
ar
X

iv
:1

60
6.

04
90

9v
2

 [
m

at
h.

N
A

]
 1

7
M

ar
 2

01
7

On the algorithmization of Janashia-Lagvilava matrix spectral

factorization method

L.Ephremidze1,2, F. Saied,1 and I. Spitkovsky1

1 Division of Science and Mathematics, New York University Abu Dhabi (NYUAD),
Saadiyat Island, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
2 A. Razmadze Mathematical Institute, I. Javakhishvili Tbilisi State University, 6,
Tamarashvili st., Tbilisi 0177, Georgia. E-mail: le23@nyu.edu

Abstract. We consider three different ways of algorithmization of the Janashia-
Lagvilava spectral factorization method. The first algorithm is faster than the second
one, however, it is only suitable for matrices of low dimension. The second algorithm,
on the other hand, can be applied to matrices of substantially larger dimension. The
third algorithm is a superfast implementation of the method, but only works in the
polynomial case under the additional restriction that the zeros of the determinant are
not too close to the boundary. All three algorithms fully utilize the advantage of
the method which carries out spectral factorization of leading principal submatrices
step-by-step. The corresponding results of numerical simulations are reported in order
to describe the characteristic features of each algorithm and compare them to other
existing algorithms.

Keywords: Matrix spectral factorization, numerical algorithms.

Mathematics Subject Classification (2010): 65F30, 47A68.

1. Introduction

The Matrix Spectral Factorization (MSF) theorem [22], [10] asserts that if

(1) S =











s11(t) s12(t) · · · s1r(t)
s21(t) s22(t) · · · s2r(t)

...
...

...
...

sr1(t) sr2(t) · · · srr(t)











,

|t| = 1, is a positive definite (a.e.) matrix function with integrable entries defined on the
unit circle T in the complex plane, sij(t) ∈ L1(T), and if the Paley-Wiener condition

(2) log detS(t) ∈ L1(T)

is satisfied, then (1) admits a spectral factorization

(3) S(t) = S+(t)
(

S+(t)
)∗
.

Here the entries of S+ are square integrable functions, s+ij ∈ L2(T), which can be

extended analytically inside T, i.e. s+ij belongs to the Hardy space H2. Furthermore

a spectral factor S+ can be selected such that detS+ is an outer analytic function
(see, e.g. [6]) and factorization (3) is unique (up to a constant right unitary multiplier)

1

http://arxiv.org/abs/1606.04909v2

2

under these conditions. S+ is unique if we require S+(0) to be positive definite, and
we always assume that it satisfies this condition as well.

In the scalar case, r = 1, the spectral factor S+ ∈ H2 can be explicitly written by
the formula

(4) S+(z) = exp

(

1

4π

∫ 2π

0

eiθ + z

eiθ − z
log S(eiθ) dθ

)

.

If (1) is a Laurent polynomial matrix

(5) S(t) =
n
∑

k=−n

Ckt
k, Ck ∈ Cr×r,

then the spectral factor

(6) S+(t) =

n
∑

k=0

Akt
k, Ak ∈ Cr×r,

is a polynomial matrix of the same degree n (see e.g. [4] for an elementary proof).
Factorization (3) was first used in linear prediction theory of multidimensional sta-

tionary processes. Nowadays, it is widely known that MSF plays a crucial role in the
solution of various applied problems for multiple-input and multiple-output systems in
Communications and Control Engineering [14]. Recently MSF became an important
step in non-parametric estimations of Granger causality used in Neuroscience [2], [21].
These applications require the matrix coefficients of analytic S+ to be determined, at
least approximately, for a given matrix function S. Therefore, starting with Wiener’s
original efforts [23] to create a sound computational method of MSF, dozens of differ-
ent algorithms have appeared in the literature (see the survey papers [16], [18] and the
references therein, and also [1], [11] for more recent results).

A novel approach to the solution of the MSF problem, without imposing any addi-
tional restriction on S besides the necessary and sufficient condition (2) for the existence
of spectral factorization, was originally developed by Janashia and Lagvilava in [12]
for 2× 2 matrices. This approach was subsequently extended to matrices of arbitrary
dimension in [13]1. Results of preliminary numerical simulations based on the proposed
method were presented in the same paper [13]. However, a closer look at possible al-
gorithmization ways of this method revealed further advantages. In fact, numerical
simulations carried out by the improved algorithms produced much better results than
it was reported in [13]. That this development required additional investigations is
not surprising, as all methods of MSF are quite demanding and, as it is mentioned
in [16]: “the numerical properties of each method strongly depend on the way it is
algorithmized”.

In the present paper, after a general description of the Janashia-Lagvilava method
(Sections III and IV), we describe three different algorithms of MSF based on this
method: JLE-1 (Section VI), JLE-2 (Section VII), and JLE-3 (Section VIII). As it was
mentioned above, the method is general and also suitable for non-rational matrices.
However, since in practical applications the data is finite, we concentrate our attention
on the polynomial case. Furthermore, JLE-algorithm 3 is designed only for polynomial
matrices (5) with the additional restriction that detS(t) 6= 0 for t ∈ T (the so-called
non-singular case). Its theoretical justification is not yet completed. Nevertheless, due

1This method obtained USPTO patent recently: No. 9,318,232; issued April 19, 2016.

3

to its superfast speed, we present JLE-3 in the current form. The JLE-algorithm 1 is
faster than JLE-2 and it can deal with singular case as well, but it is only suitable for
low dimensional matrices. JLE-algorithm 2 can be applied for much larger matrices,
depending on available time and accuracy. In Section IX, we demonstrate the ability
of the method to factorize singular matrices. In Section X, we compare with Wilson’s
MSF method. The results of provided numerical simulations are presented in Section
XI and concluding remarks are given in Section XII. We emphasize that the proposed
MSF method uses the existing scalar spectral factorization algorithms, whenever they
are called for, and does not attempt to improve upon these.

2. Notation

Let D = {z ∈ C : |z| < 1} be the open unit disk, and T = ∂D be the unit circle. As
usual, Lp = Lp(T), 0 < p < ∞, denotes the Lebesgue space of p-integrable complex
functions defined on T (L∞ is the space of essentially bounded functions). For p ≥ 1,
‖f‖p is the usual norm. Hp = Hp(D), 0 < p ≤ ∞, is the Hardy space of analytic
functions in D ,

Hp :=

{

f ∈ A(D) : sup
r<1

∫ 2π

0
|f(reiθ)|p dθ < ∞

}

(H∞ is the space of bounded analytic functions), and L+
p = L+

p (T) denotes the class

of their boundary functions. A function f ∈ Hp is called outer, denoted f ∈ HO
p , if

f(z) = c · exp
(

1

2π

∫ 2π

0

eiθ + z

eiθ − z
log

∣

∣f(eiθ)
∣

∣ dθ

)

, |c| = 1.

The nth Fourier coefficient of an integrable function f ∈ L1(T) is denoted by ck{f}.
For p ≥ 1, L+

p (T) coincides with the class of functions from Lp(T) whose Fourier
coefficients with negative indices are equal to zero.

The set of trigonometric polynomials is denoted by P, i.e. f ∈ P if f has only a
finite number of nonzero Fourier coefficients. In particular, for integers m ≤ n, let
P{m,n} := {f ∈ P : ck{f} = 0 whenever k < m or k > n} and, for a non-negative

integer N , let P+
N := P{0,N}, P−

N := P{−N,0}. Obviously, f ∈ P+
N ⇔ f ∈ P−

N . For a

function f ∈ L1 with Fourier expansion f ∼ ∑

n∈Z ckt
k (or for a formal Fourier series)

and positive integer N , let P+
N , P−

N , and Q+
N be the following projection operators:

P+
N [f] =

N
∑

k=0

ckt
k,P−

N [f] =

N
∑

k=0

c−kt
−k, and Q−

N [f] =

N
∑

k=1

c−kt
−k

If M is a matrix, then M denotes the matrix with complex conjugate entries and

M∗ := M
T
. Furthermore, Cm×m, Lp(T)

m×m, etc., denote the set of m ×m matrices
with the entries from C, Lp(T), etc. If S ∈ Cr×r is a matrix (function) and m ≤ r,
then S[m] stands for the upper-left m × m submatrix of S (S[0] is assumed to be 1)
and S[1: r,m] stands for mth column of S. Matrices like S[1: r−1,m] or S[1: r−1,1:m] are
defined accordingly. The matrix S]i,j[is obtained from S by deleting the ith row and
jth column.

For a polynomial p(t) =
∑k

k=0 pkt
k, let ‖p‖ = sup0≤k≤n |pk|, and for a polynomial

matrix P =
(

Pij

)r

i,j=1
, let ‖P‖ = sup1≤i,j≤r ‖Pij‖.

4

A matrix M ∈ Cr×r is called positive definite if X∗MX > 0 for all 0 6= X ∈ Cr×1,
and S ∈ L1(T)

r×r is called positive definite if it is positive definite for a.a. t ∈ T.
A matrix function U ∈ L∞(T)r×r is called unitary if

(7) U(t)U∗(t) = Ir a.e.,

where Ir stands for r × r identity matrix.
0r×m and 1r×m stand for r×mmatrices with all entries equal to 0 and 1, respectively.

Using Matlab’s notation, if A ∈ Cr×m1 and B ∈ Cr×m2 , then [A B] is r × (m1 +m2)
matrix, while if A ∈ Cr1×m and B ∈ Cr2×m, then [A ; B] = [AT BT]T is (r1 + r2)×m
matrix.

For a column vector a = [a0 a1 · · · al]T ∈ C(l+1)×1 and a positive integer m ∈ N, let
T (a;m) be the (l+m+1)× (m+1) Toeplitz matrix with the first column [a ;0m×1] ∈
Cl+m+1 and the first row [a0 01×m] ∈ C1×(m+1).

We say that a sequence of matrix functions Sn, n = 1, 2, . . . is convergent to a matrix
function S (in some sense) if the entries of Sn are convergent to the corresponding
entries of S (in this sense).

Finally, δij stands for the Kronecker delta, i.e. δij = 1 if i = j and δij = 0 otherwise.

3. General description of the method

The first step of the MSF method proposed in [13] is the triangular factorization of
(1)

(8) S(t) = M(t)M∗(t),

where M(t) is the lower triangular matrix

(9) M(t) =















f+
1 (t) 0 · · · 0 0

ξ21(t) f+
2 (t) · · · 0 0

...
...

...
...

...
ξr−1,1(t) ξr−1,2(t) · · · f+

r−1(t) 0
ξr1(t) ξr2(t) · · · ξr,r−1(t) f+

r (t)















,

ξij ∈ L2(T), f
+
i ∈ HO

2 . The spectral factor S+ is represented in the form

(10) S+(t) = M(t)U2(t)U3(t) . . .Ur(t) · U.
Here each Um is a block matrix function

(11) Um(t) =

(

Um(t) 0m×(r−m)

0(r−m)×m Ir−m

)

,

where Um(t) is a special unitary matrix function of the form

(12) Um(t) =

















u11(t) u12(t) · · · u1,m−1(t) u1m(t)
u21(t) u22(t) · · · u2,m−1(t) u2m(t)

...
...

...
...

...
um−1,1(t) um−1,2(t) · · · um−1,m−1(t) um−1,m(t)

um1(t) um2(t) · · · um,m−1(t) umm(t)

















,

with

(13) uij ∈ L∞
+ , and detU(t) = 1 a.e.

5

(for reasons explained in [7] such matrices can as well be called “wavelet matrices”).
Furthermore, for each m = 2, 3, . . . , r,

(14) S+
[m] =

(

MU2U3 . . .Um

)

[m]

is a spectral factor of S[m]. In particular, S+
0 := MU2U3 . . .Ur is a spectral factor of

(1), and the constant unitary matrix U in (10) makes S+ positive definite in the origin,
namely (see [5, formula (54)])

(15) U =
(

S+
0 (0)

)−1
√

S+
0 (0)(S

+
0 (0))∗.

To obtain unitary matrix function (12) for each m = 2, 3, . . . , r recurrently, we
consider a matrix function

(16) Fm(t) =



















1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0

ζ1(t) ζ2(t) ζ3(t) · · · ζm−1(t) f+
m(t)



















,

where the last row of (16) consists of the first m entries of the mth row of the product

(17) Mm−1 := MU2U3 . . .Um−1,

and then obtain a matrix function (12), (13) such that (see [5, Lemma 4])

(18) FmUm ∈ L+
2 (T)

m×m.

Particularly, we have
(19)

(

Mm−1

)

[m]
=















S+
[m−1](t)

0
0
...
0

ζ1(t) . . . ζm−1(t) f+
m(t)















=















S+
[m−1](t)

0
0
...
0

0 . . . 0 1















Fm(t)

and

(20) S+
[m](t) =















S+
[m−1](t)

0
0
...
0

0 0 . . . 0 1















Fm(t)Um(t).

In order to achieve (18), one needs to consider the following system of conditions
(see [13, formula (15)])

(21)



































ζ1(t)x
+
m(t)− f+

m(t)x+1 (t) ∈ L+
2 ,

ζ2(t)x
+
m(t)− f+

m(t)x+2 (t) ∈ L+
2 ,

...

ζm−1(t)x
+
m(t)− f+

m(t)x+m−1(t) ∈ L+
2 ,

ζ1(t)x
+
1 (t) + ζ2(t)x

+
2 (t) + . . . + ζm−1(t)x

+
m−1(t) + f+

m(t)x+m(t) ∈ L+
2 ,

6

and columns of (12) are m independent solutions of (21).
To construct (12) approximately the following procedures should be performed:

For a large positive N , let F
{N}
m be the matrix function (16) with the last row

replaced by

(ζ
{N}
1 , ζ

{N}
2 , . . . , ζ

{N}
m−1, f

+
m),

where

ζ
{N}
j (t) :=

∞
∑

k=−N

ck{ζj}tk, j = 1, 2, . . . ,m− 1.

Then one can find the unitary matrix function U
{N}
m of the form (12) such that

detU
{N}
m (t) = 1, U

{N}
m (1) = Im, uij ∈ P+

N and F
{N}
m U

{N}
m ∈ P+

N (see [13, Theorem

1]). In particular, the columns of U
{N}
m are m independent solutions of the system

(21) where ζ1, ζ2, . . . , ζm−1 are replaced by ζ
{N}
1 , ζ

{N}
2 , . . . , ζ

{N}
m−1, and they can be ac-

tually found by solving a single system of (N +1)× (N +1) linear algebraic equations
with m different right-hand sides (see the proof of Theorem 1 in [13]). Details of the
computation are given in Section IV.

One can prove that U
{N}
m → Um at least in measure as N → ∞, which guarantees

that (see [5, Theorem 2])

MU2U3 . . .U
{N}
m → MU2U3 . . .Um in L2.

4. Construction of wavelet matrices

In this section we provide the details of computation of the unitary matrix function

UN := U
{N}
m for a given matrix function (16). N and m are assumed fixed throughout

this section.
Let

P+
N [f+

m](t) =
N
∑

k=0

dkt
k, Q−

N [ζi](t) =
N
∑

k=1

γint
−k, and P+

N [1/f+
m](t) =

N
∑

k=0

bkt
k.

(Note that the knowledge of P+
N [f+

m] is sufficient to determine P+
N [1/f+

m].) SupposeD−1

is the upper triangular Toeplitz matrix with the first row

(22) (b0, b1, . . . , bN),

and Γi, i = 1, 2, . . . ,m− 1 is the upper triangular Hankel matrix withe the first row

(23) (0, γi,1, γi,2, . . . , γiN)

(see [13, (26)]) and let

(24) Θi = D−1 Γi , i = 1, 2, . . . ,m− 1.

Note that Θi is the upper triangular Hankel matrix (see [13, (33)]) with the first row

(25) Λi := (ηi0, ηi1, . . . , ηiN),

where
∑N

k=0 ηint
−k = P−

N

[

∑N
k=0 bkt

k ·
∑N

k=1 γint
−k

]

.

Take

(26) ∆ =

m−1
∑

i=1

ΘiΘ
∗
i + IN+1,

7

which is a positive definite matrix (with all eigenvalues ≥ 1), and solve the same system
of equations (see (25))

(27) ∆X = ΛT
i

with m different right hand sides corresponding to i = 1, 2, . . . ,m. Here it is assumed
that Λm = (1, 0, 0, . . . , 0). The matrix (26) has a displacement structure of rank m,
namely

∆− Z∆Z∗ =

m−1
∑

i=1

ΛiΛ
∗
i + EE∗

has rank m, where Z is the upper triangular (N + 1) × (N + 1) matrix with 1’s on
the first up-diagonal and 0’s elsewhere (i.e. a Jordan block with eigenvalue 0) and E =
(0, 0, . . . , 0, 1)T ∈ CN+1,1 (see [13, Appendix]). Therefore its triangular factorization
∆ = LDL∗ can be achieved in O(mN2) operations instead of O(N3) as explained e.g.
in [14, Appendix F] without even constructing the matrix ∆ (just using the (N+1)×m
matrix [Λ1,Λ2, . . . ,Λm−1, E]).

Let the solution of (27) be Xi = (ai0, ai1, . . . , aiN)T , and denote

vmi(t) :=
N
∑

k=0

aint
k, i = 1, 2, . . . ,m,

Suppose also

vij(t) = P+
N

[

N
∑

k=0

ηnt
k ·

N
∑

k=0

aint
−k

]

− δij ,

1 ≤ i ≤ m− 1, 1 ≤ j ≤ m, and let

V (t) =

















v11(t) v12(t) · · · v1,m−1(t) v1m(t)
v21(t) v22(t) · · · v2,m−1(t) v2m(t)

...
...

...
...

...
vm−1,1(t) vm−1,2(t) · · · vm−1,m−1(t) vm−1,m(t)

vm1(t) vm2(t) · · · vm,m−1(t) vmm(t)

















.

Then (see [13, (51)])

UN (t) = V (t) · V −1(0).

It is proved in [13] that V (0) is nonsingular and the condition number of this matrix
is estimated in [8].

5. A shortcut in the recursive step

As it was mentioned in Section III, in order to perform mth recursive step in the
proposed MSF method, we need only to consider

S+
[m−1] =

(

Mm−1

)

[m−1]

(see (17) and (14)), which has already been constructed (at least approximately) and
the first m entries in the mth row of Mm−1

(28)
(

Mm−1

)

[m,1:m]
= (ζ1, ζ2, . . . , ζm−1, f

+
m)

8

(see (16)). Because of the block structure of matrices in (11), the entry f+
m is the same

as in (9). Thus it can be computed by the formula (see [13, formula (56)])

(29) f+
m =

(

detS[m]

)+

(

detS[m−1]

)+

((·)+ stands for the scalar spectral factorization (4)).
Since S = Mm−1M

∗
m−1 (see (8), (17), and (7)) and particularly

(30) (S)[m] =
(

Mm−1

)

[m]

(

Mm−1

)∗

[m]

(see (19)), we have

(31) S+
[m−1] ·

(

ζ1, ζ2, . . . , ζm−1

)∗
= S[1:m−1,m].

Therefore, instead of computing matrices Mm for each m = 2, 3, . . . , r − 1 by (17), we
can directly compute the entries ζ1, ζ2, . . . , ζm−1 from (31).

Having computed the functions ζ1, ζ2, . . . , ζm−1, one can find |f+
m|2 from the formula

(see (30))

(32)
m−1
∑

j=1

|ζj |2 + |f+
m|2 = smm.

Therefore, an alternative way of computing (29) is the scalar spectral factorization of

smm −
∑m−1

j=1 |ζj|2.
In the next three sections we present three different implementations of the described

algorithm for polynomial data (5), followed by the results of corresponding numerical
simulations.

6. JLE-algorithm 1

This algorithm relies on computation of polynomial matrix determinant. Namely,
for a polynomial matrix of order n

(33) P (t) =

n
∑

k=0

Bkt
k, Bk ∈ Cm×m,

detP is a polynomial of order mn. Therefore, having evaluated detP (t) at mn+1 DFT

nodes tl = exp
(

2πil
mn+1

)

, l = 0, 1, . . . ,mn, the coefficients of detP can be computed by

interpolation, namely computing the inverse DFT of [detP (t0), . . . ,detP (tmn)].
This algorithm of polynomial matrix determinant computation is fast and accurate

for matrices of small dimension. However, the algorithm suffers from severe round-
off errors and the accuracy is destroyed for large dimensional matrices. For example,
with a standard double precision in Matlab, we have found a computation error in the
formula

‖det(P1P2)− detP1 detP2‖
as small as 10−8 for randomly selected polynomial matrices P1 and P2 of degree n = 10
and dimension m = 10, and as large as 109 for ones with n = 20 and m = 15. The
reason of such increase is that the coefficients of detP become very large (at least
for randomly selected coefficients Bk in (33)) and floating point machine arithmetic
loses significant digits. Therefore JLE-algorithm 1 (with input (5) and output (6)) is

9

suitable for small dimensional matrices (r < 20 and n < 25). Its basic computational
procedures are described below.

Procedure 1. Compute the diagonal entries of the triangular factor (9) by the
formula (29), where m = 1, 2, . . . , r. Each f+

m can be represented as a rational function
pm/qm, where pm ∈ P+

mn and qm ∈ P+
(m−1)n. In addition, the denominator is free of

zeros inside T, and f+
m is free of poles on T (since f+

m ∈ L+
2 (T)).

For the scalar spectral factorization of detS[m], we first apply exp-log implementation
by using FFT [9] and then we improve the accuracy by using 4-5 iterations of Wilson’s
scalar factorization algorithm [24].

Procedure 2. For m = 2, 3, . . . , r, assume that S+
[m−1] has already been (approxi-

mately) constructed as an (m−1)×(m−1) polynomial matrix of degree n and perform
the following steps.

Step 1. Compute ζj , j = 1, 2, . . . ,m− 1, by the Cramer’s rule from equation (31).

In particular, each ζj will be of the form p/q, where p ∈ P{−n, (m−1)n} and q ∈ P+
(m−1)n,

again with q free of zeros inside T and ζj free of poles on T. Note that ζj-s can be
computed in parallel.

Step 2. Select a large positive integer N . Theoretically, as N → ∞, the computed
spectral factor Ŝ+

[m] converges to exact S
+
[m] (assuming that all previous factors including

S+
[m−1] are computed exactly). However, in practise we never achieve an exact result.

Nevertheless, the accuracy

(34) ‖S[m] − Ŝ+
[m]

(

Ŝ+
[m]

)∗‖
can be controlled and the value of N can be increased, if necessary, at each intermediate
stage, in order to achieve a satisfactory approximation in the final result.

Step 3. From obtained representations of ζj , j = 1, 2, . . . ,m−1, and f+
m as rational

functions, find

ζ
{N}
j := Q−

N [ζj] + P+
n [ζj] =

n
∑

k=−N

ck{ζj}tk

and

f{N}
m := P+

N+n[f
+
m] =

N+n
∑

k=0

ck{f+
m}tk.

We do this by the standard division algorithm of two polynomials, utilizing the advan-
tages of denominator being free from zeros inside T and function having no poles on
T.

Step 4. Using (ζ
{N}
1 , ζ

{N}
2 , . . . , ζ

{N}
m−1, f

{N}
m) as the last row of (16), construct a

unitary matrix function UN := U
{N}
m as it is described in Section IV.

Step 5. Consider the product

S+
[m] ≈











0

S+
[m−1]

...

0

ζ
{N}
1 ζ

{N}
2 . . . ζ

{N}
m−1 f

{N}
m























u11 u12 · · · u1m
...

...
...

...
um−1,1 um−1,2 · · · um−1,m

um1 um2 · · · umm













(the last matrix is U
{N}
m), where all coefficients of polynomials in the right-hand side

product with indices outside the range [0, n] are neglected (since we know that the

10

exact S+
[m] is matrix polynomial of degree n). Therefore, S+

[m−1] can be separately

multiplied by the first m− 1 rows of U
{N}
m and then its last row can be multiplied by

U
{N}
m .

Procedure 3. For m = r, S+
[r] is an approximate spectral factor of S. We can

multiply S+
[r] by the constant unitary matrix U defined by (15) (taking S+

[r] instead of

S+
0) to obtain S+.

7. JLE-algorithm 2

In this implementation, computations of polynomial matrix determinants are avoided.
Consequently much higher dimensional matrices can be factorized accurately by this
algorithm at the expense of large computer memory usage.

Procedure 1. Compute a scalar spectral factor f+
1 of s11 by using the same exp-log

and Wilson’s methods as in Procedure 1 of JLE-algorithm 1.

Procedure 2. For m = 2, 3, . . . , r, assume that S+
[m−1] has already been (approxi-

mately) constructed as an (m−1)×(m−1) polynomial matrix of degree n and perform
the following steps.

Step 1. Take a large number of DFT nodes, usually 2κ, where 10 ≤ κ ≤ 23:
tl = exp

(

2πil
2κ

)

, l = 0, 1, . . . , 2κ − 1. This κ becomes another tuning parameter in the
algorithm (along with N), which can be selected and changed during recursive steps
in order to improve the accuracy (34).

Step 2. For each node tl, l = 0, 1, . . . , 2κ − 1, evaluate the matrices S+
[m−1](tl) and

S[1:m−1, m](tl), and solve the following system of linear equations (see (31)):

(35) S+
[m−1](tl) ·X = S[1:m−1, m](tl).

We have
(

ζ1(tl), ζ2(tl), . . . , ζm−1(tl),
)

= X∗
l , where Xl is the solution of (35).

If it happens that the system (35) is singular or ill conditioned, then we can apply
the continuity of functions ζj and assume that Xl = Xl−1.

When standard routines are well optimized (as it is in Matlab), this step is not as
time-consuming as it might appear at the first glance.

Step 3. Compute |f+
m(tl)|2, l = 0, 1, . . . , 2κ − 1, from the formula (32)

Step 4. Select a large positive integer N , and using the values of |f+
m|2 at DFT

nodes, perform an approximate scalar spectral factorization to reconstruct

f{N}
m :=

N+n
∑

k=0

ck{f+
m}tk.

For this step, one can use the exp-log method of scalar spectral factorization which
utilizes the boundary values of a spectral density.

The integer N has a natural bound 2κ−n in this situation, however an optimal ratio
(from 1/10 to 1/50) of N/2κ should be selected in order to achieve a good accuracy.

Step 5. From the values of ζj at DFT nodes tl, l = 0, 1, . . . , 2κ − 1, reconstruct
(approximately)

(36) ζ
{N}
j :=

n
∑

k=−N

ck{ζj}tk

by using the inverse FFT and selecting corresponding coefficients.

11

The remaining steps are the same as Steps 4 and 5 in JLE-algorithm 1, including
Procedure 3.

8. JLE-algorithm 3

This implementation utilizes formulas (20), (29), and (31) for m = r:

(37)

S+(t) =















S+
[r−1](t)

0
0
...
0

ζ1(t) ζ2(t) . . . ζr−1(t) f+
r (t)































u11(t) u12(t) · · · u1r(t)
u21(t) u22(t) · · · u2r(t)

...
...

...
...

ur−1,1(t) ur−1,2(t) · · · ur−1,r(t)

ur1(t) ur2(t) · · · urr(t)

















,

(38) f+
r (t) = detS+(t)/detS+

[r−1](t),

and

(39) [ζ1(t), ζ2(t), . . . , ζr−1(t)] ·
(

S+
[r−1](t)

)∗
= S[r,1: r−1](t).

Let U(t) = Ur(t) be the last matrix in (37). Then, for j ≤ r, it follows from (37)
that

(40) S+
[r−1](t) · U[1: r−1, j](t) = S+

[1: r−1, j](t),

and furthermore

(41) S+
[r−1](t) · U]r,j[(t) = S+

]r,j[(t).

Since U(t) is a unitary matrix (U−1(t) = U∗(t)) and detU(t) = 1, it follows that
ur,j(t) = detU]r,j[(t) and, taking into account (41), we get

(42) ur,j(t) = detS+
]r,j[(t)/detS

+
[r−1](t).

It also follows from (37) that

(43) [ζ1(t), ζ2(t), . . . , ζr−1(t)] · U[1: r−1, j](t) + f+
r (t)ur,j(t) = S+

rj(t).

Substituting into (43) [ζ1, . . . , ζr−1] = S[r,1: r−1] ·
(

S+
[r−1]

)−∗
(see (39)), U[1: r−1, j] =

(

S+
[r−1]

)−1 · S+
[1: r−1, j] (see (40)), (38), and (42), and taking into account that S[r−1] =

S+
[r−1]

(

S+
[r−1]

)∗
, we get

S[r,1: r−1](t) ·
(

S[r−1](t)
)−1 · S+

[1: r−1, j](t) +
detS+(t)detS+

]r,j[(t)

detS[r−1](t)
= S+

rj(t).

Consequently,
(44)

S[r,1: r−1](t)·Cof
{

S[r−1](t)
}T ·S+

[1: r−1, j](t)+
(

detS(t)
)+ · detS+

]r,j[(t) = S+
rj(t)detS[r−1](t),

where it is assumed that
(

detS(t)
)+

can be found from detS(t), as the problem is
reduced to the scalar spectral factorization.

12

In the equation (44), S[r,1: r−1], Cof
{

S[r−1]

}T
,
(

detS(t)
)+

and detS[r−1] are assumed

to be the known (matrix) functions, and S+
[1: r−1, j], detS+

]r,j[, and S+
rj are unknown

(matrix) functions.
Assume now that S is a matrix polynomial of degree n (see (5)), i.e. S ∈ (P{−n,n})

r×r.
Let us observe that for functions in (44) we have:

S[r,1: r−1] ∈ (P{−n,n})
1×(r−1); Cof

{

S[r−1]

}T ∈ (P{−n(r−2),n(r−2)})
(r−1)×(r−1);

S+
[1: r−1, j] ∈ (P{0,n})

(r−1)×1; (det S)+ ∈ P{0,rn}; detS
+
]r,j[∈ P{−(r−1)n,0};S

+
rj ∈ P{0,n},

and detS[r−1] ∈ P{−(r−1)n,(r−1)n}. Thus all products in (44) have the range of indices
of (nonzero) Fourier coefficients in [−(r − 1)n, rn]. If we equate the corresponding
coefficients in these products, we get 2rn−n+1 linear algebraic equations with respect
to coefficients of unknown (matrix) polynomials S+

[1: r−1, j], detS
+
]r,j[, and S+

rj. The total

number of these coefficients is (r−1)(n+1)+{(r−1)n+1}+(n+1) = 2rn−n+r+1.
We can factorize S(t) at a single point on the unit circle, say t = 1, and getting

the representation S(1) = S+(1)
(

S+(1)
)∗
, we can assume that [S+

[1: r−1, j](1)S
+
r,j(1)]

T

is the j-th column of S+(1). This gives the additional r conditions on coefficients of
(matrix) polynomials S+

[1: r−1, j] and S+
r,j, and thus additional r equations. In the end

we get the same number of linear equations and unknowns 2rn− n+ r + 1.
The basic computational procedures of the algorithm are described below.

Step 1. Compute the polynomial determinants detS(t) and detS[r−1](t) by the
method described in JLE-1.

Step 2. Compute the scalar spectral factor
(

detS(t)
)+

by the method described
in Procedure 1 of JLE-1.

Step 3. Compute Cof
{

S[r−1](t)
}T

by evaluating it at N = 2n(r − 1) + 1 DFT

nodes tl = exp
(

2πil
N

)

, l = 0, 1, 2, . . . , N − 1, by the formula Cof
{

S[r−1](tl)
}T

=

detS[r−1](tl)
(

S[r−1](tl)
)−1

and then use the inverse Fourier transform.

Step 4. Multiply matrix polynomials S[r,1: r−1] and Cof
{

S[r−1]

}T
.

Let
(

detS(t)
)+

=
∑rn

k=0 akt
k, t(r−1)n detS[r−1](t) =

∑2(r−1)n
k=0 bkt

k, and

t(r−1)nS[r,1: r−1](t)Cof
{

S[r−1]

}T
(t) =

2(r−1)n
∑

k=0

Ckt
k =

[

2(r−1)n
∑

k=0

c
{1}
k tk · · ·

2(r−1)n
∑

k=0

c
{r−1}
k tk

]

,

Ck ∈ C1×(r−1), c
{j}
k ∈ C. Introduce also the notation: a = [a0 a1 · · · arn]T ∈ C(2rn+1)×1;

b = [b0 b1 · · · b2(r−1)n]
T ∈ C(2(r−1)n+1)×1; c{j} = [c

{j}
0 c

{j}
1 · · · c{j}2(r−1)n]

T ∈C(2(r−1)n+1)×1,

j = 1, 2, . . . , r − 1.

Step 5. Construct the (2rn− n+ 1)× (2rn− n+ r + 1) matrix ∆0 = [∆1 ∆2 ∆3],

where ∆1 = [T (c{1} ;n) T (c{2} ;n) · · · T (c{r−1} ;n)] ∈ C(2rn−n+1)×(r−1)(n+1), ∆2 =

−T (b ;n) ∈ C(2rn−n+1)×(n+1), and ∆3 = T (a ; (r − 1)n) ∈ C(2rn−n+1)×((r−1)n+1) and
then the (2rn−n+ r+1)× (2rn−n+ r+1) matrix ∆ = [∆1 ∆2 ∆3 ; I 0r×((r−1)n+1)],

where I ∈ Cr×r(n+1) is the r × r block identity matrix with entries 11×(n+1) on the
block diagonal and 01×(n+1) elsewhere.

Step 6. Perform the Cholesky factorization of the positive definite matrix S(1) =
S+(1)

(

S+(1)
)∗

and assume that S+(1) = [h1 h2 · · · hr], where hj ∈ Cr×1.

13

Step 7. For each j = 1, 2, . . . , r, solve the (2rn − n + r + 1) × (2rn − n + r + 1)
system of equations

(45) ∆X = Λj ,

with right-hand sides Λj = [0(2rn−n+1)×1 ;hj], and denote the respective solution by

Xj = [x
{j}
0 x

{j}
1 · · · x{j}2rn−n+r]

T .

Step 8. Set a spectral factor S+
0 =

(

s+ij
)r

i,j=1
, where s+ij(t) =

∑n
k=0 x

{j}
(n+1)(i−1)+k

tk

Step 9. Find S+ by S+
0 U , where U is defined by the formula (15).

Since we know the existence of decomposition (37), the solution to equation (45)
exists for each j. However it might happen that det∆ = 0. Furthermore, computer
simulations suggest that ∆ is nonsingular whenever detS(t) 6= 0 for each t ∈ T and
∆ is singular whenever detS(t) = 0 for some t ∈ T. Therefore JLE-3 works under
the additional condition detS(t) > 0 for t ∈ T. If this condition holds, but zeros of
detS are rather close to the boundary, the matrix ∆ might become ill-conditioned.
In such situations, the solutions of (45) are inaccurate and approximation to S+ is
lost. The techniques of solution of ill-conditioned systems might be useful, however we
have not investigated this question yet. As numerical simulations show in Section IX,
JLE-algorithm 3 can satisfactory factorize random matrices with r = 6 and n = 20,
which might be useful in certain applications to Mobile Communications [19].

9. Factorization of singular matrices

Symmetric positive matrix polynomials which are chosen randomly or obtained by
channel estimation in wireless communication are usually non-singular, i.e. their de-
terminants do not vanish on T. However, in certain optimal control and wavelet design
problems, one encounters a need to factorize singular matrices. It is well known that all
MSF methods have difficulties in this situation and some of them cannot handle zeros
on the unit circle at all. Obviously, convergence of JLE algorithms also slows down in
singular cases. However, if we fully utilize the ability of Janashia-Lagvilava’s method
to decompose a large scale problem into smaller parts and deal with any arising diffi-
culties by intermediate interventions, in number of cases we can substantially improve
the performance of the algorithm. In this section we demonstrate this advantage by
factorizing specific singular matrices.

First, consider a test matrix from [13] whose spectral factorization is known before-
hand:
(46)

(

2z−1 + 6 + 2z 11z−1 + 22 + 7z
7z−1 + 22 + 11z 38z−1 + 84 + 38z

)

=

(

2 + z 1
7 + 5z 3 + z

)(

2 + z−1 7 + 5z−1

1 3 + z−1

)

This matrix is very simple, but its determinant, −z−2 + 2 − z2, has two double zeros
on the boundary.

When data was fed into ”standard” JLE-algorithm 1 with 5 iterations in scalar
spectral factorization of detS by Wilson’s algorithm (see Sect. 6, Procedure 1), we get
4 correct digits. When we increase the number of the iterations up to 45, the maximum
optimum value, we get 7 correct digits. If we compute the determinant by the direct
formula detS = s11s22− s12s21, avoiding the minimal round-off errors introduced with
computation of the determinant by FFT (see Section 6), then we get 14 correct digits.
All these computations take less than 0.01 seconds as the matrix is very small and and

14

it suffices to select the parameter N as small as 20. We observed that Wilson’s MSF
algorithm (see the next section) can perform factorization (46) with no more than 6
correct digits (with optimum parameter κ = 19) which takes around 3 minutes.

Next we factorize a small size 2× 2 matrix

(47) S(z) =
3

∑

k=−3

Ckz
k =

(

s11(z) s12(z)
s21(z) s22(z)

)

,

where s11(z) = −1−4α
64 z−3 + 1+4α

64 z−1 + 1+ 1+4α
64 z − 1−4α

64 z3; s12(z) =
α
16z

−3 − α
16z

−1 +
α
16z − α

16z
3; s21(z) = s12(1/z); and s22(z) =

1−4α
64 z−3 − 1+4α

64 z−1 +1− 1+4α
64 z + 1−4α

64 z3;

with α = 4 +
√
15 and α = 4 −

√
15. This matrix is singular and, furthermore, its

determinant has an explicit form detS(z) = 8α−1
4096 (z + 1)4(z − 1)4(z + i)2(z − i)2. Its

spectral factorization S(z) =
∑3

k=0Akz
k
∑3

k=0A
T
k z

−k. is required for construction
of the so called SA4 multiwavelet [20] which possess certain nice properties. The
realization of these properties depends on the accuracy by which the coefficients Ak

are computed. The efforts to factorize (47) with a maximal possible accuracy by the
Youla-Kazanjian method [27] is described in [15], where the error err1 = ‖S(z) −
∑3

k=0 Âkz
k
∑3

k=0 Â
T
k z

−k‖ = 4.086 · 10−8 is achieved. (As the exact values of Ak are

unknown in this situation, this error is used to estimate the accuracy ‖Ak − Âk‖.) As
we checked, this performance cannot be improved by the Wilson MSF method either.
In fact, the error cannot be reduced to lower than 10−5 by the method (with optimal
tuning parameter κ = 18: see Section 10).

When we ran JLE-1 with the matrix S and increase the number of iterations in the
scalar factorization step up to 60 (see Procedure 1), we obtain the error err2 = 4.373 ·
10−5. However, if we cancel out the common roots in the triangular factorization (8)
and factorize the determinant detS manually we achieve the error err3 = 1.843 ·10−14 .
In these computations, it is sufficient to take the tuning parameter N = 100 and so
the consumed time is very small (less than 0.1 seconds).

In general, when a singular polynomial (with a zero on T) is factorized in the scalar
case, the best way to deal with the singularity is to factor out the zeros with unit
modulus. This procedure is more demanding in the matrix case (see [17, p. 67]). The
above examples demonstrate that Janashia-Lagvilava method is capable of reducing a
problem of the singularity of a spectral matrix density to the level of scalar factoriza-
tion. In fact, the method has already been used to improve the coefficients of other
well-known multiwavelets as well by effective factorization of related singular matrices
which will be the topic of another paper.

10. Comparison with Wilson’s algorithm

Wilson’s method of MSF appeared in the 70’s of the last century [25], [26]. Since
then, several authors claimed that they obtained MSF algorithms with reduced com-
putational complexity (see [16, p. 1077], [14, p. 206]). These are algorithms based
on the solution of algebraic Riccati equations and some of them are implemented in
Matlab. As a consequence, in our attempts to compare Janashia-Lagvilava algorithm
with other existing methods of MSF, we did not originally consider the Wilson method
and only concentrated our attention on those methods which were implemented in
Matlab (see [13, Sect. VI]). However, recently we learned that Prof. Rangarajan
and his collaborators, who apply MSF in Neuroscience [2], [3], developed an efficient
implementation of Wilson’s method which works rather fast.

15

This implementation takes data matrix in frequency domain. Nevertheless, this idea
can be easily translated for matrices given in time domain. In particular, for a matrix
(5) with given coefficients Ck, k = 0, 1, . . . , N , we select κ as a tuning parameter
and find 2κ values of the matrix function S in DFT nodes: S(t0), . . . , S(t2κ), where

tj = exp
(

2πij
2κ

)

. Then we use the Wilson’s recurrent formula

(48) S+
k+1 = S+

k

[

(S+
k)

−1S(S+
k)

−∗ + I
]+

with initial data S0 =
√
C0. After performing sufficient iterations, we return back

to the time domain and approximately compute the coefficients Ak of (6). Here, like
other minor improvements we introduced in the implementation of Wilson’s method,
we empirically observed that the upper triangular constant matrix Sτ in formula (3.2)
in [26] can be omitted in (48). Such implementation of Wilson’s algorithm essentially
works as efficient as JLE-1 and frequently better than JLE-2. In addition, a flexible
combination of Janashia-Lagvilava and Wilson methods can be sometimes useful.

11. Numerical simulations

The computer code for implementation of JLE-algorithms was written in Matlab
in order to test them numerically. A laptop with characteristics Intel(R) Core(TM)
i7-4600U CPU (2 cores, 4 threads), 2.40GHz, RAM 8.00Gb was used and some of the
tests were performed on the HPC cluster “Dalma” at NYUAD.

For all numerical simulations of MSF algorithms randomly selected polynomial ma-
trices have been used. Namely, for given matrix dimension r and polynomial degree
n, a random polynomial matrix

∑n
k=0Akt

k, Ak ∈ [−1, 1]r×r, has been chosen, and

positive definite (on T) matrix polynomial S(t) =
∑n

k=0Akt
k
∑n

k=0A
∗
kt

−k has been
approximately factorized. In rare occasions, which are emphasized below, some deter-
ministic efforts have been introduced in order to artificially improve the properties of
S. The error

(49) err = ‖S − Ŝ+(Ŝ+)∗‖

is used to estimate the accuracy of the factorization since there is no other way to
decide how close is Ŝ+ ro S+.

The basic problem in order to demonstrate the most effective performance of the
constructed algorithms was an empirical selection of tuning parameters (N for JLE-1,
N and κ for JLE-2, and κ and the number of iterations for Wilson’s algorithm) which
would make an optimal trade-off between the available memory, the computation time
and the accuracy.

For realistic applications, automatic selection of the optimal tuning parameters dur-
ing the factorization remains a challenging problem.

When different algorithms are compared, it is assumed that they were run with the
same data.

We start with JLE-3 which has the advantage that it contains no tuning parame-
ters. Below we demonstrate its performance within the range of polynomial matrices
for which it is applicable. The tuning parameters in JLE-1 and Wilson have been
selected so as to achieve the same accuracy as in JLE-3. Beyond the indicated range
of matrix dimension m and polynomial degree n the accuracy (49) of JLE-3 becomes
unsatisfactory. (In all tables below, r×n indicates that a r×r test matrix was selected

16

with Laurent polynomial entries of degree n having nonzero coefficients indexed from
−n to n).

Table I
Performance of JLE-3

matrix time accu- matr. time accu-
size sec racy size sec racy

JLE-3 4× 30 0. 052 10−8 6× 20 0. 051 10−6

JLE-1 – 0. 315 10−8 – 0. 576 10−6

Wilson – 1. 108 10−8 – 0. 694 10−6

JLE-3 8× 10 0. 051 10−6 10× 5 0. 044 10−6

JLE-1 – 0. 359 10−6 – 0. 352 10−6

Wilson – 0. 419 10−6 – 0. 360 10−6

Next we compare JLE-1 and Wilson within the range of matrices where JLE-1
operates well. The tuning parameter N = 5mn has been taken for mth recursion in
JLE-1 and κ has been selected in Wilson so as to achieve the same accuracy as in
JLE-1.

Table II
Comparision of JLE-1 and Wilson

matrix tuning time accuracy
size parameters sec

JLE-1 10× 100 N = 500 m 6.35 1.63 · 10−7

Wilson – κ = 12; Iter = 23 7.91 1.42 · 10−7

JLE-1 15 × 20 N = 100 m 2.67 6.12 · 10−8

Wilson – κ = 11; Iter = 25 3.95 1.76 · 10−8

Next we factorize random 100 × 100 matrices (with polynomial degree n = 30) by
JLE-2 and Wilson. We tried to factorize such matrices with accuracy that is acceptable
in practice, namely error = 10−4, and selected the tuning parameters accordingly.
A substantial drop in the accuracy has been observed at the final step of recursion
m = 100 in JLE-2 and it was observed that Wilson can factorize the 99 × 99 leading
submatrix of S much more easily than S itself. We empirically explain this phenomenon
by the following reason: the probability for zeros of detS[m] to be very close to T (in
which case all spectral factorization algorithms become slowly convergent) is higher for
m = r than for m < r (however no theoretical proofs has been attempted). Therefore,
in a variant of our implementation, we have combined JLE-2 by Wilson which resulted
in certain improvements.

Table III
Comparision of JLE-2 and Wilson

100 × 30 tuning parameters time accuracy

JLE-2 N = 2400e0.15(m−100) + 80e0.01m 94.1 5 · 10−4

Wilson κ = 11; Iter = 14 85.3 1 · 10−4

Wil+JLE 99 × 99 by Wilson+JLE-2 43.3 2 · 10−4

When we added artificially Ir to a random matrix S in order to avoid zeros close to
T, we achieved the same accuracy within improved computation time. We display the
results below.

Table IV
Comparision of JLE-2 and Wilson

17

Srand + I tuning parameters time accuracy

JLE-2 N ≈ 100e0.02m 24.1 4 · 10−4

Wilson κ = 8; Iter = 9 6.57 3 · 10−4

Wil+JLE 99 × 99 by Wilson+JLE-2 6.23 5 · 10−4

In the end we demonstrate that “good” matrices of dimension as large as 700× 700
can be factorized with accuracy error = 10−3 which is acceptable in practice and within
the available computer memory (120GB of one node at “Dalma” in our situation). With
respect to time usage, the advantage of Wilson’s MSF method is evident in this case.
The reason is that JLE-2 requires the tuning parameter N to be selected very large
at the last recursive steps in order to achieve the given accuracy. However, JLE-2
algorithm still can be invoked to analyze and overcome the problem when Wilson’s
method is unable to factorize a matrix obtained from real applications.

Table V
Factorization of large matrices

700× 30 tuning time accu- RAM
Srnd + I parameters (hours) racy

JLE-2 N ≈ 200e0.003m 2 : 50 4 · 10−3 80GB

Wilson κ = 11; Iter = 17 1 : 08 3 · 10−3 120GB

12. Conclusions

Matrix spectral factorization is widely used in modern control theory and wireless
communications. Furthermore, improved algorithms of MSF may lead to new areas
to which they could be successfully applied. In the present paper, we consider three
different algorithms based on Janashia-Lagvilava method, which may be competitive
with other existing MSF algorithms. A general description of their computational
capabilities, as well as a comparison to Wilson’s MSF algorithm, are provided by
means of numerical simulations.

13. Acknowledgments

The authors are thankful for an opportunity to run part of the tests using the High
Performance Computing resources at New York University Abu Dhabi.

References

[1] A. Böttcher and M. Halwass, A Newton method for canonical Wiener-Hopf and spec-

tral factorization of matrix polynomials, Electron. J. Linear Algebra 26 (2013), 873–897.
MR 3192406

[2] M. Dhamala, G. Rangarajan, and M Ding, Analyzing information flow in brain networks

with nonparametric granger causality, NeuroImage 41 (2008), 354–362.
[3] , Estimating granger causality from fourier and wavelet transforms of time series

data, Physical Review Letters 100 (2008), 018701.
[4] L. Ephremidze, An elementary proof of the polynomial matrix spectral factorization theo-

rem, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), no. 4, 747–751. MR 3233753
[5] L. Ephremidze, G. Janashia, and E. Lagvilava, On approximate spectral factorization

of matrix functions, J. Fourier Anal. Appl. 17 (2011), no. 5, 976–990. MR 2838115
(2012h:47039)

[6] L. Ephremidze and E. Lagvilava, Remark on outer analytic matrix-functions, Proc. A.
Razmadze Math. Inst. 152 (2010), 29–32. MR 2663529

[7] , On compact wavelet matrices of rank m and of order and degree N , J. Fourier
Anal. Appl. 20 (2014), no. 2, 401–420. MR 3200928

18

[8] L. Ephremidze, N. Salia, and I. Spitkovsky, Some aspects of a novel matrix spectral fac-

torization algorithm, Proc. A. Razmadze Math. Inst. 166 (2014), 49–60. MR 3300615
[9] T. N. T. Goodman, Ch. A. Micchelli, G. Rodriguez, and S. Seatzu, Spectral factorization

of Laurent polynomials, Adv. Comput. Math. 7 (1997), no. 4, 429–454. MR 1470294
[10] H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several variables,

Acta Math. 99 (1958), 165–202. MR 0097688 (20 #4155)
[11] A. Jafarian and J. G. McWhirter, A novel method for multichannel spectral factorization,

Proc. Europ. Signal Process. Conf. (2012), 27–31.
[12] G. Janashia and E. Lagvilava, A method of approximate factorization of positive definite

matrix functions, Studia Math. 137 (1999), no. 1, 93–100. MR 1735630 (2000m:15015)
[13] G. Janashia, E. Lagvilava, and L. Ephremidze, A new method of matrix spectral factoriza-

tion, IEEE Trans. Inform. Theory 57 (2011), no. 4, 2318–2326. MR 2809092 (2012d:65077)
[14] T. Kailath, B. Hassibi, and A. H. Sayed, Linear estimation, Prentice-Hall, Inc., Englewood

Cliffs, N.J., 1999, Prentice-Hall Information and System Sciences Series.
[15] V. Kolev, T. V. Cooklev, and F. Keinert, Matrix spectral factorization - SA4 multiwavelet,

Preprint.
[16] V. Kučera, Factorization of rational spectral matrices: A survey of methods, in Proc. IEEE

Int. Conf. Control, Edinburgh 2 (1991), 1074–1078.
[17] G. S. Litvinchuk and I. M. Spitkovskii, Factorization of measurable matrix functions,

Operator Theory: Advances and Applications, vol. 25, Birkhäuser Verlag, Basel, 1987,
Translated from the Russian by Bernd Luderer, With a foreword by Bernd Silbermann.
MR 1015716

[18] A. H. Sayed and T. Kailath, A survey of spectral factorization methods, Numer. Linear
Algebra Appl. 8 (2001), no. 6-7, 467–496, Numerical linear algebra techniques for control
and signal processing. MR 1848590 (2002j:93039)

[19] A. B. Sergienko and V. P Klimentyev, Scma detection with channel estimation error and

resource block diversity, in Proc. Int. Siberian Conf. Control and Communications, (SIB-
CON) (2016), DOI: 10.1109/SIBCON.2016.7491765.

[20] J. Y. Tham, L. Shen, S. L. Lee, and H. H. Tan, A general approach for analysis and

application of discrete multiwavelet transforms, IEEE Trans. Signal Process. 48 (2000),
no. 2, 457–464. MR 1746064

[21] X. Wen, G. Rangarajan, and M. Ding, Multivariate granger causality: an estimation

framework based on factorization of the spectral density matrix, Phil. Trans. R. Soc. A
371: 20110610. (2013).

[22] N. Wiener and P. Masani, The prediction theory of multivariate stochastic processes. I.

The regularity condition, Acta Math. 98 (1957), 111–150. MR 0097856 (20 #4323)
[23] , The prediction theory of multivariate stochastic processes. II. The linear predictor,

Acta Math. 99 (1958), 93–137. MR 0097859 (20 #4325)
[24] G. Wilson, Factorization of the covariance generating function of a pure moving average

process, SIAM J. Numer. Anal. 6 (1969), 1–7. MR 0253561
[25] G. Tunnicliffe Wilson, The factorization of matricial spectral densities, SIAM J. Appl.

Math. 23 (1972), 420–426. MR 0331843
[26] , A convergence theorem for spectral factorization, J. Multivariate Anal. 8 (1978),

no. 2, 222–232. MR 497596
[27] D. C. Youla and N. N. Kazanjian, Bauer-type factorization of positive matrices and the the-

ory of matrix polynomials orthogonal on the unit circle, IEEE Trans. Circuits and Systems
CAS-25 (1978), no. 2, 57–69. MR 0469461

	1. Introduction
	2. Notation
	3. General description of the method
	4. Construction of wavelet matrices
	5. A shortcut in the recursive step
	6. JLE-algorithm 1
	7. JLE-algorithm 2
	8. JLE-algorithm 3
	9. Factorization of singular matrices
	10. Comparison with Wilson's algorithm
	11. Numerical simulations
	12. Conclusions
	13. Acknowledgments
	References

