈
B(f̂#

RACO(V )
,≤). This is not surprising since the study in [46] aims to solve

a clustering problem, where the optimal partition P∗ is of the most interest.

Therefore, although a rate vector rV ∈ B(f̂#
RACO(V )

,≤) is returned as an

auxiliary result, it is not explicitly stated in [46] that B(f̂#
RACO(V )

,≤) =

R∗
ACO(V ) so that this rate vector is the solution to the asymptotic minimum

sum-rate problem.
41This method was first proposed in [49, Theorems 3.1 and 3.2] for

polymatroid rank functions and then generalized to [26, Lemma 3.41] for
submodular functions. Here, the minimal separators also correspond to the
principal structure of a submodular system in [64].

Lemma G.1 ( [26, Lemma 3.41]). For any rate vector

rV ∈ B(f̂#
RACO(V ),≤), let X̂i be the minimal minimizers of

min{f̂#
RACO(V ) − r(X) : i ∈ X ⊆ V }. Initiate the minimal

minimizer set P∗ = {X̂i : i ∈ V } and repeatedly merge any

two distinctive elements X̂i, X̂j ∈ P∗ such that X̂i ∩ X̂j 6= ∅,
i.e., do P∗ ← (P∗ \ {X̂i, X̂j}) ⊔ {X̂i ∪ X̂j}, until there are

no such elements left. The resulting P∗ is the set of minimal

separators of f̂#
RACO(V ).

Lemma G.2. Let Φ be any linear ordering of V . For all

α ∈ R+, i ∈ {1, . . . , |V |} and rV ∈ P (f#
α ,≤), if ξ̂φi

and X̂φi

are the minimum and minimal minimizer of min{f#
α (X) −

r(X) : φi ∈ X ⊆ V }, respectively, then ξ̂φi
and X̂φi

are

also the minimum and minimal minimizer of min{f̂#
α (X) −

r(X) : φi ∈ X ⊆ V }, respectively.

Proof: Let r
′
V = rV + ξ̂φi

χφi
. Then, we have r

′
V ∈

P (f#
α ,≤) and X̂φi

is r
′
V -tight, i.e., f#

α (X̂φi
) = r′(X̂φi

)

[26, proof of Theorem 3.19]. Since P (f#
α ,≤) = P (f̂#

α ,≤),
r
′
V ∈ P (f̂#

α ,≤) and we have r′(X̂φi
) ≤ f̂#

α (X̂φi
) [26,

Theorems 2.5(i) and 2.6(i)]. On the other hand, f̂#
α (X) ≤

f#
α (X) for all X ⊆ V by the definition of the Dilworth

truncation. Then, f̂#
α (X̂φi

) ≤ f#
α (X̂φi

) = r′(X̂φi
). Therefore,

r′(X̂φi
) = f̂#

α (X̂φi
), which means ξ̂φi

is also the minimum

of min{f̂#
α (X)− r(X) : φi ∈ X ⊆ V }.

We prove that X̂φi
is the minimal minimizer of

min{f̂#
α (X)−r(X) : φi ∈ X ⊆ V } by contradiction. Assume

that X̂φi
is not the minimal minimizer, i.e., there exists

X ( X̂φi
such that φi ∈ X and f̂#

α (X) − r(X) = ξ̂φi
.

Then, r′(X) = f̂#
α (X) < f#

α (X), where the last inequality

is strict due to the fact that X is not the minimizer of

min{f#
α (X) − r(X) : φi ∈ X ⊆ V }. According to the

definition of the Dilworth truncation, f̂#
α (X) < f#

α (X) means

that there exists a P∗ ∈ Π′(X) such that

r′(X) = f̂#
α (X) = f#

α [P∗] = r′[P∗].

On one hand, we have r′(C) ≤ f#
α (C), ∀C ∈ P∗ since

r
′
V ∈ P (f#

α ,≤). On the other hand, f#
α (C) − r′(C) =

∑

C′∈P∗\{C}(r
′(C′) − f#

α (C′)) ≤ 0, i.e., r′(C) ≥ f#
α (C)

for all C ∈ P∗. Then, r′(C) = f#
α (C) for all C ∈ P∗.

Let Ĉ ∈ P∗ such that φi ∈ Ĉ. We have f#
α (Ĉ) = r′(Ĉ),

i.e., f#
α (Ĉ) − r(Ĉ) = ξ̂φi

. Here, Ĉ ( X necessarily, which

means X̂φi
is not the minimal minimizer of min{f#

α (X) −
r(X) : φi ∈ X ⊆ V }. This contradicts the given condition.

Therefore, we must have X̂φi
being the minimal minimizer of

min{f̂#
α (X)− r(X) : φi ∈ X ⊆ V }.

Recall that we have rV ∈ B(f̂#
RACO(V ),≤) and the fun-

damental partition P∗ at the output of the CoordSatCap

algorithm by inputting α = RACO(V ). For the base point

rV ∈ B(f̂#
RACO(V ),≤), X̂i is the minimal minimizer of

min{f̂#
RACO(V )(X) − r(X), i ∈ X ⊆ V } for all i ∈ V

according to Lemma G.2. If we implement the method in

Lemma G.1 over all X̂is, we have the set of minimal separators

of f̂#
RACO(V ) the same as the fundamental partition P∗. This

proves Theorem VII.2.

Corollary VII.6 is proved as follows. For all C ∈ P∗,

g(r∗C) ≤ g(r∗C + ǫ(χi − χj)), ∀i, j ∈ C according to The-

orem VII.5. On the other hand, according to property (c) in
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Lemma VII.3, if i ∈ C and i ∈ C′ for any C,C′ ∈ P∗

such that C 6= C′, rV + ǫ(χi − χj) /∈ B(f̂#
RACO(V ),≤

) = R∗
ACO(V ) for all ǫ > 0. Then, we have g(r∗V ) ≤

g(r∗V + ǫ(χi − χj)) for all i, j ∈ V and ǫ > 0 such that

rV + ǫ(χi − χj) ∈ B(f̂#
RACO(V ),≤) = R∗

ACO(V ). Therefore,

according to Theorem VII.5, r∗V = ⊕C∈P∗r
∗
C is the minimizer

of min{g(rV ) : rV ∈ B(f̂#
RACO(V ),≤) = R∗

ACO(V )}.
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