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Abstract

Information divergences allow one to assess how close two distributions are from
each other. Among the large panel of available measures, a special attention has
been paid to convex ϕ-divergences, such as Kullback-Leibler, Jeffreys, Hellinger, Chi-
Square, Renyi, and Iα divergences. While ϕ-divergences have been extensively studied
in convex analysis, their use in optimization problems often remains challenging. In
this regard, one of the main shortcomings of existing methods is that the minimization
of ϕ-divergences is usually performed with respect to one of their arguments, possibly
within alternating optimization techniques. In this paper, we overcome this limitation
by deriving new closed-form expressions for the proximity operator of such two-variable
functions. This makes it possible to employ standard proximal methods for efficiently
solving a wide range of convex optimization problems involving ϕ-divergences. In ad-
dition, we show that these proximity operators are useful to compute the epigraphical
projection of several functions. The proposed proximal tools are numerically validated
in the context of optimal query execution within database management systems, where
the problem of selectivity estimation plays a central role. Experiments are carried out
on small to large scale scenarios.

1 Introduction

Divergence measures play a crucial role in evaluating the dissimilarity between two infor-
mation sources. The idea of quantifying how much information is shared between two
probability distributions can be traced back to the work by Pearson [1] and Hellinger [2].
Later, Shannon [3] introduced a powerful mathematical framework that links the notion of
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information with communications and related areas, laying the foundations for information
theory. However, information theory was not just a product of Shannon’s work, it was
the result of fundamental contributions made by many distinct individuals, from a variety
of backgrounds, who took his ideas and expanded upon them. As a result, information
theory has broadened to applications in statistical inference, natural language processing,
cryptography, neurobiology, quantum computing, and other forms of data analysis. Im-
portant sub-fields of information theory are algorithmic information theory, information
quantification, and source/channel coding. In this context, a key measure of information
is the Kullback-Leibler divergence [4], which can be regarded as an instance of the wider
class of ϕ-divergences [5–7], including also Jeffreys, Hellinger, Chi-square, Rényi, and Iα
divergences [8].

1.1 Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence is known to play a prominent role in the computa-
tion of channel capacity and rate-distortion functions. One can address these problems with
the celebrated alternating minimization algorithm proposed by Blahut and Arimoto [9,10].
However, other approaches based on geometric programming may provide more efficient
numerical solutions [11]. As the KL divergence is a Bregman distance, optimization prob-
lems involving this function can also be addressed by using the alternating minimization
approach proposed by Bauschke et al [12] (see also [13] for recent related works). However,
the required optimization steps may be difficult to implement, and the convergence of the
algorithm is only guaranteed under restrictive conditions. Moreover, a proximal algorithm
generalizing the EM algorithm was investigated in [14], where the KL divergence is a metric
for maximizing a log-likelihood.

The generalized KL divergence (also called I-divergence) is widely used in inverse prob-
lems for recovering a signal of interest from an observation degraded by Poisson noise. In
such a case, the generalized KL divergence is usually employed as a data fidelity term.
The resulting optimization approach can be solved through an alternating projection tech-
nique [15], where both the data fidelity term and the regularization term are based on
the KL divergence. The problem was formulated in a similar manner by Richardson and
Lucy [16, 17], whereas more general forms of the regularization functions were considered
by others [18–25]. In particular, some of these works are grounded on proximal splitting
methods [19, 22, 23]. These methods offer efficient and flexible solutions to a wide class
of possibly nonsmooth convex minimization problems (see [26, 27] and references therein).
However, in all the aforementioned works, one of the two variables of the KL divergence is
fixed.
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1.2 Other Divergences

Recently, the authors in [28, 29] defined a new measure called Total KL divergence, which
has the benefit of being invariant to transformations from a special linear group. On the
other side, the classical symmetrization of KL divergence, also known as Jeffreys-Kullback
(JK) divergence [30], was recently used in the k-means algorithm as a replacement of the
squared difference [31,32], yielding analytical expression of the divergence centroids in terms
of the Lambert W function.

The Hellinger (Hel) divergence was originally introduced by Beran [33] and later redis-
covered under different names [34–37], such as Jeffreys-Masutita distance. In the field of
information theory, the Hel divergence is commonly used for nonparametric density estima-
tion [38,39], statistics, and data analytics [40], as well as machine learning [41].

The Chi-square divergence was introduced by Pearson [1], who used it to quantitatively
assess whether an observed phenomenon tends to confirm or deny a given hypothesis. This
work heavily contributed to the development of modern statistics. In 1984, the journal
Science referred to it as “one of the 20 most important scientific breakthroughs”. Moreover,
Chi-square was also successfully applied in different contexts, such as information theory and
signal processing, as a dissimilarity measure between two probability distributions [7, 42].

Rényi divergence was introduced as a measure of information related to the Rényi entropy
[43]. According to the definition by Harremo [44], Rényi divergence measures “how much a
probabilistic mixture of two codes can be compressed”. It has been studied and applied in
many areas [36, 45,46], including image registration and alignement problems [47].

The Iα divergence was originally proposed by Chernoff [48] to statistically evaluate the
efficiency of an hypothesis test. Subsequently, it was recognized as an instance of more
general classes of divergences [6], such as the ϕ-divergences [49] and the Bregman divergences
[50], and further extended by many researchers [46,50–52]. The Iα divergence has been also
considered in the context of Non-negative Matrix Factorization, where the hyperparameter
α is associated with characteristics of a learning machine [53].

1.3 Contributions

To the best of our knowledge, existing approaches for optimizing convex criteria involving
ϕ-divergences are often restricted to specific cases, such as performing the minimization
w.r.t. one of the divergence arguments. In order to take into account both arguments,
one may resort to alternating minimization schemes, but only in the case when specific
assumptions are met. Otherwise, there exist some approaches that exploit the presence of
additional moment constraints [54], or the equivalence between ϕ-divergences and some loss
functions [55], but they provide little insight into the numerical procedure for solving the
resulting optimization problems.

In the context of proximal methods, there exists no general approach for performing
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the minimization w.r.t. both the arguments of a ϕ-divergence. This limitation can be
explained by the fact that a few number of closed-form expressions are available for the
proximity operator of non-separable convex functions, as opposed to separable ones [26,56].
Some examples of such functions are the Euclidean norm [57], the squared Euclidean norm
composed with an arbitrary linear operator [57], a separable function composed with an
orthonormal or semi-orthogonal linear operator [57], the max function [58], the quadratic-
over-linear function [59–61], and the indicator function of some closed convex sets [57, 62].

In this work, we develop a novel proximal approach that allows us to address more
general forms of optimization problems involving ϕ-divergences. Our main contribution is
the derivation of new closed-form expressions for the proximity operator of such functions.
This makes it possible to employ standard proximal methods for efficiently solving a wide
range of convex optimization problems involving ϕ-divergences. In addition to its flexibility,
the proposed approach leads to parallel algorithms that can be efficiently implemented on
both multicore and GPGPU architectures [63].

1.4 Organization

The remaining of the paper is organized as follows. Section 2 presents the general form of
the optimization problem that we aim at solving. Section 3 studies the proximity operator
of ϕ-divergences and some of its properties. Section 4 details the closed-form expressions
of the aforementioned proximity operators. Section 5 makes the connection with epigraph-
ical projections. Section 6 illustrates the application to selectivity estimation for query
optimization in database management systems. Finally, Section 7 concludes the paper.

1.5 Notation

Throughout the paper, Γ0(H) denotes the class of convex functions f defined on a real
Hilbert spaceH and taking their values in ]−∞,+∞ ] which are lower-semicontinuous and proper
(i.e. their domain dom f on which they take finite values is nonempty). ‖ · ‖ and 〈· | ·〉 de-
note the norm and the scalar product of H, respectively. The Moreau subdifferential of f at
x ∈ H is ∂f(x) =

{
u ∈ H

∣∣ (∀y ∈ H) 〈y − x | u〉+ f(x) ≤ f(y)
}

. If f ∈ Γ0(H) is Gâteaux
differentiable at x, ∂f(x) = {∇f(x)} where ∇f(x) denotes the gradient of f at x. The
conjugate of f is f ∗ ∈ Γ0(H) such that (∀u ∈ H) f ∗(u) = supx∈H

(
〈x | u〉 − f(x)

)
. The

proximity operator of f is the mapping proxf : H → H defined as [64]

(∀x ∈ H) proxf (x) = argmin
y∈H

f(y) +
1

2
‖x− y‖2. (1)

Let C be a nonempty closed convex subset C of H. The indicator function of C is defined
as

(∀x ∈ H) ιC(x) =

{
0 if x ∈ C
+∞ otherwise.

(2)
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The elements of a vector x ∈ H = RN are denoted by x = (x(`))1≤`≤N , whereas IN is the
N ×N identity matrix.

2 Problem formulation

The objective of this paper is to address convex optimization problems involving a discrete
information divergence. In particular, the focus is put on the following formulation.

Problem 2.1 Let D be a function in Γ0(RP × RP ). Let A and B be matrices in RP×N ,
and let u and v be vectors in RP . For every s ∈ {1, . . . , S}, let Rs be a function in Γ0(RKs)
and Ts ∈ RKs×N . We want to

minimize
x∈RN

D(Ax+ u,Bx+ v) +
S∑
s=1

Rs(Tsx). (3)

Note that the functions D and (Rs)1≤s≤S are allowed to take the value +∞, so that
Problem 2.1 can include convex constraints by letting some of the functions Rs be equal to
the indicator function ιCs of some nonempty closed convex set Cs. In inverse problems, Rs

may also model some additional prior information, such as the sparsity of coefficients after
some appropriate linear transform Ts.

2.1 Applications in information theory

A special case of interest in information theory arises by decomposing x into two vectors
p ∈ RP ′ and q ∈ RQ′ , that is x = [p> q>]> with N = P ′ + Q′. Indeed, set u = v = 0,
A = [A′ 0] with A′ ∈ RP×P ′ , B = [0 B′] with B′ ∈ RP×Q′ and, for every s ∈ {1, . . . , S},
Ts = [Us Vs] with Us ∈ RKs×P ′ and Vs ∈ RKs×Q′ . Then, Problem 2.1 takes the following
form:

Problem 2.2 Let A′, B′, (Us)1≤s≤S, and (Vs)1≤s≤S be matrices as defined above. Let D be
a function in Γ0(RP × RP ) and, for every s ∈ {1, . . . , S}, let Rs be a function in Γ0(RKs).
We want to

minimize
(p,q)∈RP ′×RQ′

D(A′p,B′q) +
S∑
s=1

Rs(Usp+ Vsq). (4)

Several tasks can be formulated within this framework, such as the computation of channel
capacity and rate-distortion functions [9, 10], the selection of log-optimal portfolios [65],
maximum likelihood estimation from incomplete data [66], soft-supervised learning for text
classification [67], simultaneously estimating a regression vector and an additional model
parameter [61] or the image gradient distribution and a parametric model distribution [68],
as well as image registration [69], deconvolution [70], and recovery [15]. We next detail an
important application example in source coding.
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Example 2.3 Assume that a discrete memoryless source E, taking its values in a finite
alphabet {e1, . . . , eP1} with probability P(E), is to be encoded by a compressed signal Ê
in terms of a second alphabet {ê1, . . . , êP2}. Furthermore, for every j ∈ {1, . . . , P1} and
k ∈ {1, . . . , P2}, let δ(k,j) be the distortion induced when substituting êk for ej. We wish

to find an encoding P(Ê|E) that yields a point on the rate-distortion curve at a given
distortion value δ ∈ ]0,+∞[. It is well-known [71] that this amounts to minimizing the

mutual information I between E and Ê, more precisely the rate-distortion function R is
given by

R(δ) = min
P(Ê|E)

I(E, Ê), (5)

subject to the constraint

P1∑
j=1

P2∑
k=1

δ(k,j) P(E = ej)P(Ê = êk|E = ej) ≤ δ. (6)

The mutual information can be written as [9, Theorem 4(a)]

min
P(Ê)

P1∑
j=1

P2∑
k=1

P(E = ej, Ê = êk) ln

(
P(Ê = êk, E = ej)

P(E = ej)P(Ê = êk)

)
, (7)

subject to the constraint
P2∑
k=1

P(Ê = êk) = 1. (8)

Moreover, the constraint in (6) can be reexpressed as

P1∑
j=1

P2∑
k=1

δ(k,j) P(E = ej, Ê = êk) ≤ δ, (9)

with

(∀j ∈ {1, . . . , P1})
P2∑
k=1

P(E = ej, Ê = êk) = P(E = ej). (10)

The unknown variables are thus the vectors

p =
(
P(E = ej, Ê = êk)

)
1≤j≤P1,1≤k≤P2

∈ RP1P2 (11)

and
q =

(
P(Ê = êk)

)
1≤k≤P2

∈ RP2 , (12)

whose optimal values are solutions to the problem:

minimize
p∈C2∩C3,q∈C1

D(p, r ⊗ q) (13)
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where r =
(
P(E = ej)

)
1≤j≤P1

∈ RP1 , ⊗ denotes the Kronecker product, D is the Kullback-

Leibler divergence, and C1, C2, C3 are the closed convex sets corresponding to the linear
constraints (8), (9), (10), respectively. The above formulation is a special case of Problem
2.2 in which P = P ′ = P1P2, Q′ = P2, A′ = IP , B′ is such that (∀q ∈ RQ′) B′q = r ⊗ q,
S = 3, V1 = IQ′ , U2 = U3 = IP , U1 and V2 = V3 are null matrices, and (∀s ∈ {1, 2, 3}) Rs is
the indicator function of the constraint convex set Cs.

2.2 Considered class of divergences

We will focus on additive information measures of the form(
∀(p, q) ∈ RP × RP

)
D(p, q) =

P∑
i=1

Φ(p(i), q(i)), (14)

where Φ ∈ Γ0(R × R) is the perspective function [72] on [0,+∞[ × ]0,+∞[ of a function
ϕ : R→ [0,+∞] belonging to Γ0(R) and twice differentiable on ]0,+∞[. In other words, Φ
is defined as follows: for every (υ, ξ) ∈ R2,

Φ(υ, ξ) =



ξ ϕ
(υ
ξ

)
if υ ∈ [0,+∞[ and ξ ∈ ]0,+∞[

υ lim
ζ→+∞

ϕ(ζ)

ζ
if υ ∈ ]0,+∞[ and ξ = 0

0 if υ = ξ = 0

+∞ otherwise,

(15)

where the above limit is guaranteed to exist [73, Sec. 2.3]. Moreover, if ϕ is a strictly convex
function such that

ϕ(1) = ϕ′(1) = 0, (16)

the function D in (14) belongs to the class of ϕ-divergences [5,74]. Then, for every (p, q) ∈
[0,+∞[P × [0,+∞[P ,

D(p, q) ≥ 0 (17)

D(p, q) = 0 ⇔ p = q. (18)

Examples of ϕ-divergences will be provided in Sections 4.1, 4.2, 4.3, 4.4 and 4.6. For a
thorough investigation of the rich properties of ϕ-divergences, the reader is refered to [5,6,75].
Other divergences (e.g., Rényi divergence) are expressed as(

∀(p, q) ∈ RP × RP
)

Dg(p, q) = g
(
D(p, q)

)
(19)

where g is an increasing function. Then, provided that g
(
ϕ(1)

)
= 0, Dg(p, q) ≥ 0 for every

[p> q>]> ∈ C with

C =
{
x ∈ [0, 1]2P

∣∣ P∑
i=1

x(i) = 1 and
P∑
i=1

x(P+i) = 1
}
. (20)
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From an optimization standpoint, minimizing D or Dg (possibly subject to constraints)
makes no difference, hence we will only address problems involving D in the rest of this
paper.

2.3 Proximity operators

Proximity operators will be fundamental tools in this paper. We first recall some of their
key properties.

Proposition 2.4 [64, 72] Let f ∈ Γ0(H). Then,

(i) For every x ∈ H, proxf x ∈ dom f .

(ii) For every (x, x) ∈ H2

x = proxf (x) ⇔ x− x ∈ ∂f(x). (21)

(iii) For every (x, z) ∈ H2,

proxf(·+z)(x) = proxf (x+ z)− z. (22)

(iv) For every (x, z) ∈ H2 and for every α ∈ R,

proxf+〈z|·〉+α(x) = proxf (x− z). (23)

(v) Let f ∗ be the conjugate function of f . For every x ∈ H and for every γ ∈ ]0,+∞[,

proxγf∗(x) = x− γ proxf/γ(x/γ). (24)

(vi) Let G be a real Hilbert space and let T : G → H be a bounded linear operator, with the
adjoint denoted by T ∗. If TT ∗ = κ Id and κ ∈ ]0,+∞[, then for all x ∈ H

proxf◦T (x) = x+
1

κ
T ∗
(

proxκf (Tx)− Tx
)
. (25)

Numerous additional properties of proximity operators are mentioned in [26,27].

In this paper, we will be mainly concerned with the determination of the proximity
operator of the function D defined in (14) with H = RP ×RP . The next result emphasizes
that this task reduces to the calculation of the proximity operator of a real function of two
variables.
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Proposition 2.5 Let D be defined by (14) where Φ ∈ Γ0(R2) and let γ ∈ ]0,+∞[. Let
u ∈ RP and v ∈ RP . Then, for every p ∈ RP and for every q ∈ RP ,

proxγD(·+u,·+v)(p, q) = (p− u, q − v) (26)

where, for every i ∈ {1, . . . , P},

(p(i), q(i)) = proxγΦ(p(i) + u(i), q(i) + v(i)). (27)

Proof. The result is a straightforward consequence of [26, Table 10.1ix] and Proposi-
tion 2.4(iii), by setting f = D and z = (u, v).

Note that, although an extensive list of proximity operators of one-variable real functions
can be found in [26], few results are available for real functions of two variables [57,59,60,62].
An example of such a result is provided below.

Proposition 2.6 Let ϕ ∈ Γ0(R) be an even differentiable function on R\{0}. Let Φ: R2 →
]−∞,+∞] be defined as: (∀(ν, ξ) ∈ R2)

Φ(ν, ξ) =

{
ϕ(ν − ξ) if (ν, ξ) ∈ [0,+∞[2

+∞ otherwise.
(28)

Then, for every (ν, ξ) ∈ R2,

proxΦ(ν, ξ) =



1

2

(
ν + ξ + π1, ν + ξ − π1

)
if |π1| < ν + ξ

(0, π2) if π2 > 0 and π2 ≥ ν + ξ

(π3, 0) if π3 > 0 and π3 ≥ ν + ξ

(0, 0) otherwise,

(29)

with π1 = prox2ϕ(ν − ξ), π2 = proxϕ(ξ) and π3 = proxϕ(ν).

Proof. See Appendix A

The above proposition provides a simple characterization of the proximity operators of
some distances defined for nonnegative-valued vectors. However, the assumptions made in
Proposition 2.6 are not satisfied by the class of functions Φ considered in Section 2.2.1 In the
next section, we will propose two algorithms for solving a general class of convex problems
involving these functions Φ.

1Indeed, none of the considered ϕ-divergences can be expressed as a function of the difference between
the two arguments.
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2.4 Proximal splitting algorithms

As soon as we know how to calculate the proximity operators of the functions involved
in Problem 2.1, various proximal methods can be employed to solve it numerically. Two
examples of such methods are given subsequently.

The first algorithm is PPXA+ [76] which constitutes an extension of PPXA (Parallel
ProXimal Agorithm) proposed in [57]. As it can be seen in [77,78], PPXA+ is an augmented
Lagrangian-like methods (see also [76, Sec. 6]).

Algorithm 1 PPXA+

Initialization 

(ω0, . . . , ωS) ∈ ]0,+∞[S+1 ,

(t0,0, t1,0) ∈ RP × RP , t2,0 ∈ RK1 , . . . , tS+1,0 ∈ RKS

Q =
(
ω0A

>A+ ω0B
>B +

S∑
s=1

ωsT
>
s Ts

)−1

x0 = Q
(
ω0A

>t0,0 + ω0B
>t1,0 +

S∑
s=1

ωsT
>
s ts+1,0

)
.

For n = 0, 1, . . .

(r0,n, r1,n) = proxω−1
0 D(·+u,·+v)(t0,n, t1,n) + e0,n

For s = 0, 1, . . . S⌊
rs+1,n = proxω−1

s Rs
(ts+1,n) + es,n

yn = Q
(
ω0A

>r0,n + ω0B
>r1,n +

S∑
s=1

ωsT
>
s rs+1,n

)
λn ∈ ]0, 2[

t0,n+1 = t0,n + λn

(
A(2yn − xn)− r0,n

)
t1,n+1 = t1,n + λn

(
B(2yn − xn)− r1,n

)
For s = 0, 1, . . . S⌊
ts+1,n+1 = ts+1,n + λn

(
Ts(2yn − xn)− rs+1,n

)
xn+1 = xn + λn(yn − xn).

In this algorithm, ω0, . . . , ωS are weighting factors and (λn)n≥0 are relaxation factors. For
every n ≥ 0, the variables e0,n ∈ RP ×RP , e1,n ∈ RK1 , . . . , eS,n ∈ RKS model possible errors
in the computation of the proximity operators. For instance, these errors arise when the
proximity operator is not available in a closed form, and one needs to compute it through
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inner iterations. Under some technical conditions, the convergence of PPXA+ is guaranteed.

Proposition 2.7 [76, Corollary 5.3] Suppose that the following assumptions hold.

(i) The matrix A>A+B>B +
S∑
s=1

T>s Ts is invertible.

(ii) There exists x̌ ∈ RN such that
Ax̌+ u ∈ ]0,+∞[P

Bx̌+ v ∈ ]0,+∞[P

(∀s ∈ {1, . . . , S}) Tsx̌ ∈ ri(domRs).

(30)

(iii) There exists λ ∈]0, 2[ such that, for every n ∈ N,

λ ≤ λn+1 ≤ λn < 2. (31)

(iv) For every s ∈ {0, . . . , S}, ∑
n∈N

‖es,n‖ < +∞. (32)

If the set of solutions to Problem 2.1 is nonempty, then any sequence (xn)n∈N generated by
Algorithm 1 converges to an element of this set.

It can be noticed that, at each iteration n, PPXA+ requires to solve a linear system in
order to compute the intermediate variable yn. The computational cost of this operation
may be high when N is large. Proximal primal-dual approaches [79–86] allow us to circum-
vent this difficulty. An example of such an approach is the Monotone+Lipschitz Forward
Backward Forward (M+LFBF) method [83] which takes the following form.
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Algorithm 2 M+LFBF

Initialization 
(t0,0, t1,0) ∈ RP × RP , t2,0 ∈ RK1 , . . . , tS+1,0 ∈ RKS

x0 ∈ RN , β =
(
‖A‖2 + ‖B‖2 +

S∑
s=1

‖Ts‖2
)1/2

,

ε ∈ ]0, 1/(β + 1)[.

For n = 0, 1, . . .

γn ∈ [ε, (1− ε)/β]

x̂n = xn − γn(A>t0,n +B>t1,n +

S∑
s=1

T>s ts+1,n)(
t̂0,n, t̂1,n

)
=
(
t0,n, t1,n

)
+ γn

(
Axn, Bxn

)
(r0,n, r1,n) = (t̂0,n, t̂1,n)−

γn proxγ−1
n D(·+u,·+v)(γ

−1
n t̂0,n, γ

−1
n t̂1,n) + e0,n(

t̃0,n, t̃1,n
)

=
(
r0,n, r1,n

)
+ γn

(
Ax̂n, Bx̂n

)(
t0,n+1, t1,n+1

)
=
(
t0,n, t1,n

)
−
(
t̂0,n, t̂1,n

)
+
(
t̃0,n, t̃1,n

)
For s = 0, 1, . . . S
t̂s+1,n = ts+1,n + γnTsxn

rs+1,n = t̂s+1,n − γn proxγ−1
n Rs

(γ−1
n t̂s+1,n) + es,n

t̃s+1,n = rs+1,n + γnTsx̂n

ts+1,n+1 = ts+1,n − t̂s+1,n + t̃s+1,n

x̃n = x̂n − γn(A>r0,n +B>r1,n +

S∑
s=1

T>s rs+1,n)

xn+1 = xn − x̂n + x̃n.

In this algorithm, (γn)n≥0 is a sequence of step-sizes, and e0,n ∈ RP × RP , e1,n ∈ RK1 ,
. . . , eS,n ∈ RKS correspond to possible errors in the computation of proximity operators.
The convergence is secured by the following result.

Proposition 2.8 [83, Theorem 4.2] Suppose that the following assumptions hold.

(i) There exists x̌ ∈ RN such that (30) holds.

(ii) (∀s ∈ {0, . . . , S})
∑

n∈N ‖es,n‖ < +∞.

If the set of solutions to Problem 2.1 is nonempty, then any sequence (xn)n∈N generated by
Algorithm 2 converges to an element of this set.
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It is worth highlighting that these two algorithms share two interesting features: many
operations can be implemented in parallel (e.g., the loops on s), there is a tolerance to
errors in the computation of the proximity operators. Recently, random block-coordinate
versions of proximal algorithms have been proposed (see [87] and references therein) further
improving the flexibility of these methods.

3 Main result

As shown by Proposition 2.5, we need to compute the proximity operator of a scaled version
of a function Φ ∈ Γ0(R2) as defined in (15). In the following, Θ denotes a primitive on
]0,+∞[ of the function ζ 7→ ζϕ′(ζ−1). The following functions will subsequently play an
important role:

ϑ− : ]0,+∞[→ R : ζ 7→ ϕ′(ζ−1) (33)

ϑ+ : ]0,+∞[→ R : ζ 7→ ϕ(ζ−1)− ζ−1ϕ′(ζ−1). (34)

A first technical result is as follows.

Lemma 3.1 Let γ ∈ ]0,+∞[, let (υ, ξ) ∈ R2, and define

χ− = inf
{
ζ ∈ ]0,+∞[

∣∣ ϑ−(ζ) < γ−1υ
}

(35)

χ+ = sup
{
ζ ∈ ]0,+∞[

∣∣ ϑ+(ζ) < γ−1ξ
}

(36)

(with the usual convention inf ∅ = +∞ and sup∅ = −∞). If χ− 6= +∞, the function

ψ : ]0,+∞[→ R :

ζ 7→ ζϕ(ζ−1)−Θ(ζ) +
γ−1υ

2
ζ2 − γ−1ξζ (37)

is strictly convex on ]χ−,+∞[. In addition, if

(i) χ− 6= +∞ and χ+ 6= −∞

(ii) limζ→χ−
ζ>χ−

ψ′(ζ) < 0

(iii) limζ→χ+ ψ
′(ζ) > 0

then ψ admits a unique minimizer ζ̂ on ]χ−,+∞[, and ζ̂ <χ+.
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Proof. The derivative of ψ is, for every ζ ∈ ]0,+∞[,

ψ′(ζ) = ϕ(ζ−1)− (ζ + ζ−1)ϕ′(ζ−1) + γ−1υζ − γ−1ξ

= ζ
(
γ−1υ − ϑ−(ζ)

)
+ ϑ+(ζ)− γ−1ξ. (38)

The function ϑ− is decreasing as the convexity of ϕ yields

(∀ζ ∈ ]0,+∞[) ϑ′−(ζ) = −ζ−2ϕ′′(ζ−1) ≤ 0. (39)

This allows us to deduce that

if
{
ζ ∈ ]0,+∞[

∣∣ ϑ−(ζ) < γ−1υ
}
6= ∅,

then ]χ−,+∞[=
{
ζ ∈ ]0,+∞[

∣∣ ϑ−(ζ) < γ−1υ
}
. (40)

Similarly, the function ϑ+ is increasing as the convexity of ϕ yields

(∀ζ ∈ ]0,+∞[) ϑ′+(ζ) = ζ−3ϕ′′(ζ−1) ≥ 0 (41)

which allows us to deduce that

if
{
ζ ∈ ]0,+∞[

∣∣ ϑ+(ζ) < γ−1ξ
}
6= ∅,

then ]0, χ+[=
{
ζ ∈ ]0,+∞[

∣∣ ϑ+(ζ) < γ−1ξ
}
. (42)

If (χ−, χ+) ∈ ]0,+∞[2, then (38) leads to

ψ′(χ−) = ϑ+(χ−)− γ−1ξ (43)

ψ′(χ+) = χ+

(
γ−1υ − ϑ−(χ+)

)
. (44)

So, Conditions (ii) and (iii) are equivalent to

ϑ+(χ−)− γ−1ξ < 0 (45)

χ+

(
γ−1υ − ϑ−(χ+)

)
> 0. (46)

In view of (40) and (42), these inequalities are satisfied if and only if χ− < χ+. This
inequality is also obviously satisfied if χ− = 0 or χ+ = +∞. In addition, we have:

(∀ζ ∈ ]0,+∞[) ψ′′(ζ) = γ−1υ − ϑ−(ζ) + ζ−1(1 + ζ−2)ϕ′′(ζ−1). (47)

When ζ > χ− 6= +∞, γ−1υ − ϑ−(ζ) > 0, and the convexity of ϕ yields ψ′′(ζ) > 0. This
shows that ψ is strictly convex on ]χ−,+∞[.

If Conditions (i)-(iii) are satisfied, due to the continuity of ψ′, there exists ζ̂ ∈]χ−, χ+[

such that ψ′(ζ̂) = 0. Because of the strict convexity of ψ on ]χ−,+∞[, ζ̂ is the unique
minimizer of ψ on this interval.

The required assumptions in the previous lemma can often be simplified as stated below.
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Lemma 3.2 Let γ ∈ ]0,+∞[ and (υ, ξ) ∈ R2. If (χ−, χ+) ∈ ]0,+∞[2, then Conditions (ii)
and (iii) in Lemma 3.1 are equivalent to: χ− < χ+. If χ− ∈ ]0,+∞[ and χ+ = +∞ (resp.
χ− = 0 and χ+ ∈ ]0,+∞[), Conditions (ii)-(iii) are satisfied if and only if limζ→+∞ ψ

′(ζ) > 0
(resp. limζ→0

ζ>0
ψ′(ζ) < 0).

Proof. If (χ−, χ+) ∈ ]0,+∞[2, we have already shown that Conditions (ii) and (iii) are
satisfied if and only χ− < χ+.

If χ− ∈ ]0,+∞[ and χ+ = +∞ (resp. χ− = 0 and χ+ ∈ ]0,+∞[), we still have

ψ′(χ−) = ϑ+(χ−)− γ−1ξ < 0 (48)

(resp. ψ′(χ+) = χ+

(
γ−1υ − ϑ−(χ+)

)
> 0), (49)

which shows that Condition (ii) (resp. Condition (iii)) is always satisfied.

By using the same expressions of χ− and χ+ as in the previous lemmas, we obtain the
following characterization of the proximity operator of any scaled version of Φ:

Proposition 3.3 Let γ ∈ ]0,+∞[ and (υ, ξ) ∈ R2. proxγΦ(υ, ξ) ∈ ]0,+∞[2 if and only if
Conditions (i)-(iii) in Lemma 3.1 are satisfied. When these conditions hold,

proxγΦ(υ, ξ) =
(
υ − γ ϑ−(ζ̂), ξ − γ ϑ+(ζ̂)

)
(50)

where ζ̂ < χ+ is the unique minimizer of ψ on ]χ−,+∞[.

Proof. For every (υ, ξ) ∈ R2, such that Conditions (i)-(iii) in Lemma 3.1 hold, let

υ = υ − γ ϑ−(ζ̂) (51)

ξ = ξ − γ ϑ+(ζ̂) (52)

where the existence of ζ̂ ∈]χ−, χ+[ is guaranteed by Lemma 3.1. As consequences of (40)
and (42), υ and ξ are positive. In addition, since

ψ′(ζ̂) = 0 ⇔ ζ̂
(
γ−1υ − ϑ−(ζ̂)

)
= γ−1ξ − ϑ+(ζ̂) (53)

we derive from (51) and (52) that ζ̂ = ξ/υ > 0. This allows us to re-express (51) and (52)
as

υ − υ + γϕ′
(υ
ξ

)
= 0 (54)

ξ − ξ + γ

(
ϕ
(υ
ξ

)
− υ

ξ
ϕ′
(υ
ξ

))
= 0, (55)
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that is

υ − υ + γ
∂Φ

∂υ
(υ, ξ) = 0 (56)

ξ − ξ + γ
∂Φ

∂ξ
(υ, ξ) = 0. (57)

The latter equations are satisfied if and only if [26]

(υ, ξ) = proxγΦ(υ, ξ). (58)

Conversely, for every (υ, ξ) ∈ R2, let (υ, ξ) = proxγΦ(υ, ξ). If (υ, ξ) ∈ ]0,+∞[2, (υ, ξ)

satisfies (54) and (55). By setting ζ̃ = ξ/υ > 0, after simple calculations, we find

υ = υ − γ ϑ−(ζ̃) > 0 (59)

ξ = ξ − γ ϑ+(ζ̃) > 0 (60)

ψ′(ζ̃) = 0. (61)

According to (40) and (42), (59) and (60) imply that χ− 6= +∞, χ+ 6= −∞, and ζ̃ ∈]χ−, χ+[.
In addition, according to Lemma 3.1, ψ′ is strictly increasing on ]χ−,+∞[ (since ψ is strictly
convex on this interval). Hence, ψ′ has a limit at χ− (which may be equal to −∞ when
χ− = −∞), and Condition (ii) is satisfied. Similarly, ψ′ has a limit at χ+ (possibly equal
to +∞ when χ+ = +∞), and Condition (iii) is satisfied.

Remark 3.4 In (15), a special case arises when

(∀ζ ∈ ]0,+∞[) ϕ(ζ) = ϕ̃(ζ) + ζϕ̃(ζ−1) (62)

where ϕ̃ is a twice differentiable convex function on ]0,+∞[. Then Φ takes a symmetric
form, leading to L-divergences. It can then be deduced from (34) that, for every ζ ∈ ]0,+∞[,

ϑ−(ζ) = ϑ+(ζ−1) = ϕ̃(ζ) + ϕ̃′(ζ−1)− ζϕ̃′(ζ). (63)

4 Examples

4.1 Kullback-Leibler divergence

Let us now apply the results in the previous section to the function

Φ(υ, ξ) =


υ ln

(
υ

ξ

)
+ ξ − υ if (υ, ξ) ∈ ]0,+∞[2

ξ if υ = 0 and ξ ∈ [0,+∞[

+∞ otherwise.

(64)
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This is a function in Γ0(R2) satisfying (15) with

(∀ζ ∈ ]0,+∞[) ϕ(ζ) = ζ ln ζ − ζ + 1. (65)

Proposition 4.1 The proximity operator of γΦ with γ ∈ ]0,+∞[ is, for every (υ, ξ) ∈ R2,

proxγΦ(υ, ξ) =

{
(υ, ξ) if exp (γ−1υ) > 1− γ−1ξ

(0, 0) otherwise,
(66)

where

υ = υ + γ ln ζ̂ (67)

ξ = ξ + γ
(
ζ̂−1 − 1

)
(68)

and ζ̂ is the unique minimizer on ] exp(−γ−1υ),+∞[ of

ψ : ]0,+∞[→ R : (69)

ζ 7→
(ζ2

2
− 1
)

ln ζ +
1

2

(
γ−1υ − 1

2

)
ζ2 + (1− γ−1ξ)ζ.

Proof. For every (υ, ξ) ∈ R2, (υ, ξ) = proxγΦ(υ, ξ) is such that (υ, ξ) ∈ dom Φ [88]. Let us
first note that

υ ∈ ]0,+∞[ ⇔ (υ, ξ) ∈ ]0,+∞[2 . (70)

We are now able to apply Proposition 3.3, where ψ is given by (69) and, for every ζ ∈
]0,+∞[,

Θ(ζ) =
ζ2

2

(
1

2
− ln ζ

)
− 1 (71)

ϑ−(ζ) = − ln ζ (72)

ϑ+(ζ) = 1− ζ−1. (73)

In addition,

χ− = exp(−γ−1υ) (74)

χ+ =

{
(1− γ−1ξ)−1 if ξ < γ

+∞ otherwise.
(75)

According to (70) and Proposition 3.3, υ ∈ ]0,+∞[ if and only if Conditions (i)-(iii) in
Lemma 3.1 hold. Since χ− ∈ ]0,+∞[ and limζ→+∞ ψ

′(ζ) = +∞, Lemma 3.2 shows that
these conditions are satisfied if and only if

ξ ≥ γ or
(
ξ < γ and exp(−υ/γ) < (1− γ−1ξ)−1

)
, (76)
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which is equivalent to
exp(υ/γ) > 1− γ−1ξ. (77)

Under this assumption, Proposition 3.3 leads to the expressions (67) and (68) of the prox-

imity operator, where ζ̂ is the unique minimizer on ] exp(−υ/γ),+∞[ of the function ψ.

We have shown that υ > 0 ⇔ (77). So, υ = 0 when (77) is not satisfied. Then, the
expression of ξ simply reduces to the asymmetric soft-thresholding rule [89]:

ξ =

{
ξ − γ if ξ > γ

0 otherwise.
(78)

However, exp(γ−1υ) ≤ 1− γ−1ξ ⇒ ξ < γ, so that ξ is necessarily equal to 0.

Remark 4.2 More generally, we can derive the proximity operator of

Φ̃(υ, ξ) =


υ ln

(
υ

ξ

)
+κ(ξ − υ) if (υ, ξ) ∈ ]0,+∞[2

κξ if υ = 0 and ξ ∈ [0,+∞[

+∞ otherwise,

(79)

where κ ∈ R. Of particular interest in the literature is the case when κ = 0 [9, 10, 19, 22].
From Proposition 2.4(iv), we get, for every γ ∈ ]0,+∞[ and for every (υ, ξ) ∈ R2,

proxγΦ̃(υ, ξ) = proxγΦ(υ + γκ− γ, ξ − γκ+ γ), (80)

where proxγΦ is provided by Proposition 4.1.

Remark 4.3 It can be noticed that

ψ′(ζ̂) = ζ̂ ln ζ̂ + γ−1υζ̂ − ζ̂−1 + 1− γ−1ξ = 0 (81)

is equivalent to

ζ̂−1 exp
(
ζ̂−1
(
ζ̂−1 + γ−1ξ − 1

))
= exp(γ−1υ). (82)

In the case where ξ = γ, the above equation reduces to

2ζ̂−2 exp
(
2ζ̂−2

)
= 2 exp(2γ−1υ)

⇔ ζ̂ =

(
2

W (2e2γ−1υ)

)1/2

(83)

where W is the Lambert W function [90]. When ξ 6= γ, although a closed-form expression

of (82) is not available, efficient numerical methods to compute ζ̂ can be developed.
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Remark 4.4 To minimize ψ in (69), we need to find the zero on ] exp(−γ−1υ),+∞[ of the
function: (∀ζ ∈ ]0,+∞[)

ψ′(ζ) = ζ ln ζ + γ−1υ ζ − ζ−1 + 1− γ−1ξ. (84)

This can be performed by Algorithm 3, the convergence of which is proved in Appendix B.

Algorithm 3 Newton method for minimizing (69).

Set ζ̂0 = exp(−γ−1υ)

For n = 0, 1, . . . ⌊
ζ̂n+1 = ζ̂n − ψ′(ζ̂n)/ψ′′(ζ̂n).

4.2 Jeffreys divergence

Let us now consider the symmetric form of (64) given by

Φ(υ, ξ) =


(υ − ξ)

(
ln υ − ln ξ) if (υ, ξ) ∈ ]0,+∞[2

0 if υ = ξ = 0

+∞ otherwise.

(85)

This function belongs to Γ0(R2) and satisfies (15) and (62) with

(∀ζ ∈ ]0,+∞[) ϕ̃(ζ) = − ln ζ. (86)

Proposition 4.5 The proximity operator of γΦ with γ ∈ ]0,+∞[ is, for every (υ, ξ) ∈ R2,

proxγΦ(υ, ξ) =

{
(υ, ξ) if W (e1−γ−1υ)W (e1−γ−1ξ) < 1

(0, 0) otherwise
(87)

where

υ = υ + γ
(

ln ζ̂ + ζ̂ − 1) (88)

ξ = ξ − γ
(

ln ζ̂ − ζ̂−1 + 1) (89)

and ζ̂ is the unique minimizer on ]W (e1−γ−1υ),+∞[ of

ψ : ]0,+∞[→ R :

ζ 7→
(ζ2

2
+ ζ − 1

)
ln ζ +

ζ3

3
+

1

2

(
γ−1υ − 3

2

)
ζ2 − γ−1ξζ. (90)
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Proof. We apply Proposition 3.3 where ψ is given by (90) and, for every ζ ∈ ]0,+∞[,

Θ(ζ) = ζ2
(3

4
− ζ

3
− 1

2
ln ζ
)

(91)

ϑ−(ζ) = ϑ+(ζ−1) = − ln ζ − ζ + 1. (92)

The above equalities have been derived from (62) and (63). It can be deduced from (35),
(36) and (92) that

χ− + lnχ− = 1− γ−1υ (93)

χ−1
+ + ln(χ−1

+ ) = 1− γ−1ξ (94)

that is

χ− = W (e1−γ−1υ) (95)

χ+ =
(
W (e1−γ−1ξ)

)−1
. (96)

According to Proposition 3.3, proxγΦ(υ, ξ) ∈ ]0,+∞[2 if and only if Conditions (i)-(iii)
in Lemma 3.1 hold. Lemma 3.2 shows that these conditions are satisfied if and only if

W (e1−γ−1υ)W (e1−γ−1ξ) < 1. (97)

Under this assumption, the expression of the proximity operator follows from Proposition
3.3 and (92).

We have shown that proxγΦ(υ, ξ) ∈ ]0,+∞[2 ⇔ (97). Since proxγΦ(υ, ξ) ∈ dom Φ, we

necessarily get proxγΦ(υ, ξ) = (0, 0), when (97) is not satisfied.

Remark 4.6 To minimize ψ in (90), we need to find the zero on [χ−, χ+] of the function:
(∀ζ ∈ ]0,+∞[)

ψ′(ζ) = (ζ + 1) ln ζ +
ζ

2
− ζ−1 + ζ2 +

(
γ−1υ − 3

2

)
ζ + 1− γ−1ξ. (98)

This can be performed by Algorithm 4, the convergence of which is proved in Appendix C.

Algorithm 4 Projected Newton for minimizing (90).

Set ζ̂0 ∈ [χ−, χ+] (see (95)–(96) for the bound expressions)

For n = 0, 1, . . . ⌊
ζ̂n+1 = P[χ−,χ+]

(
ζ̂n − ψ′(ζ̂n)/ψ′′(ζ̂n)

)
.
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Remark 4.7 From a numerical standpoint, to avoid the arithmetic overflow in the expo-
nentiations when γ−1υ or γ−1ξ tend to −∞, one can use the asymptotic approximation of
the Lambert W function for large values: for every τ ∈ [1,+∞[,

τ − ln τ +
1

2

ln τ

τ
≤ W

(
eτ
)
≤ τ − ln τ +

e

e− 1

ln τ

τ
, (99)

with equality only if τ = 1 [91].

4.3 Hellinger divergence

Let us now consider the function of Γ0(R2) given by

Φ(υ, ξ) =

{
(
√
υ −
√
ξ)2 if (υ, ξ) ∈ [0,+∞[2

+∞ otherwise.
(100)

This symmetric function satisfies (15) and (62) with

(∀ζ ∈ ]0,+∞[) ϕ̃(ζ) = ζ −
√
ζ. (101)

Proposition 4.8 The proximity operator of γΦ with γ ∈ ]0,+∞[ is, for every (υ, ξ) ∈ R2,

proxγΦ(υ, ξ) =

{
(υ, ξ) if υ ≥ γ or

(
1− υ

γ

)(
1− ξ

γ

)
< 1

(0, 0) otherwise,
(102)

where

υ = υ + γ(ρ− 1) (103)

ξ = ξ + γ
(
ρ−1 − 1

)
(104)

and ρ is the unique solution on ]max(1− γ−1υ, 0),+∞[ of

ρ4 +
(
γ−1υ − 1

)
ρ3 +

(
1− γ−1ξ

)
ρ− 1 = 0. (105)

Proof. For every (υ, ξ) ∈ R2, (υ, ξ) = proxγΦ(υ, ξ) is such that (υ, ξ) ∈ [0,+∞[2 [88]. By
using the notation of Proposition 3.3 and by using Remark 3.4, we have that, for every
ζ ∈ ]0,+∞[,

Θ(ζ) =
ζ2

2
− 2

5
ζ5/2 + 1 (106)

ϑ−(ζ) = ϑ+(ζ−1) = 1−
√
ζ (107)
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and

χ− =

{
(1− γ−1υ)2 if υ < γ

0 otherwise
(108)

χ+ =

{
(1− γ−1ξ)−2 if ξ < γ

+∞ otherwise.
(109)

According to Proposition 3.3, (υ, ξ) ∈ ]0,+∞[2 if and only if Conditions (i)-(iii) in Lemma
3.1 hold. Under these conditions, Proposition 3.3 leads to

υ = υ + γ(ζ̂1/2 − 1) (110)

ξ = ξ + γ
(
ζ̂−1/2 − 1

)
(111)

where ζ̂ is the unique minimizer on ]χ−,+∞[ of the function defined as, for every ζ ∈
]0,+∞[,

ψ(ζ) =
2

5
ζ5/2 − 2ζ1/2 +

γ−1υ − 1

2
ζ2 + (1− γ−1ξ)ζ. (112)

This means that ζ̂ is the unique solution on ]χ−,+∞[ of the equation:

ψ′(ζ̂) = ζ̂3/2 − ζ̂−1/2 + (γ−1υ − 1)ζ̂ + 1− γ−1ξ = 0. (113)

By setting ρ = ζ̂1/2, (105) is obtained.

Since limζ→0
ζ>0

ψ′(ζ) = −∞ and limζ→+∞ ψ
′(ζ) = +∞, Lemma 3.2 shows that Condi-

tions (i)-(iii) are satisfied if and only if

υ < γ, ξ < γ, and (1− γ−1υ)2 < (1− γ−1ξ)−2

or υ < γ and ξ ≥ γ

or υ ≥ γ and ξ < γ

or υ ≥ γ and ξ ≥ γ (114)

or, equivalently

υ < γ and (1− γ−1υ)(1− γ−1ξ) < 1

or υ ≥ γ. (115)

In turn, when (115) is not satisfied, we necessarily have υ = 0 or ξ = 0. In the first
case, the expression of ξ is simply given by the asymmetric soft-thresholding rule in (78).
Similarly, in the second case, we have

υ =

{
υ − γ if υ > γ

0 otherwise.
(116)

However, when υ > γ or ξ > γ, (114) is always satisfied, so that υ = ξ = 0.

Altogether, the above results yield the expression of the proximity operator in (102).
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4.4 Chi square divergence

Let us now consider the function of Γ0(R2) given by

Φ(υ, ξ) =


(υ − ξ)2

ξ
if υ ∈ [0,+∞[ and ξ ∈ ]0,+∞[

0 if υ = ξ = 0

+∞ otherwise.

(117)

This function satisfies (15) with

(∀ζ ∈ ]0,+∞[) ϕ(ζ) = (ζ − 1)2. (118)

Proposition 4.9 The proximity operator of γΦ with γ ∈ ]0,+∞[ is, for every (υ, ξ) ∈ R2,

proxγΦ(υ, ξ) =

(υ, ξ) if υ > −2γ and ξ > −
(
υ +

υ2

4γ

)
(
0,max{ξ − γ, 0}

)
otherwise,

(119)

where

υ = υ + 2γ(1− ρ) (120)

ξ = ξ + γ(ρ2 − 1) (121)

and ρ is the unique solution on ]0, 1 + γ−1υ/2[ of

ρ3 +
(
1 + γ−1ξ

)
ρ− γ−1υ − 2 = 0. (122)

Proof. By proceeding similarly to the proof of Proposition 4.8, we have that, for every
ζ ∈ ]0,+∞[, Θ(ζ) = 2ζ − ζ2, ϑ−(ζ) = 2(ζ−1 − 1), ϑ+(ζ) = 1− ζ−2, and

χ− =

{
2
(
2 + γ−1υ

)−1
if υ > −2γ

+∞ otherwise
(123)

χ+ =

{(
1− γ−1ξ

)−1/2
if ξ < γ

+∞ otherwise.
(124)

According to Proposition 3.3, (υ, ξ) ∈ ]0,+∞[2 if and only if Conditions (i)-(iii) in Lemma

3.1 hold. Then, (υ, ξ) = proxγΦ(υ, ξ) is such that υ = υ+2γ(1− ζ̂−1) and ξ = ξ+γ(ζ̂−2−1),

where ζ̂ is the unique minimizer on ]χ−,+∞[ of the function:

ψ : ]0,+∞[→ R : ζ 7→
(

1 +
γ−1υ

2

)
ζ2 − (1 + γ−1ξ)ζ − 2 + ζ−1.
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Thus, ζ̂ is the unique solution on ]χ−,+∞[ of the equation:

ψ′(ζ̂) = (2 + γ−1υ)ζ̂ − 1− γ−1ξ − ζ̂−2 = 0. (125)

By setting ρ = ζ̂−1, (122) is obtained. Lemma 3.2 shows that Conditions (ii) and (iii) are
satisfied if and only if

υ > −2γ, ξ < γ, and
2

2 + γ−1υ
<

1√
1− γ−1ξ

or υ > −2γ and ξ ≥ γ (126)

or, equivalently,

υ > −2γ, ξ < γ, and 1− γ−1ξ <
(
1 + (2γ)−1υ

)2

or υ > −2γ and ξ ≥ γ. (127)

When (127) does not hold, we necessarily have υ = 0. The end of the proof is similar to
that of Proposition 4.8.

4.5 Renyi divergence

Let α ∈]1,+∞[ and consider the below function of Γ0(R2)

Φ(υ, ξ) =


υα

ξα−1
if υ ∈ [0,+∞[ and ξ ∈ ]0,+∞[

0 if υ = ξ = 0

+∞ otherwise,

(128)

which corresponds to the case when

(∀ζ ∈ ]0,+∞[) ϕ(ζ) = ζα. (129)

Note that the above function Φ allows us to generate the Rényi divergence up to a log
transform and a multiplicative constant.

Proposition 4.10 The proximity operator of γΦ with γ ∈ ]0,+∞[ is, for every (υ, ξ) ∈ R2,

proxγΦ(υ, ξ) =

 (υ, ξ) if υ > 0 and
γ

1
α−1 ξ

1− α
<

(
υ

α

) α
α−1

(
0,max{ξ, 0}

)
otherwise,

(130)

where

υ = υ − γαζ̂1−α (131)

ξ = ξ + γ(α− 1)ζ̂−α (132)
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and ζ̂ is the unique solution on ](αγυ−1)
1

α−1 ,+∞[ of

γ−1υ ζ̂1+α − γ−1ξ ζ̂α − αζ̂2 + 1− α = 0. (133)

Proof. We proceed similarly to the previous examples by noticing that, for every ζ ∈ ]0,+∞[,

Θ(ζ) =

{
α

3−αζ
3−α if α 6= 3

α ln ζ if α = 3
(134)

ϑ−(ζ) = αζ1−α (135)

ϑ+(ζ) = (1− α)ζ−α (136)

ψ′(ζ) = (1− α)ζ−α − αζ2−α + γ−1υζ − γ−1ξ (137)

and

χ− =


(γα
υ

) 1
α−1

if υ > 0

+∞ otherwise
(138)

χ+ =


(γ(1− α)

ξ

)1/α

if ξ < 0

+∞ otherwise.
(139)

Note that (133) becomes a polynomial equation when α is a rational number. In partic-
ular, when α = 2, it reduces to the cubic equation:

ρ3 +
(
2 + γ−1ξ

)
ρ− γ−1υ = 0 (140)

with ζ̂ = ρ−1.

4.6 Iα divergence

Let α ∈]0, 1[ and consider the function of Γ0(R2) given by

Φ(υ, ξ) =

{
αυ + (1− α)ξ − υαξ1−α if (υ, ξ) ∈ [0,+∞[2

+∞ otherwise
(141)

which corresponds to the case when

(∀ζ ∈ ]0,+∞[) ϕ(ζ) = 1− α + αζ − ζα. (142)
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Proposition 4.11 The proximity operator of γΦ with γ ∈ ]0,+∞[ is, for every (υ, ξ) ∈ R2,

proxγΦ(υ, ξ) =

 (υ, ξ) if υ ≥ γα or 1− ξ

γ(1− α)
<

(
1− υ

γα

) α
α−1

(0, 0) otherwise,

(143)

where

υ = υ + γα(ζ̂1−α − 1) (144)

ξ = ξ + γ(1− α)(ζ̂−α − 1) (145)

and ζ̂ is the unique solution on
](

max{1− υ
γα , 0}

) 1
1−α ,+∞

[
of

αζ̂2 + (γ−1υ − α)ζ̂α+1 + (1− α− γ−1ξ)ζ̂α = 1− α. (146)

Proof. We have then, for every ζ ∈ ]0,+∞[,

Θ(ζ) = α
(ζ2

2
− ζ3−α

3− α

)
(147)

ϑ−(ζ) = α(1− ζ1−α) (148)

ϑ+(ζ) = (1− α)(1− ζ−α) (149)

ψ′(ζ) = αζ2−α +
(υ
γ
− α

)
ζ +

α− 1

ζα
+ 1− α− ξ

γ
(150)

and

χ− =


(

1− υ

γα

) 1
1−α

if υ < γα

0 otherwise
(151)

χ+ =


(

1− ξ

γ(1− α)

)−1/α

if ξ < γ(1− α)

+∞ otherwise.

(152)

The result follows by noticing that limζ→0
ζ>0

ψ′(ζ) = −∞ and limζ→+∞ ψ
′(ζ) = +∞.

As for the Renyi divergence, (146) becomes a polynomial equation when α is a rational
number.

Remark 4.12 We can also derive the proximity operator of

Φ̃(υ, ξ) =

{
κ
(
αυ + (1− α)ξ

)
− υαξ1−α if (υ, ξ)∈ [0,+∞[2

+∞ otherwise,
(153)

where κ ∈ R. From Proposition 2.4(iv), we get, for every γ ∈ ]0,+∞[ and for every
(υ, ξ) ∈ R2,

proxγΦ̃(υ, ξ) = proxγΦ

(
υ + γ(1− κ)α, ξ + γ(1− κ)(1− α)

)
, (154)

where proxγΦ is provided by Proposition 4.11.
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Table 1: Conjugate function ϕ∗ of the restriction of ϕ to [0,+∞[.

Divergence
ϕ(ζ) ϕ∗(ζ∗)
ζ > 0 ζ∗ ∈ R

Kullback-Leibler ζ ln ζ − ζ + 1 eζ
∗ − 1

Jeffreys (ζ − 1) ln ζ W (e1−ζ∗) +
(
W (e1−ζ∗)

)−1
+ ζ∗ − 2

Hellinger 1 + ζ − 2
√
ζ


ζ∗

1− ζ∗
if ζ∗ < 1

+∞ otherwise

Chi square (ζ − 1)2


ζ∗(ζ∗ + 4)

4
if ζ∗ ≥ −2

−1 otherwise

Renyi, α ∈]1,+∞[ ζα

(α− 1)
(ζ∗
α

) α
α−1

if ζ∗ ≥ 0

0 otherwise

Iα, α ∈]0, 1[ 1− α + αζ − ζα
(1− α)

((
1− ζ∗

α

) α
α−1 − 1

)
if ζ∗ ≤ α

+∞ otherwise

5 Connection with epigraphical projections

Proximal methods iterate a sequence of steps in which proximity operators are evalu-
ated. The efficient computation of these operators is thus essential for dealing with high-
dimensional convex optimization problems. In the context of constrained optimization, at
least one of the additive terms of the global cost to be minimized consists of the indicator
function of a closed convex set, whose proximity operator reduces to the projections onto
this set. However, if we except a few well-known cases, such projection does not admit a
closed-form expression. The resolution of large-scale optimization problems involving non
trivial constraints is thus quite challenging. This difficulty can be circumvented when the
constraint can be expressed as the lower-level set of some separable function, by making
use of epigraphical projection techniques. Such approaches have attracted interest in the
last years [25, 62, 92–95]. The idea consists of decomposing the constraint of interest into
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the intersection of a half-space and a number of epigraphs of simple functions. For this
approach to be successful, it is mandatory that the projection onto these epigraphs can be
efficiently computed.

The next proposition shows that the expressions of the projection onto the epigraph of a
wide range of functions can be deduced from the expressions of the proximity operators of
ϕ-divergences. In particular, in Table 1, for each of the ϕ-divergences presented in Section 3,
we list the associated functions ϕ∗ for which such projections can thus be derived.

Proposition 5.1 Let ϕ : R → [0,+∞] be a function in Γ0(R) which is twice differentiable
on ]0,+∞[. Let Φ be the function defined by (15) and ϕ∗ ∈ Γ0(R) the Fenchel-conjugate
function of the restriction of ϕ on [0,+∞[, defined as

(∀ζ∗ ∈ R) ϕ∗(ζ∗) = sup
ζ∈[0,+∞[

ζζ∗ − ϕ(ζ). (155)

Let the epigraph of ϕ∗ be defined as

epiϕ∗ =
{

(υ∗, ξ∗) ∈ R2
∣∣ ϕ∗(υ∗) ≤ ξ∗

}
. (156)

Then, the projection onto epiϕ∗ is: for every (υ∗, ξ∗) ∈ R2,

Pepiϕ∗(υ
∗, ξ∗) = (υ∗,−ξ∗)− proxΦ(υ∗,−ξ∗). (157)

Proof. The conjugate function of Φ is, for every (υ, ξ) ∈ R2,

Φ∗(υ∗, ξ∗) = sup
(υ,ξ)∈R2

υυ∗ + ξξ∗ − Φ(υ, ξ). (158)

From the definition of Φ, we deduce that, for all (υ, ξ) ∈ R2,

Φ∗(υ∗, ξ∗) = sup
{

sup
(υ,ξ)∈[0,+∞[×]0,+∞[

(
υυ∗ + ξξ∗ − ξϕ

(υ
ξ

))
,

sup
υ∈]0,+∞[

(
υυ∗ − lim

ξ→0
ξ>0

ξϕ
(υ
ξ

))
, 0
}

(159)

= sup
{

sup
(υ,ξ)∈[0,+∞[×]0,+∞[

(
υυ∗ + ξξ∗ − ξϕ

(υ
ξ

))
, 0
}

(160)

= sup{ιepiϕ∗(υ
∗,−ξ∗), 0} (161)

= ιepiϕ∗(υ
∗,−ξ∗), (162)

where the equality in (161) stems from [72, Example 13.8]. Then, (157) follows from the
conjugation property of the proximity operator (see Proposition 2.4 (v)).
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6 Experimental results

To illustrate the potential of our results, we consider a query optimization problem in
database management systems where the optimal query execution plan depends on the
accurate estimation of the proportion of tuples that satisfy the predicates in the query. More
specifically, every request formulated by a user can be viewed as an event in a probability
space (Ω, T ,P), where Ω is a finite set of size N . In order to optimize request fulfillment,
it is useful to accurately estimate the probabilities, also called selectivities, associated with
each element of Ω. To do so, rough estimations of the probabilities of a certain number P of
events can be inferred from the history of formulated requests and some a priori knowledge.

Let x = (x(n))1≤n≤N ∈ RN be the vector of sought probabilities, and let z = (z(i))1≤i≤P ∈
[0, 1]P be the vector of roughly estimated probabilities. The problem of selectivity estimation
is equivalent to the following constrained entropy maximization problem [96]:

minimize
x∈RN

N∑
n=1

x(n) lnx(n) s. t.


Ax = z,

N∑
n=1

x(n) = 1,

x ∈ [0, 1]N ,

(163)

where A ∈ RP×N is a binary matrix establishing the theoretical link between the probabili-
ties of each event and the probabilities of the elements of Ω belonging to it.

Unfortunately, due to the inaccuracy of the estimated probabilities, the intersection
between the affine constraints Ax = z and the other ones may be empty, making the above
problem infeasible. In order to overcome this issue, we propose to jointly estimate the
selectivities and the feasible probabilities. Our idea consists of reformulating Problem (163)
by introducing the divergence between Ax and an additional vector y of feasible probabilities.
This allows us to replace the constraint Ax = z with an `k-ball centered in z, yielding

minimize
(x,y)∈RN×RP

D(Ax, y) + λ

N∑
n=1

x(n) lnx(n) s. t.


‖y − z‖k ≤ η,

N∑
n=1

x(n) = 1,

x ∈ [0, 1]N ,

(164)

where D is defined in (14), λ and η are some positive constants, whereas k ∈ [1,+∞[ (the
choice k = 2 yields the Euclidean ball).

To demonstrate the validity of this approach, we compare it with the following methods:

(i) a relaxed version of Problem (163), in which the constraint Ax = z is replaced with a
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squared Euclidean distance:

minimize
x∈RN

‖Ax− z‖2 + λ
N∑
n=1

x(n) lnx(n) s. t.


N∑
n=1

x(n) = 1,

x ∈ [0, 1]N ,

(165)

or with ϕ-divergence D:

minimize
x∈RN

D(Ax, z) + λ
N∑
n=1

x(n) lnx(n) s. t.


N∑
n=1

x(n) = 1,

x ∈ [0, 1]N ,

(166)

where λ is some positive constant;

(ii) the two-step procedure in [95], which consists of finding a solution x̂ to

minimize
x∈RN

Q1

(
Ax, z

)
s. t.


N∑
n=1

x(n) = 1,

x ∈ [0, 1]N ,

(167)

and then solving (163) by replacing z with ẑ = Ax̂. Hereabove, for every y ∈ RP ,
Q1(y, z) =

∑P
i=1 φ(y(i)/z(i)) is a sum of quotient functions, i.e.

φ(ξ) =


ξ, if ξ ≥ 1,

ξ−1, if 0 < ξ < 1,

+∞, otherwise.

(168)

For the numerical evaluation, we adopt an approach similar to [95], and we first consider
the following low-dimensional setting:

A =


1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1
0 0 1 0 0 0 1
0 0 1 0 1 0 1
0 0 0 0 0 1 1

 , z =


0.2114
0.6331
0.6312
0.5182
0.9337
0.0035

 , (169)

for which there exists no x ∈ [0,+∞[N such that Ax = z. To assess the quality of the
solutions x∗ obtained with the different methods, we evaluate the max-quotient between
Ax∗ and z, that is [95]

Q∞(Ax∗, z) = max
1≤i≤P

φ

(
[Ax∗](i)

z(i)

)
. (170)
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Table 2: Comparison of Q∞-scores

Problem (164) (166) (167)+(163) [95] (165)

ϕ

KL 2.23 2.95

2.45 25.84
Jef 2.44 3.41
Hel 2.42 89.02
Chi 2.34 3.20
I1/2 2.42 89.02

Table 2 collects the Q∞-scores (lower is better) obtained with the different approaches.
For all the considered ϕ-divergences,2 the proposed approach performs favorably with re-
spect to the state-of-the-art, the KL divergence providing the best performance among the
panel of considered ϕ-divergences. For the sake of fairness, the hyperparameters λ and η
were hand-tuned in order to get the best possible score for each compared method. The
good performance of our approach is related to the fact that ϕ-divergences are well suited
for the estimation of probability distributions.

Figure 1 next shows the computational time for solving Problem (164) for various di-
mensions N of the selectivity vector to be estimated, with A and z randomly generated so
as to keep the ratio N/P equal to 7/6. To make this comparison, the primal-dual prox-
imal method recalled in Algorithm 2 was implemented in MATLAB R2015, by using the
stopping criterion ‖xn+1 − xn‖ < 10−7‖xn‖. We then measured the execution times on an
Intel i5 CPU at 3.20 GHz with 12 GB of RAM. The results show that all the considered ϕ-
divergences can be efficiently optimized, with no significant computational time differences
between them.

7 Conclusion

In this paper, we have shown how to solve convex optimization problems involving discrete
information divergences by using proximal methods. We have carried out a thorough study
of the properties of the proximity operators of ϕ-divergences, which has led us to derive
new tractable expressions of them. In addition, we have related these expressions to the
projection onto the epigraph of a number of convex functions.

Finally, we have illustrated our results on a selectivity estimation problem, where ϕ-
divergences appear to be well suited for the estimation of the sought probability distri-
butions. Moreover, computational time evaluations allowed us to show that the proposed
numerical methods provide efficient solutions for solving large-scale optimization problems.

2Note that the Renyi divergence is not suitable for the considered application, because it tends to favor
sparse solutions.
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Figure 1: Execution time (in seconds) versus size N in Problem (164).

A Proof of Proposition 2.6

Let (ν, ξ) ∈ R2. From Proposition 2.4(i), we know that proxΦ(ν, ξ) ∈ [0,+∞[2. By using
Proposition 2.4(ii), we have the following equivalences:

{
(ν, ξ) ∈ ]0,+∞[2

(ν, ξ) = proxΦ(ν, ξ)
⇔


(ν, ξ) ∈ ]0,+∞[2

ν − ν ∈ ∂ϕ(ν − ξ)
ξ − ξ ∈ −∂ϕ(ν − ξ)

⇔

{
(ν, ξ) ∈ ]0,+∞[2

(ν, ξ) = proxΦ̃(ν, ξ),
(171)

where Φ̃ : (ν, ξ) 7→ ϕ(ν − ξ). By using now Proposition 2.4(vi), we get

(171)⇔

{
(ν, ξ) ∈ ]0,+∞[2

(ν, ξ) = (ν, ξ) + 1
2

(
prox2ϕ(ν − ξ)− ν + ξ

)
(1,−1)

⇔


(ν, ξ) ∈ ]0,+∞[2

ν = 1
2

(
ν + ξ + prox2ϕ(ν − ξ)

)
ξ = 1

2

(
ν + ξ − prox2ϕ(ν − ξ)

)
⇔


∣∣prox2ϕ(ν − ξ)

∣∣ < ν + ξ

ν = 1
2

(
ν + ξ + prox2ϕ(ν − ξ)

)
ξ = 1

2

(
ν + ξ − prox2ϕ(ν − ξ)

)
.

(172)
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Similarly, we have {
ν = 0, ξ ∈ ]0,+∞[

(ν, ξ) = proxΦ(ν, ξ)

⇔


ν = 0, ξ ∈ ]0,+∞[

ν − ϕ′(−ξ) ∈ ∂ι[0,+∞[(0) =]−∞, 0]

ξ − ξ − ϕ′(−ξ) = 0

⇔


ν = 0, ξ ∈ ]0,+∞[

ξ ≥ ν + ξ

ξ = proxϕ(−·) ξ

⇔


proxϕ(−·) ξ ∈ ]0,+∞[ ∩ [ν + ξ,+∞[

ν = 0

ξ = proxϕ(−·) ξ

⇔


proxϕ ξ ∈ ]0,+∞[ ∩ [ν + ξ,+∞[

ν = 0

ξ = proxϕ ξ,

(173)

where the last equivalence results from the assumption that ϕ is even. Symmetrically,

{
ν ∈ ]0,+∞[ , ξ = 0

(ν, ξ) = proxΦ(ν, ξ)
⇔


proxϕ ν ∈ ]0,+∞[ ∩ [ν + ξ,+∞[

ν = proxϕ ν

ξ = 0.

(174)

B Convergence proof of Algorithm 3

We aim at finding the unique zero on ] exp(−γ−1υ),+∞[ of the function ψ′ given by (84)
along with its derivatives:

(∀ζ ∈ ]0,+∞[) ψ′′(ζ) = 1 + ln ζ + γ−1υ + ζ−2, (175)

ψ′′′(ζ) = ζ−1 − 2 ζ−3. (176)

To do so, we employ the Newton method given in Algorithm 3, the convergence of which is
here established. Assume that

•
(
υ, ξ
)
∈ R2 are such that exp(γ−1υ) > 1− γ−1ξ,

• ζ̂ is the zero on ]exp(−γ−1υ),+∞[ of ψ′,
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• (ζ̂n)n∈N is the sequence generated by Algorithm 3,

• εn = ζ̂n − ζ̂ for every n ∈ N.

We first recall a fundamental property of the Newton method, and then we proceed to the
actual convergence proof.

Lemma B.1 For every n ∈ N,

εn+1 = ε2n
ψ′′′(%n)

2ψ′′(ζ̂n)
(177)

where %n is between ζ̂n and ζ̂.

Proof. The definition of εn+1 yields

εn+1 = ζ̂n −
ψ′(ζ̂n)

ψ′′(ζ̂n)
− ζ̂ =

εnψ
′′(ζ̂n)− ψ′(ζ̂n)

ψ′′(ζ̂n)
. (178)

Moreover, for every ζ̂n ∈ ]0,+∞[, the second-order Taylor expansion of ψ′ around ζ̂n is

ψ′(ζ̂) = ψ′(ζ̂n) + ψ′′(ζ̂n)(ζ̂ − ζ̂n) +
1

2
ψ′′′(%n)(ζ̂ − ζ̂n)2, (179)

where %n is between ζ̂n and ζ̂. From the above equality, we deduce that ψ′(ζ̂) = ψ′(ζ̂n) −
ψ′′(ζ̂n)εn + 1

2
ψ′′′(%n)ε2n = 0.

Proposition B.2 The sequence (ζ̂n)n∈N converges to ζ̂.

Proof. The assumption exp(γ−1υ) > 1− γ−1ξ implies that ψ′ is negative at the initial value

ζ̂0 = exp(−γ−1υ), that is

ψ′(ζ̂0) = − exp(γ−1υ) + 1− γ−1ξ < 0. (180)

Moreover, ψ′ is increasing on [exp(−γ−1υ),+∞[, since(
∀ζ ∈

[
exp(−γ−1υ),+∞

[ )
ψ′′(ζ) > 0, (181)

and
√

2 is a non-critical inflection point for ψ′, since(
∀ζ ∈

]√
2,+∞

[)
ψ′′′(ζ) > 0, (182)(

∀ζ ∈
]
0,
√

2
[)

ψ′′′(ζ) < 0. (183)

To prove the convergence, we consider the following cases:
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• Case ζ̂ ≤
√

2: ψ′ is increasing and concave on [ζ̂0,
√

2]. Hence, Newton method

initialized at the lower bound of interval [ζ̂0, ζ̂] monotonically increases to ζ̂ [97].

• Case
√

2 ≤ ζ̂0 < ζ̂: ψ′ is increasing and convex on [ζ̂0,+∞[. Hence, Lemma B.1

yields ε1 = ζ̂1 − ζ̂ > 0. It then follows from standard properties of Newton algorithm
for minimizing an increasing convex function that (ζ̂n)n≥1 monotonically decreases to

ζ̂ [97].

• Case ζ̂0 <
√

2 < ζ̂: as ψ′ is negative and increasing on [ζ̂0, ζ̂[, the quantity −ψ′/ψ′′ is

positive and lower bounded on [ζ̂0,
√

2], that is(
∀ζ ∈ [ζ̂0,

√
2]
)
− ψ′(ζ)

ψ′′(ζ)
≥ −ψ

′(
√

2)

ψ′′(ζ̂0)
> 0. (184)

There thus exists k > 0 such that ζ̂0 < . . . < ζ̂k and ζ̂k >
√

2. Then, the convergence
of (ζ̂n)n≥k follows from the same arguments as in the previous case.

C Convergence proof of Algorithm 4

We aim at finding the unique zero on ]W (e1−γ−1υ),+∞[ of the function ψ′ given by (98),
whose derivative reads

(∀ζ ∈ ]0,+∞[) ψ′′(ζ) = ln ζ +
1

ζ
+

1

ζ2
+ 2ζ + γ−1υ. (185)

To do so, we employ the projected Newton algorithm, whose global convergence is guaran-
teed for any initial value by the following condition [98]: (∀a ∈]0,+∞[)(∀b ∈]a,+∞[)

ψ′′(a) + ψ′′(b) >
ψ′(b)− ψ′(a)

b− a
, (186)

which is equivalent to

(b− a)ψ′′(a) + (b− a)ψ′′(b)− ψ′(b) + ψ′(a) > 0. (187)

Condition (187) can be rewritten as follows

(b− a)(ln a+
1

a
+

1

a2
+ 2a+ γ−1υ)

+ (b− a)(ln b+
1

b
+

1

b2
+ 2b+ γ−1υ)

+
(

(a+ 1) ln a+
a

2
+ 1− 1

a
+ a2 +

(
γ−1υ − 3

2

)
a− γ−1ξ

)
−
(

(b+ 1) ln b+
b

2
+ 1− 1

b
+ b2 +

(
γ−1υ − 3

2

)
b− γ−1ξ

)
> 0, (188)
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which, after some simplification, boils down to

(b+ 1) ln a− (a+ 1) ln b+
b

a
+

b

a2
− 2

a
− a

b
− a

b2

+
2

b
− a2 + b2 + γ−1υ(b− a) +

1

2
(b− a) > 0. (189)

We now show that Condition (189) holds true because b > a and it is a sum of two terms

(b+ 1) ln a− (a+ 1) ln b+
b

a
+

b

a2
− 2

a
− a

b
− a

b2

+
2

b
− a2 + b2 > 0 (190)

and

γ−1υ(b− a) +
1

2
(b− a)︸ ︷︷ ︸

>0

. (191)

Indeed, (190) can be rewritten as

(∀a ∈]0,+∞[)(∀b ∈]a,+∞[) g(a, b)− g(b, a) > 0

where

g(x, y) = −(x+ 1) ln y − x

y
+

y

x2
− 2

x
+ y2.

Therefore, we shall demonstrate that, for every b > a > 0, g is decreasing w.r.t. the first
argument and increasing w.r.t. to the second argument, i.e.

g(a, b) > g(b, b) and g(b, b) > g(b, a), (192)

which implies that
g(a, b) > g(b, a).

To prove these two inequalities, we will study the derivative of g with respect to its argu-
ments. The conditions in (192) are indeed equivalent to

(∀y ∈]0,+∞[)(∀x ∈]0, y[)
∂g

∂x
(x, y) < 0, (193)

(∀x ∈]0,+∞[)(∀y ∈]x,+∞[)
∂g

∂y
(x, y) > 0. (194)

The first and second partial derivatives of g w.r.t. x read
(∀y ∈]0,+∞[)(∀x ∈]0, y[)

∂g

∂x
(x, y) = − ln y − 1

y
− 2y

x3
+

2

x2

∂2g

∂x2
(x, y) =

6y

x4
− 4

x3
=

6y − 4x

a4
> 0.
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Since ∂2g/∂x2 is strictly positive, ∂g/∂x is strictly increasing w.r.t. x and

lim
x→y

∂g

∂x
(x, y) = − ln y − 1

y
= ln

1

y
− 1

y
< 0.

Therefore, Condition (193) holds, and g is decreasing with respect to x.
The first and second partial derivatives of g w.r.t. y read
(∀x ∈]0,+∞[)(∀y ∈]x,+∞[)

∂g

∂y
(x, y) =

−x
y
− 1

y
+
x

y2
+

1

x2
+ 2y

∂2g

∂y2
(x, y) =

x

y2
+

1

y2
− 2x

y3
+ 2.

For every y ∈ [1,+∞[,

(∀x ∈]0, y[)
∂2g

∂y2
(x, y) =

x

y2
+

1

y2
− 2x

y3︸︷︷︸
<1

+2 > 0,

and ∂g/∂y is strictly increasing w.r.t. y (since ∂2g/∂y2 is strictly positive) and

(∀x ∈ [1,+∞[) lim
y→x

∂g

∂y
(x, y) = −1 +

1

x2
+ 2x > 0,

(∀x ∈]0, 1])
∂g

∂y
(x, 1) =

1

x2
+ 1 > 0.

For every y ∈ ]0, 1[, we have

(∀x ∈]0, y[)
∂g

∂y
(x, y) =

−x
y

+
x

y2
− 1

y
+

1

x2
+ 2y,

=
x− xy
y2

− 1

y
+

1

x2
+ 2y,

since x < y < 1, this implies that xy < x and 1
y
< 1

x
< 1

x2
and

(∀x ∈]0, y[)
∂g

∂y
(x, y) =

x− xy
y2︸ ︷︷ ︸
>0

−1

y
+

1

x2︸ ︷︷ ︸
>0

+2y > 0.

As Condition (194) holds, g is increasing with respect to y.
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[43] A. Rényi, “On measures of entropy and information,” in Proc. 4th Berkeley Symp. on
Math. Statist. and Prob., California, Berkeley, Jun. 1961, vol. 1, pp. 547–561.
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