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Against Product and Markov Distributions
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Abstract

We revisit the problem of asymmetric binary hypothesis testing against a composite alternative hypothesis. We
introduce a general framework to treat such problems when the alternative hypothesis adheres to certain axioms. In
this case we find the threshold rate, the optimal error and strong converse exponents (at large deviations from the
threshold) and the second order asymptotics (at small deviations from the threshold). We apply our results to find
operational interpretations of various Rényi information measures. In case the alternative hypothesis is comprised
of bipartite product distributions, we find that the optimal error and strong converse exponents are determined by
variations of Rényi mutual information. In case the alternative hypothesis consists of tripartite distributions satisfying
the Markov property, we find that the optimal exponents are determined by variations of Rényi conditional mutual
information. In either case the relevant notion of Rényi mutual information depends on the precise choice of
the alternative hypothesis. As such, our work also strengthens the view that different definitions of Rényi mutual
information, conditional entropy and conditional mutual information are adequate depending on the context in which
the measures are used.

Index Terms

composite hypothesis testing, error exponent, strong converse exponent, second order, Rényi divergence, mutual
information, conditional entropy, conditional mutual information

I. INTRODUCTION

Let us first consider simple hypothesis testing. Here the null hypothesis states that a random variable Xn follows
the independent and identical (i.i.d.) law P×n and the alternative hypothesis states that Xn follows the i.i.d. law
Q×n, where P and Q are probability mass functions on a finite set X . We write this as follows:

null hypothesis: Xn ∼ P×n ,

alternative hypothesis: Xn ∼ Q×n. (1)

Assume now that our test T n is given as a randomized function from the observed event in X n to {0, 1}.
Here the values 1 and 0 signify that we accept and reject the null hypothesis, respectively. We are particularly
interested in the asymmetric case where two kind of errors are treated differently. The type-I error, given as
αn = P×n[T n(Xn) = 0], is the probability that the test rejects the null hypothesis when it is true. The type-II

error, given as βn = Q×n[T n(Xn) = 1], is the probability that the test confirms the null hypothesis when the
alternative hypothesis is true. (See Section II-A for formal definitions of these quantities.)

On the one hand, if we impose a constant constraint on the type-I error, namely if we require that αn ≤ ε
for some ε ∈ (0, 1), then the there exists a sequence of tests such that βn goes zero exponentially fast in n. The
exponent is known to be the relative entropy, D(P‖Q). This is Stein’s lemma [8] (see also [14], [5]) and we also
call this exponent the threshold rate of the problem. (See Section II-B for definitions of the relevant operational
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quantities.) Further, Yushkevich [64] derived the second order expansion (see also Strassen [54] for a higher order
expansion) of the optimal exponent as

− log βn = nD(P‖Q)−
√

nV (P‖Q)Φ−1(ε) + o(
√
n) , (2)

where Φ is the cumulative standard normal distribution function and V is the variance of the logarithmic likelihood
ratio. (See Section II-C for definitions of the relevant information quantities.) All our statements are independent
of the basis choice for the logarithm as long as exp is taken as the inverse of log, unless it is otherwise noted.

On the other hand, if we impose an exponential constraint on the type-II error, namely if we require that
βn ≤ exp(−nR) for some rate R ∈ (0,D(P‖Q)), we find that the optimal type-I error decreases exponentially
fast to zero with

− log αn = n sup
0<s<1

1− s
s

(
Ds(P‖Q)−R

)
+ o(n) , (3)

where Ds(P‖Q) is the Rényi relative entropy. This is known as Hoeffding’s bound [34], and the exponent is
called error exponent in the following. Moreover, if the rate R exceeds the threshold rate D(P‖Q), the minimum
probability of the second error goes to 1 exponentially fast with

− log(1 − αn) = n sup
s>1

s− 1

s

(
R−Ds(P‖Q)

)
+ o(n) . (4)

This is called strong converse exponent in the following [12], [21].1

These results can partially be extended to the case when the null hypothesis is composite (i.e. when the null
hypothesis is comprised of a set of distributions) as a consequence of Sanov’s theorem [51]. In contrast, our
goal is to extend the above results, in particular Eq. (2)–(4), to the setting where the alternative hypothesis is
composite. More precisely, we want to consider a set Q of distributions on X and the maximal type-II error
βn = maxQ∈QQ

×n[T n(Xn) = 1]. We write the corresponding hypothesis testing problem as follows:

null hypothesis: Xn ∼ P×n ,

alternative hypothesis: Xn ∼ Q×n for some Q ∈ Q. (5)

Sanov’s theorem allows the alternative hypothesis to be the set Q = {Q : D(P‖Q) > R} for a given real number
R > 0. More precisely, when the first kind of error probability is restricted to αn ≤ ε, the optimal exponent for βn
is given as − log βn = nR+o(n). Moreover, the Hoeffding bound (3) was extended to certain classes of composite
hypotheses which are composed of i.i.d. distributions [60], [52].

Our Contributions: Our first main result establishes that, if the alternative hypothesis satisfies certain axioms
discussed in Section II-D, the above results, Eq. (2)-(4), hold as stated after we substitute

D(P‖Q)→ min
Q∈Q

D(P‖Q) = D(P‖Q̂), V (P‖Q)→ V (P‖Q̂), Ds(P‖Q)→ min
Q∈Q

Ds(P‖Q), (6)

where Q̂ ∈ Q is the distribution that minimizes the relative entropy. Hence, we generalize Stein’s lemma, Yushke-
vich’s second order expansion, the Hoeffding bound and the Han-Kobayashi bound to the case of a composite
alternative hypothesis. Moreover, we do not need to restrict the alternative hypothesis to i.i.d. distributions but can
allow permutation invariant or even more general distributions. We formally state all of our results in Section III.

Our second main result, which is an application of the first, is to give an operational interpretation to various
measures of Rényi mutual information, Rényi conditional entropy, and Rényi conditional mutual information. A
complete discussion of this can be found in Section IV, and here we exhibit a few representative examples:

1) Let (X,Y ) be two random variables governed by a joint probability distribution PXY with marginal PX . We
find that the hypothesis testing problem

null hypothesis: (Xn, Y n) ∼ P×n
XY ,

alternative hypothesis: Xn ∼ P×n
X independent of Y n, (7)

1The form of (4) is due to Ogawa-Nagaoka [46]. Moreover, Nakagawa-Kanaya [45] first treat the case of large R.
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originally proposed by Polyanskiy [47, Sec. II] in the context of channel coding, leads to an operational
interpretation of Sibson’s [53] definition (see also [10, p. 27]) of Rényi mutual information,

I↑↓

s (X :Y ) = min
QY

Ds(PXY ‖PX ×QY ) . (8)

A similar hypothesis testing problem where the alternative hypothesis further requires that Xn is uniform
leads to an operational interpretation of Arimoto’s definition of Rényi conditional entropy [3].

2) We further treat the problem of detecting correlations in a collection of random variables. Specifically, consider
a null hypothesis that the random random variables (X1,X2, . . . ,Xk) are governed by a specific distribution
PX1X2...Xk

and compare this to the alternative hypothesis that these random variables are independent, which
is a natural formulation from the viewpoint of statistics. This can be phrased as the hypothesis testing problem

null hypothesis: (Xn
1 ,X

n
2 , . . . ,X

n
k ) ∼ P×n

X1X2...Xk
,

alternative hypothesis: (Xn
1 ,X

n
2 , . . . ,X

n
k ) ∼

(
QX1

×QX2
× . . .×QXk

)×n
for some QXi

. (9)

The quantity D(PX1X2...Xk
‖PX1

× PX2
× . . . × PXk

) is a measure of correlations for k-partite systems. We
show that it attains operational significance as a threshold rate for the above problem. We also derive error
exponents and strong converse exponents for this problem as long as R is close enough to the threshold rate.
These are determined by the quantities

min
QX1

,QX2
,...QXk

Ds(PX1X2...Xk
‖QX1

×QX2
× . . .×QXk

) . (10)

Our test depends on the specific distribution PX1X2...Xk
, so it is not able to detect arbitrary correlations in

these random variables.
3) Let PXY Z be a joint probability distribution. We find that the hypothesis testing problem

null hypothesis: (Xn, Y n, Zn) ∼ P×n
XY Z ,

alternative hypothesis: (Xn, Y n, Zn) ∼ Q×n
XY Z for some QXZY that is Markov X ↔ Y ↔ Z , (11)

yields an operational interpretation for the conditional mutual information, I(X :Z|Y ), as the threshold rate.
Moreover, the error exponents are determined by a certain Rényi conditional mutual information,

I↓↓↓

s (X :Z|Y ) = min
QXY Z

Ds(PXY Z‖QY ×QX|Y ×QZ|Y ) . (12)

However, this definition of Rényi conditional mutual information is by no means the only definition that
attains operational significance. If we vary the problem slightly and only consider alternative hypotheses with
a fixed marginal (Xn, Y n) ∼ P×n

XY we recover the same threshold rate but different exponents determined by

I↑↑↓

s (X :Z|Y ) = min
QZ|Y

Ds(PXY Z‖PXY ×QZ|Y ) . (13)

Our results thus yield an operational interpretation for this definition of Rényi conditional mutual information
for all positive s, and we provide a closed form of this quantity in (75). To the best of our knowledge this
definition has not appeared in the literature before. From the operational perspective we have chosen here, it
is a natural extension of Sibson’s definition of Rényi mutual information to the conditional setting, and we
expect it to have other applications in information theory.

On a technical level, our work introduces the concept of a universal distribution and a universal channel. The
purpose of the former is to dominate any i.i.d. product (or permutation invariant) distribution in terms of the relative
entropy and the Rényi relative entropy (cf. Lemmas 7 and 14). More formally, we show that there exists a sequence
of distributions Un on X n such that Ds(P

n‖Q×n) ≥ Ds(P
n‖Un) + O(log n) for any Pn, Q uniformly for all

s ≥ 0. Similarly, the output distribution of the universal channel dominates the output distribution of any memoryless
product (or permutation covariant) channel, whenever both channels are given the same input (cf. Lemma 17). A
similar kind of approximation was discussed perviously by Davisson [13] (see also Clarke and Barron [9]) but they
only showed the approximation (using a Baysian mixture) for the case s = 1 corresponding to the relative entropy.2

2Their result was extended in a recent paper [29] to the approximation in terms of the Rényi relative entropy, even in the continuous case.
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We also note that the concept of universal decoding was studied in [17], but in this work the universal decoder
can only dominate finitely many decoders whereas our universal states and channels dominate a continuous set of
states and channels, respectively. Therefore, the methods in References [13], [9], [17] cannot be directly applied to
our analysis. The universal distribution is the classical analogue of the universal state originally introduced in the
quantum setting by one of the authors in [26] and [25]. The latter paper also introduced universal classical-quantum
channels (see also [16] for a fully quantum universal channel).

Another contribution is the axiomatic approach we have taken to the problem. We derive a sufficient condition
for the hypotheses testing problems to derive analogues of Yushkevich’s bound, Hoeffding’s bound and the Han-
Kobayashi bound. Since this approach accepts hypotheses containing non-i.i.d. distributions, we expect it to have
wide applicability.

Outline: The remainder of the paper is structured as follows. In Section II we introduce the axiomatic framework
for composite hypothesis testing that we build on, and also define our information quantities, the Rényi divergences.
In Section III we present our main results and treat some generic examples, with the proofs deferred to the later
sections. The examples discussed in the introduction, which yield an operational interpretation of various notions
of Rényi conditional entropy, mutual information, and conditional mutual information, are then treated in detail in
Section IV. In fact, Section IV can be understood without referring to Section III. The proofs for the Hoeffding
bound are discussed in Section V, the Han-Kobayashi bound follows in Section VI and the second order analysis
of Stein’s lemma is found in Section VII. We conclude our work with a discussion and outlook in Section VIII.

II. A FRAMEWORK FOR COMPOSITE HYPOTHESIS TESTING

In this section we introduce a general framework for composite hypothesis that encompasses, but is not restricted
to, the examples mentioned in the introduction.

A. Binary Hypothesis Testing with Composite Alternative Hypothesis

We restrict our attention to finite alphabets. Let X be such an alphabet. The set of probability mass functions (in
the following often just called distributions) on X is denoted by P(X ) and comprised of positive valued functions
on X with

∑

x∈X P (x) = 1. For P ∈ P(X ) and a random variable X on X , we write X ∼ P to denote that X
is distributed according to the law P . we use X n to denote the n-fold Cartesian product of X and its elements by
vectors xn = (x1, x2, . . . , xn). For any P ∈ P(X ), we use P×n to denote the identical and independent distribution
(i.i.d.) given by P×n(xn) =

∏n
i=1 P (xi).

We consider hypothesis testing problems with a composite alternative hypothesis of the following form.

Definition 1. A sequence of hypothesis testing problems with composite alternative hypothesis is determined by

a triple H =
(
X , P, {Qn}n∈N

)
, comprised of a finite set X , a distribution P ∈ P(X ), and a sequence of sets

Qn ⊆ P(X n) for all n ∈ N. This determines a hypothesis testing problem Hn for each n ∈ N. Namely, we consider

n instances of a random variable X on X and the following two hypotheses.

Hn : null hypothesis: Xn ∼ P×n ,

alternative hypothesis: Xn ∼ Qn for some Qn ∈ Qn. (14)

We will analyze this problem for sequences of sets Qn that satisfy certain axioms (cf. Section II-D).
For convenience we employ the shorthand notation Q ≡ Q1 and we use Qn to denote the convex hull of

Qn. Consider probabilistic hypothesis tests, given by a function T : X → [0, 1], where T (x) is the probability
of accepting the null hypothesis when observing x. We then define the type-I error probability and type-II error
probability, respectively, as follows:

α(T ;P ) :=
∑

x∈X

P (x)(1 − T (x)), and β(T ;Q) := sup
Q∈Q

∑

x∈X

Q(x)T (x) . (15)

In this work we focus on asymmetric hypothesis testing. In this context it is convenient to define the quantity
α̂(µ;P‖Q) as the minimum type-I error probability when the type-II error probability is below a threshold µ ≥ 0,
i.e. we consider the following optimization problem:

α̂(µ;P‖Q) := min
T

{
α(T ;P )

∣
∣ β(T ;Q) ≤ µ

}
, for µ ∈ R . (16)
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Note that µ 7→ α̂(µ;P‖Q) is monotonically decreasing and evaluates to 0 for µ ≥ 1. Note that we always have

α̂(µ;P‖Q) = α̂(µ;P‖Q) . (17)

Moreover, since the sum over which we take the supremum in (15) is linear in Q and the maximum is thus achieved
on the boundary.

B. Operational Quantities for Asymmetric Hypothesis Testing

Let us now discuss the main operational quantities that we want to investigate.
1) Threshold Rate: We will study the following properties of asymmetric composite hypothesis tests. The first

concept concerns the threshold rate of a sequence of such tests.

Definition 2. Let H =
(
X , P, {Qn}n∈N

)
be a sequence of hypothesis testing problems. We define the threshold rate

of the sequence H as

Rth(H) := sup

{

R ∈ R : lim sup
n→∞

α̂
(
exp(−nR);P×n‖Qn

)
= 0

}

. (18)

Similarly, we define the strong converse threshold rate of the sequence H as (cf. [22, Def. 4.3.1] and [44])

R∗
th(H) = inf

{

R ∈ R : lim inf
n→∞

α̂
(
exp(−nR);P×n‖Qn

)
= 1

}

. (19)

Clearly Rth(H) ≤ R∗
th(H) always holds. Moreover, we note that the threshold rate is always nonnegative because

α̂
(
exp(−nR);P×n‖Qn

)
vanishes for R ≤ 0. The problems we study in this paper are particularly well-behaved

and we will find that the threshold rate and the strong converse threshold rate agree.
2) Error and Strong Converse Exponents: Moreover, if we choose a rate R below Rth(H) then we will observe

that α̂
(
exp(−nR);P×n‖Qn

)
converges exponentially fast to 0 as n increases. The exponent characterizing this

decrease is called the error exponent of the sequence with regards to R.

Definition 3. Let H =
(
X , P, {Qn}n∈N

)
be a sequence of hypothesis testing problems. For every R > 0, the error

exponent of H with regards to R is defined as

eR(H) := lim inf
n→∞

− 1

n
log α̂

(
exp(−nR);P×n‖Qn

)
, (20)

if this limit exists, or +∞ otherwise.

If we choose a rate R exceeding Rth(H) then we will instead observe that α̂
(
exp(−nR);P×n‖Qn

)
converges

exponentially fast to 1 as n increases. The exponent characterizing this convergence is called the strong converse

exponent of the sequence with regards to R.

Definition 4. Let H =
(
X , P, {Qn}n∈N

)
be a sequence of hypothesis testing problems. For every R > 0, the strong

converse exponent of H with regards to R is defined as

scR(H) := lim sup
n→∞

− 1

n
log
(

1− α̂
(
exp(−nR);P×n‖Qn

))

, (21)

if this limit exists, or +∞ otherwise.

C. Information Measures for Asymmetric Hypothesis Testing

All our results will be stated as an equivalence between one of the above-mentioned operational quantities and
an information measures derived from the Rényi divergence. We formally define the Rényi divergence [49] here.

Definition 5. Let P ∈ P(X ) and Q : X → [0,∞). For s ∈ (0, 1) ∪ (1,∞), define

gs(P‖Q) := lim
ε→0

∑

x∈X

P (x)s
(
Q(x) + ε

)1−s
=

∑

x∈X
P (x)>0

P (x)sQ(x)1−s, (22)
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where the latter expression is finite either if s < 1 or if Q(x) = 0 implies P (x) = 0 for all x ∈ X . Otherwise, we

set gs(P‖Q) = +∞. The Rényi divergence of P with regards to Q of order s is then defined as

Ds(P‖Q) :=
log gs(P‖Q)

s− 1
(23)

For s ∈ {0, 1,∞} the Rényi divergence is defined as the corresponding limit.

See [61] for a comprehensive discussion of its properties, which we summarize here. The Rényi divergence is
lower semi-continuous and diverges to +∞ if the support condition is violated and s > 1 or if s < 1 and P and
Q do not share any support, in which case gs(P‖Q) = 0. Our sets Qn may contain elements that violate these
conditions. Nonetheless, sets consistent with our axioms will always contain at least one element that satisfies the
support conditions. One of the most important properties of the latter functional is that gs(·‖·) is jointly concave for
s ∈ (0, 1) and jointly convex for s ∈ (1,∞). Moreover, the function s 7→ log gs(P‖Q) is convex and s 7→ Ds(P‖Q)
is monotonically increasing. Furthermore, the Kullback-Leibler divergence is given by

D(P‖Q) := D1(P‖Q) =
∑

x

P (x)
(
log P (x)− logQ(x)

)
. (24)

For two positive valued functions Q and Q′ on X , we observe that Q(x) ≤ Q′(x) for all x ∈ X implies Ds(P‖Q) ≥
Ds(P‖Q′). Furthermore, for any scalar v, we have Ds(P‖vQ) = Ds(P‖Q)− log v.

To present the second order of Stein’s lemma we need to introduce some additional quantities. The variance of

the logarithmic likelihood ratio is given by

V (P‖Q) :=
∑

x∈X

P (x)
(
logP (x)− logQ(x)−D(P‖Q)

)2
. (25)

This variance is proportional to the derivative of the Rényi divergence at s = 1, a consequence of the fact that
the Rényi divergence is proportional to the cumulant generating function of the logarithmic likelihood ratio. More
precisely, the first order Taylor expansion of Ds(P‖Q) around s = 1 is given by

Ds(P‖Q) = D(P‖Q) +
s− 1

2 log e
V (P‖Q) +O(s2) . (26)

Finally, we define the Rényi divergence of P with regards to a set Q of positive valued functions as

Ds(P‖Q) := inf
Q∈Q

Ds(P‖Q) . (27)

The minimizer, if it is unique, is defined as

Q̂s := argmin
Q∈Q

Ds(P‖Q) . (28)

We define V (P‖Q) := V (P‖Q̂1). Similarly, taking note of the sign of (s− 1), we define

gs(P‖Q) := exp
(
(s− 1)Ds(P‖Q)

)
=







sup
Q∈Q

gs(P‖Q) if s ∈ (0, 1)

inf
Q∈Q

gs(P‖Q) if s ∈ (1,∞)
. (29)

D. Axioms for Alternative Hypotheses

Let us fix a probability distribution P ∈ P(X). We present a collection of axioms that the sets {Qn}n∈N must
satisfy in order for our main results to hold. The first axiom ensures that the base set, Q, is convex.

Axiom 1 (convexity). The set Q ⊆ P(X ) is compact convex. Moreover, for all s > 0 the minimizer Q̂s in (28) is
unique and lies in relint(Q).3

The second axiom ensures that i.i.d. products of distributions in Q are elements of Qn.

Axiom 2 (product distributions). The set Qn contains the element Q×n for every Q ∈ Q.

3The relative interior of a convex set Θ is the set relint(Θ) := {x ∈ Θ : ∀y ∈ Θ∃λ > 1 s.t. λx+ (1− λ)y ∈ Θ}.
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As a direct consequence of Axiom 2 and the additivity of the Rényi divergence for product distributions, we find
the following lemma.

Lemma 6 (subadditivity). Assuming Axiom 2, we have Ds(P
×n‖Qn) ≤ nDs(P‖Q) for all s > 0 and n ∈ N.

The purpose of the next axiom is to ensure that this is in fact an equality.

Axiom 3 (additivity). For all s > 0 and n ∈ N, we have Ds(P
×n‖Qn) ≥ nDs(P‖Q).

The next axiom concerns the existence of a sequence of universal distributions. Before we state it, let us introduce
some additional notation. We denote the symmetric group of permutations of n elements by Sn. This group has
a natural representation as bistochastic matrices. For every π ∈ Sn, the matrix W n[π] is defined by the relation
PnW n[π](x1, x2, . . . , xn) = Pn(xπ(1), xπ(2), . . . , xπ(n)). We say that a probability distribution Pn ∈ P(X n) is
permutation invariant if PnW n[π] = Pn holds for all π ∈ Sn. The set of all permutation invariant distributions on
X n is denoted Psym(X n) and permutation invariant distributions in Qn comprise the subset Qsym

n .

Axiom 4 (universal distribution). There exists a sequence of probability mass functions {Un}n∈N with Un ∈
Psym(X n) and a polynomial v(n) such that the following relation holds. For all n ∈ N and Q ∈ Qsym

n ,

Q(xn) ≤ v(n)Un(xn), ∀xn ∈ X n, and Ds(P
×n‖Un) ≥ Ds(P

×n‖Qn) . (30)

The former condition is rewritten as Dmax(Q‖Un) ≤ log v(n) for Q ∈ Qsym
n , where Dmax(Q‖P ) := logmaxx

Q(x)
P (x) .

Moreover, the set Qn is closed under symmetrization, i.e. if Pn ∈ Qn then 1
n!

∑

π∈Sn
PnW n[π] ∈ Qsym

n .

The latter condition in (30) is automatically satisfied if Un ∈ Qsym
n , but this is not necessary. The above axioms

have the following immediate consequence.

Lemma 7. Assume Axioms 3 and 4 hold. Then, for all s > 0

lim
n→∞

1

n
Ds(P

×n‖Un) = Ds(P‖Q) , (31)

and the map s 7→ φ(s) := log gs(P‖Q) is convex.

Proof: We first show (31). Additivity implies that 1
n
Ds(P

×n‖Un) ≥ 1
n
Ds(P

×n‖Qn) = Ds(P‖Q). To establish
the other direction, we use Axiom 4. For any Q ∈ Q, we have

1

n
Ds(P

×n‖Un) ≤ 1

n

(

Ds(P
×n‖Q×n) + log v(n)

)

= Ds(P‖Q) +
1

n
log v(n) (32)

Hence, minimizing over all such Q we can replace Ds(P‖Q) with Ds(P‖Q) on the right hand side. Moreover,
using the property that v(n) grows polynomially in n, we find lim supn→∞

1
n
Ds(P

×n‖Un) ≤ Ds(P‖Q). Finally,
since s 7→ log gs(P‖Q) is the point-wise limit of convex functions, it is also convex.

Finally, we note that convexity in Axiom 1 is quite a strong requirement and not satisfied by some of the examples
we consider. Instead of requiring that the set Q is convex, it suffices to assume that there exists a convenient convex
parametrization of the set such that concavity and convexity of gs(P‖·) are preserved.

Axiom 5 (convex parametrization, replaces Axiom 1). There exists a compact convex set Θ in a finite-dimensional
vector space, a twice continuously differentiable (C2) function Θ ∋ θ 7→ Qθ ∈ Q, and an open interval (a, b)
containing 1 such that the following holds:

• We have Q = {Qθ : θ ∈ Θ}.
• For all s ∈ (a, b), the minimizer θ̂s := argminθ∈ΘDs(P‖Qθ) is unique and lies in relint(Θ).
• The map θ 7→ gs(P‖Qθ) has negative definite Hessian at θ̂s for all s ∈ (a, 1) and positive definite Hessian at
θ̂s for all s ∈ (1, b). Moreover, the map θ 7→ Ds(P‖Qθ) has positive definite Hessian at θ̂1.

Since the map in Axiom 5 is assumed to be C2 and (s,Q) 7→ Ds(P‖Q) is C2, Axiom 5 implies that (s, θ) 7→
Ds(P‖Qθ) is C2 as well. Further note that Axiom 1 implies Axiom 5 using the trivial parametrization Θ = Q and
(a, b) = (0,∞).4 If we assume Axiom 5 instead of Axiom 1 we must also relax the additivity property. Namely,
additivity in Axiom 3 is only required in the interval s ∈ (a, b) and Lemma 7 only holds for s ∈ (a, b).

4However, the converse argument is not true because for any two points θ and θ′ and λ ∈ (0, 1), the distribution Qλθ+(1−λ)θ′ ∈ Q does
not necessarily equal the distribution λQθ + (1− λ)Qθ′ ∈ P(X ). That is, the convex combination in the parameter space is different from
the convex combination in P(X ), in general. (Examples will be given in Section III-B.)
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III. MAIN RESULTS AND EXAMPLES

A. Statement of Main Results

Our first result considers the asymptotic situation where the type-II error probability goes to zero exponentially
with a rate below D(P‖Q). In this case, we find that type-I error probability converges to zero exponentially fast,
and the exponent is determined by the Rényi divergence, Ds(P‖Q) with s < 1.

To state our result we need the following concept.

Definition 8. Fix P ∈ P(X ) and Q ⊆ P(X ). For any c ≥ 0, the c-critical rate is defined as

Rc := lim
s→c

(
sφ′(s)− φ(s)

)
(33)

with φ(s) = (s − 1)Ds(P‖Q) as defined in Lemma 7.

The map c 7→ Rc on (a, b) is monotonically increasing (cf. Lemma 20), and furthermore we find R0 = D0(P‖Q)
and R1 = D(P‖Q), as well as R∞ ≥ D∞(P‖Q).
Theorem 9. Let H =

(
X , P, {Qn}n∈N

)
be such that Axioms 2–5 are satisfied on (a, 1]. Then, for any R > Ra,

eR(H) = sup
s∈(a,1)

{
1− s
s

(
Ds(P‖Q) −R

)
}

. (34)

The proof is given in Section V. The case where Qn = {Q×n} are singletons is attributed to Hoeffding [34].
Note that if R ≥ D(P‖Q) the right hand side of (34) evaluates to zero, revealing that in this case the error of the
first kind will decay slower than exponential in n. Otherwise the right hand side is always positive.

Our second result considers the case where type-II error probability goes to zero exponentially with a rate
exceeding the mutual information D(P‖Q). In this case, we find that type-I error probability converges to 1
exponentially fast, and the exponent is determined by the Rényi divergence Ds(P‖Q), with s > 1.

Theorem 10. Let H =
(
X , P, {Qn}n∈N

)
be such that Axioms 2–5 are satisfied on [1, b). Then, for any R < Rb,

scR(H) = sup
s∈(1,b)

{
s− 1

s

(
R−Ds(P‖Q)

)
}

. (35)

The proof is given in Section VI. The case where Qn are singletons is attributed to Csiszár-Longo [12] and
Han-Kobayashi [21]. Note that even in the singleton case, the original results do not apply for R > R∞. In fact
Nakagawa-Kanaya [45] showed that in this setting the above optimal exponent can be attained only by a randomized
test. We will not further discuss this case.

Again we note that if R ≤ D(P‖Q) the right hand side of (35) evaluates to zero, otherwise it is strictly
positive. The threshold rates are thus determined by the above results, and we find the following corollary of
Theorems 9 and 10.

Corollary 11. Let H =
(
X , P, {Qn}n∈N

)
be such that Axioms 2–5 are satisfied with any (a, b) containing 1. Then,

Rth(H) = R∗
th(H) = D(P‖Q) . (36)

For completeness, we also investigate the second order behavior, namely we investigate the error of the first kind
when the error of the second kind vanishes as exp(−nD(P‖Q)−√nr). This analysis takes a step beyond Stein’s
lemma and extends Yushkevich’s work for simple alternative hypotheses [64].

Theorem 12. Assume Axioms 2–5 hold for any (a, b) ∋ {1}. Then, for any r ∈ R, we have

lim
n→∞

α̂
(

exp
(
− nD(P‖Q)−

√
nr
)
;P×n

∥
∥
∥Qn

)

= Φ

(

r
√

V (P‖Q)

)

, (37)

where Φ(x) := (2π)−
1

2

∫ x

−∞ e−
y2

2 dy and V (P‖Q) is defined in the line following (28).

The proof is given in Section VII. The achievability proof is of a different flavor than previous proofs of the
singleton case and relies on Lévy’s continuity theorem.
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B. Examples

In the following we will discuss various examples of hypothesis testing problems that can be tackled with the
above framework. The cases we treat here in particular cover the examples in Section IV.

1) Product distributions with a fixed marginal: Let X and Y be two finite sets. Consider a pair of random
variables (X,Y ) ∼ PXY that are governed by a joint probability distribution PXY ∈ P(X × Y). We denote by
PX|Y=y the distribution of X conditioned on the event Y = y. The conditional distribution PX|Y is interpreted as a
stochastic matrix mapping or channel from Y to X . In particular, we write PXY = PY ×PX|Y and PX = PY PX|Y .
We assume without loss of generality that PX and PY have full support, i.e. we restrict the sets X and Y to the
support of the marginals PX and PY , respectively. Moreover, let TX ∈ P(X ) be such that TX has full support as
well. Now consider the sets

Qn =
{
T×n
X ×QY n : QY n ∈ P(Yn)

}
. (38)

We emphasize that the distributions QY n are unstructured, in particular they do not have to be n-fold i.i.d. products.

Proposition 13. The sequence of tests
(
X × Y, PXY , {Qn}n∈N

)
with Qn in (38) satisfies Axioms 1–4. Moreover,

this still holds if we restrict Qn to permutation invariant or i.i.d. product distributions.

The proof is given in Appendix A-B and relies on the following Lemma, which might be of independent interest.

Lemma 14. The exists a sequence of distributions {Un
Xn}n∈N with Un

Xn ∈ Psym(X n) such that, for every n ∈ N

and QXn ∈ Psym(X n), we have QXn(xn) ≤ |Tn(X )|Un
Xn(xn) for all xn ∈ X n.

In the above lemma we used Tn(X ) to denote the set of X -types of length n. This is the classical analogue of
the universal state originally introduced in the quantum setting [26], [25]. The proof uses the method of types [11],
and the result is only sensible for finite sets.

Proof: The universal distributions are given by

Un
Xn(xn) =

∑

λ∈Tn(X )

1

|Tn(X )|
1

|λ| 1{x
n is of type λ} , (39)

where 1
|λ|1{xn is of type λ} is the uniform distribution over all sequences of type λ. Every permutation invariant

distribution in QXn ∈ Psym(X ) has to be flat over sequences of the same type. Namely, it has to be of the form

QXn(xn) =
∑

λ∈Tn(X )

q(λ)

|λ| 1{xn is of type λ} (40)

for some distribution q ∈ P(Tn(X )). The desired bound can now be verified easily.
2) General (permutation invariant) product distributions: Consider finite sets X1, X2, . . . , Xk and a distribution

PX1X2...XkY ∈ P(X1×X2×. . .×Xk×Y). Without loss of generality we assume that all the marginals of PX1X2...XkY

have full support. Then, consider

Qn =
{
QXn

1
×QXn

2
× . . .×QXn

k
×QY n : QXn

i
∈ Psym(X n

i ), i ∈ [k] and QY n ∈ P(Yn)
}
, . (41)

Note that these sets are not convex, so Axiom 1 is certainly violated. Moreover, note that the restriction that the
QXn

i
be permutation invariant is necessary. Without such a restriction, even a correlated null hypothesis lies in the

convex hull of the set of alternative hypothesis since P(X × Y) equals the convex hull of P(X )× P(Y). Clearly
it is then no longer possible to distinguish these two hypotheses.

Proposition 15. The sequence of tests
(
X1 × X2 × . . . × Xk × Y, PX1X2...XkY , {Qn}n∈N

)
with Qn in (41) satisfy

Axioms 2–5 with (a, b) =
(

k
k+1 ,∞

)
. Moreover, this still holds if we restrict Qn to i.i.d. product distributions.

The proof is given in Appendix A-C.
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3) Recovered and other Markov distributions: Let PXY Z ∈ P(X ×Y×Z) be a joint probability distribution with
marginals PX and PY and PZ . A natural test considers alternative hypothesis comprised of Markov distributions
where only two marginals are fixed. We can see this as the problem of distinguishing a fixed tripartite distribution
PXY Z from the set of distributions that can be “recovered” from its marginal PXY via a probabilistic operation.

We assume without loss of generality that PX(x) and PY (y) and PZ(z) have full support, i.e. we restrict the
sets X , Y , Z to the support of the marginals PX , PY and PZ , respectively. The set of conditional probability
distributions of Z given Y , or channels from Y to Z , is denoted by P(Z|Y). Consider the sets

Qn =
{
P×n
XY ×QZn|Y n : QZn|Y n ∈ P(Zn|Yn)

}
. (42)

Proposition 16. The sequence of tests
(
X×Y×Z, PXY Z , {Qn}n∈N

)
with Qn in (42) satisfy Axioms 1–4. Moreover,

this still holds if we restrict Qn to permutation invariant or i.i.d. product distributions.

This proposition relies on the following lemma, which is of independent interest.

Lemma 17. There exists a sequence of channels, {Un
Y n|Xn}n∈N, where Un

Y n|Xn ∈ Psym(Yn|X n) such that the

following holds. For every n ∈ N, QY n|Xn ∈ Psym(Yn|X n) and PXn ∈ P(X n), we have

PXn ×QY n|Xn(xn, yn) ≤ |Tn(X × Y)|PXn × Un
Y n|Xn(x

n, yn), ∀xn ∈ X n, yn ∈ Yn . (43)

Both of the above statements, Proposition 16 and Lemma 17, are proven in Appendix A-D.
Another natural question is to distinguish between a null hypothesis PXY Z and all Markov distributions X ↔

Y ↔ Z , i.e. distributions QXY Z = QY ×QX|Y ×QZ|Y . Consider the set

Qn =
{
QXnY nZn ∈ Psym

(
(X×Y×Z)n

)
: QXnY nZn = QY n ×QXn|Y n ×QZn|Y n

}
. (44)

Proposition 18. The sequence of tests
(
X × Y × Z, PXY Z , {Qn}n∈N

)
with Qn in (44) satisfy Axioms 2–5 with

(a, b) = (23 ,∞). Moreover, this still holds if we restrict Qn to i.i.d. product distributions.

Again note that every distribution is contained in the convex hull of all Markov distributions, and hence some
restrictions on the set are necessary. It is possible to slightly weaken the condition that (Xn, Y n, Zn) is permutation
invariant, but we will not discuss this here. This is shown in Appendix A-E.

IV. OPERATIONAL INTERPRETATION OF RÉNYI INFORMATION MEASURES

In this section we present the main application of our results, finding operational interpretations of various
measures of Rényi mutual information, conditional entropy and conditional mutual information.

A. Rényi Mutual Information: Testing Against Independent Distributions

It is well known that the mutual information can be expressed in terms of the Kullback-Leibler divergence in
several ways. Consider two random variables X and Y and a joint distribution PXY ∈ P(X × Y) with marginals
PX and PY . We are interested in the identities

I(X :Y ) = D(PXY ‖PX × PY ) (45)

= min
QY ∈P(Y )

D(PXY ‖PX ×QY ) (46)

= min
QX∈P(X), QY ∈P(Y )

D(PXY ‖QX ×QY ) (47)

Each of these identities gives rise to a different hypothesis testing problem and a different notion of Rényi mutual
information. In the following we treat these three problems in the above order.
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1) All marginals fixed: As a warmup consider the following (simple) hypothesis testing problem.

H
mi
↑↑

: null hypothesis: (Xn, Y n) ∼ P×n
XY ,

alternative hypothesis: Xn ∼ P×n
X and Y n ∼ P×n

Y are independent. (48)

That is, we set Qn = {P×n
X × P×n

Y } for all n in Defintion 1. Stein’s Lemma and its strong converse ensure that

Rth(H
mi
↑↑ ) = R∗

th(H
mi
↑↑ ) = D(PXY ‖PX × PY ) = I(X :Y ) . (49)

Moreover, the Hoeffding [34] and Han-Kobyashi [21] bounds give an operational interpretation for the following
Rényi mutual information:

I↑↑

s (X :Y ) := Ds(PXY ‖PX × PY ) =
1

s− 1
log




∑

y∈Y

PY (y)
∑

x∈X

PX|Y=y(x)
sPX(x)1−s



 . (50)

As an example, in wire-tap channel coding, this kind of Rényi mutual information is used to express the exponents
of leaked mutual information [27], [23].

2) One marginal fixed: Here we consider a hypothesis test where the alternative hypothesis is comprised of
product distributions where one marginal is fixed. This is the example discussed in Section III-B1 with TX = PX .

This hypothesis test figures prominently when analyzing the converse to various channel coding questions in
the fixed error regime, for example for second-order analysis of the discrete memoryless channels [48], [24] and
beyond [57]. In this context, Polyanskiy [47, Sec. II] raised the following hypothesis testing problem:

null hypothesis: (Xn, Y n) ∼ P×n
XY ,

alternative hypothesis: Xn ∼ P×n
X independent of Y n. (51)

This problem has the same threshold, I(X :Y ), but gives an operational interpretation for Sibson’s [53] definition
of Rényi mutual information, which is given by

I↑↓

s (X :Y ) := min
QY ∈P(Y)

Ds(PXY ‖PX ×QY ) (52)

=
s

s− 1
log




∑

y∈Y

PY (y)

(
∑

x∈X

PX|Y=y(x)
sPX(x)1−s

) 1

s



 (53)

=
s

s− 1
E0

(
s− 1

s
, PX

)

, (54)

where E0 is Gallager’s error exponent function [20].5 The explicit form of the distribution QY that achieves the
minimum is given by Sibson’s identity (cf. Appendix A).

Our results for the optimal error and strong converse exponents then read

eR(H
mi
↑↓
) = sup

s∈(0,1)

1− s
s

(
I↑↓

s (X :Y )−R
)

and scR(H
mi
↑↓
) = sup

s>1

s− 1

s

(
R− I↑↓

s (X :Y )
)
, (55)

In the setting of channel coding with constant composition codes of type PX , the exponents eR(Hmi
↑↓ ) and scR(H

mi
↑↓ )

are equal to the error exponent [20] and the strong converse exponents [2], respectively. In wire-tap channel coding,
it is used for expressing the exponents of leaked information when the leaked information is measured in terms of
the variational distance [28, Thm. 5].

5Verdú [62] recently surveyed Sibson’s definition and pointed out its favorable mathematical properties in the case of general alphabets.



12

3) Arbitrary product distributions, permutation invariant: Let us now consider the most general problem,

H
mi
↓↓

: null hypothesis: (Xn, Y n) ∼ P×n
XY ,

alternative hypothesis: Xn and Y n independent, (Xn, Y n) permutation invariant. (56)

This is covered by the example in Section III-B2. In fact, it is sufficient to require that either Xn or Y n be
permutation invariant (cf. Proposition 15).

We find that for R sufficiently close to the threshold I(X :Y ), we have

eR(H
mi
↓↓ ) = sup

s∈( 1

2
,1)

1− s
s

(
I↓↓

s (X :Y )−R
)

and scR(H
mi
↓↓ ) = sup

s>1

s− 1

s

(
R− I↓↓

s (X :Y )
)
, (57)

with a different definition of Rényi mutual information,

I↓↓

s (X :Y ) := min
QX∈P(X ), QY ∈P(Y)

Ds(PXY ‖QX ×QY ) . (58)

Our result gives an operational interpretation for this definition of Rényi mutual information. However, this opera-
tional interpretation only applies for s ≥ 1

2 . In fact, it is unclear if our results can be extended to smaller s and we
do not know of a closed form expression for this quantity. While this work was completed, the properties of this
definition have been independently studied in [37].

B. Rényi Conditional Entropy: Testing Against Uniform and Independent Distribution

The conditional entropy can be expressed in terms of the Kullback-Leiber divergence very similarly to the mutual
information, with the difference that we require one marginal to be fixed to a uniform distribution. This leads to
the following two expressions:

H(X|Y ) = log |X | −D(PXY ‖RX × PY ) (59)

= log |X | − min
QY ∈P(Y)

D(PXY ‖RX ×QY ), (60)

where RX is the uniform distribution over X and, as in the previous section, X and Y are two random variables
governed by a joint distribution PXY ∈ P(X × Y) with marginals PX and PY . Note that the term log |X | can
easily be incorporated in the relative entropy term if we do not require the second argument to be a normalized
probability distribution but instead allow arbitrary positive distributions. Our results extend to this more general
setup but we will restrict to normalized distributions as otherwise the corresponding hypothesis testing problems
are unnatural.

1) Fixed marginal distribution: Consider the following hypothesis testing problem:

H
c
↑
: null hypothesis: (Xn, Y n) ∼ P×n

XY ,

alternative hypothesis: Xn ∼ R×n
X and Y n ∼ P×n

Y are independent. (61)

We find that the threshold rate is D(PXY ‖RX × PY ) = log |X | − H(X|Y ) and the Hoeffding [34] and Han-
Kobyashi [21] bounds establish an operational meaning for the Rényi conditional entropy

H↓

s(X|Y ) := log |X | −Ds(PXY ‖RX × PY ) =
1

1− s log




∑

y∈Y

PY (y)
∑

x∈X

PX|Y=y(x)
s



 . (62)

This definition of conditional Rényi entropy is for example used to express the leaked modified mutual information
in the secure random number generation [27, Thm. 2] and [31, Thm. 2].
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2) Arbitrary marginal distribution: We consider the following problem, in analogy with Section IV-A2:

H
c
↓
: null hypothesis: (Xn, Y n) ∼ P×n

XY ,

alternative hypothesis: Xn ∼ R×n
X independent of Y n. (63)

This is covered by the example in Section III-B1 with TX the uniform distribution. Again we determine the threshold
log |X | − H(X|Y ) and the error and strong converse exponents given operational significance to Arimoto’s [3]
definition of Rényi conditional entropy,

H↑

s(X|Y ) := log |X | − min
QY ∈Q(Y)

Ds(PXY ‖RX ×QY ) =
s

1− s log




∑

y∈Y

PY (y)

(
∑

x∈X

P s
X|Y=y

) 1

s



 . (64)

The minimum was evaluated using Sibson’s identity (cf. Lemma 29 in Appendix A).
This definition has recently be reviewed in [18] and compares favorably to other definitions of Rényi conditional

entropy that have recently been put forward [55], [35]. For example, it has an operational interpretation determining
the moments of the number of rounds required to guessX from Y [1], and relatedly as an exponent for task encoding
with side information [6]. More precsiely, we have

eR(H
c
↑↓
) = sup

s∈(0,1)

1− s
s

(
log |X | −H↑↓

s (X :Y )−R
)

and scR(H
c
↑↓
) = sup

s>1

s− 1

s

(
R− log |X |+H↑↓

s (X :Y )
)
,

(65)

As a further example, in secure random number extraction, sclog |X |−R(H
c
↑↓
) expresses the error exponent under the

universal composability criterion [28, Thm. 4] and [33, Thm. 30].

C. Rényi Conditional Mutual Information: Testing Against Markov Distributions

Let X,Y and Z be three random variables with a joint distribution PXY Z ∈ P(X × Y × Z). The conditional
mutual information, I(X : Z|Y ), can be seen as a measure of how close the distribution PXY Z is to a Markov
chain X ↔ Y ↔ Z . For example, we can write

I(X :Z|Y ) = D(PXY Z‖PY × PX|Y × PZ|Y ) (66)

= min
QZ|Y ∈P(Z|Y )

D(PXY Z‖PY × PX|Y ×QZ|Y ) (67)

= min
QXY Z∈P(X×Y×Z)

QXY Z=QX|Y ×QZ|Y ×QZ

D(PXY Z‖QY ×QX|Y ×QZ|Y ) , (68)

where the latter optimization is over all distributions satisfying the Markov condition QXY Z = QX|Y ×QZ|Y ×QZ .
These are only a few of all the possible expressions for the conditional mutual information, but we will focus our
attention on these examples and follow a similar discussion as with the mutual information.

1) All marginals fixed: Again we first consider a simple alternative hypothesis.

H
cmi
↑↑↑

: null hypothesis: (Xn, Y n, Zn) ∼ P×n
XY Z ,

alternative hypothesis: Xn ↔ Y n ↔ Zn is Markov, (Xn, Y n) ∼ P×n
XY , and (Y n, Zn) ∼ P×n

Y Z . (69)

This corresponds to the sets Qn :=
{
(PY × PX|Y × PZ|Y )

×n
}

. The threshold rate for this problem is the
conditional mutual information, I(X :Z|Y ). Furthermore, the Hoeffding [34] and Han-Kobyashi [21] bounds yield
an operational interpretation of the Rényi conditional mutual information given as

I↑↑↑

s (X :Z|Y ) := Ds(PXY Z‖PY × PX|Y × PZ|Y ) (70)

=
1

s− 1
log




∑

y∈Y

PY (y)

(
∑

z∈Z

PZ|Y=y(z)

(
∑

x∈X

PX|Y=y,Z=z(x)
sPX|Y=y(x)

1−s

))

 . (71)

In the special case where PXY Z = PY Z × PX|Z , this kind of Rényi mutual information describes the exponent
for leaked mutual information when we employ a superposition code in the wire-tap channel [63, Lem. 16] and [30,
Thm. 20].
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2) Two marginals fixed, recovery channels: The expression in (67) corresponds to the following problem:

H
cmi
↑↑↓

: null hypothesis: (Xn, Y n, Zn) ∼ P×n
XY Z ,

alternative hypothesis: Xn ↔ Y n ↔ Zn is Markov, (Xn, Y n) ∼ P×n
XY . (72)

This problem is discussed in Section III-B3. We show that the threshold for this test is again given by I(X :Z|Y ).
Moreover, the optimal error and strong converse exponents for R close to the threshold are given by

eR(H
cmi
↑↑↓ ) = sup

s∈(0,1)

1− s
s

(
I↑↑↓

s (X :Z|Y )−R
)

and scR(H
cmi
↑↑↓ ) = sup

s>1

s− 1

s

(
R− I↑↑↓

s (X :Z|Y )
)
, (73)

where we have introduced a new definition of the Rényi conditional mutual information. This is given by

I↑↑↓

s (X :Z|Y ) := min
QZ|Y ∈P(Z|Y)

Ds(PXY Z‖PY × PX|Y ×QZ|Y ) (74)

=
1

s− 1
log




∑

y∈Y

PY (y)




∑

z∈Z

PZ|Y=y(z)

(
∑

x∈X

PX|Y=y,Z=z(x)
sPX|Y=y(x)

1−s

)1

s





s

 . (75)

The minimum was evaluated using Sibson’s identity in Lemma 29 for the distribution QZ|Y=y seperately for each
y ∈ Y . (See Appendix A-D for details.) The resulting expression can be regarded as a conditional version of the
Gallager function by replacing s with ρ

ρ−1 . In the special case where PXY Z = PY Z × PX|Z , this quantity is used
in superposition coding to describe the error exponent [36, Sec. II] and the exponent of leaked information [30,
Thm. 22].

3) Arbitrary Markov distribution, permutation invariant: The most general alternative hypothesis that we consider
is comprised of all distributions that have a Markov structure X ↔ Y ↔ Z . More precisely, the following problem:

H
cmi
↓↓↓ : null hypothesis: (Xn, Y n, Zn) ∼ P×n

XY Z ,

alternative hypothesis: Xn ↔ Y n ↔ Zn is Markov, (Xn, Y n, Zn) permutation invariant. (76)

This is covered in Section III-B3. The threshold is again I(X : Z|Y ) and the optimal error and strong converse
exponents for R close to the threshold are given by

eR(H
cmi
↓↓↓ ) = sup

s∈( 2

3
,1)

1− s
s

(
I↓↓↓

s (X :Z|Y )−R
)

and scR(H
cmi
↓↓↓ ) = sup

s>1

s− 1

s

(
R− I↓↓↓

s (X :Z|Y )
)
, (77)

with yet another Rényi conditional mutual information,

I↓↓↓

s (X :Z|Y ) := min
QXY Z∈P(X×Y×Z)

Ds(PXY Z‖QY ×QX|Y ×QZ|Y ) . (78)

Note that we only have an operational interpretation of this quantity for s > 2
3 , and, moreover, we do not know of

a closed form expression.

V. PROOFS: HOEFFDING BOUND

The proof of Theorem 9 is split into two parts, achievability and optimality, which both rely on different Axioms.

A. Some Properties of φ(s)

Before we state our result, let us introduce some helpful notation. Recall that φ(s) := (s − 1)Ds(P‖Q) =
log gs(P‖Q) and define

φ̄s0(s) := (s− 1)Ds(P‖Q̂s0) = log gs(P‖Q̂s0) , (79)

where Q̂s0 := Q
θ̂s0

. Clearly, φ(s0) = φ̄s0(s0) by definition of θ̂s in Axiom 5. An important consequence of this
Axiom is the following lemma, which shows that the first derivative of φ and φ̄ agree as well at s = s0.

Lemma 19. Assume Axiom 5 holds on (a, b). Then, for s0 ∈ (a, b), we have

d

ds
Ds(P‖Q)

∣
∣
∣
s=s0

=
d

ds
Ds(P‖Qθ̂s0

)
∣
∣
∣
s=s0

. (80)
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Moreover, the function φ(s) on (a, b) is continuously differentiable and satisfies φ′(s0) = φ̄′s0(s0).

Proof: Let us define f(s, θ) = gs(P‖Qθ). Write θ = (θ1, . . . , θd) as a d-dimensional real vector. The point θ̂s

is determined by the implicit functions

Fi(s, θ) :=
∂

∂θi
f(s, θ) = 0, ∀i ∈ {1, 2, . . . , d} . (81)

Moreover, the Hessian matrix Hs of θ 7→ f(s, θ) at θ̂s is given by

(Hs)i,j =
∂2

∂θi∂θj
f(s, θ)

∣
∣
θ=θ̂s . (82)

The map s 7→ Hs is continuous since (s, θ) 7→ f(s, θ) is C2 by Axiom 5.
Let us first treat the case s0 > 1. By Axiom 5 we have that Hs is positive definite and thus invertible. Then, the

implicit function theorem yields

∂θ̂si
∂s

∣
∣
∣
∣
s=s0

= −
d∑

j=1

(
H−1

s0

)

i,j
· ∂Fj(s, θ̂

s0)

∂s

∣
∣
∣
∣
s=s0

(83)

and in particular s 7→ θ̂s is continuously differentiable. We further find that

d

ds
f(s, θ̂s)

∣
∣
∣
s=s0

=
∂

∂s
f(s, θ̂s0)

∣
∣
∣
s=s0

+

d∑

i=1

F i(s0, θ̂
s0) · ∂θ̂

s
i

∂s

∣
∣
∣
∣
s=s0

=
∂

∂s
f(s, θ̂s0)

∣
∣
∣
s=s0

, (84)

where we used that F i(s0, θ̂
s0) = 0 by definition of θ̂s0. This establishes the result for s0 ∈ (1, b). An analogous

argument yields the same result for s0 < 1. For s0 = 1 we instead choose f(s, θ) = Ds(P‖Qθ). Again the Hessian
matrix for the derivative with regards to θ is strictly positive definite, and the remainder of the argument proceeds
as before.

Finally, since s 7→ Ds(P‖Q) is C2 for fixed P,Q ∈ P(X) and θ 7→ Qθ as well as s 7→ θ̂s are continuous, we
deduce that the functions s 7→ Ds(P‖Q) and φ(s) = (s− 1)Ds(P‖Q) are continuously differentiable.

B. Some Properties of Convex C1 Functions

In this section let φ̃(s) be a general convex C1 function on (a, b) ⊆ [0,∞) and define ψ̃(s) := sφ̃′(s) − φ̃(s).
Moreover, define R̃c := lims→c ψ̃(s) for every c ∈ [a, b].

Lemma 20. The function ψ̃(s) is continuous and monotonically nondecreasing on (a, b).

Proof: Let a < s0 < s1 < b. By the mean value theorem there exists an s ∈ [s0, s1] such that (s1− s0)φ̃′(s) =
φ̃(s1)− φ̃(s0). Thus,

ψ̃(s1)− ψ̃(s0) = s1φ̃
′(s1)− s0φ̃′(s0)−

(
φ̃(s1)− φ̃(s0)

)
(85)

= s1φ̃
′(s1)− s0φ̃′(s0)− (s1 − s0)φ̃′(s) (86)

= s1
(
φ̃′(s1)− φ̃′(s)

)
+ s0

(
φ̃′(s)− φ̃′(s0)

)
≥ 0 . (87)

The inequality follows from the assumption that φ̃(s) is convex, and φ̃′(s) thus monotonically increasing.

Lemma 21. Let R ∈ (R̃a, R̃b). Then, there exists an ŝ ∈ (a, b) such that ψ̃(ŝ) = R and

sup
s∈(a,b)

(s− 1)R − φ̃(s)
s

=
(ŝ − 1)R − φ̃(ŝ)

ŝ
(88)

Proof: By continuity, for every R ∈ (R̃a, R̃b), there exists (at least one) value ŝ ∈ (a, b) such that ψ̃(ŝ) = R.

Let us first calculate the derivative of g(s) := (s−1)R−φ̃(s)
s

. This yields

g′(s) =
sR− sφ̃′(s)− (s− 1)R + φ̃(s)

s2
=
R− ψ̃(s)

s2
. (89)

Note that the numerator is monotonically decreasing in s due to Lemma 20 and vanishes at s = ŝ. In particular,
we find that g′(s) ≥ 0 for a < s < ŝ and g′(s) ≤ 0 for ŝ < s < b. We conclude that ŝ maximizes g(s) on (a, b).
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C. Proof of Achievability

Achievability for Theorem 9 follows from the following statement.

Proposition 22. Assume Axioms 3 and 4 hold with parameter a. Then, we have

lim inf
n→∞

− 1

n
log α̂

(

exp(−nR);P×n
∥
∥
∥Qn

)

≥ sup
s∈(a,1)

{
1− s
s

(
Ds(P‖Q) −R

)
}

. (90)

Proof: Note that the expression on the right hand side of (90) is zero if R ≥ D(P‖Q) and the inequality thus
holds trivially for that case. We assume that R < D(P‖Q) for the remainder of this proof.

Let us fix any s ∈ (a, 1) for the moment. Moreover, let us define the sequence of tests

Tn(x
n) :=

{

1 if P×n(xn) ≥ exp(λn)U
n(xn)

0 otherwise
, (91)

where Un is the universal distribution of Axiom 4. We also choose the sequence {λn}n∈N of real numbers as

λn =
1

s

(

log v(n) + nR+ (s − 1)Ds(P
×n‖Un)

)

. (92)

Axiom 4 implies that Qn is closed under symmetrization. Moreover, the test Tn is permutation invariant. Hence,
for all π ∈ Sn, we have Qn[Tn] = Qn[TnW

n
π ] = QnW n

π−1 [T n] and we can in particular replace Qn with its
symmetrization. This yields

β(Tn;Qn) = max
Qn∈Qn

Qn
[
P×n(Xn) ≥ exp(λn)U

n(Xn)
]

(93)

= max
Qn∈Qsym

n

Qn
[
P×n(Xn) ≥ exp(λn)U

n(Xn)
]
. (94)

Next we use the universal distribution in Axiom 4 to further bound

β(Tn;Qn) ≤ v(n)
∑

xn∈Xn

Un(xn) 1
{
P×n(xn) ≥ exp(λn)U

n(xn)
}

(95)

≤ v(n) exp(−sλn)
∑

xn∈Xn

(
Un(x)

)1−s(
P×n(x)

)s
1
{
P×n(xn) ≥ exp(λn)U

n(xn)
}

(96)

≤ v(n) exp(−sλn)
∑

xn∈Xn

(
Un(x)

)1−s(
P×n(x)

)s
(97)

= v(n) exp (−sλn) exp
(
(s − 1)Ds(P

×n‖Un)
)
. (98)

Hence, the requirement that β(Tn;Qn) ≤ exp(−nR) is satisfied by the choice of λn in (92). Note that this statement
can directly be extended to the convex hull due to (17).

Let us now take a closer look at the error of the first kind. Using a similar development as above, we find

α̂
(
exp(−nR);P×n

∥
∥Qn

)
≤ α(Tn;P×n) = P×n

[
P×n(Xn) < exp(λn)U

n(Xn)
]

(99)

≤ exp
(
(1− s)λn

)
exp

(
(s− 1)Ds(P

×n‖Un)
)

(100)

= exp
(1− s

s

(
log v(n) + nR−Ds(P

×n‖Un)
))

(101)

where we substituted λn from (92) in the last step. Further using the additivity property of Axiom 3, we find that

Ds(P
×n‖Un) ≥ Ds(P

×n‖Qn) ≥ nDs(P‖Q), (102)

and thus we arrive at the bound

log α̂
(
exp(−nR);P×n

∥
∥Qn

)
≤ 1− s

s

(
nR− nDs(P‖Q) + log v(n)

)
. (103)

Since log v(n) = O(log n), taking the limit n→∞ yields

lim inf
n→∞

− 1

n
log α̂

(
exp(−nR);P×n

∥
∥Qn

)
≥ 1− s

s

(
Ds(P‖Q)−R

)
. (104)

Finally, since this derivation holds for all s ∈ (a, 1), we established the direct part.
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D. Proof of Optimality

To show optimality, we will directly employ the converse of the Hoeffding bound.

Proposition 23. Assume Axioms 2–5 hold with parameter a. Then, for any R > Ra, we have

lim sup
n→∞

− 1

n
log α̂

(

exp(−nR);P×n
∥
∥
∥Qn

)

≤ sup
s∈(a,1)

{
1− s
s

(
Ds(P‖Q)−R

)
}

. (105)

Proof: Let us first consider the case R ∈ (Ra,D(P‖Q)). We will use the results of Sections V-A and V-B.
Take ŝ ∈ (a, 1) to be the optimizer in Lemma 21 for the functions φ̃ = φ and ψ̃ = ψ on (a, 1). Then we have that
ψ(ŝ) = ŝφ′(ŝ)− φ(ŝ) = R and

sup
s∈(a,1)

1− s
s

(Ds(P‖Q) −R) =
1− ŝ
ŝ

(Dŝ(P‖Q)−R) (106)

The following consequence of Lemma 19 is crucial. Recall that

φ̄(s) = log gs(P‖Qθ̂ŝ) and ψ̄(s) = sφ̄′(s)− φ̄(s) , (107)

where θ̂ŝ is the optimal θ at s = ŝ. Note that the function s 7→ φ̄(s) is a C1 convex function on all of (0, 1) since
gs is evaluated for fixed distributions P and Q

θ̂ŝ . Moreover, Lemma 19 implies that φ′(ŝ) = φ̄′(ŝ), and hence,
ψ̄(ŝ) = ψ(ŝ) = R. We can thus also apply Lemma 21 for the functions φ̃ = φ̄ and ψ̃ = ψ̄ on (0, 1) and find that

sup
s∈(0,1)

1− s
s

(
Ds(P‖Qθ̂ŝ)−R

)
=

1− ŝ
ŝ

(Dŝ(P‖Q)−R) . (108)

Next we note that, due to Axiom 2, we have

α̂
(

exp(−nR);P×n
∥
∥
∥Qn

)

≥ α̂
(

exp(−nR);P×n
∥
∥
∥Q×n

)

(109)

for any Q ∈ Q. After applying this for Q = Q
θ̂ŝ , we can further apply the converse of the Hoeffding bound (we

take the formulation in [43, Thm. 1]) to the expression on the right-hand side, which yields

lim sup
n→∞

{

− 1

n
log α̂

(

exp(−nR);P×n
∥
∥
∥Qn

)}

(110)

≤ lim sup
n→∞

{

− 1

n
log α̂

(

exp(−nR);P×n
∥
∥
∥Q×n

θ̂ŝ

)}

(111)

= sup
s∈(0,1)

1− s
s

(
Ds(P‖Qθ̂ŝ)−R

)
. (112)

which proves the result together with (106) and (108).
If R ≥ D(P‖Q) the right hand side of (105) evaluates to zero. Moreover, there exists at least one Q ∈ Q such

that R ≥ D(P‖Q). The result then follows from the converse of Hoeffding’s bound since

lim sup
n→∞

− 1

n
log α̂

(

exp(−nR);P×n
∥
∥
∥Qn

)

≤ lim sup
n→∞

− 1

n
log α̂

(

exp(−nR);P×n
∥
∥
∥Q×n

)

= 0 . (113)

VI. PROOFS: STRONG CONVERSE EXPONENTS

Again we treat achievability and optimality with separate proofs that rely on different axioms.
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A. Proof of Achievability

Our proof relies on a variant of the Gärtner-Ellis theorem of large deviation theory (see, e.g., [14, Sec. 2 and
Sec. 3.4] for an overview), which we recall here. Given a sequence of random variables {Zn}n∈N we introduce its
asymptotic cumulant generating function as

ΛZ(t) := lim
n→∞

{
1

n
log
(
E [exp(ntZn)]

)
}

, (114)

if it exists. For our purposes it is sufficient to use the following variant of the Gärtner-Ellis theorem due to Chen [7,
Thm. 3.6] (see also [40, Lem. A.2] for this exact statement).

Lemma 24. Let us assume that t 7→ ΛZ(t) as defined in (114) exists and is differentiable in some interval (a, b).
Then, for any z ∈

(
limtցa Λ

′
Z(t), limtրbΛ

′
Z(t)

)
, we have

lim sup
n→∞

{

− 1

n
log Pr[Zn ≥ z]

}

≤ sup
t∈(a,b)

{tz − ΛZ(t)} . (115)

Achievability follows from the following statement.

Proposition 25. Assume Axioms 3–5 hold with parameter b. For any R ∈ (0, Rb), we have

lim
n→∞

− 1

n
log

(

1− α̂
(

exp(−nR);P×n
∥
∥
∥Qn

))

≤ sup
s∈(1,b)

{
s− 1

s

(
R−Ds(P‖Q)

)
}

. (116)

Proof: Let us first assume that R ∈ (D(P‖Q), Rb). Using Lemma 21 with φ̃ = φ on (1, b), we find the value
ŝ ∈ (1, b) that satisfies

sup
s∈(1,b)

s− 1

s

(
R−Ds(P‖Q)

)
=
ŝ− 1

ŝ

(
R−Dŝ(P‖Q)

)
(117)

and ψ(ŝ) = ŝφ′(ŝ) − φ(ŝ) = R. We use the same sequence of tests Tn as in (91) and the sequence λn of (92),
substituting ŝ for s. This ensures that β(Tn;Qn) ≤ exp(−nR), as shown in the proof of Proposition 22. Moreover,

1− α̂
(

exp(−nR);P×n
∥
∥
∥Qn

)

≥ 1− α(Tn;P×n) (118)

= P×n
[
P×n(Xn) ≥ exp(λn)U

n(Xn)
]
= Pr[Zn ≥ 0] , (119)

where we defined the sequence of random variables Zn(X
n) following the law Xn ← P×n and

Zn(x
n) =

1

n

(

log
P×n(xn)

Un(xn)
− λn

)

(120)

=
1

n

(

log
P×n(xn)

Un(xn)
− log v(n)

ŝ
− ŝ− 1

ŝ
Dŝ(P

×n‖Un)− nR

ŝ

)

. (121)

Its asymptotic cumulant generating function then evaluates to

ΛZ(t− 1) = lim
n→∞

{
1

n
log
(
E [exp(n(t− 1)Zn)]

)
}

(122)

= lim
n→∞

{
1

n
logE

[
P×n(Xn)t−1

Un(Xn)t−1

]

− (t− 1)

(
log v(n)

nŝ
+
ŝ− 1

nŝ
Dŝ(P

×n‖Un) +
R

ŝ

)}

(123)

= (t− 1) lim
n→∞

{
1

n
Dt(P

×n‖Un)− ŝ− 1

nŝ
Dŝ(P

×n‖Un)− R

ŝ
− log v(n)

nŝ

}

(124)

= φ(t)− t− 1

ŝ
(φ(ŝ) +R) (125)

= φ(t)− (t− 1)φ′(ŝ) . (126)

Here we used the expression for Zn given in (121) and the defintion of the Rényi divergence in the second and
third equality, respectively. To arrive at (125) we evaluated the limit n → ∞ using Lemma 7. The last equality
follows from the relation between ŝ and R given in the line following (117).
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Note that t 7→ ΛZ(t − 1) is differentiable on (1, b) due to Lemma 19. Moreover, in order to apply Lemma 24
with z = 0, we need to verify the following two inequalities:

lim
t→1

{
d

dt
ΛZ(t− 1)

}

= φ′(1)− φ′(ŝ) < 0 and lim
t→b

{
d

dt
ΛZ(t− 1)

}

= φ′(b)− φ′(ŝ) > 0 . (127)

We cannot invoke strict convexity of φ(s) to verify the above bounds; instead, note that D(P‖Q) < R, and thus

φ′(1)− φ′(ŝ) = D(P‖Q)− ŝ− 1

ŝ
Dŝ(P‖Q) −

1

ŝ
R (128)

<
ŝ− 1

ŝ

(
D(P‖Q)−Dŝ(P‖Q)

)
≤ 0 . (129)

To prove the second inequality in (127), we use the fact that Rb > R to show

φ′(b)− φ′(ŝ) = 1

b
Rb +

b− 1

b
Db(P‖Q) −

1

ŝ
R− ŝ− 1

ŝ
Dŝ(P‖Q) (130)

>
1

b
R+

b− 1

b
Db(P‖Q)−

1

ŝ
R− ŝ− 1

ŝ
Dŝ(P‖Q) (131)

=
ŝ− 1

ŝ

(
R−Dŝ(P‖Q)

)
− b− 1

b

(
R−Db(P‖Q)

)
≥ 0 , (132)

where the last inequality follows by the definition of ŝ.
We have now verified the conditions of Lemma 24 with z = 0, which yields

lim
n→∞

− 1

n
log Pr[Zn ≥ 0] = sup

t∈(1,b)
(t− 1)φ′(ŝ)− φ(t) (133)

= (ŝ− 1)φ′(ŝ)− φ(ŝ) (134)

=
ŝ− 1

ŝ

(

ŝφ′(ŝ)− φ(ŝ) + 1

ŝ− 1
φ(ŝ)

)

=
ŝ− 1

ŝ

(
R−Dŝ(P‖Q)

)
. (135)

To evaluate the supremum in (133), we note that the objective function t 7→ (t− 1)φ′(ŝ)−φ(t) is concave in t and
its derivative vanishes at t = ŝ. This establishes (134). Combining this with (118) concludes the proof.

For R ≤ D(P‖Q) the right hand side of (116) evaluates to zero. Since the expression on the left hand side is
clearly monotonically increasing in R we deduce that, for all such R,

lim
n→∞

− 1

n
log

(

1− α̂
(

exp(−nR);P×n
∥
∥
∥Qn

))

≤ inf
R>D(P‖Q)

sup
s∈(1,b)

{
s− 1

s

(
R−Ds(P‖Q)

)
}

= 0 . (136)

B. Proof of Optimality

Optimality follows as a corollary of Han and Kobayashi’s [21] derivation of the strong converse exponent.

Proposition 26. Assume Axiom 2 holds. For any R ≥ 0, we have

lim inf
n→∞

− 1

n
log

(

1− α̂
(

exp(−nR);P×n
∥
∥
∥Qn

))

≥ sup
s>1

{
s− 1

s

(
R−Ds(P‖Q)

)
}

. (137)

Proof: If R < D(P‖Q) the bound holds trivially. Otherwise, analogous to the optimality proof for Theorem 9,
we first fix Q ∈ Q and apply the Han-Kobayashi converse bound [21] (in the form of [46, Ch. VI] and [39,
Thm. IV.9]). This yields

lim inf
n→∞

{

− 1

n
log

(

1− α̂
(

exp(−nR);P×n
∥
∥
∥Qn

))}

(138)

≥ lim inf
n→∞

{

− 1

n
log

(

1− α̂
(

exp(−nR);P×n
∥
∥
∥Q×n

))}

(139)

= sup
s>1

{
s− 1

s

(
R−Ds(P

∥
∥
∥Q)

)
}

. (140)

As this holds for all Q ∈ Q, we maximize the expression in (140) over Q to arrive at the desired result.
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VII. PROOFS: SECOND ORDER ASYMPTOTICS OF STEIN’S LEMMA

In the proofs of this section we assume that log denotes the natural logarithm for ease of presentation. The
following result refines Lemma 7, and is the key ingredient of our proof.

Lemma 27. Assume Axioms 2–5 holds on (a, b) ⊃ {1}. For all t ∈ R,

lim
n→∞

{
t√
n

(

D1+ t√
n

(P×n‖Un)− nD(P‖Q)
)}

=
t2

2
V (P‖Q) . (141)

Proof: By combining Lemma 19 at s0 = 1 with the Taylor expansion in (26), we find D1+s(P‖Q) =
D(P‖Q) + s

2V (P‖Q) +O(s2). From (32) we learn that

D1+ t√
n

(P×n‖Un) ≤ nD1+ t√
n

(P‖Q) + log v(n) = nD(P‖Q) + t
√
n

2
V (P‖Q) +O(log n) . (142)

Furthermore, employing additivity from Axiom 3 yields

D1+ t√
n

(P×n‖Un) ≥ nD1+ t√
n

(P‖Q) = nD(P‖Q) + t
√
n

2
V (P‖Q) +O(log n) . (143)

Combining (142) and (143) yields the desired statement.
Now let MX(t) := E

[
exp(tX)

]
denote the moment generating function of a real random variable X. We also

need the following property of moment generating functions, a variant of Lévi’s continuity theorem [41, Thm. 2].

Lemma 28. Let 0 < a < b. If a sequence of random variables {Xn}n∈N satisfies limn→∞MXn
(t) = MX(t) for

some random variable X and all t ∈ (a, b), then limn→∞Pr[Xn ≤ k] = Pr[X ≤ k] for all k ∈ R.

We prove the direct and converse part of Theorem 12 together.
Proof of Theorem 12: We first show the converse statement. Choosing the optimal distribution Q̂ = Q̂1 ∈ Q

as defined in (28), we find

α̂
(
exp(−nD(P‖Q)−

√
nr);P×n

∥
∥Qn

)
≥ α̂

(
exp(−nD(P‖Q̂)−

√
nr);P×n

∥
∥Q̂×n

)
, (144)

and the limiting statement then follows using [64, Thm. 2] (see also [54, Thm. 1.1]).
To show achievability we again rely on the test given in (91) and set λn = nD(P‖Q) +√nr + log v(n). Then

by Axiom 4 and using the argument leading to (94) to establish the first identity, we have

β(Tn;Qn) = max
Qn∈Qsym

n

Qn
[
P×n(Xn) ≥ exp(λn)U

n(Xn)
]

(145)

≤ v(n)Un
[
P×n(Xn) ≥ exp(λn)U

n(Xn)
]

(146)

≤ v(n) exp(−λn)P×n
[
P×n(Xn) ≥ exp(λn)U

n(Xn)
]

(147)

≤ exp
(
− nD(P‖Q)−

√
nr
)
. (148)

Furthermore, we find

α(Tn;P
×n) = P×n

[
logP×n(Xn)− logUn(Xn) < nD(P‖Q) +

√
nr + log v(n)

]
(149)

= Pr[Yn(X
n) < r] , (150)

where Xn ∼ P×n and we defined the following sequence of random variables as

Yn(X
n) :=

1√
n

(
log P×n(Xn)− logUn(Xn)− nD(P‖Q)− log v(n)

)
. (151)

Lemma 27 then implies that the cumulant generating function converges to

logMY (t) = lim
n→∞

logE
[
exp(tY n)

]
(152)

= lim
n→∞

{

logE
[
PXn(xn)

t√
nUn(xn)−

t√
n

]
+
√
ntD(P‖Q)− t√

n
log v(n)

}

(153)

= lim
n→∞

{
t√
n

(
D1+ t√

n

(P×n‖Un)− nD(P‖Q)− log v(n)
)
}

(154)

=
t2

2
V (P‖Q) . (155)
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Hence, by Lemma 28, the sequence of random variable {Yn}n converges in distribution to a random variable Y with
cumulant generating function logMY (t), i.e., a Gaussian random variable with zero mean and variance V (P‖Q).
In particular, this yields

lim
n→∞

P×n [Yn < r] = Pr [Y < r] = Φ

(

r
√

V (P‖Q)

)

. (156)

Since α̂
(
exp(−nD(P‖Q)−√nr);P×n

∥
∥Qn

)
≤ α(Tn;P×n), this concludes the proof.

VIII. CONCLUSION

We have introduced a general framework to treat binary hypothesis testing with a composite alternative hypothesis.
In this general framework we show analogues of Stein’s Lemma, Hoeffding’s optimal error exponents and Han-
Kobyashi’s optimal strong converse exponents. We have discussed several concrete examples that lead to operational
interpretations of various Rényi information measures.

The coincidence between our obtained exponents for the hypothesis testing problem in (51) and the corresponding
exponents for channel coding is quite interesting. A similar coincidence has been observed for the case of source
coding with side information and (63). These facts seem to indicate a deep relation between coding and the
composite alternative hypotheses given in (51) and (63). Its further clarification is an interesting future direction of
study, for example one could try to find coding problems that are closely related to (72).

In statistics, the χ2 test is used in an asymptotic setting similar to (9). The test assumes i.i.d. distributions and is
used for the case when both hypotheses are composite (see, e.g., [38]). For small samples and k = 2, Fisher’s exact
test [19] can be used to replace the χ2 test. Recently, the setting of small samples and general k has been studied
using a Gröbner basis approach [15], [50]. In contrast to their formulation, we have not assumed i.i.d. structure for
the independent case; instead, we only require permutation invariance for each random variable. Our result suggests
that we can replace the i.i.d. condition by a permutation invariant condition when testing independence, which can
be expected to have wider applications.

The key ingredient of our derivation is an axiomatic approach based on the universal distribution. Due to its
generality, we can treat many composite hypothesis testing problems without i.i.d. assumption (for the composite
hypothesis), and it will be interesting to explore further examples that fit into our framework. Moreover, because
the universal distribution plays an important role in universal channel coding [24], we can expect that it will play
an important role when analyzing universal protocols for other problems in information theory.

As explained in Section III-B2, we cannot remove the permutation invariance condition in that example, an
essential difference to the example given in Section III-B1. This kind of difference sheds light on the difference
between channel coding and secure random number generation. Originally, for the channel coding, the meta converse
was introduced using simple hypothesis testing [42, Sec. 3] and [48]. Polyanskiy [47, Sec. II] then extended it to
the composite hypothesis testing of the form (7). Although this improvement does not effect the exponents and the
second-order coding rate, it can improve the bound in the finite blocklength regime. Recently, Tyagi-Watanabe [58],
[59] introduced a converse bound for secure random number generation by using simple hypothesis testing between
a true joint distribution and an arbitrary product distribution. Although in their converse bound, we can choose
an arbitrary product distribution as the alternative hypothesis, we cannot replace the alternative hypothesis by a
composite hypothesis composed of all of product distributions. Hence, for secure random number generation, we
cannot extend their bound to a bound based on the composite hypothesis as in [47].

In prior work [32] the present authors have analyzed composite hypothesis testing in the non-commutative
(quantum) regime and found an operational interpretation for various definitions of quantum Rényi mutual infor-
mation and quantum Rényi conditional entropy [56]. However, the present work is more general than the classical
specialization of that work and requires new techniques. This allows us to deal with more complex composite
alternative hypotheses, and in particular allows for a characterization of Rényi conditional mutual information.
Furthermore, finding appropriate definitions for Rényi conditional mutual information in the non-commutative
setting is an ongoing topic of research [4]. It is possible that an adaption of our analysis to quantum hypothesis
testing will lead to further progress in this direction. However, some caution is advised since already the definitions
of the regular conditional mutual information in (66)–(68) are not equivalent in the quantum case.
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APPENDIX A
VERIFICATION OF THE AXIOMS FOR EXAMPLES IN SECTION III-B

A. Sibson’s identity

This appendix proves that the examples satisfy our axioms. One of the main ingredients is Sibson’s identity [53],
as presented in [10, Eq. (11)–(13)].

Lemma 29. For any distributions PXY ∈ P(X × Y), TX ∈ P(X ) and QY ∈ P(Y), and any s ∈ (0, 1) ∪ (1,∞),

Ds(PXY ‖TX ×QY ) = Ds(PXY ‖TX × Q̂s
Y ) +Ds(Q̂

s
Y ‖QY ) (157)

where the optimal distribution Q̂s
Y ∈ P(Y) is given by

Q̂s
Y (y) =

PY (y)gs(PX|Y=y‖TX)
1

s

∑

y PY (y)gs(PX|Y=y‖TX)
1

s

. (158)

Thus, in particular, argminQY ∈P(Y)Dα(PXY ‖TX ×QY ) = {Q∗
Y }.

Proof: We rewrite (157) as gs(PXY ‖TX×QY ) = gs(PXY ‖TX×Q̂s
Y ) ·gs(Q̂s

Y ‖QY ), at which point the equality
can be verified by close inspection. The fact that Q̂s

Y is the unique minimizer is then a consequence of the positive
definiteness of the Rényi divergence.

B. Proof of Proposition 13

Proof: Clearly Q is compact convex and we explicitly find the optimizer using Sibson’s identity in Lemma 29.
Up to normalization it is given by

Q̂s
Y (y) ∼ PY (y)gs(PX|Y=y‖TX)

1

s , (159)

and thus Axiom 1 is verified. Axiom 2 holds by definition and Axiom 3 can be verified by noting that Q̂s in (159)
takes on an i.i.d. product form when both P×n

XY and T×n
X are i.i.d. products.

Next, note that Qn is closed under permutations and convex. The universal distributions are

Un
XnY n = T×n

X × Un
Y n , with Un

Y n(yn) =
∑

λ∈Tn(Y)

1

|Tn(Y)|
1

|λ| 1{y
n is of type λ} , (160)

as in Lemma 14. Clearly Un
XnY n ∈ Qsym

n and thus. we find that Axiom 4 is satisfied with v(n) = |Tn(Y )| = poly(n).
Finally note that all the above remains true if we restrict Qn to permutation invariant or i.i.d. product distributions,

denoted Q′
n, except that now Un

XnY n /∈ Q′
n. However, we still have

Ds(P
×n
XY ‖Un

XnY n) ≥ Ds(P
×n
XY ‖Qn) = Ds(P

×n
XY ‖Q′

n), (161)

since additivity property guarantees that the minimum in Ds(P
×n
XY ‖Qn) is taken by a product distribution.
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C. Proof of Proposition 15

We give the proof for the case k = 1 and set X1 = X . The generalization to larger k does not require further
conceptual insights, and we will remark in a footnote where nontrivial changes are necessary.

Proof: Axiom 2 holds by definition. To verify Axiom 4 we first note that the joint permutations of Xn and Y n

separate as W n
XnY n [π] =W n

Xn [π]×W n
Y n [π]. Thus, we can write

∑

π∈Sn

1

n!

(
QXn ×QY n

)
W n

XnY n [π] =
∑

π∈Sn

1

n!
QXnW n

Xn [π]×QY nW n
Y n [π] = QXn ×

∑

π∈Sn

1

n!
QY nW n

Y n [π] , (162)

where we used that QXn ∈ Psym(X n) to establish the last equality. Clearly the resulting distribution lies in Qn.
Next, consider the universal distribution Un

XnY n = Un
Xn ×Un

Y n with Un
Xn and Un

Y n given as in (40). Clearly, since
Qsym

n = Psym(X n)× Psym(Yn) we then find that every symmetric distribution satisfies

QXn ×QY n ≤ |Tn(X )|Un
Xn × |Tn(Y)|Un

Y n (163)

and Axiom 4 holds with v(n) = |Tn(X )||Tn(Y)| = poly(n).
For Axiom 5 we chose the following parametrization. Since P(X ) is convex subset of R

|X |−1, there exists a
natural smooth parametrization Θ1 ∋ θ1 7→ QX,θ1 ∈ P(X ) where Θ1 is a convex subset of R

|X |−1, and similarly
for P(Y). Combining these two parameterizations, we introduce a Θ ⊂ R

|X |+|Y|−2 such that

Θ ∋ θ = (θ1, θ2) 7→ QX,θ1 ×QY,θ2 = QXY,θ ∈ Q . (164)

The set Θ is evidently convex. Let us next verify the required convexity and concavity properties. First note that
the map f(x, y) = x1−sy1−s for x, y ≥ 0 is strictly jointly concave when s ∈ (12 , 1) and strictly jointly convex
when s > 1. This follows, for example, from studying the Hessian matrix for f , which is

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)

= x−sy−s(1− s)
(
−sx−1y (1− s)
(1− s) −sxy−1

)

(165)

and its determinant x−2sy−2s(1− s)2(2s− 1). The Hessian is negative definite for s ∈ (12 , 1) and positive definite
for s > 1 when x, y > 0.6 From this and the above parametrization we conclude that the Hessian of the map
Θ 7→ gs(PXY ‖QX ×QY ) is negative definite for s ∈ (12 , 1) and positive definite for s > 1 in the relative interior of
Θ. Moreover, the function g(x, y) = − log xy = − log x−log y evidently has a positive definite Hessian for x, y > 0.
Hence the desired concavity and convexity properties for the maps θ 7→ gs(PXY ‖QXY,θ) and θ 7→ Ds(PXY ‖QXY,θ)
hold. As a consequence, the minimizer is unique if it exists in the relative interior of Q (as we will show below).

Let us assume that Ds(PXY ‖Q) = Ds(PXY ‖Q̂s
X × Q̂s

Y ) for some optimal distributions Q̂s
X and Q̂s

Y . To verify
Axiom 3 we note that distributions are optimal only if they satisfy the self-consistency relation for a local optimum
given in Eq. (159). This implies that

Q̂s
X(x) ∼ PX(x)gs(PY |X=x‖Q̂s

Y )
1

s and Q̂s
Y (y) ∼ PY (y)gs(PX|Y=y‖Q̂s

X)
1

s . (166)

This solution is in the relative interior of Q and thus unique (for α > 1
2 ).

Furthermore, we find that the product distributions Q̂s
X × Q̂s

X and Q̂s
Y × Q̂s

Y satisfy the self-consistency relations
for the local optimal solution of Ds(P

×2
XY ‖Q2). More precisely, we find

Q̂s
X(x1)Q̂

s
X(x2) ∼ PX(x1)PX(x2)gs(PY |X=x1

× PY |X=x2
‖Q̂s

Y × Q̂s
Y )

1

s , (167)

and vice versa. Moreover, due to the fact that the function is either convex or concave for α > 1
2 , we can conclude

that these product distributions are globally optimal as well. Namely

Ds(P
×2
XY ‖Q2) = Ds

(
P×2
XY

∥
∥(Q̂X × Q̂Y )

×2
)
= 2Ds(PXY ‖Q) . (168)

Applying this argument inductively yields the condition of Axiom 3.

6For k ≥ 2 we need to consider the function f(x1, x2, . . . , xk, y) =
∏

k

i=1 x
1−s

i
y1−s and the range of s where this function is jointly

concave in all its arguments is further restricted to s > k

k+1
.
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D. Proof of Proposition 16

Before we commence with the proof we need to introduce some additional concepts and auxiliary results. Let
us introduce the following representation of channels, which is reminiscent of the Choi-Jamiołkowski isomorphism
in quantum information theory. Let X and Y be finite sets. For any channel QY |X ∈ P(Y|X ) we define a vector
representation Q̃XY = 1X×QY |X , where 1X is the identity vector for the Schur (element-wise) product of vectors,
i.e. 1X(x) = 1 for all x ∈ X . More concretely, the vector is given by Q̃XY (x, y) = QY |X(y|x). Note that Q̃XY is
not a probability distribution but clearly we must have

∑

y∈Y

Q̃XY (x, y) = 1, ∀x ∈ X . (169)

Using this representation we can write joint distribution after the application of the channel as

PX ×QY |X = (PX × 1Y ) ◦ Q̃XY , (170)

where ◦ denotes the Schur product between the vectors and 1Y (y) = 1 for all y ∈ Y . Note also that the normalization
condition (169) enforces that the resulting vector is a probability distribution, and hence every vector with positive
elements that satisfies (169) corresponds to a valid channel.

Lemma 30. QY n|Xn is covariant under permutations if and only if Q̃XnY n is permutation invariant. Formally,

∀π ∈ Sn : QY n|XnWY n [π] =WXn [π]QY n|Xn ⇐⇒ ∀π ∈ Sn : Q̃XnY nWXnY n[π] = Q̃XnY n . (171)

Proof: The following equalities can be verified by close inspection:

Q̃XnY nWXnY n [π] =
(
1Xn ×QY n|Xn

)(
WXn [π]×WY n [π]

)
(172)

= (1XnWXn [π])×
(
WXn [π−1]QY n|XnWY n [π]

)
(173)

= 1Xn ×
(
WXn [π−1]QY n|XnWY n[π]

)
. (174)

The equivalence of the two conditions then follows from the fact that WXn [π−1]WXn [π] is the identity channel.
Proof of Lemma 17: Let QY n|Xn be covariant under permutations. Then from Lemma 30 we learn that Q̃XnY n

is permutation invariant and thus in particular can be written in the form

Q̃XnY n(xn, yn) =
∑

λXY ∈Tn(X×Y)

q̃XY (λXY )

#λXY
1{(xn, yn) is of type λXY } , (175)

where q̃XY is a probability distribution over joint types λXY and #λXY denotes the number of sequences of type
λXY . Moreover, Eq. (169) enforces that for every type µX ∈ Tn(X ), and any sequence xn of type µX , we have

1 =
∑

yn∈Yn

Q̃XnY n(xn, yn) =
∑

λXY ∈Tn(X×Y)

q̃XY (λXY )

#λXY

∑

yn∈Yn

1{(xn, yn) is of type λXY }
︸ ︷︷ ︸

= #λY |X(xn)

, (176)

where the number of sequences of type λXY with marginal xn, denoted #λY |X(xn), clearly only depend on the
type µX of the marginal. Moreover, if the type of xn does not correspond to the marginal type λX of λXY then
#λY |X(xn) vanishes. Generally, we have #λY |X(xn) = 1{µx = λx}#λXY

#λX
. Hence (176) simplifies to

∑

λXY ∈Tn(X×Y)
λX=µX

q̃XY (λXY )
1

#λX
= 1 ∀µX ∈ Tn(X ) . (177)

A direct consequence of this condition is that q̃XY (λXY ) ≤ #λX for all λXY .
Now let us define a universal permutation covariant channel ŨXnY n by the choice

ũXY (λXY ) :=
#λX

∣
∣{κXY ∈ Tn(X × Y) : κX = λX}

∣
∣

(178)
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which evidently satisfies (177). Moreover, for all permutation covariant channels with representation Q̃XY of the
form (175), we have the bound

q̃XY (λXY ) ≤ #λX ≤
∣
∣{κXY ∈ Tn(X × Y) : κX = λX}

∣
∣ũXY (λXY ) ≤ |Tn(X × Y)|ũXY (λXY ) . (179)

Hence also Q̃XY ≤ |Tn(X × Y)| ŨXY . The statement of the lemma then follows from the expression in (170).
Proof of Proposition 16: The set Q is clearly compact convex. Note that

gs(PXY Z‖PY × PX|Y ×QZ|Y ) =
∑

y∈Y

PY (y) gs(PXZ|Y=y‖PX|Y=y ×QZ|Y=y) . (180)

From this we can then deduce, as in (159), that the optimal channel takes on the form

Q̂s
Z|Y=y(z) ∼ PZ|Y=y(z)gs

(
PX|Y=y,Z=z

∥
∥TX|Y=y

) 1

s , (181)

for all y ∈ Y . As such, it is clear that Axioms 1–3 are satisfied.
It remains to verify Axiom 4. First note that Qn is closed under symmetrization. Moreover, any channel QZn|Y n

corresponding to a permutation invariant element of Qsym
n satisfies

QZn|Y nWZn [π] =WY n [π]QZn|Y n , ∀π ∈ Sn, (182)

i.e. QZn|Y n is permutation covariant. Hence, Lemma 17 applies and guarantees the existence of a sequence of
universal channels {Un

Zn|Y n}n∈N with Un
Zn|Y n ∈ Qsym

n such that

P×n
XY ×QZn|Y n(xn, yn, zn) ≤ v(n)P×n

XY × Un
Zn|Y n(xn, yn, zn) ∀xn ∈ X n, yn ∈ Yn, zn ∈ Zn . (183)

E. Proof of Proposition 18

Proof: The proof proceeds similarly to the proofs of Propositions 15 and 16. Axiom 2 holds by definition and
Axiom 4 can be verified using the universal distributions

Un
XnY nZn = Un

Y n × Un
Xn|Y n × Un

Zn|Y n (184)

with the universal distributions Un
Y n as in (40) and the universal maps Un

Xn|Y n and Un
Zn|Y n provided by Lemma 17.

Axiom 5 is verified with a construction analogous to Proposition 15 but this time we need to consider the
function (x, y, z) 7→ x1−sy1−sz1−s which is strictly jointly concave for s ∈ (23 , 1) and strictly jointly convex for
s > 1.Finally, Axiom 3 is again verified using the self-consistency relations.
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