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Abstract. We consider sequences of random quantum channels defined using the Stinespring for-
mula with Haar-distributed random orthogonal matrices. For any fixed sequence of input states,
we study the asymptotic eigenvalue distribution of the outputs through tensor powers of random
channels. We show that the input states achieving minimum output entropy are tensor products
of maximally entangled states (Bell states) when the tensor power is even. This phenomenon is
completely different from the one for random quantum channels constructed from Haar-distributed
random unitary matrices, which leads us to formulate some conjectures about the regularized min-
imum output entropy.
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1. Introduction

One of most important questions in quantum information theory is to determine the optimal
rate of transmission of classical information through noisy quantum channels. Unlike its classical
counterpart, no closed formula has been found yet for the classical capacity of quantum channels.
Since the capacity is defined as the maximum rate at which classical information can be sent
reliably over the channel in a way that the probability of error approaches zero as the length of
codes goes infinity, naturally the capacity C(·) of a quantum channel Φ has an asymptotic formula
[Hol98, SW97]

C(Φ) = lim
r→∞

1

r
χ(Φ⊗r) (1)

where χ(·) is the Holevo capacity. Here, we assume that the errors appearing in the transmission
of information are independent along the uses of the quantum channels Φ, and it is represented by
the tensor power in the formula.

For some classes of channels, such as depolarizing channels [Kin03a], entanglement breaking
channels [Sho02, Kin03b], Hadamard channels [KMNR07], and unital qubit channels [Kin02], the
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above formula (1) can be simplified. This is a consequence of the following additivity property
proved in the above cited papers: for any r ∈ N

χ(Φ⊗r) = rχ(Φ). (2)

Additivity for the Holevo capacity yields a closed formula (called a single-letter formula) for the
classical capacity for such channels: C(Φ) = χ(Φ).

However, the above simplification does not hold for all quantum channels. In a breakthrough
paper [Has09], Hastings showed violation of additivity for another quantity, the minimum output
entropy, which implies that (2) does not hold for some quantum channels. These two concepts
of minimum output entropy and Holevo capacity are originally different; the former only cares
about single output states, while the latter deals with ensembles of outputs (see Section 2 for
the exact definitions). However, previous to Hastings’ work, Shor showed [Sho04] that additivity
properties for those two quantities are globally equivalent to each other, allowing the translation
of counter-examples from one setting to the other.

In this paper, we focus on the minimum output entropy Smin(Φ⊗r), which has close conceptual
connection to χ(Φ⊗r). We inquire what kind of inputs states will minimize the output entropy for
randomly chosen quantum channels. We explain briefly our methodology in three main points.

First, we choose to focus on random quantum channels. The interest in the study of random
quantum channels comes mainly from the fact that, to date, violation of additivity is proved
only through random techniques (typically with random unitary quantum channels generated by
random unitary matrices), see [Has09, FKM10, FK10, ASW11, BCN12, Fuk14, BCN16, Col16].
Non-random counter-examples have been obtained only for p-Rényi minimum output entropies, see
[WH02, GHP10].

Second, our main results concern random orthogonal quantum channels. As is explained in
Section 2, any quantum channel can be dilated to a unitary closed evolution on a larger space. In
this work, we only consider the case where closed dynamics comes from an orthogonal rotation.
The reason for this choice is that it allows us to consider identical copies of a random quantum
channel, whereas if one uses the more general unitary evolutions, then one needs to take pairs of a
channel and its complex conjugate to witness additivity violations:

Smin(Φ⊗ Φ̄) < Smin(Φ) + Smin(Φ̄) (3)

where the complex conjugation are applied to the unitary matrix which defines the channel Φ. To
translate this result into a violation inequality for two copies of the same channel

Smin(Φ⊗2) < 2Smin(Φ) (4)

one needs to restrict themselves to the real case, where the complex conjugate does not make any
difference (unless one employs a particular symmetrization operation, see [FW07]).

Third, we shall fix a sequence of input states, and study the asymptotic behavior of the output
states. In order to obtain the exact value of the minimum output entropy, one has to optimize over
all input states for a fixed realization of the random quantum channel, but our current techniques
do not allow this setting. This is indeed a drawback of our method, but in this setting we can
obtain quite precise results on the possible outputs in the asymptotic limit. The current setting,
where a universal, channel-independent encoding is considered, is related to the coding theory for
compound quantum channels, see e.g. [DD07, BB09, Mos15].

Our main results (Theorem 6.1 and Corollary 6.2) can be informally stated as follows.

Theorem. Consider random quantum channels Φn obtained by partial-tracing the action of Haar-
distributed random orthogonal matrices, where n is the system dimension. Then, among fixed
sequences of input states, the ones achieving minimum output entropy (asymptotically, as n→∞)
for the channels Φ⊗2r

n are tensor products of r maximally entangled states (Bell states).
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The paper is organized as follows. In Sections 2 and 3 we recall, respectively, some basics notions
and facts from quantum information theory and from the combinatorial theory of permutations and
pairings. In Section 4 we present the theory of invariant integration over the orthogonal group, using
the graphical tensor notation. We discuss then in Section 5 the model of random quantum channels
we are studying. Sections 5 and 6 are the technical core of the paper, in which we characterize the
asymptotical output states for an arbitrary fixed sequence of inputs, and then we optimize over
input sequences. Finally, we discuss our results and a few conjectures in the closing Section 7.
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program (project number: 38615VA), implemented by the French Ministry of Foreign Affairs, the
French Ministry of Higher Education and Research and the Japan Society for Promotion of Science.
Both authors acknowledge the hospitality of the TU München, where this research was conducted.

2. Basics from quantum information theory

We review in this section some basic definitions and facts from quantum information theory.
Some excellent references on the subject are [NC10] and [Wil17].

A quantum state is a positive semidefinite matrix with unit trace; we denote the set of quantum
states by

M1,+
d (C) := {ρ ∈Md(C) : ρ ≥ 0 and Tr ρ = 1}.

Rank one projections ρ = xx∗ (here, x ∈ Cd, ‖x‖ = 1) are the extremal points of the convex body
of quantum states. In the case of bipartite composite systems, the state space is the tensor product
[Md1(C)⊗Md2(C)]1,+. Of particular importance is the maximally entangled state ω̂ = d−1ΩΩ∗ ∈
M1,+

d2
(C), which is also called Bell state. Here,

Cd ⊗ Cd 3 Ω :=

d∑
i=1

ei ⊗ ei

is a vector of norm
√
d (hence the normalization factor d−1 in the formula for ω̂). We denote by

ω = ΩΩ∗ the un-normalized version of ω̂. One can extend, using functional calculus, the notion of
(Shannon) entropy to quantum states:

S(ρ) = −Tr ρ log ρ,

a quantity which is called the von Neumann entropy of the quantum state ρ.
Quantum channels are the most general transformations of quantum states allowed by the laws

of quantum mechanics. Mathematically, quantum channels are completely positive, trace pre-
serving maps between two matrix algebras (remember that we are concerned here only with finite-
dimensional quantum systems). By the celebrated Stinespring dilation theorem [Sti55], all quantum
channels Φ :Md(C)→Mk(C) can be obtained as

Φ(X) = [id⊗Tr](V XV ∗),

where V : Cd → Ck⊗Cn is an isometry, and n is a parameter (called the ancilla dimension) which
can be taken to be n = dk.

As explained in the introduction, quantum Shannon theory is concerned with information trans-
mission tasks in the quantum world. One of the fundamental information processing protocols is
the transmission of classical information through a noisy quantum channel. The classical capacity
of a quantum channel Φ is defined as the optimal rate (# bits transmitted) / (# uses of channel),
assuming that the probability of successfully decoding the transmitted information approaches one.
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The mathematical theory was developed in [Hol98] and [SW97], see also [Wil17, Section 20] for a
textbook presentation. The definition of the classical capacity of a given quantum channel Φ is

C(Φ) = lim
r→∞

1

r
χ(Φ⊗r),

where χ is the Holevo capacity of Φ given by

χ(Φ) = max
{pi,ρi}

S(Φ(
∑
i

piρi))−
∑
i

piS(Φ(ρi)),

where the maximum is taken over all ensembles of probability weights pi and input quantum states
ρi (actually, ensembles of size d2, where d is the dimension of the input space of Φ are enough).

The question whether the quantity χ is additive, i.e.

∀Φ,Ψ, χ(Φ⊗Ψ) = χ(Φ) + χ(Ψ)

is known as the additivity problem [KR01]. Shor has shown in [Sho04] that the additivity of χ is
equivalent to the additivity of a much simpler quantity, the minimum output entropy

Smin(Φ) = min
ρ∈M1,+

d (C)
S(Φ(ρ)).

Much of the work on the additivity problem was about the quantity Smin, proving either that
additivity holds for particular classes of channels, or providing counter-examples (see discussion
and references in Section 1). The focus of the current paper is to understand, for a random
orthogonal quantum channel Φ, how additivity Smin(Φ⊗r) = rSmin(Φ) is violated and to find input
states achieving Smin(Φ⊗r).

3. Combinatorial aspects of permutations and pairings

As the reader shall see in the next section, the theory of invariant integration over the orthogonal
group O(d) is intimately connected to the combinatorial theory of pairings and permutations. We
gather in the current section the necessary definitions and basic facts from combinatorics, as well
as some useful lemmas.

We denote by Sr the symmetric group on r elements. For a permutation α ∈ Sr, we denote
by #α the number of its cycles (including fixed points). The quantity |α| = r −#α is called the
length of α, and it can be shown to be equal to the minimal number of transpositions that multiply
to α. Also, |α| is the distance between α and the identity permutation id ∈ Sr inside the Cayley
graph of Sr generated by all transpositions. Permutations α, β, γ ∈ Sr satisfy triangle inequality:
|αβ−1| ≤ |αγ−1|+ |γβ−1|, and when the equality holds, we say that γ is on a geodesic connecting
α and β, and express it as

α− γ − β (5)

We write S̃2r for the set of products of r disjoint transpositions. The set S̃2r is in bijection with
the set of pairings of [2r] := {1, 2, . . . , 2r}. To any permutation α ∈ Sr, we associate an unoriented
graph Gα, which has vertex set V = [r] and edge set E = {{i, α(i)} : i ∈ [r]}. It is obvious that
each vertex has degree 2 (a loop at a vertex contributes degree 2 to that vertex) and that the cycles
of α are in bijection with the connected components of Gα. In particular, it holds that Gα has #α
connected components. We investigate next a similar setting, where the permutation is replaced
by a set of pairings.

To a pair (α, β) of pairings of the set [2r], encoded by permutations α, β ∈ S̃2r, we associate an
unoriented graph Gα,β having vertex set V = [2r], and edge set given by

E = {{i, α(i)} : i ∈ [2r]} ∪ {{i, β(i)} : i ∈ [2r]},
with the convention that we allow multiple (in our case, at most 2) edges between two vertices.

The following lemma is implicit in [CŚ06, Lemma 3.5]
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1 β(1) αβ(1) βαβ(1) α(1) 1

Figure 1. The connected component with 1. The black dots and their associated
arrows show how αβ forms a loop starting with 1, and the white ones with α(1).

Lemma 3.1. The number of connected components of the graph Gα,β is #(αβ)/2 = r − |αβ|/2.

Proof. First, note that #θ = 2r − |θ| for θ ∈ S2r. Indeed, choose γ ∈ S2r so that γτγ−1 is
non-crossing, but it implies that

#θ = #(γθγ−1) = 2r − |γθγ−1| = 2r − |θ| (6)

based on the well-known fact on non-crossing permutations [NS06].

Next, we count the number of connected components of Gα,β for α, β ∈ S̃2r. To do so, we analyze
the connected component which includes 1. Suppose a number, say, m is connected to 1 in the
graph Gα,β. Then, we have the following two exclusive cases.

1 7→ β(1) 7→ αβ(1) 7→ βαβ(1) 7→ . . . 7→ m

1 7→ α(1) 7→ βα(1) 7→ αβα(1) 7→ . . . 7→ m,
(7)

i.e. we can reach m by applying α and β in turn because of the idempotent property: α2 = id = β2.
Hence, we now have identified the connected component which includes 1 as a disjoint union of two
sets of vertices:

{(αβ)l(1) : l ∈ Z} t {(αβ)lα(1) : l ∈ Z} (8)

Indeed, we have

βα = β−1α−1 = (αβ)−1

β = βαα = (αβ)−1α
(9)

Hence, a connected component in the graph Gα,β always consists of two loops generated by αβ(i)

and βα(i) for some i ∈ [2r], so that the number of connected components is #(αβ)
2 . In fact,

α(1) = (αβ)lα(1) = α(αβ)−l(1) ⇔ (αβ)l(1) = 1 (10)

This completes the proof. �

To understand the proof more intuitively see Figure 1. All numbers connected to 1 are represented
by black and white dots, where from left to right 1 7→ β(1) 7→ αβ(1) 7→ . . . 7→ (αβ)l(1) = 1 for
some l. The left part of (8) corresponds to the black dots and the right the white dots. Note that
α(1) = β(αβ)l−1(1) = (βα)l−1β(1) and those arrows represent applications of αβ.

4. Invariant integration over the orthogonal group

Since the technical core of the paper consists of moment computation for random, Haar dis-
tributed orthogonal matrices, we review in this section the Weingarten formula for averaging over
the orthogonal group.

Following the work of Weingarten [Wei78], the modern mathematical formulation was developed

by Collins and Śniady in [CŚ06]; some further elements can be found in [CM09, Ban10]. The
orthogonal Weingarten formula provides a combinatorial expression for the average of a monomial
in the entries of a Haar orthogonal matrix.
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Theorem 4.1. [CŚ06, Corollary 3.4] For every choice of indices i1, . . . , i2r and j1, . . . , j2r, we have∫
O(n)

Ui1j1 · · ·Ui2rj2rdU =
∑

α,β∈S̃2r

2r∏
s=1

δis,iα(s)δjs,jβ(s) Wgn(α, β). (11)

The odd moments vanish: ∫
O(n)

Ui1j1 · · ·Ui2r+1j2r+1dU = 0.

The Weingarten function Wg is a combinatorial function, which can either be seen as the matrix
inverse of the loop counting matrix in the Brauer algebra or as a sum over Young diagrams, see
[CŚ06]. The values of this function for r ≤ 4 can be found in [CŚ06, Section 6]. In [CŚ06,
Theorem 3.13], the authors also compute the leading order in the large n asymptotic expansion of
the orthogonal Weingarten function:

Wgn(α, β) = (1 + o(1))n−r−|αβ|/2 Möb(α, β), (12)

where Möb is the Möbius function that we define next (see [CŚ06, Section 3.3]). Let 2pi be the
number of cycles of the permutation αβ having length i (this number is indeed even, see Lemma
3.1). Then, define

Möb(α, β) :=
∏
i

(−1)pi−1 Catpi−1, (13)

where Catp is the p-th Catalan number

Catp =
1

p+ 1

(
2p

p

)
.

In [CN10] and [CN11], the authors introduced a graphical calculus for computing expectation
values of expressions involving random unitary matrices and, respectively, random Gaussian ma-
trices. We present next an natural extension of these ideas to integrals over the orthogonal group
with respect to the Haar measure. We shall be brief in our exposition, since the procedure is very
similar to the one in [CN10], also described at length in [CN16, Section III.C]. We shall encode
tensors (i.e. vectors, linear forms, matrices, bipartite matrices, etc.) by boxes having labels at-
tached to them corresponding to the respective vector spaces. Empty labels are associated to duals
of vector spaces (linear forms, or “inputs” of matrices), while filled labels correspond to primal
spaces (that is vectors, or “outputs” of matrices). Wires connect an empty label with a filled one
of the same shape, corresponding to the same vector space. In other words, wires encode tensor
contractions V ∗×V → C. Presented with a diagram D (a collection of boxes and wires) containing
boxes associated to a Haar distributed random orthogonal matrix U ∈ U(n), we can interpret the
Weingarten formula (11) as a graph expansion corresponding to the sum over the pairings α and β.
To each term in the sum we associate a new diagram Dα,β which is obtained by deleting the boxed
corresponding to the random matrix U , and adding wires encoding the product of delta functions in
(11). For each pair (i, j) contained in α, a wire is added between each primal vector space (i.e. filled
label) of the boxes corresponding to the i-th and the j-th matrix U . Similarly, wires are added
between the empty labels, according to the permutation β. We have thus, assuming D contains 2r
U -boxes,

EUD =
∑

α,β∈S̃2r

Dα,β Wgn(α, β). (14)

Let us showcase the formula above using a simple example. Let A ∈Mn(C), and let us compute
EUUAU>, for a Haar orthogonal matrix U ∈ O(n). Here, r = 1, so there is only one possible
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pairing α = β = (12). The original diagram and the graph expansion are represented in Figure 2.
We conclude that

EUUAU> = Tr(A)In Wgn((12), (12)) =
1

n
Tr(A)In.

U A U> A

Figure 2. On the left, the diagram for the matrix UAU>. On the right, the only
diagram appearing in the graph expansion, obtained by deleting the U -boxes, and
adding wires corresponding to the α-pairing (in red) and to the β-pairing (in blue).

5. Output states for tensor powers of random Haar-orthogonal quantum
channels

We consider the following model of random quantum channels. We fix an integer k and a real
number t ∈ (0, 1), which are the parameters of the model. For each integer n, consider the random
quantum channel Φn :Mdn(C)→Mk(C), where dn := btknc and

Φn(X) := [idk⊗Trn](VnXV
>
n ), (15)

where Vn : Rdn → Rk ⊗Rn is a Haar distributed random isometry. Note that although Vn is a real
matrix, the matrix in (15) is an element of Mkn×dn(C). The random isometry Vn can be obtained
by truncating a Haar-distributed random orthogonal matrix Un ∈ O(kn).

Now we investigate the sequence of random matrices, which are output states of tensor powers
of random Haar-orthogonal quantum channels, with some fixed sequence of input states. More
precisely, given a fixed sequence of input states ρn = ψnψ

∗
n, with ψn ∈ Crdn , ‖ψn‖ = 1, let

Z(ρn) := Φ⊗rn (ρn) ∈Mkr(C).

Our goal in this section will be to characterize the asymptotic behavior of the sequence of random
matrices Z(ρn). In this setting, the parameters r, k, t are fixed.

The first result is a formula for the moments of the random matrices Z(ρn). Let p ≥ 1 be the
order of the moment and we wish to compute ETrZ(ρn)p. We shall use the graphical orthogonal
Weingarten formula from Section 4. We have depicted the diagram for TrZ(ρn)2, in the case r = 3,
in Figure 3.

U U>

U U>

U U>

U U>

U U>

U U>

ψψ∗ ψψ∗

Figure 3. A representation of the diagram for the p = 2 moment of the random
matrix Z(ρn), in the case where r = 3 copies of the quantum channel are acting on an
input ρn = ψψ∗. Circular decorations correspond to the vector space Cn, rectangular
decorations correspond to Ck, while diamond-shaped decorations correspond to Cdn .
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The diagram corresponding to the p-th moment contains p× r × 2 random orthogonal matrices
U ∈ O(kn). We shall index these matrices by a triple [i, x, P ], where

• the label i ∈ {1, . . . , p} indicates the index of the copy of the matrix Z(ρn) the U box
belongs to;
• the label x ∈ {1, . . . , r} denotes the index of the channel Φn in the tensor power;
• the position label P ∈ {L,R} indicates whether the box U appears on the “left” side of the

picture or on the “right” side (i.e. the matrix U appears without or with a transposition in
(15)).

We introduce now two permutations which encode the initial wiring (tensor contractions) appearing
in the diagram. To this end, we identify the set of integers {1, . . . , 2pr} with the set of triples [i, x, P ]
described above. We put

δ :=

p∏
i=1

r∏
x=1

([i, x, L], [i, x,R])

γ :=

p∏
i=1

r∏
x=1

([i, x, L], [i− 1, x,R]).

(16)

In the second equation above, we abuse notation and write [0, x, P ] := [p, x, P ] for any index x
and position P . It is important to notice that both permutations above are products of pr disjoint
transpositions, so δ, γ ∈ S̃2pr. As we shall see, the permutations δ, γ encode the wirings correspond-
ing to the partial trace (for each quantum channel) and, respectively, to the trace appearing in the
moment of Z(ρn).

The graphical formulation of the Weingarten formula for integrals over the orthogonal group
O(kn) gives

ETrZ(ρn)p =
∑

α,β∈S̃2pr

Dα,β Wgkn(α, β), (17)

where the sum ranges over pairs (α, β) of pairings of the set of 2rp boxes containing the random
isometry U ; the permutation α is responsible for pairing the “outputs” of the boxes (corresponding
to black labels), while β pairs the inputs (i.e. white labels). Let compute explicitly the content of
a given diagram Dα,β:

(1) Loops corresponding to the partial traces in the quantum channel. Since the original wiring
of the boxes corresponding to these loops is encoded by the permutation δ, the contribution
of these loops is n#(δα)/2, by Lemma 3.1.

(2) Loops coming from the matrix multiplication, giving a total contribution of k#(γα)/2 (for
the same reasons as above).

(3) The contribution of the input state, let us call it fβ(ρn) for now.

Let us bound the contribution of the input state fβ(ρn). To this end, notice that fβ(ρn) =
Tr[(ρn)⊗pM(β)], where M(β) ∈ Mdn(C)⊗pr is a matrix encoding the pairing β, having pr inputs
corresponding to labels [i, x, L] and pr outputs corresponding to labels [j, y, R], see Figure 4 for an
example.

Let us define, for a pairing β ∈ S̃2q where q = pr, its number of bumps [(β) as the number of
pairs inside β which connect elements on the R “side”. For the pairing β in Figure 4, we have
[(β) = 1, since there is only one “bump” on the R side. It is obvious that the number of “bumps”
on the L side is also [(β), and that, up to multiplying from the left and from the right with some
unitary operators, the matrix M(β) is a tensor product of [(β) unnormalized maximally entangled

states with the identity operator up to rotations. In particular, we have ‖M(β)‖∞ = d
[(β)
n , and

thus, using Hölder’s inequality, we conclude that

|fβ(ρn)| ≤ d[(β)
n . (18)
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(R) (L)

Figure 4. An example for the diagram of the matrix M(β) encoding the pairing
β in the case p = 2, r = 3.

In order to get a better understanding of the number of bumps of a pairing, let us call a pairing τ
transverse if it maps the L side to the R side and vice-versa. In other words, τ is transverse if for
all (i, x) ∈ [p]× [r], τ([i, x, L]) = [∗, ∗, R], and τ([i, x,R]) = [∗, ∗, L]. Note that transverse pairings
have zero bumps. We claim the following expression for the number of bumps of a given pairing β:

Lemma 5.1. For β ∈ S̃2q

2[(β) = min
τ transverse

|τβ|. (19)

Moreover, the minimum is achieved if and only if τ = τ1 ⊕ τ2. Here, τ1 =
∏2[
i=1(ri, li) where for

1 ≤ j ≤ [ each pair {r2j−1, r2j} or {l2j−1, l2j} supports a bump in R or L side, respectively, and

τ2 =
∏2q
i=2[+1(ri, li) where (ri, li) ∈ β.

Proof. To prove our claim, we can assume without loss of generality that 2[(β) = q, i.e., all 2q
elements are supporting elements of bumps, and τ2 = 0. This is because for each transposition
(r, l) ∈ β where r and l are from R and L sides, respectively, we can restrict ourselves to transverse
τ such that (r, l) ∈ τ in search for the minimum of |τβ|.

To begin with, we prove ≤ in (19). Consider the bumps on R side and name the supporting

elements in pairs by {r1, r2}, . . . , {r2[−1, r2[} where [ = [(β). Then, for a transverse τ ∈ S̃2q we
have the following mapping of τβ: for 1 ≤ j ≤ [

r2j−1 7→ l2j

r2j 7→ l2j−1
(20)

for some distinctive elements l1, . . . , l2[ from L side, i.e., τ(ri) = li for 1 ≤ i ≤ 2[. Suppose τβ
consists of disjoint cycles, say, c1, . . . , cm, so that

|τβ| =
m∑
i=1

(card(ci)− 1) (21)

where card(ci) is the cardinality of cycle ci. Here, we have m ≤ 2[ based on the comment at the
beginning of this proof. Now, each mapping in (20) constitutes a part of some cycle. If ci is related
to ki mappings in (20), then card(ci) ≥ 2ki. This implies that

|τβ| ≥
m∑
i=1

(2ki − 1) = 4[−m ≥ 2[ (22)

The equality holds if and only if m = 2[ and card(ci) = 2. In this case, the condition τβ(l2j) = r2j−1

implies that β(l2j) = l2j−1. This complets the proof. �



10 MOTOHISA FUKUDA AND ION NECHITA

Lemma 5.2. Given 4m elements {l1, . . . , l2m, r1, . . . , r2m}, define two permutations in S̃4m.

δ̂ =

2m∏
i=1

(ri, li) =

m∏
i=1

(r2i−1, l2i−1)(r2i, l2i)

β̂ =

m∏
i=1

(r2i−1, r2i)(l2i−1, l2i).

(23)

Then, α̂ ∈ S̃4m such that δ̂ − α̂− β̂ is of the form:

α̂ =
∏
i∈Λ

(r2i−1, r2i)(l2i−1, l2i)
∏

i∈[m]\Λ

(r2i−1, l2i−1)(r2i, l2i) (24)

for some Λ ⊆ [m]. Here we used the notation from (5).

Proof. We decompose

{l1, . . . , l2m, r1, . . . , r2m} =
m⊔
i=1

{l2i−1, l2i, r2i−1, r2i}

and work on each component for the geodesic because δ̂ and β̂ both respect this decomposition.
Note that, at fixed i, the only elements on the geodesic are the restrictions of δ̂ and β̂ on the
4-element set:

dist
(
(r2i−1, r2m)(l2i−1, l2m), (r2i−1, l2i−1)(r2m, l2m)

)
= 2 (25)

while the intermediate permutations do not belong to S̃4m. The proof is now complete, since each
block of α must be either of δ̂ type or of β̂ type. �

With these ingredients in hand, and with the asymptotic formula for the Weingarten function
from (12), we can calculate the general term in the sum (17) and upper bound its absolute value
as follows (remember our notations of δ and γ in (16)):

Dα,β Wgkn(α, β) = n#(δα)/2k#(γα)/2fβ(ψn) Wgkn(α, β), and then (26)

|Dα,β Wgkn(α, β)| ≤ (1 + o(1))
[
n#(δα)/2k#(γα)/2(tkn)[(β)(kn)−pr−|αβ|/2|Möb(α, β)|

]
. (27)

By using (19) in Lemma 5.1 the exponent of n (the only variable which grows) in the RHS of (27)
reads

#(δα)/2 + min
τ transverse

|τβ|/2− pr − |αβ|/2 = ( min
τ transverse

|τβ| − |δα| − |αβ|)/2

≤ ( min
τ transverse

|τβ| − |δβ|)/2 (28)

≤ 0, (29)

where we have used the triangle inequality and the fact that the permutation δ is transverse. To
identify the leading order terms in (17) we then try to ignore as many terms as possible by getting
rid of terms which do not saturate the three bounds (18), (28) and (29). Note that we consider the
bound (18) only asymptotically, as one can see below.

First, the equality min
τ transverse

|τβ| = |δβ| must hold in (29). Since δ is a transverse, Lemma 5.1

shows that β must be of the form

β =
∏
B

([i1(s), x1(s), L], [i2(s), x2(s), L])([i1(s), x1(s), R], [i2(s), x2(s), R]) (30)

×
∏
Bc

([i3(t), x3(t), L], [i3(t), x3(t), R]).
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In other words, β must be a product of symmetrical bumps and horizontal wires. Here, B ∈ Cp,
and Cp is defined by a set of particular types of transpositions:

Cp =
{(

[i1(s), x1(s)], [i2(s), x2(s)]
)}m

s=1
: m ∈

[⌊pr
2

⌋]
, (31)

[ij(s), xj(s)] 6= [il(t), xl(t)] unless j = l and s = t
}
. (32)

Also, we abuse notations by writing Bc to denote fixed points in [pr] by all transpositions in B.
Second, the equality in (28) holds if and only if α lies on the geodesic between δ and β. This is

equivalent via Lemma 5.2 to the fact that α has the following form for A ∈ Cp such that A ⊆ B
and:

α =
∏
A

([i1(s), x1(s), L], [i2(s), x2(s), L])([i1(s), x1(s), R], [i2(s), x2(s), R]) (33)

×
∏
Ac

([i3(t), x3(t), L], [i3(t), x3(t), R]).

In other words, α consists of horizontal lines and a subset of the bumps of β.
Third, we discuss when the equality in (18) is asymptotically saturated when p = 2. To this

end, we define [in(β) the number of “non-trespassing” bumps for β defined in (30). For this aim,
we define

Bin =
{(

[i1, x1], [i2, x2]
)
∈ B : i1 = i2

}
, (34)

where “∈” means that the left transposition is one of transpositions constituting B, so that we
have the definition of [in(β) = |Bin|.

Now, we need a lemma:

Lemma 5.3. For β defined in (30), we have the following bound for p = 2.

|fβ(ρn)| ≤ d[in(β)
n (35)

Proof. Let ωC be a maximally entangled state associated to C ∈ Cp, i.e. a tensor product of
maximally entangled states, each of which is defined by a transposition in C (see Section 2 for the
definitions). Then, using the general “linearization trick”

Tr(XY T ) = Tr[ω(X ⊗ Y )ω],

we get

fβ(ρn) = d[(β)
n · TrBc

[(
ω̂∗Bin

⊗ ω̂∗B\Bin
⊗ IBc

)
ρn ⊗ ρn

(
ω̂Bin ⊗ ω̂B\Bin

⊗ IBc
)]

≤ d[(β)
n TrBin⊗Bc

[(
IBin ⊗ ω̂

∗
B\Bin

⊗ IBc
)
ρn ⊗ ρn

(
IBin ⊗ ω̂B\Bin

⊗ IBc
)]

= d[in(β)
n Tr

[
Ψ(1)Ψ(2)T

]
≤ d[in(β)

n

(36)

where Ψ(1) and Ψ(2) are reduced density operators of ρn in the first and second spaces, and we have
used the trivial matrix inequality ω̂ ≤ I. �

This means that we can reduce candidates of leading order terms in (17), and for writing purpose
we define the set of non-trespassing bumps by

Cp,in = {B ∈ Cp : Bin = B} (37)

Note that trivially C1 = C1,in. Then, finally, we can state the result giving the asymptotic moments
of the sequence of random matrices Z(ψn). From here on, we identify α, β with A,B ∈ Cp.
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Theorem 5.4. For any given sequence of input states ρn,
1) All moments of Z(ρn) are expressed as

(1 + o(1))
∑
B∈Cp
A⊆B

k
#(γα)

2
+|A|−pr · t|B| · gB(ρn) · (−1)|B|−|A| (38)

where

gB(ρn) =
fβ(ρn)

(tnk)|B|
≤ 1 (39)

2) For the first and second moments of Z(ρn) one can replace Cp by Cp,in.

Proof. For pairings α and β as in (33), resp. (30), the Möbius function is given by (13):

Möb(α, β) = (−1)|B\A| = (−1)|B|−|A|.

Also note that [(β) = |B| for β in (30). Neglecting terms in (26) which vanish according to the
above discussions, the general moment an be written, except for the (1 + o(1)) factor, as∑

α,β as in (33),(30)

k#(γα)/2 · (tk)|B| · gB(ρn) · k−pr−|αβ|/2 Möb(α, β)

=
∑
B∈Cp
A⊆B

k
#(γα)

2
+|A|−pr · t|B| · gB(ρn) · (−1)|B|−|A|

(40)

which is the general formula we wanted. Moreover we can replace Cp by Cp,in for p = 1, 2, based on
Lemma 5.3 and the remark following it. �

Next, we calculate the average output state for a fixed input ρn. To this end, we introduce a
useful notation before going onto our theorem. Define for A ∈ C1

T
(k)
A :=

 ⊗
{i,j}∈A

ωij

⊗ [⊗
s/∈A

Is

]
(41)

where we denote by ω the (un-normalized) maximally entangled state ω = ΩΩ∗ with Ω =
∑k

i=1 ei⊗
ei ∈ Ck⊗Ck, see also Section 2. We write ωij for the operator ω acting on the copies i and j of the

space Ck. We also abuse notation so that s /∈ A means that s ∈ [r] stays fixed by transpositions in
A ∈ C1. Then,

Theorem 5.5.

EZ(ρn) = (1 + o(1))M(ρn) (42)

where

M(ρn) :=
∑
B∈C1
A⊆B

T
(k)
A · k|A|−r · t|B| · gB(ρn) · (−1)|B|−|A|. (43)

Proof. Now we calculate “the first moment without trace”. To this end, we just replace k#(γα)/2

in (40) by T
(k)
A . In fact TrT

(k)
A = k

#(α)
2 = k|A| where γ = δ for p = 1. �

Theorem 5.6. For a fixed sequence of input states (ρn)n≥1 we have the following convergence in
probability:

‖Z(ρn)− EZ(ρn)‖2 → 0 (44)
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Proof. Using the second part of Theorem 5.4, the second moment of Z(ρn) is a sum indexed by
sets B ∈ C2,in. For such a B, we write B = B1 ⊕B2 where these two belong to blocks with i = 1, 2
respectively, so that, using the notation from Theorem 5.4, we can factorize

gB(ρn) = gB1(ρn) · gB2(ρn) (45)

Then, the formula in (40) with p = 2, which represents the second moment, up to o(1) terms,
changes into:∑

B1⊕B2∈C2,in
A1⊕A2⊆B1⊕B2

k
#(γ(α1⊕α2))

2
+|A1|+|A2|−2r · t|B1|+|B2| · gB1(ρn) · gB2(ρn) · (−1)|B1|+|B2|−|A1|−|A2|

= Tr

 2∏
i=1

 ∑
Bi∈C1
Ai⊆Bi

T
(k)
Ai
· k|Ai|−r · t|Bi| · gBi(ρn) · (−1)|Bi|−|Ai|


 = Tr

[
(M(ρn))2

]
+ o(1),

(46)

where αi are defined by Ai, respectively. Then, Chebyshev’s inequality shows for each ε > 0

P
(
‖Z(ρn)− EZ(ρn)‖22 ≥ ε

2
)
≤ 1

ε2
E ‖Z(ρn)− EZ(ρn)‖22

=
[ETrZ(ρn)]2 − Tr[M(ρn)2] + o(1)

ε2
=
o(1)

ε2

This completes our proof of the convergence in probability. �

Remark 5.7. For some models of random unitary channels, it is possible to show that similar
convergence results hold almost surely, a stronger convergence that the convergence in probability
proven here. This is enabled by better controlling the error in equations such as (42), up to O(n−2)
terms. This is one technical difference between random unitary and random orthogonal matrices:
in the former case, the error in the approximation of the Weingarten formula (12) is O(n−2), while

in the latter it is O(n−1), see [CŚ06].

6. Optimal sequences of input states

Having computed in the previous section the asymptotic behavior of the outputs for a fixed
sequence of input state, we turn now to the problem of finding the input sequences giving the
outputs with least entropy (asymptotically). Our strategy is to show that for any sequence of input
states, the outputs will lie, asymptotically, inside a fixed, deterministic set Kr,k,t. We shall then
minimize the entropy for states inside this convex set Kr,k,t.

We start by writing the expected value of an output state into a more compact form. In what
follows we replace C1 by P̂2(r) the set of partial parings on [r] because in this section the parameter
r is more relevant. Starting from M(ρn) in (43), we have

M(ρn) =
∑

A⊆B∈P̂2(r)

T
(k)
A t|B|k−r+|A|gB(ρn)(−1)|B|−|A|

=
∑

B∈P̂2(r)

〈T̃ (dn)
B , ρn〉

∑
A⊆B

t|B|k−r+|A|(−1)|B|−|A|T
(k)
A

=
∑

B∈P̂2(r)

〈T̃ (dn)
B , ρn〉R̃(k)

B , (47)
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where the operators T̃
(dn)
B ∈Mdrn(C) and R̃

(k)
B ∈Mkr(C) for A,B ∈ P̂2(r) are defined as follows:

T̃
(dn)
B := d−|B|n T

(dn)
B

=

 ⊗
{i,j}∈B

d−1
n ωij

⊗ [⊗
s/∈B

Is

]
R̃

(k)
B :=

 ⊗
{i,j}∈B

t
(
k−1ωij − k−2Iij

)⊗ [⊗
s/∈B

k−1Is

]

=
∑
A⊆B

t|B|k−r+|A|(−1)|B|−|A|T
(k)
A

where one can see the last equality via binomial formula.
Note that equation (47) is close to what we want: to express the output of the channel as a

convex combination of simple quantum states. The problem here is that, although the scalars

〈T̃ (n)
B , ρn〉 are non-negative, the matrices R̃

(k)
B are not, in general, positive semidefinite. In fact,

we have Tr R̃
(k)
B = δB,∅. In order to achieve our goal, we shall apply the Möbius inversion formula

[Rot64] to (47). First, it is quite obvious to see that the Möbius function on the lattice P̂2(r) is
identical to the one for the lattice of subsets: if a partial pairing A is contained in another partial
pairing B, then µ(A,B) = (−1)|B|−|A|. Hence, if we define

S̃
(k)
B :=

∑
A⊆B

R̃
(k)
A (48)

Q̃
(dn)
A :=

∑
B⊇A

(−1)|B|−|A|T̃
(dn)
B ,

we have, via the Möbius inversion formula

R̃
(k)
B =

∑
A⊆B

(−1)|B|−|A|S̃
(k)
A ,

and we can rewrite (47) as

M(ρn) =
∑

B∈P̂2(r)

〈T̃ (dn)
B , ρn〉R̃(k)

B

=
∑

A⊆B∈P̂2(r)

〈T̃ (dn)
B , ρn〉(−1)|B|−|A|S̃

(k)
A

=
∑

A∈P̂2(r)

〈∑
B⊇A

(−1)|B|−|A|T̃
(dn)
B , ρn

〉
S̃

(k)
A

=
∑

A∈P̂2(r)

〈Q̃(dn)
A , ρn〉S̃(k)

A . (49)
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From (48), we can actually obtain an explicit formula for the matrices S̃
(k)
B :

S̃
(k)
B :=

∑
A⊆B

R̃
(k)
A

=
∑
A≤B

 ⊗
{i,j}∈A

t
(
k−1ωij − k−2Iij

)⊗ [⊗
s/∈A

k−1Is

]

=

 ⊗
{i,j}∈B

t
(
k−1ωij − k−2Iij

)
+ k−2Iij

⊗ [⊗
s/∈B

k−1Is

]

=

 ⊗
{i,j}∈B

tk−1ωij + (1− t)k−2Iij

⊗ [⊗
s/∈B

k−1Is

]

=

 ⊗
{i,j}∈B

ηij

⊗ [⊗
s/∈B

k−1Is

]
, (50)

where

η := tk−1ω + (1− t)k−2I ∈Mk2(C) (51)

is indeed a quantum state (i.e. a positive semidefinite matrix of unit trace); such states, convex
mixtures between a maximally entangled state and a maximally mixed state are called isotropic
states in the quantum information theory literature.

We have now all the ingredients to state the main result of this section.

Theorem 6.1. Consider a sequence of random quantum channels Φn : Mdn(C) → Mk(C) con-
structed from random Haar distributed orthogonal matrices Un ∈ O(kn), as in Section 5. Further-
more, assume that dn ∼ tkn for some constant t ∈ (0, 1) and define, for any r ≥ 1, the convex
set

Kr,k,t := conv
{
S̃

(k)
B : B ∈ P̂2(r)

}
⊆M1,+

kr (C).

Then, for any fixed sequence of input states ρn ∈ M1,+
dn

(C), the output states converge, in proba-
bility, to the convex body Kr,k,t: for all ε > 0,

lim
n→∞

P
[
dist(Φ⊗rn (ρn),Kr,k,t) > ε

]
= 0.

Note that Kr,k,t depends on t via (51).

Proof. Let us fix a sequence of input states (ρn) and use the triangle inequality:

dist(Φ⊗rn (ρn),Kr,k,t) ≤ dist(EΦ⊗rn (ρn),Kr,k,t) + ‖Φ⊗rn (ρn)− EΦ⊗rn (ρn)‖2.

We have shown in Theorem 5.6 that the second term in the right hand side of the above inequality
converges in probability towards zero; it is enough thus to show that the first term also vanishes as
n→∞. From (49), we have the following decomposition

EΦ⊗rn (ρn) = (1 + o(1))
∑

A∈P̂2(r)

〈Q̃(dn)
A , ρn〉S̃(k)

A .

To finish the proof, we show next that the weights in the equation above are (asymptotically)
non-negative and sum up to one. For the claim about the sum, note that∑

A∈P̂2(r)

Q̃
(dn)
A =

∑
A⊆B∈P̂2(r)

(−1)|B|−|A|R̃
(dn)
A = T̃

(dn)
∅ = Ikr ,
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proving the claim. The other claim follows from [FN14, Corollary 3.6], where it was shown that the

spectrum of the matrices Q̃
(dn)
A is at distance O(1/n) from the set {0, 1}. The reader should make

note of the fact that although the matrices Q̃
(dn)
· are indexed by different combinatorial objects

(partial pairings here and partial permutations in [FN14]), they encode the same linear operators
and thus they have the same spectrum. �

Corollary 6.2. Let B0 be a maximal partial pairing in P̂2(r), i.e. a pairing consisting of br/2c
pairs and, when r is odd, a singleton. Then, for any fixed sequence of input states ρn ∈M1,+

dn
(C),

the inputs

G
(dn)
B0

:=

 ⊗
{i,j}∈B0

d−1
n ωij

⊗
⊗
s/∈B0

d−1
n Is

 = d2br/2c−r
n T̃

(dn)
B0

give output states having less entropy than the sequence of inputs ρn: for all ε > 0,

lim
n→∞

P
[
H
(
Φ⊗rn (ρn)

)
< H

(
Φ⊗rn (G

(dn)
B0

)
)
− ε
]

= 0.

In other words, the sequence of input states consisting of a tensor product of br/2c maximally
entangled states and, when r is odd, a maximally mixed state yields the output sequence with least
asymptotical entropy.

Proof. By the theorem, the outputs belong, when n is large, to the set Kr,k,t. The extremal points

of Kr,k,t are precisely the quantum states S̃
(k)
B , with B a partial pairing of [r]. Such an extremal

state has von Neumann entropy

H(S̃
(k)
B ) = |B|H(η) + (r − 2|B|) log k,

where η is the bipartite quantum state define in (51); it has entropy strictly less than 2 log k, more
precisely

H(η) = h(tk−1 + (1− t)k−2) + (k2 − 1)h((1− t)k−2),

where h(x) = −x log x. To finish the proof, we show that the input sequence G
(dn)
B0

produces the

output sequence S̃
(k)
B0

. Indeed, from (49), we have

EΦ⊗rn (G
(dn)
B0

) = (1 + o(1))
∑

A∈P̂2(r)

〈Q̃(dn)
A , G

(dn)
B0
〉S̃(k)
A

= (1 + o(1))
∑

A⊆B∈P̂2(r)

(−1)|B|−|A|d2br/2c−r
n 〈T̃ (dn)

B , T̃
(dn)
B0
〉S̃(k)
A .

By direct inspection, and using the fact that B0 is a maximal partial pair pairing, we have that
(see also [FN14, Section 3])

d2br/2c−r
n 〈T̃ (dn)

B , T̃
(dn)
B0
〉 = (1 + o(1))1B⊆B0 ,

and thus

EΦ⊗rn (G
(dn)
B0

) = (1 + o(1))
∑

A⊆B⊆B0∈P̂2(r)

(−1)|B|−|A|S̃
(k)
A = S̃

(k)
B0
,

finishing the proof. �
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7. Discussion

In this work, using Weingarten calculus on the orthogonal group, we have shown that among
fixed input sequences for a tensor power of a random orthogonal quantum channel, product of
maximally entangled states achieve the smallest output entropy. We consider our results to be
evidence toward the claim that such random channels do not violate (asymptotically, with high
probability) the additivity relation. More precisely, for r ≥ 1 we conjecture that, almost surely for
random orthogonal quantum channels such as the ones in Section 5

lim
n→∞

Smin(Φ⊗2r
n )

?
= r lim

n→∞
Smin(Φ⊗2

n ). (52)

For this conjecture we must refer to a sentence in [Has09]: “This two-letter additivity conjecture
would enable us to restrict our attention to considering input states with a bipartite entanglement
structure, possibly opening the way to computing the capacity for arbitrary channels”. Hastings
conjectures thus the following additivity for quantum channels:

Smin((Ψ⊗ Ψ̄)⊗r)
?
= rSmin(Ψ⊗ Ψ̄) (53)

In [FN14], we have studied this question in the frame work of the current work, but with random
unitary quantum channels. Then, we have shown that among a very large class of fixed input
sequences, tensor products of maximally entangled states yield the outputs with least entropy.
This is a strong supporting mathematical evidence towards Hastings’ conjecture. In the same
direction, see [Mon13, FN15] for considerations about upper bounds on the amount of additivity
violations for random quantum channels.

Surprisingly, if we compare our calculations with ones for unitary random quantum channels from
[CFN12], we are inclined to conjecture that generically entanglement does not help to improve
minimum output entropy of tensor powers of random unitary quantum channels, while (only)
bipartite entanglement helps for random orthogonal channels: almost surely,

lim
n→∞

lim
r→∞

1

r
Smin(Ψ⊗rn )

?
= lim

n→∞
Smin(Ψn) and lim

n→∞
lim
r→∞

1

r
Smin(Φ⊗rn )

?
=

1

2
lim
n→∞

Smin(Φ⊗2
n ) (54)

where Ψn and Φn are sequences of respectively unitary and orthogonal random quantum channels.
We also conjecture that similar phenomena might occur for the Holevo capacity too, and we

hope that such results might shed light on capacity formulas. Indeed, according to [CFN15],
certain random quantum channels satisfy a simple linear relation between their Holevo capacity
and their minimum output entropy, while such a linear relation was initially observed in [Hol05]
for covariant channels.
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tivity of the minimum output rényi entropy of quantum channels for all p > 2. Journal of Physics A:
Mathematical and Theoretical, 43(42):425304, 2010. 2

[Has09] Matthew B Hastings. Superadditivity of communication capacity using entangled inputs. Nature Physics,
5(4):255–257, 2009. 2, 17

[Hol98] Alexander S Holevo. The capacity of quantum channel with general signal states. IEEE Trans. Inform.
Theory, 44(1):269 273, 1998. 1, 4

[Hol05] A. S. Holevo. Additivity conjecture and covariant channels. International Journal of Quantum Informa-
tion, 03(01):41–47, 2005. 17

[Kin02] Christopher King. Additivity for unital qubit channels. Journal of Mathematical Physics, 43(10):4641,
2002. 1

[Kin03a] Christopher King. The capacity of the quantum depolarizing channel. IEEE Transactions on Information
Theory, 49(1):221–229, 2003. 1

[Kin03b] Christopher King. Maximal p-norms of entanglement breaking channels. Quantum Inf. Comput., 3(2):186–
190, 2003. 1

[KMNR07] Christopher King, Keiji Matsumoto, Michael Nathanson, and Mary Beth Ruskai. Properties of conju-
gate channels with applications to additivity and multiplicativity. Markov Processes and Related Fields,
13(2):391–423, 2007. 1

[KR01] Christopher King and Mary Beth Ruskai. Minimal entropy of states emerging from noisy quantum chan-
nels. IEEE Transactions on information theory, 47(1):192–209, 2001. 4

[Mon13] Ashley Montanaro. Weak multiplicativity for random quantum channels. Communications in Mathemat-
ical Physics, 319(2):535–555, 2013. 17

[Mos15] Milán Mosonyi. Coding theorems for compound problems via quantum rényi divergences. IEEE Trans-
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