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Finite-Length Analysis of BATS Codes
Shenghao Yang, Tsz-Ching Ng and Raymond W. Yeung

Abstract

BATS codes were proposed for communication through networks with packet loss. A BATS code consists of

an outer code and an inner code. The outer code is a matrix generation of a fountain code, which works with the

inner code that comprises random linear coding at the intermediate network nodes. In this paper, the performance of

finite-length BATS codes is analyzed with respect to both belief propagation (BP) decoding and inactivation decoding.

Our results enable us to evaluate efficiently the finite-length performance in terms of the number of batches used

for decoding ranging from 1 to a given maximum number, and provide new insights on the decoding performance.

Specifically, for a fixed number of input symbols and a range of the number of batches used for decoding, we

obtain recursive formulae to calculate respectively the stopping time distribution of BP decoding and the inactivation

probability in inactivation decoding. We also find that both the failure probability of BP decoding and the expected

number of inactivations in inactivation decoding can be expressed in a power-sum form where the number of batches

appears only as the exponent. This power-sum expression reveals clearly how the decoding failure probability and

the expected number of inactivation decrease with the number of batches. When the number of batches used for

decoding follows a Poisson distribution, we further derive recursive formulae with potentially lower computational

complexity for both decoding algorithms. For the BP decoder that consumes batches one by one, three formulae are

provided to characterize the expected number of consumed batches until all the input symbols are decoded.

Index Terms

Network coding, fountain code, LT code, Raptor code, BATS code, finite-length analysis, belief propagation,

inactivation decoding, degree-distribution optimization, error probability, error exponent

I. INTRODUCTION

Proposed for communication through networks with packet loss, a BATS code consists of an outer code and an

inner code [1], [2]. As a matrix generalization of a fountain code, the outer code generates a potentially unlimited

number of batches, each of which consists of M coded symbols. The inner code comprises (random) linear network
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coding [3]–[5] at the intermediate network nodes, which is applied on the symbols belonging to the same batch.

When M = 1, the outer code becomes an LT code (or Raptor code if precode is applied), and network coding of

the batches becomes forwarding. Note that if network coding is allowed for different symbols generated by an LT

code, the degrees of the received symbols will be changed so that the efficient decoding algorithm of LT codes

fails (see more discussion of this issue in [2]). BATS codes resolve this issue: By allowing only network coding for

symbols belonging to the same batch, the degrees of batches are not changed by network coding at the intermediate

nodes. Sufficient network coding gain can be obtained by using a reasonably large value of M .

BATS codes preserve the salient features of fountain codes, in particular, their ratelessness property and low

encoding/decoding complexity. Compared with ordinary random linear network coding schemes [6]–[8], BATS codes

not only have lower encoding/decoding complexity, but also smaller coefficient vector overhead and intermediate

node caching requirement. Compared with other low-complexity random linear network coding schemes like EC

codes [9], Gamma codes [10] and L-chunked codes [11], BATS codes generally achieve higher rates and have the

extra feature that an unlimited number of batches can be generated. Applications of BATS codes in various network

communication scenarios have been studied in [12]–[14].

The asymptotic performance of BATS codes with belief propagation (BP) decoding has been analyzed in [2]. A

sufficient condition for the BP decoder to recover a given fraction of the input symbols with high probability was

obtained. This sufficient condition enables us to design BATS codes with good performance for a large number of

input symbols (e.g., tens of thousands). It has been verified theoretically for certain special cases and demonstrated

numerically for general cases that BATS codes can achieve rates very close to optimality for a given rank distribution

of the transfer matrices.

The performance of BATS codes for a relatively small number of input symbols is of important practical interest.

For such codes, however, the error bound obtained in the asymptotic analysis is rather loose (if valid), and the

degree distribution optimized asymptotically does not give a good performance. Towards designing better BATS

codes for a relatively small number of input symbols (e.g., a few hundreds), we analyze in this paper BATS codes

with a finite number of input symbols for two decoding algorithms: BP decoding and inactivation decoding.

Before presenting our results, we review some existing results on finite-length analysis of LT codes. For BP

decoding, Karp, et al. provided a recursive formula to compute the error probability of LT codes for a given

number of input symbols [15]. Maneva and Shokrollahi [16] used a random model of the number of coded symbols

and obtained a simpler formula for BP decoding. Inactivation decoding has been used for LT/Raptor codes, and

compared with BP decoding, it can significantly reduce the required the number of coded symbols for recovering

all the input symbols [17], [18]. However, the design of the inactivation decoding of LT codes is mainly guided by

heuristics [18].

A. Summary of results

In this paper, we present new results on finite-length analysis of BATS codes, which not only enable us to

compute the exact decoding performance for certain pratical cases, but also provide new insights on the decoding
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performance of both BP decoding and inactivation decoding.

Specifically, for a fixed number of input symbols, recursive formulae are obtained to calculate the stopping time

distribution of BP decoding and the inactivation probability in inactivation decoding. These formulae can evaluate

efficiently the performance in terms of the number of batches used for decoding ranging from 1 to a given maximum

number n, with almost the same computation cost as for evaluating only the decoding performance for n batches.

Such mechanisms are interesting on their own. For example, evaluating the stopping time distribution for a range

of the number of batches is required in the calculation of the expected coding overhead of BP decoding when the

batches are consumed one by one.

We also find that both the probability that BP decoding stops at time t and the probability that an input symbol is

inactivated at time t in inactivation decoding can be expressed exactly as the power-sum form
∑2t−1
i=0 cie

n
i , where

n is the number of batches, ci is a function of the number of input symbols and t, and 0 ≤ ei ≤ 1 is a function of

the number of input symbols, the degree distribution, the transfer matrix rank distribution and t. Note that i) both

ei and ci do not depend on n, ii) for both decoders ei are the same and only the coefficients ci are different. This

expression reveals clearly how the probability of decoding failure (for BP decoding) and the expected number of

inactivation (for inactivation decoding) decrease with the number of batches. We obtain the error exponent for BP

decoding and characterize the asymptotic behavior of the number of inactive symbols required when the number

of received batches goes to infinity.

In network communications, the number of received packets in a time interval is random and typically modelled

by a Poisson distribution. When the number of batches used for decoding follows a Poisson distribution, recursive

formulae are obtained for calculating respectively the stopping time distribution of BP decoding and the inactivation

probability in inactivation decoding, which may have lower computational cost than the corresponding formulae

for a fixed number of batches. Our Poisson model of the number of batches is different from the model used for

analyzing LT codes by Maneva and Shokrollahi [16], where the number of received coded (output) symbols is the

sum of a set of binomial random variables.

The property that an unlimited number of batches can be generated enables another type of BP decoder that

consumes the batches one by one. For such a BP decoder, we characterize the expected number of consumed batches

until all the input symbols are decoded by three different formulae, which have an infinite-sum, a finite-sum and

an integral form, respectively.

The analytical tools provided in this paper can readily be used in the design of BATS codes with a relatively

small number of input symbols. We provide optimization examples to illustrate how to use our results for degree

distribution optimization.

Our results also provide new analytical tools for LT codes. Detailed discussions on how to apply our results

to LT codes are in Section II-E. As far as we know, except for Theorem 1, our results in this paper do not have

corresponding results for LT codes in the literature. Subsequent to our work, Blasco, et al. obtained independently

an iterative formula for computing the expected number of inactive symbols for LT codes [19], which is essentially

the same as our formula in Theorem 11 when the batch size is one.
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B. Paper Organization

The remainder of this paper is organized as follows. Section II introduces the notations and gives a review on

BATS codes. In Section III, BATS codes are analyzed for BP decoding with a fixed number of batches and BP

decoding that consumes the batches one by one. We first provide a basic recursive formula to calculate the stopping

time distribution of BP decoding with a fixed number of batches (Theorem 1). Based on this formula, the following

results about BP decoding of BATS codes are further obtained:

i) A recursive formula is derived to calculate the stopping time distribution of BP decoding with a fixed number

n′ of batches, where n′ ranges from 1 to a given number n (Theorem 2).

ii) The power-sum formula of the stopping time distribution is derived (Theorem 3).

iii) For BP decoding with a fixed number n of batches, the BP decoding error exponent is obtained when n tends

to infinity (Theorem 4 and Corollary 5).

iv) For the BP decoder that consumes the batches one by one, two formulae are provided for characterizing the

expected number of consumed batches until all the input symbols are decoded (Theorem 6).

In Section IV, BATS codes are analyzed for BP decoding with a Poisson number of batches with mean n̄. The

following results are obtained.

i) A recursive formula is derived for calculating the stopping time distribution of BP decoding (Theorem 7).

ii) The probability of decoding failure is obtained. This probability decreases exponential with n̄, and the rate

of decrease is characterized (Theorem 8 and Corollary 9).

iii) For the BP decoder that consumes the batches one by one, the expected number of consumed batches until all

the input symbols are decoded is alternatively expressed as an integral of the error probability of BP decoding

with a Poisson number of batches (Theorem 10).

The inactivation decoding of BATS codes is analyzed in Section V. For the same number of batches, the probability

that an input symbol is inactivated at time t during inactivation decoding shares very similar properties with the

probability that BP decoding stops at time t. Therefore, except for the results about the BP decoder that consumes

the batches one by one, the results we obtained for BP decoding with a fixed number of batches and with a Poisson

number of batches all have corresponding versions for inactivation decoding.

The degree distribution optimizations of BATS codes are discussed in Section VI. Section VII provides the

concluding remarks.

II. PRELIMINARIES

After introducing some notations, we discuss the encoding and BP decoding processes of BATS codes.

A. Notations

In this paper, we use 0 as the starting index for vectors and matrices. For a vector a of length k, we denote by

a[i:j] (0 ≤ i ≤ j ≤ k − 1) the subvector of a from the i-th to the j-th component. We also write a[i] = a[i:i],

a[:] = a[0:k − 1] and a[i:] = a[i:k − 1] to simplify the notations.
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For an m × n matrix A, we denote by rk(A) its rank and by A[i1:i2, j1:j2] (i1 ≤ i2, j1 ≤ j2) the submatrix

of A formed by the entries between the i1-th and i2-th rows and the j1-th to j2-th columns. We also write

A[i, j1:j2] = A[i:i, j1:j2], A[i, j:] = A[i:i, j:n− 1], A[:, j] = A[0:m− 1, j:j], etc.

We use e0, I and 0 to denote a vector of the form (1, 0, . . . , 0), an identity matrix and a zero matrix, respectively,

where the dimensions are determined by context.

For real numbers x and y, denote their minimum and maximum by x ∧ y and x ∨ y, respectively.

B. Encoding of Batches

Fix a finite field Fq with size q, called the base field. Suppose K input symbols of the base field1 are transmitted

from a source node to a sink node through a network employing linear network coding. Fix an integer M ≥ 1 called

the batch size. The outer code of a BATS code generates a potentially unlimited sequence of batches X1,X2, . . .

formed by

Xi = Bi ·Gi,

where Bi is a row vector consisting of dgi input symbols, and Gi is a dgi×M totally random matrix2 over the base

field, called the generator matrix. We call dgi the (batch) degree of the i-th batch Xi. The degrees dgi, i = 1, . . .

are i.i.d. random variables with a given distribution Ψ = (Ψ1, . . . ,ΨK), i.e., Pr{dgi = k} = Ψk. The dgi input

symbols of Bi, called the contributors of batch i, are chosen uniformly at random from all the K input symbols.

Denote by Ai the index set of the dgi symbols in Bi.

The batches are transmitted through a network where the nodes perform linear network coding only among

symbols belonging to the same batch. So at the sink node, the received symbols of the i-th batch can be represented

by a row vector

Yi = Bi ·Gi ·Hi.

where Hi is an M -row random matrix called the transfer matrix. The number of columns of Hi corresponds to

the number of symbols received for the i-th batch, which may vary for different batches and is finite. If no packets

are received for a batch, Yi is the empty vector. We assume that Hi, i = 1, 2, . . . are independent and follow the

same distribution, and Hi, i = 1, 2, . . . are also independent of the encoding process. The network coding scheme

at the intermediate network nodes is called the inner code of a BATS code.

C. BP Decoding of BATS Codes

For the BATS code described above and a given number n ≥ 1, we first describe a BP decoding process that uses

n batches. Consider the decoding of n batches Y1,Y2, . . . ,Yn. Assume that the sink node knows GiHi and Ai

for i = 1, . . . , n. The time index starts at 0 and increases by one after each decoding step. The decoding algorithm

1In general, we may consider K input packets, each of which is a vector in a vector space over the base field. But this generalization does

not affect the analysis in this paper.
2A totally random matrix has uniform i.i.d. entries.
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modifies Ai,Gi and Yi in each step. For each batch i and time t, let A(t)
i ,G

(t)
i and Y

(t)
i be the versions of Ai,Gi

and Yi at time t, respectively. When t = 0, we have A(0)
i = Ai,G

(0)
i = G and Y

(0)
i = Yi. Iterative formulae will

be given for these variables at t > 0. We call |A(t)
i | and rk(G

(t)
i Hi) the degree and the rank of batch i at time t,

respectively.

We say a batch i is decodable at time t if rk(G
(t)
i Hi) = |A(t)

i | (i.e., its degree is equal to its rank), and an

input symbol is decodable at time t if it contributes to a decodable batch at time t. Denote by B
(t)
i the row vector

formed by the input symbols with indices in A(t)
i . The associated linear system of batch i at time t is

Y
(t)
i = B

(t)
i ·G

(t)
i ·Hi.

Batch i at time t is decodable means that the above linear system, with B
(t)
i as the variable, has a unique solution.

The decoding algorithm operates as follows. For each time t, a decodable input symbol is selected (if there

is more than one such symbols), substituted into the undecodable batches that it contributes to, and marked as

decoded.3 Suppose that the j-th input symbol bj is decoded at time t. We then substitute the decoded input symbol

into the batches it contributes to: For each batch i,

i) if j ∈ A(t)
i , then A(t+1)

i = A
(t)
i \ {j}, G

(t+1)
i is formed by removing the row g of G

(t)
i corresponding to the

j-th input symbol bj , and Y
(t+1)
i = Y

(t)
i − bjgHi; and

ii) if j /∈ A(t)
i , then A(t+1)

i = A
(t)
i , G

(t+1)
i = G

(t)
i and Y

(t+1)
i = Y

(t)
i .

The decoding stops when there are no decodable input symbols.

The BATS code decoding algorithm described above uses a given number n of batches, and is denoted by BP(n).

For BP(n), we are interested in the time when the decoding stops, which is equal to the number of input symbols

that are decoded. For example, if BP(n) stops at time zero, no input symbols are decoded; while if BP(n) stops

time time K, all the input symbols are decoded. We will characterize the distribution of the stopping time of BP(n)

in this paper.

Now let us see how to benefit from the unlimited number of batches. Suppose that the encoder generates n

batches. When BP(n) stops without all the input symbols decoded, the encoder can generate more batches to

resume the BP decoding procedure. We define the following rateless BP decoder BP∗ that consumes the batches

one by one. BP∗ starts by fetching the first batch. For n batches fetched (n = 1 to start with), BP(n) is applied. If

BP(n) stops with all the input symbols decoded, BP∗ stops; otherwise, one more batch is fetched and BP(n+ 1)

is applied. Since the number of batches is unlimited, BP∗ will eventually stop with all the input symbols decoded.

For BP∗, we are interested in the number of batches consumed when the decoding stops. We will characterize

the distribution of the number of batches consumed, as well as the expected number of batches consumed by BP∗

in this paper.

3Note that in each step, the choice of the decodable input symbol to substitute does not affect the time when the decoding stops (see [2,

Appendix B]).
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D. Solvability of a Batch

Let us check the probability that a batch is decodable when its degree has a specific value. According to the

algorithm of BP(n), if a batch is decodable at time t, it is decodable at all time t′ > t until the associated linear

system has no variable left. We say a batch is decodable for the first time at time t if it is decodable at time t, but

is not decodable at time t− 1.

For s = 0, 1, . . . ,M , let G(s) be an s ×M totally random matrix over the base field Fq . Let H be a random

matrix with the same distribution of H1. Define

~s , Pr

rk

G(1)

G(s)

H

 = rk(G(s)H) = s

 , (1)

~′s , Pr{rk(G(s)H) = s}, (2)

where G(1) and G(s) are statistically independent. Note that ~s is the probability that a batch is decodable for the

first time when its degree is s. Once a batch becomes decodable, it remains to be decodable until all its contributors

are decoded. Note that ~′s =
∑
k≥s ~k for 0 ≤ s ≤M and ~s = 0 for s > M .

The explicit forms of ~s and ~′s will not be directly used in the analysis of this paper, but are useful in the

numerical evaluation. According to [2],

~s =

M∑
k=s

ζks
qk−s

hk and ~′s =

M∑
k=s

ζks hk,

where

ζks ,

{
(1− q−k)(1− q−k+1) · · · (1− q−k+s−1) s > 0

1 s = 0.
and hk , Pr {rk(H) = k} is the rank distribution of H. Henceforth, we assume the rank distribution h =

(h0, . . . , hM ) of H is known. Let

h̄ =

M∑
i=1

ihi.

Note that when the field size is large, e.g., q = 28, the difference between hk and ~k becomes negligible.

We say that BP decoding can start if the probability that a batch is decodable at time 0 is nonzero. The following

proposition is intuitive.

Proposition 1. BP decoding can start if and only if there exists d, 1 ≤ d ≤M such that Ψd

∑M
k=d hk > 0.

Proof: A batch with degree d ≤ M is decodable at time 0 with probability Ψd~′d, and a batch with degree

d > M is not decodable at time 0 with probability one. The proposition is proved by noting that ~′d > 0 if and

only if
∑M
k=d hk > 0.

When h0 = 1, for example, BP decoding cannot start. Since the case that BP decoding cannot start is trivial,

we are primarily interested in the case that BP decoding can start, which is implied in the rest of this paper

unless otherwise specified. When BP decoding can start, let rBP be the smallest integer s ∈ {1, . . . ,M} such that

Ψs

∑M
k=s hk > 0. By Proposition 1, rBP is well defined.



8

E. Special Case: LT Codes

When the batch size is one, BATS codes described above become LT codes. In this case, since each batch has

only one coded symbol, network coding at the intermediate nodes becomes forwarding. Then h0, the probability

that the batch transfer matrix has rank zero, can be regarded as the end-to-end erasure rate.

Due to the random generator matrix, the degree of a batch may be larger than the degree of the coded symbol4 in

the batch because certain entries of the generator matrix may be equal to 0. For a batch with degree d, the degree

of the coded symbol in the batch is k (k ≤ d) with probability
(
d
k

)
(1−q−1)kq−(d−k). Our analysis (to be provided)

uses the degree distribution of batches, which can be converted into the degree distribution of coded symbols. But

we have a simpler approach to apply our analytical results to LT codes with respect to the degree distribution of

the coded symbols.

When M = 1, instead of a random generator matrix, we can use the generator matrix with all entries being the

identity of the base field. Then the degree of a batch is the same as the degree of the coded symbol in the batch.

Redefining (1) and (2) for G(s) containing only the identity of the base field, we have

~0 = h0, ~′0 = 1 and ~1 = ~′1 = h1.

So when M = 1, substituting the above values of ~s and ~′s into the formulae to be obtained in this paper, we

obtain the corresponding results for LT codes with respect to the degree distribution of the coded symbols.

III. STOPPING TIME OF BP DECODING

In this section, we analyze the BP decoder for a fixed number of input symbols. We study the following

performance measues for BP decoding:

i) The distribution of the stopping time of BP(n), which induces the error probability of BP(n) (i.e., the

probability that BP(n) fails to recover all the input symbols);

ii) The decrease rate of the error probability of BP(n) when n increases;

iii) The distribution of the number of batches consumed by BP∗; and

iv) The expected number of batches consumed by BP∗.

A. Basic Recursive Formula

We start with the performance of BP(n). Let R(t)
n be the number of decodable input symbols at time t (which

is also called the input ripple size in the literature of LT codes). The probability that BP(n) stops at time t is

Pstop(t|n) , Pr
{
R(t)
n = 0, R(τ)

n > 0, τ < t
}
.

Let C(t)
n be the number of undecodable batches at time t. Define an (n+ 1)× (K − t+ 1) matrix Λ

(t)
n as

Λ(t)
n [c, r] , Pr

{
C(t)
n = c,R(t)

n = r,R(τ)
n > 0, τ < t

}
, (3)

4A coded symbol can be expressed as a linear combination of the input symbols. The degree of the coded symbol is defined as the number

of non-zero coefficients in the linear combination.
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where c = 0, 1, . . . , n and r = 0, 1, . . . ,K − t. With the above equality we have

Pstop(t|n) =

n∑
c=0

Λ(t)
n [c, 0]. (4)

We will express Λ
(t)
n in terms of Λ

(t−1)
n , so that we can calculate Λ

(t)
n recursively for t = 0, . . . ,K.

Let

Bi(k;n, p) ,

(
n

k

)
pk (1− p)n−k

and

hyge(k;n, i, j) ,


(ik)(

n−i
j−k)

(nj)
max{0, i+ j − n} ≤ k ≤ min{i, j}

0 o.w.

be the p.m.f. of the binomial distribution and the hypergeometric distribution, respectively. We obtain the following

recursion of Λ
(t)
n , which together with (4) gives a formula to calculate Pstop(t|n).

Theorem 1. Consider a BATS code with K input symbols, n batches, degree distribution Ψ, rank distribution h

of the transfer matrix, and batch size M . When BP decoding can start, we have

Λ(0)
n [c, :] = Bi(c;n, 1− ρ0)e0Q

n−c
0 , (5)

and for t > 0,

Λ(t)
n [c, :] =

n∑
c′=c

Bi(c; c′, 1− ρt)Λ(t−1)
n [c′, 1:]Qc′−c

t (6)

where ρt and Qt are defined as follows:

i) ρ0 =
∑M
s=0 p0,s, where p0,s = Ψs~′s.

ii) For t > 0,

ρt =

∑M
s=0 pt,s

1−
∑t−1
τ=0

∑M
s=0 pτ,s

and

pt,s =


~s

s+t∑
d=s+1

Ψd
d

K
hyge(d− s− 1;K − 1, d− 1, t− 1) s+ t ≤ K,

0 s+ t > K.

iii) For t = 0, 1, . . . ,K, Qt is a (K − t+ 1)× (K − t+ 1) matrix with

Qt[i, j] =

j∧M∑
s=j−i

pt,s∑M
s′=0 pt,s′

hyge(i+ s− j;K − t, i, s) (7)

for 0 ∨ (j −M) ≤ i ≤ j ≤ K − t, and Qt[i, j] = 0 otherwise.

Proof: The proof is left to Appendix I. The idea is to characterize the corresponding probability transition

matrix between two consecutive decoding times.
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The notations defined in the above theorem deserve some explanations. First, pt,s is the probability that a batch

is decodable for the first time at time t and has batch degree s at time t assuming that the decoding can start (when

t = 0) or does not stop at the previous time (when t > 0). Let

pt ,
M∑
s=0

pt,s.

We know that pt is the probability that a batch is decodable for the first time at time t assuming that the decoding

can start (when t = 0) or does not stop at the previous time (when t > 0).

Lemma 1.

pt,s


= 0, for t+ s < rBP,

> 0, for t = 0, and s = rBP,

> 0, for t ≥ 1, t+ s ≥ rBP and s < rBP.

Proof: By Proposition 1, we have Ψr = 0 for r = 1, . . . , rBP − 1, ΨrBP > 0 and ~s > 0 for s ≤ rBP. The

lemma then follows from the definition of pt,s.

Lemma 1 implies that pt > 0 for t = 0, 1, . . . ,K. So the denominators in the definitions of ρt for t > 0 and Qt

for t ≥ 0 are all positive. We also note that ρt (t > 0) is the probability that a batch is decodable at time t under

the condition that it is not decodable at time t − 1. The following properties about ρt and pt are straightforward

and they are proved in Appendix II.

Lemma 2.

i) For 0 ≤ t ≤ K
t∏

τ=0

(1− ρτ ) = 1−
t∑

τ=0

pτ .

ii) For 0 < t ≤ K

ρt

t−1∏
τ=0

(1− ρτ ) = pt.

Matrix Qt can be regarded as a transition matrix. Suppose that k batches become decodable at time t and

we generate new decodable input symbols from these k batches one batch after another. Define random variable

Z0 = R
(t−1)
n − 1 for t > 0 or Z0 ≡ 0 for t = 0, and for i = 1, . . . , k define Zi as the total number of decodable

input symbols after having generated new decodable input symbols from the first i decodable batches. Note that

Zk = R
(t)
n . Then Z0, . . . , Zk forms a homogeneous Markov chain with the transition matrix Qt.

To evaluate the formulae in Theorem 1, we first calculate pt,s for t = 0, 1, . . . ,K and s = 0, 1, . . . ,M , which takes

O(K2M) real number operations. We then calculate ρt and Qt for t = 0, 1, . . . ,K using O(KM) and O(K2M2)

real number operations, respectively. Thus, it totally takes O(K2M2) real number operations to calculate ρt and

Qt. Note that pt,s, ρt and Qt do not depend on n, and are determined by K, Ψ and h only. Once they are

calculated, we can use them in the evaluation of Λt
n for different values of n. Note that the matrix Qt has at most
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M + 1 non-zero entries in each column. So the vector-matrix multiplication takes O(KM) real number operations.

Since a total of O(Kn2) such vector-matrix multiplications are used in the formulae, the complexity for computing

Pstop(t|n) using Theorem 1 is O(K2M2 +K2n2M) real number operations.

Example 1 (Ψ1 = 1). Consider a BATS code with Ψ1 = 1 and h0 < 1. In this special case, every batch has degree

one. The condition h0 < 1 means that BP decoding can start. It can be calculated that p0,1 = ~′1 and p0,s = 0 for

s 6= 1. All the components of Q0 are zero except that Q0[i, i] = i/K for i = 1, . . . ,K and Q0[i, i+ 1] = 1− i/K

for i = 0, . . . ,K − 1. When t > 0, we have pt,0 = ~0/K and pt,s = 0 for s > 0, and Qt is the identity matrix.

Example 2 (t = K). When t = K, all the input symbols are decoded so that all the batches have degree 0. We

have pK,0 = ~0

∑K
d=1 Ψd

d
K , pK,s = 0 for s > 0, ρK = 1 and QK = [1].

Example 3 (LT Codes). Letting M = 1, ~0 = h0, ~′0 = 1 and ~1 = ~′1 = h1 in Theorem 1, we obtain

p0,1 = Ψ1h1 and p0,0 = 0,

and for t > 0,

pt,0 = h0

t∑
d=1

Ψd
d

K

(
K−d
t−d
)(

K−1
t−1

) = h0

t∑
d=1

Ψd

(
t−1
d−1

)(
K
d

) ,
pt,1 =


h1

t+1∑
d=2

Ψd
d(d− 1)

K

(
K−d
t−d+1

)(
K−1
t−1

) = h1

t+1∑
d=2

Ψd(K − t)
(
t−1
d−2

)(
K
d

) t < K,

0 t = K.

The matrix Qt, t = 0, 1, . . . ,K − 1 has the following expression: for i = 0, . . . ,K − t,

Qt[i, i] =
pt,0
pt

+
pt,1
pt

i

K − t
,

for i = 0, . . . ,K − t− 1,

Qt[i, i+ 1] =
pt,1
pt

(
1− i

K − t

)
,

and Qt[i, j] = 0 otherwise.

Karp et al. [15] has given a formula for LT codes to recursively calculate the joint distribution of the number of

decodable received symbols (called output ripple size) and the number of undecodable received symbols at each

decoding step. Note that the distribution of output ripple size determines the distribution of the input ripple size.

Their formula is given in a polynomial form and has an evaluation bit-complexity O(n3 log2(n) log log(n)) based

on polynomial evaluation and interpolation.

Note that it is possible to extend the approach in [15] for M > 1, i.e., recursively calculating the joint distribution

of the number of decodable batches and the number of undecodable batches. When M > 1, decodable batches

with different degrees must be considered separately and M recursive formulae must be provided for each positive

degree value of the decodable batches. The evaluation complexity of this extension increases exponentially with

M (see an outline of this extension in [20, Appendix]). Our approach here, which instead tracks the number of
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decodable input symbols and the number of undecodable batches at each step, gives a formula with complexity

equal to a quadratic function of M . Further, our formula is given in a matrix form, which facilitates certain analyses

as we will demonstrate in this paper.

B. Stopping Time Distribution

For a given number n, Λ
(t)
n can be calculated recursively for t = 0, . . . ,K using Theorem 1 and hence the

stopping time distribution Pstop(·|n) can be calculated using (4). But for applications that will be discussed later in

this section, we may want to calculate Pstop(·|n′) for n′ = 0, 1, . . . , n, where n > 0 is a given integer. Using the

formula in Theorem 1, we have to run the program for each value of n′. In Theorem 2, we will propose a new

formula that can simplify the calculation of Pstop(·|n) for a range of n.

Theorem 2. For n ≥ 0 and t ≥ 0,

Pstop(t|n) =
n∑
c=0

(
n

c

)(
1−

t∑
τ=0

pτ

)c
Λ

(t)
n−c[0, 0], (8)

where the first row of the matrices Λ
(t)
n′ , n′ = 0, 1, . . . , n can be computed by the following recursion: For n′ =

0, 1, . . . , n,

Λ
(0)
n′ [0, :] = (p0Q0)n

′
[0, :], (9)

and for t > 0

Λ
(t)
n′ [0, :] =

n′∑
c=0

(
n′

c

)
Λ

(t−1)
n′−c [0, 1:](ptQt)

c. (10)

Proof: The formula in Theorem 1 implies a relation between Λ
(t)
n [c, :] (c > 0) and Λ

(t)
n−1[0, :]. See the details

in Appendix III.

For a given number n > 0, the above theorem provides us a new representation of Pstop(·|n) in terms of Λ
(t)
n′ [0, 0]

for n′ = 0, 1, . . . , n, and a recursive formula given by (9) and (10) to calculate Λ
(t)
n′ [0, :] for t = 0, 1, . . . ,K

and n′ = 1, . . . , n. To evaluate the formulae in the above theorem, we first use (9) to calculate Λ
(0)
i [0, :] for

i = 0, 1, . . . , n. For t > 0, we use the following recursive formulae induced by (10) to calculate Λ
(t)
i [0, :] for

i = 0, 1, . . . , n:

Λ
(t)
0 [0, :] =

(
0

0

)
Λ

(t−1)
0 [0, 1:](ptQt)

0

Λ
(t)
1 [0, :] =

(
1

0

)
Λ

(t−1)
1 [0, 1:](ptQt)

0 +

(
1

1

)
Λ

(t−1)
0 [0, 1:](ptQt)

1

Λ
(t)
2 [0, :] =

(
2

0

)
Λ

(t−1)
2 [0, 1:](ptQt)

0 +

(
2

1

)
Λ

(t−1)
1 [0, 1:](ptQt)

1 +

(
2

2

)
Λ

(t−1)
0 [0, 1:](ptQt)

2

...

Λ(t)
n [0, :] =

(
n

0

)
Λ(t−1)
n [0, 1:](ptQt)

0 +

(
n

1

)
Λ

(t−1)
n−1 [0, 1:](ptQt)

1 + . . .+

(
n

n

)
Λ

(t−1)
0 [0, 1:](ptQt)

n.

This theorem is more convenient to use when we want to calculate Pstop(·|n′) for n′ = 1, . . . , n, which has the

same complexity O(K2M2 +K2n2M) as calculating Pstop(·|n) only using Theorem 1.



13

C. Power-Sum Formula

Matrix Qt defined in Theorem 1 is upper-triangular. The following lemma, proved in Appendix II, shows that

Qt is also diagonalizable.

Lemma 3. Matrix Qt is diagonalizable, i.e.,

Qt = UtDtU
−1
t ,

where Dt is a diagonal matrix with Dt[i, i] = Qt[i, i], Ut is an upper-triangular matrix with Ut[i, j] =
(
K−t−i
j−i

)
for i ≤ j, and U−1

t is an upper-triangular matrix with U−1
t [i, j] = (−1)j−i

(
K−t−i
j−i

)
for i ≤ j.

In the above decomposition, the degree and rank distributions only affect Dt, i.e., the eigenvalues of Qt. The

matrix Ut depends only on K and t. We also notice that Ut[1:, 1:] = Ut+1 and U−1
t [1:, 1:] = U−1

t+1. Substituting

the above decomposition of Qt into Theorem 2, we obtain another formula for Pstop(t|n) with an power-sum form.

Theorem 3. For n ≥ 0 and t ≥ 0,

Pstop(t|n) =

2t−1∑
i=0

Vt,i[0]

(
1−

t∑
τ=0

pτ + ∆t,i[0, 0]

)n
,

where row vector Vt,i and diagonal matrix ∆t,i are defined as follows:

i) V0,0 , U0[0, :] and ∆0,0 , p0D0,

ii) For t ≥ 0 and i = 0, 1, . . . , 2t − 1,

Vt+1,i = Vt,i[1:],

∆t+1,i = ∆t,i[1:, 1:] + pt+1Dt+1,

Vt+1,2t+i = −Vt,i[0]Ut[0, 1:],

∆t+1,2t+i = ∆t,i[0, 0]I + pt+1Dt+1.

Proof: This theorem can be proved by substituting the diagonal decomposition of Qt in Lemma 3 into

Theorem 2. The details can be found in Section III.

The formula in Theorem 3 is a linear combination of 2t n-th powers, where the number of batches n appears

only in the power, but in neither Vt,i nor ∆t,i. It is now easy to see that Pstop(t|n) decreases exponentially with n,

which will be made explicit in the next subsection. Note that Vt,i[0] are integers determined by K, t and i, but not

n, and can be both positive and negative. According to the definition, we also know that for t = 0, 1, . . . ,K − 1,

0 <

t∑
τ=0

pτ −∆t,i[0, 0] < 1.

We prefer Theorem 2 to Theorem 3 for numerical evaluation due to two reasons. First, due to the 2t n-th power

for t = 0, 1, . . . ,K, the computation complexity increases exponentially with K. Second, the absolute value of

Vt,i[0] can be very large, so that the accuracy of the numerical evaluation is difficult to guarantee if we use a fixed

number of significant digits.
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D. Error Probability and Error Exponent

For BP(n), we say a decoding error occurs if the decoder cannot recover all the K input symbols, i.e., the

decoder stops before time K. Hence, the corresponding error probability is

Perr(n) =

K−1∑
t=0

Pstop(t|n) = 1− Pstop(K|n).

Using Theorem 2, we can calculate Perr(n) efficiently.

The asymptotic decrease rate of the error probability of BP(n) with respect to n can be characterized using the

BP error exponent of BATS codes defined as

EEBP = lim
n→∞

− log(Perr(n))

n
.

Define for 0 ≤ t ≤ K

qt = 1−
t∑

τ=0

pτ + ∆t,0[0, 0]. (11)

Recall the definition of rBP following Proposition 1. The following theorem enables us to characterize the BP error

exponent.

Theorem 4. Suppose that BP decoding can start. We have

i) Pstop(0|n) = qn0 ;

ii) For 1 ≤ t < rBP, Pstop(t|n) = 0 for all n ≥ 1;

iii) For t ≥ rBP,

lim
n→∞

− logPstop(t|n)

n
= − log qt.

Proof: This theorem is derived using Theorem 3. See the details in Appendix III.

Remark 1. The above theorem says that Vt,0q
n
t is the dominating term of Pstop(t|n) when n is large.

Corollary 5. The BP error exponent of BATS codes satisfies

EEBP = − log q∗.

where q∗ , q0 ∨ (∨K−1
t=rBP

qt) = ∨K−1
t=0 qt.

Proof: The corollary follows the above theorem and Perr(n) =
∑K−1
t=0 Pstop(t|n). The equality q0∨(∨K−1

t=rBP
qt) =

∨K−1
t=0 qt follows by q0 ≥ qt for t < rBP. (By checking the proof of Theorem 4, we know qt = 1 −

∑t
τ=0 pτ for

t < rBP.)

We can obtain the maximum BP error exponent by solving the following linear program for given K and rank

distribution:
min
Ψ,x

x

s.t. qt ≤ x, t = 0, 1, . . . ,K − 1.
(12)

The variables in the above optimization are the degree distribution and x.
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E. Number of Batches Consumed

We now consider the decoder BP∗ described in Section II-C. We are interested in the number of batches consumed

when BP∗ decodes all the input symbols, which is denoted by NBP∗ . It is possible to characterize the distribution

of NBP∗ using the error probability of BP(n). The event NBP∗ ≥ n is the same as the event that BP(n− 1) stops

with less than K input symbols decoded. So we have for n ≥ 1,

Pr{NBP∗ ≥ n} = Perr(n− 1). (13)

The coding overhead of a BATS code is defined as

CO =

NBP∗∑
i=1

rk(Hi)−K.

We are interested in the expected coding overhead

E[CO] = E[NBP∗ ]E[rk(H)]−K = E[NBP∗ ]
∑
r

rhr −K.

where the first equality holds by Wald’s equality. Since both K and
∑
r rhr are given, we now calculate E[NBP∗ ].

Theorem 6.

E[NBP∗ ] =

∞∑
n=0

Perr(n) (14)

=

K−1∑
t=0

2t−1∑
i=0

Vt,i[0]∑t
τ=0 pτ −∆t,i[0, 0]

. (15)

Proof: We can write by (13) that

E[NBP∗ ] =

∞∑
n=1

nPr{NBP∗ = n} =

∞∑
n=1

Pr{NBP∗ ≥ n} =

∞∑
n=0

Perr(n) =

K−1∑
t=0

∞∑
n=0

Pstop(t|n).

The proof is completed by applying Theorem 3:

∞∑
n=0

Pstop(t|n) =

∞∑
n=0

2t−1∑
i=0

Vt,i[0]

(
1−

t∑
τ=0

pτ + ∆t,i[0, 0]

)n
=

2t−1∑
i=0

Vt,i[0]∑t
τ=0 pτ −∆t,i[0, 0]

.

The above theorem provides two formulae for E[NBP∗ ]. We prefer (14) for numerical evaluations than (15). Fix

a sufficiently large integer n2, and we can approximate E[NBP∗ ] by

E[NBP∗ ] ≈
n2∑
n=0

Perr(n). (16)

The approximation error is exponentially small in terms of n2 (implied by Corollary 5).

F. Evaluation Example I

We use an example to demonstrate the evaluation results of the formulae in this section. Consider a BATS code

with K = 256, q = 256, M = 16 and the rank distribution in Table I. The rank distribution is the one of the

length-2 homogeneous line network with link erasure probability 0.2 (see [2, Section VII-A] for a formula for the
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TABLE I

THE RANK DISTRIBUTION FOR EVALUATION EXAMPLES. HERE THE BATS CODE HAS q = 256 AND M = 16. THE VALUE OF h0 IS 0 AND

OMITTED IN THE TABLE.

h1 h2 h3 h4 h5 h6 h7 h8

0 0 0 0 0.0001 0.0004 0.0025 0.0110

h9 h10 h11 h12 h13 h14 h15 h16

0.0387 0.1040 0.2062 0.2797 0.2339 0.1038 0.0190 0.0008

rank distribution). Here h̄ = 11.91 is an upper bound on the achievable rates of BATS codes (in terms of packet

per batch).

Three degree distributions Ψasy, ΨBP and Ψmee are used in our evaluation (given in Table III in Appendix VI),

where Ψasy is obtained by solving the degree-distribution optimization problem induced by the asymptotic analysis

of BATS code in [2]; Ψmee is obtained by solving (12); and ΨBP is obtained by modifying Ψasy using an approach

to be discussed in Section VI. We evaluate the error probability of BP(n), n = 1, . . . , 200 for the three degree

distributions. See Fig. 1 for an illustration of the evaluation results.

We first observe that for all the degree distributions, the error probability decreases exponentially fast in n

when n is large, which matches the findings in Section III-D. For Ψmee, the BP error decrease rate is the fastest

asymptotically among these three distributions. We also observe that the error probability is almost one for small

n. For the general case, the error probability for n < K/h̄ is all close to one, which can be bounded as follows.

Proposition 2. For any n < K/h̄,

Perr(n) ≥ 1− exp

(
−1

3

(
K

nh̄
− 1

)2
h̄

M
n

)
.

Proof: We have

Perr(n) ≥ Pr

{
n∑
i=1

rk(Hi) < K

}
= 1− Pr

{
n∑
i=1

rk(Hi) ≥ K

}
,

where rk(Hi), i = 1, . . . , n are independent random variables with generic distribution h. The proof is an application

of the Chernoff bound.

For relatively small values of n, the lower bound is loose. In this example, K/h̄ = 21.49. The bound in the

above proposition gives Perr(21) ≥ 0.0029, but our evaluations show that Perr(21) = 1.0000 for all the three degree

distributions.

From Fig. 1(b), we observe that ΨBP has the lowest error probability for n from 25 to 50. For example, if we

want to achieve an error probability 0.01, it is sufficient to use n = 47 for ΨBP. Unless we desire an extremely

low error probability, e.g., 10−14, ΨBP is preferred for BP decoding. It is not surprising that the degree distribution

obtained from the asymptotic analysis does not perform well for short block lengths.
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Fig. 1. Perr(n) for different degree distributions. Here K = 256, q = 256 and the rank distribution is given in Table I.

TABLE II

PERFORMANCE COMPARISON OF THE THREE DEGREE DISTRIBUTIONS GIVEN IN TABLE III.

Degree Distribution Average Degree EEBP E[NBP∗ ] E[CO]

Ψasy 53.8 0.0107 > 97 > 1154

ΨBP 49.3 0.1562 32.1 382.4

Ψmee 111.1 0.5692 82.5 983.1

The BP error exponents of the three degree distributions are given in Table II. Actually, Ψmee is the degree

distribution that achieves the optimal value of (12) for K = 256, q = 256 and the rank distribution in Table I.

The values of E[NBP∗ ] and the expected coding overhead of the three degree distributions can be found using the

approximation in (16). The trend of
∑n2

n=0 Perr(n) when n2 increases can be found in Fig. 2. We see that for both

ΨBP and Ψmee, the approximation converges fast due to the fast decrease of the corresponding error probability

Perr(n). For the range of n2 in the evaluation, the value of
∑n2

n=0 Perr(n) does not converge for Ψasy. But the value

of
∑n2

n=0 Perr(n) for Ψasy provides a lower bound for E[NBP∗ ] that is sufficient for us to compare these three

degree distributions in terms of E[NBP∗ ].

IV. POISSON NUMBER OF BATCHES

In this section, we study the stopping time of BP(Ñ) where Ñ is a Poisson distributed random variable,

i.e., we assume that the number of batches used by the BP decoder follows a Poisson distribution. In network

communications, the number of received packets in a given time interval is usually modelled by a Poisson

distribution. Therefore, the Poisson model for the number of the batches is useful for evaluating the performance

of BATS code in such network models. In addition, the analysis of BP(Ñ) will provide an alternative formula for
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Fig. 2. The trends of
∑n2

n=0 Perr(n) when n2 increases for the three degree distributions given in Table III.

calculating E[NBP∗ ].

A. Recursive Formulae

The Poisson random variable Ñ can be represented by is expectation n̄, with

Pr
{
Ñ = n

}
=
n̄n

n!
e−n̄.

For any integer t (0 ≤ t ≤ K) and real value n̄ > 0, define a row-vector Λ̃
(t)
n̄ of length K − t+ 1 as

Λ̃
(t)
n̄ [r] ,

∑
n

Pr
{
Ñ = n

}
Pr
{
R(t)
n = r,R(τ)

n > 0, τ < t
}
, r = 0, 1, . . . ,K − t.

According to the definition in (3), we have

Λ̃
(t)
n̄ =

∑
n

Pr{Ñ = n}
n∑
c=0

Λ(t)
n [c, :]. (17)

Denote by P̃stop(t|n̄) the probability that BP(Ñ) stops at time t, where E[Ñ ] = n̄. We see that

P̃stop(t|n̄) = Λ̃
(t)
n̄ [0] =

∑
n

Pr{Ñ = n}Pstop(t|n), (18)

where the second equality follows from (4) and (17). The above formula of P̃stop(t|n̄) can be calculated using

Theorem 2 with complexity O(K2M2 + K2n2
maxM) of real number operations, where we use the first nmax

summands for approximation. Due to the fast decrease of Pr{Ñ = n} when n > n̄, we may choose nmax such

that
∑∞
n=nmax+1 Pr{Ñ = n} is small, which gives an upper bound on the approximation error tolerance.

In the following, we show that Λ̃
(t)
n̄ can be expressed using a different formula, which provides a new perspective

on the quantity Λ̃
(t)
n̄ and a simpler method of evaluating P̃stop(t|n̄) than (18) for certain cases. Define the matrix
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exponential exp(A) for a square matrix A as

exp(A) ,
∞∑
i=0

Ai

i!
.

Theorem 7. Consider BP decoding of a BATS code with K input symbols, degree distribution Ψ, and transfer

matrix rank distribution h. When the number of batches used by BP decoding is Poisson distributed with expectation

n̄, for any integer t ≥ 0,

Λ̃
(t)
n̄ = Λ̃

(t−1)
n̄ [1:] exp (n̄pt(Qt − I)) , (19)

where Λ̃−1
n̄ [1:] , e0.

Proof: We show the proof of (19) for t = 0 here. The remainder of the proof can be found in Appendix IV.

Substituting Pr{Ñ = n} and Λ
(0)
n [c, :] given in Theorem 1, we have

Λ̃
(0)
n̄ =

∑
n

n̄n

n!
e−n̄

∑
c≤n

Bi(c;n, 1− ρ0)e0Q
n−c
0

=
∑

c,n:c≤n

n̄n

n!
e−n̄

(
n

c

)
(1− ρ0)c(ρ0)n−ce0Q

n−c
0

= e−n̄e0

∑
c,n:c≤n

(n̄(1− ρ0))c

c!

(n̄ρ0Q0)n−c

(n− c)!
.

By defining m = n− c and using matrix exponential, we can further simplify the above formula as

Λ̃
(0)
n̄ = e−n̄e0

∑
c

(n̄(1− ρ0))c

c!

∑
m

(n̄ρ0Q0)m

m!

= e−n̄e0 exp(n̄(1− ρ0)) exp(n̄ρ0Q0)

= e0 exp(−n̄ρ0) exp(n̄ρ0Q0)

= e0 exp(n̄ρ0(Q0 − I)), (20)

where the last equality is obtained using the fact that exp(A) exp(B) = exp(A + B) whenever AB = BA.

The formula provided in the above theorem involves only the distribution of the number of decodable input

symbols at each time. In other words, for a Poisson number of batches, it is not necessary to consider the joint

distribution of the number of decodable input symbols and the number of undecodable batches as in Theorem 1.

B. Evaluation Approaches

To evaluate the formula in Theorem 7, we need to calculate the matrix exponential efficiently. Using the

decomposition of Qt given in Lemma 3, we have

exp (n̄pt(Qt − I)) = Ut exp(n̄pt(Dt − I))U−1
t

= Ut


exp(n̄pt(Dt[0, 0]− 1)) · · · 0

...
. . .

...

0 · · · exp(n̄pt(Dt[K − t,K − t]− 1))

U−1
t .



20

However, this approach is not suitable for numerical calculation for moderately large K (e.g., K > 60) due to the

loss of significance.

The calculation of matrix exponential has been extensively studied (see [21] for a survey). We will discuss

two approaches for evaluating the formula in Theorem 7. One of the widely used approach for calculating matrix

exponential is the scaling and squaring method [22], which has been implemented in many numerical computing

environments (e.g., the expm function in Matlab). For a square matrix A, the computational cost of the algorithm

in [22] for computing exp(A) is O(log ‖A‖1) matrix multiplications (of size A) with the truncation error no larger

than a specified tolerance (e.g., the unit roundoff or 2−32). Recall that the complexity of computing the quantities

{pt,s, ptQt}0≤t≤K,0≤s≤M is O(K2M2). Since each row of the matrix Qt has at most M + 1 non-zero entries,

the computational cost of the algorithm in [22] for computing exp (n̄pt(Qt − I)) is O(KM log n̄). Taking into

account of the vector-matrix multiplication, the overall complexity for computing P̃stop(t|n̄), t = 0, 1, . . . ,K is

O(K2M2 +K2M log n̄+K3) real number operations.

Now we discuss another approach. What we are calculating in (19) is a vector multiplying the matrix exponential,

also called an action of the matrix exponential. In general, for a row vector v and a square matrix A, the computation

of v exp(A) can be done by O(‖A‖1) multiplications of a vector with matrix A, using the algorithm in [23]. So

for our case, the overall complexity for computing P̃stop(t|n̄), t = 0, 1, . . . ,K is O(K2M2 +K2Mn̄) real number

operations, taking the structure of Qt into consideration. When n̄ is relatively small, we would prefer the approach

using the action of the matrix exponential, while when n̄ is large, we would choose the first approach to compute

the matrix exponential directly.

We may want to evaluate P̃stop(t|n̄) for n̄ ∈ {in̄0 : i = 1, . . . , imax}, where n̄0 is a small number (e.g. 1 or 0.5).

In this case, we calculate the matrix exponential exp (n̄0pt(Qt − I)) directly with complexity O(KM) using the

algorithm in [22]. Then, we calculate exp (in̄0pt(Qt − I)) for i = 1, . . . , imax recursively using

exp (in̄0pt(Qt − I)) = (exp (n̄0pt(Qt − I)))
i
.

The overall complexity for computing P̃stop(t|n̄), t = 0, 1, . . . ,K, n̄ ∈ {in̄0 : i = 1, . . . , imax} is O(K2M2 +

K3imax) real number operations.

C. Error Probability and Exponent

Similar to Theorem 4, we have the following characterization of P̃stop(t|n̄). Recall rBP defined after Proposition 1,

and qt defined in (11).

Theorem 8. Suppose that BP decoding can start. We have

i) P̃stop(0|n̄) = exp(−n̄(1− q0));

ii) For 1 ≤ t < rBP, P̃stop(t|n̄) = 0; and

iii) For t ≥ rBP,

lim
n̄→∞

− log P̃stop(t|n̄)

n̄
= 1− qt.
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Proof: Using Theorem 3 and (18), we get

P̃stop(t|n̄) =

2t−1∑
i=0

Vt,i[0]
∑
n

n̄n

n!
e−n̄

(
1−

t∑
τ=0

pτ + ∆t,i[0, 0]

)n

=

2t−1∑
i=0

Vt,i[0] exp

(
−n̄

(
t∑

τ=0

pτ −∆t,i[0, 0]

))
.

The proof then follows similarly as the one of Theorem 4 and the details are left to Appendix IV.

Let P̃err(n̄) , 1− P̃stop(K|n̄), i.e., the probability that BP(Ñ) cannot recover all the input packets. Recall that

q∗ = ∨K−1
t=0 qt.

Corollary 9.

lim
n̄→∞

− log P̃err(n̄)

n
= 1− q∗.

Proof: The proof is similar to that of Corollary 5 except that Theorem 8 instead of Theorem 4 is applied, and

hence it is omitted.

D. Another Formula for E[NBP∗ ]

We can use P̃err(n̄) to characterize E[NBP∗ ], the expected number of batches consumed by BP∗.

Theorem 10.

E[NBP∗ ] =

∫ ∞
0

P̃err(x)dx =

K−1∑
t=0

∫ ∞
0

Λ̃(t)
x [0]dx.

Proof: We have ∫ ∞
0

P̃err(x)dx =

∫ ∞
0

∑K−1
t=0 P̃stop(t|x)dx

=

∫ ∞
0

∑K−1
t=0

∑
n

xn

n!
e−xPstop(t|n)dx

=

∫ ∞
0

∑
n

xn

n!
e−xPerr(n)dx

=
∑
n

Perr(n)

n!

∫ ∞
0

xne−xdx

=
∑
n

Perr(n) = E[NBP∗ ]

where the change of the order of the integral and the infinite sum follows from the monotone convergence theorem

and the second last step follows because the integral is the Gamma function of order n+ 1 and is equal to n!.

Compared with the formulae for E[NBP∗ ] in (14) in the form of summation, the formula here is in the form

of an integration. When P̃err(n̄) is easier to obtain than Perr(n), the new formula may have certain advantage for

numerical evaluation.

Checking the proof of the above theorem, we see that the equivalence of these two formulae depends only on

the properties of the Poisson distribution, but not on the underlaying distribution of NBP∗ . In general, let bn be an
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Fig. 3. Comparison of P̃err and Perr for degree distribution ΨBP. Here K = 256, q = 256 and the rank distribution is given in Table I.

infinite sequence such that bn ≥ 0 and
∑∞
n=0 bn exists. Define b̃(x) =

∑
n
xne−x

n! bn. Then we have∫ ∞
0

b̃(x)dx =

∫ ∞
0

∑
n

xne−x

n!
bndx =

∑
n

bn
n!

∫ ∞
0

xne−xdx =
∑
n

bn
n!
n! =

∑
n

bn.

E. Evaluation Example II

Following the example in Section III-F, we evaluate P̃err(n̄) for the degree distribution ΨBP given in Table III

in Appendix VI and compare it with Perr(n). From the illustration in Fig. 3, we first observe that the two curves

are similar except for the different decrease rates. P̃err(n̄) decreases slightly slower than Perr(n) which matches our

characterization that

lim
n→∞

− log(Perr(n))

n
= − log q∗ ≥ 1− q∗ = lim

n̄→∞

− log P̃err(n̄)

n̄
.

Further, from the two formulae for E[NBP∗ ] in terms of Perr(n) and P̃err(n̄) respectively, we know that the areas

below the two curves in Fig. 3 are roughly the same.

V. ANALYSIS OF INACTIVATION DECODING

In this section, we study inactivation decoding, which can reduce the coding overhead for relatively small K

compared with BP decoding.

A. Introduction of Inactivation Decoding

Inactivation decoding was proposed for LT/Raptor codes [17], [18] and can be regarded as an efficient way to

solve sparse linear systems [24], [25], and a similar algorithm [26] has been used for efficient encoding of LDPC

codes. Here we describe how to use inactivation for BATS codes.
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In the BP decoding algorithm discussed in Section II-C, the decoding stops when no decodable input symbols

remain. Though BP decoding stops, Gaussian elimination can still be used to decode the remaining input symbols

(by combining the linear systems associated with the undecoded batches to a single linear system involving all the

undecoded input symbols). But the decoding complexity using Gaussian elimination is much higher than that of

BP decoding. Inactivation decoding combines BP decoding with Gaussian elimination in a more efficient way.

We describe an inactivation decoding process for a given number n of batches, denoted by INAC(n). The

decoding of INAC(n) is the same BP(n) until there are no decodable symbols. Instead of stopping the decoding as

in BP(n), INAC(n) tries to resume the BP decoding process by “inactivating” certain undecoded input symbols.

Specifically, suppose that there are no decodable input symbols at time t, INAC(n) randomly picks an undecoded

symbol b and marks it as inactive. The decoder substitutes the inactive symbol b into the batches like a decoded

symbol, except that b is an indeterminate, and increases the time by one. For example, if the k-th input symbol bk

is inactivated at time t and k ∈ A(t)
i , each component of Y

(t+1)
i = Y

(t)
i − bkgHi will be expressed as a linear

polynomial of bk. Since the time is increased by one for each input symbol decoded or inactivated, the decoding

process of INAC(n) is repeated until time K when all the input symbols are either decoded or inactive.

Denote by I the number of inactive symbols after INAC(n) stops, and denote by b1, . . . , bI the inactive input

symbols. A decoded input symbol b now can be expressed as

b =

I∑
i=1

αibi + α0,

where αi (0 ≤ i ≤ I) are determined by the decoding process. Therefore, the inactivation decoding recovers a

linear formula of each decoded input symbol in terms of the inactive symbols.

After INAC(n) stops, we need to recover the inactive symbols and substitute their values into the formulae of the

decoded input symbols. To generat K − I decoded input symbols, the decoder consumes K − I of all the received

symbols. The other received symbols are actually transformed into linear equations of the inactive symbols, and

then used to solve the inactive symbols. For example, if all the input symbols of a batch is decoded (in terms of the

inative symbols), the received symbols of this batch cannot be used to decode more input symbols, but they impose

linear constraints on the inative symbols. Usually, this linear system of inactive symbols are solved by Gaussian

elimination.

The inactive symbols are uniquely solvable if and only if the (global) linear system formed by the linear systems

associated with all the batches is uniquely solvable. When being used with the precoding techniques of high-

density parity-check and permanent inactivation, the decoding of the inactive symbols can be successful with high

probability for a small coding overhead. Readers may find the detailed discussion of these precoding techniques in

[18]. Our analysis to be provided is not associated with any specific precoding technique.

Inactivation decoding incurs extra computation cost that includes solving the inactive symbols using Gaussian

elimination and substituting the values of the inactive symbols. Since both terms depend on the number of inactive

symbols, knowing this number can help us to understand the tradeoff between computation cost and coding rate.

In the remainder of this section, we provide methods to compute the expected number of inactive symbols.
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B. Expected Number of Inactivation

Since the inactive input symbols are treated as decoded during the inactive decoding, the decodability of batches

can be defined the same as for BP decoding. Let R̂(t)
n and Ĉ(t)

n be the number of decodable input symbols and the

number of undecodable batches, respectively, at time t when using INAC(n). From the description of inactivation

decoding, the probability that a symbol is inactivated at time t < K is

Pinac(t|n) , Pr{R̂(t)
n = 0}.

At time K, the decoding stops (all the input symbols are either decoded or inactive). The expectation of the number

of inactive symbols can be expressed as

E[I|n] =

K−1∑
t=0

Pinac(t|n).

Define an (n+ 1)× (K − t+ 1) matrix Γ
(t)
n as

Γ(t)
n [c, r] , Pr

{
Ĉ(t)
n = c, R̂(t)

n = r
}
.

According to the definition, we can write

Pinac(t|n) =

n∑
c=0

Γ(t)
n [c, 0]. (21)

Define Nt as a (K − t+ 2)× (K − t+ 1) matrix of the form

e0

I

, so that

Γ(t−1)
n [c, :]Nt = (Γ(t−1)

n [c, 0] + Γ(t−1)
n [c, 1],Γ(t−1)

n [c, 2 : K − t+ 1]).

The following theorem provides an iterative formula for Γ
(t)
n , t = 0, 1, . . . ,K.

Theorem 11. Consider a BATS code with K input symbols, n batches, degree distribution Ψ, rank distribution h

of the transfer matrix, and batch size M . We have for inactivation decoding

Γ(0)
n [c, :] = Bi(c;n, 1− ρ0)e0Q

n−c
0 , (22)

and for t > 0,

Γ(t)
n [c, :] =

n∑
c′=c

Bi(c; c′, 1− ρt)Γ(t−1)
n [c′, :]NtQ

c′−c
t . (23)

Proof: The proof is similar to that of Theorem 1. See Appendix V.

If we replace Nt by

0

I

 of proper dimension, the above theorem becomes Theorem 1. Due to this similarity,

many discussions about BP decoding based on Theorem 1 apply to inactivation decoding as well. For example, the

following formula is simpler for evaluating Pinac(t|n) of a range of n.

Theorem 12. For n ≥ 0 and t ≥ 0,

Pinac(t|n) =

n∑
c=0

(
n

c

)(
1−

t∑
τ=0

pτ

)c
Γ

(t)
n−c[0, 0], (24)
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where the first row of the matrices Γ
(t)
n′ , n′ = 0, 1, . . . , n can be computed by the following recursion: For n′ =

0, 1, . . . , n,

Γ
(0)
n′ [0, :] = (p0Q0)n

′
[0, :], (25)

and for t > 0

Γ
(t)
n′ [0, :] =

n′∑
c=0

(
n′

c

)
Γ

(t−1)
n′−c [0, :]Nt(ptQt)

c. (26)

Proof: The proof is similar to that of Theorem 2. See Appendix V.

The formula in the above theorem can be evaluated similarly as the one in Theorem 2. Similar to Pstop(t|n),

Pinac(t|n) can also be expressed as the linear combination of 2t n-th powers.

Theorem 13. For n ≥ 0 and t ≥ 0,

Pinac(t|n) =

2t−1∑
i=0

V′t,i[0]

(
1−

t∑
τ=0

pτ + ∆t,i[0, 0]

)n
,

where matrix ∆t,i is defined in Theorem 3, and row vector V′t,i is defined as follows:

i) V′0,0 , U0[0, :],

ii) For t ≥ 0 and i = 0, 1, . . . , 2t − 1,

V′t+1,i = V′t,i[1:],

V′t+1,2t+i = V′t,i[0](Ut+1[0, :]−Ut[0, 1:]).

Proof: The proof is similar to that of Theorem 3. See Appendix V.

Recalling that qt = 1 −
∑t
τ=0 pτ + ∆t,0[0, 0] (see (11)) and the definition of rBP following Proposition 1.

Applying Theorem 13, we can further obtain the following asymptotic behavior of Pinac(t|n) when n is large.

Theorem 14. When t < rBP, Pinac(t|n) = qnt , and when t ≥ rBP,

lim
n→∞

− logPinac(t|n)

n
= − log qt.

Proof: See Appendix V.

Corollary 15.

lim
n→∞

− logE[I|n]

n
= − log q∗.

where q∗ = ∨K−1
t=0 qt.

C. Poisson Number of Batches

In this subsection, we assume that the number of received batches is a Poisson distributed random variable Ñ

with mean n̄. Denote by Ĩ the number of inactive symbols after INAC(Ñ) stops.
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Define a row vector Γ̃
(t)
n̄ of size K − t+ 1 as

Γ̃
(t)
n̄ [r] , Pr

{
R̂

(t)

Ñ
= r
}

=
∑
n

n̄n

n!
e−n̄ Pr

{
R̂(t)
n = r

}
.

Thus,

Γ̃
(t)
n̄ =

∑
n

n̄n

n!
e−n̄

n∑
c=0

Γ(t)
n [c, :]. (27)

The probability that an input symbol is inactive at time t is

P̃inac(t|n̄) = Γ̃
(t)
n̄ [0] =

∑
n

Pr{Ñ = n}Pinac(t|n), (28)

and hence the expected number of inactive symbols is given by

E[Ĩ|n̄] =

K−1∑
t=0

P̃inac(t|n̄) =

K−1∑
t=0

Γ̃
(t)
n̄ [0]. (29)

The next theorem provides a formula for calculating Γ̃
(t)
n̄ .

Theorem 16. Consider inactivation decoding of a BATS code with K input symbols, degree distribution Ψ, and

transfer matrix rank distribution h. When the number of batches used by BP decoding is Poisson distributed with

expectation n̄, for any integer t ≥ 0

Γ̃
(t)
n̄ = Γ̃

(t−1)
n̄ Nt exp (n̄pt(Qt − I)) ,

where Γ̃−1
n̄ , e0.

Proof: Theorem 16 can be proved similarly as Theorem 7. See Appendix V.

Recall that qt = 1−
∑t
τ=0 pτ + ∆t,0[0, 0] (see (11)) and the definition of rBP following Proposition 1.

Theorem 17. When t < rBP, P̃inac(t|n) = exp(−n̄(1− qt)), and when t ≥ rBP,

lim
n→∞

− log P̃inac(t|n̄)

n
= 1− qt.

Proof: Using Theorem 13 and (28), we get

P̃inac(t|n̄) =

2t−1∑
i=0

V′t,i[0] exp

(
−n̄

(
t∑

τ=0

pτ −∆t,i[0, 0]

))
.

The remainder of the proof is similar to that of Theorem 14 and can be found in Appendix V.

Corollary 18.

lim
n̄→∞

− logE[Ĩ|n̄]

n̄
= 1− q∗.
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Fig. 4. Expected number of inactivation for different degree distributions. Here K = 256, q = 256 and the rank distribution is given in

Table I.

D. Evaluation Example III

Following the example in Section III-F, we further evaluate the inactivation decoding performance of three

degree distributions Ψasy, Ψinac and Ψmee given in Table III in Appendix VI, where Ψinac is obtained by modifying

Ψasy using an approach to be introduced in Section VI. We evaluate E[I|n], n = 1, . . . , 200 for the three degree

distributions. See Fig. 4 for an illustration of the evaluation results.

We first observe that for all the degree distributions, the expected number of inactivation decreases exponentially

fast when n is large. For Ψmee, the asymptotic decrease rate of the expected number of inactivation is the fastest

among these three distributions. From Fig. 1(b), we observe that Ψinac has the smallest expected number of

inactivation for n from 20 to 50. For example, if we use n = 25 for Ψinac, the expected number of inactivation is

about 17.

We also evaluate E[Ĩ|n̄] and compare it with E[I|n] for degree distribution Ψinac. From the illustration in Fig. 5,

we observe that the two curves are similar except for the different decrease rates. P̃err(n̄) decreases slightly slower

than Perr(n) which matches our characterization that

lim
n→∞

− logE[I|n]

n
= − log q∗ ≥ 1− q∗ = lim

n̄→∞

− logE[Ĩ|n̄]

n̄
.

VI. DEGREE-DISTRIBUTION OPTIMIZATION EXAMPLES

In this section, we demonstrate how to use the formulae in the previous sections to optimize the degree distribution

for finite block lengths. Note that our purpose here is to illustrate the applications of the formulae obtained in this

paper, but not to propose an optimization approach for practical use. How to optimize the degree distribution for

practical applications is beyond the scope of this paper.
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Fig. 5. Comparison of E[I|n] and E[Ĩ|n̄] for degree distribution Ψinac. Here K = 256, q = 256 and the rank distribution is given in Table I.

A. General Framework

We want to optimize the degree distribution of BATS codes to minimize the expected coding overhead (for BP

decoding) or the expected number of inactivation (for inactivation decoding). A general approach has the following

two steps with an initial degree distribution Ψ(0) (which can be trivial).

i) Find one or multiple new degree distributions which may be potentially better than Ψ(0).

ii) Evaluate the BP decoding performance of these new degree distributions in terms of an objective function,

and select the degree distribution that outperforms Ψ(0) the most.

These two steps can be applied repeatedly.

The above framework has been used in the design of LT/Raptor codes. For example, in the design of finite-length

Raptor codes discussed in [27], the first step is achieved by a heuristic bound on the input ripple size, and the

second step is performed by means of the exact calculation of the error probability. In one of the optimizations

performed in [28], a robust soliton distribution is sampled at the first step, and a heuristic formula of the expected

number of inactivation is evaluated at the second step.

In this paper, we adapt this framework in the following way. We use the degree distribution obtained from the

asymptotic analysis of BATS codes as the initial degree distribution Ψ(0). In the first step, a new degree distribution

Ψ(1) is obtained by perturbing the degree distribution Ψ(0) at certain degree d so that

Ψ(1) = (Ψ(0) + δed−1)/(1 + δ),

where δ is a real number and ed−1 is the all-zero vector expect that the (d− 1)-th component is 1. In the second

step, we compare the performance of Ψ(1) and Ψ(0) based on our finite-length results of BATS codes. If Ψ(1) is

better than Ψ(0), we replace Ψ(0) by Ψ(1). We repeat these two steps for a number of iterations and output Ψ(0).
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B. Optimization for BP Decoding

For BP decoding, we want to have a degree distribution that has a smaller expected coding overhead than Ψasy.

To compare the two degree distributions in the second step of our optimization framework, we may use (16) to

evaluate E[NBP∗ ] which is accurate enough if a large value of n2 is used. But it is indeed not necessary to accurately

evaluate E[NBP∗ ] in the second step. To make the evaluation in the second step fast, we instead use P̃err(n̄) (with

a properly chosen value of n̄) as a proxy of E[NBP∗ ].

As hinted by Proposition 2 and observed in numerical evaluations, Perr(n) is very close to 1 when n < K/h̄. So

we have the approximation that

E[NBP∗ ] ' n1 +

n2∑
n=n1

Perr(n),

where n1 = dK/
∑
i hie and n2 is a sufficiently large integer. We only need to pick n2 such that

∑∞
n=n2+1 Perr(n)

is sufficiently small for the desired degree distributions. For other degree distributions such that
∑∞
n=n2+1 Perr(n)

is large, the above approximation is roughly a lower bound on the expected coding overhead, which is sufficient

for our purpose of comparison. Similarly, we have the approximation

P̃err(n̄) '
n1−1∑
n=0

n̄ne−n̄

n!
+

n2∑
n=n1

n̄ne−n̄

n!
Perr(n).

The first terms in both approximations are constants. Since the pmf of the Poisson distribution exhibits relatively

small changes for the probability masses around its expectation, we can choose n̄ = (n1 + n2)/2 and expect that

E[NBP∗ ] and P̃err(n̄) share a similar trend when the degree distribution changes.

For the example in Section III-F, ΨBP is the obtained degree distribution, as given in Table III-(b). The comparison

of this degree distribution with Ψasy and Ψmee for BP decoding can be found in Fig. 1 and Table II.

C. Optimization for Inactivation Decoding

For inactivation decoding, we want to have a degree distribution that has a smaller expected number of inac-

tivations than Ψasy. To compare two degree distributions in the second step of our optimization framework, we

compare E[Ĩ|n] instead of E[I|n] to reduce the evaluation time. For the example in Section III-F, Ψinac is the

obtained degree distribution, as given in Table III-(c). A comparison of this degree distribution with Ψasy and Ψmee

for inactivation decoding can be found in Fig. 4.

VII. CONCLUDING REMARKS

Our results in this paper significantly advances the analysis of finite-length BATS/LT codes. The recursive formulae

in this paper can easily be evaluated numerically using matrix operations. Without heavy simulation, we can directly

calculate the error probability of BP decoding and the expected number of inactive symbols. Based on the examples

provided in this paper, it is possible to derise sophisticated finite-length degree distribution optimization methods for

various applications of BATS codes. Further research is needed in the analysis of the power-sum formulae towards

more explicit finite-length results.
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APPENDIX I

PROOF OF THEOREM 1

The subscripts of R(t)
n and C

(t)
n are omitted in this proof. Let Θ̄

(t)
s be the set of indices of batches that both

the degree and the rank at time t equal to s. In other words, a batch with index in Θ̄
(t)
s , s > 0, is decodable and

can decode s symbols. Let Θ(t) be the set of indices of batches that are not in Θ̄(t) , ∪Ms=0Θ̄
(t)
s . We see that

R(t) = | ∪i∈Θ̄(t) A
(t)
i |, which is valid since A(t)

i = ∅ for i ∈ Θ̄
(t)
0 . Also, we see that C(t) = |Θ(t)|.

A. Initial status

We first calculate Λ
(0)
n [c, r] = Pr{C(0) = c,R(0) = r}. When t = 0, a batch with degree s has the probability

Ψs and is decodable with probability ~′s (see (2) for the definition of ~′s). Therefore, the probability that a batch is

in Θ̄
(0)
s is Ψs~′s, i.e., for 1 ≤ i ≤ n and 0 ≤ s ≤M ,

Pr
{
i ∈ Θ̄(0)

s

}
= p0,s , Ψs~′s.

Hence,

Pr
{
i ∈ Θ̄(0)

}
=

M∑
s=0

p0,s , ρ0. (30)

Since all batches are independently generated, we have

Pr
{
C(0) = k

}
= Pr

{
|Θ(0)| = k

}
= Bi(k;n, 1− ρ0). (31)

When ρ0 = 0, Pr{C(0) = n,R(0) = 0} = 1 and the formula in (5) holds. Henceforth in this subsection, we

assume ρ0 > 0. Recall Q0 defined in (7).

Lemma 4. We have for k = 0, 1, . . . , n,(
Pr
{
R(0) = j|C(0) = n− k

}
: j = 0, . . . ,K

)
= e0Q

k
0 ,

where e0 = (1, 0, . . . , 0).

Proof: Fix n. If k = 0, then Θ̄(0) = ∅, and hence Pr{R(0) = 0|C(0) = n} = 1, i.e., the lemma with k = 0 is

proved. Henceforth, we assume k > 0. The condition C(0) = n−k means that k batches becomes decodable at time

0. Suppose that Θ̄(0) = {1, . . . , k}, which does not change the distribution of R(0). Define Z0 ≡ 0 as a constant

random variable on {0, 1, . . . ,K}, and for r = 1, . . . , k define Zr = | ∪rm=1 Am|. These random variables are

defined under the condition {Θ̄(0) = {1, . . . , k}} , E. Note that Zk = R(0). Since the contributors of each batch

are independently chosen, Z0, . . . , Zk forms a Markov chain. Specifically, for j < i, Pr{Zr = j|Zr−1 = i} = 0
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and for j ≥ i,

Pr{Zr = j|Zr−1 = i} = Pr
{
| ∪rm=1 Am| = j

∣∣| ∪r−1
m=1 Am| = j, E

}
=

j∑
s=j−i

Pr
{
| ∪rm=1 Am| = j

∣∣| ∪r−1
m=1 Am| = i, |Ar| = s, E

}︸ ︷︷ ︸
(a)

×Pr
{
|Ar| = s

∣∣| ∪r−1
m=1 Am| = i, E

}︸ ︷︷ ︸
(b)

.

Term (a) is a hypergeometric distribution hyge(s−j+i;K, i, s). Term (b) is equal to Pr
{
|Ar| = s

∣∣r ∈ Θ̄(0)
}

=
p0,s
ρ0

for s ≤ M and zero otherwise. Overall, we have Pr{Zr = j|Zr−1 = i} = Q0[i, j], independent of r. Therefore,

Z0, . . . , Zk forms a homogeneous Markov chain with transition matrix Q0. The proof is completed by noting that

e0 is the probability vector corresponding to the distribution of Z0.

By (31) and Lemma 4, we have

Λ(0)
n [c, :] = (Pr{C(0) = c,R(0) = j} : j = 0, . . . ,K)

= Pr{C(0) = c}(Pr{R(0) = j|C(0) = c} : j = 0, . . . ,K)

= Bi(c;n, 1− ρ0)e0Q
n−c
0 ,

which proves (5).

B. Recursive formula

Consider t > 0 and we prove the recursion of Λ
(t)
n in (6). Define event Et as {R(τ) > 0, τ < t}, i.e.,

Et =
{
∪Ms=1Θ̄(τ)

s 6= ∅, τ < t
}
.

We have for t > 0

Λ(t)
n [c, r] = Pr

{
C(t) = c,R(t) = r,R(τ) > 0, τ < t

}
=

∑
c′,r′>0

Pr
{
C(t) = c, C(t−1) = c′, R(t) = r,R(t−1) = r′, R(τ) > 0, τ < t

}
=

∑
c′,r′>0

Pr
{
C(t) = c,R(t) = r, |C(t−1) = c′, R(t−1) = r′, R(τ) > 0, τ < t− 1

}
Λ(t−1)
n [c′, r′].

=
∑

c′,r′>0

Pr
{
R(t) = r|C(t) = c, C(t−1) = c′, R(t−1) = r′, Et−1

}
︸ ︷︷ ︸

(c)

×

×Pr
{
C(t) = c|C(t−1) = c′, R(t−1) = r′, Et−1

}
︸ ︷︷ ︸

(d)

Λ(t−1)
n [c′, r′].

We characterize (c) and (d) in the above equation respectively. Recall that for t ≥ 1

pt,s , ~s
D∑

d=s+1

Ψd
d

K
hyge(d− s− 1;K − 1, d− 1, t− 1),

ρt ,

∑
s pt,s

1−
∑t−1
τ=0

∑
s pτ,s

.
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Lemma 5. For r′ > 0 and c′ ≥ c,

Pr
{
C(t) = c|C(t−1) = c′, R(t−1) = r′, Et−1

}
= Bi(c; c′, 1− ρt).

Proof: Under the condition of R(t−1) = r′ > 0 and Et−1, the BP decoding does not stop at time t− 1. Note

that if c′ = 0, i.e., all the batches are decodable at time t− 1, then C(t) = 0 with probability one. We henceforth

assume c′ > 0 in this proof. Since Θ(0) ⊃ Θ(1) ⊃ · · · ⊃ Θ(t−1), we have C(τ) > 0 for τ = 0, 1, . . . , t − 1.

We consider a special instance of the condition C(t−1) = c′, R(t−1) = r′ and Et−1 such that the input symbol

decoded from time τ − 1 to τ has index τ − 1 for 1 ≤ τ ≤ t, and study the probability of j ∈ Θ̄
(τ)
s ∩ Θ(τ−1)

under this instance. Since the probability to be obtain does not depend on the instance, the probability is equal to

the probability of the lemma. To simplify the notation, the condition C(t−1) = c′, R(t−1) = r′ and Et−1 is omitted

in the remainder of the proof.

For τ = 1, . . . , t, we first study Pr{j ∈ Θ̄
(τ)
s ∩Θ(τ−1)} for an arbitrary batch j. There are totally τ input symbols

decoded at time τ , where τ − 1 is the index of the input symbol decoded at the step from τ − 1 to τ . Given the

initial degree of batch j being d, j ∈ Θ̄
(τ)
s ∩Θ(τ−1) is equivalent to

1) τ − 1 ∈ Aj ,

2) |A(τ)
j | = s, and

3) rk(G
(τ−1)
j Hj) = rk(G

(τ)
j Hj) = s.

Since all batches are formed independently, we know that 1) holds with probability d/K; given 1) the probability

that 2) holds is the hypergeometric distribution hyge(d − s − 1;K − 1, τ − 1, d − 1); given both 1) and 2) the

probability that 3) holds is ~s (see (1)). Therefore, the probability for 1), 2) and 3) to hold given |Aj | = d is

d

K
~shyge(d− s− 1;K − 1, τ − 1, d− 1).

Hence, after considering the distribution of the degree,

Pr
{
j ∈ Θ̄(τ)

s ∩Θ(τ−1)
}

= pτ,s. (32)

Now we study Pr{j ∈ Θ(τ)}. Since Θ(τ), Θ̄
(τ)
s ∩Θ(τ−1), s = 0, 1, . . . ,M forms a partition of Θ(τ−1),

Pr
{
j ∈ Θ(τ−1)

}
= Pr

{
j ∈ Θ(τ)

}
+

M∑
s=0

Pr
{
j ∈ Θ̄(τ)

s ∩Θ(τ−1)
}

= Pr
{
j ∈ Θ(τ)

}
+

M∑
s=0

pτ,s.

Using Pr{j ∈ Θ(0)} = 1−
∑M
s=0 p0,s (see (30)), we obtain that

Pr
{
j ∈ Θ(τ)

}
= 1−

τ∑
τ ′=0

M∑
s=0

pτ ′,s.

Hence we have

Pr
{
j ∈ Θ̄(t)|j ∈ Θ(t−1)

}
=

Pr{j ∈ Θ̄(t) ∩Θ(t−1)}
Pr{j ∈ Θ(t−1)}

= ρt. (33)
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In other words, for a batch in Θ(t−1), it would stay in Θ(t) with probability 1− ρt. Since batches in Θ(t−1) stay

in Θ(t) independently, for B ⊂ {1, . . . , n} with |B| = c′,

Pr
{
C(t) = c|Θ(t−1) = B,R(t−1) = r′, Et−1

}
= Pr

{
|Θ(t)| = c|Θ(t−1) = B,R(t−1) = r′, Et−1

}
= Bi(c; c′, 1− ρt).

Since the above distribution depends on B only through its cardinality, we have

Pr
{
C(t) = c|C(t−1) = c′, R(t−1) = r′, Et−1

}
=

∑
B⊂{1,...,n}:|B|=c′

Pr{C(t) = c|Θ(t−1) = B,R(t−1) = r′, Et−1}Pr{Θ(t−1) = B|C(t−1) = c′, R(t−1) = r′, Et−1}

= Bi(c; c′, 1− ρt).

The proof of the lemma is completed.

Assume
∑M
s=0 pt,s > 0, which holds when BP decoding can start (see Lemma 1).

Lemma 6. For r′ > 0 and c′ ≥ c,

Pr
{
R(t) = r|C(t) = c, C(t−1) = c′, R(t−1) = r′, Et−1

}
= (Qc′−c

t )[r′ − 1, r].

Proof: First, if c = c′, then Qc′−c
t is the identity matrix, and no batches become decodable for the first time at

time t. Therefore, R(t) = R(t−1)−1, which proves the lemma with c = c′. Henceforth, we assume c′ > c. Consider

an instance of {C(t) = c, C(t−1) = c′, R(t−1) = r′, Et−1} with Θ(t−1) \Θ(t) = {1, . . . , c′ − c}. We will compute

the distribution of R(t) by assuming this instance. Since the distribution we will obtain only depends on the instance

through c, c′ and r′, the distribution of R(t) under the condition {C(t) = c, C(t−1) = c′, R(t−1) = r′, Et−1} is the

same.

Let A be the set of indices of decodable input symbols at time t− 1, excluding the input symbol decoded from

time t − 1 to t. We have |A| = r′ − 1, which is valid since r′ > 0. Since batches with index in B′ \ B become

decodable only starting at time t, we have R(t) = |A ∪ (∪δi=1A
(t)
i )|. We use a similar method as in Lemma 4 to

compute the distribution of R(t). Define Z0 ≡ |A| as a constant random variable on {0, 1, . . . ,K − t}, and for

r = 1, . . . , c′ − c define Zr = |A ∪rm=1 Am|. Note that Zc′−c = R(t). Since the contributors of each batch are

independently chosen, Z0, . . . , Zc′−c forms a Markov chain. Specifically, for j < i, Pr{Zr = j|Zr−1 = i} = 0 and

for j ≥ i,

Pr{Zr = j|Zr−1 = i} = Pr
{
|A ∪ (∪rm=1A

(t)
m )| = j

∣∣|A ∪ (∪r−1
m=1A

(t)
m )| = i

}
=

j∑
s=j−i

Pr
{
|A(t)
r | = s

∣∣|A ∪ (∪r−1
m=1A

(t)
m )| = i

}
︸ ︷︷ ︸

(e)

×Pr
{
|A ∪ (∪rm=1A

(t)
m )| = j

∣∣|A ∪ (∪r−1
m=1A

(t)
m )| = i, |A(t)

r | = s
}

︸ ︷︷ ︸
(f)

.
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Term (e) is equal to Pr{r ∈ Θ̄
(t)
s |r ∈ Θ(t−1)∩Θ̄(t)} =

pt,s∑
s pt,s

(see (32)) for s ≤M . Term (f) is a hypergeometric

distribution hyge(s − j + i;K − t, i, s). Overall, we have Pr{Zr = j|Zr−1 = i} = Qt[i, j], independent of r.

Therefore, Z0, . . . , Zc′−c forms a homogeneous Markov chain with transition matrix Qt. The proof is completed

by considering the transition matrix from Z0 to Zc′−c.

Now we are ready to complete the proof of Theorem 1. With the above two lemmas, we can write

Λ(t)
n [c, :] =

∑
c′,r′>0

(Qc′−c
t )[r′ − 1, :]Bi(c; c′, 1− ρt)Λ(t−1)

n [c′, r′]

=
∑
c′≥c

Bi(c; c′, 1− ρt)Λ(t−1)
n [c′, 1:]Qc′−c

t .

This completes the proof of Theorem 1.

APPENDIX II

PROOFS OF SEVERAL PROPERTIES

Proof of Lemma 2: The first claim can be proved by induction over t. First 1 − ρ0 = 1 − p0 by definition.

Suppose that 1) holds for certain t ≥ 0. We have
∏t+1
τ=0(1 − ρτ ) = (1 − ρt+1)(1 −

∑t
τ=0 pτ ) = 1 −

∑t+1
τ=0 pτ ,

where the first equality follows by the induction hypothesis and the second equality follows the definition of ρt.

To prove the second claim, we have ρt
∏t−1
τ=0(1 − ρτ ) = ρt(1 −

∑t−1
τ=0 pτ ) = pt, where the first equality follows

by 1) and the second equality follows the definition of ρt

Proof of Lemma 3: We first prove the formula of U−1
t . Let U′t be an upper-triangular matrix with U′t[i, j] =

(−1)j−i
(
K−t−i
j−i

)
for i ≤ j. We check that UtU

′
t = I. We write

(UtU
′
t)[i, j] =

j∑
k=i

Ut[i, k]U′t[k, j]. (34)

When i = j, it is clear that (UtU
′
t)[i, i] = 1. Since UtU

′
t is upper triangular, we verify that (UtU

′
t)[i, j] = 0 for

j > i. Expanding the RHS of (34), we get

(UtU
′
t)[i, j] =

j∑
k=i

(
K − t− i
k − i

)
(−1)j−k

(
K − t− k
j − k

)

=

(
K − t− i
j − i

) j∑
k=i

(−1)j−k
(
j − i
k − i

)

=

(
K − t− i
j − i

) j−i∑
k=0

(−1)j−i−k
(
j − i
k

)
= 0.

Therefore, U−1
t = U′t.

To complete the proof, we need to verify the equality Qt = UtDtU
−1
t . Write

(UtDtU
−1
t )[i, j] =

j∑
k=i

(
K − t− i
k − i

)
Qt[k, k](−1)j−k

(
K − t− k
j − k

)

=

(
K − t− i
j − i

) j∑
k=i

(−1)j−kQt[k, k]

(
j − i
k − i

)
.
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When i = j, it is clear that (UtDtU
−1
t )[i, i] = Qt[i, i]. Since UtDtU

−1
t is upper triangular, we consider j > i

henceforth. By the definition of Qt[k, k], we have
j∑
k=i

(−1)j−kQt[k, k]

(
j − i
k − i

)
=

j∑
k=i

(−1)j−k
(
j − i
k − i

) k∧M∑
s=0

pt,s
pt

(
k
s

)(
K−t
s

)
=

j∧M∑
s=0

pt,s

pt
(
K−t
s

) j∑
k=i∨s

(−1)j−k
(
j − i
k − i

)(
k

s

)
.

In the following, we show that

j∑
k=i∨s

(−1)j−k
(
j − i
k − i

)(
k

s

)
=


(

i
s−j+i

)
j − i ≤ s ≤ j,

0 s < j − i,
(35)

which completes the proof that (UtDtU
−1
t )[i, j] = Qt[i, j].

The proof of (35) using binomial coefficients with negative integers. We write
j∑

k=i∨s

(−1)j−k
(
j − i
k − i

)(
k

s

)
=

j∑
k=i∨s

(−1)j−k
(
j − i
j − k

)(
k

k − s

)

=

j∑
k=i∨s

(−1)j−k
(
j − i
j − k

)
(−1)k−s

(
−s− 1

k − s

)

= (−1)j−s
j∑

k=i∨s

(
j − i
j − k

)(
−s− 1

k − s

)
= (−1)j−s

(
j − i− s− 1

j − s

)
,

where the last equality is obtained by Vandermonde’s identity by considering the two cases i < s and i ≥ s. Note

that when s < j − i,
(
j−i−s−1
j−s

)
= 0. Otherwise,

(−1)j−s
(
j − i− s− 1

j − s

)
=

(
i

j − s

)
.

The proof of the lemma is completed.

APPENDIX III

PROOFS ABOUT STOPPING TIME DISTRIBUTION

Proof of Theorem 2: We will show that for 1 ≤ c ≤ n and t ≥ 0,

Λ(t)
n [c, :] =

n

c

t∏
i=0

(1− ρi)Λ(t)
n−1[c− 1, :]. (36)

By expanding the above recursive formula, we have for c ≥ 0 and t ≥ 0,

Λ(t)
n [c, :] =

(
n

c

) t∏
i=0

(1− ρi)cΛ(t)
n−c[0, :]. (37)

Substituting (37) into (4) and by Lemma 2, we get

Pstop(t|n) =

n∑
c=0

(
n

c

) t∏
i=0

(1− ρi)cΛ(t)
n−c[0, 0] =

n∑
c=0

(
n

c

)(
1−

t∑
τ=0

pτ

)c
Λ

(t)
n−c[0, 0],
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proving (8). Further, (9) is obtained by (5) for c = 0. To prove (10), we have

Λ(t)
n [0, :] =

n∑
c=0

ρctΛ
(t−1)
n [c, 1:]Qc

t

=

n∑
c=0

(
n

c

)
ρct

t−1∏
i=0

(1− ρi)cΛ(t−1)
n−c [0, 1:]Qc

t

=

n∑
c=0

(
n

c

)
pctΛ

(t−1)
n−c [0, 1:]Qc

t

where the first equality follows from (6) with c = 0, the second equality is obtained by substituting (37), and the

last step is obtained by applying Lemma 2.

Now we prove (36) by induction. When t = 0, we have by Theorem 1 that

Λ(0)
n [c, :] = Bi(c;n, 1− ρ0)Qn−c

0 [0, :]

=
n

c
(1− ρ0)Bi(c− 1;n− 1, 1− ρ0)Q

(n−1)−(c−1)
0 [0, :]

=
n

c
(1− ρ0)Λ

(0)
n−1[c− 1, :]. (38)

Suppose that (36) holds for t ≥ 0. Applying the recursive formula of Theorem 1, we can show that

Λ
(t)
n+1[c, :] =

n+1∑
c′=c

Bi(c; c′, 1− ρt)Λ(t−1)
n+1 [c′, 1:]Qc′−c

t

=

n+1∑
c′=c

Bi(c; c′, 1− ρt)
n+ 1

c′

t−1∏
i=0

(1− ρi)Λ(t−1)
n [c′ − 1, 1:]Qc′−c

t

=
n+ 1

c

t∏
i=0

(1− ρi)
n+1∑
c′=c

Bi(c− 1; c′ − 1, 1− ρt)Λ(t−1)
n [c′ − 1, 1:]Qc′−c

t

=
n+ 1

c

t∏
i=0

(1− ρi)
n∑

c′′=c−1

Bi(c− 1; c′′, 1− ρt)Λ(t−1)
n [c′′, 1:]Q

c′′−(c−1)
t

=
n+ 1

c

t∏
i=0

(1− ρi)Λ(t)
n [c− 1, :].

The proof is completed.

Proof of Theorem 3: We first show

Λ(t)
n [0, :] =

2t−1∑
i=0

Vt,i∆
n
t,iU

−1
t (39)

by induction in t. The claim for t = 0 can be shown by replacing p0Q0 in (9) with the decomposition in Lemma 3.

Suppose that the claim of the theorem holds for certain t ≥ 0. Substituting this form of Λt
n into (10) with t+ 1 in

place of t, we obtain

Λ(t+1)
n =

n∑
c=0

(
n

c

) 2t−1∑
i=0

Vt,i∆
n
t,iU

−1
t [:, 1:](pt+1Qt+1)c

=

2t−1∑
i=0

Vt,i

n∑
c=0

(
n

c

)
∆n−c
t,i U−1

t [:, 1:]Ut+1(pt+1Dt+1)cU−1
t+1.
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Using the same technique as proving (35), we can verify that

U−1
t [:, 1:]Ut+1 =

−Ut[0, 1:]

I

 =

−Ut[0, 1:]

0

+

0

I

 . (40)

Substituting the above equation into (40), we get

Λ(t+1)
n =

2t−1∑
i=0

Vt,i

n∑
c=0

(
n

c

)
∆n−c
t,i

0

I

 (pt+1Dt+1)cU−1
t+1

+

2t−1∑
i=0

Vt,i

n∑
c=0

(
n

c

)
∆n−c
t,i

−Ut[0, 1:]

0

 (pt+1Dt+1)cU−1
t+1

=

2t−1∑
i=0

Vt,i[1:]

n∑
c=0

(
n

c

)
(∆t,i[1:, 1:])n−c(pt+1Dt+1)cU−1

t+1

−
2t−1∑
i=0

Vt,i[0]Ut[0, 1:]

n∑
c=0

(
n

c

)
(∆t,i[0, 0])n−c(pt+1Dt+1)cU−1

t+1 (41)

=

2t−1∑
i=0

Vt,i[1:] (∆t,i[1:, 1:] + pt+1Dt+1)
n

U−1
t+1

−
2t−1∑
i=0

Ut[0, 1:]Vt,i[0] (∆t,i[0, 0]I + pt+1Dt+1)
n

U−1
t+1, (42)

where (41) is obtained by noting ∆t,i is diagonal and (42) is obtained by combining the binomial terms. The proof

of (39) is completed by checking the definition of Vt+1,i and ∆t+1,i.

Substituting the formula of Λ
(t)
n [0, :] in (39) into (8), we get

Pstop(t|n) =

n∑
c=0

(
n

c

)(
1−

t∑
τ=0

pτ

)c 2t−1∑
i=0

Vt,i∆
n−c
t,i U−1

t [:, 0]

=

n∑
c=0

(
n

c

)(
1−

t∑
τ=0

pτ

)c 2t−1∑
i=0

Vt,i[0]∆n−c
t,i [0, 0]

=

2t−1∑
i=0

Vt,i[0]

n∑
c=0

(
n

c

)(
1−

t∑
τ=0

pτ

)c
(∆t,i[0, 0])n−c

=

2t−1∑
i=0

Vt,i[0]

(
1−

t∑
τ=0

pτ + ∆t,i[0, 0]

)n
,

where the second equality is obtained using the facts that i) ∆t,i is diagonal, ii) U−1
t is upper-triangular and iii)

U−1
t [0, 0] = 1.

Proof of Theorem 4: For 0 ≤ t ≤ K and 0 ≤ i ≤ K − t, let

λt,i = ptQt[i, i] = ptDt[i, i] =

i∧M∑
s=0

pt,s

(
i
s

)(
K−t
s

) , (43)

with which we can rewrite

qt = 1−
t∑

τ=0

pτ +

t∑
τ=0

λτ,t−τ .
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Using Lemma 1 and the definition of λt,j , we have that

λt,j = 0, when 0 ≤ t < rBP, t+ j < rBP; (44)

λt,j > λt,j−1, when 0 ≤ t < rBP, t+ j ≥ rBP; (45)

0 < λt,0 < λt,1 < . . . < λt,K−t, when t ≥ rBP. (46)

We further show inductively that for i = 0, 1, . . . , 2t − 1,

∆t,i[j, j] = 0, when t+ j < rBP, (47)

∆t,i[j, j] > ∆t,i[j − 1, j − 1], when t+ j ≥ rBP. (48)

By the definition of ∆0,0 in Theorem 3, we write ∆0,0[j, j] = p0D0[j, j] = λ0,j , which, together with (44)-(46)

with t = 0, implies (47) and (48) for t = 0. Suppose that (47) and (48) hold for certain t ≥ 0. By the recursive

formula in Theorem 3, we have for i = 0, 1, . . . , 2t − 1,

∆t+1,i[j, j] = ∆t,i[j + 1, j + 1] + pt+1Dt+1[j, j] = ∆t,i[j + 1, j + 1] + λt+1,j ,

∆t+1,2t+i[j, j] = ∆t,i[0, 0] + pt+1Dt+1[j, j] = ∆t,i[0, 0] + λt+1,j .

When t+ 1 + j < rBP, by the induction hypothesis, we have ∆t,i[j+ 1, j+ 1] = 0 and ∆t,i[0, 0] = 0, and by (44),

we have λt+1,j = 0. Therefore, ∆t+1,i[j, j] = 0 and ∆t+1,2t+i[j, j] = 0 when t+1+j < rBP, which completes the

proof of (47). When t+1+j ≥ rBP, by the induction hypothesis, we have ∆t,i[j+1, j+1] > ∆t,i[j, j], and by (45)

or (46), we have λt+1,j > λt+1,j−1. Therefore, ∆t+1,i[j, j] > ∆t+1,i[j, j] and ∆t+1,2t+i[j, j] > ∆t+1,2t+i[j, j]

when t+ 1 + j ≥ rBP, which completes the proof of (48).

Now we are ready to prove i) and ii) of the theorem. When t = 0, by Theorem 3 and λ0,0 = 0, we have

Pstop(0|n) = V0,0[0]
(

1−
∑t
τ=0 pτ + ∆0,0[0, 0]

)n
= qn0 , proving i). When 1 ≤ t < rBP, by Theorem 3 and (47),

Pstop(t|n) = (1−
∑t
τ=0 pτ )n

∑2t−1
i=0 Vt,i[0]. To prove ii), we show that for t ≥ 1

2t−1∑
i=0

Vt,i = 0. (49)

When t = 1, we have
1∑
i=0

V1,i = U0[0, 1:]−U0[0, 0]U0[0, 1:] = 0.

Suppose that (49) holds for certain t ≥ 1. We have

2t+1−1∑
i=0

Vt+1,i =

2t−1∑
i=0

Vt,i[1:]−Ut[0, 1:]

2t−1∑
i=0

Vt,i[0] = 0.

Before proving iii) of the theorem, we show by induction that for i = 1, . . . , 2t − 1,

∆t,0[j, j] > ∆t,i[j, j], when t+ j ≥ rBP. (50)
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The above inequality holds trivially for t = 0. Suppose that (50) holds for certain t ≥ 0. When t + 1 + j ≥ rBP,

we have for i = 0, 1, . . . , 2t − 1,

∆t+1,0[j, j] = ∆t,0[j + 1, j + 1] + pt+1Dt+1[j, j]

≥∆t,i[j + 1, j + 1] + pt+1Dt+1[j, j] = ∆t+1,i[j, j]

> ∆t,i[0, 0] + pt+1Dt+1[j, j] = ∆t+1,2t+i[j, j],

where the first inequality follows by the induction hypothesis with equality only when i = 0, and the second

inequality follows from (47) and (48).

Now, we prove iii) for t ≥ rBP ≥ 1. By (50), we know that for i = 1, . . . , 2t − 1,

∆t,0[0, 0] > ∆t,i[0, 0],

and hence
1−

∑t
τ=0 pτ + ∆t,i[0, 0]

qt
=

1−
∑t
τ=0 pτ + ∆t,i[0, 0]

1−
∑t
τ=0 pτ + ∆t,0[0, 0]

< 1. (51)

By Theorem 3 and noting that Vt,0[0] = U0[0, t] =
(
K
t

)
> 0, we write

lim
n→∞

− logPstop(t|n)

n
= lim
n→∞

− log qnt
∑2t−1
i=0 Vt,i[0](1−

∑t
τ=0 pτ + ∆t,i[0, 0])n/qnt

n

= − log qt + lim
n→∞

− log
(
Vt,0[0] +

∑2t−1
i=1 Vt,i[0](1−

∑t
τ=0 pτ + ∆t,i[0, 0])n/qnt

)
n

= − log qt.

The proof is completed.

APPENDIX IV

PROOFS ABOUT POISSON NUMBER OF BATCHES

Proof of Theorem 7: Let Q̄t be a (K + 1) × (K + 1) matrix such that Q̄t[t :, t:] = Qt, and all the other

components of Q̄t are zero. For integers n ≥ 0 and t ≥ 0 define (n + 1) × (K + 1) matrix Λ̄
(t)
n recursively as

follows: i) Λ̄
(0)
n = Λ

(0)
n , and ii) for t > 0,

Λ̄(t)
n [c, :] =

n∑
c′=c

Bi(c; c′, 1− ρt)Λ̄(t−1)
n [c′, :]Q̄c′−c

t . (52)

Note that compared with the iterative formula in Theorem 1, Λ̄
(t−1)
n in the above formula is not shortened.

We show that

Λ̄(t)
n [:, i] = Λ(i)

n [:, 0], i = 0, . . . , t, (53)

Λ̄(t)
n [:, t+ 1:] = Λ(t)

n [:, 1:], (54)

by induction in t. The claim holds for t = 0 by definition. Suppose that (53) and (54) hold for certain t ≥ 0. We

have by the definition that for 0 ≤ c ≤ n,

Λ̄(t+1)
n [c, :] = Λ̄(t)

n [c, :] +

n∑
c′=c+1

Bi(c; c′, 1− ρt+1)Λ̄(t)
n [c′, :]Q̄c′−c

t+1 .
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Since the first t + 1 columns of Q̄t+1 are all zero, we have for i = 0, . . . , t, Λ̄
(t+1)
n [c, i] = Λ̄

(t)
n [c, i] = Λi

n[c, 0].

Since the first t+ 1 rows of Q̄t+1 are all zero, we can write

Λ̄(t+1)
n [c, t+ 1:] = Λ̄(t)

n [c, t+ 1:] +

n∑
c′=c+1

Bi(c; c′, 1− ρt+1)Λ̄(t)
n [c′, t+ 1:]Qc′−c

t+1

=

n∑
c′=c

Bi(c; c′, 1− ρt+1)Λ(t)
n [c′, 1:]Qc′−c

t+1

= Λ(t+1)
n [c, :],

where the second equality follows from the induction hypothesis and the last equality follows by Theorem 1.

Expending the recursive formula (52), we have

Λ̄(t)
n [c, :] = e0

∑
Bi(c0;n, 1− ρ0)Q̄n−c0

0 ×

×Bi(c1; c0, 1− ρ1)Q̄c0−c1
1 × · · · × Bi(c; ct−1, 1− ρt)Q̄ct−1−c

t

= e0

∑(
n

c0

)
(1− ρ0)c0(ρ0Q̄0)n−c0× (55)

×
(
c0
c1

)
(1− ρ1)c1(ρ1Q̄1)c0−c1 × · · · ×

(
ct−1

c

)
(1− ρt)c(ρtQ̄t)

ct−1−c

where the summation is over all (c0, . . . , ct−1) such that n ≥ c0 ≥ c1 ≥ · · · ≥ ct−1 ≥ c. Reorganizing (55) using

Lemma 2, we obtain

Λ̄(t)
n [c, :] = e0

∑(
n

c0

)(
c0
c1

)
· · ·
(
ct−1

c

)(
pt+1

ρt+1

)c (
p0Q̄0

)n−c0 (
p1Q̄1

)c0−c1 · · · (ptQ̄t

)ct−1−c
.

Define

Λ̌
(t)
n̄ =

∑
n

n̄n

n!
e−n̄

∑
c

Λ̄(t)
n [c, :].

By (17), (53) and (54), we have

Λ̌
(t)
n̄ [t:] = Λ̃

(t)
n̄ . (56)

Substituting the expression of Λ̄
(t)
n [c, :] and using the fact that(

n

c0

)(
c0
c1

)
· · ·
(
ct−1

c

)
=

n!

(n− c0)!(c0 − c1)! · · · (ct−1 − c)!c!
,

we have

Λ̌
(t)
n̄ = e0

∑
e−n̄

(
n̄pt+1

ρt+1

)c
c!

(n̄p0Q̄0)n−c0

(n− c0)!

(n̄p1Q̄1)c0−c1

(c0 − c1)!
· · · (n̄ptQ̄t)

ct−1−c

(ct−1 − c)!
,

where the summation is over all (n, c0, . . . , ct−1, c) such that n ≥ c0 ≥ c1 ≥ · · · ≥ ct−1 ≥ c.

Let xt+1 = c, x0 = n − c0, xt = ct−1 − c and xτ = cτ−1 − cτ for 1 ≤ τ ≤ t − 1. We can rewrite the above
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expression as

Λ̌
(t)
n̄ = e0

∑
xτ :τ=0,...,t+1

e−n̄

(
n̄pt+1

ρt+1

)xt+1

xt+1!

(n̄p0Q̄0)x0

x0!

(n̄p1Q̄1)x1

x1!
· · · (n̄ptQ̄t)

xt

xt!

= e0e
−n̄
∑
xt+1

(
n̄pt+1

ρt+1

)xt+1

xt+1!

∑
x0

(n̄p0Q̄0)x0

x0!

∑
x1

(n̄p1Q̄1)x1

x1!
· · ·
∑
xt

(n̄ptQ̄t)
xt

xt!

= e0e
−n̄ exp

(
n̄
pt+1

ρt+1

)
exp

(
n̄p0Q̄0

)
exp

(
n̄p1Q̄1

)
· · · exp

(
n̄ptQ̄t

)
(57)

= e0 exp

(
−n̄
(

1− pt+1

ρt+1

))
exp

(
n̄p0Q̄0

)
exp

(
n̄p1Q̄1

)
· · · exp

(
n̄ptQ̄t

)
= e0 exp

(
−n̄

(
t∑

τ=0

pτ

))
exp

(
n̄p0Q̄0

)
exp

(
n̄p1Q̄1

)
· · · exp

(
n̄ptQ̄t

)
, (58)

where (57) is obtained using the definition of matrix exponential, and (58) follows from the definition of ρt. Thus,

we have

Λ̌
(t)
n̄ = exp (−n̄pt) Λ̌

(t−1)
n̄ exp

(
n̄ptQ̄t

)
with Λ̌0

n̄ = Λ̃0
n̄ given in (20). The proof is complete by noting (56) and exp(n̄ptQ̄t) =

I

exp(n̄ptQt)

.

Proof of Theorem 8: We prove the theorem using

P̃stop(t|n̄) =

2t−1∑
i=0

Vt,i[0] exp

(
−n̄

(
t∑

τ=0

pτ −∆t,i[0, 0]

))
.

When t = 0, we have P̃stop(0|n̄) = V0,0[0] exp (−n̄ (p0 −∆0,0[0, 0])) = exp (−n̄ (p0 − λ0,0)) = exp(−n̄p0),

where the last equality follows from λ0,0 = 0 (see (44)). Hence i) is proved by noting q0 = 1 − p0. When

1 ≤ t < rBP, since ∆t,i[0, 0] = 0 (see (47)), we have P̃stop(t|n̄) = exp
(
−n̄
∑t
τ=0 pτ

)∑2t−1
i=0 Vt,i[0] = 0, where

the last equality follows from (49), proving ii). To prove iii), by (51) and Vt,0[0] = U0[0, t] =
(
K
t

)
> 0, we write

lim
n̄→∞

− log P̃stop(t|n̄)

n̄
= lim
n̄→∞

− log exp(−n̄(1− qt))
∑2t−1
i=0 Vt,i[0] exp

(
−n̄
(∑t

τ=0 pτ −∆t,i[0, 0]− 1 + qt

))
n̄

= 1− qt.

The proof is completed.

APPENDIX V

PROOFS ABOUT INACTIVATION

Proof of Theorem 11: First, we have Λ
(0)
n = Γ

(0)
n by their definitions, proving the formula for t = 0. For

t > 0, define matrices Γ
t(1)
n and Γ

t(2)
n as

Γ(t1)
n [c, r] = Pr

{
Ĉ(t) = c, R̂(t) = r, R̂(t−1) > 0

}
Γ(t2)
n [c, r] = Pr

{
Ĉ(t) = c, R̂(t) = r, R̂(t−1) = 0

}
.
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Since

Γ(t)
n = Γ(t1)

n + Γ(t2)
n ,

we characterize the two terms on the RHS.

Write

Γ(t1)
n [c, r] =

∑
c′

∑
r′>0

Pr{R̂(t) = r|Ĉ(t) = c, Ĉ(t−1) = c′, R̂(t−1) = r′}︸ ︷︷ ︸
(a)

×

×Pr{Ĉ(t) = c|Ĉ(t−1) = c′, R̂(t−1) = r′}︸ ︷︷ ︸
(b)

Γ(t−1)
n [c′, r′],

where term (a) and (b) can be obtained using Lemma 6 and Lemma 5, respectively, since only normal BP decoding

is applied from time t− 1 to t when R̂(t−1) > 0. Similar to the procedure for obtaining (34), we have

Γ(t1)
n [c, :] =

∑
c′≥c

Bi(c; c′, 1− ρt)Γ(t−1)
n [c′, 1:]Qc′−c

t . (59)

The components in Γ
t(2)
n corresponds to the case that inactivation occurs during from time t−1 to time t, where

an undecoded input symbol is marked as inactive and is treated as decoded. We write

Γ(t2)
n [c, r] =

∑
c′

Pr{R̂(t) = r|Ĉ(t) = c, Ĉ(t−1) = c′, R̂(t−1) = 0}︸ ︷︷ ︸
(c)

×

×Pr{Ĉ(t) = c|Ĉ(t−1) = c′, R̂(t−1) = 0}︸ ︷︷ ︸
(d)

Γ(t−1)
n [c′, 0].

Since the inactive symbol in the decoding step from time t − 1 to t can be regarded as the only decodable input

symbol in time t−1, we can obtain (c) and (d) using Lemma 6 with r′ = 1 and Lemma 5 with r′ = 1, respectively.

Thus, we have

Γt(2)
n [c, :] =

∑
c′≥c

Bi(c; c′, 1− ρt)Γ(t−1)
n [c′, 0]e0Q

c′−c
t . (60)

Combining (59) and (60), the recursive formula of Theorem 11 is proved.

Proof of Theorem 12: We first show by induction that for 1 ≤ c ≤ n and t ≥ 0,

Γ(t)
n [c, :] =

n

c

t∏
i=0

(1− ρi)Γ(t)
n−1[c− 1, :]. (61)

Since Γ
(0)
n = Λ

(0)
n , we have by (38) that (61) holds with Suppose that (61) holds for certain t ≥ 0. Applying the
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recursive formula of Theorem 11, we can show that

Γ
(t)
n+1[c, :] =

n+1∑
c′=c

Bi(c; c′, 1− ρt)Γ(t−1)
n+1 [c′, :]NtQ

c′−c
t

=

n+1∑
c′=c

Bi(c; c′, 1− ρt)
n+ 1

c′

t−1∏
i=0

(1− ρi)Γ(t−1)
n [c′, :]NtQ

c′−c
t

=
n+ 1

c

t∏
i=0

(1− ρi)
n+1∑
c′=c

Bi(c− 1; c′ − 1, 1− ρt)Γ(t−1)
n [c′ − 1, :]NtQ

c′−c
t

=
n+ 1

c

t∏
i=0

(1− ρi)
n∑

c′′=c−1

Bi(c− 1; c′′, 1− ρt)Γ(t−1)
n [c′′, :]NtQ

c′′−(c−1)
t

=
n+ 1

c

t∏
i=0

(1− ρi)Γ(t)
n [c− 1, :].

By expanding (61) recursively, we have for c ≥ 0 and t ≥ 0,

Γ(t)
n [c, :] =

(
n

c

) t∏
i=0

(1− ρi)cΓ(t)
n−c[0, :]. (62)

Substituting (62) into (21) and by Lemma 2, we get

Pinac(t|n) =

n∑
c=0

(
n

c

) t∏
i=0

(1− ρi)cΓ(t)
n−c[0, 0] =

n∑
c=0

(
n

c

)(
1−

t∑
τ=0

pτ

)c
Γ

(t)
n−c[0, 0],

proving the formula of Pinac(t|n). Further, (25) is obtained by (22) for c = 0. To prove (26), we have

Γ(t)
n [0, :] =

n∑
c=0

ρctΓ
(t−1)
n [c, :]NtQ

c
t

=

n∑
c=0

(
n

c

)
ρct

t−1∏
i=0

(1− ρi)cΓ(t−1)
n−c [0, :]NtQ

c
t

=

n∑
c=0

(
n

c

)
pctΓ

(t−1)
n−c [0, :]NtQ

c
t

where the first equality follows from (23) with c = 0, the second equality is obtained by substituting (62), and the

last step is obtained by applying Lemma 2.

Proof of Theorem 13: We first show

Γ(t)
n [0, :] =

2t−1∑
i=0

V′t,i∆
n
t,iU

−1
t (63)

by induction in t. The claim for t = 0 can be shown by replacing p0Q0 in (25) with the decomposition in Lemma 3.

Suppose that the claim of the theorem holds for certain t ≥ 0. Substituting this form of Λt
n into (26) with t+ 1 in

place of t, we obtain

Γ(t+1)
n [0, :] =

2t−1∑
i=0

V′t,i

n∑
c=0

(
n

c

)
∆n−c
t,i U−1

t Nt+1Ut+1(pt+1Dt+1)cU−1
t+1. (64)
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We can verify that

U−1
t Nt+1Ut+1 = (U−1

t [:, 0]e0 + U−1
t [:, 1:])Ut+1

=

Ut+1[0, :]−Ut[0, 1:]

I

 =

Ut+1[0, :]−Ut[0, 1:]

0

+

0

I

 ,
where the second equality follows from (40). Similar to the steps obtaining (42), substituting the above equation

into (64) and combining the binomial terms, we get

Λ(t+1)
n =

2t−1∑
i=0

V′t,i[1:] (∆t,i[1:, 1:] + pt+1Dt+1)
n

U−1
t+1

+

2t−1∑
i=0

(Ut+1[0, :]−Ut[0, 1:])V′t,i[0] (∆t,i[0, 0]I + pt+1Dt+1)
n

U−1
t+1.

The proof of (63) is completed by checking the definition of V′t+1,i and ∆t+1,i.

Substituting the above formula of Γ
(t)
n in (63) into (24), we obtain the following formula of Pinac(t|n) given in

this theorem.

Proof of Theorem 14: When t < rBP, we know that ∆t,i[0, 0] = 0 (see (47)). So

Pinac(t|n) =

(
1−

t∑
τ=0

pτ

)n 2t−1∑
i=0

V′t,i[0] = qnt

2t−1∑
i=0

V′t,i[0].

It can be shown inductively that
2t−1∑
i=0

V′t,i = Ut[0, :]. (65)

First, by definition V′0,0 = U0[0, :]. Suppose that (65) holds for certain t > 0. We write

2t+1∑
i=0

V′t+1,i =

2t−1∑
i=0

V′t,i[1:] +

2t−1∑
i=0

V′t,i[0](Ut+1[0, :]−Ut[0, 1:])

= Ut[0, 1:] + Ut[0, 0](Ut+1[0, :]−Ut[0, 1:])

= Ut+1[0, :],

where the second equality follows by the induction hypothesis and the last equality follows by Ut[0, 0] = 1. By

(65), we have Pinac(t|n) = qnt Ut[0, 0] = qnt .

When t ≥ rBP, by (51), we know that for i = 1, . . . , 2t − 1,

1−
∑t
τ=0 pτ + ∆t,i[0, 0]

qt
< 1. (66)

By Theorem 13 and noting that V′t,0[0] = U0[0, t] =
(
K
t

)
> 0, we write

lim
n→∞

− logPinac(t|n)

n
= lim
n→∞

− log qnt
∑2t−1
i=0 V′t,i[0](1−

∑t
τ=0 pτ + ∆t,i[0, 0])n/qnt

n

= − log qt + lim
n→∞

− log
(
V′t,0[0] +

∑2t−1
i=1 V′t,i[0](1−

∑t
τ=0 pτ + ∆t,i[0, 0])n/qnt

)
n

= − log qt.
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The proof is completed.

Proof of Theorem 16: The recursive formula in Theorem 11 can be rewritten into a form similar to (52) as:

Γ̄(t)
n [c, :] =

∑
c′≥c

Bi(c; c′, 1− ρt)Γ̄(t−1)
n [c′, :]N̄tQ̄

c′−c
t ,

where Γ̄
(t)
n [c, :] = (0 Γ

(t)
n [c, :]) and N̄t is a (K + 1)× (K + 1) matrix such N̄t[t− 1:, t:] = Nt and all the other

components are zeros. The proof can be completed by following the steps after (52) and using the fact (27).

Proof of Theorem 17: When t < rBP, we know that ∆t,i[0, 0] = 0 (see (47)). So

P̃inac(t|n̄) = exp

(
−n̄

t∑
τ=0

pτ

)
2t−1∑
i=0

V′t,i[0],

where
∑2t−1
i=0 V′t,i[0] = Ut[0, 0] = 1 by (65).

When t ≥ rBP, by (66) and V′t,0[0] = U0[0, t] =
(
K
t

)
> 0, we write

lim
n̄→∞

− log P̃inac(t|n̄)

n̄
= lim
n̄→∞

− log exp(−n̄(1− qt))
∑2t−1
i=0 V′t,i[0] exp

(
−n̄
(∑t

τ=0 pτ −∆t,i[0, 0]− 1 + qt

))
n̄

= 1− qt.

The proof is completed.

APPENDIX VI

TABLES OF DEGREE DISTRIBUTIONS

Several degree distributions used in the numerical evaluations of this paper are listed in Table III.
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